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Abstract
Background: The emerging highly pathogenic avian influenza strain H5N1 ("HPAI-H5N1") has
spread broadly in the past decade, and is now the focus of considerable concern. We tested the
hypothesis that spatial distributions of HPAI-H5N1 cases are related consistently and predictably
to coarse-scale environmental features in the Middle East and northeastern Africa.

We used ecological niche models to relate virus occurrences to 8 km resolution digital data layers
summarizing parameters of monthly surface reflectance and landform. Predictive challenges
included a variety of spatial stratification schemes in which models were challenged to predict case
distributions in broadly unsampled areas.

Results: In almost all tests, HPAI-H5N1 cases were indeed occurring under predictable sets of
environmental conditions, generally predicted absent from areas with low NDVI values and minimal
seasonal variation, and present in areas with a broad range of and appreciable seasonal variation in
NDVI values. Although we documented significant predictive ability of our models, even between
our study region and West Africa, case occurrences in the Arabian Peninsula appear to follow a
distinct environmental regime.

Conclusion: Overall, we documented a variable environmental "fingerprint" for areas suitable for
HPAI-H5N1 transmission.

Background
Highly pathogenic avian influenza of the strain H5N1
(hereafter "HPAI-H5N1") has received considerable atten-
tion as an emerging virus with human pandemic potential
[1,2] since it was first shown to be the cause of human
morbidity and mortality in Hong Kong in 1997 [3]. To
date, however, its most serious impacts have been on
domestic poultry: millions of domestic birds have been
killed by HPAI-H5N1 infection, and >230 million domes-
tic birds have been culled to contain the spread of the
virus [4]. In contrast to the dramatic publicity, relatively
few human cases are confirmed: at the time of writing,

385 human HPAI-H5N1 cases had been documented, of
which 243 (63.1%) were fatal [5], from 60 countries [6].
Human cases however, may eventually prove to be signif-
icantly underreported, reducing case-fatality rates.

Until Spring 2005, HPAI-H5N1 was restricted to East and
Southeast Asia [6]. Between May and June 2005, however,
>6000 birds of 8 wild waterbird species were found dead
at Qinghai Lake, in central China: HPAI-H5N1 was
detected in 15 birds of 6 wild species [7], some migratory,
fueling fears of broader spread [8]. This event apparently
marked a turning point in the spread of the virus: by early
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2006, it had been detected widely across South Asia, West-
ern Europe, and parts of Africa [6]. However, whether this
rapid spread resulted from accelerated dispersal or from
improved surveillance detecting existing infections
remains debatable [9].

The first Middle Eastern detection of HPAI-H5N1 was in
Turkey in October 2005, in a flock of "backyard" turkeys
(see  ional file 1). Further detections followed in 7 Balkan
countries (Bosnia-Herzegovina, Bulgaria, Croatia, Greece,
Romania, Serbia and Montenegro, and Slovenia; Novem-
ber 2005 – March 2006), more broadly in the Middle East
(Egypt, Iraq, Iran, Israel, Jordan, Kuwait, Palestinian Terri-
tories; November 2005 – March 2006), and the Caucasus
(Azerbaijan and Georgia; January – February 2006) by
March 2006. The virus was detected in Sudan and Dji-
bouti in April 2006, and in Saudi Arabia in March 2007
[6]. Countries in the region yet to record cases include the
richest (Bahrain, Qatar, United Arab Emirates) and the
poorest (Eritrea, Somalia, Yemen).

The concept of ecological niche describes the distinct eco-
logical requirements that determine occurrences of organ-
isms and other biological phenomena (including disease
transmission, such as HPAI-H5N1), and niches are cus-
tomarily defined at relatively coarse spatial scales to avoid
complexities of biotic interactions. The variables used to
define it are described in Methods. Here, we use ecological
niche modeling to provide a landscape-scale perspective
on the ecological context of HPAI-H5N1 occurrences
across the Middle East and northeastern Africa (Figure 1),
following protocols developed in an earlier study in West
Africa [10]. In the previous study, we associated HPAI-
H5N1 case occurrences with month-to-month variation
in 'greenness,' in the form of Normalized Difference Veg-
etation Index (NDVI) values derived from the Advanced
Very High Resolution Radiometer (AVHRR) satellite, in an
evolutionary-computing environment. We thus produced
ecological niche models of HPAI-H5N1 occurrence that
had significant predictive ability, suggesting that HPAI-
H5N1 occurs under consistent and predictable environ-
mental circumstances in West Africa. In this study, we
demonstrate consistent, predictable environmental con-
ditions associated with HPAI-H5N1 occurrences across
the Middle East and northeastern Africa, albeit not with-
out notable exceptions.

Results
Most of the 9 tests conducted as part of this study indi-
cated that independent test points coincided with ENM
predictions significantly better than random expectations
(see Additional file 2), although not without exceptions.
In other words, in general, models based on known HPAI-
H5N1 occurrences were able to anticipate spatial distribu-
tions of independent samples of HPAI-H5N1 based on

their environmental attributes. The details of these test
results follow.

Predictivity across study region
The model based on all OIE points showed significant
predictive ability when tested with the ProMed human
case-occurrence data (see Additional file 2; Figure 2).
Potential for HPAI-H5N1 occurrence was predicted along
the major rivers of the region (Euphrates, Nile, Tigris),
across most of the Caucasus, southern Sudan, and in Ethi-
opia, Greece, northern and western Iran, southern Soma-
lia, and Turkey. The virus was not predicted to have high
probability of occurrence in the Sahara, nor more gener-
ally in arid areas. Egypt was largely predicted unsuitable,
except for the fertile, densely populated Nile Valley. This
model's predictions were significantly better than random
expectations at all 10 thresholds; for example, at the 5
models out of 10 threshold, this model predicted 82.4%
of the independent testing points in just 41.2% of the
region (P < 0.001).

Single testing regions
These analyses tested the ability of models based on
known occurrences across three subregions to predict pat-
terns of occurrence in the fourth subregion. These tests
indicated, for the most part, significant predictive power
of the models (see Additional file 2; Figure 3). All thresh-
olds of prediction were significant for prediction of occur-
rences in Levant-Iran by the remaining three regions, 8 of
10 thresholds were significant for predictions in north-
eastern Africa, and 7 of 10 were significant for predictions
in Balkans-Caucasus. The model predicting distributions
in the Arabian Peninsula performed more weakly than the
other models, with only 4 of 10 thresholds significant and
considerable deviation from coincidence when inspected
visually (Figure 3).

Single predictor regions
Predictions of independent points across landscapes
based on single training regions were less successful (see
Additional file 2; Figure 3). Indeed, only 2 of 4 models
showed any predictive ability. Predictions from northeast-
ern Africa to the rest of the region were significant at 8 of
10 thresholds, and projections from Levant-Iran to the
rest of the region were significant at 5 of 10 thresholds.
Projections based on models trained in the Arabian
Peninsula and Balkans-Caucasus showed no significant
ability when challenged to predict occurrences in the
remaining regions. Once again, visually, the Arabian
Peninsula models performed particularly poorly
(Figure 3).

Partial ROC analyses
The partial ROC analyses (see Additional file 2) were
largely consistent with the cumulative binomial probabil-
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ity results (see Additional file 2). According to these tests,
all single-testing-region predictions were successful (i.e., P
≤ 0.001) while 2 of 4 single predictor regions (Levant-
Iran, northeastern Africa) were significantly better than
random (P ≤ 0.005). The partial ROC evaluation of the
overall prediction of the ProMed data was similarly signif-
icant (P < 0.01)

The NDVI data used in this study summarize photosyn-
thetic mass of vegetation, and how this quantity changes
through the year. Models based on case occurrences from
across the region were compared in detail in terms of envi-
ronmental conditions reconstructed as suitable versus
unsuitable (Figure 4), approximating a visualization of
the ecological niche estimated by each model. In the all-
region model, HPAI-H5N1 was predicted absent from
areas with low NDVI values and low seasonality, but
present in areas with a broad range of NDVI values (from
low to high) that showed marked seasonal variation. In
contrast, the Arabian Peninsula model predicted presence
in low NDVI areas with minimal seasonality, and absence
from areas showing a broad range of NDVI values (from
low to high) and seasonal variation. As such, the model
with the least predictive ability (i.e., the Arabian Penin-
sula model) was the inverse of the one that had good pre-
dictive ability (i.e., the all-region model). It is interesting
to compare these results to those from our previous West
African models [10]. There, virus presence was predicted
mostly in savannah and woodland habitats, whereas
absence was predicted in montane areas, coastal man-

groves, the freshwater swamps of the Niger Delta, and
from rainforest areas: areas of highest predicted HPAI-
H5N1 risk were highly variable seasonally, just as with our
all-region model.

The spatial limits of the predictivity we have documented
remain an open question [10]. The initial demonstration
of predictable HPAI-H5N1 geography across West Africa
is now supported by replication of the modeling protocol
across the Middle East. Projection of the Middle East
model to West Africa, and testing with independent
points from that region [10,11] (N = 101;) demonstrated
significant predictivity at all thresholds with both the
binomial test, and the partial ROC approach. This new
prediction (Figure 5) is broadly quite similar to the first
West African prediction [10], although differences are evi-
dent. In particular, the Middle East model predicts HPAI-
H5N1 presence in forest and mountains, whereas the
West African model did not. The two models are based
upon different sets of environmental layers, so some level
of difference is not surprising.

Discussion
Our results are generally consistent with earlier predic-
tions of the ecological niche of HPAI-H5N1 in West Africa
[10]. Most Middle Eastern and northeastern African mod-
els predicted suitable areas for HPAI-H5N1 transmission
in human-habitable areas, such as the Nile Valley, the
Levant, the Fertile Crescent, and the savannas of southern
Sudan. The major difference between the two sets of mod-
els is that most Middle Eastern and northeastern African
models predicted suitability in montane areas (Caucasus,
Ethiopian Highlands, northern and western Iran, and Tur-
key), whereas the West African models focused prediction
of suitable areas in lowlands. These models agree most
clearly in implicating areas with greatest seasonal varia-
tion as representing high HPAI-H5N1 risk.

The major exception to the conclusion of predictivity of
HPAI-H5N1 in the Middle East and northeastern Africa
were predictions involving the Arabian Peninsula, which
were not generally statistically significantly better than
random expectations. Indeed, in several areas, Arabian
models were inverse to the rest of our predictions, predict-
ing absence in areas of presence and vice versa. That is to
say, models based on Arabian Peninsula points predicted
HPAI-H5N1 presence in deserts, but not in mountains,
the Levant, the Fertile Crescent, or in the Sudanese savan-
nah, and only at low levels of model agreement in the Nile
Valley (see Additional file 2; Figure 6).

It is interesting that Arabian models should produce pre-
dictions so inconsistent with those from the rest of the
study area (see Additional file 2): for example, the distri-
bution of Arabian Peninsula occurrences could not be pre-
dicted with any confidence by models trained in the

Occurrence data for HP-H5N1 in the Middle East and north-eastern Africa, and regional divisions used in this studyFigure 1
Occurrence data for HP-H5N1 in the Middle East 
and northeastern Africa, and regional divisions used 
in this study.
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remainder of the region, and conversely, Arabian Penin-
sula points were unable to predict occurrences across the
Balkans, Caucasus, Levant, Iran, or northeastern Africa
successfully. Three major HPAI-H5N1 outbreaks occurred
in the Arabian Peninsula: in Kuwait, Ar-Riyad (city), and
southern Ar-Riyad (province), none of which is predicted
strongly by models trained elsewhere (Figures 2 and 3).
Given the rather extreme arid conditions in the region, the
Arabian Peninsula seems a harsh environment for both
poultry and poultry diseases. We suspect that Arabian
HPAI-H5N1 occurs chiefly or only in human-subsidized
habitats that would permit poultry to be raised: indeed,
26 of 30 reported Saudi Arabian cases were detected in
commercial farms containing thousands to hundreds of
thousands of poultry [11]. Perhaps, Arabian occurrence
points reflect something other than the "ecological niche"
of HPAI-H5N1 in the subregion; for example, they may
reflect principally the conditions under which poultry can
be raised, albeit with considerable subsidy of water and
shade, irrespective of disease distributions. We should
add, though we suspect that such is not the case, the total
lack of predictivity in the Arabian Peninsula raises the
more troubling possibility that the correspondence
between NDVI and disease occurrence in the rest of the
region is coincidental. It is possible that HPAI H5N1 dis-

tribution is not driven by factors correlated with NDVI
seasonality, but by something that cannot be detected in
the remotely sensed landscape.

Gilbert et al. [12] mapped the geographic distribution of
suitable conditions for HPAI-H5N1 across Southeast Asia,
finding close associations between free-grazing domestic
ducks in rice paddies and HPAI-H5N1 cases. This result
suggests that transmission risk could be mapped success-
fully in Southeast Asia, where duck production and rice
cultivation are both extensive and intertwined, and that
duck production may be an important driver of HPAI-
H5N1 persistence. The authors stated that large numbers
of Anatidae concentrate in the Nile Delta, and that the
Hadejia Jama'are river system of Nigeria is also an impor-
tant area of duck production. FAO reports a combined
domestic duck and goose population of 18.3 million for
Egypt in 2004 [13], presumably concentrated in the Nile
Delta and Valley (along with virtually the entire human
population and all productive agricultural land), joined
in winter by large flocks (several hundreds of thousands
[14]) of wild aquatic birds. Figures are unavailable for
domestic Anatidae in Nigeria, although numbers of undif-
ferentiated "exotic poultry" (ducks, geese, turkeys, guinea-
fowl, ostriches, etc.) in the 5 states bordering Hadejia
Jama'are were around 7.5 million birds in 2003 [15].
Egypt and Nigeria both produce substantial rice crops (on
613 000 and 2 725 000 ha of land, respectively) [16].

Although total area under rice cultivation and total Anati-
dae populations are far higher in East Asia than in Egypt,
the ratio of domestic Anatidae to area of rice production
is considerably higher than in Thailand and Vietnam (see
Additional file 3), and about the same as that found in
China. If grazing of domestic Anatidae in rice paddies
does play an important role in driving HPAI-H5N1 per-
sistence and if duck-raising in the Middle East parallels
that in East Asia, we might, expect persistence in China,
Egypt, and Iran, all countries with higher duck-to-rice pro-
duction area ratios than Thailand (Additional file 3). On
the other hand, cases of HPAI-H5N1 have been numerous
and widespread in Turkey, despite low numbers of Anati-
dae and little rice cultivation, suggesting that duck grazing
in rice paddies is not the only factor in HPAI-H5N1 trans-
mission and persistence. Free mingling of backyard poul-
try and wild birds has been identified as a risk factor for
HPAI-H5N1 transmission [17,18]. In Egypt, most domes-
tic Anatidae are considered to be backyard (64% of ducks
and "all" geese), whereas the majority of chickens (63%)
are produced in commercial operations, apparently typi-
fying the poultry industry of North Africa and the Middle
East [19].

Our models and predictions cannot shed new light on the
comparative roles of poultry and wild birds in HPAI-
H5N1 transmission. One of the most important chal-

Regional projection across the Middle East and northeastern Africa of HPAI-H5N1 ecological niche model results based on all OIE case occurrence pointsFigure 2
Regional projection across the Middle East and 
northeastern Africa of HPAI-H5N1 ecological niche 
model results based on all OIE case occurrence 
points. Model predictions are shown as ramps of model 
agreement in predictions: light grey = 5–9 models predict 
potential presence, dark grey = all models agree in predicting 
potential presence. Black triangles indicate independent test 
data (N = 17) from the region drawn from the ProMed 
archive of human case reports.
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lenges for our analyses is distinguishing true ecological
biases in case distributions (i.e., the ecological niche!)
from the spatial and ecological biases in distributions of
HPAI-H5N1 hosts. In some regions (Nile Delta, Fertile
Crescent, Levant, Turkey, western Iran), our predictions
showed marked coincidence with poultry distributions
(Figure 7). However, our models failed to predict the high
poultry concentrations in western Saudi Arabia and the
Arabian Gulf states as forming part of the potential distri-
bution of HPAI-H5N1, despite detections in Kuwait; as
noted previously, our ability to predict HPAI-H5N1 distri-
bution patterns in the Arabian Peninsula was poor in all
comparisons.

Conclusion
HPAI H5N1 detection data used for the development of
these models are dominated by transmission among
flocks of several poultry species. Given that detection data
are so variable in terms of species composition (i.e., taxa,
and number of taxa affected), husbandry method (high
biosecurity, backyard, etc), origin (home-hatched, pur-
chased, native-hatched, imported legally or illegally), and
domestication, it is hard to define mechanisms driving
transmission. We do not, however, find that our models

are simply reproducing the spatial distributions of poultry
flocks. Several ecologically-biased elements in the HPAI-
H5N1 transmission cycle could explain the predictivity we
detected: introduction of HPAI-H5N1 by migratory birds
[20,21], transmission among poultry flocks [22,23], areas
important for importation of poultry or hobby birds
(legal or illegal) [24], or even transportation routes (e.g.,
roads, rivers). Inconsistencies in predictions based on
HPAI-H5N1 occurrences from different subregions sug-
gest that certain of these factors may have greater impor-
tance in some subregions than in others. In the Middle
East, at least, we observe coincidence between human
populations and HPAI-H5N1 cases, although, of course,
this observation may simply point to the fact that influ-
enza surveillance is more intensive in populated areas.

Methods
Ecological Niche Models
The ecological niche models (ENMs) developed in this
study are based on the idea that organisms and other bio-
logical phenomena (including disease transmission) have
distinct ecological requirements that determine their
occurrences in time and space [25]. In general, disease
applications of ENM balance between focusing on indi-

Spatially stratified tests of ENM predictions of HP-H5N1 distributions in the Middle East and northeastern AfricaFigure 3
Spatially stratified tests of ENM predictions of HP-H5N1 distributions in the Middle East and northeastern 
Africa. Here, occurrences from each subregion predict distributions of cases in the rest of the region, and vice versa. Model 
predictions are shown as ramps of model agreement in predictions: light grey = 5–9 models predict potential presence, dark 
grey = all models agree in predicting potential presence. Only independent test points are plotted on maps. The dense cluster 
of testing points along the lower Nile River in northeastern Africa as testing region analyses covers an area predicted to be 
suitable.
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vidual species in the transmission system and using the
integration of the whole system as a "black box" deter-
mining transmission to some species or biological phe-
nomenon of interest [26,27]. In this contribution, given
the as-yet poorly characterized avian reservoir of HPAI-
H5N1, we focus on all cases of HPAI-H5N1, effectively
treating the transmission system as a black box. We thus
attempt to model the transmission of a single pathogen
based on its appearance in a multi-species system (i.e., the
subset of animals in which HPAI H5N1 has been
detected), in this case, dominated by distributions of
domestic birds. In this sense, we deviate somewhat from
the classical ENM approaches, which are based on single-
species occurrence-environment correspondence. ENMs
have been developed via diverse methodological
approaches [28-31]; however, the method most fre-
quently applied to questions of disease transmission has
been the Genetic Algorithm for Rule-set Prediction
(GARP), an evolutionary-computing approach [32,33].

Input data
This study was based on HPAI-H5N1 animal case-occur-
rence data for 2005–2008 from the Middle East and
northeastern Africa. Data were drawn from the World
Organisation for Animal Health (OIE) [11], consisting of
610 unique locations, including isolations from wild
birds, zoo birds, commercial poultry, and backyard poul-
try (Figure 1). This survey of occurrences includes birds

assumed to be raised under strict biosecurity control, as
well as birds raised with none; it similarly includes birds
raised in strictly monospecific farms, multispecies assem-
blies mingling freely with wild birds (and other fauna),
and even pets in a children's kindergarten. The database is
composed of detections in at least 18 species of birds,
although reporting standards are not consistent, so all too
frequently information about hosts is either vague or
absent. Most detections occurred in anthropogenic habi-
tats. Our study area included 25 countries and one terri-
tory, ranging from Greece to the northwest, Somalia to the
southwest, Georgia to the north, and Iran to the east. We
assembled a complementary set of 17 unique and non-
overlapping human cases occurrences from the archives of
the International Society for Infectious Disease (ProMed
Avian Influenza archive) [34] from the region (Figure 2)
with which to test model predictions. All textual descrip-
tions of occurrence localities were converted to geo-
graphic coordinates accurate to the nearest 0.01° using
the GeoNet Names Server http://gnswww.nga.mil/geon
ames/GNS/index.jsp, Alexandria Digital Library Gazetteer
http://middleware.alexandria.ucsb.edu/client/gaz/adl/
index.jsp, and other sources [35].

We based ENM development on the 610 OIE localities for
which geographic coordinates were provided with a preci-
sion of at least 0.01°; duplicate localities (i.e., multiple
occurrences in the same 8 × 8 km grid square) were dis-

Summary of Normalized Difference Vegetation Index (NDVI) 'greenness' profiles of the Middle East and northeastern Africa through one year for models based on the entire region (top) and for models based only on the Arabian PeninsulaFigure 4
Summary of Normalized Difference Vegetation Index (NDVI) 'greenness' profiles of the Middle East and 
northeastern Africa through one year for models based on the entire region (top) and for models based only 
on the Arabian Peninsula. In each case, we show NDVI values for 100 randomly selected points of predicted absence ver-
sus 100 randomly selected points of predicted presence. Median values are shown in bold.
Page 6 of 11
(page number not for citation purposes)

http://gnswww.nga.mil/geonames/GNS/index.jsp
http://gnswww.nga.mil/geonames/GNS/index.jsp
http://middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp
http://middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp


International Journal of Health Geographics 2009, 8:47 http://www.ij-healthgeographics.com/content/8/1/47
carded. Geographic coordinates in the OIE data set were
drawn from global positioning system recordings for the
point of detection of HPAI-H5N1 cases [11]. They thus
specify the spatial position of HPAI-H5N1 occurrences,
and probably represent the coarse-scale ecological condi-
tions under which HPAI-H5N1 transmission occurs.

Given that the spatial pattern of H5N1 outbreaks has been
on rather fine spatial scales, our previous experience with
niche modeling and H5N1 outbreaks indicates that spa-
tial resolutions on the order of 1–10 km are necessary,
making use of climate-based data layers impractical. Envi-
ronmental data sets included 12 monthly composite
remotely-sensed data layers for Nov 1999 – Oct 2000,
each summarizing maximum Normalized Difference Veg-
etation Index (NDVI; native spatial resolution 8 × 8 km)
values [36]; although not exactly coincident with occur-
rence data temporally, these data provided an exemplar
year of landscape variation in greenness. As NDVI is
derived from reflectance in the visible and near-infrared
domains, and as such is sensitive to photosynthetic activ-
ity and is closely correlated with photosynthetic mass
[36], the NDVI time series used here summarizes aspects
of land cover and vegetation phenology across the region.
A year 2001 MODIS-based vegetation continuous fields
dataset summarizing percent tree cover was also used
(native spatial resolution 500 m) [37]. Finally, we also
included 3 data sets summarizing aspects of topography:

slope, aspect, and compound topographic index (which
summarizes tendency to pool water), from the U.S. Geo-
logical Survey's Hydro-1K data set (native resolution 1
km) [38]. We deliberately excluded data on elevation
from the study to avoid confusion caused by indirect var-
iables. Climate data were not included in these analyses
for lack of sufficiently high-resolution data sets across the
region.

The GARP algorithm
The Genetic Algorithm for Rule-set Prediction (GARP) has
been applied widely to questions of disease transmission
[26,39], and its predictive ability has been tested under
diverse circumstances [30,40,41]. Although GARP has
seen criticism in some comparative studies [30], more
recent studies have indicated considerably better perform-
ance [42,43] and some artifactual causation of previous
results [44]. As such, we used GARP for ENM develop-
ment.

In general, we developed tests based on spatially stratified
subsets of available occurrence information set aside prior
to model development. Of occurrence data actually input
into GARP, the program divides occurrence data ran-
domly into three subsets: training data (25%; for rule
development), intrinsic testing data (25%; for evaluation
of rules) and extrinsic testing data (50%; for evaluation of
model quality, see below). Spatial predictions of presence
versus absence can include two types of error: false nega-
tives (areas of actual presence predicted absent) and false
positives (areas of actual absence predicted present) [45]
– rule performance in each of these dimensions is evalu-
ated via the intrinsic testing data set. Changes in predictive
accuracy from one iteration to the next are used to evalu-
ate whether particular rules should be incorporated into
the model or not, and the algorithm runs either 1000 iter-
ations or until convergence [33]. The final rule-set is then
used to query the environmental data sets across the study
region to identify areas fitting the rule set predictions to
produce a hypothesis of the potential geographic distribu-
tion of the species [25].

Since GARP processing includes several random-walk
components, each replicate model produces distinct
results, representing alternative solutions to the optimiza-
tion challenge. Following best-practices approaches [40],
we developed 100 replicates of each model. We filtered
these replicates based on their error characteristics, retain-
ing the 20 with lowest false negative rates (= percentage of
independent testing points falling in areas not predicted
to be suitable), and then retained the 10 (of the 20) clos-
est to the median of proportional area predicted present,
an index of false-positive error rates [40]. A consensus of
these 'best subset' models was then developed by sum-
ming values for each pixel in the map to produce final pre-

Regional projection across West Africa of HPAI-H5N1 eco-logical niche modelFigure 5
Regional projection across West Africa of HPAI-
H5N1 ecological niche model. Results based on OIE case 
occurrence points and environmental layers for the Middle 
East and northeastern Africa. Model predictions are shown 
as ramps of model agreement in predictions: light grey = 5–9 
models predict potential presence, dark grey = all models 
agree in predicting potential presence. Black diamonds indi-
cate independent test data (N = 101) from the region 
[10,11]. Study area is delineated by bold border.
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dictions of potential distributions with 11 thresholds
(integers from 0 to 10).

Modeling and testing approach
This study focuses on the question of whether HPAI-
H5N1 transmission in the Middle East and northeastern
Africa occurs under a consistent and predictable set of
environmental conditions. As such, we developed a series
of tests of model predictivity; in each case, models were
developed and predictions tested using spatially inde-
pendent suites of occurrence data. Model tests were based
on 4 spatial subsets of the Middle Eastern and northeast-
ern African occurrence data (Figure 1): Arabian Peninsula
(Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, United
Arab Emirates, Yemen; N = 31), Balkans-Caucasus (Arme-
nia, Azerbaijan, Cyprus, Georgia, Greece, Turkey; N =
175), Levant-Iran (Iran, Iraq, Israel, Lebanon, Palestinian
Territories, Syria; N = 18), and northeastern Africa (Dji-
bouti, Egypt, Eritrea, Ethiopia, Somalia, Sudan; N = 386).

The basic design of testing included three schemes for sub-
dividing available occurrence data, as follows:

1. Single testing regions: We combined each possible set of
3 subregional occurrence datasets to develop ENMs that
were tested with the fourth subregion. Total 4 tests.

2. Single predictor regions: Occurrence data for each subre-
gion were used to develop predictive models that were
projected to the rest of the region for testing (e.g., Arabian
Peninsula data points used to build predictions for the
combination of Levant-Iran, northeastern Africa, and Bal-
kans-Caucasus). Total 4 tests.

3. Predictivity across study region: We developed ENM pre-
dictions based on all OIE veterinary cases in the region,
and tested its prediction based on coincidence of predic-
tions with the 17 independent ProMed human cases. One
test.

The customary approaches to spatial model validation
(e.g. simple receiver operating characteristic, kappa statis-
tics) are not applicable to situations in which presence-
only data are the only information available [45,46]. As
such, we validated models using two approaches. First, we

Projections of HPAI H5N1 occurrences from a single subregion across the whole regionFigure 6
Projections of HPAI H5N1 occurrences from a single subregion across the whole region. Light grey = 5–9 models 
predict potential presence, dark grey = all models agree in predicting presence. Note the contrast between the Arabian Penin-
sula and the other three predictions.
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calculated binomial probabilities that observed coinci-
dence of predictions and independent test data is no bet-
ter than random, with the probability of k successes in N
trials depending on p, the probability of success in any
one trial; we estimated p as the proportion of the testing
area predicted present, and k as the number of the N test-
ing points successfully predicted by the model prediction
[40]. Binomial probabilities were calculated for each of
the 10 thresholds representing predictions of presence (1
= broad, 10 = narrow), in each case testing whether predic-
tivity was better than expected by chance.

Second, we followed Phillips et al. [47] in modifying
receiver operating characteristic curves (ROCs) so as not
to depend on absence data. We calculated the area under
the curve (AUC) of the ROC, a statistical technique that
has become a dominant tool in evaluating the accuracy of
models predicting distributions of species 16. However,
when comparing two ROCs, AUC systematically under-
values models that do not provide predictions across the
entire spectrum of proportional areas in the study area
(such as GARP, the modeling approach used here) [48]. In
addition current ROC approaches inappropriately weight
the two error components (omission and commission)
equally. Accordingly, we use a modification of ROC that
remedies these problems: partial-area ROC approaches
that evaluate only over the spectrum of the prediction and
that allow for differential weighting of the two error com-
ponents [48].

We carried out partial ROC analyses [48] for each model,
all based solely on independent testing points not used to
train the models in areas from distinct regions(s) to which
models were projected. AUCs were limited to the propor-
tional areas over which models actually made predictions,
and only omission errors of <5% were considered (i.e., E
= 5% [48]). We calculated partial AUCs using a program
based on the trapezoid method [49] kindly developed by
N. Barve (in prep.), and present our ROC results as the
ratio of the model AUC to the null expectation ("AUC
ratio") [48]. Bootstrapping manipulations to permit eval-
uation of statistical significance of AUCs (as compared
with null expectations) were achieved by resampling 50%
of the test points with replacement 1000 times from the
overall pool of testing data; one-tailed significance of dif-
ferences in AUC (i.e. elevation above the line of null
expectation) was assessed by counting the number of
bootstrap replicates with AUC ratios <1.
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Density of poultry in the Middle East and northeastern Africa (units per km2) [13]Figure 7
Density of poultry in the Middle East and northeast-
ern Africa (units per km2) [13].
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