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The Relationship between Abstract Reasoning and Performance in High School Algebra 

 

ABSTRACT: This study examined abstract reasoning ability as a predictor of success in 

high school algebra controlling for age, motivation, and previous math achievement. A 

valid and reliable instrument, the Abstract Reasoning Assessment (ARA), a matrix 

completion instrument based upon a protocol by Embretson (1998), was developed for 

the study. Motivation was measured using the Personal Achievement Goal Orientations 

scale (Midgeley, 2000). Previous math achievement was measured using the course grade 

from the previous year’s math course. Success in algebra was measured by the final exam 

grade from a first year high school algebra course. 220 ninth grade students took part in 

the study. A multiple regression analysis found that abstract reasoning ability explained a 

significant proportion of the variance in high school algebra performance beyond that 

explained by previous math achievement, motivation and age. Further, based on effect 

size, abstract reasoning was a better predictor than previous math achievement.   
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Introduction 

 

 The following story may sound familiar to many people. “As someone who 

struggled hard with math in school until I was 15, and then got it all at once, I never 

believed the math-gene theory. What made the difference for me was that everything 

suddenly made sense, perfect, simple, elegant sense” (Devlin, 2000, p. 63). 

Teaching Algebra to all students in eighth grade has been the subject of much 

debate in mathematics education. McKibben (2009) points out that advanced math 

requirements don't necessarily result in higher math achievement; for example in 2007 

the District of Columbia had the highest percent of students in advanced math courses, 

but they had the lowest math scores on the National Assessment of Educational Progress 

(NAEP).  Viadero (2010) found that as Chicago Public Schools initiated a policy to have 

more students complete Algebra I by 9th grade, their failure rates increased, grades 

decreased, assessment scores failed to rise, and students’ college attendance rates did not 

increase. On the other hand a study by Spielhagen (2006) indicates that policies providing 

algebra instruction in the eighth grade can assist in closing SES achievement gaps in 

school populations and increase the likelihood of those students taking higher level 

mathematics courses in high school. Using 2005 NAEP data Loveless (2008) found that 

about 120,000 eighth grade students are misplaced in Algebra I because they possessed 

second grade math skills. At least that many more have skills only slightly better (Bracey, 

2008). Loveless’ (2008) findings also show that many of the states with the highest 
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percentages of eighth graders in algebra classes have the lowest NAEP math scores, and 

many states with low percentages of eighth grade algebra students had the highest NAEP 

scores. Cavanaugh (2008) found that California had almost 60 percent of eighth grade 

students enrolled Algebra 1 or above, but scored an average of 270 on the NAEP, one of 

the country's lowest average scores. In contrast Vermont had only 26 percent of eighth 

graders taking Algebra or above, yet Vermont students earned an average NAEP score of 

298, one of the highest in the nation. McClure (2009) notes that according to the National 

Mathematics Advisory Panel’s final report in 2008 there is a “sharp falloff in 

mathematics achievement” as students begin study in algebra toward the end of middle 

school.  

 One concern is that there may be a developmental component related to abstract 

thinking capacity that may inhibit some students from learning algebraic concepts during 

adolescence. The question is not whether algebra should be taught in eighth grade, but 

rather who should, and who should not take algebra in eighth grade. This study will 

specifically explore the relationship between abstract thought and success in learning 

Algebra I. The hypothesis for this study is that performance on an algebra final exam is 

related to abstract reasoning after controlling for age, motivation, and previous math 

achievement. 

Abstraction In Algebra 

 Algebra, of course, is filled with abstraction. Several Algebra concepts are 

highlighted as the source of abstraction difficulties among algebra learners. To fully 

understand algebra each of these abstraction difficulties must be overcome. Sfard and 

Linchevski (1994) point out that the expression 3(x + 5) – 1 can have different meanings 
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depending on the level of abstraction. At a simple level of abstraction, the above 

expression can represent a computational process. At a deeper level of abstraction, the 

expression might represent a single numerical value. With a little more complexity, the 

expression can be interpreted as a function. If the three is replaced by the letter a to form 

the expression a(x + 5) – 1, the expression can be expanded to an entire family of 

functions. Another common abstraction that students don’t always understand is the 

concept of the equal sign (McNiel, 2008; Rojano & Martinez, 2009; Sfard, & Linchevski, 

1994). Goodson-Espy’s (1998) study of university students’ methods of solving problems 

about automobile rental situations involving the concept of inequalities showed that 

students operating at the lower levels of reflective abstraction typically held weak 

conceptions of variable and equality. When students could not solve the problems 

arithmetically, they often resorted to creating tables to find a solution. 

 Students often have trouble with the transition from arithmetic problem solving to 

algebraic problem solving. Many studies found that students from middle school to 

university use arithmetic methods to solve problems that can be solved algebraically 

(Hershkowitz, 2001; MacGregor & Stacey, 1997; Nathan & Koedinger, 2000;  Stacey & 

MacGregor, 1997). “Students' prior experiences with solving problems in arithmetic 

gives them a compulsion to calculate which is manifested in 

1. the meaning they give to ‘the unknown’; 

2. their interpretation of what an equation is; 

3. the methods they choose to solve equations” (Stacey & MacGregor, 1999, p. 149). 

The differences between arithmetic and Algebraic problem solving are summarized in 

Table 1. 
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Table 1. Arithmetic vs Algebraic Problem Solving 

Arithmetic Problem Solving Algebraic Problem Solving 

Work from knowns to unknowns Working with and on unknowns 

throughout 

Unknowns change through problem Unknown fixed 

Equation as formula to produce an answer Equation as description of relationship 

Chains of successive calculations Chains of successive equalities 

Guess and check equation solving “Do the same to both sides” equation 

solving 

Intermediate results can be interpreted in 

problem situation 

Intermediate results are not interpreted in 

problem situation 

Doing operations one by one Undoing operations one by one 

(Stacey, 1997)  

 

Capraro and Joffrion (2006) found that the percentages of seventh and eighth 

grade students correctly answering three questions (two multiple choice and one free 

response) involving translating words into algebraic symbols were 54.7%, 33.5%, and 

43.1%, respectively, and only 9% of the students answered all three questions correctly. 

This demonstrates a lack of ability to use simple abstraction among seventh and eighth 
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graders. Dede (2004) found that eighth grade students do not have the correct concept of 

a variable. They instead hold a simpler view that a literal symbol is an unknown value 

rather than a variable quantity. Stacey (1997) found that student concepts of “the 

unknown” had different and sometimes shifting understandings: x refers to the value 

currently being calculated, x refers to different quantities in one equation, x refers to 

different quantities at different stages, x is a general label for any unknown quantity or a 

combination of quantities. 

Piagetian theory suggests that the capacity for formal reasoning begins around age 

eleven or twelve. Bitner-Corvin (1987) found that in seventh grade 96% of students are 

still in the concrete operational phase, but by tenth grade only 50% remain in the concrete 

stage, and 22% have reached formal operations. While there is no set definition of what 

abstract thought is, there is much agreement that it involves symbolic representation that 

becomes progressively abstract as an increasing number of symbolic abstractions are 

added to the system, and that adolescents will progress through these levels in a 

predictable manner (Marini & Case, 1994). Marini and Case went on to find that there 

was indeed a continuum of abstraction among adolescents that increased with age 

throughout the teen years. 

 

Review of Literature 

 Abstract Reasoning is also known as fluid intelligence (Cattell, 1963) or analytic 

intelligence. “Fluid intelligence is reasoning ability in its most abstract and purest form. It 

is the ability to analyse novel problems, identify the patterns and relationships that 

underpin these problems and extrapolate from these using logic. This ability is central to 
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all logical problem solving and is crucial for solving scientific, technical and 

mathematical problems” (ART Technical Manual, 2006, p. 5), “We use the term analytic 

intelligence to refer to the ability to reason and solve problems involving new 

information, without relying extensively on an explicit base of declarative knowledge 

derived from either schooling or previous experience” (Carpenter, Just, and Shell, 1990, 

p. 404). Carpenter, Just and Shell assert that the Raven Progressive Matrices test is an 

appropriate test for measuring analytic intelligence. The Raven Matrix Tests were 

originally designed to be a non-verbal measure of Spearman’s general intelligence, g 

(1927). 

Hershkowitz, Schwarz, and Dreyfus (2001) view “abstraction as a process in 

which students vertically reorganize previously constructed mathematics into a new 

mathematical structure” (p.195). They go on to say that for most mathematics educators, 

“abstraction proceeds from a set of mathematical objects (or processes) and consists of 

focusing on some distinguishing properties and relationships of these objects rather than 

on the objects themselves” (p. 196).  

Reification Theory 

 Reification describes the nature of a student’s understanding of a mathematical 

concept. Goodson-Espy (1998) summarizes Sfard’s (1991) theory of reification, “The 

theory of reification posits the existence of three stages of concept formation: (a) 

interiorization; (b) condensation; and (c) reification” (p. 220). Goodson-Espy (1998) later 

clarifies, “The process is said to have been interiorized when the learner no longer has to 

perform the operation in order to think about the process... Condensation was described 

as the stage where a complicated process is condensed into a form that becomes easier to 
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use and think about... Reification is termed as the stage where the solver can conceive of 

the mathematical concept as a complete object with characteristics of its own” (p. 223).  

Reflective Abstraction 

 In contrast Cifarelli (as cited in Godson-Espy, 1998) describes reflective 

abstraction as a learning process used to characterize problem solving activities. There 

are four levels of reflective abstraction, (1) Recognition, (2) Re-presentation, (3) 

Structural Abstraction, and (4) Structural Awareness.    

Cifarelli described the Recognition level as the ability to recognize 

characteristics of a previously solved problem in a new situation and to 

believe that one can do again what one did before. ...  

Re-presentation was described as the level where a student becomes able 

to run through a problem mentally and is able to anticipate potential 

sources of difficulty and promise. ...  

Structural Abstraction was said to occur when the student evaluates 

solution prospects based on mental run-throughs of potential methods as 

well as methods that have been used previously. ...   

A solver operating at [the Structural Awareness] level is able to anticipate 

the results of potential activity without having to complete a mental run-

through of the solution activity” (Goodson-Espy, 1998, pp. 224-225). 

Aiding Abstraction in the Classroom 

 Hazzan and Zazkis (2005) found that students’ mistakes in problem solving are 

often an attempt on the part of the student to reduce the level of abstraction, and 

identified three different interpretations for levels of abstraction discussed in the 



 

  8 

literature: (a) abstraction level as the quality of the relationships between the object of 

thought and the thinking person, (b) abstraction level as reflection of the process-object 

duality, and (c) abstraction level as the degree of complexity of the concept of thought.  

 In the classroom, teachers need methods to scaffold students’ ability to form the 

abstractions needed to solve problems. The common theme of these methods is helping 

students construct abstractions using an understanding of reification theory, and reflective 

abstraction. Using reification teachers can interiorize a concept by beginning the 

discussion of the concept. Teachers are very good at helping consolidation by 

summarizing processes by a variety of methods. One method is asking students about 

characteristics of a concept can aid reification. Teachers can use the steps of reflective 

abstraction to help students bridge the gaps in abstract constructions. Teachers can help 

recognition by helping students remember similar problems or processes from prior 

learning. They can suggest re-presentation by prompting students to attempt a mental run 

through of the problem. Asking students to evaluate whether they think a method will 

work can facilitate students’ structural abstraction and may eventually lead to structural 

awareness. Specific methods found in the literature for addressing abstraction include use 

of computer simulations (Rojano & Martinez, 2009), creating tables to see patterns 

(Goodson-Espy, 1998), avoid using trivial problems when illustrating algebraic problem 

solving (Stacey, 1997), having students construct their own rules (Demby, 1997), 

encouraging metacognition by asking “why” questions (Clements & Sarama, 2004), 

distributing abstraction among multiple participants (Hershkowitz, et. al., 2001), 

reorganizing curriculum historically to facilitate abstraction, and highlighting 

interconnections between new and prior learning (Sfard & Linchevski, 1994). 
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Abstract Reasoning Correlations 

Bird (2010) compared abstract reasoning to academic performance in university 

chemistry using the Group Assessment of Logical Thinking (GALT) (Roadranga, 1986). 

The GALT is a twelve item, paper and pencil test designed to measure logical thought in 

students from sixth grade to college. The GALT measures six logical operations: 

conservation, proportional reasoning, controlling variables, combinatorial reasoning, 

probabilistic reasoning, and correlational reasoning, and classifies students as concrete, 

transitional or formal operational. The GALT has proven to be a reliable and valid 

measure of logical thinking ability (Bird, 2010; Roadranga, 1986).  The GALT was not 

used for this study because it measures a subject’s ability to use formal logic, rather that 

the ability to use abstraction. 

Abstract reasoning is generally considered to be the use of symbolic and logical 

processes to solve problems, and Embretson (1998) developed a protocol for constructing 

and analyzing matrix completion items like those in thethe Raven matrix tests. Embretson 

(1995) found in a study of 728 air force recruits that scores on her Abstract Reasoning 

Test (ART) correlated most strongly with the recruits’ Arithmetic Reasoning and Math 

Knowledge as measured by the Armed Services Vocational Aptitude Battery (ASVAB).  

Methods 

The hypothesis of this study is that performance on an algebra final exam is 

related to abstract reasoning after controlling for age, motivation, and previous math 

achievement. 
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Participants 

Permission was sought and received from the University of Kansas’ Institutional 

Review Board to conduct this study. The sample students attend school in a public school 

district on the outskirts of a medium sized Mid-western city. The district contains one 

large high school and has a population consisting of urban, suburban and rural students 

from varied socio-economic classes, as well as a number of students living in group 

homes.  

During the Spring 2014 semester about 320 total students completed the Abstract 

Reasoning Assessment consisting of 25 matrix completion items with increasing 

difficulty. The subjects were enrolled in Math 1 as high school students. The curriculum 

of Math 1 in this district corresponds to that of a traditional Algebra I course with the 

addition of a few topics from Geometry. Only those students whose previous 

mathematics course was 8th grade algebra were used for the analysis. Ultimately, data for 

all variables were available for 216 qualifying students. Of these students, 47% were 

female and the mean age was 15.32 years.  

Instrument 

 Data on five variables were collected from this sample: abstract reasoning ability, 

motivation for class work, algebra ability, previous math achievement, and age. 

An instrument to assess abstract reasoning ability was constructed based on 

Embertson’s (1998) protocol for developing abstract reasoning tests. Items consist of a 

three by three matrix containing entries in the form of simple graphics in each cell except 

for the lower right cell. There are patterns among the entries that determine the rules for 
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completing the matrix with one multiple choice solution and seven distracters. Items were 

designed using the Taxonomy of Rules in the Raven Test as described by Carpenter et al. 

(1990) There is a hierarchy of five rules used in Raven’s Matrix tests and other tests of its 

kind. The first rule is the Constant in a Row, or Identity, rule. The Identity rule refers to 

entries that remain unchanged across a row of the matrix. The second rule is Quantitative 

Pairwise Progression, which means that there is a natural progression among the entries 

of a row or column. Third is Figure Addition or Subtraction in which the figures in two 

elements are combined to produce a third element. Fourth is the Distribution of Three 

Values rule where each row or column contains each three elements or attributes exactly 

once. The fifth rule is Distribution of Two Values- it is like distribution of three values, 

but the third attribute is null. The figures in each element are typically simple geometric 

figures. Attributes of the figures include size, orientation, shading, outlining, and 

distortion. Figures in each entry may be juxtaposed, superimposed, or combined together 

to make one object.  

Embertson (1995) found that the best way to operationalize the difficulty level of 

a matrix item is to calculate its Working Memory Load (WML), by using the number of 

rules used. Carpenter et al. (1990) found the five rules to be hierarchical, meaning that 

subjects try the rules in order from simplest (Identity) to most complex (Distribution of 

Two). WML is a sum of the rules tried, so if a question uses Identity, Pairwise 

Progression, and Distribution of Three, its Working Memory Load is the sum of one for 

Identity, plus two for pairwise progression, plus four for Distribution of Three. So the 

question’s WML = 1 + 2 + 4 = 7. 
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The researcher developed the Abstract Reasoning Assessment (ARA) to measure 

abstract reasoning for this study using Embretson’s protocol for developing valid matrix 

completion tests. The test developed for this study consists of 25 matrix completion 

questions with difficulties from Working Memory Load (WML) = 1 to WML = 24. 

Questions on the test are arranged from least difficult to most difficult primarily based on 

WML. The test is to be completed in 20 minutes. The ARA contains 25 matrix 

completion items, each having eight multiple-choice responses and is shown in the 

Appendix. 

 Because motivation toward classroom work likely contributes to classroom 

achievement, a six-question scale using a five-point Likert-type set of answer options  

(1 = Not at all true to 5 = Very true), the Personal Achievement Goal Orientations 

(PAGO) scale from the Patterns of Adaptive Learning Scales (PALS), Midgeley (2000) 

was included. The PALS assessment has proven to be a valid and reliable instrument for 

evaluating student motivation (Muis et al., 2009). The PAGO questions are shown in the 

Appendix. 

 Algebra ability was measured using the Math 1 Final Exam. This exam is a 

common summative assessment given to every student who takes the Math 1 course in 

this school district. It is 50 questions long containing multiple-choice items covering the 

content of the course. The questions were developed by a team of math teachers from the 

high school, and was designed to test the topics covered in the course based upon the 

Common Core Curriculum Standards adopted by the school district. 

Previous Math Achievement (PMA) was determined based upon the last math 

course the student took prior to taking Math 1. For all students included in the analysis, 
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this was Eighth Grade Math. The PMA score was calculated as an average of each 

student’s quarter grades based on a modified 4.0 scale where, for example, B- = 2.7,  

B = 3.0, and B+ = 3.3.  

Procedure 

The Abstract Reasoning Assessment (ARA) and the Personal Achievement Goal 

Orientations (PAGO) scale were administered to the algebra classes of eight math 

teachers at the high school. The teachers gave their students the ARA during the week 

before the final exam. They told the students to solve as many of the puzzles as they 

could in twenty minutes. After twenty minutes the students were instructed to turn to the 

six questions at the end that comprise the PAGO scale used for assessing motivation. The 

booklets were then collected and returned to the researcher. School records were accessed 

to find each student’s age, final exam score, and previous year’s math grades. 

Analysis 

 A multiple linear regression was conducted. The final exam score was the 

criterion variable and scores on the Abstract Reasoning Assessment, the Personal 

Achievement Goal Orientation (PAGO) scale, previous math score, and age were used as 

predictor variables. Age, PAGO and Previous Math Achievement (PMA) were entered 

first in the analysis as control variables. 

Results 

The hypothesis of the study is that performance on an algebra final exam is 

related to abstract reasoning after controlling for age, motivation, and previous math 

achievement. 
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 Data were collected and analyzed from 216 students who had valid data for all 

five variables: Abstract Reasoning Assessment (ARA), the Personal Achievement Goal 

Orientations scale (PAGO), eighth grade math grades, age, and Math 1 final exam score. 

Item responses for the ARA were coded for each respondent and then recoded as correct 

or incorrect. Unanswered questions were counted incorrect because it was a timed test to 

see how many matrix completion items a student could correctly answer in twenty 

minutes. Students were given an ARA score equal to the number of correct answers. 

Student responses to the Personal Achievement Goal Orientations scale (PAGO) were 

coded 1-5 from the Likert scale. The PAGO score was the mean of their responses. 

Students who answered more than half of the PAGO questions were included for 

analysis. Algebra ability was measured using scores from the Spring Semester Final 

Exam for the Math 1 class. Descriptive statistics for the sample are shown in Table 2. 

Table 2  
Descriptive Statistics 

 Mean Std. Deviation Min. Max 
Final 71.96 13.81            20          100 
age 15.32   0.39 14.18 16.56 
PAGO 2.93   0.76  1.0  4.5 
PMA 3.29   0.73    0.50   4.15 
ARA 14.72   3.52 3            22 

 
Correlations among the variables are displayed in Table 3. 
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Table 3 
Correlations 

 Final age Mot LY ARA 

Final 1.000 -.119   .221   .441   .516 
age -.119 1.000   .020 -.025  -.046 
Mot   .221   .020 1.000   .104   .246 
LY   .441 -.025   .104 1.000   .302 

Pearson Correlation 

ARA   .516 -.046   .246   .302 1.000 
 

Validity and Reliability of the Abstract Reasoning Assessment 

The Abstract Reasoning Assessment (ARA) was analyzed to determine its validity 

and reliability. In terms of validity, the ARA was developed following the Embretson 

protocols for generating valid tests containing matrix completion items. 

Embretson’s hypothesis is that question difficulty depends on Working Memory 

Load (WML), so one would expect a positive correlation between WML and the 

proportion of students that answer an item incorrectly. The correlation between WML 

and the proportion of incorrect responses was found to be R = 0.56. For comparison, 

double histogram comparing the WML of each item, scaled as a percent of the highest 

WML value of 24, to percent of students who missed each item is shown in Figure 1. 
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Figure 1 

 The pattern was generally as expected, with some exceptions. A few questions 

were more difficult than their Working Memory Load (WML) would suggest. Question 

14 used a different kind of patterning than other items on the test so it was not placed in 

strict order of difficulty because the researcher anticipated that it would be more difficult 

than its WML suggested. It turned out to be even more difficult than anticipated. 

Question 16’s reasoning involves figures that cancel each other out analogous to positive 

and negative numbers which should perhaps add an additional layer of WML to the 

Embretson model. Question 17 used a pattern that is difficult to see because the two 

objects in question look identical and are moving in the same field, and can sometimes be 

superimposed. It is interesting to note that questions 3 and 17 both involve rotating 

figures and both were more difficult than anticipated. Another anomaly of the test was 

that question 6 inadvertently had the correct answer listed twice among its answer 

choices. When scoring the tests both correct responses were accepted. This item proved 

to be reliable in all reliability analyses so it was retained. 
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 As further validity evidence, item discrimination indices were calculated for each 

question on the Abstract Reasoning Assessment (ARA) by correlating each item to the 

Total ARA score. As an indication that an item is measuring the same construct as the 

entire test, one would expect a positive correlation between each item and the total test 

score. All questions had positive correlations to the ARA score, so all questions were 

retained for analysis.  To determine reliability, Cronbach’s Alpha was calculated. The 

value of Cronbach’s Alpha for all 25 items was 0.70, indicating adequate reliability. 

Further analysis suggested that, if 9 items were removed, the alpha level could be 

increased to 0.73. The researcher decided to retain all 25 items, because the increase in 

reliability gained by removing those items was small, and all items in question were 

deemed important in distinguishing the very highest and very lowest performers on the 

ARA. 

 The results of the validity and reliability analyses suggested that the Abstract 

Reasoning Assessment is valid and reliable. No changes were made to the test before 

performing further analyses. 

Analysis 

A multiple linear regression was conducted. The final exam score was the 

criterion variable and scores on the Abstract Reasoning Assessment (ARA), the Personal 

Achievement Goal Orientations scale (PAGO), Previous Math Acheivement (PMA), and 

age were used as predictor variables. Age, motivation as measured by PAGO, and PMA 

were entered first in the analysis as control variables. The first analysis used all four 

variables. The regression shows a significant multiple correlation of R = 0.61, R-squared 

= 0.37, F = 31.38, p < .005. However, in this model age did not have a significant 
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correlation, R-square change = .01, F change = 3.05 and PAGO had a small correlation 

R-square change = 0.05, F change = 11.35. Results are summarized in Table 4 

Table 4  

 

Table 4 illustrates that when adding ARA to the model the R-square change = 0.14, and p 

< .005, indicating that ARA is a significant predictor of algebra achievement. Table 5 

displays the coefficients for the four variable multiple regression model. 

Table 5 
Coefficientsa 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model B Std. Error Beta t Sig. 

(Constant) 76.69 30.41  2.52 .01 
age -0.01   0.01 -0.10 -1.73 .09 
PAGO  1.70   1.03  0.09 1.66 .10 
PMA  5.85   1.08  0.31 5.42 .00 

4 

ARA  1.55   0.23  0.40 6.73 .00 
a. Dependent Variable: Final 
 

Model Summary 
Change Statistics 

Model R 
R 

Square 
Adjusted 
R Square 

Std. Error 
of the 

Estimate 
R Square 
Change F Change df1 df2 

Sig. F 
Change 

1 .12a .01 .01 13.74 .01   3.05 1 214 .08 
2 .25b .06 .06 13.42 .05 11.35 1 213 .00 
3 .49c .24 .23 12.13 .17 48.56 1 212 .00 
4 .61d .37 .36 11.04 .14 45.31 1 211 .00 
a. Predictors: (Constant), age 
b. Predictors: (Constant), age, PAGO 
c. Predictors: (Constant), age, PAGO, PMA 
d. Predictors: (Constant), age, PAGO, PMA, ARA 
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Table 5 shows that the effect size indicated by the standardized coefficient of the model 

indicates that ARA is the largest significant contributor in predicting algebra 

achievement, Beta = 0.40, p < .005. PMA is also a significant predictor, Beta = .31,  

p < .005. Note that the effect sizes indicated by the standardized coefficients are small for 

both age and PAGO Beta = -0.10, and Beta = 0.09 respectively and neither is significant, 

p = 0.09, and p = .10 respectively. 

 For the sake of parsimony, a final regression was performed with only the 

significant predictors of Previous Math Achievement (PMA), and the Abstract Reasoning 

Assessment (ARA). 220 students had valid data for this analysis. The regression shows a 

significant multiple correlation of R = 0.60, R-squared = 0.36, F = 60.25, p < .005. The 

results are shown in Table 6. 

Table 6 
 

Model Summary 

Change Statistics 

Model R R Square 
Adjusted 
R Square 

Std. Error 
of the 

Estimate 
R Square 
Change F Change df1 df2 

Sig. F 
Change 

1 .44a .20 .19 12.44 .20 52.74 1 218 .00 
2 .60b .36 .35 11.14 .16 54.76 1 217 .00 
a. Predictors: (Constant), PMA 
b. Predictors: (Constant), PMA, ARA 
 

The model containing Previous Math Achievement and the Abstract Reasoning 

Assessment scores significantly predicts algebra achievement with a multiple correlation 

of R = 0.60, R-squared = 0.36, F =  60.25, p < .001. Abstract reasoning ability has, an R-

squared change = 0.16 which shows that 16.2% of the variation in algebra achievement 

can be explained by abstract reasoning ability. The multiple linear regression coefficients 

are shown in Table 7. 
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Table 7 
Coefficientsa 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Model B 
Std. 

Error Beta t Sig. 

(Constant) 28.18 4.13  6.82 .00 
PMA   5.98 1.08 .32 5.52 .00 

2 

ARA   1.70 0.22 .42 7.40 .00 
a. Dependent Variable: Final 

 

The regression model has a standardized coefficient for ARA of Beta = 0.42. The 

coefficient for PMA is Beta = 0.32. This coincides with the result from the earlier 

regression showing a larger effect size for ARA compared to PMA, indicating the 

importance of abstract reasoning in algebra achievement. 

Discussion 

Results from these analyses indicate that abstract reasoning ability is the most 

important among the variables studied in predicting success in high school algebra. 

Scores on the Abstract Reasoning Assessment predicted performance in a high school 

algebra course even after controlling for general mathematics ability. 

The findings suggest strongly that abstract reasoning ability is critical for success 

in algebra. The test developed for this study using Embretson’s protocol is completely 

devoid of any algebraic or mathematical content other than pattern recognition, and the 

patterns used are non-mathematical. This gives credence to the famous definition of 

mathematics by Walter Warwick Sawyer (1955), “Mathematics is the classification and 

study of all possible patterns” (p. 12). 
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One interesting finding of the study is that age is not a significant predictor of 

algebra proficiency. In fact the not-quite-significant correlation was negative. That may 

be because this study’s regression was done using only the students whose previous class 

was Eighth Grade Math, so there was not a great deal of variation in the ages among 

those included in the analysis. The direction of the correlation in this sample could be due 

to the fact that some students may be behind their age cohorts due to ability selection. 

Preliminary analyses performed before the formal analysis began using all data showed 

an even higher negative correlation because the students whose previous math class was 

not Eighth grade math were enrolled in Math 1 classes because they either failed Algebra 

I previously or had demonstrated a need for further skill-building or remediation before 

taking Math 1. 

Another interesting finding is that motivation was not shown to be a significant 

predictor of algebra achievement. This could be because the effect of motivation as 

measured by the Personal Achievement Goal Orientations scale is already accounted for 

in the other significant predictor, previous math achievement.  

Implications 

 Identifying the factors leading to success in high school algebra is critical in 

planning course placement for students.  When students are placed in classes before they 

are sufficiently equipped, those students have a greater chance of failure. For instance, 

over one third of eighth grade algebra students in California had to repeat an algebra 

course in ninth grade (EdSource, 2009). Some feel that algebra instruction at the eighth 

grade level is not as rigorous and not focused and taught in a way that facilitates 

understanding for subsequent high school math classes (Loveless, 2008; Stephany, 2011). 
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Stephany goes on to point out that succeeding in algebra is more important than the grade 

level in which it is taken. This study presents another factor leading to higher failure 

rates, an underdeveloped abstract reasoning capability. 

This study’s finding that abstract thinking ability is related to success in learning 

algebra could potentially be used as an aid in proper placement of students into a high 

school algebra class at the proper time. Of course, this study does not establish whether 

an innate ability to reason abstractly leads to increased algebra achievement, or that 

practicing algebra leads to increased ability to reason abstractly. While most research 

associates abstract reasoning to Piaget’s formal operations, it is also possible that abstract 

reasoning is developed through experience rather than as a developmental stage. 

Limitations 

One limiting factor of the study is that the spring semester’s Math 1 curriculum in 

the study’s district includes a few topics traditionally taught in Geometry.  Another 

drawback is that the eighth grade Math 1 students were not included in the study, because 

the eighth grade curriculum and final exam were not identical to that of the high school.  

The fact that motivation was not a significant factor in this study could be due to 

other considerations regarding the Personal Achievement Goal Orientations scale and 

how it was used. Although it is a commonly used measure, it could be that it does not 

capture motivation for achievement on an algebra final exam. Another concern is the 

timing of measuring motivation at the end of the semester may not accurately reflect 

students’ motivation level as they were learning the material. It could also be that using 

the PAGO scale in conjunction with and at the end of the ARA may have influenced its 

result. 
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Future Study 

 There are many potential directions for further study. Firstly, the study could be 

repeated in schools with differing demographics and curricula. The study could also be 

focused on specific areas of the curriculum such as linear functions, quadratic equations, 

or systems of equations. It could also be used for other levels of mathematics such as pre-

algebra or geometry.  

A particularly interesting and practical application of this study could be for 

educators to explore the possibility of using the Abstract Reasoning Assessment as a 

diagnostic measure to determine a student’s placement into an algebra class now that a 

link between abstract thinking and success in algebra has been suggested. Because the 

Abstract Reasoning Assessment is reliable, quick, and easy to administer, it would make 

an ideal tool as a predictor for success in high school algebra. The use of this tool could 

help many students be more successful in algebra and beyond when used to place 

students in algebra at the proper time, when their skill set indicates they are ready for the 

abstraction inherent in high school algebra.
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Personal Achievement Goal Orientation Items 

1.  I like class work that I'll learn from even if I make a lot of mistakes.  

 Not at all true    Somewhat true    Very true 
  1   2   3   4   5 
 

2.  An important reason why I do my class work is because I like to learn  

 new things.  

 Not at all true    Somewhat true    Very true 
  1   2   3   4   5 
 
 

3.  I like class work best when it really makes me think.  
 
 Not at all true    Somewhat true    Very true 
  1   2   3   4   5 
 
 

4.  An important reason why I do my work in class is because I want to  

 get better at it.  

 Not at all true    Somewhat true    Very true 
  1   2   3   4   5 
 
 

5.  An important reason I do my class work is because I enjoy it.  

 Not at all true    Somewhat true    Very true 
  1   2   3   4   5 
 
 

6.  I do my class work because I’m interested in it.  

 Not at all true    Somewhat true    Very true 
  1   2   3   4   5 
 


