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Abstract 

Stroke is a major cause of death and the leading cause of long-term disability in industrialized countries. 

Ischemic stroke-induced brain injury results from the interaction of complex pathophysiological 

processes, including energy failure, calcium overload, excitotoxicity, oxidative stress, disruption of blood-

brain barrier (BBB) and inflammation. Despite the wealth of knowledge regarding the cellular and 

molecular mechanisms underlying neuronal death after stroke, research for several decades has failed to 

develop an effective and safe neuroprotective treatment. One complicating factor in the development of 

neuroprotective strategies is the dual nature of many of the processes that occur in the brain during stroke.    

Hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular and tissue adaption to 

hypoxia. It plays both protective and detrimental roles in ischemic stroke by inducing a wide array of 

target genes involved in angiogenesis, erythropoiesis, cell survival/death, and energy metabolism. The 

dual face of HIF-1 in the pathophysiology of cerebral ischemia is postulated to partially depend on 

thedifferent functions of its target proteins in specific type of brain cells. In the current studies, we 

hypothesize that neuronal HIF-1 accumulation is protective whereas endothelial HIF-1 induction is 

implicated in BBB disruption.  

We first evaluated HIF-1’s role in the antioxidant N-acetylcysteine (NAC)-mediated 

neuroprotection in a transient cerebral ischemia animal model. The study demonstrated that pre-treatment 

of NAC increased the neuronal expression of HIF-1α, the regulatable subunit of HIF-1, and its target 

proteins erythropoietin (EPO) and glucose transporter (GLUT)-3 in the ischemic brain of rodents 

subjected to 90 min middle cerebral artery occlusion (MCAO) and 24 h reperfusion. Suppressing HIF-1 

activity by pharmacological inhibitorsor by specific knock-out neuronal HIF-1α abolished NAC’s 

neuroprotective effects. Furthermore, we observed that NAC increased HIF-1α stability through 

enhancingits interaction with heat-shock protein 90 (Hsp90) in ischemic brains.  

Increased BBB permeability and associated cerebral edema formation are potentially lethal 

complications of ischemic stroke. Accumulating evidence has shown that admission hyperglycemia in 
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conjunction with ischemia/reperfusion causes exacerbated cerebrovascular endothelial cell dysfunction 

and increased BBB permeability, which leads to augmented brain edema and hemorrhagic transformation 

in ischemic stroke.The hypothesis of the second part of this dissertation is that endothelial HIF-1 is 

implicated in hyperglycemia-exacerbated BBB disruption after ischemia. Both in vitro and in vivo studies 

were undertaken to investigate the effect of hyperglycemia on (1) HIF-1α and its target genes expression; 

(2) ischemia-induced BBB permeability change; and (3) the effect of HIF-1α inhibition on BBB 

permeability after ischemia. The in vitrostudy showed that high glucose enhanced HIF-1αand its 

downstream factors expression in the endothelial cell culture after oxygen glucose deprivation 

(OGD)/reoxygenation. This was correlated withan increased paracellular permeability as well as 

diminished expression and disrupted continuity of tight junction (TJ) proteins. Suppressing HIF-1 activity 

by HIF-1α inhibitors ameliorated the alterations in paracellular permeability and expression and 

distribution pattern of TJ proteins induced by high glucose exposure. In in vivo studies, diabetic mice 

subjected to 90 min MCAOfollowed by reperfusiondemonstrated higher expression of HIF-1α and its 

target gene vascular endothelial growth factor (VEGF) in the ischemic brain microvessels than non-

diabetic control mice. Diabetic mice also showed exacerbated BBB damage and TJ disruption, increased 

infarct volume, and worsened neurological deficits. SuppressingHIF-1 activity by specific knock-out 

endothelial HIF-1α ameliorated BBB leakage and brain infarction in diabetic animals. 

Taken together, these present studies provide new information concerning HIF-1’s function in 

experimental models of acute ischemic stroke. Neuronal HIF-1α is an important mediator of antioxidant 

NAC’s neuroprotective effect in ischemic stroke, whereas endothelial HIF-1α is involved in 

hyperglycemia-induced BBB breakdown after cerebral ischemia. The results suggest that developing 

therapeutic strategies by targeting HIF-1 needs to consider its multifunctional roles and differential effects 

on different cell types.  
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CHAPTER 1: Introduction 

1.1 Overview of stroke 

Stroke is the second cause of mortality worldwide and the leading cause of disability in industrialized 

countries. According to World Health Organization (WHO), 17 million people worldwide suffered a 

stroke in the year 2010, 60% of those who suffered a stroke died or became dependent on others. A report 

released by American Stroke Association (ASA) indicated that stroke would become the first leading 

cause of death in the world by 2030, with an estimated 23 million first-time strokes and an associated 7.8 

million deaths 
1
. Stroke remains the third leading cause of death in the U.S. It is estimated that there are 

approximately 800,000 primary (first-time) or secondary (recurrent) strokes occurring each year in the 

U.S. resulting more than 140,000 deaths
2
.  

The mental and physical handicaps among the patients surviving stroke are a major problem in 

terms of quality of life and socioeconomic cost. Approximately 20% of stroke survivors require 

institutional care after 3 months, and 15% to 30% are permanently disabled (AHA, 2003). In the U.S., the 

total direct and indirect cost of stroke has been estimated at $65.5 billion in 2008, and the mean lifetime 

cost of ischemic stroke is estimated at $140,048 per patient
3
.  

1.1.1 Defining stroke 

A stroke refers to any brain injury caused by a disturbance in blood supply resulting in neurological 

deficits
4
. It is defined by WHOas “rapidly developing clinical signs of focal (or global) disturbance of 

cerebral function, with symptoms lasting 24 hours or leading to death, with no apparent cause other than 

of vascular origin.” The two basic types of stroke are ischemic stroke and hemorrhagic stroke. In the U.S., 

approximately 87% of strokes are ischemic stroke
3
, which results from the development of atherosclerotic 

thrombi or distant emboli that decrease or completely obstruct cerebral circulation thereby causing 

neuronal injury and death. Hemorrhagic stroke is less prevalent but more likely to be fatal. It occurs from 

a rupture in cerebral vessels and can be further subclassified into intracerebral hemorrhage and 

subarachnoid hemorrhage. It is important to realize that a stroke is not an isolated incidence within the 
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brain. The primary injury to neural tissue is typically the beginning of a complex and devastating series of 

events that last over days and even months; these events include cytotoxic and vasogenic cerebral edema 

and secondary pro-inflammatory, excitotxic, oxidative stress, necrotic and apoptotic cascades that lead to 

progressive brain damage.  

1.1.2 Risk factors 

Prevention remains the most viable avenue for lessening the burden of stroke on society, particularly 

given the high incidence of stroke worldwide, insidious contribution of stroke risk factors, and the lack of 

proven acute stroke therapies
5
. Longitudinal studies have identified several characteristics or conditions 

that boost a person’s risk for primary and recurrent stroke
6,7

. These risk factors are viewed as non-

modifiable encompassing factors related to heredity or natural processes, and modifiable risk factors 

which are amenable to intervention for lower stroke risk. Major non-modifiable risk factors include age, 

sex, race-ethnicity, and genetic factors. The most significant risk factor for stroke is age; two-thirds of 

strokes occur in those over the age of 65
8
. Stroke is generally more prevalent in men than in women

9
. 

Hispanics and blacks have a higher prevalence and incidence of stroke
4
. Modifiable risk factors include 

those resulting from lifestyle choices and the environment, and can be modified with the help of 

healthcare professionals and treatment. An international case-control study showed that roughly 90% of 

strokes could be explained by 10 modifiable risk factors: 1) hypertension, 2) diabetes, 3) cardiac causes, 

4) current smoking, 5) obesity, 6) hyperlipidemia, 7) physical inactivity, 8) heavy alcohol consumption, 

9) diet, and 10) psychological stress and depression 
10

.  

While non-modifiable risk factors are difficult to prevent or treat, the modifiable risk factors (e.g. 

hypertension, dyslipidemia, smoking, diet) can be managed through lifestyle adjustments and select 

pharmacological and surgical interventions to reduce the likelihood of developing a stroke. Diabetes is 

one of the aleading risk factors for stroke. It is estimated that nearly 40% of all ischemic strokes can be 

attributed to the effects of diabetes either alone or in combination with hypertension
11

. The association of 

diabetes and ischemic stroke will be discussed in the section 1.2.6.  
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1.1.3 Pathophysiology of ischemic stroke 

Acute ischemic stroke results from sudden decrease or loss of blood circulation to an area of the brain, 

resulting in a corresponding loss of neurological function
12

. Within minutes of vascular occlusion, a 

complex sequence of pathophysiological spatial and temporal events occur, which is referred to as the 

ischemic cascade. Since one event in the cascade can cause or can be caused by multiple other events and 

since cells suffering from different severity of ischemia may go through different chemical processes, the 

ischemic cascade actually is a highly heterogeneous phenomenon. Nevertheless, it can be summarized as 

energy failure, followed by loss of cell ion homeostasis, excitotoxicity, oxidative stress, blood–brain 

barrier (BBB) dysfunction (reviewed in section 1.3), post-ischemic inflammation and finally cell 

apoptosis of neurons, glia and endothelial cells
13

(Fig. 1-1). 

Ischemic stroke begins with dramatic blood flow reduction, but cerebral injury continues over 

hours or even days. The amount of permanent damage will depend on two factors: the degree and the 

duration of ischemia. Regions of the brain tissue exposed to severely impaired blood flow become rapidly 

and irreversibly injured and subsequently undergo necrotic cell death
14

. This region is referred as the 

ischemic core. The core is surrounded by a zone of less severely affected tissue which is known as 

penumbra. The penumbra is rendered functionally impaired by reduced blood flow but remains 

structurally intact and metabolically active
15

. It is the battle field where the ischemic cascade with several 

deleterious mechanisms is triggered, resulting in ongoing cellular injury and infarct progression. While 

necrosis is more dominant in the core tissue, penumbral cells are more likely to undergo apoptosis after 

several hours or days
16

, and thus they are potentially recoverable for some time after the onset of stroke. 

Since salvage of this tissue is associated with neurological improvement and recovery, it is the target for 

acute stroke therapy
17

. 

Brain tissue has a relatively high consumption of oxygen and glucose, and depends almost 

exclusively on oxidative phosphorylation for energy production. The first consequence of cerebral blood 

flow (CBF) reduction is the depletion of substrates, particularly oxygen and glucose, which causes  
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Fig. 1-1 Diagram depicting major events that occur after ischemic stroke. The figure is not fully 

comprehensive of all events (cited from Aysan Durukanet al., 2009).  
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accumulation of lactate via anaerobic glycolysis. Acidosis may enhance free radical formation, interfering 

with intracellular protein synthesis and worsen ischemic brain injury
18

. Energy failure leads to 

dysfunction of energy-dependent ion transport pumps and depolarization of neurons and glia
19

. 

Consequently, voltage-dependent Ca
2+

 channels become activated and excitatory amino acids are released 

into the extracellular space. At the same time, reuptake of excitatory amino acids by presynaptic axons 

and astrocytes is impeded due to energy failure
20

. This further increases the accumulation of glutamate in 

the extracellular space. The build-up of glutamate results in activation of its receptors (e.g. AMPA-, 

NMDA-type glutamate receptors ) on other neurons, with consequent influx of Na
+
, Cl

−
 and Ca

2+
 ions 

through the channels gated by these receptors
21

. These neurons then become depolarized, causing more 

calcium influx and more glutamate release leading to local amplification of the initial ischemic insult. 

This spreading depression-like depolarization starts from ischemic core and extending outwards to 

surrounding tissue, leading to the recruitment of penumbral tissue into the infarct
22

. Additionally, water 

passively follows the ion influx, resulting in cytotoxic edema. Intracellular increase of Ca
2+

 causes 

generation of free radicals and activation of Ca
2+

-dependent enzymes including protein kinase C (PKC), 

phospholipase A2, phospholipase C, cyclooxygenase (COX), calcium-dependent nitric oxide synthase, 

calpain and various proteases and endonucleases
23

. Both necrotic and apoptosis are triggered by excess of 

intracellular Ca
2+

as a result of formation of cytotoxic products such as free radicals, irreversible 

mitochondrial damage, and inflammation. 

Numerous experimental and clinical observations have shown that reactive oxygen species (ROS) 

and reactive nitrogen species (RNS) are important mediators of tissue injury in acute ischemic stroke
24

. 

The primary sources of ROS during ischemic stroke injury are the xanthine oxidase and mitochondria 

which produce superoxide anion radicals during the electron transport process
24

. Another potentially 

important source of superoxide in post ischemic neurons is the metabolism of arachidonic acid through 

the COX and lipoxygenase (LOX) pathways
25

. Oxygen free radicals can also be generated by activated 

microglia and infiltrating peripheral leukocytes via the NADPH oxidase system following reperfusion of 

ischemic tissue
26

. In addition, nitric oxide (NO) is generated from L-arginine through one of several 
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isoforms of NO synthase (NOS)
27

. The activity of neuronal NOS (nNOS) and inducible NOS (iNOS) is 

damaging to the brain under ischemic conditions
28

. NMDA receptor activation has been shown to 

stimulate NO production by nNOS, which possibly plays a role in excitotoxic-mediated injury in ischemic 

stroke
29

. NO diffuses freely across membranes and can react with superoxide to produce peroxynitrite 

anion, another highly reactive free radical
30

. Both ROS and RNS exhibit a spectrum of cellular effects 

including inactivation of enzymes, release of Ca
2+

 from intracellular stores, protein denaturation, lipid 

peroxidation, and damage to the cytoskeleton and DNA. Mitochondrial function is impaired by free 

radical-mediated disruption of the inner mitochondrial membrane and the oxidation of proteins that 

mediate electron transport, H
+
 extrusion and ATP production. Cytochrome C is released from 

mitochondria and provides a trigger for apoptosis
13

. Severe oxidative stress causes cell death through 

necrosis while moderate oxidation can result in apoptosis.  

Ischemic injury triggers inflammatory cascades in the brain parenchyma that may further amplify 

tissue damage by many mechanisms. There are several resident cell populations within brain tissue that 

are able to secrete proinflammatory mediators after an ischemic insult. First of all, microglia and 

astrocytes are activated by ROS and are capable of secreting inflammatory factors such as cytokines (e.g. 

interleukin-1, tumor necrosis factor-α) and chemokines (e.g. monocyte chemoattractant protein-1)
31

. 

Within hours after stroke onset, adhesion molecules expression on endothelial cells and leukocytes 

increases upon stimulation by proinflammatory factors. The adhesion molecules mediate the interaction 

between leukocytes and the vascular endothelium and promote leukocyte recruitment
32

. Circulating 

leukocytes adhere to vessel walls and migrate into the brain. This leads to the release of more pro-

inflammatory mediators, especially excessive production of ROS, that amplify the brain-inflammatory 

responses by causing more extensive activation of resident cells. The infiltration of leukocytes eventually 

leads to secondary injury of potentially salvageable tissue in the penumbra
33

. Neutrophils are the first 

inflammatory cells to infiltrate areas of brain ischemia as early as within hours after reperfusion
34

. 

Macrophages and monocytes arrive within few days. Whereas microvascular obstruction by neutrophils 

(no-reflow phenomenon) can worsen the degree of ischemia, production of toxic mediators by activated 
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inflammatory cells and injured neurons (cytokines, NO, superoxide and prostanoids) can amplify tissue 

damage by inducing BBB disruption, brain edema, neuronal death, and hemorrhagic transformation. In 

addition, the inflammatory reaction might also be linked to apoptosis
19

. The overall role of inflammation 

may differ at different time points following stroke insult, with protective or regenerative activities 

occurring days to weeks after the onset of ischemia
35

.  

Necrosis is the predominant mechanism of cell death that follows acute, permanent vascular 

occlusion, whereas milder injury, particularly within the ischemic penumbra often results in apoptosis. If 

the cell dies through necrosis, it releases more glutamate and toxins into the environment, affecting 

surrounding neurons. In parallel, apoptosis is a genetically regulated cell program that allows cells to die 

without eliciting an inflammatory reaction
36

. Several factors determine which process predominates, 

including the local degree of ischemia, cell maturity, the concentration of intracellular free Ca
2+

 and the 

cellular microenvironment
37

. Activation of glutamate receptors, early mitochondrial production of ROS, 

and reduction of intracellular K
+
 may trigger apoptosis. Following ischemia, caspase-mediated apoptosis 

occurs in response to pro-apoptotic signals such as release of cytochrome Cfrom mitochondria, and 

downregulation of Bcl-2 and upregulation of the Bax/Bid and Death receptor family
38

. Activated caspases 

are protein-cleaving enzymes that modify crucial homeostasis and repair proteins. Especially caspases 1 

and 3 seem to play a pivotal role in ischemia-mediated apoptosis but other caspase-family members might 

be important in the late stages of cell death
39

. Apoptosis is an energy-consuming process, so reperfusion 

could potentiate apoptosis by restoring cellular energy
40

.  

Prompt restoration of the blood supply can reduce infarct size through salvation of the penumbra 

and can improve clinical outcome in patients with ischemic stroke
40

. Paradoxically, reperfusion may 

exacerbate the brain injury and produce a so-called cerebral reperfusion injury
41

. Reperfusion injury 

triggers alterations in production of various cytotoxicsubstances, including free radicals, excitatory amino 

acids, free fatty acids, proinflammatory cytokines, and adhesion molecules. Leukocytes appear to play a 

critical role in reperfusion injury through damaging of the endothelium, obstruction of the 

microcirculation, disruption the BBB and infiltration in the brain tissue where they release cytokines and 
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propagate inflammation
42

. Platelets play a synergistic role with leukocytes in reperfusion injury via the 

“no-reflow phenomenon” and release a variety of biochemical mediators that may lead to vasospasm and 

exacerbation of oxidative stress and the inflammatory cascade
43

.  

1.1.4 Current treatment of ischemic stroke 

Today, the only Food and Drug Administration(FDA)‐approved stroke treatment is intravenous 

application of recombinant tissue plasminogen activator (rtPA), which induces the thrombolysis of 

occluded vessels. Thrombolysis is the breakdown of blood clots by pharmacological means. Clearing the 

cross-linked fibrin mesh (the backbone of a clot) makes the clot soluble and subject to further proteolysis 

by other enzymes, thereby restoring blood flow in the occluded blood vessel. This treatment was first 

described in 1995 in the NINS‐study (The National Institute of Neurological Disorders and Stroke rt‐PA 

Stroke Study Group (NINS 1995)) showing thatdespite a slightly increased incidence of symptomatic 

intracerebral hemorrhage, treatment with intravenous rtPA within 3 h of the onset of ischemic stroke 

improved clinical outcome at three months. The time window of application was extended to up to 4.5 h 

after acute stroke in 2008 (ECASS III). Major limitations of rtPA are the limited time window in which 

reperfusion therapies can be initiated and the presence of exclusion criteria (e.g., medically uncontrollable 

hypertension, anticoagulation, presence of signs of hemorrhage). As such, only < 5% patients get benefit 

from the clot dissolving agent. Almost two decades after FDA approval, intravenous rtPA remains the 

only approved treatment for stroke with no increase in the risk of death. However, the associated side 

effects, specifically symptomatic intracerebral hemorrhage complications have to be taken into account 

critically. 

Long-term stroke therapy is restricted to secondary prevention, symptomatic therapy, 

rehabilitation as well as psychosocial support. Medications that are considered 24h after the treatment 

with rtPA or in patients who were not thrombolyzed include acetylsalicylic acid (ASA), clopidogrel, 

ticlodipine or the combination of dipyridamole-ASA. Secondary prophylaxis includes the 

antihypertensive treatment with ACE inhibitors, angiotensin II AT1 receptor antagonists, beta blockers, 

diuretics and calcium entry blockers, the maintenance of a normal blood glucose level with oral 
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antidiabetics in case of patients suffering from type II diabetes, the treatment of hypercholesterolemia 

with HMG-CoA reductase inhibitors (statins) and the treatment of hyperhomocysteinemia with folic acid. 

Statins, specifically high-dose atorvastatin, have been demonstrated to reduce the recurrence of stroke in 

patients with previous stroke or transitory ischemic attack and are yet established in the clinic. 

There is a wide variety of pharmacological tools available for the prevention and symptomatic 

treatment of stroke, however, an effective, safe and well-tolerated compound that directly interacts with 

the ischemic cascade and thus minimizes neurological deficits, does not exist on the market so far. This 

fuels the interest in the development of neuroprotective therapies.  

1.1.5 Animal models of stroke 

Animal research remains critical to the understanding ofthe basic mechanisms of ischemic damage and 

functionalrecovery thereafter. The use of appropriate animal models is essential to predict the value and 

effect of therapeutic approaches in diseases that are common in human subjects. Rodents are mostly often 

utilized in experimental stroke research because of several reasons: the resemblance to humans in 

cerebrovascular anatomy, moderate size allowing easy manipulations, low costs, the relative homogeneity 

within strains, and the accessibility for use by transgenic technology. There are two fundamentally 

different rodent models of cerebral ischemia which lend important insights into the pathophysiology of 

ischemic stroke
18

. One model is focal cerebral ischemia which clinically corresponds to ischemic stroke. 

The other model, global cerebral ischemia,mimics the consequences of cardiac arrest. The central goal of 

these cerebral ischemia models is to reduce oxygen and nutrient/glucose supply to brain tissue. This 

section mainly focuses on models of focal cerebral ischemia with an emphasis on highlighting a few 

examples of rodent models. 

In focal ischemic stroke models, the middle cerebral artery (MCA) is the most commonly 

occluded vessel because majority of all strokes occur in the territory of this artery
44

. There are two models 

of focal ischemic stroke, 1) transient focal ischemia and 2) permanent focal ischemia. In transient focal 

ischemia models, vessels are blocked for periods of up to 3 hours, followed by prolonged reperfusion; 

whereas, in permanent focal ischemia, the arterial blockage is maintained throughout an experiment, 
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usually for one or more days. Ischemic lesion size varies greatly according to the ischemia duration. To 

obtain reproducible infarct volumes, minimum 60 to 90 min of ischemia is required and for this reason, 

transient focal ischemia models are usually based on 90–120 min of ischemia. It is well known that 

lesions induced by more than 3 h of focal ischemia are not reversible
21

. Permanent stroke models permit 

the study of cerebral ischemia without the effect of reperfusion. When an occluded artery is recanalized in 

a model of transient cerebral ischemia, as it happens in most of human stroke, consequences of 

reperfusion to the ischemic territory (i.e. reperfusion injury) can be evaluated
45,46

. 

 There is a rich diversity of focal ischemia models, among which none is capable in mimicking all 

aspects of human stroke, but the most appropriate model can be chosen to address a specific question. 

Among different animal models available for focal cerebral ischemia induction, those meeting 

thefollowing criteria may be moresuitable: (1) the ischemic processes and pathophysiologic responses 

should be relevant to human stroke, (2) the ischemic lesion size should be reproducible, (3) the technique 

used to perform the modeling should be relatively easy and minimally invasive, (4) physiologic variables 

can be monitored and maintained within normal range, (5) brain samples should be readily available for 

outcome measurements, such as histopathological, biochemical, and molecular biological evaluation, and 

(6) the cost and effort should be reasonable
21

. 

Suture occlusion of the MCA 

Among experimental ischemic stroke models, the intraluminal suture MCAO in rats and mice is the most 

frequently used model. This model allows strict control on the timing of the reperfusion and is less 

invasive and easy to perform both permanent and transient ischemia in a controlled manner. The 

intraluminal suture MCAO model involves inserting a monofilament into the internal carotid artery and 

advancing it until it blocks blood flow to MCA (Fig 1-2). This model provides reproducible MCA 

territory infarctions involving both frontoparietal cortex and striatum and allows reperfusion by retracting 

the suture. Lesion reproducibility and size seem to be affected by many specific factors in this technique 

such as suture diameter
47

, coating of the suture (with silicone or poly-l-lysine), or insertion length of the 

thread
48,49

. In contrast to uncoated suture, silicone-coated suture was shown to cause larger and more   
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Fig. 1-2 Anatomy of MCAO.This illustration shows occlusion on the left common external and internal 

carotid arteries and their branches with the approximate region of MCAO shaded in gray. This illustration 

was cited from Zea Longa et al. (Zea Longa et al., 1989). 
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consistentinfarctswith good reproducibility and reliability even among investigators of varying 

experience
50-52

.  

Disadvantages of the suture occlusion method include: (1) vessel rupture and subsequent 

subarachnoid hemorrhage, (2) hyperthermia, and (3) inadequate MCAO. Silicone coating of the suture 

and laser Doppler-guided placement of the suture could reduce the incidence of subarachnoid 

hemorrhage
53

. Spontaneous hyperthermia can be avoided by limiting ischemia duration to 90 min or less 

or adjusting suture tip to a size that does not occlude the hypothalamic artery
54

. 

Thromboembolic models 

Thromboembolic models use two main strategies to induce stroke: injecting clots that are formed in 

vitro
55

 or endovascular instillation of thrombin for in situ clotting
56

. It is the closest to the 

pathophysiology of human stroke since most of the human strokes are caused by thromboembolism. 

Other advantages of thromboembolic models are their potential to test new thrombolytic agents and 

combination therapies of thrombolysis and neuroprotection for acute stroke
57,58

. 

Thromboembolic ischemia is induced most commonly by the injection of autologous thrombi into 

extracranial arteries to reach the more distal intracranial arteries
59,60

. Originally, human blood clots or 

suspensions of homologous small clot fragments were used to produce embolism
61

. In these earlier 

embolism models, infarcts induced by these methods were variable in size and early spontaneous 

recanalization took place
62,63

. Autolysis resistant fibrin-rich emboli resembling human arterial thrombi 

were developed to achieve a consistent reduction of CBF and infarcts without any spontaneous 

recanalization
64,65

. 

Many compounds and artificial embolic materials, such as viscous silicone
66

, collagen
67

, 

polyvinylsiloxane
68

, retractable silver ball
69

, and heterologous atheroemboli 
70

have been used to induce 

ischemia by injection into common carotid artery or internal carotid artery. When injecting spheres into 

the cerebral circulation, their size determines the pattern of brain infarction. Macrospheres induce infarcts 

similar to those achieved by occlusion of the proximal MCA
71

, whereas the injection of microspheres 

results in distal, diffuse embolism and the multifocal and heterogenous developing lesions
72

.  
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Other models 

In photothrombosis models, the animals were intravenously injected with a photoactive dye (most often 

Rose Bengal) and a cortical brain area is irradiated by a light beam at a specific wavelength through the 

intact skull
73

.Light activation of the dye causes formation of freeradicals and endothelial cell damage, 

aggregation ofplatelets and eventually occlusion of the vessel
74

.The region of irradiation can be 

determined so as to induce ischemic lesion in any desired cortical area.The main advantage of the 

photothrombosis models istheir noninvasive operation, which produces a consistentinfarct with a precise 

location and sizeand low mortality. The unique feature in the photothrombotic models is occlusion of 

smallcortical vessels, so major arteries or branches are notaffected. Photothrombosis induces vasogenic 

edema and BBB breakdown in the lesion within minutes, thus, there is not much penumbral area or 

collateral flow which is deemed important for neuroprotectionand recovery processes
75

. Therefore, the 

model is undesirable for preclinical therapies if the chief target is penumbra or enhancement of collateral 

perfusion. 

Endothelin-1 (ET-1) is a potent vasoactive peptide, which produces a marked vasoconstriction
76

. 

ET-1 application onto MCA provides significant decreases in CBF in the MCA territory, resulting in an 

ischemic lesion pattern similar to that induced by direct surgical MCAO
77,78

. Direct cortical application of 

ET-1 provides sufficient reduction in blood supply of frontoparietal cortex and induces a semicircular 

infarct involving all layers of the neocortex
79

. Less invasiveness and ability to induce ischemia in any 

desired region of the brain are the chief advantages of endothelin-1 application, but dose dependent action 

of endothelin-1 reduces the control on ischemia duration and intensity.  

Measurement of ischemic stroke damage in animal models 

The size of the brain infarct in focal cerebral ischemia increases during the period of reperfusion. 

This has been shown in animal models of stroke and in human stroke patients
80

. The infarct volume is 

normally analyzed after 12-24 hours in transient and permanent focal ischemia models. The brain is 

removed and coronal sections are cut (2 mm-thick slices in rats or 1-2 mm thick slices in mice) through 

the entire rostro-caudal extent of the cerebral cortex. The slices are immersed in a solution of 2,3,5-



14 
 

triphenyltetrazolium chloride (TTC). Image analyzing systems allow manual or automated delineation of 

the lesion area, after which lesion volume is calculated by multiplying by the slice thickness. The 

enlargement of the injured tissue by edema results in overestimation of the infarct volume. Thus, the 

actual infarcted lesion size should be calculated with a correction for edema
81

.  

In vivo magnetic resonance imaging (MRI) enables monitoring lesion progression by repeated 

imaging. With DWI sequence ischemic lesion can be identified as early as 3 min after the onset of 

ischemia
82

 and MRI-based lesion volume correlates well with the TTC-based infarct volume
83

.  

The functional consequences of focal ischemic stroke injury are evaluated using a 7-point scale 

neurological deficit score (0=no neurological deficit; 1=failure to extend right forepaw fully; 2=decreased 

grip of the right forelimb while tail gently pulled; 3=spontaneous movement in all directions, contralateral 

circling only if pulled by the tail; 4=circling or walking to the right; 5=walks only when stimulated; 

6=unresponsive to stimulation with a depressed level of consciousness)
84

. More recently a 14 point 

neurological scoring system was developed. This new scoring method includes the results of motor, reflex 

and balance tests; a single point is awarded for the inability to perform the test or for the lack of a tested 

reflex
85

. 

1.1.6 Lost in translation: taking neuroprotection from animal models to clinic 

Neuroprotection for ischemic stroke refers to any strategy, or combination of strategies, thatantagonizes, 

interrupts or slows the sequence of injurious biochemical and molecular events that eventuate in 

irreversibleischemic injury
86

. A large number of potentially neuroprotective agents directed at different 

harmful mechanisms in the ischemic cascade have been investigated in experimental animal stroke 

studies. The majority of the substances which were found to be neuroprotective in animals have failed in 

clinical trials. The inconsistency between animal results and clinical trials may be due to several factors 

including: the heterogeneity of human stroke, morphological and functional differences between the brain 

of humans and animals, the relatively long post-stroke delay in administration of the drugs in clinical 

trials, the better control of physiological variables such as temperature, blood pressure, and differences in 
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evaluating efficacy in animal models. A brief summary of some of the key neuroprotective agents that 

have been tested in clinical trials is provided below.  

It is well-established that ischemia causes the release of glutamate and excess glutamate release, 

with activation of NMDA receptors, is a pivotal event in the evolution of irreversible ischemic damage in 

animal models of ischemia. Cell death cascades in ischemic stroke are mediated, in part, by excessive 

Ca
2+

 influx resulting from activation of glutamate receptors and voltage-dependent calcium channels. In 

addition, the function of Ca
2+

-ATPase is compromised, resulting in prolonged elevation of the 

intracellular Ca
2+

 concentration. Several compounds that block glutamate receptors(e.g. MK-801) or 

voltage-dependent calcium channels (e.g. nimodipine) have been developed and tested against 

experimental animal models of stroke as well as in human clinical trials. Nimodipine is a 1,4-

dihydropyridine calcium channel antagonist. At least 14 clinical trials of nimodipine in ischemic stroke 

were conducted, with nine trials finding no effect, one trial finding short-term worsened outcome with 

treatment, and four trials finding positive outcomes
87

. Both MK-801 and dextromorphan, two 

noncompetitive NMDA receptor antagonists, exhibited protective effects in experimental studies, but 

clinical trials were terminated early because of phencyclidine-like psychotic side effects and lack of 

efficacy against stroke injury
88

. Some other noncompetitive (aptiganel) or competitive (selfotel, 

eliprodil) NMDA receptor antagonists were tested in clinical trials and have shown no efficacy or an 

increase in the adverse event to benefit ratio
87

. Zonampanel (YM-872) is an AMPA antagonist tested in 

human phase II clinical trials in conjunction with tPA thrombolysis
89

. Magnesium may play a protective 

role in a variety of ways, including the NMDA receptor blockade, the inhibition of excitatory 

neurotransmitter release and the blockade of calcium channels
90

. Giving magnesium to stroke patients 

soon after symptoms began was shown to be safe in a small, open-label pilot trial. Good functional 

outcomes after 90 days were achieved in 69% of all patients and in 75% of those treated within 2 hours
91

. 

A large randomized trial did not show any beneficial effect of magnesium sulfate on death and disability; 

however, it slightly increased mortality
92

. Interestingly, the investigators revealed a beneficial effect in a 

subgroup of patients with lacunar strokes.  
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As mentioned above, free radicals are produced in ischemic brain following stroke injury and 

have a significant pathogenetic role in cerebral tissue damage. Removal of pathologically produced free 

radicals is therefore a viable approach to neuroprotection. Tirilazad is a free radical-induced lipid 

peroxidation inhibitor. The clinical trials showed no benefit of tirilazad despite of broad evidence of 

acting as a neuroprotective drug in animal models of stroke
93

. Edaravone is a free radical scavenger 

which has been approved for ischemic stroke treatment in Japan since 2001. It has been studied in a major 

phaseIII clinical trial on 252 patients. The study reported an enhanced functional outcome of patients 

treated with edaravone at three months. Further studies have been performed yielding controversial results 

from large to only modest or no clinical improvements
94

. Ebselen is a selenium compound with 

glutathione peroxidase-like activity; it also reacts with peroxynitrite and inhibits a variety of enzymes. A 

clinical trial of 300 acute ischemic stroke patients revealed that ebselen treatment achieved a significantly 

better outcome than placebo at 1 month but not at 3 months
95

. A phase III trial exploring the efficacy of 

esbelen in patients with a cortical infarct is currently ongoing
96

. NXY-059 is a nitrone-based free-radical-

trapping agent 
94

. The first clinical trial of NXY-059 (SAINT I) has reported a small but significant 

benefit. However, the subsequent SAINT II which included a higher number of patients failed to show 

substantial efficacy
93

. Lubeluzole is thought to act by inhibiting NO production
97

. A series of phase I to 

III trials were conducted to examine its therapeutic efficacy for ischemic stroke.A recent phase III trial 

failed to show significant benefits compared to placebo
98

.  

Inflammation in stroke is characterized by the accumulation of leukocytes and activation of 

resident microglial cells. Cell adhesion molecules such as selectins, integrins, and intercellular adhesion 

molecule (ICAMs) permit endothelial-inflammatory cell interactions. Enlimomab is a murine ICAM-1 

antibody that reduces leukocyte adhesion. A recent clinical trial using enlimomab showed worsened 

neurologic score and mortality in patients, which was probably due to immune activation in response to 

the foreign mouse protein
99,100

. In a related approach, neutrophil activation was blocked by a recombinant 

protein inhibitor of the CD11b/CD18 receptor, UK 279276. The clinical trial of this compound was 

terminated early for futility
101

. Minocycline is an oral antibiotic with proven safety over years of use. In 
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addition to its antibiotic properties, minocycline also has anti-inflammatory and anti-apoptotic effects that 

have been shown to be neuroprotective in animal models of stroke and in previous human trials. Patients 

receiving minocycline showed significant improvement after 30 days. Larger phase II and phase III trials 

are awaited
102

.  

Citicoline is an essential precursor in the synthesis of phosphatidylcholine, a key cell membrane 

phospholipid, and is known to have neuroprotective effects in acute ischemic stroke by reducing lipid 

metabolism
103

. It is able to attenuate the production of free radicals in ischemic conditions, while it also 

stimulates glutathione synthesis and the activity of glutathione reductase. A pooled analysis of individual 

patient data from the 4 randomized trials of oral citicoline revealed a statistically significant effect of 

citicoline on global recovery
104

.  

Albumin is thought to be neuroprotective by multiple pathways: (1) it is the major plasma 

antioxidant and can fight endogenous and exogenous oxidative stress products; (2) it can mediate 

hemodilution at pharmacological doses; (3) it reacts with nitric oxide to form a stable S-nitroso-sulfur 

anhydride, which is the endothelial cell-derived relaxing factor; and (4) it decreases the deposition of red 

blood cells and improves microvascular blood flow in the ischemic cortex 
105

. The clinical trial of albumin 

therapy-ALIAS Pilot Trial suggested that human albumin was well-tolerated by patients and tPA therapy 

did not affect the safety profile of albumin 
106

. Additionally, tPA-treated patients who received higher-

dose albumin were three times more likely to achieve a good outcome than subjects receiving lower-dose 

albumin, suggesting a positive synergistic effect between albumin and tPA 
107

. However, in phase III 

study, albumin given within 5 h of the onset of acute ischemic stroke showed no clinical benefit 
108

.  

Brain’s response to stroke includes multiple processes of endogenous repair and remodeling. It is 

suggested that candidate drugs with regenerative mechanisms may achieve sustained neurological 

improvements. Among potential neurorestorative and neuroregenerative compounds, granulocyte colony-

stimulating factor (G-CSF) has been extensively studied. G-CSF is a neuroprotective and anti-

inflammatory agent with an anti-apoptosis mechanism
109

. The AXIS trial has shown that G-CSF is well-

tolerated even at high dosages in patients with acute ischemic stroke
110

, but the phase II trial showed no 
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significant benefit with respect to either clinical outcome or imaging biomarkers
111

. Basic fibroblast 

growth factor (bFGF) increases neuronal survival, has trophic effects on brain glial and endothelial cells 

and is a potent systemic and cerebral vasodilator. Phase II trial of bFGF was halted because patients that 

received the drug did worse compared to the placebo group
98

.  

It has been well documented that mild (34°C) to moderate (32°C) systemic hypothermia protects 

brain from ischemic damage in various animal models. Although the exact mechanisms are unknown, a 

reduction of body temperature, especially brain temperature, may lead to reduced cerebral oxygen 

consumption, decreased intracellular lysosomal enzyme activity, suppressed free radical formation, 

protection of the fluidity of the cell membranes, reduced intracellular acidosis, and inhibition of cell 

damage mediated by excitatory neurotransmitters 
98

. Induction of hypothermia is currently used in clinical 

practice to prevent secondary brain injury after cardiac arrest and resuscitation, perinatal or neonatal 

asphyxia, and head trauma. The transfer of hypothermia treatment from laboratory to the clinic 

undertaken in two pilot studies showed the feasibility and safety of induced hypothermia in acute 

ischemic stroke patients
112,113

. A large trial (The Intravascular Cooling in the Treatment of Stroke 2/3 

Trial) is currently in progress to test the possible neuroprotective effect of mild hypothermia 
114

.  

Neural stem cells are able to regenerate and restore loss of brain function in injuries like stroke. 

Stem cell therapies could act in a trophic, neuroprotective capacity, reducing the damage site and aiding 

in endogenous neurogenesis. Cells could also be administered at a later stage to replace nonviable tissues 

and restore function 
115

. In animal models, transplanted stem cells have been shown to migrate into the 

injured regions, promote revascularization, enhance plasticity and regulate the inflammatory response, 

thereby minimizing injury
93

. Different clinical studies, the majority of which were small, nonrandomized 

and uncontrolled, have now been reported and indicate that stem cell therapy seems safe, feasible, and 

potentially efficacious. The increasing number of ongoing studies, including large randomized double-

blind studies, have the potential to determine the efficacy of cell therapy for stroke and to translate the 

preclinical findings into clinical practice 
116

. 
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In summary, despite encouraging data from experimental animal models, most clinical trials of 

neuroprotective therapies have been unsuccessful. Some arguments have been suggested to explain why 

neuroprotection works in pre-clinical experimental models but not in human trials. (1) One possible 

explanation may be the discrepancies of time window for the administration of the agent. In many animal 

models the drug was givenbefore or shortly after stroke is induced, which is not feasible in most 

patients.(2) The outcomes have been evaluated almost exclusively at 24 h after the stroke and efficacy of 

neuroprotective agents is detected by reduction of histological infarction, whereas long-term recovery and 

behavioral measures have been used in clinical investigations. (3) Most of the experimental models used 

young and healthy animals. However, the stroke patients are usually old and suffer from multiple chronic 

diseases. Co-morbidities of patients can affect their functional outcome, thus altering the measurements of 

drug efficacy and safety. (4)Animal studies often useMCAO to induce ischemia. The homogeneity of 

MCAO is fairly good. The human cerebral ischemia is relatively complex and the embolus properties are 

diverse. Therefore the experimental studies do not mimic the pathophysiological heterogeneity of 

different stroke types included in clinical trials. (5) More than 90% of rodent brain is composed of grey 

matter, whereas in humans, gray matter makes up about 50% of the brain. The damage to white matter in 

humans will be significantly larger than in rodent models. This may cause a problem in neuroprotective 

agents which have differential effects in white and gray matter. (6) The effective dose of a neuroprtective 

agent in an animal study is quite large when it is converted to a human dose. The adverse effects will 

increase accordingly. Also, some drugs, like NXY-059 has poor BBB penetration, which may restrict the 

clinical application. Therefore, in animal models, the rescue of vulnerable ischemic brain tissue might be 

achieved by more meticulously designed studies, i.e. different animal models and species, aged animals, 

proper drug dosage, feasible therapeutic window, physiological monitoring, delay between the occlusion 

and the outcome analysis, behavioral tests; and in humans by more aptly designed clinical trials, i.e. 

temporal window of efficacy, selection of patients, outcome measures.  
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1.2 The blood-brain barrier (BBB) 

The central nervous system (CNS) is the most critical and tightly regulated physiological system in the 

human body. Stringent regulation of the extracellular environment and the maintenance of ion 

concentrations within narrow ranges are necessary in order to maintain proper neuronal survival and 

function. Additionally, the metabolic demands of CNS tissue are considerable with the CNS accounting 

for approximately 20% of oxygen consumption in humans 
117

. Therefore, the interface between the CNS 

and the systemic circulation must possess highly selective and effective mechanisms that can facilitate 

nutrient transport, exactly regulate ion balance, and provide a barrier to toxic substances that may be 

present in the systemic circulation. The requirement for a physical and metabolic barrier is further 

emphasized by the extreme sensitivity of CNS tissues to a wide range of chemicals, xenobiotics, plasma 

composition fluctuations and metabolites in the blood 
118

. The interface that tightly controls brain 

homeostasis and narrowly regulates brain microenvironment is the BBB.  

1.2.1 Brief history of the BBB 

The concept of the BBB originated with the studies of Paul Ehrlich in 1885 who observed that water-

soluble dyes injected into the circulatory system stained all organs except for the brain and spinal cord 
118

. 

Ehrlich’s explanation was CNS had low affinity to this water-soluble dye. In subsequent experiments, an 

Ehrlich’s student, Edwin Goldmann noticed that injection dyes into the cerebral spinal fluid stained the 

brain but not the rest of the body
118

. These observations suggested that a barrier must exist separating the 

CNS from the peripheral circulation. In 1900, Lewandowsky was the first to introduce the term 

bluthirnschranke (blood-brain barrier) while studying the limited permeability of sodium ferrocyanide 

into the brain via intravenous injection. However, it was not until the1960s when scientists were able to 

confirm the existence of a barrier at the structural level. By using electron microscopy, Reese and 

Karnovsky (1967) showed for the first time that at an ultrastructural level, the endothelium of mouse 

cerebral capillaries constituted a structural barrier to horseradish peroxidase
119

. They determined that the 

barrier was composed of the plasma membrane, the cell body of endothelial cells, and the presence of 

tight junctions (TJs) between adjacent cells. Furthermore, they observed that the horseradish peroxidase 
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entered up to the interendothelial spaces from the lumen of the capillary but was unable to penetrate the 

interendothelial TJs in cerebral capillaries and beyond. This finding led to the conclusion that TJs 

probably were responsible for preventing intercellular passage of peroxidase. Brightman and Reese 

(1969) demonstrated in separate experiments using intravascular injections of peroxidase and lanthanum 

hydroxide that TJs were present, separating the vascular lumina from the underlying spaces
120

.  

1.2.2 Anatomy of the BBB 

The current understanding of the basic structure of the BBB is built primarily upon work by Reese, 

Karnovsky, and Brightman from the late 1960s.The BBB exists as a selective diffusion barrier at the level 

of the cerebral microvascular endothelium and is characterized by the presence of TJs (as reviewed in 

subsequent sections) 
121

. Figure 1-3shows a schematic cross-sectional representation of a typical cerebral 

capillary. The capillary lumen circumference is surrounded by endothelial cells. Additionally, pericytes 

attach to the abluminal membrane of the endothelium at irregular intervals 
122

. Pericytes and endothelial 

cells are ensheathed by the basement membrane (basal lamina). Astrocytic endfeet surround the cerebral 

capillaries to form the structural basis of the BBB 
123

.  

Basic cellular organization of the neurovascular unit 

A critical concept in BBB biology is that brain microvascular endothelial cells (BMECs) are not 

intrinsically capable of forming a “barrier.” In fact, in addition to endothelial cell, formation and function 

of the BBB requires support of astrocytes, pericytes, neurons, and extracellular matrix (ECM), which 

have been collectively redefined as neurovascular-unit (NVU) 
123

. The individual components of the NVU 

work in concert to regulate microvascular permeability, ion gradients, nutrient uptake, toxin removal, and 

cerebral hemodynamics 
124

. Likewise, a breakdown in any of the individual components may contribute to 

BBB dysfunction 
125

. During ischemic stroke, various NVU cell types are triggered by pathological 

stimuli that disrupt the BBB. Understanding the NVU responses that are involved in modifying the brain 

microvaculature in the context of ischemic stroke will provide an opportunity to protect BBB integrity 

during pathological insult. Furthermore, The NVU serves to repair the brain after stroke by restoring 

bloodsupply to affected area of the brain through mechanism of angiogenesis
126

.  
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Fig. 1-3 Schematic diagram of neurovascular unit.The circumference of the capillary lumen is surrounded 

by endothelial cells, which are connected via tight junctions. Pericytes are attached to the abluminal 

surface of the endothelial cell, and both are surrounded by the basement membrane. Astrocytic endfeet 

processes surround the cerebral capillary to form the basis of the BBB, with neuronal signaling also 

mediating capillary function. (Source: Sharon Hom, 2006) 
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The first line of defense between the systemic circulation and the brain is the endothelium. The 

endothelial cells of the BBB differ significantly from non-brain endothelial cells by (1) the absence of 

fenestration correlating with the presence of intercellular TJs; (2) the minimal activity of pinocytosis and 

severe restriction of the paracellular diffusion of hydrophilic compounds; (3) a high number of 

mitochondria, associated with a strong metabolic activity; and (4) the polarized expression of membrane 

receptors and transporters which are responsible for the active transport of blood-borne nutrients to the 

brain or the efflux of potentially toxic compounds from the cerebral to the vascular compartment
127-129

. In 

brief, the hallmark of brain endothelium is its highly restricted and controlled permeability to plasma 

compounds and ions, reflected by a very high trans-endothelial electrical resistance (1500-2000 

Ωcm
2
)

130,131
. Maturation of the BBB necessitates endothelial cell expression of specific molecule. Specific 

transport systems selectively expressed in the membranes of brain capillary endothelial cells mediate the 

directed transport of essential nutrients into the CNS or of toxic metabolites out of the 

CNS
132

.Transendothelial transport occurs, among many others, for glucose, amino acids, purines, and 

nucleosides. A receptor-mediated transport system resides in brain endothelial cells for many substrates, 

including low-density lipoprotein, insulin, immunoglobulin G (IgG), and transferrin
133

. Active efflux 

pumps are also expressed in endothelial cells. Three classes of transporters are implicated in the efflux of 

drugs from the brain: (1) monocarboxylic acid transporters, (2) organic ion transporters, and (3) multidrug 

resistance transporters (prototype is P-glycoprotein) 
134

.Enzymatic roles of the endothelial cells comprise 

another level of barrier between cerebral circulation and brain (“metabolic BBB”): ecto-enzymes such as 

peptidases and nucleotidases are capable of metabolizing peptides and ATP, respectively, whereas 

intracellular enzymes such as monoamine oxidase and cytochrome P450 (1A and 2B) can inactivate many 

neuroactive and toxic compounds
123

. 

Astrocytes localize between neuronal cell bodies and endothelial cells and ensheath over 99% of 

cerebral capillaries with their end-feet
135

. Studies have shown that astrocytes are necessary for 

maintenance and maturation of the BBB
136-138

. Astrocyte end-feet contacts have also been shown to 

mediate transient regulation of cerebral microvascular permeability
139

. A number of astrocyte-produced 
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factors (e.g. transforming growth factor-β, basic fibroblast growth factor, glial-derived neurotrophic 

factor, and angiopoetin-1) have been found to support cerebral endothelial cell TJs, induce angiogenesis 

and the expression of BBB transporter proteins
140,141

. In addition to the role of perivascular astrocytes, 

direct neuronal innervation of the neurovascular unit has also been implicated in regulating blood flow 

through projecting neuronal inputs and cortical interneurons to communicate and translate these signals 

into integrated microvascular responses
125

.  

In addition to astrocytes, pericytes also play a crucial role in maintenance of BBB 

homeostasis
142

. Pericytes are flat, undifferentiated, contractile cells that have a close physical association 

with the endothelium 
143

. They share the same basement membrane with the endothelial cell and cover 22 

to 32% of the abluminal endothelial surfaces
144

. The recruitment and interaction of pericytes with the 

microvascular endothelium is essential for the formation, maturation, and maintenance of the BBB 
145

. 

Pericytes and endothelial cell communicate with each other through several apparatuses such as gap 

junctions, TJs, adhesion plaques and soluble factors 
146

. The association of pericytes to blood vessels has 

been suggested to regulate endothelial cell proliferation, migration and differentiation
125

. It has been 

reported that these cells induce expression of occludin at the BBB via secretion of pericyte-derived 

angiopoetin, which suggests that pericytes are directly involved in induction and/or maintenance of 

barrier properties
147

. Pericytes have also been shown to migrate away from brain microvessels in rapid 

response to hypoxia and traumatic brain injury; both of these conditions are associated with increased 

BBB permeability
148,149

. 

Anatomical evidence has been found for direct innervation of the microvascular endothelium 

and/or associated astrocytic processes by, serotonergic, cholinergic, and GABA-ergic neurons, among 

others 
118

. Little is known about the developmental role that neurons have on the BBB phenotype. 

However, there is some evidence that neurons can regulate the blood flow in CNS, as well as cerebral 

microvascular permeability, particularly via dynamic Ca
2+

 signaling between astrocytes and the 

endothelium
134

. Moreover, mature endothelium has a reciprocal function in inducing a stable brain 

microenvironment that enables proper neuronal activity
134

.  
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In addition to cellular components of the neurovascular unit, the extracellular matrix (ECM) of 

the basal lamina also interacts with the BBB endothelium. The ECM is composed of structural proteins 

(i.e. collagen type-IV, laminin, fibronectin, elastin, trombospondin, and various proteoglycans) which are 

susceptible to enzymatic degradation
150

. Degradation of the ECM is associated with increased BBB 

permeability during pathological states including stroke
151

. The ECM seems to serve as an anchor for the 

endothelium via interaction of laminin and other matrix proteins with endothelial integrin receptors
152

. 

Such cell-matrix interactions can stimulate multitude intracellular signaling pathways
153

. Matrix proteins 

can also influence the expression of TJ proteins, indicating that the proteins of the basal lamina are 

intimately involved in maintaining the restrictive nature of the BBB TJs
154

. 

It has been proposed that the microvascular endothelium, astrocytes, pericytes, neurons, and ECM 

constitute a NVU and that this view of the BBB is critical to understanding its development and 

physiology. Furthermore, the concept of the neurovascular unit establishes a framework for an integrative 

approach to understanding how the brain responds to cerebrovascular pathology. Finally, the 

neurovascular unit concept provides a basis for understanding the multiple pathways by which cerebral 

microvascular permeability could be regulated by drugs or disease.  

1.2.3 BBB tight junctions 

At the junctional complex of the cerebral microvasculature, the interendothelial space is characterized by 

the presence of adherens junctions (AJs) and TJs. AJs form a continuous belt localized near the apical end 

of the junctional cleft, just below the TJ 
155

. While the TJs are identified as the primary paracellular 

barrier, AJs appear to play a key role in the localization and stabilization of the TJs 
156

. AJs are primarily 

composed of vascular endothelial (VE)-cadherin, which is linked to cytoskeleton via scaffolding proteins 

α-, β-, and γ-catenins 
157,158

. The AJs hold the cells together giving the tissue structural support. They are 

essential for formation of TJs, and disruption of AJs leads to barrier disruption 
159

.  

At the BBB, TJs are the main structures responsible for the barrier properties. TJs are the most 

apical structure within the intercellular cleft, limiting the paracellular flux of hydrophilic molecules across 

the BBB
160

. TJs, along with AJs, form a circumferential zipper-like seal between adjacent endothelial 
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cells, maintaining distinct tissue spaces through separation of the luminal side from the abluminal side of 

the plasma membrane. The preservation of the TJ is governed by three essential transmembrane proteins: 

claudins, occludin, and junction adhesion molecules (JAMs)
161

. The cytoplasmic regions of these 

transmembrane proteins are linked to actin cytoskeleton though interactions with accessory proteins (i.e., 

zonula occluden (ZO)-1, -2, and -3). ZO proteins act as a scaffold for multiple intracellular signaling 

pathways and are involved in regulation of TJs function
127,162

. Generally, movement of these proteins 

away from the cellular borders or decrease in their expression at the TJ cleft indicates a loss of junctional 

integrity and increased paracellular permeability. In subsequent sections, key features of the TJ proteins 

are highlighted (see Figure 1-4). 

Integral transmembrane proteins 

Occludin is a 60- to 65-kDa protein that has four transmembrane domains with the carboxyl and amino 

terminals oriented to the cytoplasm and two extracellular loops that span the intercellular cleft 
163

. It is 

highly expressed and consistently stains in a distinct, continuous pattern along the cell margins in the 

cerebral endothelium. It has been shown that high levels of occludin ensure low paracellular permeability 

and high electrical resistance of the BBB 
130

. Multiple phosphorylation sites were identified on occludin 

serine and threonine residues, and the phosphorylation state of occludin regulates its association with the 

cell membrane and barrier permeability
164

. The occludin’s cytoplasmic C-terminal domain binds to the 

ZO-1 and ZO-2
165

, which in turn binds to the cytoskeleton, localizing it to the cellular membrane. 

Although several knockout and knockdown experiments provided evidence that occludin is not essential 

for the formation of TJ
118

, diminished occludin expression is associated with BBB dysfunction in a 

number of disease states including ischemic stroke.  

Claudins (20–24-kDa proteins) share very similar membrane locations with occludin without 

having any sequence homology
166

. Up to 24 claudins have been identified in mammals, while only 

claudin-1, -3, -5 and -12 are present within BBB endothelial cell 
167

. The extracellular loops of claudins 

interact via homophilic and heterophilic interactions between cells, forming primary seal of the TJs
168

.   
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Fig. 1-4 Schematic representation of the basic structural transmembrane components of TJs.The TJ is 

established by the interaction between the transmembrane proteins (claudins, occludin, and junction 

adhesion molecule) on adjacent endothelial cells. The C terminal of these transmembrane proteins is 

linked to cytoskeletal actin through ZO-1/2. This figure was modified from Fleegal MA et al. (Fleegal 

MA et al.2005). 
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Overexpression of claudin isoforms in fibroblasts can induce cell aggregation and formation of TJ-like 

strands. Conversely, occludin only localizes to TJs in cells that have already been transfected with 

claudins 
169

. Thus, it appears that claudins form the primary “makeup” of the TJ, and occludin further 

enhances TJ tightness. Evidence indicates that claudin-5 is specifically involved in the active regulation 

of small molecule paracellular permeability at the BBB. Mice lacking the claudin-5 gene are 

characterized by a size-selective BBB defect
170

, whereas reduced expression of claudin-5 and disruption 

of interaction between claudin-5 and occludin has been reported in experimental model of ischemic 

stroke.  

Several JAM isoforms have been identified at the mammalian BBB including JAM-1, JAM-2, 

and JAM-3. These are 40-kDa proteins from the IgG superfamily and composed by a single membrane 

spanning chain with a large extracellular domain that mediates homophilic and probably also heterophilic 

interactions in the tight junctional region 
171

. JAM-1 is involved in cell-to-cell adhesion, organizing the 

tight junctional structure, and taking part in the formation of TJ as an integral membrane protein together 

with occludin and claudins 
160

. JAMs also play a role in developmental processes and regulate the 

transendothelial migration of leukocytes 
172

. Additionally, loss of JAM protein expression is directly 

correlated with BBB breakdown
173,174

. Interestingly, serum levels of JAM-1 were unchanged over time in 

13 patients with acute ischemic stroke, suggesting that this JAM isoform is not a suitable biomarker of 

BBB breakdown in ischemic stroke
175

. 

Cytoplasmic proteins 

Proper physiological functioning of the BBB, particularly restriction of paracellular solute transport, 

requires association of transmembrane constituents of TJ protein complexes with accessory proteins 

localized within the endothelial cell cytoplasm. These include members of the membrane-associated 

guanylate kinase-like (MAGUK) family
176

. MAGUK proteins are characterized by multiple postsynaptic 

density protein-95/discs-large/ZO-1 binding (PDZ) domains, an Src homolog-3 (SH3) domain, and a 

guanylate kinase-like (GuK) domain 
177

. The PDZ domains mediate specific binding to carboxy-terminal 

cytoplasmic ends of transmembrane proteins; the SH3 domain binds signaling proteins and cytoskeletal 
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elements; and the GuK catalyzes the ATP-dependent transformation of GMP to GDP
161

. The SH3-GuK 

region is further involved in binding to TJ and AJ proteins
177

. In BMECs, MAGUK proteins are involved 

in coordination and clustering of TJ protein complexes to the cell membrane and in establishment of 

specialized domains within the membrane 
176

. Three MAGUK proteins have been identified at the TJ: 

ZO-1, -2, and -3. 

ZO-1 is a 220-kDa phosphoprotein expressed in endothelial and epithelial cells that normally 

form the TJ assembly 
178

. ZO-1 connects transmembrane proteins of the TJ to the actin cytoskeleton. This 

interaction is critical to the stability and function of the TJ, since loss or dissociation of ZO-1 from the 

junctional complex is often associated with increased permeability
134

. Furthermore, ZO-1 has been shown 

to localize to the nucleus under conditions of proliferation and injury
179

. ZO-1 may also act as a signaling 

molecule that communicates the state of the TJ to the cellular interior, or vice versa. ZO-2, a 160-kDa 

protein, has high sequence homology to ZO-1 
180

. Very much like ZO-1, ZO-2 binds to structural TJ 

constituents, signaling molecules, and transcription factors, and it localizes to the nucleus during stress 

and proliferation 
118

. More recently, ZO-3, a 130-kDa protein, has been identified at the BBB but its exact 

role in TJ formation and/or function has not been elucidated. There is evidence that ZO-3 binds to 

occludin and ZO-1 directly 
131

.  

In addition to MAGUK family members, other accessory proteins have been identified at the TJ. 

These include cingulin, AF-6, and 7H6 
181

. Cingulin (140–160 kDa) has been shown to bind to the ZO 

proteins, myosin, JAM-A, and AF6, and has been suggested to transduce the mechanical force generated 

by the contraction of the actin–myosin cytoskeleton, regulating TJ permeability 
181

. The AF-6 (180 kDa) 

protein participates in the regulations of TJs, via direct interaction with ZO-1
182

. 7H6 (155 kDa) is a 

phosphoprotein that reversibly dissociates from the TJ under conditions of ATP depletion, which is 

associated with increased paracellular permeability
183

. To date, several other accessory proteins found in 

epithelial and peripheral endothelial cell TJs have been implicated as potential mediators of paracellular 

regulation (e.g. EMP-1) 
184

, yet confirmation of their existence or activity within BBB endothelial cells is 

presently lacking. 
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1.2.4 Experimental models of BBB 

BBB dysfunction has been described in a variety of neurological diseases as putatively involved in the 

early steps of disease progression. In fact, studies have shown a faulty BBB clearance of potential brain 

toxins in Alzheimer's and Parkinson's diseases, increased transport of leukocytes across the activated 

BBB in AIDS dementia and BBB breakdown after an ischemic insult or traumatic brain injury. BBB 

impairment may thus initiate and/or contribute to progressive neuronal dysfunction in such disorders. 

Novel therapeutic approaches are required to abrogate such disease processes, namely by modulation of 

TJ, or of the transport systems. Given the large population that suffers CNS disorders worldwide, great 

attention has been attracted to the study of BBB. Several experimental systems have been used, 

depending on the purposes of the study and on the expertise and resources of the researchers. The in vitro 

BBB model and in vivo animal use are highlighted in the subsequent sections.  

In vitro 

In vitro modeling of the BBB is a simplification of the in vivo situation, which allows 

investigation and more accurate interpretation of experiments that are difficult, or even impossible, to be 

carried out in vivo 
185

. An ideal in vitro model should be simple, reproducible, and mimic as closely as 

possible the in vivo barrier either functionally or anatomically in order to allow the study of BBB-related 

issues in normal and pathological states, as well as drug delivery to the CNS. In particular, the cell model 

must display a restrictive paracellular pathway, possess a realistic cell architecture, display functional 

expression of transporter mechanisms and cell cultures should be easy 
186

.  

In vitro models of the BBB essentially rely on cell cultures of endothelial cell as these cells are 

considered to be the anatomic basis of the BBB. Although limited by the absence of in vivo signaling and 

intercellular contacts, and subjected to the in vitro differentiation and phenotypic modification occurring 

when cells are isolated and kept in culture, cell culture systems are still privileged systems. In fact, they 

allow the assessment of a large number of cell functions, biologic processes and disease mechanisms, and 

may constitute the first approach in routine toxicity and pharmacological testing, thus reducing the 

number of animals used. 
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Different categories of brain endothelial cell cultures, comprising primary cell cultures and cell 

lines, can be used to analyze features such as cell morphology, energy metabolism and receptor 

interaction under the direct effect of the substances of interest. Primary cell cultures represent the closest 

possible phenotype to the in vivo BBB but require considerable technical resources and are more time 

consuming. Although primary cultures have been shown to retain some phenotypic characteristics of 

brain endothelium, they rapidly lose their specific characteristics in culture undergoing de-differentiation 

and senescence even upon limited passaging, thus hampering usefulness as in vitro models of the human 

BBB
187,188

. In order to circumvent the disadvantages of primary cultures, several immortalized endothelial 

cell lines were created with the potential to provide a stable source with high yield and homogeneity 

throughout numerous passages. Cell lines of human BMEC became the most obvious alternative to 

perform studies in human BBB models, due to the rarity of samples from living individuals. The study in 

Chapter 3 utilized hCMEC/D3 cell line. hCMEC/D3 stably maintains in culture most of the unique 

structural and biochemical properties of brain endothelium in vivo
188

. The cell monolayers, even in the 

absence of co-culture with glial cells, possess functional intercellular junctions with highly restrictive 

permeability. hCMEC/D3cells express telomerase and grow indefinitely without phenotypic 

dedifferentiation. These cells express chemokine receptors, efflux transporters, and demonstrate BBB 

characteristics, including TJ proteins and the capacity to actively exclude drugs. Therefore, this cell line 

constitutes a reliable in vitro model of human BBB 
189

.   

The recognition of the importance of astrocytes to the induction of BBB properties, as well as of 

the interplay between different cellular components of the NVU on BBB has led to the establishment of 

more complex in vitro models
123,127,185

. Research on BBB functionality has been very much enhanced by 

the availability of in vitro BBB co-culture systems
190

. Co-culture systems have been developed in which 

brain endothelial cells are grown on microporous filter inserts in the presence of primary cultures of 

astrocytes in order to mimic the anatomical and functional relationship between brain endothelium and 

surrounding astrocyte foot processes
191-194

. With co-cultures it has also been possible to evaluate effects 

on endothelial cells in the presence of other types of cells, such as astrocytes, pericytes and neurons 
195

. 
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By incorporating the cross-talk between endothelial cells and neighboring elements of the NVU, these co-

culture systems allow the closest reproduction of the in vivo condition. However, its complexity limits the 

wide utilization. 

Methods to evaluate BBB permeability in vitro 

Elevated permeability of the normally highly restrictive BBB accompanies a variety of 

CNSafflictions
196,197

. Transcellular permeability to small molecule tracers yields valuable 

informationregarding barrier integrity
198

. Most tracers are labeled by a fluorescent dye or isotope that 

helps the quantification of the molecule
199,200

. To determine the limiting size for permeability, different 

molecular weight tracers can be used, such as fluorescent-conjugated dextran (70-,40- and 10-kDa FITC-

dextran). In addition to fluorescent labels, the permeability can also be measured by the use of radioactive 

labels such as [
3
H]-sucrose 

201
 or [

3
H]-mannitol 

202
. The tightness of the barrier and permeability to polar 

molecules is less stringent in vitro than in vivo, allowing compounds that would normally poorly 

penetrate across BBB in vivo to readily diffuse across the endothelial monolayer in the static model
203

.  

In vivo 

In vivo studies provide the most reliable reference information for testing and validating other models. 

They take into account not only a section but the whole brain microenvironment and biological processes 

in live animals. BBB properties can be assessed using fluorescence microscopy. Since BBB perturbation 

is likely to be subtle, studies require large sample sizes and appropriate controls to detect modest but 

clinically relevant BBB changes in cerebral microvascular disease 
204

. In vivo studies have been used to 

assess brain metabolism, BBB disruption and transport, as well as neurological disease progression 
205-207

. 

Based on in vivomodels, studies have demonstrated the degradation of the TJ proteins and increased BBB 

permeability in ischemic stroke.  

Methods to evaluate BBB permeability in vivo 

Evans Blue (EB) is most often used as an indicator of BBB permeability in in vivo studies. It is an azo 

dye with high affinity to plasma albumin
208

. The EB-albumin complex extravasates from blood vessels 

into the brain parenchyma when the BBB is disrupted. EB is intravenously injected in saline and 
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circulates in the vasculature
209

. Before terminating the experimental animal, the dye is cleared from the 

bloodstream by transcardiac saline perfusion. Macroscopically, blue-stained tissues indicate areas of BBB 

disruption. The extravasated EB can be quantitative determined in brain homogenate by fluorometric 

method 
210

. The integrity of BBB can also be assessed in in vivo studies using radiolabeled tracers, 

fluorescent-labeled tracers
211,212

 and an electron-dense compound as a flux tracer and transmission 

electron microscopy analysis
213

.  

1.2.5 BBB in ischemic stroke 

Ischemic stroke consists of two distinctive periods of pathological impact, ischemia and reperfusion. Both 

ischemia and reperfusion can be further delineated into a series of interdependent biochemical and 

cellular events that evolve over minutes to days. With this understanding, BBB TJ alterations can be 

divided into time-dependent phases, based on states of paracellular permeability over the time-course of 

ischemia/reperfusion.  

Ischemia 

The ischemic phase of stroke is denoted by a loss of regional CBF and increased vascular resistance 

owing to mechanical plugging of a vessel via a thrombus or embolus, resulting in loss of oxygen and 

nutrients to the surrounding tissue.One of the major events of cerebral ischemia is energy failure due to a 

lack of glucose and oxygen. Energy failure, in turn, leads to a cascade of events, including depletion of 

ATP, a decrease in Na
+
-K

+
 ATPase activity, a rise in intracellular Na

+
, Ca

2+
, lactic acidosis, release of 

intracellular glutamate to the extracellular environment, oxidative stress, and activation of inflammatory 

processes. These mechanisms demonstrate over-lapping and redundant features, all of which can result in 

BBB disruption
214

. Endothelial swelling may occur within minutes to hours of ischemic onset, leading to 

narrowing of the internal diameter of the blood vessel. Lactic acidosis also directly contributes to swelling 

of endothelial cells, neurons, and astrocytes. Experimentally it has been shown that after microsphere-

induced cerebral embolism, there is a decrease in occludin and ZO-1 at the level of the TJs, contributing 

to increases in paracellular permeability
215

. Furthermore, induction of proteases (i.e., tPA, matrix 

metalloproteinases (MMPs), cathepsins, and heparanases) contributes to BBB ECM degradation
216

. 
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NOmay add to further insult by forming RNS thus exacerbating DNA damage and endothelial injury. The 

astrocytes themselves express NO synthase during cerebral ischemia, which in turn contributes to 

peroxynitrate formation and BBB breakdown
214

. Microvascular leukocyte accumulation has been shown 

to occur as early as 30 minutes after permanent MCAO
217

. Proinflammatory cytokines are induced and 

followed by chemokines,which are associated with an activated endothelium expressing adhesion 

molecules
218

. This leads to leukocyte recruitment and extravasation, thereby further enhancing 

inflammatory activity and toxic free radical production
218,219

. Therefore, the various previously discussed 

mechanisms initiated during the ischemic cascade have a significant impact on the BBB. The observed 

increases in paracellular permeability generally correlate with the loss of TJ protein localization and/or 

expression along the cellular membrane. 

Reperfusion 

Reperfusion is denoted by the reestablishment of CBF to the ischemic and hypoperfused brain. Although 

it is essential for brain tissue survival; it also contributes to additional tissue damage and has the potential 

for hemorrhagic transformation (i.e. phenomenon in which blood vessels weakened by ischemic stroke 

rupture to cause brain hemorrhage)
220

. Reperfusion injury has been defined in numerous ways, including 

activation of endothelium, excess production of free radicals, inflammatory responses and leukocyte 

recruitment, increase in cytokine production, and edema formation
221

. Common among these mechanisms 

is BBB disruption.  

Depending upon the duration and severity of ischemia, degree of reperfusion, and type of stroke 

animal model, it is proposed that there are 3 stages of paracellular permeability after reperfusion. There is 

an initial reperfusion permeability associated with acute elevations in regional CBF, which is then 

followed by a biphasic permeability response. The initial reactive hyperemia phase constitutes a loss of 

cerebral autoregulation, increased BBB permeability, and acute elevation in regional CBF 
222

. This acute 

phase is passively dependent on perfusion, and is often concurrent with a sharp increase in blood-

pressure. Following the initial hyperemia, hypoperfusion of the ischemic area occurs (i.e. no-reflow 

effect), which is attributed to continued cerebral metabolic depression, microvascular obstruction, 
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occlusion via swelling of endothelial cells and astrocytic end-feet, and formation of endothelial 

microvilli
223

. This causes nutritional deficiency in brain tissue and enhances neutrophil adhesion, with 

subsequent inflammatory activity. These events directly contribute to the next period of increased BBB 

paracellular permeability, which occurs as a biphasic response. The first phase of the biphasic 

permeability occurs at 3 to 8 hours post-reperfusion and has been attributed to increased inflammatory 

and oxidative stress on the BBB, in conjunction with enzymatic degradation of the ECM
224,225

. The 

second phase occurs at 18 to 96 hours post-reperfusion dependent on ischemic severity and brain region 

evaluated. It coincides with the increased vasogenic edema and angiogenesis
226-230

. However, 

neurovascular remodeling may continue weeks after an ischemia/reperfusion event
231,232

.The duration of 

the last phase of opening seems to depend on the severity of the initial insult, and 2 h of MCAO results in 

the barrier being open to proteins for as longas 3 weeks. This phase is more complicated and results in 

greater tissue damage through leukocyte infiltration and marked MMP-9 release from neutrophils 

transmigrated to the ischemic brain, reducing BBB TJ integrity
233,234

. 

Disruption of the BBB allows leakage of blood components into the brain parenchyma. 

Extravasation of high molecular weight molecules is followed by water due to osmosis and leads to 

vasogenic edema, which may cause secondary damage through intracranial hypertension. Additionally, 

extravasation of red blood cells leads to hemorrhagic transformation of the infarcted area. Finally, the 

leaky BBB facilitates transmigration of inflammatory cells, promoting the post-ischemic inflammatory 

response
235

.  

Edema 

Edema is one of the primary causes of clinical deterioration, and a leading cause of death 

subsequent to ischemic stroke. There are two major types of edema associated with ischemia/reperfusion, 

cytotoxic and vasogenic
236

. Cytotoxic edema occurs soon after ischemic onset, and is caused by 

translocation of interstitial water into the intracellular compartment
237

. During ischemia, the ATP 

depletion together with the compensatory activation of anaerobic glycolysis results in cellular acidosis, 

which induces neuronal membrane depolarization. Cellular swelling is initiated by an increase in 
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intracellular Na
+
 and water influx

238
. Moreover, the excessive extracellular glutamate due to inefficiency 

of glutamate uptake causes a prolonged activation of NMDA receptors, further enhancing Na
+
 influx

239
. 

NMDA receptor-gated ion channels are highly permeable to Ca
2+

, thus further enhancing Ca
2+

 influx. In 

normal physiologic conditions, influx of osmotically active solutes such as Na
+
 is counteracted by active 

energy-requiring pumps, such as Na
+
/K

+
-ATPase, resulting in zero net solute shift

240
. The energy failure 

following ischemia impairs active Na
+
 and Ca

2+
 export via energy-requiring pumps. Enhanced Na

+
 and 

Ca
2+

 influx followed by Cl
-
 and water influx precipitates cell swelling

241
. All cellular elements (neurons, 

glia, and endothelial cells) take in fluid and swell but do not contribute to a net increase in brain volume 

because a corresponding reduction in the extracellular fluid space also occurs. Cytotoxic edema depends 

primarily on the duration and severity of ischemia and is an important indicator of ultimate infarct size 

and stroke outcome.  

Vasogenic edema occurs as a result of the movement of water from the intravascular to the 

extravascular compartment. Perturbation of the physiological barrier function of microvessels causes 

uncontrolled leaks of fluid from vessels to the surrounding parenchyma. Vasogenic edema is usually 

formed later than cytotoxic edema, after the cessation of CBF. However, the disruption of the BBB can be 

demonstrated as early as 20 min after transient global forebrain ischemia. Several mechanisms and 

mediators have been associated with the pathological opening of the BBB. Vasogenic edema is an 

ultimate cause of brain volume increase after ischemic stroke, which may result in clinical deterioration 

by its mass effect 
224

. The compression of surrounding structures and the resultant dysfunction of the 

compressed structure are consequences of this mass effect. 

Pathways of mediation 

Although several factors have been identified in the regulation of BBB TJ permeability, no single 

molecular/cellular pathway independently predominates over the course of an ischemia/reperfusion event, 

because of the complexity of events surrounding the different phases of TJ permeability. Nevertheless, a 

certain inter-relation of mechanisms directing these alterations has been identified. 
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Oxidative and nitrosative stress 

Oxidative stress is aputative mediator of the BBB disruption and brain edema, particularly during the 

reperfusion
224

. In physiological conditions, ROS are tightly controlled by superoxide dismutase (SOD) 

enzymes. During cerebral ischemia/reperfusion, highly potent ROS such as superoxide and hydroxyl 

radicals are produced at such high levels that the ability of SODs to scavenge it is overwhelmed
242

. ROS 

damage cellular macromolecules (lipids, proteins, and nucleic acids) and also mediate the cell signaling 

involving mitochondria, DNA repair enzymes, and transcription factors that may lead to apoptosis during 

reperfusion. ROS are generated as part of mitochondrial electron flow. Mitochondrial oxygen radical 

production can be stimulated by elevated intracellular Ca
2+

, Na
+
, and ADP levels in ischemic cells

242
. 

Also, there are a number of other possible sources of free radical generation, including xanthine oxidase, 

COX, LOX, cytochrome P450 (CYP450), endothelial NOS (eNOS), and the NADPH oxidase family. 

Experimental animal stroke models have demonstrated that ROS are capable of directly injuring 

the endothelium and thatantioxidants provide a protective effect. After ischemia, free radical scavengers 

significantly reduced infarction size and BBB leakage.Treatment with CuZnSOD, recombinant SOD, or 

polyethylene glycol-SOD attenuated either ischemia-induced edema or increased permeability
243

. In in 

vitro rat brain capillary endothelial cells, oxygen radicals were found to increase the permeability of cell 

monolayer. Moreover, these permeability changes preceded the onset of cell death and were blocked by 

SOD and catalase
244

. Transgenic overexpressing SOD significantly reduced BBB leakage and infarct sizes 

in mouse photothrombotic ischemia model
245

. On the other hand, mice deficient in SOD were highly 

susceptible tofocal cerebral ischemia/reperfusion, with exacerbated vasogenic edema and higher 

mortalitythan wild-type animals
246

. 

Evidence indicates that oxidative stress disrupts endothelial TJs, resulting in increased 

paracellular permeability
247-249

. Oxidative stress-induced endothelial cell permeability has been shown to 

associate with tyrosine phosphorylation of occludin and ZO-1, which is mediated through Src 
247

. 

Oxidative stress has also been reported to induce F-actin redistribution and stress fiber formation
162,250

. In 

an in vitro BBB model, ROS selectively activated signaling cascades involving RhoA, phosphatidyl 
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inositol-3 kinase (PI3K), and protein kinase B (PKB/Akt), leading to rearrangements of the actin 

cytoskeleton and spatial redistribution and downregulation of occludin and claudin-5, inducing altered 

BBB integrity. The effects of ROS on endothelial monolayer could be blocked through inhibition of PI3K 

or PKB/Akt 
248

. In another study, hydrogen peroxide induced hyperpermeability in BMECs and 

delocalization of the TJ proteins occludin, ZO-1, and ZO-2 via p44/p42 MAP kinase activation 
251

. 

Oxidative stress also contributes to the activation of enzymes, impacting BBB permeability. For example, 

free radicals activate MMP-9, leading to TJ and basement membrane degradation
46

. Moreover, ROS may 

mediate inflammatory response after ischemia by stimulating cytokines generation and protease secretion 

from leukocytes and resident cells of the NVU, which induce further vascular leakage.   

In cerebral ischemia, NO has been suggested to have both protective and deleterious effects on 

cerebral vessels, depending on the cellular source of NO, the amounts produced, and the time after 

ischemia
252

. eNOS production of NO has been shown to be beneficial by increasing CBF and decreasing 

platelet aggregation and leukocyte adhesion to the endothelium. However, the protective effects are 

reportedly short-lived (less than 2 h)
253

. 

There is general agreement that NO increases microvascular permeability in cerebral ischemia 

and that NO donors increase BBB permeability. Increased expression of nNOS has been shown in the 

ischemic core and penumbra 24–48 h following permanent MCAO
254

. Cerebral ischemia also enhances 

iNOS expression, which is localized to capillaries in the ischemic area and has been suggested to 

contribute to ischemia/reperfusion-induced BBB damage
46

. The nonselective NOS inhibitors have been 

shown to reduce brain edema, BBB damage, and infarct size in experimental MCAO models
255

. 

Additionally, genetic depletion of nNOS or iNOS gene has shown beneficial effects following cerebral 

ischemia in mouse models
256,257

. The mechanism of the BBB damage is associated with generation of the 

peroxynitrite
258

. NO produced in the endothelium rapidly conjugates with superoxide to form 

peroxynitrite, which is a potent cytotoxic and proinflammatory molecule. Peroxynitrite is well-known to 

induce cellular damage by its ability to nitrosylate tyrosine, leading to functional modifications of critical 

proteins
259

. Breakdown of peroxynitrite into nitrogen dioxide and hydroxyl radicals is also known to 
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contribute to endothelial injury and BBB disruption in cerebral ischemia
260

.NO has also been suggested to 

activate MMP-9
261

, with NO-sensitive transcription factors (i.e. NF-κB, activated protein-1) being 

transcription factors for MMP-9
262

. Overall, oxidative stress contributes to endothelial dysfunction and 

BBB disruption by promoting redistribution and/or disappearance of critical TJ proteins such as claudin-5 

and occludin
248

.   

Inflammation 

Postischemic inflammation is a progressive and interactive process, which involves the induction of 

cytokines and adhesion molecules at the level of the endothelium, in coordination with the activation and 

migration of neutrophils and microglia
263

. Previous research has demonstrated that inflammatory 

responses in focal cerebral ischemia are primarily mediated through pro-inflammatory cytokines 

interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), which appear within several hours following 

ischemic insult
264

.  

Cytokines stimulate the production and release of chemokines chemoattractant proteins monocyte 

chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 
218

. 

Chemoattractants released at the site of injury are believed to provide driving force for leukocyte 

movement across BBB
265,266

.MCP-1 is a major factor associated with leukocyte infiltration into the brain 

parenchyma in a variety of inflammatory conditions, including stroke. An in vitro examination identified 

a biphasic increase in permeability during post-hypoxic reoxygenation, which coincided with increased 

secretion of MCP-1 by both astrocytes and brain endothelial cells
267

. In a subsequent study, MCP-1 

receptor knock-out mice showed a decrease in BBB permeability, infarct size, brain edema, leukocyte 

infiltration, and inflammatory mediator expression after ischemia
268

.  

Signaling mediated by cytokines/chemokines induces an upregulation of endothelial (P-selectin, 

ICAM-1, E-selectin) and leukocyte (L-selectin, β2-integrin) adhesion molecules
269

. TNFα has been shown 

to increase the expression of the ICAM-1 at the surface of cultured endothelial cells
270,271

. Such induction 

of ICAM-1 can be mediated through TNFα activation of NF-κB
272,273

. Upregulation of TNFα expression 

by neurons and astrocytes in ischemic regions has been shown to precede BBB permeability
274,275

. IL-1 is 
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also associated with induction of endothelial cell adhesion molecules expression after stroke. Rats 

receivedintraventricular injection of IL-1β after MCAO showed increased BBB permeability andbrain 

edema formation, as well as an increased influx of neutrophils
276

. In another study, the IL-1 receptor 

antagonist significantly reduced infarct volume and BBB permeability following 24 h of reperfusion in 

mice. IL-1β-induced neutrophil adhesion andBBB paracellular permeability increase are associated with 

TJ disorganization with a breakdown of key components such as occludin and ZO-1
277

.  

As a consequence of the up-regulation of cytokines and adhesion molecules, leukocyte 

recruitment and transmigration to the extravascular space occurs. In cerebral ischemia, neutrophils are 

found in the brain soon after MCAO and this infiltration peaks at 24–72 h
278

. Infiltrating neutrophils are 

an exogenous source of molecules deleterious to the ischemic area, i.e., free radicals, NOS, MMPs, COX-

2, VEGF, platelet-activating factor (PAF) and other mediators
224,233

. Neutrophil infiltration into tissues 

causes edema, and mediators of inflammation such as TNF-α, IL-1β, ICAM-1, and β2-integrins also 

increase endothelial permeability. In addition, BBB disruption is accentuated by MMP-9, superoxide, and 

PAF, which are secreted by activated neutrophils
279

. The molecular mechanisms of BBB opening are 

associated with alterations in TJs and the endothelial cytoskeleton. Leukocyte adhesion to the 

endothelium triggers signal transduction cascades, leading to the loss of the TJ proteins and the 

redistribution of the AJ proteins
280

. Moreover, glutamates derived from activated neutrophils may 

contribute to endothelial barrier opening by acting on the metabotropic glutamate receptors expressed by 

endothelial cells. 

Vascular endothelial growth factor (VEGF) 

The vascular endothelium-specific growth factors include members from the VEGF, angiopoietins, and 

ephrin families, which act in coordination during angiogenic remodeling
281

. To date, the majority of 

growth factor related studies affiliated with ischemia/reperfusion and BBB TJ permeability have focused 

on VEGF and associated intracellular mechanisms. VEGF is a vascular endothelial cell mitogen and a 

major inducer of angiogenesis. In addition, it is a potent vascular permeability factor that increases BBB 

leakage in various types of brain injury
282

. During cerebral ischemia, VEGF is transcriptionally activated 
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by hypoxia inducible factor-1 (HIF-1) 
283

and expressed in various cell types including astrocytes, 

pericytes, vascular endothelial cells, and neurons
282

. Upregulation of endogenous VEGF interacts with 

two tyrosine kinase receptors, VEGF receptor-1 (flt-1) and VEGF receptor-2 (flk-1/KDR) on the ischemic 

vessels and contributes to the disruption of BBB
284

. Focal ischemia in the rodent induces VEGF 

expression at 1–3 h, with a sustained peak lasting up to 24–48 h, and then persisting for ~7 daysafter the 

onset of ischemia
285

. The majority of studies with early intravenous administration of VEGF have 

exhibited detrimental effects, reflected by an increase in brain injury, hemorrhagic transformation, and 

increased microvascular injury and inflammation
286-289

. The inhibition of VEGF using a VEGF antagonist 

significantly decreased brain edema and infarction in a focal ischemia model in mice
290

. Yet, delayed 

administration of VEGF (2 or 3 days after stroke) 
291

 or local (ICV or brain) application of VEGF
292

 

appear to beneficially enhance angiogenesis, neuronal survival, and may even decrease infarct size. This 

suggests that the time point and route of delivery plays a crucial role in the actions of VEGF in the 

ischemic brain.  

VEGF has been shown to increase paracellular permeability, reduce the expression of ZO-1 and 

occludin and disrupt the organization of both proteins, as well as change the distribution of actin 

cytoskeleton in endothelial cells
293

. VEGF has also been found to down-regulate both the mRNA and 

protein level of claudin-5 and occludin, leading to BBB dysfunction. Activation of the flk-1 has been 

proposed to be the major mediator in VEGF-induced BBB permeability
294,295

. VEGF binding leads to 

receptor dimerization followed by autophosphorylation of the cytosolic domains of these receptors which 

results in the stimulation of several intracellular kinases
296

. This leads to the activation of a number of 

downstream signals, including the PI3K/Akt, phospholipase-C (PLC)/PKC, protein kinase Src, and 

mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)-1/2 kinase 

pathways, which in turn have numerous downstream signals
297

. VEGF-induced Src-dependent processes 

are shown to result in increased vascular permeability associated with cerebral edema following ischemic 

stroke
298

. In isolated rat braincapillaries after embolism model of stroke, an increase in tyrosine 

phosphorylation of occludin was found to coincide with increased Src activity, in association with a 
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decreased occludin and ZO-1 expression
215

. A PKC-dependent model of VEGF-mediated TJ disassembly 

and vascular permeability has also been proposed. In this model, VEGF activation of flk-1 stimulates 

PLC-γ activation through Src, with subsequent production of inositol 1, 4, 5-triphosphate (IP3) and 

activation of conventional and novel PKC isoforms, directly mediating the TJ protein disassembly
299

. 

Furthermore, NO has been shown to mediate the ischemia-induced VEGF response, through an eNOS 

mediated mechanism
300

. The flk-1 mediated increases in eNOS expression have been identified to be 

downstream of the PKC signaling
301

. 

Enzymatic activity 

tPA is a highly specific serine proteinase and is found predominantly in the blood, where its primary 

function is as a thrombolytic enzyme that convert inactive plasminogen to active plasmin
300

. Plasmin is a 

fibrinolytic enzyme capable of rapidly degrading fibrin-based blood clots. In the brain, tPA has been 

identified mainly in the endothelial cells of the BBB and in the endothelium of the small vessels, where it 

may regulate BBB permeability and vascular tone
302

. tPA can degrade components of the basal lamina, 

thus contributing to the BBB disruption in cerebral ischemia
303

. Moreover, MMP-9 may play a central 

role in tPA-induced BBB breakdown. Induction of MMP-9 via tPA is found to be mediated by low-

density lipoprotein receptor-related protein
304

. In rodent stroke models, endogenous tPA activity in the 

brain is induced as early as 1 hour (preceding changes in MMP-9 and BBB integrity) after focal cerebral 

ischemia
305,306

. Increased endogenous tPA is required for the initial opening of the BBB after transient 

MCAO
306

. Genetic deficiency of tPA or inhibition of its activity by neuroserpin has been shown to 

decrease BBB disruption, edema, neuronal death, and brain infarction
305,307

.  

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that digest 

almost all ECM component proteins. MMPs have been implicated in the pathophysiology of cerebral 

ischemia, partly because they mediate the proteolytic degradation of a broad range of extracellular 

substrates, including some ECM proteins critically required for brain homeostasis
308

. Clinical and 

experimental studies have demonstrated that several MMPs such as MMP-2, MMP-3, MMP-7, or MMP-9 

are upregulated and activated after ischemic stroke
309,310

. MMPs are synthesized and are secreted as 
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inactive proenzymes that subsequently become proteolytically cleaved and activated
311

. During cerebral 

ischemia, proMMP-2 can be activated by membrane-type MMP (MT1-MMP), and the latter is activated 

by furin
312

. ProMMP-9 can be activated by MMP-3 (stromelysin-1), as well as other mechanisms such as 

proinflammatory factors (e.g., IL-1β, TNF-α, CD40L, and many others) and ROS
313

. tPA has been shown 

to activate MMPs through plasmin-dependent and -independent mechanisms
312

.  

Among MMPs, MMP-2 and MMP-9 are two of the most widely studied enzymes that have been 

shown to be critical in regulating BBB permeability during cerebral ischemia. Experimental studies 

provide evidence that MMP-2 plays a key role in the initial opening of the BBB after cerebral ischemia. 

Increased expression of MMP-2 may contribute to the initial opening of BBB by degrading the basal 

lamina
314

. In a rat model of transient MCAO, the initial opening of the BBB occurred as early as 3 hours 

after reperfusion and increased activation of MMP-2 correlated with the early opening of the BBB
230

. 

Correspondingly, the mRNA expression of claudin-5 and occludin decreased in both hemispheres, and 

both proteins were degraded or fragmented in ischemic hemispheres after 2–3 hours of reperfusion. 

Treatment with the MMP inhibitor BB-1101 reversed the degradation of the TJ proteins
315

. Thus, the 

early degradation of the TJ proteins seems to be associated with a marked increase in MMP-2 in the early 

phase after cerebral ischemia. 

Recent studies suggest that MMP-9 plays a critical role in mediating the second, delayed opening 

of BBB after ischemic stroke
230

. Emerging data indicate that MMP-9 is associated with severe BBB 

disruption by further degrading the TJs and basal lamina proteins, substantially contributing to brain 

infarction, edema, and hemorrhagic transformation in both animal models
316,317

and in human stroke 

patients
318,319

. MMP-9
−/−

 mice displayed a significant reduction in BBB disruption and brain edema, 

which was associated with reduced degradation of intracellular ZO-1 as compared to wild-type mice after 

transientMCAO
320

. MMP-9 has been shown to degrade TJ proteins (claudin-5, occludin, and ZO-1) in 

cultured brain endothelial cells
321

 and in animal models of focal cerebral ischemia
322-324

. MMP-9 may play 

a more prominent role in the BBB disruption during ischemic stroke under clinical relevant conditions 

linked to elevated systemic inflammation. Experimental data have shown that systemic inflammation 
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exacerbates neutrophil infiltration into the ischemic brain. The enhanced neutrophil-derived MMP-9 

mediates the sustained disruption of the TJ protein (claudin-5) and the cerebrovascular basal lamina 

protein (collagen-IV) in ischemic brain injury in the presence of IL-1β-induced systemic inflammation
325

. 

All these factors contribute directly and indirectly in BBB damage,compromising BBB function, 

thus abolishing the protective role of the BBB in controlling the microenvironment at the site of 

infarction. The increased permeability and loss of function of the BBB causes the secondary progression 

of brain injury by increasing cerebral edema, promoting the recruitment and migration of macrophages 

and neutrophils into the infracted region, and increasing the inflammatory responses.  

1.2.6 Vascular effects of diabetes associated with ischemic stroke 

According to the International Diabetes Federation, diabetes affects at least 285 million people worldwide 

in 2010, and that number is expected to reach 438 million by the year 2030
326

. In the U.S., 25.8 million 

people, or 8.3% of the population are affected by diabetes. The vascular damage sustained during the 

course of diabetes will increase likelihood that these affected individuals will develop micro- and 

macrovascular complications.  

Diabetes constitutes one of the major risk factors for stroke. It has been well documented that 

diabetes is associated with an increased risk of ischemic stroke with relative risks ranging from 2 to 6
327

. 

Population risk of stroke attributable to diabetes (proportion of cases which potentially could be prevented 

by eliminating diabetes) was 18% in men and 22% in women
328

. Beyond its paramount effect on stroke 

risk, diabetes also worsens stroke outcome. In both retrospective and prospective human studies, patients 

with diabetes have a higher mortality rate, more severe disability and slower recovery from stroke
329

.   

Vascular health is not only important for maintenance of cerebral blood flow to provide nutrients 

and remove metabolites from this highly metabolically active organ but also for structural and functional 

stability of the BBB. Therefore, micro- and macrovascular disease of the brain can have profound effects 

on neurologic function in diabetes especially when a secondary injury like ischemia is superimposed on 

this existing pathology. Diabetes or chronic hyperglycemia has been shown to contribute to thickening of 

the cerebral microvascular basement membrane
330

. The widening of the basement membrane 
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compromises the integrity of adjacent pericytes and astrocytic end feet that sit on the basement membrane 

and serve as a functional bridge between the vasculature and neuronal cells of the brain
331

. Diabetes also 

leads to degeneration of endothelium
332

 and significant vascular remodeling which is characterized by 

increased tortuosity
333

. Changes in vessel structure in diabetes ultimately affect BBB permeability. 

Studies reported increased BBB permeability in both type I and type II diabetic animal models
333-335

. The 

increased permeability is associated with concurrent decrease in TJ protein occludin and/or ZO-1 and 

increases in MMP-2 and 9. Clinical studies also found a BBB permeability increase in diabetic patients
336

. 

Besides the structural changes in cerebrovasculature, diabetes also induces alterations in vascular dilator 

pathways that lead to impaired reactivity and contribute to the pathogenesis of stroke. Endothelium-

dependent relaxation is attenuated in patients as well as experimental animal models of diabetes. All these 

changes in cerebral vascular function induced by diabetes/hyperglycemia may be coordinated by multiple 

mechanisms including increased oxidative stress, disturbances in NO synthesis and production, 

impairment of vascular smooth muscle ion channels, and inhibition of Rho-kinase activity, most of which 

also contribute to ischemia/reperfusion injury
330

.  

Approximately 30-40% of patients admitted with acute ischemic stroke are hyperglycemic
337

. 

While a proportion of this group are known to be diabetic, a further 25-50% have previously 

unrecognized abnormalities of glucose intolerance. The remaining is the result of acute stress response, 

defined as stress hyperglycemia
338

. Stress hyperglycemia usually resolves spontaneously after dissipation 

of the acute illness. The stress reaction that results in hyperglycemia is initiated by activation of the 

hypothalamic-pituitary-adrenal axis, which leads to raised amounts of glucocorticoids, including cortisol, 

and activation of the sympathetic autonomic nervous system, resulting in increased catecholamine release. 

Increased levels of stress hormones stimulate glucose production by glycogenolysis, gluconeogenesis, 

proteolysis, and lipolysis. Augmented epinephrine also can result in insulin resistance and 

hyperinsulinaemia
339

. Hyperglycemia is an independent predictor of poor clinical outcome in stroke 

patients. Numerous studies in experimental animal models have shown that hyperglycemia is associated 

with increased infarct size, edema, and hemorrhage
340

. An increasing number of studies demonstrate that 
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admission hyperglycemia has been linked to increased risk of hemorrhagic complications in patients 

treated with thrombolytic therapy using rtPA
341

.  

Hyperglycemia has been shown to aggravate cerebral damage in ischemic stroke by impairing 

recanalization, decreasing reperfusion, and increasing reperfusion injury
341

. Impaired recanalization has 

been attributed to disturbances in coagulation and in fibrinolytic pathways
342-344

. Hyperglycemia has been 

shown to stimulate coagulation by increasing the production of thrombin-antithrombin complexes and by 

stimulating the tissue factor pathway, whereas hyperinsulinemia decreases fibrinolytic activity by 

increasing the production of plasminogen activator inhibitor. Hyperglycemia is also associated with 

decreased reperfusion to the ischemic tissue. Inhibition of vasodilatation is an important mechanism by 

which hyperglycemia seems to reduce CBF. Vasodilatation is predominantly mediated by endothelium-

derived nitric oxide, which is synthesized by eNOS. Hyperglycemia not only decreases the expression of 

eNOS
345

, it also reduces the bioavailability of nitric oxide by increasing the production of superoxide 

which neutralizes nitric oxide by forming peroxynitrite
346

. During reperfusion, the oxidative stress and 

inflammation contribute to the vascular and neuronal injury. Hyperglycemia aggravates reperfusion injury 

through both pathways. It is well established that hyperglycemia causes a robust increase in mitochondrial 

free radical generation which then triggers downstream mediators such as NADPH oxidase to cause 

further increases in the formation of ROS, which ultimately lead to BBB breakdown and neuronal 

death
347,348

. Hyperglycemia also increases expression of several proinflammatory transcription factors, 

such as NF-κB. These factors have key roles in the regulation of the inflammatory responses by 

increasing the production of proinflammatory cytokines and promoting the adhesion of inflammatory 

cells to the vascular endothelium
349

. The inflammatory response leads to BBB opening, which results in 

further diapedesis of inflammatory cells out of the circulation and into the brain, and edema formation, 

resulting in tissue injury and increased infarct size. In addition, studies have suggested that hyperglycemia 

increases cerebral lactate production and exacerbates tissue acidosis by increasing the available glucose 

for anaerobic respiration and by inhibiting the mitochondrial respiration, leading to reduced penumbral 

salvage after infarction 
350

. 
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In summary, the brain is a site of both macro- and microvascular complications of diabetes. 

Microvessel structural and functional changes due to acute and chronic hyperglycemia lead to increased 

incidence and worsened outcomes from stroke in diabetic patients. Acute hyperglycemia also reduces 

both the safety and efficacy of reperfusion therapy in acute ischemic stroke patients. Current guidelines 

advocate optimal glycemic control in diabetic patients, in addition to aggressive blood pressure control 

and strict management of dyslipidemia for primary and secondary prevention of stroke. More 

investigations need to be performed to identify novel targets for therapeutic intervention so that the 

consequences of cerebrovascular complications can be mitigated in patients with diabetes. 
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1.3 Hypoxia-inducible factor-1 (HIF-1) 

HIF-1 is a master regulator of hypoxia-responsive genes. It regulates the expression of a broad range of 

genes that facilitate adaptation to low oxygen conditions. Its targets include genes that code for molecules 

that participate in vasomotor control, angiogenesis, erythropoiesis, cell proliferation, and energy 

metabolism. All of these genes may potentially contribute to survival and recovery of neuronal cells 

following ischemic stroke. Because of the potentially important roles of genes regulated by HIF-1 

following ischemia, it has been suggested that regulating HIF-1 induction and accumulation is a highly 

promising therapeutic approach for stroke. Nevertheless, HIF-1 may also contribute to ischemic tissue 

damage by promoting BBB disruption. Both neuroprotective and detrimental effects of HIF-1 have been 

observed in experimental animal models of ischemic stroke. Understanding the regulation and function of 

HIF-1 will provide new insight into the design of new therapeutic strategies. The following sections 

provide information about the accumulation mechanism of HIF-1 and its roles in ischemic stroke.  

1.3.1 The structure of HIF-1 

HIF-1 is one of the most essential molecules implicated in the response to hypoxia
351

. It was initially 

identified as a hypoxia-inducible DNA-binding protein capable of interacting with a hypoxia response 

element (HRE; 5′-RCGTG-3′) in the 3’ region of the erythropoietin gene
352

. It is a heterodimeric 

transcriptional factor consisting of two subunits: an oxygen-regulated α subunit and an oxygen 

independent β subunit
353,354

. HIF-1 β subunit is also known as aryl hydrocarbon receptor nuclear 

transporter (ARNT)
355

. Both HIF-1 subunits are members of the basic helix-loop-helix (bHLH)-

containing PER-ARNT-SIM (PAS)-domain family of transcription factor
356

. Interactions between bHLH-

PAS domains from the two subunits mediate their dimerization, and individual basic regions of the two 

subunits then make contact with their corresponding DNA sequences, namely HRE
357

. Based on the 

available data, HIF-1α is the major factor regulating the response to hypoxia. In response to decreased 

oxygen tension, dimerization of α and β subunits occur in the nucleus and this active heterodimer binds to 

the cis-acting HRE in target genes with transcriptional co-activator p300/CBP (CREB-binding protein) 

and DNA polymerase II. The active transcription complex induces a set of genes responsible for 
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angiogenesis, erythropoiesis, vascular tone, glycolysis, mitochondrial function, and cell survival
358-361

. 

HIF-1α contains two transactivation domains (TAD): N-terminal TAD (N-TAD) and C-terminal TAD (C-

TAD)
362

. The main function of the TADs is to recruit and interact with co-activators, which are crucial for 

the transcriptional activation of target genes
363

. These domains are also important because HIF-1α 

undergoes post-translational regulation mediated through hydroxylation, phosphorylation, acetylation, 

and/or redox modifications of these two TAD domains
364

. HIF-1α also contains an oxygen-dependent 

degradation domain (ODD domain) that allows regulation of protein stability as a function of the O2 

concentration
365

 (see Fig. 1-5).  

In addition to HIF-1α and -β, two other proteins have been identified. These are additional α 

isoforms termed HIF-2α and HIF-3α. HIF-2α is closely related to HIF-1α and both are able to interact 

with HREs to upregulate transcriptional activity. Although HIF-2α shares 48% amino acid sequence 

identity with HIF-1α and accordingly shares a number of structural and biochemical similarities with 

HIF-1α, they each regulate both common and unique target genes and may be differentially regulated 

depending on the duration and severity of hypoxia exposure 
366

. In contrast to ubiquitously expressed 

HIF-1α, though, HIF-2α is primarily expressed in the lung, carotid body, and endothelium
367-369

. Little is 

known about the HIF-3α isoform. Several splice variants of HIF-3α have been shown to be a dominant-

negative regulator of the other two alpha isoforms and has a limited expression pattern in the eye and the 

cerebellum. It also dimerizes with HIF-1β and binds to HREs
370371

. 
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Fig. 1-5 Domain structure of HIF-1α and HIF-1β.bHLH: basic helix-loop-helix; PAS: Per/Arnt/Sim; N-

TAD: N-terminal transactivation domain; ODDD: oxygen dependent degradation domain; C-TAD: C-

terminal transactivation domain. Major modification sites are approximately shown within the domains of 

HIF-1α. 
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1.3.2 The regulation of HIF-1α 

The dominant regulation mechanism of HIF-1α occurs through oxygen-dependent enzymatic 

hydroxylation and subsequent proteolysis (summarized in Fig 1-6). HIF-1α is hydroxylated on the prolyl 

residues 402 and 564 within the ODD domain
372-374

. Both sites of modification contain a conserved 

LXXLAP motif and the hydroxylation occurs at their 4-position
375

. The hydroxylation is mediated by a 

family of prolyl hydroxylases, namely prolyl-4-hydroxylase-domain proteins (PHD1, PHD2, PHD3)
375,376

. 

PHD1 is specifically localized in the nucleus, PHD2 is mainly localized in the cytoplasm and PHD3 

seems to have no preference
377

. These three homologs were originally designated EGLN 2,1,3, 

respectively, on the basis of protein sequence homology to EGL-9, the HIF-1 prolyl hydroxylase of 

Caenorhabditis elegans
378

. All three PHDs have the potential to hydroxylate HIF-1αin vitro with their 

relative activities as PHD2 ≫ PHD3 > PHD1, and PHD2 is shown to be the key limiting enzyme that 

controls the HIF-1α turnover in vivo
376,379

. These iron-dependent enzymes convert proline into 

hydroxyproline, a reaction that requires oxygen, 2-oxoglutarate (2-OG), Fe
2+

 and ascorbate
380

. The 

hydroxylation process splits O2; one oxygen atom is transferred to the proline residue and the other reacts 

with 2-OG to generate succinate and CO2
374

. The activity of these enzymes is governed by the O2 

concentration within the cell, which defines these proteins as oxygen sensors. The requirement for iron 

and 2-OG as cofactors explains the observed hypoxia-mimetic effects of iron chelators such as 

desferrioxamine (DFO), iron competitive inhibitors such as cobalt chloride (CoCl2) and 2-OG analogues 

such as dimethyloxaloylglycine (DMOG) 
381

. DFO, CoCl2, and DMOG are routinely used both in vitro 

and in vivo to inhibit PHD enzyme activity and thus stabilize HIF-1α.  

In the presence of oxygen, PHDs are active and hydroxylate the prolines of HIF-1α, leading to a 

recognition signal for binding of pVHL to the HIF-1α ODD domain
382

. The pVHL associates with the 

proteins elongin C, elongin B, cullin-2, and Rbx1 to form the VCB-Cul2 E3 ligase complex
382

. Binding of 

HIF-1α to this multiprotein E3 complex causes polyubiquitination of HIF-1α, ultimately leading to its 

degradation by the 26S proteasome
383

. The half-life of HIF-1α is < 5 min in normoxia
384

. Under hypoxic 

conditions (< 6% O2), PHDs activity is inhibited, resulting in HIF-1α stabilization.   
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Fig. 1-6 Regulation of HIF-1α protein by prolyl hydroxylation and proteasomal degradation. In the 

presence of oxygen, prolyl hydroxylation is catalyzed by the Fe
2+

-, oxygen- and 2-OG-dependent PHDs. 

The hydroxylated prolyl residues allow capture of HIF-1α by the pVHL, leading to ubiquitination and 

subsequent proteasomal degradation. Asparaginyl hydroxylation is catalyzed by an enzyme termed as 

factor-inhibiting HIF (FIH) at a single site in the C-TAD. This hydroxylation prevents cofactor 

recruitment. In the absence of hydroxylation due to hypoxia or PHD inhibition, HIF-1α translocates to the 

nucleus, heterodimerizes with HIF-1β and binds to HREs in the regulatory regions of target genes. This 

schematic drawing was cited from Weidemann A and Johnson RS (Weidemann A and Johnson RS, 

2008). 
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This leads to an accumulation of HIF-1α subunits in the cytoplasm. HIF-1α then translocates into the cell 

nucleus, where it dimerizes with HIF-1β and forms the active transcription factor HIF-1. HIF-1 binds to 

HREs within the promoter regions of its target genes, promoting the adaptation to low oxygen 

concentrations on cellular and systemic levels. 

Additionally, regulation of HIF-1α transcriptional activity is governed by the factor inhibiting 

HIF (FIH) present in the nucleus as well as cytoplasm
377

. FIH is an asparginyl hydroxylase that catalyzes 

the hydroxylation of a conserved asparagine residue Asn803 within the C-TAD under normoxic 

conditions. The hydroxylation of Asn803 leads to a steric inhibition of the interaction between HIF-1α 

and its co-activator CBP/p300
385,386

, interfering with its recruitment. Eventually, this results in the 

prevention of the formation a transcriptional active HIF-1 complex. Hypoxia abrogates asparagine 

hydroxylation, which allows the C-TAD of HIF-1α to efficiently interact with CBP/p300 therein, 

activating the transcription of the respective target genes
387

.  

Although O2-sensitive prolyl and asparaginyl hydroxylation events are two principal mechanisms 

regulating the HIF-1α, several additional regulatory pathways have also been uncovered. HIF-1α can be 

acetylated on lysine residue 532 in the ODDD domain
388

. Acetylation may affect HIF-1α hydroxylation 

and ubiquitination. K532 acetylation by the murine acetyltransferase arrest-defective-1 (ARD-1) enhances 

the interaction between HIF-1α and pVHL and, thus, leads to increased ubiquitination and concomitant 

proteasomal degradation
388

. This indicates that acetylation of HIF-1α is critical for accelerated 

degradation. Direct phosphorylation of HIF-1α on threonine 796 (T796) and serine 641 and 643 (S641, 

S643) by MAPK has been reported
389

. Phosphorylation does not affect its stability or binding affinity to 

DNA but it is able to increase HIF-1 transcriptional activity
390

. One mechanism to explain the increased 

activity is that HIF-1β binds preferentially to the phosphorylated form of HIF-1α
391

. Moreover, it has been 

reported that phosphorylation at T796 in HIF-1α increases the affinity of the interaction between HIF-1α 

and the transcriptional co-activator CBP/p300
392

. Consistent with the above, it has also been reported that 

phosphorylation of T796 prevents the hydroxylation of N803 by FIH. In addition, phosphorylation of 

HIF-1α by glycogen synthase kinase (GSK)-3β may target HIF-1α for proteasomal degradation 
393

. 
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Hydroxyl radical and hydrogen peroxide can destabilize HIF-1α protein in both normoxic and hypoxic 

conditions
394,395

. The oxidized HIF-1α protein might be recognized and degraded by the ubiquitin-

independent 20S proteasomal pathway, which primarily degrades cellular oxidized proteins under 

oxidative stress conditions
396

. Therefore, the 20S proteasomal pathway may play an important role in the 

degradation of HIF-1α in ischemic conditions. Moreover, studies have revealed that S-nitrosation 

stabilizes HIF-1α protein and S-nitrosation of cysteine 800 of HIF-1α promotes its interaction with 

CBP/p300, eventually stimulating transactivation of the HIF-1 complex
397

. Hypoxia induces small 

ubiquitin-like modifier (SUMO)-1 expression and increases HIF-1α SUMOylation
398

. Conflicting results 

have been reported leading to an increase or decrease of HIF-1α. SUMOylation of HIF-1α promotes 

hydroxyproline-independent HIF-1α–pVHL E3 ligase complex binding, thus leading to HIF-1α 

ubiquitylation and proteasomal degradation
399

. By contrast, the RWD-containing SUMOylation enhancer 

(RSUME), which increases overall SUMO conjugation by interacting with the SUMO E2 enzyme Ubc9, 

increases HIF-1α SUMOylation, resulting in increased HIF-1α protein levels and transactivation
400

. 

Hence, hypoxia-induced HIF-1α SUMOylation can promote either its stabilization or pVHL-dependent 

degradation.  

The oxygen pVHL independent regulation of HIF-1α is also mediated by the molecular 

chaperone heat shock protein 90 (Hsp90) and receptor of activated protein kinase (RACK1)
401

. Hsp90 is a 

molecular chaperone that protects client proteins from misfolding and degradation through its ATPase 

activity
402,403

. Hsp90 binds to the PAS domain of HIF-1α and increases its stability. Hsp90 inhibitors 

geldanamycin and 17-allyaminogeldanamycin (17-AAG) compete with ATP for binding to Hsp90 and 

disrupt the interaction of Hsp90 with HIF-1α
404,405

. Hsp90 inhibition results in proteasomal degradation of 

HIF-1α even in cells without functional pVHL
405,406

. Stimuli that promote interaction of Hsp90 and HIF-

1α may stabilize HIF-1α and increase HIF-1 activity. RACK1 competes with Hsp90 for binding with 

HIF-1α. It binds HIF-1α and recruits the elongin C and other components of the E3 ligase complex, 

leading to HIF-1α ubiquitination and degradation
401

. Thus, by competing Hsp90 for binding to HIF-1α, 

RACK1 mediates a degradation pathway that is mechanistically similar to pVHL pathway with the 
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difference being that it is oxygen independent. Hypoxia-associated factor (HAF) also mediates oxygen 

independent HIF-1α degradation that is complementary to oxygen dependent pathways mediated by 

pVHL, thus providing an additional level of control that allows for HIF regulation under diverse 

conditions
407

. HAF has a dual nature on one side it inhibits HIF-1α signaling by degradation and on the 

other side it has DNA binding activity and promotes the transcription of some of the HIF-1α key 

downstream targets
408

. 

Together with the mentioned modifications, HIF-1α transcription and translation have been 

shown to be regulated by signaling pathways like PI3K, PKB/Akt, and mammalian target of rapamycin 

(mTOR) in a tissue-specific manner
409-412

. A battery of growth factors and cytokines, such as epidermal 

growth factor (EGF), transforming growth factor-α,insulin-like growth factor-1 and -2, heregulin, and IL-

1β, can stimulate HIF-1α synthesis via activation of PI3K or MAPK pathways
381,413

. These pathways can 

be activated by signaling via receptor tyrosine kinases, non-receptor tyrosine kinases or G-protein-

coupled receptors. PI3K activates the downstream serine/threonine kinases Akt and mTOR. mTOR 

phosphorylates the translation initiation factors, which increases the rate at which a subset of mRNAs 

(including HIF-1α mRNA) are translated into protein
414

.  

1.3.3 Neuroprotective effect of HIF-1 

HIF-1 as a transcription factor in response to changes in oxygen levels has been found to be expressed in 

brain after ischemic insults. It was first reported that both mRNA of HIF-1α and β subunits were induced 

in the brain of rats and mice subjected to hypoxia for 30 to 60 min
415

. Systemic hypoxia for 1, 3, or 6 h 

rapidly increased the nuclear content of HIF-1α in mouse brain
416

. Focal cerebral ischemia induced a 

robust upregulation of mRNAs encoding HIF-1α in the peri-infarct penumbra by 7.5 h after ischemia and 

increased further at 19 and 24 h
417

. Another study reported a 1.8–2.5-fold increase in both HIF-1α and 

HIF-1β proteins by 20 h after reperfusion
418

. A study examining the temporal and spatial expression of 

HIF-1α in the penumbra after transient MCAO showed that HIF-1α began to be induced 1 h after 

ischemia, peaked at 12 h and then decreased within 48 h
419

. In the global ischemic model, HIF-1α 

expression was increased 8–24 h after ischemia and persisted for 96 h after reperfusion
420,421

. Baranova et 
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al. demonstrated a biphasic activation of HIF-1α in neurons. The expression of HIF-1α began to increase 

1 h after MCAO, then reacheda maximum by 6 h. After a transient decline at 1 day, HIF-1α protein 

increased again by the second day of recovery and remained elevated for at least 8 days
422

.  

In response to lower oxygen concentration, HIF-1α accumulates and triggers the expression of 

several genes which initiate angiogenesis, erythropoiesis, vascular tone maintenance, energy metabolism, 

and cell survival following ischemic/hypoxic injury. There is growing evidence which shows that 

activation of HIF-1α offers protection in various cerebral ischemic models. Preconditioning involves 

exposing brain to moderate and brief stimuli that induce autoprotective pathways that better equip the cell 

and tissue to deal with subsequent episodes of ischemia
423

. HIF-1 has been implicated in the 

neuroprotection induced by hypoxic/chemical preconditioning in brains. In vivo studies in both neonatal 

and adult rats have shown that preconditioning with hypoxia or PHD inhibitor DFO or CoCl2 is protective 

in pre-clinical models of cerebral ischemia
424-426

. It has been reported that elevation of HIF-1α levelsby 

inhibiting PHDs prevents neuronal damage againstoxidative stress in vitro and permanent focal ischemic 

injury in vivo
427

. Administration of DFO reduced brain damage and promoted functional recovery after 

transient MCAO
428-431

. Moreover, DMOG has been reported to enhance HIF-1α activation and attenuate 

ischemic brain injury in both permanent and transient ischemia models
432,433

. A novel HIF-PHD specific 

inhibitor exhibited neuroprotective properties after global cerebral ischemia in the gerbil
434

. Transgenic 

mice with neuron-specific PHD2 ablation exhibited a strong reduction in infarct size along with increased 

stability of HIF-1α after focal ischemia
435

. Injection of a novel protease inhibitor induced long-term 

neuroprotection and enhanced angioneurogenesis in a mouse MCAO model, which was dependent on 

HIF-1α accumulation
436

. Conversely, it was observed that HIF-1α inhibitor 2-methoxyestradiol(2ME2) 

treatment lowered neuronal cell survival, which suggested that HIF-1 suppression worsened outcomes 

after global ischemia in rats
437

. Baranova et al. demonstrated that the pharmacologic HIF-1 activators 

significantly reduced ischemic injury in wild-type mice, whereas the effectiveness of these compounds 

was attenuated in mice with neuron-specific HIF-1α knockdown
422

.  
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Some evidence also exists to support a role for HIF and HIF target genes in aspects of neural cell 

progenitor biology (e.g., maintenance of the neural stem cell niche, neural stem cell proliferation, 

mobilization of neural stem cells (NSCs) to areas of ischemic insult, and differentiation of neural 

progenitors). Interestingly, recent studies investigating stem cell transplantation as a therapy for ischemic 

damage have demonstrated that hypoxic preconditioning of the stem cells prior to transplantation results 

in improved outcome
438,439

. In a rodent stroke model, less cell death and increased motor function were 

observed in rodents transplanted with hypoxic preconditioned stem cells, compared to those transplanted 

with untreated stem cells
438

. Chu et al. showed that treatment with DFO stabilized HIF-1α and activated 

HIF-1 target genes involved in compensation for ischemia in human NSCs. Furthermore, rats transplanted 

with DFO-treated NSCs, which were subsequently subjected to focal ischemia, displayed further 

reduction of infarct volume compared to the animals transplanted with naïve NSCs
440

. In consistent, 

transplantation of NSCs which overexpressed HIF-1α into rat brain after cerebral ischemia induced a 

greater neurological improvement than those treated with control NSCs
441

. Taken together, the evidence 

above suggests that HIF-1 activation within the brain may play a beneficial role in supporting endogenous 

neuroregeneration following ischemia. 

The evidence above reveals that induction of HIF-1α produces neuroprotection against cerebral 

ischemia.HIF-1α accumulates in ischemic brain and triggers the expression of several genes which have 

been proposed to account for the neuroprotective effects of HIF-1. The following section discusses a 

limited selection of genes known to be activated by HIF-1, highlighting some of the evidence which 

supports their role in neuroprotection.  

HIF-Regulated Tools for Neuroprotection 

EPO 

EPO is a circulating glycoprotein hormone that is predominantly synthesized in the kidney and liver; its 

primary role is in the stimulation of erythrocyte production. In fact, EPO is the prototypic HIF-1α 

responsive gene, since it was investigation of the mechanism underlying increased expression of EPO in 

response to low oxygen that led to the identification of HIF
442

. The brain expresses both EPO and the 
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EPO receptor, and preclinical and preliminary clinical studies indicate that EPO may play a crucial role in 

protecting cells against hypoxic/ischemic injury
443-445

. Studies of human and rat brain show that cerebral 

EPO is produced by both neuronal and glial cells and that neurons, glia, and cerebral endothelial cells all 

express the EPO receptor
446,447

. Adding EPO to the hippocampal slice in vitro has shown to provide 

neuroprotection of cortical neurons from oxygen and glucose deprivation (OGD)
448

. Numerous in vivo 

studies have reported that directly EPO administration into the brain reduced neurologic dysfunction in 

rodent models of cerebral ischemia
449-454

. Furthermore, neutralization of endogenous brain EPO 

potentiates ischemic brain injury, confirming a pivotal role for the endogenous EPO system in neuronal 

survival after ischemia
455

. EPO is implicated in the ischemic tolerance in preconditioning, since 

experiments in which endogenous EPO was neutralized showed that EPO inhibition was sufficient to 

abrogate, at least in part, the neuroprotective effects of hypoxia preconditioning
450

. A clinical trial 

conducted in 13 patients that received recombinant human EPO intravenously once daily for the first 

3 days after stroke showed a reduction in the infarct size when compared with controls, this effect being 

associated with an improvement in clinical outcome
456

. The neuroprotectant role of EPO may be 

multimodal, with anti-apoptotic, neurotrophic, angiogenic, and anti-inflammatory effects
457,458

. Marti et 

al. have suggested that EPO might lead to the formation of new blood vessels, which may further increase 

the blood flow and oxygen availability that neutralizes the damaging effect of hypoxia on neuronal 

cells
459

. Further, the programmed neuronal apoptosis was inhibited by increased EPO expression in the 

ischemic penumbra following MCAO in rats
460

. The signaling pathways involved in anti-apoptosis are not 

fully elucidated, but it has been found that EPO downregulates the proapoptotic genes BAX and DP5 and 

induces the expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL in the ischemic brain
461,462

. EPO 

may also limit cerebral damage through anti-inflammatory effects. Recombinant EPO administered in a 

rat model of cerebral ischemia reduced both the activation of glial cells and the number of infiltrating 

leukocytes
463

. Levels of the pro-inflammatory factors TNFα, IL-6, and MCP1 were also decreased. EPO 

could also enhance repair of damaged areas by promoting neurogenesis and angiogenesis through 

stimulation of neural and erythroid progenitor proliferation and differentiation
464,465

. 
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VEGF 

VEGF is induced following ischemic stroke and shows neuroprotective effects in several animal models 

of cerebral ischemia
466-470

. VEGF promotes neurorestoration after ischemia either directly as a 

neuroprotective agent or indirectly by inducing angiogenesis
471-473

. Local(i.e., ICV or brain) application of 

VEGF, VEGF-secreting cells, or vectors on structural histological injury consistently revealed a reduction 

of ischemic brain damage
292,474-477

. For example, topical administration of VEGF to the surface of rat 

brains reduces infarct size
471,474

. Intracerebroventricular VEGF treatment following transient cerebral 

ischemia reduced infarct volume and attenuated sensorimotor and cognitive deficits
478

. Conversely, 

administration of neutralizing anti-VEGF antibodies or antisense knock-down of VEGF increased 

neuronal damage after ischemia
479-481

. VEGF’s ability to promote cerebral angiogenesis may be beneficial 

following stroke by improving oxygen and nutrient delivery to the ischemic area. In rodent models of 

stroke, an increase in angiogenesis by VEGF is associated with reduced infarct volume and neurological 

deficits after focal cerebral ischemia
289,471

. Neuron-specific overexpression of VEGF induces higher brain 

microvessel density in the cortical ischemia penumbra
482

. Also, it has been postulated that VEGF protects 

ischemic brain via direct neurotrophic effects. Direct neuroprotection by VEGF may be related to 

activation of flk-1 receptors, modulation of the PI3K/Akt/NF-κB signaling pathway
483

, and inhibition of 

caspase-3 activity
484

. 

VEGF can also stimulate neurogenesis in vitro in cortical neuronal cell cultures and in vivo in the 

rostral subventricular zone (SVZ) and in the subgranular zone (SGZ)
471,485,486

. In VEGF-transgenic mice, 

brains examined 1–4 weeks after ischemia showed markedly increased SVZ neurogenesis, with chains of 

neuroblasts extending from the SVZ to the peri-infarct cortex, along with an increase in the number of 

newly generated cortical neurons at 2–4 weeks after ischemia
485

. Delivering VEGF via an adeno-

associated viral vector system reduced the size of the infarct and promoted neurological recovery by 

mechanisms involving enhanced SVZ neurogenesis and neural precursor cell migration in the direction of 

the evolving brain infarct
487

. Additionally, VEGF promotes the outgrowth of axons from existing neurons 

in the contralesional hemisphere, leading to functional improvements of motor function and 
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coordination
488,489

. In summary, VEGF is involved in angiogenesis, neuronal survival, neurogenesis, and 

brain plasticity that result in functional neurological improvements after stroke.  

Glycolytic pathway 

The brain consumes a large amount of ATP, and blood flow to the brain is critical for maintaining the 

supply of glucose and oxygen required for mitochondrial ATP production. Ischemic disturbance in CBF 

results in high oxygen and glucose starvation. During the neuronal activity induced by ischemia, 

astrocytes respond to glutamatergic activation by increasing glucose utilization, enhancing glycolysis and 

lactate release. Neurons use lactate released from astrocytes as their primary energy substrate. Glucose 

needs to be supplied to meet its required amount. Hence, to overcome the lack of glucose availability, the 

neurons and  astrocytes have to fulfill the glucose demand by increasing the activity of glycolytic 

enzymes and glucose transporters (GLUTs)
490

, which enhance the concentration of glucose and thereby 

inducing neuroprotection. HIF-1 activation is known to trigger a switch from oxidative to glycolytic 

metabolism by inducing GLUT1, GLUT3 and genes involved in the glycolytic pathway (e.g., 

glucosephosphate isomerase, aldolase A and C, phosphoglycerate kinase 1, and lactate dehydrogenase 

A)
491,492

. Also, HIF-1 is known to upregulate pyruvate dehydrogenase kinase, which inhibits the key 

mitrochondrial enzyme pyruvate dehydrogenase, in turn preventing the flow of pyruvate into the 

tricarboxylic acid (TCA) cycle, instead shunting it to lactate
493,494

. Lactate is used as an energy substrate 

in active neurons for ATP generation by TCA cycle. In addition to maintaining the cellular energy supply, 

this also results in decreased cellular oxidative stress during hypoxia by reducing mitochondrial ROS 

leakage. Glucose transport and glycolytic flow as a result of HIF-1α activation by hypoxia has been 

linked to the ability to maintain energy homeostasis as oxygen levels are lowered. However, the relevance 

of changes in glycolysis to survival in ischemia is likely to be limited due to severely limited availability 

of glucose and the accumulation of lactate because of the lack of oxygen in neurons. 

Other pathways 

Heme oxygenase (HO) is an antioxidant enzyme and its activation is regulated by HIF-1α. HO-1 cleaves 

the heme molecule, producing free iron, carbon monoxide (acts as anti-apoptotic agent), and bilirubin. 
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Bilirubin is a potent free radical scavenger and can therefore limit ischemic reperfusion injury by 

preventing free radical mediated damage
495,496

. Neuronal overexpression of HO-1 in mice has been shown 

to reduce lipid peroxidation, infarct volume and cerebral edema compared to wild-type 24 h after 

ischemia
497

. Furthermore, a recent study has reported that ischemic preconditioning conveyed partial 

protection (reduced infarct volume and neurological deficits) in wild-type, but not HO-1 knockout mice in 

experimental models of both transient and permanent cerebral ischemia, suggesting that the 

neuroprotective properties of ischemic preconditioning are at least in part dependent on HO-1
498

. HO-1 

has also been demonstrated to play an anti-inflammatory role by inhibiting the expression of 

proinflammatory cell adhesion molecules such as ICAM 
499,500

. 

Adrenomedullin (AM) is a vasodilating hormone which is induced in the ischemic and hypoxic 

preconditioning brain in a HIF-1 dependent manner
501

. AM protects murine primary cortical neurons 

against OGDin vitro
502

. Transgenic mice overexpressing AM displayed enhanced vascular regeneration 

and subsequent neurogenesis
503

. The vasculo-neuro-regenerative actions observed in transgenic mice in 

combination with neuroprotection resulted in improved recovery of motor function. Furthermore, 

administration of exogenous AM has been reported to be neuroprotective in numerous experimental 

models of ischemic brain injury
504

.  

Brain-derived neurotrophic factor (BDNF) shows neuroprotection in case of cerebral focal and 

global ischemia
505,506

. A recent study shows that HRE regulates the expression of adenovirus-mediated 

BDNF, constructed by adenoviral vector with five copies of HRE found in VEGF gene responsible for the 

regulation of BDNF in hypoxia
507

. BDNF is beneficial for the survival of ischemic neurons though direct 

anti-apoptotic and anti-inflammatory effects, whereas it also promotes neural regeneration and contributes 

to cognitive functions and memory acquisition after ischemia
508

.  

Necrosis and apoptosis are the main pathways of cell death in cerebral ischemia. There is also 

evidence showing that HIF-1α exertsanti-apoptotic effect by the inhibition of cytochrome C release, 

caspase activation or poly ADP-rebose polymerasecleavage
509,510

. Inhibition of cytochrome C release, 

caspase activity and activation of Akt play an important role in preventing the DNA fragmentation and 
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cell injury
511

. In some cases, HIF-1α restricts the apoptosis by the suppression of p53 too 
512

but this is 

dependent upon the severity or duration of hypoxia/ischemia. 

1.3.4 Detrimental role of HIF-1 

Although HIF-1 plays a significant role in neuroprotective mechanisms, it also behaves as an apoptotic 

inducer in cerebral stroke. Jiang et al.have reported that inhibiting HIF-1 activity by a dominant negative 

form of HIF reduces neuronal damage in response to OGD. This is further supported by the observation 

that HIF-1α is responsible for hypoxia-induced apoptosis in embryonic stem (ES) cells
513

. The study 

indicates that HIF-1α binds and stabilizes p53, and HIF-1α-dependent induction of p53 and p21 induce 

apoptosis in the hypoxic ES cells. Similarly, it has been observed that HIF-1α signaling elicits delayed 

death involving the participation of p53 in ischemic primary cortical neurons
514

. Suppressing HIF-1α with 

hyperbaric oxygen treatment remarkably attenuates HIF-1α and p53 interactions with reduced apoptosis 

after neonatal hypoxia-ischemia
515,516

. HIF-1α also governs the expression of a number of proapoptotic 

family members including the Bcl-2/adenovirus EIB 19kDa-interacting protein 3 (BNIP3), Nip-like 

protein X (NIX), and NOXA
517

. Early Inhibition of HIF-1α significantly attenuates neuronal injury and 

down-regulates NIX expression in both in vitro neuron culture and rat MCAO models, whereas late 

inhibition aggravates neuronal damage
518

. Treatment withHIF-1α siRNA protects the brain from ischemic 

damage by inhibiting HIF-1α-induced apoptotic pathway such as p53 and caspase-3 
519

. It has also been 

reported that HIF-1α inhibitors, 2ME2 and tricyclodecan-9-yl-xanthogenate (D609), protect brain from 

ischemic injury by suppressing neuronal apoptotic via BNIP3 pathway
520

. It has been suggested that 

BNIP3 contains HRE in its promoter site 
521

 which confirms that it is a direct target of HIF-1 and its 

activation leads to ischemic cell death by mitochondrial dysfunction, membrane depolarization, and 

mitochondrial permeability transition pore (MPTP) opening 
522

. Furthermore, HIF-1 upregulates the 

expression of iNOS 
523

, inflammatory cytokines such as IL-20 and IL-1β 
524

 and lactate dehydrogenase 
491

, 

resulting in increased nitric oxide, inflammation and acidosis, which might also cause potentially 

detrimental effects on ischemic brain tissue. HIF-1 activation may play a role in brain vascular 

endothelium disruption and edema formation after stroke, which is reviewed in section 1.3.5.  
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Using the same neuron-specific HIF-1α knock-out mice, Baranova et al. and Helton et al. have 

reported distinct effects of HIF-1 on neuronal injuries following ischemia. Helton et al. first reported an 

advantageous effect of neuronal HIF-1α knock-out in the bilateral common carotid artery occlusion 

(BCCAO) model of global ischemia 
525

. This was attributed to suppression of pro-apoptotic HIF-1 target 

genes, such as BNIP3. In contrast, Baranova et al. observed that HIF-1α knock-out was deleterious in the 

MCAO stroke model 
422

. The cause of the discrepancies between these reports remains unclear; but may 

be a reflection of the stroke models used global (BCCAO) vs. focal (MCAO) ischemia and the duration of 

the ischemic insult (75 vs. 30 min). The pro-survival and pro-death effects of HIF-1α may depend on the 

severity of the insults, the timing of HIF-1α induction, and cell types that express HIF-1α.  

In summary, HIF-1 plays an important role in the fate of ischemic neurons. Activation of HIF-1α 

is likely to mediate both beneficial and detrimental effects. Understanding the mechanism of HIF-1 

accumulation will undoubtedly shed new light on its role in cerebral ischemia and provide potential 

approaches to regulate its expression. 

1.3.5 HIF-1 in BBB disruption 

Hypoxia is an important pathogenic factor for the alteration of TJ proteins and induction of vascular 

leakage in the brain. The role of HIF-1 and its target genes in major cellular adaptions in response to low 

oxygen availability suggests they may be instrumental modulators of BBB integrity. Indeed, current 

evidence supports that HIF-1 is a likely mediator of BBB disruption.    

A study by Witt et al. first suggested that transcription factors such as HIF-1 and NF-κB are 

upstream mediators of TJ protein alterations under the conditions of hypoxia and post-

hypoxia/reoxygenation, which may involve VEGF induction and expression. VEGF is a strong inducer of 

vascular permeability, and increased VEGF levels positively correlate with changes in TJ redistribution of 

ZO-1 and occludin, as well as the alterations on the actin cytoskeleton
526

. Engelhardt et al.recently found 

that hypoxic exposure rapidly induced stabilization of HIF-1α concomitantly with BBB impairment and 

TJ disruption mainly through delocalization and increased tyrosine phosphorylation of TJ proteins in the 

rat brain endothelial cell line RBE4. Similar observations were obtained by normoxic stabilization of 
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HIF-1α using CoCl2, DFO, and DMOG underlining the involvement of HIF-1 in barrier dysfunction 

particularly via TJ alterations. In agreement, inhibition of HIF-1 stabilization by HIF-1α inhibitors 

2ME2and YC-1 improved barrier function in hypoxic cells
527

. Additionally, Yeh et al. demonstrated that 

YC-1 prevented chemical hypoxia and H/R-induced hyperpermeablity and ZO-1 decrease and 

disassembly in adult rat brain endothelial culture, which was likely via the inhibition of VEGF 

expression. Pretreatment of YC-1 also protected BBB in vivo against ischemia/reperfusion-induced 

injury
528

. Post-ischemic administration of two other HIF-1α inhibitors, 2ME2 andD609, protected brain 

from cerebral ischemic injury by inhibiting HIF-1α expression, attenuating superfluous VEGF to avoid 

BBB disruption
520

. Elevation of HIF-1α also seemed to be detrimental in neonatal brain injury in a rat pup 

hypoxic-ischemic model
529

. Acute inhibition of HIF-1α by 2ME2 exhibited neuroprotection by preserving 

BBB integrity and reducing brain edema. On the contrary, Upregulation of HIF-1α by DMOG increased 

the permeability of BBB and brain edema. However, most of the studies focusing on HIF-1’s effect on 

BBB have not demonstrated convincingly that the crucial HIF-1 modulation takes place in brain 

endothelial cells. Recently, a study in our lab showed that YC-1 ameliorated ischemia-induced BBB 

permeability increase (determined by EB extravasation) although it did not affect brain edema formation 

and remarkably enlarged infarct volume evaluated by MRI and histological staining
530

. The data also 

indicate that HIF-1-induced VEGF increases BBB permeability while certain other proteins coded by 

HIF-1’s down-stream genes such as EPO and GLUT provide neuroprotection in ischemic stroke. The 

study implies that HIF-1 may function differently in different cell types depending on the functions of its 

down-stream factors in the specific type of cells, and HIF-1 modulation may have different effects on 

ischemic outcome and BBB permeability.   

Notably, deleterious effects of HIF-1 on BBB may not only be limited to ischemic stroke. It has 

been reported that HIF-1 plays an important role in brain edema formation and BBB disruption via a 

molecular pathway cascade involving aquaporin-4 (AQP-4) and MMP-9in a model of traumatic brain 

injury
531

. HIF-1α activation in the brain of dystrophic mouse was also suggested to be partly responsible 

for both BBB opening and increased angiogenesis through down-regulation and phosphorylation of ZO-1 
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via VEGF signaling
532

. In subarachnoid hemorrhage models, inhibition of HIF-1 significantly suppressed 

the level of AQP-4 and MMP-9 and partially repressed brain edema and BBB impairment
533,534

. Our lab 

previously has demonstrated that HIF-1 is highly involved in high glucose-induced paracellular 

permeability increase in in vitro BBB model
535

. Upregulating HIF-1 activity by CoCl2 increased the 

permeability of endothelial monolayer exposed to normal glucose, whereas suppressing HIF-1 activity by 

pharmacological inhibitors and genetic depletion ameliorated the permeability changes by restoring 

expression and localization of ZO-1 and occludin in high glucose-treated cells.  
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1.4 Aims of the study 

1.4.1 Part I: The role of HIF-1 in antioxidant-induced neuroprotection in ischemic stroke 

Stroke is a devastating disease, which annually affects 17 million people worldwide, and is the third 

leading cause of death in the U.S. Today the only FDA-approved agent in clinical use for the 

thrombolytic treatment of acute ischemic stroke is tPA, which is currently used in less than 5% of cases 

because of its narrow therapeutic window. Consequently, developing therapeutics for neuroprotection in 

ischemic stroke remains one of the major challenges in clinical medicine. Ischemic stroke compromises a 

complex cascade of pathophysiological mediators among which ROS play a pivotal role. 

Ischemia/reperfusion causes overproduction of ROS, which trigger many cellular and molecular events 

including protein oxidation, lipid peroxidation and DNA damage, leading to neuronal death. Although the 

involvement of ROS in ischemia/reperfusion injury is not under debate and beneficial effects due to 

antioxidants in experimental stroke models are evident, the clinical efficacy of antioxidative agents has 

not yet convincingly proven. The translational disappointment of antioxidants likely arises from the 

failure to understand the drug candidate’s mechanism of action in relationship to stroke. Research 

progress in cellular redox signaling suggests that antioxidants may exert their biological functions through 

specific signaling pathways other than reducing ROS level.A greater understanding of the molecular 

targets of antioxidants will improve the chances of identifying promising therapeutic approaches.  

Our previous study has demonstrated that HIF-1α can be stabilized by a reducing redox 

environment in primary cortical neurons exposed to hypoxia.The specific aim of the current study is to 

characterize HIF-1’s role in the antioxidant-mediated neuroprotection in ischemic stroke animal model. In 

this study, rats and mice were subjected to 90 min focal cerebral ischemia and 24 h reperfusion to dissect 

the key molecular mechanisms involved in the antioxidant N-acetylcysteine (NAC)-mediated 

neuroprotection. We were interested in whether pretreatment with NAC upregulatesthe expression of 

HIF-1α and its target genes in the neurons of ischemic brain. Also, we aimed to determine whether the 

HIF-1 pathway mediates NAC’s protective effect. As such, we examined how HIF-1 inhibitors and 

neuron specific HIF-1α knock-out influenced NAC’s neuroprotection.  
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This study evaluated a new pathway through which NAC exerts its neuroprotection in a clinically 

relevant stroke model (presented in Chapter 2). We expect this finding can help design therapeutic 

approaches for ischemic stroke. 

1.4.2 Part II: The role of HIF-1 in hyperglycemia-induced BBB disruption in ischemic stroke 

Diabetes mellitus, which results in chronic hyperglycemia, has been linked with accelerated development 

of various macro- and microvascular diseases throughout the body. Diabetes holds a 2 to 6 fold increased 

risk for cerebrovascular disease and stroke. Moreover, hyperglycemia is associated with worsened 

outcomes in acute ischemic stroke. Accumulating evidence indicates that the worsened outcomes may be 

due to diabetes-induced cerebral vascular complications, especially disruption of the BBB. Increased 

BBB permeability has been found in both diabetic patients and experimental animal models after stroke. 

Understanding the mechanism of diabetes-induced BBB disruption may offer insights for the prevention 

and treatment of vascular dysfunction and disruption following ischemic stroke in diabetic patients. 

As reviewed above, cerebral ischemia leads to brain vascular hyperpermeability and vasogenic 

edema, which contribute to the development of neurological damage. HIF-1 is an important regulator of 

vascular permeability. HIF-1α induction can alter the structure of vasculature and cause vascular 

remodeling through activation MMPs and VEGF. Furthermore, previous study in our lab suggested that 

HIF-1 activity is upregulated in BMECs exposed to high glucose. Therefore, the specific aim was to 

investigate the involvement of HIF-1 in hyperglycemia-aggravated BBB disruption in ischemic stroke. 

To address this specific aim, first we used an in vitro BBB model, hCMEC/D3 cell culture.  

Cells were pretreated with normal glucose and different concentrations of high glucose before they 

were subjected to OGD, followed by reoxygenation with the same glucose concentration in 

pretreatment. We examined the effect of high glucose on HIF-1α and VEGF protein level, MMPs 

secretion, paracellular permeability of cell monolayer, and TJ proteins expression. Since we were 

interested in the role of HIF-1 on BBB permeability, we inhibited HIF-1α to test if in vitro BBB 

disruption in response to high glucose is related to HIF-1 activity. This study is presented in Chapter 3.  
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The next step was to determine if HIF-1 mediates the worsened BBB function after cerebral 

ischemia in a diabetic animal model. In the in vitro experiments, the endothelial cell culture is not able 

to fully mimic the NVU in vivo since BBB is formed by the interaction of several cell types. Therefore, 

we performed in vivo experiments on streptozotocin (STZ)-induced type I diabetic mice models. The 

diabetic mice were subjected to MCAO/reperfusion. We detected the expression of HIF-1α, VEGF, and 

TJ proteins on isolated cerebral blood vessels, and we also measured the BBB permeability and brain 

infarction. To further validate the role of HIF-1 in causing BBB damage, endothelial specific HIF-1α 

knock-out mice were used to determine whether genetic HIF-1 inhibition is able to ameliorate BBB 

disruption and brain damage in diabetic mice after stroke. This study is presented in Chapter 4. 

The results of the studies will serve as a fundamental platform elucidating the pathogenesis of 

hyperglycemia-aggravated BBB disorder in focal ischemia, and will indicate important target for 

preventing BBB disruption in stroke. 
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CHAPTER 2: Hypoxia-Inducible Factor 1 Contributes to N-acetylcysteine’s 

Protection in Stroke 

(Ziyan Zhang, Jingqi Yan, Saeid Taheri, Jim Liu, and Honglian Shi(2014)Free Radic Biol Med. 2014 

Mar;68:8-21)
 

Abstract 

Stroke is a leading cause of adult morbidity and mortality with very limited treatment options. Evidence 

from pre-clinical models of ischemic stroke has demonstrated that the antioxidant N-acetylcysteine (NAC) 

effectively protects the brain from ischemic injury. Here, we evaluated a new pathway through which 

NAC exerted its neuroprotection in a transient cerebral ischemia animal model. Our results demonstrated 

that pre-treatment of NAC increased protein levels of hypoxia-inducible factor-1α (HIF-1α), the 

regulatable subunit of HIF-1, and its target proteins erythropoietin (EPO) and glucose transporter 

(GLUT)-3 in the ipsilateral hemispheres of rodents subjected to 90 min middle cerebral artery occlusion 

(MCAO) and 24 h reperfusion. Suppressing HIF-1 activity by two widely used pharmacological 

inhibitors, YC-1 and 2ME2, and specific knock-out of neuronal HIF-1α abolished NAC’s neuroprotective 

effects. The results also showed that YC-1 and 2ME2 massively enlarged infarcts, indicating their toxic 

effect was larger than just abolishing NAC's neuroprotective effects. Furthermore, we determined the 

mechanism of NAC-mediated HIF-1α induction. We observed that NAC pre-treatments upregulated heat-

shock protein 90 (Hsp90) expression and increased the interaction of Hsp90 with HIF-1α in ischemic 

brains. The enhanced association of Hsp90 with HIF-1α increased HIF-1α stability. Moreover, Hsp90 

inhibition attenuated NAC-induced HIF-1α protein accumulation and diminished NAC-induced 

neuroprotection in the MCAO model. These results strongly indicate that HIF-1 plays an important role in 

NAC-mediated neuroprotection and provide a new molecular mechanism involved in the antioxidant’s 

neuroprotection in ischemic stroke. 
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2.1 Introduction 

Stroke is a leading cause of death in the United States and worldwide
1,2

.  Reduced supply of oxygen and 

nutrients results in devastating loss of neurons and leads to defect in brain function in stroke patients 
3
. 

Developing stroke therapeutics remains one of the major challenges in clinical medicine. There has been a 

considerable body of evidence suggests that oxidative stress associated with excessive production of 

reactive oxygen species (ROS) is a fundamental mechanism of brain damage in stroke
4
. Antioxidants 

prevent oxidative stress by counter balancing the harmful effects of ROS, and therefore it is logical to 

assume that they are useful in ischemic stroke. However, despite promising results conferred by 

antioxidants in experimental stroke studies
5,6

, clinical trials of antioxidant therapeutics in human have 

shown very little benefit
7
. Among many factors contributing to the translational disappointment of 

antioxidants is the incomplete understanding of the drug candidates’ mechanism of action in relationship 

to stroke 
8
.  A further exploration of the mechanism of antioxidants in stroke is crucial to the design and 

implementation of human trials. 

Pharmacological effects of N-acetylcysteine (NAC)have been studied in stroke models by several 

research groups. Rodents treated with NAC before ischemia showed reduction in brain infarct volume
9,10

, 

reduced neuronal cell death
11-13

, and improvement in neurological function
9
. In addition, NAC is 

protective in other organs subjected to ischemia, such as heart, liver, lung, and kidney 
14-18

, and is 

beneficial in other types of brain diseases such as Parkinson’s disease 
19

, Alzheimer’s disease 
20

, and 

amyotrophic lateral sclerosis 
21

, by slowing down aging and increasing life span 
22

. 

The neuroprotective effects of NAC in ischemia have generally been accredited to its ability to 

reduce ROS levels and to inhibit oxidation of lipids, proteins, and DNA. Over the last decades, research 

progress in cellular redox signaling suggests that antioxidants may exert their biological functions through 

specific signaling pathways. Studies on pathways that contribute to NAC’s neuroprotective effects in 

ischemia are scarce although NAC has been suggest to mediate cell survival signaling pathways in other 

pathological conditions including cardiovascular, respiratory, and hepatic diseases
23

. One study has 

suggested that the neuroprotection of NAC is related to its anti-inflammatory activity through suppressing 
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the activity of nuclear factor-κB (NF-κB)
24

. However, it has been reported that NAC’s protective effect is 

retained even administrated after the time period of burst of NF-κB activation 
25

.This observation 

suggested that anti-inflammation might not critically contribute to NAC’s neuroprotection. A greater 

understanding of NAC-mediated changes on key pathways in pathological conditions such as ischemia 

may provide insights for developing promising therapeutic approaches.  

HIF-1 is a predominant mediator of adaptive responses to decreased oxygen availability, a 

characteristic of ischemic stroke.HIF-1 is a heterodimer of two subunits, the regulatable HIF-1α and 

constitutively expressed and stable HIF-1β 
26

.The activity of HIF-1 is primarily determined by the level of 

its α subunit
27,28

.Our previous study has demonstrated that NAC is able to induce HIF-1α expression in 

primary cortical neurons exposed to hypoxia
29

. Our present study provided experimental evidence that 

NAC stabilized HIF-1α and increased its down-stream target genes expression in the brains of transient 

cerebral ischemia animal models. More importantly, we demonstrated for the first time that the protective 

effects of NAC against ischemic injury were abolished when HIF-1 activity was inhibited by either 

pharmacological inhibitors or genetic depletion. Furthermore, we revealed a novel mechanism by which 

NAC upregulated HIF-1α protein expression in ischemic brains. 
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2.2 Materials and Methods 

Animals 

All procedures using animals were approved by the Institutional Animal Care and Use Committees of 

University of Kansas and University of New Mexico and conformed to the National Institutes of 

HealthGuidelines for use of animals in research. Animals were maintained in a climate-controlled 

vivarium with a 12 h light-dark cycle with free access to food and water. Male Sprague-Dawley rats, 280-

310g, were from Charles River Laboratory (Wilmington, MA). Mice (B6.129-hif-1α
tm3Rsjo

/J) carrying 

homozygous HIF-1α  floxed alleles (HIF-1α
F/F

) were generated by engineering loxP sites flanking exon 2 

of the HIF-1α gene as described previously 
30

 and bought from the Jackson Laboratory (stock number: 

007561, Bar Harbor, Maine, USA).  Mice (B6.Cg-Tg (CaMk2a-cre) T29-1Stl/J) expressing cre 

recombinase under the control of the calcium/calmodulin-dependent kinase (CaMKII) promoter were 

generated as described previously 
31

 and also bought from the Jackson Laboratory (stock number: 

005359). All mouse strains were maintained on a C57BL/6J background. All animals were acclimated to 

the environment for 7 days before the experiments.  The mouse strain B6.Cg-Tg (CaMk2a-cre) was 

crossed with homozygous HIF-1α
F/F 

mice to generate Cre
+/-

: HIF-1α
F/Wt

, which were then crossed with 

homozygous HIF-1α
F/F 

mice to generate HIF-1α mutants Cre
+/-

: HIF-1α
F/F

, designated as neuron specific 

HIF-1α knock-out HIF-1α
∆/∆ 

as described previously 
32

.  Littermates with the Cre
-/-

: HIF-1α
F/F

 genotypes 

were used as controls for each group of experiments. 

 

Genotyping  

Genomic DNA was isolated from tail biopsies collected at 21 d of age using the DNeasy genomic DNA 

isolation kit (Qiagen, Valencia, CA, USA). HIF-1α
F
 and wild-type alleles were detected using the 

following primers: 5′-CGT GTG AGA AAA CTT CTG GAT G- 3′ and 5′-AAA AGT ATT GTG TTG 

GGG CAG T-3′. Transgenic mice expressing Cre recombinase were identified using primers: 5′-GCG 

GTC TGG CAG TAA AAA CTA TC-3′ and 5′-GTG AAA CAG CAT TGC TGT CAC TT-3′. The PCR 
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reactions were performed with the Omni Clenttaq polymerase (DNA Polymerase Company, St. Louis, 

Missouri, USA).  The products were run on a 3% agrose gel for HIF-1α or Cre. 

 

Middle cerebral artery occlusion (MCAO) 

For the surgical procedures of rats, 4.0% isoflurane in N2O:O2 (70%:30%) was used for anesthesia 

induction, and 2.0% for anesthesia maintenance.  Duration of anesthetic exposure was kept the same for 

each animal.  MCAO followed by reperfusion was conducted using an intraluminal model as previously 

described 
33

. Briefly, external carotid artery (ECA), internal carotid artery (ICA), and pterygopalatine 

artery of ICA were exposed. A silicone rubber-coated monofilament nylon suture (Doccol Corporation, 

Sharon, MA) with a diameter of 0.37mm was inserted into the ICA via a slit on the ECA. The suture was 

advanced along the ICA to the extent of 18 to 19 mm from the bifurcation of rats.  Reperfusion was 

produced by gently withdrawing the suture until the suture tip reached the bifurcation and the incision 

closed 90 min after the onset of ischemia. After surgery, the animals were allowed to recover from 

anesthesia while being given food and water ad libitum.  Buprenorphine was administrated at 0.1mg/kg 

subcutaneously as post-operative analgesia.  For mouse anesthesia, 2.0% isoflurane in N2O:O2 (70%:30%) 

was used for induction, and 1.0% for maintenance.  Similar surgical procedure was performed on mice 

with smaller size of suture with a diameter of 0.23 mm (Doccol Corporation, Sharon, MA).  The suture 

was advanced along the ICA to the extent of 9 to 10 mm from the bifurcation of mice.  For all animals 

used in this study, successful MCAO was confirmed by laser Doppler flowmetry (LDF) (Moor 

Instruments, Wilmington, DE) as described in the literature
34

.  During ischemia, LDF regional cerebral 

blood flow dropped to 16.9 ± 3.6% (mice) and 15.4 ± 1.8% (rats) of the pre-ischemic level; and after 

reperfusion the blood flow was restored to 87.6 ± 4.7% (mice) and 90.5 ± 3.6%  (rats) of pre-ischemic 

level. In addition, animals were placed on a heating pad during surgery.  Body temperature was monitored 

through the surgery process.  There was no significant difference in body temperature, which was in the 

range of 37.0 ± 0.3
o
C.  Animal that did not show any neurological deficits or had intracranial bleeding 

during the surgical process were excluded.  
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Experimental groups   

SD male rats were randomly assigned to the following 9 groups: (1) 3-(5’-hydroxymethyl-2’-furyl)-1-

benzylindazole (YC-1) (without MCAO, n=5); (2) NAC (without MCAO, n=5); (3) 2-methoxyestradiol 

(2ME2) (without MCAO, n=5); (4) MCAO (n=25); (5) MCAO pretreated with NAC (n=25); (6) MCAO 

pretreated with YC-1 (n=30); (7) MCAO pretreated with YC-1 + NAC (n=30); (8) MCAO pretreated with 

2ME2 (n=30); and (9) MCAO pretreated with 2ME2+ NAC (n=30).  In all the six groups subjected to 

MCAO, 5 rats were used for Western blotting of whole contralateral and ipsilateral hemispheres; 5 rats 

were used for Western blotting of peri-infarct tissue; 5 rats were used for immunostaining; and 5 to 8 rats 

were used for infarct size measurement by magnetic resonance imaging (MRI)and 2,3,5-

triphenyltetrazolium chlorid(TTC) staining (Table 2-1). NAC (A7250, Sigma, St. Louis, MO) dissolved 

in saline with 1% dimethyl sulfoxide (DMSO) was administered at 150 mg/kg body weight 

intraperitoneally (i.p) at 30 min prior to the onset of ischemia according to a previous publication 
13

.  

Growing evidence suggests that YC-1 and 2ME2 exert an inhibitory effect on the accumulation of HIF-1α 

induced by hypoxia, iron chelation, and proteasomal inhibition 
35-39

. YC-1 has widely been used as a HIF-

1 blocker in research. It has been demonstrated that YC-1 effectively inhibits HIF-1 expression in heart 
40

, 

kidney 
41

, and brain 
42

. YC-1 may directly degrade HIF-1α protein by inducing the degradation of C-

terminal of HIF-1α protein 
43

. It can also suppress the translation of HIF-1α through PI3K/Akt/mTOR/4E-

BP pathway 
44

. YC-1 has been reported to inhibit the expression of HIF-1 down-stream genes such as 

EPO and vascular endothelial growth factor
37

. 2ME2 inhibits HIF-1α protein synthesis by disrupting 

microtubules 
45

. Both YC-1 and 2ME2 were used as a complementary approach to knock-out in 

determining the effect of HIF-1. YC-1 (Cayman Chemical Company, Ann Arbor, MI) and 2ME2 (Enzo 

Life Science, Farmingdale, NY) were both dissolved in a solution of 1% DMSO in saline. YC-1 was 

administered at 2 mg/kg body weight through femoral vein at 24 h and 30 min prior to the onset of 

ischemia.  2ME2 was administered at 5 mg/kg body weight (i.p.) at 1 h prior to the onset of ischemia. 

Rats in control group received equal volume injections (i.p.) of the DMSO solution. We chose the dose of 

the HIF-1 inhibitors based on previous publications 
35,36

 and our own analysis of HIF-1α expression. 
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The HIF-1α knock-out (HIF-1α
∆/∆

) male mice were randomly assigned to two groups: MCAO 

group (n=6) and MCAO pretreated with NAC (n=6).  Twelve male littermates (HIF-1α
F/F

) were used as 

controls and randomly assigned to two groups: MCAO group (n=6) and MCAO pretreated with NAC 

(n=6). In all the four groups, 3 mice were used for Western blotting analysis; and 3 mice were used for 

infarct size measurement by TTC. In mouse models of MCAO/reperfusion, NAC was administered at 240 

mg/kg (dissolved in saline) body weight (i.p.) at 30 min prior to the onset of ischemia. The NAC dose for 

mice was calculated from rat dose using body surface area normalization method 
46

. Mice in control and 

HIF-1α knock-out groups received equal volume of saline injections (i.p.). 

Effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG) (AG Scientific, San Diego, CA) 

was tested in the following groups of mice: NAC (without MCAO, n=3), 17-AAG (without MCAO, n=3), 

MCAO (n=3), MCAO pretreated with NAC (n=3), MCAO pretreated with 17-AAG (n=3), and MCAO 

pretreated with 17-AAG+ NAC (n=3). 17-AAG is a derivative of the antibiotic geldanamycin and is 

widely used as an Hsp90 inhibitor. 17-AAG was dissolved in a solution of 1% DMSO in saline and 

administrated at 25 mg/kg (i.p.) at 1 h prior to the onset of ischemia. Mice in control and NAC groups 

received equal volume of the DMSO solution (i.p.). 

Usually four to five animals were randomly selected for surgery on a given day. We used a 

randomized block design.Each animal was subjected at random to one of the available treatments within 

each day.The following final analyses were performed by researchers who were blinded to the treatments 

and animals groups. 
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Table 2-1.HIF-1α inhibitor-induced mortality of MCAO rats and groups of rats for final analyses. 

Groups Analyses Initial 

Group 

Size 

Failed 

MCAO 

Death after 

successful MCAO 

Group Size for 

Final Analyses 

MCAO MRI+TTC 7 0 0 7 

 HIF 18 1 2 15 

 Total 25 1
a
 2 (8.3%)

b
  

NAC MRI+TTC 10 1 1 8 

 HIF 15 0 0 15 

 Total 25 1
a
 1 (4.2%)

b
  

YC-1 MRI+TTC 10 1 4 5 

 HIF 20 1 4 15 

 Total 30 2
a
 8 (28.6%)

b
  

YC-1+NAC MRI+TTC 10 1 3 6 

 HIF 20 1 4 15 

 Total 30 2
a
 7 (25.0%)

b
  

2ME2 MRI+TTC 11 0 5 6 

 HIF 19 1 3 15 

 Total 30 1
a
 8 (27.6%)

b
  

2ME2+NAC MRI+TTC 10 0 3 7 

 HIF 20 1 4 15 

 Total 30 1
a
 7 (24.1%)

b
  

a
Animals were excluded due to a lack of obvious neurological deficits or due to intracranial bleeding 

during the procedure. The intracranial bleeds happen when the monofilament suture is inserted too far and 

perforated the anterior cerebral artery. When the bleed occurred, the animals died immediately due to 

bleeding within the first 2 hours post-reperfusion. 

b
Death rate after successfully completed MCAO. 
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Western blotting and co-immunoprecipitation (Co-IP) 

 At 24 h reperfusion, the animals were anesthetized and euthanized by decapitation.The ipsilateral and 

contralateral hemispheres were isolated and homogenized separately for Western blotting assay. We also 

collected peri-infarct brain tissues and the corresponding region in the contralateral (non-ischemic) sides. 

The peri-infarct region was identified using TTC staining in control MCAO rat model (90 min ischemia 

and 24 h reperfusion, no pharmacological treatments) as described in our previous publication 
47

.  As 

marked in Fig. 2-4A, the ischemic peri-infarct was selected on the 1 o’clock line in the ipsilateral cortex. 

Tissues between the dashed lines (about 1.5mm in width) (Fig. 2-4A) were isolated from the ipsilateral 

and contralateral hemispheres and homogenized separately for Western blotting. The fixed location, as 

marked in Fig. 2-4A, was used for tissue isolation in animals received different pharmacological 

treatments.  However,the location of peri-infarct varies from animal to animal, especially in animals from 

different groups. The selected region of treated animals may represent different pathological state from 

that of control MCAO rats. Standard Western blotting and Co-IP procedures were followed as described 

previously 
35

. The primary antibodies were rabbit anti-HIF-1α (Millipore, Billerica, MA), mouse anti-

Hsp90 (SPA-830, Enzo Life Science, Farmingdale, NY), rabbit anti-GLUT-3 (ab53095, Abcam, 

Cambridge, MA), and rabbit anti-EPO (sc-7956, Santa Cruz Biotechnology, Santa Cruz, CA). The 

secondary antibody for HIF-1α, GLUT-3, and EPO was goat anti-rabbit IgG-HRP (sc-2030, Santa Cruz 

Biotechnology, Santa Cruz, CA).  The secondary antibody for Hsp90 was goat anti-mouse IgG-HRP (sc-

2030, Santa Cruz Biotechnology, Santa Cruz, CA). β-actin was used as an internal control.   

 

Measurement of infarct size by magnetic resonance imaging and TTC staining 

The rats were transported to the MRI room next to the surgery room at 24 h reperfusion and placed in the 

isocenter of the magnet before the imaging session. MRI was performed on a 4.7 T Biospecs MR scanner 

(Bruker Biospin, Billerica, MA). An actively shielded gradient coil with a 120-cm inner diameter was 

used. The animals were kept in the same position throughout imaging. For each animal, we performed 

T2-weighted MRI by using a rapid acquisition with refocused echos sequence.  Image data were then 
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transferred to a workstation running Linux for further processing.  From the T2-weighted magnetic 

resonance images, we calculated the volume of infarction using ImageJ. 

After MRI imaging, the brains were removed and sectioned into 2 mm slices. The slices were 

incubated in a 2% solution of TTC in 0.1 M PBS (pH 7.4) at 37°C for 30 min and fixed in 10% formalin. 

TTC staining has been widely used to reflect accurately the extent of irreversible ischemic damage in 

cerebral tissues in rats 
48

. TTC-stained brain sections were photographed using a digital camera 

(Powershot 400 digital camera, Canon). The infarct size was calculated; and the percentage of the infarct 

area with respect to the total area was digitally quantified by ImageJ. To compensate for the effect of 

brain edema, the corrected infarct area was calculated as previously described 
49

.  

 

Mortality and neurological deficits 

Mortality was calculated at 24 h after MCAO/reperfusion.  The neurological scores were performed in a 

blinded fashion at 24 h, based on amodified scoring standard of Rogers et al.
50

.We excluded the dead 

animals in the scoring scale. 

 

Immunohistochemical staining 

After 24 h reperfusion, rats/mice were transcardially perfused with ice-cold PBS under anesthesia and 

then with 4% paraformaldehyde. After decapitation, brains were isolated and fixed overnight in 4% 

paraformaldehyde. The brains were then embedded in O.C.T. compound (Sakura Finetek USA, Torrance, 

CA) and sectioned coronally at 10 μm thickness using a vibrating microtome (Leica Microsystems, 

Bannockburn, IL).  Brain sections were washed and the nonspecific binding sites were blocked with PBS 

containing 0.05 % triton-X100 and 0.25 % BSA for 1 h. Primary antibodies were diluted in blocking 

buffer and incubated with sections overnight at 4°C 
35

. Primary antibodies were rabbit anti-HIF-1α (04-

1006, Millipore, Billerica, MA), rabbit anti-GLUT-3 (ab53095, Abcam, Cambridge, MA, USA), rabbit 

anti-EPO (sc-7956, Santa Cruz), and mouse anti-NeuN (MAB377, Millipore).  Secondary antibodies were 

donkey anti-rabbit Alexa 488 and goat anti-mouse Alexa 488 (Molecular Probes, Carlsbad, CA). The 
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process for selecting area of interests for imaging was detained in our previous publication 
47

. The 

imaging location was selected at per-infarct cortex based on TTC staining. As marked in Fig. 2-2A, the 

squares indicated the selected area for imaging.Images were routinely captured with a Leica DMI 4000B 

fluorescent microscope. The original images were converted to 8-bit RBG and the immunoreactivity of 

each image was analyzed with Image-Pro Plus 5 (Media Cybernetics, Bethesda, MD). We chose pixel 

intensity to reflect changes in protein expression levels in neurons over cell counts.  The rationale was 

that HIF-1α is already extensively expressed in the neurons in ischemic brain without NAC treatment 
32

, 

so the numbers of the HIF-1α-positive neurons may not be able to reflect the change of neuronal HIF-1α 

in NAC-treated group.The optical density approach can reflect the increase of HIF-1α level in HIF-1α 

positive neurons. An approximate threshold for pixel intensity was set and applied to images to 

discriminate positive staining from background signal.Total immunoreactivity was calculated by the area 

occupied by immunopositive pixels multipled the optical density of those pixels. Five consecutive 

sections per animal were used for analysis. Average values for each animal were used to generate mean 

values for each treatment. All immunohistochemical staining data were obtained and analyzed in a 

blinded manner.  

 

Statistical analysis 

Neurological score results were presented as median with range. The other results were presented as mean 

with a standard error of mean. Comparisons of Western blotting, immunoreactivity, and infarct volumes 

were carried out by ANOVA test, followed by Tukey’s correction (R 3.0.1).  Neurological scores were 

compared using Kruskal-Wallis analysis followed by Bonferroni correction. A p<0.05 was considered 

statistically significant. For the statistical analysis of mortality, the Fisher exact test was used. 
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2.3 Results 

NAC enhanced global HIF-1α expression in ischemic brains 

Previous reports have demonstrated that pretreatment of NAC significantly increased neuronal survival 

and reduced brain infarct 
9,12,13,51

. To investigate the mechanism of NAC’s neuroprotective effects during 

ischemia and reperfusion, NAC was administrated (i.p.) to rats before the onset of MCAO in this study. 

Fig. 1 shows Western blotting results of the overall levels of HIF-1α and its down-stream proteins in 

contralateral and ipsilateral hemispheres.Ischemic exposure increased HIF-1α protein expression in the 

ipsilateral hemisphere, compared to that of the contralateral one (Fig. 2-1A-B). NAC further increased 

HIF-1α expression in the ipsilateral brain tissues. NAC also upregulated the protein expression of EPO 

and GLUT-3, two down-stream factors of HIF-1, in the ipsilateral hemisphere (Fig. 2-1A-D). The results 

indicated that NAC effectively enhanced HIF-1α protein accumulation and HIF-1 functional activity in 

the ischemic brains. In addition, it is of interest to note that NAC also increased the HIF-1α expression in 

the contralateral side, which usually used as control in stroke studies.  To confirm the effect of NAC on 

contralateral brain tissue, we also administered NAC to rats without receiving MCAO (naïve animals).  

As shown in Fig. 2-2, NAC promoted HIF-1α expression in the naïve rats’ brains. 

The above results were obtained using whole hemisphere homogenates and reflected the effect of 

NAC on the overall levels of HIF-1α, EPO, and GLUT-3 in both hemispheres. We also determined 

changes in the protein level in selected peri-infarct area as marked in Fig. 2-4A.  Results demonstrated 

that NAC increased the protein level of HIF-1α, EPO, and GLUT-3 in the selected region (Fig. 2-3).  

However, it needs to be pointed out that we isolated the peri-infarct tissue of all the rats from the fixed 

location which was determined based on the animals received no pharmacological treatments.Because the 

drug treatments altered the brain infarction, the selected region in thedrug-treated animals might represent 

different pathological state from that of control rats.  We do not exclude the possibility that changes in 

HIF-1α and its target proteins level might be a result of sampling tissues of different viability. 

Nevertheless, these results from selected brain region provided additional insights into the effect of NAC 

on the expression of HIF-1α, EPO, and GLUT-3 in the ischemic brain. 
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One of the aims in this study was to determine the role of HIF-1 in NAC-mediated 

neuroprotection.  Inhibiting HIF-1 activity would confirm specifically whether HIF-1 contributes to 

NAC’s effects.  YC-1 and 2ME2 are commonly used HIF-1α inhibitors. To inhibit HIF-1, we chose the 

double injections of YC-1 at 2 mg/kg based on our previous report of HIF-1α inhibition 
35

.   It has been 

shown that 2ME2 (5 mg/kg) (i.p.) could successfully decrease HIF-1α level in rat 
36

. To successfully 

inhibit HIF-1α expression in NAC group, the inhibitors were administrated prior to the injection of NAC.  

Both inhibitors at the tested doses effectively suppressed HIF-1α, EPO, and GLUT-3 expression in 

ischemic brains (Fig. 2-1A-D).  It’s noteworthy that YC-1 and 2ME2 were able to inhibit HIF-1α 

expression in the presence of NAC in the contralateral sides (Fig. 2-1) and in the brains of naïve rats (Fig. 

2-2). 
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Fig. 2-1 Effect of NAC on HIF-1α and its target gene expression in ischemic brains of rats. The protein 

level of HIF-1α, GLUT-3, and EPO was analyzed by Western blotting in brain hemispheres of rats 

subjected to 90 min ischemia and 24 h reperfusion. Rats received NAC (150 mg/kg, i.p.) at 30 min prior 

to the onset of ischemia. YC-1 (2mg/kg, i.v.) was administrated at 24 h and 30 min prior to the onset of 

ischemia. 2ME2 (5mg/kg, i.p.) was administrated at 1 h prior to the onset of ischemia. (A) Representative 

Western blots of HIF-1α and its down-stream proteins in contralateral and ipsilateral hemisphere. (B) 

Quantification of the HIF-1α protein level in contralateral and ipsilateral hemispheres. (C) Quantification 
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of the GLUT-3 protein level in contralateral and ipsilateral hemispheres. (D) Quantification of the EPO 

protein level in contralateral and ipsilateral hemispheres. Values were normalized to β-actin and 

corresponding hemispheres of control animals. Values are means ± SEM, n = 5.  
*
p< 0.05 vs. contralateral 

hemispheres from control animals.
#
p< 0.05 vs. ipsilateral hemispheres from control animals.

&
p< 0.05 vs. 

contralateral hemispheres from NAC animals.
@

p< 0.05 vs. ipsilateral hemispheres from NAC animals. 
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Fig. 2-2 Effect of NAC, YC-1 and 2ME2 on HIF-1α expression in naïve rat brains.The protein level of 

HIF-1α was analyzed by Western blotting in the brains of naïve rats and rats subjected to 90 min ischemia 

and 24 h reperfusion. Naïve rats received NAC (150 mg/kg, i.p.), YC-1 (2mg/kg, i.v.) or 2ME2 (5mg/kg, 

i.p.) injections as indicated in the figure. (A) Representative Western blots of HIF-1α in the brain samples 

from naïve rats and MCAO rats. (B) Quantification of the HIF-1α protein level in naïve rat brains, 

contralateral and ipsilateral hemispheres in MCAO rats (n = 3). 
*
p< 0.05 vs. naïve rat brains.(C) 

Representative western blots of HIF-1α in the naïve rat brain samples. (D) Quantification of the HIF-1α 

protein level in naïve rat brains. Values were normalized to β-actin. Values are means ± SEM, n = 3.  
*
p< 

0.05 vs. control animals.
#
p< 0.05 vs. NAC animals. 
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Fig. 2-3 Effect of NAC on HIF-1α and its target gene expression in peri-infarct brain tissue of rats. (A) 

Representative Western blots of HIF-1α and its down-stream proteins. The protein level of HIF-1α, 

GLUT-3, and EPO was analyzed by Western blotting in the peri-infarct tissue of rats subjected to 90 min 

ischemia and 24 h reperfusion. (B) Quantification of the HIF-1α protein level in contralateral and 

ipsilateral hemispheres. (C) Quantification of the GLUT-3 protein level in contralateral and ipsilateral 

hemispheres. (D) Quantification of the EPO protein level in contralateral and ipsilateral hemispheres. 

Values were normalized to β-actin and corresponding hemispheres of control animals. Values are means 
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± SEM, n = 5.  
*
p< 0.05 vs. contralateral hemispheres from control animals.

#
p< 0.05 vs. ipsilateral 

hemispheres from control animals.
&
p< 0.05 vs. contralateral hemispheres from NAC animals.

@
p< 0.05 vs. 

ipsilateral hemispheres from NAC animals. 
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NAC elevated neuronal HIF-1α expression in ischemic brains 

As ischemia causes devastating neuronal death in stroke, it was of great interest to determine if NAC 

enhanced the expression of HIF-1α in neurons.  As illustrated in Fig. 2-4 B, nuclear immunostaining of 

HIF-1α was observed in the selected area of the ipsilateral hemispheres.HIF-1α protein accumulation 

primarily occurred in neurons, as indicatd by colocalization with the neuronal specific marker NeuN. The 

intensity of HIF-1α immunostaining was further increased in ipsilateral side of the brains of NAC-treated 

rats. Moreover, the neuronal expression of EPO and GLUT-3 significantly increased in the ipsilateral 

neurons of NAC-treated rats, compared to control rats (Fig. 2-5A-B). The ipsilateral expression of all the 

three proteins (HIF-1α, EPO, and GLUT-3) was remarkably reduced by the HIF-1α inhibitors, YC-1 and 

2ME2, in either NAC-treated or control rats. The above results demonstrated that NAC remarkably 

enhanced HIF-1α and its down-stream genes expression in neurons in ipsilateral hemisphere of an 

ischemic brain. 
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Fig. 2-4 Effect of NAC on HIF-1 expression in neurons in ischemic brains of rats. The protein level of 

HIF-1α was analyzed by double immunostaining with the neuronal marker NeuN after rats were subjected 

to 90 min ischemia and 24 h reperfusion. (A) TTC-stained rat brain coronal section. Labeled square areas 

represent locations of immuno images (see ref 47 for details). (B) Double immunostaining of HIF-1α 

(green) and NeuN (red). The white arrows indicate positively stained neurons. Scale bar, 50 μm. (C) 

Quantification of the HIF-1α immunostaining intensity in contralateral and ipsilateral hemispheres. 

Values are means ± SEM, n = 5.  
*
p< 0.05 vs. control animals.

#
p< 0.05 vs. NAC animals. 
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Fig. 2-5 Effect of NAC on HIF-1 target gene expression in neurons in ischemic brains of rats. GLUT-3 

and EPO were analyzed by double immunostaining with the neuronal marker NeuN after rats were 

subjected to 90 min ischemia and 24 h reperfusion.  Selection of areas for imaging was same as those 

shown in Fig. 2-4. (A) Double immunostaining of GLUT-3 (green) and NeuN (red). (B) Double 

immunostaining of EPO (green) and NeuN (red). Scale bar, 50 μm. (C, D)Quantification of the GLUT-3 

and EPO immunostaning intensity in contralateral and ipsilateral hemispheres. Values are means ± SEM, 

n = 5. 
*
p< 0.05 vs. control animals.

#
p< 0.05 vs. NAC animals. 
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HIF-1 was responsible for NAC-mediated neuroprotection against ischemic brain injury 

To determine the role of HIF-1 in NAC’s neuroprotection in ischemic stroke, we first evaluated NAC’s 

protective effects against ischemia/reperfusion-induced brain injury by T2-weighted MRI and TTC 

staining. Fig. 2-6A demonstrated a serial of brain sections of a rat subjected to 90 min MCAO and 24 h 

reperfusion.  The brain infarct volume was calculated based on the area of hyperintensity of the MRI 

images.  As shown in Fig. 2-6A and B, administration of NAC at 150 mg/kg significantly reduced the 

infarct volume (140.2 ± 18.8 mm
3
), compared to the control group (226.0 ± 26.1 mm

3
) (p=0.0135).  

Consistent with the T2-weighted MRI data, the infarct volume measured by TTC-staining also 

demonstrated that NAC significantly reduced the brain infarction (p=0.0007).  These results were in line 

with previous reports that NAC is neuroprotective in ischemic stroke
9-12,24,52

. 

Fig. 2-6 also demonstrated that inhibiting HIF-1α remarkably augmented ischemia-induced brain 

damage.  YC-1 and 2ME2 increased the infarct volume estimated by T2-weighted MRI from 226.0 ± 26.1 

mm
3 
to 481.6±27.7 mm

3 
and 477.8 ± 24.1 mm

3
, respectively (p<0.0001).  No significant difference was 

observed among YC-1, YC-1+NAC, 2ME2, and 2ME2+NAC groups, indicating that NAC failed 

toprovide protection against cerebral ischemia in the presence of YC-1 or 2ME2.  Results from TTC 

staining showed similar effects. It is noteworthy that YC-1 and 2ME2 massively enlarged the infarcts, 

indicating their toxic effect was beyond just abolishing NAC's neuroprotective effects.   

We further determined the functional recovery of rats subjected to NAC and HIF-1 inhibitor 

treatments by behavioral assessment according to Rogers et al.
50

NAC treatment significantly decreased 

the median neurological scores from 3 (range 2-4) in control rats to 2 (range 1-3) (control, n=22; NAC, 

n=23; p=0.0097) (Fig. 2-6D). However, NAC was not able to alleviate neurological abnormalities when 

HIF-1 activity was inhibited by YC-1 or 2ME2.In addition, two animals were dead in the control group 

while one dead was observed in NAC-treated groups(Table 1). The treatment of NAC, YC-1 or 2ME2 

alone did not cause death in negative control animals (without MCAO, data not shown).  
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Fig. 2-6 Effect of NAC on ischemia/reperfusion-induced brain damage and neurological deficit. Brain 

damage was estimated by MRI and TTC staining after rats were subjected to 90 min ischemia and 24 h 

reperfusion. (A) Representative TTC staining (lower panel) and T2-weighted MRI (upper panel) images 

of MCAO brain sections of rats.  The brains were sectioned beginning at the 4 mm position from the 

frontal pole and continued in 2-mm interval to 10 mm. (B) Quantification of infarct volume with T2-
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weighted MRI images of rat brain (n= 7 (control), 8 (NAC), 5 (YC-1), 6 (YC-1+NAC), 6 (2ME2), and 7 

(2ME2+NAC)).  (C) Quantification of infarct volume estimated by TTC stained sections (n= 7 (control), 

8 (NAC), 5 (YC-1), 6 (YC-1+NAC), 6 (2ME2), and 7 (2ME2+NAC)). Values are means ± SEM, 
*
p< 

0.05 vs. control animals. (D)Quantification of neurological deficit scores rate(n= 22 (control), 23 (NAC), 

20 (YC-1), 21 (YC-1+NAC), 21 (2ME2), and 22 (2ME2+NAC)). Values are medians with ranges, 
*
p< 

0.05 vs. control animals.  
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Neuron-specific HIF-1α knock-out abolished NAC-mediated neuroprotection in ischemic brains 

The above results demonstrated that the pharmacological HIF-1α inhibitors YC-1 and 2ME2 abolished 

NAC’s neuroprotection in the ischemic brains.  We further studied the specific role of HIF-1 in NAC-

mediated neuroprotection with neuron-specific HIF-1α knock-out mice (HIF-1α
∆/∆

).  CAMKII- dependent 

Cre expression removed the lox-HIF-1α-lox cassette in genome of neurons of HIF-1α
∆/∆

 mice (Fig. 2-7A). 

To evaluate the efficiency of HIF-1α ablation in neurons of the HIF-1α
∆/∆ 

mice, we used immunostaining 

to visualize HIF-1α expression in NeuN-positive cells in the ipsilateral hemisphere of a mouse brain after 

90 min MCAO and 24 h reperfusion. HIF-1α expression was diminished in majority of neurons in HIF-

1α
∆/∆ 

mice(Fig. 2-8).  Post-ischemic accumulation of HIF-1α,GLUT-3, and EPO were significantly 

attenuated in the HIF-1α
∆/∆ 

mice compared with the controls, HIF-1α
F/F

(Fig. 2-7 B-C).  Moreover, NAC 

administration failed to increase the expression of HIF-1α and its target genes in ischemic brains of HIF-

1α
∆/∆

 mice.  We observed increases in the infarction-induced brain damage in HIF-1α
∆/∆ 

mice compared 

with wild type controls (Fig. 2-7 D-E).  Pretreatment with NAC significantly reduced the infarct volume 

in control mice (50% decrease from 63.0 ± 5.6 mm
3
 to33.3 ± 6.7 mm

3
,p=0.0316), but not in HIF-1α

∆/∆ 

mice (HIF-1α
∆/∆

, 83.7 ± 7.5 mm
3
; HIF-1α

∆/∆ 
+NAC,76.3 ± 5.5 mm

3
, p=0.8421).  The results further 

confirmed that NAC’s neuroprotective effects were suppressed by HIF-1α inhibition, indicating that HIF-

1α is involved in NAC’s protection against ischemic brain injury.  It is noteworthy that when compared to 

the rat MCAO model with NAC treatment which led to infarct damage mainly in the striatum, in the 

mouse model the damage was restricted largely inthe cortex.  
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Fig. 2-7 Effect of NAC on HIF-1 expression and ischemia/reperfusion-induced brain damage in wild type 

(HIF-1α
F/F

) and neuronal HIF-1α deficient (HIF-1α
∆/∆

) mice. The protein level of HIF-1α, GLUT-3, and 

EPO were analyzed by Western blotting in the brains of mice subjected to 90 min ischemia and 24 h 

reperfusion. Mice received NAC (240 mg/kg, i.p.) at 30 min prior to the onset of ischemia. (A) Schematic 

A 
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of the neuron-specific HIF-1α knock-out mouse model. (B) Representative Western blots of HIF-1α and 

its down-stream proteins GLUT-3 and EPO. (C) Quantification of the HIF-1α protein level in 

contralateral and ipsilateral hemispheres (n=3). 
*
p< 0.05 vs. contralateral hemispheres from control (HIF-

1α
F/F

) mice.
#
p< 0.05 vs. ipsilateral hemispheres from control (HIF-1α

F/F
) mice.(D) Representative TTC 

staining images of brain sections of MCAO mice. The brains were sectioned from the 6 mm position from 

the frontal pole. (E) Quantification of infarct volume estimated by TTC stained sections (n= 3). Values 

are means ± SEM, 
*
p< 0.05 vs. control (HIF-1α

F/F
) mice. 
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Fig. 2-8 HIF-1α expression in neurons in ischemic brains of wild type (HIF-1α
F/F

) and neuronal HIF-1α 

deficient (HIF-1α
∆/∆

) mice. The protein level of HIF-1α (green) was analyzed by double immunostaining 

with the neuronal marker NeuN (red) after mice were subjected to 90 min ischemia and 24 h reperfusion. 

Scale bar, 50 μm. 
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Hsp90 was involved in NAC-mediated HIF-1α upregulation in ischemic brains 

We then investigated the mechanism underlying NAC-induced HIF-1α upregulation in ischemic brains.  

Previous studies have shown that Hsp90 is able to bind and stabilize HIF-1α
53

.  We postulated that NAC 

might increase HIF-1α protein levels by promoting the expression and chaperone activities of Hsp90.  We 

therefore determined the Hsp90 protein level and Hsp90-HIF-1α interaction in NAC-treated MCAO 

models.  As we expected, NAC administration significantly upregulated Hsp90 expression in the 

ipsilateral hemispheres of MCAO mice (Fig. 2-9A and D).  Meanwhile, NAC also increased the amount 

of Hsp90 pulled down by anti-HIF-1α antibody (Fig. 2-9 A and B), indicating that NAC enhanced the 

association between Hsp90 and HIF-1α.  The results strongly supported the concept that NAC-induced 

HIF-1α upregulation was accompanied by increased Hsp90 expression and strengthened Hsp90-HIF-1α 

interaction. 

To better evaluate the contribution of Hsp90 to NAC-mediated HIF-1α upregulation, we inhibited 

Hsp90 activity with 17-AAG, which is blood-brain barrier permeable and specifically binds to Hsp90
54

.  

As shown in Fig. 2-9 A, 17-AAG markedly reduced the interaction of Hsp90 with HIF-1α and suppressed 

HIF-1α protein expression.  It completely abolished the HIF-1α upregulation in NAC-treated ischemic 

mice brains, suggesting that Hsp90 was involved in NAC-induced HIF-1α accumulation.  Furthermore, 

17-AAG significantly increased the infarct volume in control and NAC-treated animals subjected to 90 

min MCAO and 24 h reperfusion (Fig. 2-10).  In conclusion, our results suggested that NAC promoted 

HIF-1α stabilization by increasing Hsp90 protein expression and the Hsp90-HIF-1α interaction.  
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Fig. 2-9.Effect of NAC on HIF-1α and Hsp90 interaction in ischemic brains of mice. The protein level of 

HIF-1α and Hsp90 was analyzed by Western blotting in the brains of mice subjected to 90 min ischemia 

and 24 h reperfusion. Mice received NAC (240 mg/kg, i.p.) at 30 min prior to the onset of ischemia. 17-

AAG (25 mg/kg, i.p.) was administrated at 1 h prior to the onset of ischemia. (A) Representative 

immunoblots of HIF-1α and Hsp90 (IB: HIF-1α or Hsp90) in immunoprecipitates of HIF-1α (IP: HIF-
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1α). (B) Quantification of the Hsp90 protein level in immunoprecipitates of HIF-1α in contralateral and 

ipsilateral hemispheres. (C) Quantification of the HIF-1α protein level in contralateral and ipsilateral 

hemispheres. (D) Quantification of the Hsp90 protein level in contralateral and ipsilateral hemispheres. 

Values were normalized to β-actin and corresponding hemispheres of control animals. Values are means 

± SEM, n = 3.  
*
p< 0.05 vs. control animals. 
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Fig. 2-10 Effect of 17-AAG on ischemia/reperfusion-induced brain infarction in control and NAC-treated 

mice.(A)Representative TTC staining images of brain sections of MCAO mice. The brains were sectioned 

from the 6 mm position from the frontal pole. (B) Quantification of infarct volume estimated by TTC 

stained sections (n= 3). Values are means ± SEM, 
*
p< 0.05 vs. control mice. 
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2.4 Discussion 

Many previous studies have demonstrated that NAC protects cellular injury from various stresses 

including ischemia.  The beneficial effect of NAC has been largely attributed to its antioxidant properties, 

specifically speaking, to its ability to reduce ROS and lipid peroxidation.  In this study, we defined a new 

mechanism (i.e., upregulating the protein level of HIF-1α) by which NAC exerts its protective effect 

against ischemic insults.   

As an antioxidant, NAC alters cellular redox environment that plays a critical role in normal 

cellular functions.  HIF-1α, the unstable subunit of HIF-1, can be strongly regulated by cellular redox 

environment.  For example, excessive ROS disrupt HIF-1α accumulation such as in Hela cells 
27

 and renal 

medullary interstitial cells 
55

.  In contrast, antioxidants such as NAC have been reported to stabilize HIF-

1α in epithelial cells 
56

 and in primary culture cortical neurons as demonstrated in our previous study 
29

.  

However, it was not known whether NAC stabilizes HIF-1α in ischemic brain.  In line with these 

observations, the present study, for the first time, showed that NAC administration increased the protein 

expression of HIF-1α and its target genes EPO and GLUT-3 
57

 in ipsilateral side of an ischemic brain.  

More importantly, HIF-1 inhibition diminished the neuroprotection of NAC, substantiating the 

involvement of HIF-1 in NAC’s protective effects.  These results clearly present that upregulating HIF-1 

activity is a new function of NAC in ischemic brain. 

We also determined HIF-1α change in specific region of an ischemic brain, the peri-infarct region 

defined with control MCAO rats (90 min ischemia and 24 h reperfusion). Theperi-infarct region is at risk 

for delayed neuronal death due to the deleterious metabolic processes propagated from the ischemic core 

to the neighboring tissue, including excitotoxicity, oxidative stress and inflammation 
58

.The surviving 

neurons in the peri-infarct region directly contribute to behavioral recovery after stroke 
59,60

. Previous 

studies have demonstrated that HIF-1α induction reduced cell death of neurons located in the peri-infarct 

region 
61

. Thus, the peri-infarct tissue is a crucial neuroprotection target, and it is ideal to define how 

NAC alters HIF-1α expression in this region.  Our result showed that NAC upregulated the protein level 

of HIF-1α, GLUT-3, and EPO in the peri-infarct brain region. However, results from the selected peri-
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infarct brain tissue have limitation. The fixed brain region was identified based on control MCAO animals. 

We isolated the samples from the same location as peri-infarct in animals received different treatments. 

Actually, the location of peri-infarct area varies between animals, and it moves especially when the 

treatment induces neuroprotection. As the result, the selected brain region which represents peri-infarct 

region in control MCAO animals does not necessarily represent peri-infarct region in animals received 

different treatments. In this study, the selected brain tissue in NAC-treated rats may be more normal 

(healthier) than that in control rats. The measurement of protein level in whole hemisphere homogenates 

avoided the issue of peri-infarct shifting in different groups. The Western blotting results of whole 

hemisphere reflected the effect of NAC on the overall levels of HIF-1α, EPO, and GLUT-3 in whole 

ischemic hemisphere including infarct core, peri-infarct regions and non-ischemic remote areas. Many 

previous studies have used whole hemisphere homogenate to determine protein expression in contra- and 

ipsilateral brains
32,62-65

. Our results demonstrated NAC enhanced HIF-1α expression in ischemic brain. It 

is noteworthy that NAC also enhanced HIF-1α and its target genes expression in contralateral brain in the 

absence of any infarction. Furthermore, our study showed that NAC failed to reduce the brain infarction 

in HIF-1α knock-out mice, which indicates that NAC’s neuroprotective effect depends on increasing HIF-

1α expression. Both aspects of the experimental evidence support that HIF-1α upergulation is the 

mediator of NAC’s neuroprotection, rather than the consequence. 

Although it is known that redox regulates HIF-1α expression in many cells as discussed above, 

the mechanism responsible for the regulation is far from completely understood.  Hsp90 is among the 

most abundant proteins in the cytosol of eukaryotic cells.  As chaperone, Hsp90 prevents the aggregation 

of unfolded proteins induced by stresses such as heat shock and ischemia.  It has been shown that Hsp90 

interacts with transcription factors with bHLH-PAS domain, such as Sim and Ahrhr.  HIF-1α is a 

transcription factor containing the bHLH-PAS domain, suggesting Hsp90 may interact with HIF-1α.  In 

fact, Isaacs et al. have shown that Hsp90 antagonists inhibit HIF-1α expression and reduce its target genes 

mRNA
66

.  Therefore, we postulated that NAC might stabilize HIF-1α by promoting its interaction with 

Hsp90.  Indeed, we found that NAC administration upregulated the Hsp90 protein level by 27.3% and 
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enhanced the interaction between Hsp90 and HIF-1α in the ipsilateral hemisphere of an ischemic brain.  

Given the fact that Hsp90’s chaperoning capacity vastly exceeds demand for more than 200 client targets 

under normal conditions
67,68

, this moderate increase in Hsp90 protein level and interaction may 

sufficiently account for the 54% increase in the HIF-1α protein level (Fig. 2-9). The Hsp90 inhibitor 17-

AAG attenuated the interaction between Hsp90 and HIF-1α although it did not reduce Hsp90 protein 

expression in ischemic brains.  The fact that 17-AAG inhibited HIF-1α upregulation in the presence of 

NAC indicated that Hsp90 activity was required for NAC-induced HIF-1α accumulation.  However, the 

mechanism of NAC-mediated Hsp90 upregulation is not known.  Suppressing oxidation or other 

properties of NAC may contribute to the upregulation, which warrants further investigation.   

In this study, we demonstrated that the neuroprotective effect by NAC was largely mediated by 

HIF-1α induction and HIF-1 activation. Although we have provided data to show that Hsp90 is involved 

in the stabilization of HIF-1α by NAC, it is not known how NAC exactly promotes the interaction 

between Hsp90 and HIF-1α and stabilizes HIF-1α.  We postulate that NAC, an antioxidant, may do so by 

maintaining redox homeostasis in ischemic brains.  In a previous study, we found that NAC, which 

increased the GSH/GSSG ratio, induced significant expression of HIF-1α in peri-infarct. L-buthionine 

sulfoxide (BSO), which decreased the GSH/GSSG ratio, decreased HIF-1α expression in the peri-

infarct(unpublished data).  Moreover, NAC increased HIF-1α expression in the contralateral side (Fig. 2-

1) as well as in the brain of naïve animals (Fig. 2-2).  BSO decreased the level of HIF-1α in the 

contralateral side although no significance was observed due to low basal level of HIF-1α in normal brain 

tissue (unpublished data). The opposite effects of NAC and BSO indicate that NAC might up-

regulateHIF-1α by reducing oxidants.  These results are in line with our previous observation on primary 

cultured neurons 
29

.  In the previous studies, we investigated the relationships between HIF-1α expression, 

ROS, and redox status in neurons.  We observed low levels of HIF-1α protein expression in the neurons 

exposed to in vitro ischemic conditions that had high levels of ROS (oxidizing environments), and vice 

versa.  NAC induced HIF-1α protein expression in hypoxic neurons while BSO inhibited the expression.  

Moreover, (-)-epicatechin gallate, an ROS scavenger, elevated HIF-1α expression in the neurons 
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subjected to in vitroischemia.  Taken together, these data indicate that NAC may promote HIF-1α 

stabilization through suppressing ROS and maintaining cellular redox homeostasis.  Evaluation on 

oxidative stress levels in the experimental groups and effects of other antioxidants on HIF-1 would 

provide more evidence for the concept, which needs to be investigated in future studies.  

There were several considerations for using YC-1 and 2ME2 in this study. First, the two 

compounds are the most specific inhibitors available. Second, they have been widely used to inhibit HIF-

1 activity [31-41].  Third, as in previous publications, they provided effective HIF-1 inhibition. Fourth, 

they were included in this study to complement the HIF-1α knock-out model. The results demonstrated 

that the effect of these drugs was enormous on infarct volume, indicating they may act on other pathways 

that exacerbate brain injury following MCAO.  The effects of YC-1 and 2ME2 were so enormous that the 

effects of NAC were completely saturated by the HIF-1 inhibitors.  These are novel findings regarding the 

two commonly used HIF-1 inhibitors in ischemic brain.  To some extent, the effects of the two HIF-1 

inhibitors provided evidence to support the concept that NAC lost its protective effect in the MCAO 

models in the presence of either of the two drugs although other unidentified pathway were obviously 

involved. In addition,we found that genetic inactivation of HIF-1α resulted in lower infarct volume 

augmentation than pharmacological inhibition of HIF-1α (Fig. 2-6A and Fig. 2-7D). This might be due to 

the activation of compensatory pathways in response to HIF-1α deletion and alteration of non-HIF-1 

pathways by the inhibitors. For example, a previous study reported higher basal protein level of HIF-2α 

and an enhanced upregulation of HIF-2α under hypoxia in HIF-1α knock-out brains 
32

. The upregulation 

of HIF-2α may partially substitute for the loss of HIF-1α function and participate in neuroprotection in the 

ischemic brain. YC-1 and 2ME2 downregulated the α subunit of both HIF-1 and HIF-2 
45,69

. As the result, 

YC-1 and 2ME2 further augment infarct volume than HIF-1αgene inactivation approach.Overall, the data 

obtained from knock-out mice are evident that NAC mediates its neuroprotection through regulating HIF-

1 activity with support from the results of YC-1 and 2ME2. 

HIF-1’s role in cerebral ischemia is still arguable.  Accumulating evidence shows that induction 

of HIF-1 provides protection against cerebral ischemic damage in adult animals 
61,70,71

as well as neonatal 
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models 
72

.  The protective function of HIF-1 mainly results from a broad range of genes that HIF-1 

regulates.  The gene expression facilitates the adaptation to low oxygen conditions
73

.  As demonstrated in 

this study, enhanced expression of HIF-1 by NAC induced the expression of EPO and GLUT-3, which 

facilitate cell survival and oxygen and glucose transport.  However, others have reported detrimental 

effects of HIF-1 in models of hypoxia and cerebral ischemia 
74-76

.  The discrepancy of these observations 

may be partly explained by distinctive effects of HIF-1 in different severity of ischemia.  For example, 

HIF-1 is neuroprotective in a 30 min transient MCAO model 
32

 while it is harmful in a 75 min model of 

bilateral common carotid artery occlusion 
74

.  Given the effect of NAC on HIF-1 expression, NAC (or 

other antioxidants) may have different effects on neurons in different ischemic conditions.  Future studies 

on this aspect may help design therapeutic approaches for specific conditions of ischemia. 

In a translational aspect, this study provides novel insight into the mechanism of NAC's 

prophylactic effect on ischemic brain injury.  NAC is a commercially available supplement.  It is of 

interest to know its effects when taken prophylactically.  The pretreatment dose of NAC used in this study 

is comparable to previous studies.  For example, Niu et al. reported that pretreatment of NAC at 150 

mg/kg could prevent death-associated protein from trafficking and increase the number of the surviving 

CA1 pyramidal cells of hippocampus at 5 days of reperfusion 
12

.  Pretreatment of NAC 30 min before 

transient forebrain ischemia successfully increased the neuronal survival in rats 
13

. Results by Zhang et al. 

showed that at a dose of 100 mg/kg, pretreatment of NAC distinctly inhibited the association of 

postsynaptic density protein 95 with kainate receptor glutamate receptor 6 and ameliorated brain injury 

induced by ischemia 
51

.  Sekhon et al. reported that animals pre-treated with NAC at 150 mg/kg produced 

a 49.7% reduction in brain infarct volume and 50% reduction in the neurological evaluation score as 

compared to the untreated animals 
9
.   Meanwhile, post-treatment of NAC has also been shown to be 

neuroprotective in ischemic brains at a similar dose range 
10,24,77

.  For instance, a single dose of NAC 

given 15 min after trauma might be effective on lipid peroxidation, antioxidant enzyme activity and 

neuronal protection in cerebral injury following closed head trauma 
77

. However, the present study with 

pretreatment only has its limitation and caveats and provides no direct evidence to reveal mechanism of 
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NAC's neuroprotective effect in post-injury treatment.  It is of interest and clinically relevant in future 

studies to determine the possible mechanism of neuroprotection of NAC treated after the occurrence of 

ischemia. 

In summary, our data provide evidence that pre-treatment of NAC upregulates HIF-1 activity in 

ischemic brains and demonstrate for the first time that NAC-induced neuroprotection against ischemia is 

dependent on HIF-1 activity.  Moreover, the results reveal a new pathway that NAC augments HIF-1 

activity by enhancing Hsp90 expression and Hsp90-HIF-1α interaction. Our study suggests a new 

mechanism through which NAC protects stroke-induced brain injury, which may further improve the 

chances of identifying promising therapeutic approaches in future studies.  
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CHAPTER 3: High Glucose Exacerbates in vitroBlood-Brain Barrier 

Disruption in Oxygen Glucose Deprivation Settings via Activation of HIF-1 

Pathway 

Abstract 

Experimental evidence from human patients and animal models of diabetes has demonstrated that 

hyperglycemia exacerbates blood–brain barrier (BBB) disruption in ischemic stroke, which is associated 

with neurological worsening and poor outcome. However, the mechanism underlying high glucose-

induced BBB disruption is not understood. Here we investigated the role of hypoxia-inducible factor-1 

(HIF-1) in high glucose-induced endothelial permeability in vitro using an immortalized human cerebral 

microvascular endothelial cell line, hCMEC/D3. hCMEC/D3 cells were incubated in high glucose 

medium for 6 days and then subjected to 90 min oxygen glucose deprivation (OGD) and 24 h 

reoxygenation with high glucose medium. Our results demonstrated that high glucose (15 and 30 mM) 

upregulated the protein level of HIF-1α, the regulatable subunit of HIF-1 in the endothelial cells. 

Meanwhile, high glucose increased the paracellular permeability after OGD/reoxygenation, which was 

associated with diminished expression and disrupted continuity of tight junction (TJ) proteins occludin 

and zona occludens protein-1 (ZO-1) of hCMEC/D3 cells. Suppressing HIF-1 activity by HIF-1α 

inhibitors YC-1 and 2ME2 ameliorated the increased paracellular permeability and the alterations of 

expression and distribution pattern of occludin and ZO-1 induced in high glucose-treated cells. In 

addition, high glucose increased expression of vascular endothelial growth factor (VEGF) and the 

secretion of active matrix metalloproteinase (MMP)-2 and -9in endothelial cells. VEGF and MMP-2/9 

areHIF-1 down-stream factors, both of which are implicated in vascular permeability. Inhibiting VEGF 

by VEGF-antibody attenuated the endothelial leakage. These results strongly indicate that HIF-1 plays an 

important role in high glucose-aggravated BBB dysfunction after OGD/reoxygenation. The study will 

help us understand the molecular mechanisms involved in hyperglycemia-induced BBB dysfunction and 

worsened neurological outcomes in ischemic stroke. 
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3.1 Introduction 

Diabetes mellitus is a major health problem associated with both micro- and macrovascular diseases and 

leads to 2-6 fold higher risk for experiencing heart disease and stroke
1
. Accumulating evidence has shown 

that preexisting diabetes in conjunction with ischemia/reperfusion causes exacerbated cerebrovascular 

endothelial cell dysfunction and increased blood-brain barrier (BBB) permeability, which leads to 

augmented brain edema and hemorrhagic transformation in ischemic stroke
2-8

. Therefore, a better 

understanding of how diabetes aggravates vascular damage is critical in diabetic stroke research. 

Although several mechanisms like production of advanced glycation end products and superoxide have 

been implicated in diabetes-related peripheral vascular pathologies
9-12

, the mechanism by which high 

glucose perturbs cerebrovasculature remains largely unexplored.  

The BBB protects the brain from potentially neurotoxic substances and facilitates the exchange of 

nutrients and waste products between the brain and the blood, thus maintaining an optimal extracellular 

environment for neuronal function
13

. The restrictive properties of BBB is largely attributed to continuous 

presence of tight junctions (TJs) 
14

. The transmembrane TJ proteins claudins and occludin are key 

molecules which seal the gaps between the adjacent endothelial cells and thus restrict paracellular 

permeability 
15

. Stabilization of TJs involves a network of claudins and occludin-linked to the actin 

cytoskeleton via the zonular occluden protein-1 (ZO-1) 
16

. Studies have shown that altered distribution or 

decreased expression of TJ proteins result in compromised BBB integrity and increased paracellular 

permeability
17,18

. 

Hypoxia-inducible factor 1 (HIF-1) is a transcriptional factor that activates genes involved in 

cellular adaptation to hypoxia by facilitating oxygen supply, glucose transport, angiogenesis, etc. Among 

the genes regulated by HIF-1, vascular endothelial growth factor (VEGF) is well defined in promoting 

new blood vessel formation, altering the structure of vasculature and causing vascular remodeling
19

. It is 

known that VEGF is a strong inducer of BBB permeability
20,21

, and increased VEGF levels positively 

correlated with changes in TJ redistribution such as ZO-1
17,22

 and occludin
22,23

. Moreoever, HIF-1 is well 

implicated in the control of matrix metalloproteinases (MMPs), including MMP-2 and MMP-9
24

. Both of 
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which have shown to critically contribute to BBB disruption by mediating the degradation of extracellular 

matrix and several TJ proteins including occludin, claudin-5 and ZO-1
25

. High glucose has been reported 

to upregulate HIF-1 activity in isolated hearts of rats 
26

, mouse kidney mesangial cells
27

, human mesangial 

cells 
27

, mouse brain microvascular endothelial cells 
28

, etc. However, it is not known if HIF-1 is involved 

in permeability dysfunction of brain endothelial cells exposed to high glucose before and after 

OGD/reoxygenation.   

Appropriate in vitro models that closely mimic the human BBB microenvironment are essential 

to understand the cellular/molecular mechanisms of brain microvessel endothelial disruption in diseased 

states
29,30

. The current study was carried out with an in vitro BBB model of an immortalized brain 

microvascular endothelial cell line, hCMEC/D3. This cell line was derived from isolated human primary 

BBB endothelial cells by lentiviral vector-mediated co-expression of human telomerase and SV40 T 

antigen
31

. This stable cell line exhibits robust proliferation while retaining the morphological and 

biochemical phenotype of differentiated human BBB endothelial cells over many passages
31,32

. This cell 

line has been extensively characterized for its utility as a model of human BBB for neurovascular research 

focusing on BBB disruption in various pathological conditions
33-37

. In this study, the hCMEC/D3 cells 

were subjected to oxygen glucose deprivation (OGD) which is taken to mimic the effect of ischemia 

associated with cessation of blood delivery. Cells were then returned to glucose containing medium in 

ambient air to mimic the restoration of oxygen and glucose associated with reperfusion
38

.  

Given the increased public attention to diabetes and its relevance to the pathogenesis of ischemic 

stroke, the main objective of this study is to investigate the mechanism of high glucose-exacerbated BBB 

disruption after ischemic insult. We hypothesized that HIF-1 was an important mediator in high glucose-

induced increase in brain endothelial permeability. We expect that the present study will help us to 

identify new targets that may be utilized in clinical settings to prevent BBB damage in diabetic ischemic 

stroke. 
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3.2 Materials and Methods 

Cell culture and treatments 

An immortalized human cerebral microvascular endothelial cell line (hCMEC/D3) was kindly provided 

by Dr. Couraud (INSERM, Paris). The hCMEC/D3 cells were cultured in EBM-2 basal medium (Lonza, 

Walkersville, MD, 5.5 mM glucose) supplemented with 5% fetal bovine serum (Hyclone, Logan, UT), 

chemically defined lipid concentrate (Life technologies, Carlsbad, CA), growth factors, 

penicillin/streptomycin (Invitrogen, Carlsbad, CA), and HEPES (10mM) and maintained at 37°C with 5% 

CO2 exposure.Medium was changed every 2-3 days until the cells reached confluence.After growing the 

cells to confluency, the cell cultures were maintained in EBM-2 with various glucose concentrations (5.5, 

15 or 30 mM) for 6 days. In the text, “glucose” refers to d-glucose unless otherwise noted. To determine 

whether the effect of high glucose (15 and 30 mM) resulted from osmotic changes of culture medium, 

effects of l-glucose at 30 mM were tested
39

. After 6 days pretreatment with different glucose 

concentrations (5.5, 15 or 30 mM), cells were exposed to OGD. The complete EBM-2 medium was 

replaced with a glucose-free solution of Dulbecco's modified Eagle medium (DMEM). The DMEM was 

thoroughly bubbled with a gas mixture of 95% N2and 5% CO2, before being added to the cell culture. The 

cell culture were placed in an humidified anaerobic chamber (Coy Laboratory Products Inc., Grass lake, 

MI) infused with 0.1% O2, 95% N2and 5% CO2 maintained at 37 °C for 90 min. Following OGD, cells 

were removed from the anaerobic chamber and returned to an incubator (5% CO2 in room air, 37°C) for 

24 h of reoxygenation. No-glucose DMEM was replaced by complete EBM-2 medium with same glucose 

concentration as the pretreatment.Two HIF-1α inhibitors were used to examine the effect of HIF-1 on 

high glucose-induced endothelial permeability after OGD, 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl 

indazole (YC-1) (Cayman, Ann Arbor, MI) and 2-methoxyestradiol (2ME2) (ENZO, Plymouth Meeting, 

PA)
21,40-43

. For inhibitor experiments, 10 μM YC-1 or 10 μM 2ME2 was added to cell cultures at the onset 

ofreoxygenation. To inhibit the activity of VEGF, VEGF antibody (Ab-VEGF, sc-507, Santa Cruz, Santa 

Cruz, CA) at 100 ng/ml (final concentration) was added to the cell culture medium at the onset of 

reoxygenation based on a previous report
25

. The experimental protocol of was summarized in Fig. 3-1.   
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Fig. 3-1Experimental protocol.hCMEC/D3 cells were pretreated with normal or high glucose 

concentration medium for 6 days. After 6 days, the cells were subjected to OGD by incubating in 0.1% 

O2, glucose-free culture medium for 90 min, then reoxygenated with the media containing same glucose 

concentration as in pretreatment for 24 h in the absence or presence of YC-1 (10 μM), 2ME2 (10 μM) or 

Ab-VEGF (100 ng/ml). Paracellular permeability, cell viability, protein expression and MMPs activity 

were measured at 24 h reoxygenation.
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Cell viability 

Following 90 min OGD and 24 h reoxygenation, cell viability was determined by lactate dehydrogenase 

(LDH) measurements in the culture medium by a colorimetric enzymatic reaction (Cayman LDH 

cytotoxicity assay kit – Cayman Chemical Company, Ann Arbor, MI), according to the manufacturer 

guidelines. The result showed that high glucose did not significantly affect cell viability after 

OGD/reoxygenation (Fig. 3-2).  

 

 

 

Fig. 3-2 Effects of high glucose on the cell viability of hCMEC/D3 cells. The cell viability was 

determined by the LDH assay. Cells were pretreated with glucose at 5.5, 15, and 30 mM. L-glucose at 30 

mM in the presence of 5.5 mM D-glucose was used as osmotic control. After 6 days pretreatment, cells 

were subjected to 90 min OGD and 24 h reoxygenation. The glucose concentration during reoxygenation 

was the same as that in pretreatment. Values are shown as percentage of 5.5 OGD. Values are means ± 

SD, n = 3.  
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Paracellular permeability assay 

The paracellular permeability was detected as described previously
21

. Briefly, cells were plated on the 

collagen-coated Transwell inserts (diameter, 10 mm; pore size, 0.4 μm; polycarbonate membrane, Nalge 

Nunc International, Rochester, NY). After reaching confluency, cells were treated with high glucose for 6 

days and then subjected to 90 min OGD and 24 h reoxygenation. This was carried out in 24-well 

plates.Fluorescein isothiocyanate (FITC)-dextran (40 kDa, 1 mg/ml, 500 μl; Sigma, St. Louis, MO) was 

added to the cell culture medium inside the inserts 3 h before the end of the indicated time periods. After 

incubation for 3 h, 50 μl of medium from the outside of the insert was taken out and diluted to 500 μl with 

PBS. Fluorescence intensity of FITC-dextran was measured at the excitation wavelength of 492 nm and 

the emission wavelength of 520 nm by a fluorescent multi-mode microplate reader (Biotek, Winooski, 

VT). The permeability coefficient was calculated based on previous reports
44,45

. 

 

Western blotting assay 

Cells were lysed in RIPA (RadioImmunoPrecipitation Assay) buffer with a cocktail of protease inhibitors 

(Thermo, Meridian, IL). The protein concentration was determined by the Bio-Rad DC protein assay 

reagent (Bio-Rad, Hercules, CA). Standard Western blotting procedures were conducted with primary 

antibodies rabbit anti-HIF-1α (Millipore, Billerica, MA), ZO-1 (40-2200, Invitrogen, Carlsbad, CA), 

occludin (33-1500, Invitrogen), claudin-5 (34-1600, Invitrogen), VEGF (sc-507, Santa Cruz 

Biotechnology, Santa Cruz, CA) and β-actin (sc-1616, Santa Cruz). The secondary antibody was goat  

anti-rabbit IgG-HRP (sc-2030, Santa Cruz Biotechnology, Santa Cruz, CA). β-actin was used as an 

internal control. The signal development was carried out with an enhanced chemiluminescence detection 

kit (Pierce, Rockford, IL). The intensity of immunoreactive bands was quantified using Image J. Results 

were normalized to β-actin. 
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Immunocytostaining 

After 90 min OGD and 24 h reoxygenation, cells grown on collagen-coated coverslips were washed three 

times with PBS and fixed with 4% paraformaldehyde in PBS at room temperature for 20 min. After being 

blocked with PBS containing 0.05% triton-X100 and 0.25% BSA for 45 min, cells were incubated with 

the primary antibodies against ZO-1, occludin or claudin-5 (Invitrogen) in the blocking solution at 4°C 

overnight. After three washes, cells were incubated with a fluorescent secondary antibody (goat anti-

rabbit Alexa 488, Molecular Probes, Carlsbad, CA). After washing, the coverslips were mounted with 

Vectashield (Vector Laboratories, Burlingame, CA). Images were routinely captured under a Leica DMI 

4000B fluorescent microscope (Leica, Bannockburn, IL).All immunohistochemical staining data were 

obtained in a blinded manner.  

 

Gelatin zymography 

Cells were treated with high glucose in complete EBM-2 for 6 days and then subjected to 90 min OGD 

and 24 h reoxygenation in serum-free EBM-2 medium with same glucose concentration as the 

pretreatment. The supernatant medium was harvested after 24 h reoxygenation and clarified by 

centrifugation to remove cells and debris. The supernatants were then concentrated 50-fold using Amicon 

Ultra-15 centrifugal filter units with 30 kDa cut-off (EMD Millipore, Billerica, MA). The resulting 

sample was quantified for total protein using Bio-Rad DC protein assay reagent (Bio-Rad, Hercules, CA). 

Total protein (10 μg) per sample were loaded onto 10% Tris-Glycine gel containing 0.1% gelatin (Life 

Technologies, Grand Island, NY) in the presence of sodium dodecyl sulphate (SDS) under non-reducing 

conditions. Following electrophoresis, the gels were washed in the Renaturing Buffer (Life Technologies) 

to remove the SDS. Overnight incubation of the gel at 37 ºC in the Developing Buffer (Life 

Technologies) allowed the reactivated enzyme to degrade the copolymerized gelatin. Subsequently, the 

gels were stained with SimplyBlue™ SafeStain (Life Technologies) and the areas where the gelatin 

substrate has been degraded by gelatinases develop into white lines on a dark background. The molecular 

weight of the gelatinases was estimated by comparing the migration distance of the clear bands with the 
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distance migrated by markers of known molecular weight. Images of gels were captured by using a digital 

camera (Powershot 400 digital camera, Canon) and subsequently analyzed by Image J.  

 

Statistical analysis 

One-way ANOVA was used to determine overall significance of difference in various assays followed by 

post hoc Tukey’s tests corrected for multiple comparisons. Data were presented as means ± SD. 

Differences were considered statistically significant at p< 0.05. 
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3.3 Results 

High glucose increased HIF-1α expression in hCMEC/D3 cells after OGD and reoxygenation 

HIF-1 is a heterodimer that is composed of α and β subunits. It is known that HIF-1α protein is 

continuously synthesized, but rapidly degraded in normoxic cells. HIF-1β is constitutively expressed in 

cells and relatively stable. The activity of HIF-1 is primarily determined by the level of its α subunit
46,47

. 

Therefore, we focused on the protein expression of HIF-1α in hCMEC/D3 cell culture. Cells were 

pretreated with high glucose medium for 6 days and then exposed to OGD by being placed in medium 

without glucose in an atmosphere of 95% N2, 5% CO2 at 37 °C. Cells were then removed to room air 

(reoxygenation) with complete culture medium containing the same glucose level as in pretreatment. In 

this study, 15 and 30 mM were used as high glucose with 5.5 mM as normal control. The normal glucose 

level in mouse blood is lower than 6 mM while in streptozotocin (STZ)-induced diabetic mouse, the 

blood glucose level is usually between 16 and 30 mM
48

. As the result, 15 and 30 mM glucose 

concentrations were selected for high glucose treatment. Fig. 3-3 showed that high glucose enhanced 

HIF-1α accumulation after 24 h reoxygenation in adose-dependent manner as 30 mM glucose induced 

more HIF-1α expression than 15 mM. To determine if the increase in HIF-1α expression was due to 

osmotic changes, cells were treated with l-glucose at 30 mM in the presence of 5.5 mM d-glucose. The 

Western blotting results showed no significant difference in HIF-1α protein level compared to the control 

(5.5 mM d-glucose). High glucose also up-regulated the protein expression of HIF-1 down-stream factor 

VEGF. VEGF is transcriptionally activated by HIF-1 and is a potent inducer of BBB permeability
17,20,49-51

. 

These results indicated that high glucose effectively enhanced HIF-1α protein accumulation and HIF-1 

functional activity after OGD/reoxygenation. It has been reported that HIF-1α is a key regulator for the 

induction of MMPs in hypoxic conditions. MMP-2/9 areassociated withdisruption of BBB integrity. 

Since MMP-2/9 are synthesized intracellular and secreted into the extracellular space to digest matrix 

components 
52

, we assessed the gelatinolytic activity of MMP-2 and -9 in the conditioned culture medium 

at 24 h reoxygenation by zymogram analysis. As shown in Fig. 3-4, MMP-2 and MMP-9 were detected in 

the gel at molecular weight of 72 and 95 kDa respectively. The gelatinase activity of MMP-2 was 
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significantly increased in the culture medium of both 15 mM and 30 mM high glucose groups, whereas 

MMP-9 activity was only significantly increased by 30 mM glucose treatment. The result clearly showed 

that high glucose induced higher MMP-2 and -9 activities in hCMEC/D3 after OGD/reoxygenation.  
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Fig. 3-3Effect of high glucose on the expression of HIF-1α and VEGF in hCMEC/D3 cells. Cells were 

pretreated with glucose (D-glucose unless otherwise noted) at 5.5, 15, and 30 mM. L-glucose at 30 mM in 

the presence of 5.5 mM D-glucose was used as osmotic control (30 L). After 6 days pretreatment, cells 

were subjected to 90 min OGD and 24 h reoxygenation with the same glucose concentration as in 

pretreatment. (A) Representative Western blots of HIF-1α and VEGF with β-actin as a protein loading 

control. (B) Quantification of HIF-1α protein level from 4 independent experiments. (C) Quantification of 

VEGF protein level from 4 independent experiments. Values were normalized to β-actin and 5.5 mM 

OGD group. Values are means ± SD, n = 4. 
*
p< 0.05 vs. 5.5 mM OGD.  
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Fig. 3-4 Effect of high glucose on the gelatinolytic activity of MMP-2/9 in hCMEC/D3 conditioned 

medium. Cells were pretreated with glucose at 5.5, 15, and 30 mM. L-glucose at 30 mM in the presence 

of 5.5 mM D-glucose was used as osmotic control (30 L). After 6 days pretreatment, cells were subjected 

to 90 min OGD and 24 h reoxygenation with the serum-free media containing same glucose concentration 

as in pretreatment. (A) Representative gelatin zymography ofMMP-2 and MMP-9 in conditioned medium 

samples. Gelatinolytic bands of ~95 and 72 kDa correspond to MMP-9 and MMP-2, respectively. 

(B)Optical densitometry quantification of activated MMP-2/9. Values were normalized to 5.5 mM OGD 

group. Values are means ± SD, n = 3. 
*
p< 0.05 vs. 5.5 mM OGD (MMP-2), 

#
p< 0.05 vs. 5.5 mM OGD 

(MMP-9). 

 

 



155 
 

High glucose increased paracellular permeability of hCMEC/D3 after OGD and reoxygenation  

Next, we examined how high glucose affected the paracellular permeability change of hCMEC/D3 cells 

subjected to OGD with reoxygenation. Permeability was measured from the transfer of FITC-dextran (40 

kDa molecular weight) across confluent monolayers of hCMEC/D3 seeded on the collage inserts based on 

a previous publication (see Materials and Methods) 
35

. The permeability of cell monolayer cultured in 

normal glucose (5.5mM) was 0.86 ± 0.07 × 10
−6

 cm/s after 90 min OGD and 24 h reoxygenation. Similar 

to its effect on HIF-1α protein expression, high glucose caused a concentration-dependent increase in 

endothelial paracellular permeability (Fig. 3-5). The permeability was 1.13 ± 0.07 and 

1.40 ± 0.06 × 10
−6

 cm/s for 15 and 30 mM glucose-treated cells, respectively. In addition, l-glucose at 30 

mM had no effect on the paracellular permeability. To explore whether the increased permeability was 

due to reductions in cell number, we assessed cell viability by LDH release after OGD/reoxygenation. 

High glucose did not worsen the cell death compared with OGD 5.5 mM (Fig. 3-2), indicating that high 

glucose-induced permeability increase was a direct consequence of glucose concentration itself rather 

than a rise in cytotoxicity.   
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Fig. 3-5 Effect of high glucose on the paracellular permeability of hCMEC/D3 cells.The permeability was 

determined with 40 kDa FITC-dextran. Cells were pretreated with glucose at 5.5, 15, and 30 mM. L-

glucose at 30 mM in the presence of 5.5 mM D-glucose was used as osmotic control. After 6 days 

pretreatment, cells were subjected to 90 min OGD and 24 h reoxygenation. The glucose concentration 

during reoxygenation was the same as that in pretreatment. (A) Schematic drawing of the hCMEC/D3 

monolayer grown on an insert with FITC-dextran loaded in the luminal compartment. (B) The endothelial 

monolayer paracellular permeability was assessed by calculating the transfer rate of FITC-dextran from 

luminal compartment to abluminal compartment, and was described as absolute values of permeability 

coefficients (cm/s). Values are means ± SD, n = 4. 
*
p<0.05 vs. 5.5 mM OGD. 
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High glucose exacerbated TJ disruption on hCMEC/D3 after OGD and reoxygenation 

The paracellular permeability of BBB is primarily mediated by the TJs between endothelial cells of the 

brain microvessels
53

. Decreased TJ proteins expression or variations in subcellular localization are 

associated with alterations in permeability and barrier dysfunction
13

. In this study, we evaluated ZO-1, 

occludin and claudin-5 protein expression levels and arrangement patterns by Western blotting and 

immunocytochemical labeling to further characterize high glucose-induced paracellular permeability. 

Fig. 3-6Ademonstrated that high glucose decreased the protein levels of ZO-1 and occludin in 

hCEMC/D3 cells after 90 min OGD and subsequent reoxygenation. The degree of reduction of occludin 

was more severe than that of ZO-1. The ZO-1 level was reduced 31% and 50% by 15 and 30 mM glucose, 

respectively. The occludin level decreased 48% and 72% by 15 and 30 mM glucose, respectively(Fig. 3-

6B and C). The protein expression of claudin-5, however, was relatively stable in the cells exposed to 

high glucose (Fig. 3-6A and D). It is noteworthy that l-glucose at 30 mM in the presence of 5.5 mM d-

glucose did not induce significant changes of ZO-1, occludin or claudin-5 expression compared with 

control (5.5 mM glucose). Furthermore, results from immunocytostaining confirmed that high glucose 

altered the arrangement pattern of ZO-1 and occludin, but not claudin-5 after OGD/reoxygenation (Fig. 3-

6E). In other words, high glucose disrupted the immunoreactivity of the ZO-1 and occludin staining on 

the cell borders. These results support the observed permeability increase of the endothelial monolayer by 

high glucose and suggest that disruption of ZO-1 and occludin may be the potential reason for increased 

permeability in high glucose treated cells. 
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Fig. 3-6 Effect of high glucose on the expression and arrangement of ZO-1, occludin and claudin-5 in 

hCMEC/D3 cells. Cells were pretreated with glucose at 5.5, 15, and 30 mM. L-glucose at 30 mM in the 

presence of 5.5 mM D-glucose was used as osmotic control. After 6 days pretreatment, cells were 

subjected to 90 min OGD and 24 h reoxygenation with the same glucose concentration as in pretreatment. 

(A) Representative Western blots of ZO-1, occludin and claudin-5 after OGD/reoxygenation. β-actin 
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serves as a protein loading control. (B) Quantification of ZO-1 protein level from 3 independent 

experiments. (C) Quantification of occludin protein level from 3 independent experiments. (D) 

Quantification of claudin-5 protein level from 3 independent experiments. (E) Representative images of 

ZO-1, occludin and claudin-5 immunostaining. Scale bar 20 μm. Values in B, C and D were normalized 

to β-actin and 5.5 mM OGD. Data are means ± SD, n = 3. 
*
p< 0.05 vs. 5.5 mM OGD. 
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Inhibiting HIF-1α expression in reoxygenation attenuated paracellular permeability of hCMEC/D3  

The above experiments indicated a positive correlation between HIF-1 expression and permeability 

increase of hCMEC/D3 cells exposed to high glucose pretreatment and reoxygenation. To further 

determine the role of HIF-1 in high glucose-induced paracellular permeability increase, we carried out 

experiments with inhibition of HIF-1 by two widely used HIF-1α inhibitors, YC-1 and 2Me2. YC-1 

(10 μM) or 2Me2 (10 μM) were added to the culture medium at the onset of reoxygenation in 30 mM 

glucose groups. It is worth noting that the inhibitors did not influence the cell viability (Fig. 3-2). As seen 

in Fig. 3-7, both inhibitors effectively suppressed the expression of HIF-1α and its target protein VEGF in 

high glucose treated hCMEC/D3 cells at 24 h reoxygenation. HIF-1α inhibition remarkably reduced the 

increase in paracellular permeability caused by high glucose (Fig. 3-7D). It is noteworthy that the 

permeability in YC-1 and 2Me2 treated 30mM groups were still significantly higher than that in 5.5 mM 

group even though HIF-1α protein levels showed no significant difference between these groups. This 

indicated that other pathways independent of HIF-1α might be involved in permeability increase caused 

by high glucose. We also investigated the effect of HIF-1α inhibition on TJ proteins expression and 

localization. The western blotting results showed that downregulating HIF-1 activity alleviated the high 

glucose-induced loss of ZO-1 and occludin (Fig. 3-8A). Moreover, the immunocytostaining showed that 

HIF-1α inhibitors partially restored ZO-1 and occludin expression at endothelial cell-cell contacts in 30 

mM glucose groups(Fig. 3-8E). The results demonstrated that high glucose-induced BBB permeability 

increase after OGD exposurewas suppressed by HIF-1α inhibition, indicating that HIF-1 is highly 

involved in high glucose-mediated BBB dysfunction.   
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Fig. 3-7Effect of HIF-1α inhibition on the paracellular permeability of hCMEC/D3 cells. HIF-1α 

inhibitors (10 μM YC-1, or 10 μM 2ME2) were added to the culture medium at the onset of 

reoxygenation in high glucose (30 mM) treated groups.Cells were incubated in high glucose medium with 

or without HIF-1α inhibitors for 24 h. Cells treated with 30 mM L-glucose (30 L) in the presence of 

5.5 mM D-glucose serve as an osmotic control. (A) Representative Western blots of HIF-1α and VEGF 
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with β-actin as a protein-loading control. (B)Quantification of HIF-1α protein level from 3 independent 

experiments. (C) Quantification of VEGF protein level from 3 independent experiments. (D)Effects of 

HIF-1α inhibitors, YC-1 and2ME2, on the paracellular permeability of hCMEC/D3 cells. Values in B and 

C were normalized to β-actin and 5.5 mM OGD. Values are means ± SD, n = 3. 
*
p < 0.05 vs. 5.5 mM 

OGD. 
#
p < 0.05 vs. 30 mM OGD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



163 
 

 

 

Fig. 3-8 Effect of HIF-1α inhibition on the expression and arrangement of ZO-1, occludin and claudin-5 

in hCMEC/D3 cells. HIF-1α inhibitors (10 μM YC-1, or 10 μM 2ME2) were added to the culture medium 

at the onset of reoxygenation in high glucose (30 mM) treated groups.Cells were incubated in high 

glucose medium with or without HIF-1α inhibitors for 24 h. Cells treated with 30 mM L-glucose in the 

presence of 5.5 mM D-glucose serve as an osmotic control. (A) Representative Western blots of ZO-1, 
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occludin and claudin-5 after OGD/reoxygenation. β-actin serves as a protein loading control. (B) 

Quantification of ZO-1 protein level from 3 independent experiments. (C) Quantification of occludin 

protein level from 3 independent experiments. (D) Quantification of claudin-5 protein level from 3 

independent experiments. (E) Representative images of ZO-1, occludin and claudin-5 immunostaining. 

Scale bar 20 μm. Values in B, C and D were normalized to β-actin and 5.5 mM OGD. Data are means ± 

SD, n = 3. 
*
p < 0.05 vs. 5.5 mM OGD. 

#
p < 0.05 vs. 30 mM OGD. 
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VEGF contributes to HIF-1’s effect on permeability 

VEGF is transcriptionally induced by HIF-1 and has been reported to promote BBB permeability by 

altering TJs under ischemic conditions. We explored its role in high glucose-induced permeability 

increase after OGD. Coinciding with changes of HIF-1α expression, VEGF protein level was up-regulated 

in cells exposed to both 15 and 30 mM glucose(Fig. 3-3). We also detected the VEGF expressionafter 

HIF-1α inhibition. BothYC-1 and 2ME2 and significantly reduced the protein levels of VEGF(Fig. 3-7), 

indicating that high glucose-induced VEGF expression in hCMEC/D3 cells depends on HIF-1 activation. 

To verify the role of VEGF in high glucose-induced paracellular permeability increase, a VEGF antibody 

was used to block its effect, as reported previously
25

. As shown in Fig. 3-9, inhibiting VEGF attenuated 

paracellular permeability increase in 30 mM glucose treated cells after 24 h reoxygenation. Accordingly, 

these results support that a plausible pathway for the observed HIF-1-induced permeability in the cells 

exposed to high glucose may be through upregulating VEGF expression. 
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Fig. 3-9 Effect of VEGF on the paracellular permeability of hCMEC/D3 cells. VEGF antibody (Ab-

VEGF) at 100 ng/ml (final concentration) was added to the cell culture medium at the onset of 

reoxygenation in high glucose (30 mM) treated group. Cells were incubated in high glucose medium with 

or without Ab-VEGF for 24 h. Data are means ± SD, n = 3. 
*
p < 0.05 vs. 5.5 mM OGD. 

#
p < 0.05 vs. 

30 mM OGD. 
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3.4 Discussion 

There were several major findings of the present study. First, we demonstrated that high glucose could 

further induce HIF-1α expression in brain endothelial cells subjected to OGD/reoxygenation (detailed 

discussion in Chapter 4). Second, we investigated the effect of high glucose exposure on in vitro BBB 

permeability. We found that high glucose aggravated BBB opening and endothelial TJs disruption after 

OGD. Lastly, the effect of high glucose on BBB permeability was reversed by inhibition of HIF-

1αactivity with YC-1 or 2ME2 during reoxygenation, suggesting that activation of HIF-1α in endothelial 

cells is an underlying mechanism by which permeability was increased. Thus, it appears that HIF-1α 

inhibition may be an important therapeutic target for prevention of BBB disruption which is relatively 

common during hyperglycemic stroke.  

Many epidemiology studies have shown that elevated levels of blood glucose are frequently 

associated with a larger infarct size, poor clinical outcome and a higher risk of mortality in acute ischemic 

stroke
54-58

. Hyperglycemia was found to exaggerate edema formation, BBB injury and hemorrhagic 

transformation in both type I and type II diabetic animal models after cerebral ischemia 
2-7,59,60

. Tissue 

plasminogen activator (tPA) is the only established treatment for acute ischemic stroke
61,62

. However, tPA 

treatment in stroke patients with admission hyperglycemia induced an incremental risk of death and 

spontaneous intracerebral hemorrhage as well as unfavorable 90-day outcomes
63,64

. Experimental studies 

have found that tPA treatment of stroke in diabetic and hyperglycemic animals significantly increases 

BBB permeability and brain hemorrhage in the ischemic brain
65-67

. Therefore, effective therapy of stroke 

in the normal glucose population may not necessarily transfer to the diabetic population, prompting the 

need to specifically developing therapeutic targets for cerebrovascular protection to prevent BBB 

dysfunction in the diabetic population.  

One major finding of the present study is that HIF-1 contributes to high glucose-induced 

permeability of brain endothelial cells after OGD/reoxygenation. The results showed that (1) high glucose 

exposure in pretreatment and reoxygenation increased HIF-1α accumulation in hCMEC/D3 cells; (2) 

there was a positive correlation between HIF-1α expression and high glucose-induced endothelial 
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permeability; and (3) suppressing HIF-1α activity at the onset of reoxygenation attenuated the 

permeability increase caused by high glucose. To further confirm the role of HIF-1 and understand the 

mechanism of high glucose-induced permeability increase, VEGF expression and MMP-2/9 activities 

were examined in the brain endothelial cells subjected to OGD/reoxygenation. As shown in Fig. 3-3, 

VEGF expression was elevated concentration-dependently in high glucose-treated cells. This agrees with 

previous findings in retinal microvascular endothelial cells
68-70

. Also, thehigh glucose enhanced the 

MMP-2/9 gelatinolytic activity in hCMEC/D3 culture medium. More importantly, HIF-1 inhibition by 

YC-1 and 2ME2 suppressed the VEGF expression, which is in consistent with previous studies in 

endothelial cells 
21

 and in ischemic animal models
21,71,72

. Nonetheless, we did not conclude that HIF-1 is 

the sole inducer of the VEGF expression. Other factors may also be responsible for the VEGF expression, 

such as peroxisome proliferator-activated receptor γ cofactor-1α
73,74

. It is worth noting that YC-1 and 

2ME2 completely abolished HIF-1α accumulation induced by high glucose, whereas only partially 

restored BBB function. These results suggested that besides HIF-1 activation, other pathways might also 

be involved in high-glucose-exacerbated BBB disruption after OGD/reoxygenation (discussed in Chapter 

4). 

It needs to be pointed out that although it is well accepted that YC-1 and 2ME2 are effective HIF-

1 inhibitors, neither of them is a specific HIF-1 suppressor. For example, apart from inhibiting HIF-1α 

and its down-stream gene VEGF, YC-1 regulates the intracellular concentration of cGMP though 

enhancing the activity of soluble guanylate cyclase
75

. Nevertheless, inhibition of soluble guanylate 

cyclase did not change the effect of YC-1 on blood brain permeability
21

. In addition, 2ME2 has also been 

reported to have properties other than down-regulating HIF-1α, such as anti-proliferative, anti-

angiogenenic and anti-neovacularization, and alteration of inflammatory response
40,76-78

. However, recent 

studies have reported that 2ME2 has a direct effect on HIF-1α inhibition and not as a result of a “side 

effect” of mitotic arrest. 2ME2 was specific for HIF-1α subunit, and had no effect on HIF-1β or other 

transcription factors. In vitro studies demonstrated that 2ME2 reduced the levels of nuclear and total HIF-

1α in a dose-dependent manner
40

. Therefore, the protective effect of YC-1 and 2ME2 on in vitro BBB 
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model was largely dependent on HIF-1 pathway. Future study using HIF-1α specific siRNA to inhibit 

HIF-1 activity in hCMEC/D3 will further confirm the role of HIF-1 in high glucose-exacerbated BBB 

disruption after OGD/reoxygenation.   

TJs in the BBB consist of both transmembrane proteins such as claudins, occludin and junctional 

adhesion molecules and cytoplasmic accessory proteins such as ZO-1 and -2. The TJs are responsible for 

the severe restriction of the paracellular diffusion pathway between the endothelial cells 
79

. Generally, 

movement of TJ proteins away from the cellular borders or decreased expression at TJ cleft indicates a 

loss of junction integrity and increased paracellular permeability
13

. Occludin, claudin-5 and ZO-1 are the 

major structural proteins that make up the BBB and are considered sensitive indicators of normal and 

disturbed functional state of BBB 
53

. In this study, we examined the expression and arrangement patterns 

of these 3 proteins. High glucose decreased the protein expression of ZO-1 and occludin in a 

concentration-dependent manner, whereas it had no effect on the claudin-5 protein level. Occludin is 

critically involved in regulating the TJs 
80

. Altered expression of occludin causes disrupted BBB function 

in various pathologies including diabetes and stroke
22,81,82

. ZO-1 molecules connect transmembrane 

protein with the actin cytoskeleton 
83

. Loss or dissociation of ZO-1 from the junctional complexes is 

associated with increased BBB permeability
17,84,85

. The reduced expression and discontinuous 

appearances of occludin and ZO-1 on hCMEC/D3 cell periphery may result in the high glucose-induced 

barrier hyperpermeability after OGD. In line with our results, previous studies have reported decreased 

protein expression of both occludin and ZO-1 in cerebral microvessels along with increased vascular 

permeability in STZ-induced type I diabetic rats
22

. The degree of downregulation of ZO-1 and occludin 

seems to be able to induce higher paracellular permeability than that observed. This may be due to stable 

expression and distribution of claudin-5, since the claudins form the primary seal of the TJ at BBB. The 

stably expressed claudin-5 may maintain part of the restriction of the TJs and prevent greater paracellular 

permeability. Inhibition of HIF-1α activity significantly elevated the protein levels of occludin and ZO-1 

and effectively restored the staining of both TJ proteins to the cell borders, suggesting that HIF-1α 

activation is a predominate pathway which mediates high glucose-exacerbated TJs disruption. 
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VEGF has been reported as a potent inducer of endothelial permeability
20,49,86-89

. It is well studied 

that VEGF enhances vascular permeability by altering expression and organization of TJ proteins, such as 

ZO-1 and occludin 
17,23,90

. Normally, VEGF’s effects on vascular permeability are transduced by binding 

to its specific tyrosine receptors, VEGF receptor 1 (VEGFR-1, Flt-1) and VEGF receptor-2 (VEGFR-2, 

Flk-1)
91

. The activation of VEGFR-2 through dimerization and phosphorylation leads the activation of 

several intracellular signaling pathways including phospholipase Cγ, Src and phosphatidylinositol 3-

kinase, which may be involved in alteration of vascular permeability
92-94

. VEGF antibodies combine with 

VEGF protein and block the interaction between VEGF and its receptor. Neutralization of VEGF with its 

antibodies has been proven to attenuate BBB disruption in both in vitro endothelial cell monolayer 
17

 and 

in vivo ischemic animal models
20,50,95

. Our results showed that a VEGF antibody efficiently reduced the 

increased permeability in cells exposed to high glucose. This proves the involvement of VEGF in high 

glucose-induced paracellular permeability after OGD/reoxygenation. It is noteworthy that the decrease of 

hCMEC/D3 permeability induced by VEGF antibody was less significant than that by HIF-1α inhibitors, 

suggesting other factors down-stream to HIF-1 may also contribute to BBB dysfunction (e.g., MMPs). 

The exact mechanisms of VEGF-induced TJ protein loss and delocalization are not completely 

understood. Two factors might be involved, decrease in mRNA expression and protein phosphorylation. 

VEGF is able to reduce the mRNA level of ZO-1 
21

 and occludin
90

. Furthermore, VEGF may regulate 

endothelial permeability through phosphorylation of the TJ proteins such as ZO-1 and occludin
96

, which 

are phosphoproteins. Changes in phosphorylation state affect their interaction, alter transmembrane 

protein localization and induce their redistribution (see review 97 for more details). 

Upregulation of MMP-2 and -9 have been implicated in the BBB disruption in both diabetes and 

ischemic stroke pathologies. Increased plasma MMP-2 activity was found increased in STZ-induced 

diabetic mice, which leads to altered TJs and increased BBB permeability
22

. In in vitro studies, high 

glucose has been shown to increase MMP-2/9 activity in endothelial cell culture, which compromised 

BBB integrity by a mechanism involving proteolytic degradation of occludin
81,98

. Our study showed that 

high glucose induced significant higher level of MMP-2/9 secretion from hCMEC/D3 after 
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OGD/reoxygenation, which may exacerbate BBB dysfunction. These observations are consistent with 

other studies using animal models, in which greater MMP-2 and/or -9 activities were found in the 

ischemic brain of diabetic animals following stroke
3,7,60,99-101

. For example, previous study has observed 

significant increase of MMP-9 expression and gelatinolytic activity in the ischemic brain of the diabetic 

db/db mice compared to their non-diabetic littermates following a stroke. This increase activity was 

associated with greater degradation of occludin and basement membrane protein collagen IV, resulting in 

increased BBB permeability
7
. Inhibition of MMPs activity using broad-spectrum MMP inhibitor 

minocycline attenuated BBB breakdown and improved functional outcomes in diabetic animals after 

stroke
3
.  

There are some limitations of the current study. First, a single marker of paracellular transport, 

i.e., FITC-dextran (40 kDa) has been employed throughout the study. The use of FITC-dextran of higher 

molecular weights (e.g. 70 kDa) might have shed some light on the size of intracellular openings. 

Furthermore, the results presented in the report were based on an in vitro model of BBB consisting of 

human cerebral microvascular endothelial cells. In fact, the formation and function of BBB requires 

support of adjacent glial cells as well as neurons, pericytes, and extracellular matrix 
102

. Cell-cell 

interactions and signaling occur in a coordinated manner between these multiple cell types play an 

important role in the physiological functioning of BBB 
103

. This study using a cell culture model of 

human BBB established with only endothelial cells have its limitations. However, by reducing the 

number of cell types that are examined, it is possible to delineate specific cellular effects and to explore 

signal transduction mechanisms, while animal models allow these simplified observations to be tested in a 

more complex scenario. Thus, the study on in vitro BBB model provides proof of principle evidence for 

animal experiments and forms a necessary complement to studies carried out in animal models of stroke. 

Our experimental results from hCMEC/D3 cells were further confirmed in the mouse diabetic stroke 

model in the Chapter 4. 

In summary, our study has demonstrated that high glucose enhances HIF-1α in brain 

microvascular endothelial cells after OGD/reoxygenation. The activation of HIF-1 pathway is involved in 
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high glucose-exacerbated brain endothelial leakage, which is associated with altering the expression and 

arrangement of TJ-associated proteins, such as occludin and ZO-1. These results suggest that HIF-1α 

inhibition may become a useful therapeutic approach for preventing the cerebrovascular disruption 

following ischemic stroke in patients with hyperglycemia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



173 
 

References 

1. Mast, H., Thompson, J.L., Lee, S.H., Mohr, J.P. & Sacco, R.L. Hypertension and diabetes mellitus 
as determinants of multiple lacunar infarcts. Stroke; a journal of cerebral circulation26, 30-33 
(1995). 

2. Ye, X., et al. Niaspan enhances vascular remodeling after stroke in type 1 diabetic rats. 
Experimental neurology232, 299-308 (2011). 

3. Kelly-Cobbs, A.I., et al. Targets of vascular protection in acute ischemic stroke differ in type 2 
diabetes. American journal of physiology. Heart and circulatory physiology304, H806-815 (2013). 

4. Ergul, A., et al. Increased hemorrhagic transformation and altered infarct size and localization 
after experimental stroke in a rat model type 2 diabetes. BMC neurology7, 33 (2007). 

5. Li, W., et al. Comparative analysis of the neurovascular injury and functional outcomes in 
experimental stroke models in diabetic Goto-Kakizaki rats. Brain research1541, 106-114 (2013). 

6. Tureyen, K., Bowen, K., Liang, J., Dempsey, R.J. & Vemuganti, R. Exacerbated brain damage, 
edema and inflammation in type-2 diabetic mice subjected to focal ischemia. Journal of 
neurochemistry116, 499-507 (2011). 

7. Kumari, R., Willing, L.B., Patel, S.D., Baskerville, K.A. & Simpson, I.A. Increased cerebral matrix 
metalloprotease-9 activity is associated with compromised recovery in the diabetic db/db 
mouse following a stroke. Journal of neurochemistry119, 1029-1040 (2011). 

8. Li, W., et al. Adaptive cerebral neovascularization in a model of type 2 diabetes: relevance to 
focal cerebral ischemia. Diabetes59, 228-235 (2010). 

9. Bayraktutan, U. Free radicals, diabetes and endothelial dysfunction. Diabetes, obesity & 
metabolism4, 224-238 (2002). 

10. Wautier, J.L. & Schmidt, A.M. Protein glycation: a firm link to endothelial cell dysfunction. 
Circulation research95, 233-238 (2004). 

11. Martini, S.R. & Kent, T.A. Hyperglycemia in acute ischemic stroke: a vascular perspective. Journal 
of cerebral blood flow and metabolism : official journal of the International Society of Cerebral 
Blood Flow and Metabolism27, 435-451 (2007). 

12. Gobbel, G.T., Chan, T.Y. & Chan, P.H. Nitric oxide- and superoxide-mediated toxicity in cerebral 
endothelial cells. The Journal of pharmacology and experimental therapeutics282, 1600-1607 
(1997). 

13. Liu, C., Wu, J. & Zou, M.H. Activation of AMP-activated protein kinase alleviates high-glucose-
induced dysfunction of brain microvascular endothelial cell tight-junction dynamics. Free radical 
biology & medicine53, 1213-1221 (2012). 

14. Dejana, E. Endothelial cell-cell junctions: happy together. Nature reviews. Molecular cell 
biology5, 261-270 (2004). 

15. Forster, C. Tight junctions and the modulation of barrier function in disease. Histochemistry and 
cell biology130, 55-70 (2008). 

16. Bazzoni, G. & Dejana, E. Endothelial cell-to-cell junctions: molecular organization and role in 
vascular homeostasis. Physiological reviews84, 869-901 (2004). 

17. Fischer, S., Wobben, M., Marti, H.H., Renz, D. & Schaper, W. Hypoxia-induced hyperpermeability 
in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of 
zonula occludens-1. Microvascular research63, 70-80 (2002). 

18. Bamforth, S.D., Kniesel, U., Wolburg, H., Engelhardt, B. & Risau, W. A dominant mutant of 
occludin disrupts tight junction structure and function. Journal of cell science112 ( Pt 12), 1879-
1888 (1999). 

19. Forsythe, J.A., et al. Activation of vascular endothelial growth factor gene transcription by 
hypoxia-inducible factor 1. Molecular and cellular biology16, 4604-4613 (1996). 



174 
 

20. Schoch, H.J., Fischer, S. & Marti, H.H. Hypoxia-induced vascular endothelial growth factor 
expression causes vascular leakage in the brain. Brain : a journal of neurology125, 2549-2557 
(2002). 

21. Yeh, W.L., Lu, D.Y., Lin, C.J., Liou, H.C. & Fu, W.M. Inhibition of hypoxia-induced increase of 
blood-brain barrier permeability by YC-1 through the antagonism of HIF-1alpha accumulation 
and VEGF expression. Molecular pharmacology72, 440-449 (2007). 

22. Hawkins, B.T., Lundeen, T.F., Norwood, K.M., Brooks, H.L. & Egleton, R.D. Increased blood-brain 
barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution 
of hyperglycaemia and matrix metalloproteinases. Diabetologia50, 202-211 (2007). 

23. Wang, W., Dentler, W.L. & Borchardt, R.T. VEGF increases BMEC monolayer permeability by 
affecting occludin expression and tight junction assembly. American journal of physiology. Heart 
and circulatory physiology280, H434-440 (2001). 

24. Soejima, Y., et al. Hyperbaric oxygen preconditioning attenuates hyperglycemia-enhanced 
hemorrhagic transformation by inhibiting matrix metalloproteinases in focal cerebral ischemia in 
rats. Experimental neurology247, 737-743 (2013). 

25. Bauer, A.T., Burgers, H.F., Rabie, T. & Marti, H.H. Matrix metalloproteinase-9 mediates hypoxia-
induced vascular leakage in the brain via tight junction rearrangement. Journal of cerebral blood 
flow and metabolism : official journal of the International Society of Cerebral Blood Flow and 
Metabolism30, 837-848 (2010). 

26. Marfella, R., et al. Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size 
and early expression of hypoxia-inducible factor 1. Diabetologia45, 1172-1181 (2002). 

27. Isoe, T., et al. High glucose activates HIF-1-mediated signal transduction in glomerular mesangial 
cells through a carbohydrate response element binding protein. Kidney international78, 48-59 
(2010). 

28. Yan, J., Zhang, Z. & Shi, H. HIF-1 is involved in high glucose-induced paracellular permeability of 
brain endothelial cells. Cellular and molecular life sciences : CMLS69, 115-128 (2012). 

29. Naik, P. & Cucullo, L. In vitro blood-brain barrier models: current and perspective technologies. 
Journal of pharmaceutical sciences101, 1337-1354 (2012). 

30. Cucullo, L., et al. Immortalized human brain endothelial cells and flow-based vascular modeling: 
a marriage of convenience for rational neurovascular studies. Journal of cerebral blood flow and 
metabolism : official journal of the International Society of Cerebral Blood Flow and 
Metabolism28, 312-328 (2008). 

31. Weksler, B.B., et al.Blood-brain barrier-specific properties of a human adult brain endothelial 
cell line. FASEB journal : official publication of the Federation of American Societies for 
Experimental Biology19, 1872-1874 (2005). 

32. Luissint, A.C., Artus, C., Glacial, F., Ganeshamoorthy, K. & Couraud, P.O. Tight junctions at the 
blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids and 
barriers of the CNS9, 23 (2012). 

33. Doulet, N., et al. Neisseria meningitidis infection of human endothelial cells interferes with 
leukocyte transmigration by preventing the formation of endothelial docking structures. The 
Journal of cell biology173, 627-637 (2006). 

34. Sajja, R.K., Prasad, S. & Cucullo, L. Impact of altered glycaemia on blood-brain barrier 
endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids and barriers of the CNS11, 8 
(2014). 

35. Cowan, K.M. & Easton, A.S. Neutrophils block permeability increases induced by oxygen glucose 
deprivation in a culture model of the human blood-brain barrier. Brain research1332, 20-31 
(2010). 



175 
 

36. Zhong, Y., et al. Caveolin-1 regulates human immunodeficiency virus-1 Tat-induced alterations 
of tight junction protein expression via modulation of the Ras signaling. The Journal of 
neuroscience : the official journal of the Society for Neuroscience28, 7788-7796 (2008). 

37. Luissint, A.C., Lutz, P.G., Calderwood, D.A., Couraud, P.O. & Bourdoulous, S. JAM-L-mediated 
leukocyte adhesion to endothelial cells is regulated in cis by alpha4beta1 integrin activation. The 
Journal of cell biology183, 1159-1173 (2008). 

38. Cimarosti, H. & Henley, J.M. Investigating the mechanisms underlying neuronal death in 
ischemia using in vitro oxygen-glucose deprivation: potential involvement of protein 
SUMOylation. The Neuroscientist : a review journal bringing neurobiology, neurology and 
psychiatry14, 626-636 (2008). 

39. Tan, W., et al. Nerve growth factor blocks the glucose-induced down-regulation of caveolin-1 
expression in Schwann cells via p75 neurotrophin receptor signaling. The Journal of biological 
chemistry278, 23151-23162 (2003). 

40. Mabjeesh, N.J., et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules 
and dysregulating HIF. Cancer cell3, 363-375 (2003). 

41. Chen, C., Ostrowski, R.P., Zhou, C., Tang, J. & Zhang, J.H. Suppression of hypoxia-inducible 
factor-1alpha and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic 
transformation in a rat model of cerebral ischemia. J Neurosci Res88, 2046-2055. 

42. Chen, J.X. & Yan, S.D. Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis12, 177-
184 (2007). 

43. Guo, S., et al. Glucose up-regulates HIF-1 alpha expression in primary cortical neurons in 
response to hypoxia through maintaining cellular redox status. Journal of neurochemistry105, 
1849-1860 (2008). 

44. Omidi, Y., et al. Evaluation of the immortalised mouse brain capillary endothelial cell line, 
b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain 
research990, 95-112 (2003). 

45. Ambati, J., et al. Diffusion of high molecular weight compounds through sclera. Investigative 
ophthalmology & visual science41, 1181-1185 (2000). 

46. Wang, G.L., Jiang, B.H., Rue, E.A. & Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-
loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National 
Academy of Sciences of the United States of America92, 5510-5514 (1995). 

47. Salceda, S. & Caro, J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by 
the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia 
depends on redox-induced changes. The Journal of biological chemistry272, 22642-22647 
(1997). 

48. Tesch, G.H. & Allen, T.J. Rodent models of streptozotocin-induced diabetic nephropathy. 
Nephrology12, 261-266 (2007). 

49. Zhang, Z.G., et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the 
ischemic brain. The Journal of clinical investigation106, 829-838 (2000). 

50. Chi, O.Z., Hunter, C., Liu, X. & Weiss, H.R. Effects of anti-VEGF antibody on blood-brain barrier 
disruption in focal cerebral ischemia. Experimental neurology204, 283-287 (2007). 

51. Ma, Y., Zechariah, A., Qu, Y. & Hermann, D.M. Effects of vascular endothelial growth factor in 
ischemic stroke. Journal of neuroscience research90, 1873-1882 (2012). 

52. Taraboletti, G., et al. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst 
induced by acidic pH. Neoplasia8, 96-103 (2006). 

53. Hawkins, B.T. & Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. 
Pharmacological reviews57, 173-185 (2005). 



176 
 

54. Kruyt, N.D., Biessels, G.J., Devries, J.H. & Roos, Y.B. Hyperglycemia in acute ischemic stroke: 
pathophysiology and clinical management. Nature reviews. Neurology6, 145-155 (2010). 

55. Capes, S.E., Hunt, D., Malmberg, K., Pathak, P. & Gerstein, H.C. Stress hyperglycemia and 
prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke; a journal 
of cerebral circulation32, 2426-2432 (2001). 

56. Gray, C.S., et al. Glucose-potassium-insulin infusions in the management of post-stroke 
hyperglycaemia: the UK Glucose Insulin in Stroke Trial (GIST-UK). Lancet neurology6, 397-406 
(2007). 

57. Matchar, D.B., Divine, G.W., Heyman, A. & Feussner, J.R. The influence of hyperglycemia on 
outcome of cerebral infarction. Annals of internal medicine117, 449-456 (1992). 

58. Pulsinelli, W.A., Levy, D.E., Sigsbee, B., Scherer, P. & Plum, F. Increased damage after ischemic 
stroke in patients with hyperglycemia with or without established diabetes mellitus. The 
American journal of medicine74, 540-544 (1983). 

59. Ning, R., et al. Neamine induces neuroprotection after acute ischemic stroke in type one 
diabetic rats. Neuroscience257, 76-85 (2014). 

60. Elgebaly, M.M., et al. Neurovascular injury in acute hyperglycemia and diabetes: A comparative 
analysis in experimental stroke. Translational stroke research2, 391-398 (2011). 

61. Albers, G.W., et al. Intravenous tissue-type plasminogen activator for treatment of acute stroke: 
the Standard Treatment with Alteplase to Reverse Stroke (STARS) study. JAMA : the journal of 
the American Medical Association283, 1145-1150 (2000). 

62. Hacke, W., et al. Association of outcome with early stroke treatment: pooled analysis of 
ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet363, 768-774 (2004). 

63. Alvarez-Sabin, J., et al. Effects of admission hyperglycemia on stroke outcome in reperfused 
tissue plasminogen activator--treated patients. Stroke; a journal of cerebral circulation34, 1235-
1241 (2003). 

64. Poppe, A.Y., et al. Admission hyperglycemia predicts a worse outcome in stroke patients treated 
with intravenous thrombolysis. Diabetes care32, 617-622 (2009). 

65. Fan, X., et al. A rat model of studying tissue-type plasminogen activator thrombolysis in ischemic 
stroke with diabetes. Stroke; a journal of cerebral circulation43, 567-570 (2012). 

66. Won, S.J., Tang, X.N., Suh, S.W., Yenari, M.A. & Swanson, R.A. Hyperglycemia promotes tissue 
plasminogen activator-induced hemorrhage by Increasing superoxide production. Annals of 
neurology70, 583-590 (2011). 

67. Ning, R., et al. Tissue plasminogen activator treatment of stroke in type-1 diabetes rats. 
Neuroscience222, 326-332 (2012). 

68. Aiello, L.P., et al. Suppression of retinal neovascularization in vivo by inhibition of vascular 
endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proceedings of 
the National Academy of Sciences of the United States of America92, 10457-10461 (1995). 

69. Adamis, A.P., et al.Inhibition of vascular endothelial growth factor prevents retinal ischemia-
associated iris neovascularization in a nonhuman primate. Archives of ophthalmology114, 66-71 
(1996). 

70. Antonetti, D.A., et al. Vascular permeability in experimental diabetes is associated with reduced 
endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal 
endothelial cells. Penn State Retina Research Group. Diabetes47, 1953-1959 (1998). 

71. Chen, W., Jadhav, V., Tang, J. & Zhang, J.H. HIF-1alpha inhibition ameliorates neonatal brain 
injury in a rat pup hypoxic-ischemic model. Neurobiology of disease31, 433-441 (2008). 

72. Chen, C., Ostrowski, R.P., Zhou, C., Tang, J. & Zhang, J.H. Suppression of hypoxia-inducible 
factor-1alpha and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic 



177 
 

transformation in a rat model of cerebral ischemia. Journal of neuroscience research88, 2046-
2055 (2010). 

73. Arany, Z., et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional 
coactivator PGC-1alpha. Nature451, 1008-1012 (2008). 

74. O'Hagan, K.A., et al. PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by 
increasing mitochondrial oxygen consumption in skeletal muscle cells. Proceedings of the 
National Academy of Sciences of the United States of America106, 2188-2193 (2009). 

75. Teng, C.M., Wu, C.C., Ko, F.N., Lee, F.Y. & Kuo, S.C. YC-1, a nitric oxide-independent activator of 
soluble guanylate cyclase, inhibits platelet-rich thrombosis in mice. European journal of 
pharmacology320, 161-166 (1997). 

76. Klauber, N., Parangi, S., Flynn, E., Hamel, E. & D'Amato, R.J. Inhibition of angiogenesis and breast 
cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer research57, 
81-86 (1997). 

77. Pribluda, V.S., et al. 2-Methoxyestradiol: an endogenous antiangiogenic and antiproliferative 
drug candidate. Cancer metastasis reviews19, 173-179 (2000). 

78. Chauhan, D. & Anderson, K.C. Mechanisms of cell death and survival in multiple myeloma (MM): 
Therapeutic implications. Apoptosis : an international journal on programmed cell death8, 337-
343 (2003). 

79. Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R. & Begley, D.J. Structure and function of 
the blood-brain barrier. Neurobiology of disease37, 13-25 (2010). 

80. Wolburg, H. & Lippoldt, A. Tight junctions of the blood-brain barrier: development, composition 
and regulation. Vascular pharmacology38, 323-337 (2002). 

81. Shao, B. & Bayraktutan, U. Hyperglycaemia promotes cerebral barrier dysfunction through 
activation of protein kinase C-beta. Diabetes, obesity & metabolism15, 993-999 (2013). 

82. Lochhead, J.J., et al. Oxidative stress increases blood-brain barrier permeability and induces 
alterations in occludin during hypoxia-reoxygenation. Journal of cerebral blood flow and 
metabolism : official journal of the International Society of Cerebral Blood Flow and 
Metabolism30, 1625-1636 (2010). 

83. Fanning, A.S., Jameson, B.J., Jesaitis, L.A. & Anderson, J.M. The tight junction protein ZO-1 
establishes a link between the transmembrane protein occludin and the actin cytoskeleton. The 
Journal of biological chemistry273, 29745-29753 (1998). 

84. Choi, Y.K. & Kim, K.W. Blood-neural barrier: its diversity and coordinated cell-to-cell 
communication. BMB reports41, 345-352 (2008). 

85. Mark, K.S. & Davis, T.P. Cerebral microvascular changes in permeability and tight junctions 
induced by hypoxia-reoxygenation. American journal of physiology. Heart and circulatory 
physiology282, H1485-1494 (2002). 

86. Carpenter, T.C., Schomberg, S. & Stenmark, K.R. Endothelin-mediated increases in lung VEGF 
content promote vascular leak in young rats exposed to viral infection and hypoxia. American 
journal of physiology. Lung cellular and molecular physiology289, L1075-1082 (2005). 

87. Fischer, S., et al. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF 
and NO. The American journal of physiology276, C812-820 (1999). 

88. Pedram, A., Razandi, M. & Levin, E.R. Deciphering vascular endothelial cell growth 
factor/vascular permeability factor signaling to vascular permeability. Inhibition by atrial 
natriuretic peptide. The Journal of biological chemistry277, 44385-44398 (2002). 

89. Abumiya, T., Yokota, C., Kuge, Y. & Minematsu, K. Aggravation of hemorrhagic transformation by 
early intraarterial infusion of low-dose vascular endothelial growth factor after transient focal 
cerebral ischemia in rats. Brain research1049, 95-103 (2005). 



178 
 

90. Argaw, A.T., Gurfein, B.T., Zhang, Y., Zameer, A. & John, G.R. VEGF-mediated disruption of 
endothelial CLN-5 promotes blood-brain barrier breakdown. Proceedings of the National 
Academy of Sciences of the United States of America106, 1977-1982 (2009). 

91. Gitay-Goren, H., et al.Selective binding of VEGF121 to one of the three vascular endothelial 
growth factor receptors of vascular endothelial cells. The Journal of biological chemistry271, 
5519-5523 (1996). 

92. Murohara, T., et al. Vascular endothelial growth factor/vascular permeability factor enhances 
vascular permeability via nitric oxide and prostacyclin. Circulation97, 99-107 (1998). 

93. Risau, W. Mechanisms of angiogenesis. Nature386, 671-674 (1997). 
94. Wu, H.M., Yuan, Y., Zawieja, D.C., Tinsley, J. & Granger, H.J. Role of phospholipase C, protein 

kinase C, and calcium in VEGF-induced venular hyperpermeability. The American journal of 
physiology276, H535-542 (1999). 

95. Chi, O.Z., Hunter, C., Liu, X. & Weiss, H.R. Effects of VEGF and nitric oxide synthase inhibition on 
blood-brain barrier disruption in the ischemic and non-ischemic cerebral cortex. Neurological 
research27, 864-868 (2005). 

96. Antonetti, D.A., Barber, A.J., Hollinger, L.A., Wolpert, E.B. & Gardner, T.W. Vascular endothelial 
growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula 
occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. 
The Journal of biological chemistry274, 23463-23467 (1999). 

97. Stamatovic, S.M., Keep, R.F. & Andjelkovic, A.V. Brain endothelial cell-cell junctions: how to 
"open" the blood brain barrier. Current neuropharmacology6, 179-192 (2008). 

98. Giebel, S.J., Menicucci, G., McGuire, P.G. & Das, A. Matrix metalloproteinases in early diabetic 
retinopathy and their role in alteration of the blood-retinal barrier. Laboratory investigation; a 
journal of technical methods and pathology85, 597-607 (2005). 

99. Chen, J., et al. White matter damage and the effect of matrix metalloproteinases in type 2 
diabetic mice after stroke. Stroke; a journal of cerebral circulation42, 445-452 (2011). 

100. Kamada, H., Yu, F., Nito, C. & Chan, P.H. Influence of hyperglycemia on oxidative stress and 
matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation 
to blood-brain barrier dysfunction. Stroke; a journal of cerebral circulation38, 1044-1049 (2007). 

101. Elgebaly, M.M., et al. Vascular protection in diabetic stroke: role of matrix metalloprotease-
dependent vascular remodeling. Journal of cerebral blood flow and metabolism : official journal 
of the International Society of Cerebral Blood Flow and Metabolism30, 1928-1938 (2010). 

102. del Zoppo, G.J. The neurovascular unit in the setting of stroke. Journal of internal medicine267, 
156-171 (2010). 

103. Ronaldson, P.T. & Davis, T.P. Blood-brain barrier integrity and glial support: mechanisms that 
can be targeted for novel therapeutic approaches in stroke. Current pharmaceutical design18, 
3624-3644 (2012). 

 

 

  



179 
 

Chapter 4: HIF-1 is Involved in Hyperglycemia-Exacerbated Blood-Brain 

Barrier Disruption in Ischemic Stroke 

Abstract 

Diabetes is a major stroke risk factor and is associated with poor functional recovery after stroke. 

Accumulating evidence indicates that the worsened outcomes may be due to hyperglycemia-induced 

cerebral vascular complications, especially disruption of the blood-brain barrier (BBB).Increased BBB 

permeability contributes to the development of neurological damage in stroke. In the present study, we 

hypothesized that the activation of hypoxia inducible factor-1 (HIF-1) pathway was involved in 

hyperglycemia-aggravated BBB disruption in an ischemic stroke animal model.  

Both the non-diabetic control and the streptozotozin (STZ)-induced type I diabetic mice were 

subjected to 90 min transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Our 

results demonstrated that hyperglycemia induced higher expression of HIF-1α and its down-stream 

factor vascular endothelial growth factor (VEGF) in ischemic brain microvessels after 

MCAO/reperfusion. Diabetic mice showed exacerbated BBB damage and tight junction disruption, 

increased infarct volume as well as worsened neurological deficits. Suppressing HIF-1 activity by 

specific knock-out endothelial HIF-1α ameliorated BBB leakage and brain infarction in diabetic 

animals. Glycemic control by insulin treatment abolished HIF-1α up-regulation in diabetic animals and 

reduced BBB permeability and brain infarction. These findings strongly indicate that HIF-1 plays an 

important role in hyperglycemia-induced exacerbation of BBB disruption in ischemic stroke. HIF-1 

inhibition warrants further investigation as a therapeutic target for the treatment of stroke in presence of 

diabetes.  
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4.1 Introduction 

Ischemic stroke is a leading cause of death and long-term disability in the United States and worldwide 

and diabetes is the most rapidly increasing risk factor for stroke
1
. Approximately 30-40% of ischemic 

stroke patients present with admission hyperglycemia, either due to diabetes or due to a generalized stress 

reaction
2,3

. The relative risk of cerebrovascular disease or stroke is 2 to 6-fold higher in diabetes
1
. In 

addition to the increased stroke incidence, diabetes and hyperglycemia are associated with worsened 

stroke outcomes, leading to increased mortality and poor functional recovery
4-6

. Since diabetic patients 

are at a higher risk of stroke and have poorer prognosis compared to the non-diabetic population, a better 

understanding on how diabetes affects ischemic stroke outcome is pivotal for developing better 

prevention and treatment strategies before and after an ischemic insult.  

During ischemic stroke, cerebral ischemia and subsequent reperfusion result in harmful 

consequences, including the breakdown of the blood-brain barrier (BBB), which leads to severe 

neurologic deficits through aggravation of edema formation and brain hemorrhage
7-9

. The incidence and 

severity of BBB damage is markedly higher in stroke patients with diabetes or stress hyperglycemia than 

those without, implying a prominent role for high blood glucose in the development and exacerbation of 

BBB disruption
2,4

. However, the mechanisms involved remain largely unexplored and are of great 

importance to identify novel therapeutic targets for cerebrovascular protection.  

Hypoxia-inducible factor 1 (HIF-1) is a key transcription factor in response to 

hypoxia/ischemia
10

. It is a heterodimer of two subunits, the regulatable HIF-1α and constitutively 

expressed and stable HIF-1β 
11

. The activity of HIF-1 is primarily determined by the level of the α 

subunit
12,13

. HIF-1 is implicated in cerebral vascular disorders in various pathological conditions, e.g. 

ischemic stroke
14-17

, sabarachnoid hemorrhage
18,19

, and traumatic brain injury
20

. Inhibition of HIF-1 

ameliorates hypoxia-induced BBB disruption and the subsequent brain damage in both adult
14,21

and 

neonatal rodent ischemic stroke models
15

. Previous studies have shown that HIF-1 disrupts BBB integrity 

by enhancing the expression of its target gene vascular endothelial growth factor (VEGF)
14

. VEGF is a 

potent vascular permeability factor that promotes BBB leakage and cerebral edema after ischemic 
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injury
22-25

. Furthermore, it has been reported that high glucose treatment upregulates HIF-1 activity in in 

vitro endothelial cell culture
26

. In addition, increased HIF-1α expression was found in the retina
27,28

and 

renal tubular epithelial cells 
29

of diabetic animal models. However, regulation of cerebrovascular HIF-1α 

level in diabetic models and the subsequent effect on stroke pathology is not clear. 

In light of the above, we hypothesized that HIF-1α activation was involved in hyperglycemia-

induced BBB damage in ischemic stroke in the present study. Firstly, we investigated the effect of 

hyperglycemia on the expression of HIF-1α and its down-stream factor VEGF using a mouse model of 90 

min middle cerebral artery occlusion (MCAO) with reperfusion. Secondly, we examined whether BBB 

dysfunction and brain damage could be prevented by inhibition of endothelial HIF-1α. Finally, we 

determined if normalization of blood glucose levels in diabetic animals could prevent enhanced BBB 

breakdown through modulation of HIF-1α pathway.  
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4.2 Materials and Methods 

Animals 

All procedures using animals were approved by the Institutional Animal Care and Use Committees of 

University of Kansas and conformed to the National Institutes of HealthGuidelines for use of animals in 

research. Animals were maintained in a climate-controlled vivarium with a 12 h light-dark cycle with free 

access to food and water. Male wide type (WT) C57BL/6mice were from Charles River Laboratory 

(Wilmington, MA). Mice (B6.129-hif-1α
tm3Rsjo

/J) carrying homozygous HIF-1α floxed alleles (HIF-1α
F/F

) 

were generated by engineering loxP sites flanking exon 2 of the HIF-1α gene as described previously 
30

 

and bought from the Jackson Laboratory (stock number: 007561, Bar Harbor, Maine, USA).Tie2-Cre 

transgenic mice (B6.Cg-Tg(Tek-cre)1Ywa/J) expressing cre recombinase under the control of the receptor 

tyrosine kinase Tek (Tie2)promoter were generated as described previously 
31

and also bought form the 

Jackson Laboratory (stock number: 004128). All mice strains were maintained on a C57BL/6J 

background. All animals were acclimated to the environment for 7 days before the experiments.  The 

mouse strain B6.Cg-Tg(Tek-cre)was crossed with homozygote HIF-1α
F/F 

mice to generate Cre
+/-

: HIF-

1α
F/Wt

, which were crossed with homozygote HIF-1α
F/F 

mice to generate HIF-1α mutants Cre
+/-

: HIF-1α
F/F

, 

designated as endothelial specific HIF-1α knock-out HIF-1α
∆/∆ 

as described previously
32

.  Littermates 

with the Cre
-/-

: HIF-1α
F/F

 genotypes were used as controls for each group of experiments. For genotyping, 

genomic DNA was isolated from tail biopsies collected at 21 d of age using the DNeasy genomic DNA 

isolation kit (Qiagen, Valencia, CA, USA). HIF-1α
F
 and wild-type alleles were detected using the 

following primers: 5′-CGT GTG AGA AAA CTT CTG GAT G- 3′ and 5′-AAA AGT ATT GTG TTG 

GGG CAG T-3′. Transgenic mice expressing Cre recombinase were identified using primers: 5′-GCG 

GTC TGG CAG TAA AAA CTA TC-3′ and 5′-GTG AAA CAG CAT TGC TGT CAC TT-3′. The PCR 

reactions were performed with the Omni Clenttaq polymerase (DNA Polymerase Company, St. Louis, 

Missouri, USA).  The products were run on a 3% agarose gel for HIF-1α or Cre.  
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Middle cerebral artery occlusion (MCAO) 

Transient focal cerebral ischemia was induced by surgical occlusion of the middle cerebral artery. The 

procedure of MCAO followed by reperfusion was conducted using an intraluminal model as previously 

described
33

. For the anesthesia, 2.0% isoflurane in medical O2 was used for induction, and 1.0% for 

maintenance. Duration of anesthetic exposure was kept the same for each animal.Following a midline 

neck incision, external carotid artery (ECA), internal carotid artery (ICA), and pterygopalatine artery of 

ICA were exposed. A silicone rubber-coated monofilament nylon suture (Doccol Corporation, Sharon, 

MA)with a diameter of 0.23 mm was inserted into the ICA via a slit on the ECA. The suture was 

advanced along the ICA to the extent of 9 to 10 mm from the bifurcation of mice.  Reperfusion was 

produced by gently withdrawing the suture until the suture tip reached the bifurcation and the incision 

closed 90 min after the onset of ischemia. After surgery, the animals were allowed to recover from 

anesthesia while being given food and water ad libitum. Buprenorphine was administrated at 0.1mg/kg 

subcutaneously as post-operative analgesia.For all animals used in this study, successful MCAO was 

confirmed by laser Doppler flowmetry (LDF) (Moor Instruments, Wilmington, DE) as described in the 

literature 
34

.  During ischemia, LDF regional cerebral blood flow dropped to 17.2 ± 4.3% of the pre-

ischemic level; and after reperfusion the blood flow was restored to 88.4 ± 4.6% of pre-ischemic level. 

During the experiment, the mice body temperature wasmaintained within the range of 37.0 ± 0.5
o
C by the 

heating pad. Sham-operated animals underwent the same anesthesia and surgical procedures without the 

occlusion of MCA. Animals that did not show any neurological deficits or died within 24 h after MCAO 

were excluded. 

 

Induction of diabetes and administration of insulin 

Six-week-old mice were rendered diabetic with three daily doses of freshly prepared 

streptozotocin (STZ) (85, 70 and 55 mg/kg, dissolved in 0.2ml sodium citrate buffer, pH 4.5) given by 

intraperitoneal injection. Control mice received injections of vehicle. Three days after the last injection, 

mice with fasting blood glucose > 290mg/dl were deemed diabetic (One-Touch Ultra glucometer). 
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Because it has been reported that increasing BBB permeability in STZ-induced diabetic animals requires 

at least 4 weeks, the mice were subjectedto MCAO 4 weeks after the STZ injection
35

. 

For the long-term insulin treatment, insulin (0.7 U/mouse/d, subcutaneously) was administrated 

daily from third day after the last STZ injection until the mice were sacrificed 
36

. For the mice treated with 

insulin only at the onset of reperfusion, continuous administration of intermediate-acting insulinwas 

performed during the 24 h reperfusion.Mice were treated with three times insulin injection at 0h, 8h, and 

16h reperfusion at a total dose of 0.7 U. Another group of STZ mice were treated with a low dose of 

insulin which was not able to correct the mice blood glucose level.Mice were injected with insulin at the 

onset of reperfusion at2 U/kg (about 0.04-0.05 U/mouse) 
37,38

. The mice blood glucose in each group 

before and after ischemia was summarized in Table 4-1.  

 

Isolation of cerebral microvessels 

Since the BBB is formed at the level of cerebral microvessels, the microvessels were isolated from mice 

brain to analyze protein expression of HIF-1α, VEGF, and tight junction (TJ) proteins. At the indicated 

time points of reperfusion, mice were anesthetized and euthanized bydecapitation.The brain microvessels 

were isolated from freshly removed brains as described previously 
39

. Briefly, brains were removed from 

the skull and immediately immersed in ice-cold PBS. Choroid plexus, meninges, cerebellum, and brain 

stem were removed and ipsilateral and contralateral hemispheres were separated and homogenized in 

isolation buffer separately. Then 26% dextran was added to the homogenate and samples were 

centrifuged (5800g, 4ºC) for 10 min. The supernatants were discarded; pellets were resuspended and 

filtered through a 100 µm mesh filter. The filtered homogenates were re-pelleted by centrifuge (1500 g, 

10 min) and either smeared on microscope slide for immunostaining and flurescence microscopy or 

resuspended in lysis buffer for Western blotting analysis.  
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Table 4-1. Mice body weight and blood glucose levels.  

 Weight (g) Blood Glucose (mg/dl) 

Baseline Final Before MCAO After MCAO (admission) 

Control 22.1±1.8 27.8±2.3 116±15 127±28 

Diabetic 21.9±1.6 22.4±2.1 473±32
*
 465±38

*
 

Long-term insulin 21.6±1.9 26.9±2.5 129±32 167±35 

Insulin at reperfusion 22.5±1.5 23.1±1.7 489±43
*
 158±39 

Low dose insulin 22.3±1.5 22.9±1.2 467±28
*
 423±37

*
 

 

Data are expressed as means ± SD.  

*
p< 0.05 vs. control animals. 
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Western blotting  

Cerebral microvessels isolated from contralateral and ipsilateral hemispheres were homogenized in an 

ice-cold RIPA buffer with 1µg/ml of a protease inhibitor cocktail (Thermo scientific, Rockford, IL, 

USA), and sonicated for 10 s. The homogenates were centrifuged at 14,000 rpm for 15 min at 4ºC; the 

supernatants were collected. Standard Western blotting procedures were followed as described 

previously
40

. The primary antibodies were rabbit anti-HIF-1α (Millipore, Billerica, MA), ZO-1 (40-2200, 

Invitrogen, Carlsbad, CA), occludin (33-1500, Invitrogen), claudin-5 (34-1600, Invitrogen), VEGF (sc-

507, Santa Cruz Biotechnology, Santa Cruz, CA) and β-actin (sc-1616, Santa Cruz). The secondary 

antibody was goat anti-rabbit IgG-HRP (sc-2030, Santa Cruz Biotechnology, Santa Cruz, CA). β-actin 

was used as an internal control.   

 

Immunohistochemical staining 

Freshly isolated microvessels were spread onto microscope slide and heat-fixed for 10 min at 95ºC, 

followed by treatment with 4% paraformaldehyde for 10 min. Themicrovessels were then washed with 

PBS and permeabilized in PBS containing 0.1% Triton-X100 for 10 min. The nonspecific binding sites 

were blocked with PBS containing 0.05 % triton-X100 and 0.25 % BSA for 1 h. Primary ZO-1 antibody 

were diluted 1:100 in blocking buffer and incubated with sections overnight at 4°C 
40

. Secondary antibody 

was donkey anti-rabbit Alexa 488 (Molecular Probes, Carlsbad, CA). Images were routinely captured 

with a Leica DMI 4000B fluorescent microscope. All immunohistochemical staining data were obtained 

in a blinded manner.  

 

Evaluation of neurological deficits, infarct size and brain edema volume 

At 24 h reperfusion,mice were evaluated for neurological deficits in a blinded fashion based on 

amodified scoring standard of Rogers et al.
41

 with: 0=no deficit; 1=failure to extend right forepaw fully; 

2=decreased grip of the right forelimb while tail gently pulled; 3=spontaneous movement in all directions, 

contralateral circling only if pulled by the tail; 4=circling or walking to the right; 5=walks only when 
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stimulated; 6=unresponsive to stimulation with a depressed level of consciousness. In addition, mortality 

was calculated at 24 h after MCAO/reperfusion.  

Mice wereanesthetized and euthanized bydecapitation immediately after scoring.The brains were 

removed and sectioned into 2 mm slices. The slices were incubated in a 2% solution of TTC in PBS (pH 

7.4) at 37°C for 30 min and fixed in 10% formalin. TTC staining has been widely used to reflect 

accurately the extent of irreversible ischemic damage in cerebral tissues in rodents 
42

. TTC-stained brain 

sections were photographed using a digital camera (Powershot 400 digital camera, Canon) and analyzed 

using Image J for determination of infarct area and brain edema. To compensate for the effect of brain 

edema, the corrected infarct volume was calculated as previously described. The brain edema percentage 

was determined as 100% (ipsilateral volume–contralateral volume)/contralateral volume.  

 

Determination of BBB permeability 

BBB permeability was assessed by measuring extravasation of Evans blue (EB) dye. EB (2% in 

saline, 6 ml/kg body weight) was injected through tail vein right after reperfusion according to a previous 

report 
43

. At the end of 24 h reperfusion, mice were transcardially perfused with saline under anesthesia 

until colorless perfusion fluid was obtained from the right atrium. After decapitation, the brain was 

removed and sectioned into 2 mm slices.The whole brain and brain sections were photographed using a 

digital camera (Powershot 400 digital camera, Canon). Then, the tissue from contralateral and ipsilateral 

hemispheres was separately weighed and soaked in 1 ml of 50% trichloroacetic acid solution. After 

homogenization and centrifugation, the extracted EB was diluted with ethanol (1:3); and fluorescence 

intensity was measured at 620 nm and 680 nm for excitation and emission, respectively, using a 

fluorescence reader. The tissue content of EB dye was quantified from a linear standard curve derived 

from known amounts of the dye and was expressed as micrograms per gram of tissues. 

 

 

 



188 
 

Statistical analysis 

The results were presented as mean with a standard deviation of mean. Comparisons of Western blotting, 

EB leakage, edema formation, and infarct volumes were carried out by ANOVA test, followed by 

Tukey’s correction (R 3.0.1).  Neurological scores were compared using Kruskal-Wallis analysis 

followed by Bonferroni correction. A p<0.05 was considered statistically significant.  
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4.3 Results 

Hyperglycemia enhanced endothelial HIF-1α expression in the ischemic brain throughout the reperfusion 

period.  

To study whether HIF-1α was induced by hyperglycemia in ischemic brain, the control and STZ-induced 

diabetic mice were subjected to 90 min MCAO. Brain microvessels from ipsilateral brain were isolated at 

various time points after ischemia and homogenized to determine the expression of HIF-1α. As shown in 

Fig. 4-1, HIF-1αexpression was induced at 0 h after ischemic exposure, peaked at 6 h, and remained 

elevated for at least 24 h. The protein level of HIF-1αwas significantly increased at all time points (0h, 6h, 

12 h, and 24 h) following MCAO in diabetic mice, suggesting that hyperglycemia enhanced cerebral 

endothelial HIF-1αexpression throughout the post-ischemic period.  It is noteworthy that diabetic mice 

showed higher HIF-1αbasal level, which is in accordance with our previous study in in vitro cell culture. 

Because the maximal induction of HIF-1αby hyperglycemia appeared at 24 h reperfusion (44%), we 

chose 24 h as the time point for further study.  
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Fig.4-1 Effect of hyperglycemia on the expression of HIF-1α in ischemic brain microvessels. Control and 

diabetic mice were subjected to 90 min MCAO followed by reperfusion (0 h to 24 h). At 0 h, 6 h, 12 h, 

and 24 h post-ischemia, the protein levels of HIF-1α were analyzed by Western blotting in cerebral 

microvessels lysates from ipsilateral hemispheres of mice. (A)Representative Western blots of HIF-1α. 

(B) Quantification of the HIF-1α protein level. White bars, control ischemic brains; filled bars, diabetic 

ischemic brains. Values were normalized to β-actin and sham-operated control. Values are means ± SD, n 

= 5. 
*
p< 0.05 vs. control animals. 
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Diabetic mice demonstrated increased BBB permeability and worsened stroke outcomes after 

ischemia/reperfusion. 

Cerebral ischemia leads to an impairment of BBB integrity and subsequent edema formation, which is 

greatly augmented by hyperglycemia. In this study, BBB permeability following 90 min ischemia and 24 

h reperfusion was assessed using EB,a marker of albumin extravasation. EB leaked mainly into the 

ipsilateral hemisphere with only insignificant, low background level in the contralateral hemisphere of 

both control and diabetic mice, suggesting that 4-weeks diabetes does not elevate BBB permeability to 

macromolecular proteins such as albumin under basal condition. Diabetic mice showed remarkable 

increase of EB leakage in the ipsilateral hemisphere (Fig 4-2 A and B), which indicated that 

hyperglycemia aggravated stroke-induced BBB breakdown. Consistent with the increased EB leakage, 

more pronounced brain edema was observed in the ipsilateral brain of diabetic mice (Fig 4-2C). Because 

the BBB dysfunction after stroke may affect infarct expansion and the stroke outcome, we evaluated the 

infarct volume and functional recovery in control and diabetic mice. Diabetic mice demonstrated 

significantly increased lesion volume (82 mm
3
, compared to 54 mm

3
 in the control group) and more 

severe neurological impairments(Fig 4-2 E and F). 
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Fig.4-2 Effect of diabetesonischemia/reperfusion-induced EB extravasation, edema formation,brain 

infarction and neurological deficits.Control and diabetic mice were subjected to 90 min MCAO followed 

by 24 h reperfusion. (A) Representative images of EB extravasation in a whole brain and coronal sections. 

(B) Quantification of EB leakage in contralateral and ipsilateral hemispheres (n=5). White bars, 

contralateral hemisphere; filled bar, ipsilateral hemisphere. (C) Quantification of brain edema percentage 

(n=6 (control), 8 (diabetic)). (D)Representative TTC staining images of brain sections. (E) Quantification 
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of infarct volume estimated by TTC stained sections (n=6(control), 8(diabetic)). (F) Quantification 

ofneurological deficit scores rate(n= 16 (control), 18 (diabetic)). Values are means ± SD, 
*
p< 0.05 vs. 

control animals.  
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Hyperglycemia enhanced tight junction (TJ) protein degradation in ischemic brain microvessels  

The TJs between endothelial cells of cerebral capillaries are critical in maintaining BBB integrity. 

Decreased TJ protein expression or variations in subcellular localization are associated with alterations in 

BBB permeability. TJs consist of the transmembrane proteins (e.g. claudins, occludin) and cytoplasmic 

accessory proteins (e.g. ZO-1) which connect the transmembrane proteins to the actin cytoskeleton. To 

determine whether exacerbated BBB disruption caused by hyperglycemia is associated with increased TJ 

proteins degradation following cerebral ischemia, we detected the protein level of ZO-1, occludin, and 

claudin-5 in the isolated brain microvessels. As shown inFig. 4-3, consistent with the BBB permeability 

results, the level of all three proteins in the ischemic hemisphere of diabetic mice were significantly 

reduced comparing with that of control mice. Diabetic mice also showed lower level of occludin and ZO-

1 in contralateral hemisphere. Furthermore, we studied the arrangement pattern of ZO-1 on brain 

microvessels by immunostaining. The immunostaining study revealed relatively continuous and linear 

staining of ZO-1 in the contralateral brain microvessels. Ischemia/reperfusion diminished staining 

intensity and disrupted the continuity of ZO-1. Moreover, the loss of ZO-1 was even more obvious in the 

diabetic ipsilateral brain microvessels. The results above demonstrated that diabetes further disrupted 

BBB by decreasing TJ proteins in ischemic brain.  

 

HyperglycemiaupregulatedVEGF expression in the ischemic brain 

VEGF is a potent vascular permeability enhancing factor and it is transcriptionally induced by HIF-1 in 

ischemic brain. It has been reported that VEGF induces brain vascular leakage in pathological conditions 

such as ischemia, possibly by decreasing ZO-1, occludin, and claudin-5 at the TJs. We found that VEGF 

expression in the contra- and ipsilateral brain of diabetic mice was significantly higher than that of control 

mice, respectively (Fig. 4-4). The results demonstrated that diabetes enhanced expression of HIF-1 down-

stream factor VEGF. 
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Fig.4-3 Effect of hyperglycemia on the expression of ZO-1, occludin, and claudin-5 in ischemic brain 

microvessels. The protein levels of ZO-1, occludin, and claudin-5 were analyzed in isolatedbrain 

microvesselsfrom contralateral and ipsilateral hemispheres of mice.(A) Representative Western blots of 

ZO-1, occludin, and claudin-5. (B) Quantification of the ZO-1 protein level. (C)Quantification of the 

occludin protein level.(D)Quantification of the claudin-5 protein level. White bars, contralateral 

hemispheres; filled bars, ipsilateral hemispheres. Values were normalized to β-actin and contralateral 

hemispheres of control animals. Values are means ± SD, n = 5.  
*
p< 0.05 vs. contralateral hemispheres 

from control animals.
#
p< 0.05 vs. ipsilateral hemispheres from control animals.(E) Immunostaining of 

ZO-1 on isolated brain microvessels. Scale bar, 20 μm.   
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Fig. 4-4Effect of hyperglycemia on the expression of VEGF in ischemic brain microvessels. The protein 

levels of VEGF were analyzed by Western blotting in cerebral microvessels lysates from contralateral and 

ipsilateral hemispheres of mice. (A)Representative Western blots of VEGF. (B)Quantification of the 

VEGF protein level. White bars, contralateral hemispheres; filled bars, ipsilateral hemispheres. Values 

were normalized to β-actin and contralateral hemispheres of control animals. Values are means ± SD, n = 

5.  
*
p< 0.05 vs. contralateral hemispheres from control animals.

#
p< 0.05 vs. ipsilateral hemispheres from 

control animals. 
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Endothelial-specific HIF-1α knock-out reduced BBB permeability and brain infarction in diabetic mice  

To investigate the specific role of HIF-1 in hyperglycemia-aggravated BBB disruption, we utilized 

endothelial-specific HIF-1α knock-out mice (HIF-1α
∆/∆

).  The deletion was achieved by crossing mice 

bearing loxP-floxed HIF-1α alleles with transgenic mice expressing Cre recombinase under control of Tek 

promoter. Both wild-type and HIF-1α knock-out mice were rendered diabetes and subjected to 90 min 

MCAO and 24 h reperfusion. To evaluate the efficiency of HIF-1α ablation in endothelial cells of the 

HIF-1α
∆/∆ 

mice, we detected HIF-1α expression in cerebral microvessel homogenates from contra- and 

ipsilateral hemisphere. As expected, post-ischemic accumulation of HIF-1α was significantly attenuated 

in the both control and diabetic HIF-1α
∆/∆

 mice (Fig. 4-5A). We observed that the EB extravasation was 

significantly reduced in diabetic HIF-1α
∆/∆

 mice (Fig. 4-5C), suggesting that inhibition of endothelialHIF-

1α partially restored BBB integrity. Moreover, the brain infarct volume was reduced from 79 mm
3
 in 

diabetic wild-type to 61 mm
3
 in diabetic HIF-1α

∆/∆
 mice. It is of interest to point out that deletion of 

endothelial HIF-1α also attenuated BBB leakage and brain damage in non-diabetic mice, which is in line 

with previous reports that HIF-1 promotes BBB permeability in ischemic stroke 
14

. In summary, we 

demonstrated that hyperglycemia-exacerbated BBB dysfunction was heavily dependent on its ability to 

activate HIF-1α since its detrimental effects were markedly alleviated in HIF-1α
∆/∆

 mice.  
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Fig. 4-5Effect of endothelial-specific HIF-1α deficiency on the BBB permeability and brain infarction in 

control and diabetic mice. The protein levels of HIF-1α were analyzed by Western blotting in cerebral 

microvessel lysates from contralateral and ipsilateral hemispheres of mice.(A) Representative Western 

blots of HIF-1α. (B) Quantification of the HIF-1α protein level (n=5). Values were normalized to β-actin 

and contralateral hemispheres of control animals. 
*
p< 0.05 vs. contralateral hemispheres from control 

animals.
#
p< 0.05 vs. ipsilateral hemispheres from control animals.(C) Representative images of 
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EBextravasation in a whole brain and coronal sections. (D) Quantification of EB leakage in contralateral 

and ipsilateral hemispheres (n=5). White bars, contralateral hemisphere; filled bar, ipsilateral hemisphere. 

(E)Representative TTC staining images of brain sections. (F) Quantification of infarct volume estimated 

by TTC stained sections (n=4). Values are means ± SD, 
*
p< 0.05 vs. control animals. 
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Normalizing mice blood glucose by insulin abolished HIF-1α upregulation in diabetic mice 

We normalized the diabetic mice blood glucose by long-term insulin administration to verify that the 

upregulation of HIF-1α and the exacerbated BBB disruption observed in diabetic mice were due to 

hyperglycemia.As expected, the long-term insulin-treated diabetic mice showed similar HIF-1α protein 

level in both contra-and ipsilateral hemisphere compared with the non-diabetic control. In addition, a 

group of diabetic mice only received insulin treatment at the time of reperfusion was included to further 

explore the effects of hyperglycemia on HIF-1α expression and BBB disruption at different stages of 

ischemia. We foundnormalizing the blood glucose during post-ischemic reperfusion did not significantly 

affect the HIF-1α expression in contralateral hemisphere compared with the diabetic mice. However, the 

HIF-1α accumulation in the ipsilateral hemisphere was decreased (Fig. 4-6A), suggesting that 

hyperglycemia-induced HIF-1αupregulation in ischemic brain was mainly due to the high blood glucose 

at reperfusion rather than pre-ischemia. Both the long-term or reperfusion insulin administration 

attenuated EB extravasation and brain infarction in diabetic mice (Fig. 4-6 D-G), which indicates that the 

adverse effects of hyperglycemia in stroke largely results from high blood glucose in reperfusion. It was 

unclear whether insulin protected ischemic brain by blood glucose correction or by its direct interaction 

with brain tissue. To differentiate the protective mechanism of insulin, a group of diabetic mice were 

treated with a low dose of insulin which was not able to correct the mice blood glucose levels. The low 

dose insulin did not affect HIF-1α expression, BBB permeability or brain injury comparing with the non-

treated diabetic mice(Fig. 4-7), indicating that the effects of insulin are predominantly via alteration in 

blood glucose rather than activation of insulin receptors signaling pathways. 
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Fig. 4-6 Effect of normalizing blood glucose on HIF-1α expression, BBB permeability and brain 

infarction in diabetic mice. Long term insulin: mice were treated with insulin (0.7 U) daily from the 3rd 

day after the diabetes induction; Insulin at reperfusion:mice were administrated with continuous insulin 

(0.7 U) during the 24 h reperfusion.The protein level of HIF-1α was analyzed by Western blotting in 

cerebral microvessels lysates from contralateral and ipsilateral hemispheres of mice.(A) Representative 
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Western blots of HIF-1α. (B, C) Quantification of the HIF-1α protein level in contralateral hemispheres 

(white bars) and ipsilateral hemispheres (filled bars) (n=5). Values were normalized to β-actin and 

contralateral hemispheres of control animals. 
*
p< 0.05 vs. control animals.

#
p< 0.05 vs. diabetic animals. 

(D) Representative images of EB extravasation in a whole brain and coronal sections. (E) Quantification 

of EB leakage in contralateral and ipsilateral hemispheres (n=5). White bars, contralateral hemisphere; 

filled bar, ipsilateral hemisphere. (F) Representative TTC staining images of brain sections. (G) 

Quantification of infarct volume estimated by TTC stained sections (n=8 (diabetic), 6 (long-term insulin), 

5 (insulin at reperfusion)). Values are means ± SD, 
*
p< 0.05 vs. diabetic animals. 
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Fig. 4-7 Effect of low dose insulin on HIF-1α expression, BBB permeability and brain infarction in 

diabetic mice. Mice were treated with low dose insulin(2 U/kg) at the onset of reperfusion.The protein 

levels of HIF-1α were analyzed by Western blotting in cerebral microvessels lysates from contralateral 

and ipsilateral hemispheres of mice.(A) Representative Western blots of HIF-1α. (B) Quantification of the 

HIF-1α protein level in contralateral hemispheres (white bars) and ipsilateral hemispheres (filled bars) 

(n=5 (diabetic), 3 (low dose insulin)). Values were normalized to β-actin and contralateral hemispheres of 

diabetic animals. 
*
p< 0.05 vs.contralateral of diabetic animals.(C) Quantification of EB leakage in 

contralateral and ipsilateral hemispheres (n=5 (diabetic), 3 (low dose insulin)). White bars, contralateral 

hemisphere; filled bar, ipsilateral hemisphere. (D)Quantification of infarct volume estimated by TTC 

stained sections (n=8 (diabetic), 3 (low dose insulin)). Values are means ± SD, 
*
p< 0.05 vs. diabetic 

animals. 
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4.4 Discussion 

This study provides several major findings on the effect of hyperglycemia on neurovascular and 

functional outcomes of stroke. First, we demonstrated that STZ-induced hyperglycemia enhanced the 

expression of HIF-1α and VEGF in ischemic brain microvessels, which was accompanied by increased 

BBB disruption, larger infarct volumes, more severe edema formation, and worsened neurological 

deficits. Second, the detrimental effects of hyperglycemia on cerebral vascular damage was partially 

reversed by specific inhibition of endothelial HIF-1α, suggesting that activation of HIF-1α is an 

underlying mechanism by which BBB permeability was increased. Lastly, both chronic and acute 

glycemic control abolished HIF-1α upregulation in the ischemic brain of diabetic mice and lessened 

neurovascular injury in diabetes.  

Many lines of evidence have shown that hyperglycemia induces HIF-1α expression. In STZ-

induced diabetic animal models, HIF-1α was found upregulated in hearts
44

, peripheral nerves
45

, pancreas 

46
, retina 

27,28
and kidney glomeruli

47
. Studies based on samples from diabetic patients have reported 

increased HIF-1α levels in human preretinal membranes 
48

and vitreous fluid 
49

. Previous study from our 

lab has revealed that high glucose activates HIF-1α pathway in brain vascular endothelial cell culture 

26
and in primary neurons exposed to hypoxia

50
. Our present report is first to demonstrate that HIF-1α is 

upregulated in the brain microvessels isolated from both contralateral and ipsilateral hemispheres in 

diabetic mice subjected to MCAO. The mechanism of high glucose-induced HIF-1α expression after 

ischemia was not clear. It is well established that HIF-1α subunit is stabilized in hypoxia and rapidly 

degraded under normoxic conditions. In normoxia, HIF-1α is continuously hydroxylated by prolyl 

hydroxylases (PHDs)
51

. The von Hippel-Lindau (pVHL) tumor suppressor protein binds to hydroxylated 

HIF-1α, thus targeting HIF-1α for ubiquitination and degradation by 26S proteasome
52,53

. The PHD 

enzymes require oxygen as cofactors
54,55

. Under hypoxic conditions, HIF-1α is accumulated because of 

decreased PHDs activities
10

. Besides hypoxia, PHDs activities can also be influenced by other factors. 

Some of these factors are involved in diabetes, e.g., advanced glycosylation end products 
56

and Krebs 

cycle intermediates. In fact, it has been recently demonstrated that glucose metabolites fumarate and 
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succinate can inhibit PHDs with consequent stabilization of HIF-1α
57-61

. Diabetes is associated with an 

increased in the intracellular fumarate and succinate concentration
62

. Therefore, diabetes may stabilize 

HIF-1α by inhibiting PHDs activity. Moreover, high glucose has been shown to induce HIF-1α 

transcription via a carbohydrate response element binding protein (ChREBP)
47

. ChREBP binds to a 

specific target site in HIF-1α promoter and increases HIF-1α mRNA level, resulting in an enhanced 

expression of a broad range of HIF-1 target genes including VEGF. Future investigation is needed to 

elucidate the molecular mechanism responsible for the upregulation of HIF-1α in brain endothelial cells. 

HIF-1’s role in cerebral ischemia is arguable. On the one hand, HIF-1 regulates a broad range of 

genes that facilitate cellular adaption to low oxygen conditions
63

. Its targets include the genes that code 

for molecules participating in angiogenesis, erythropoiesis, energy metabolism, and cell proliferation
64,65

. 

Each one of these functions potentially contributes to neuronal survival under ischemic conditions. 

Indeed, HIF-1 has been reported to protect neurons against cerebral ischemic damage
66-68

. Furthermore, 

neuron-specific knockdown of HIF-1α was demonstrated to aggravate tissue damage and reduce survival 

rate of mice subjected to MCAO
69

. On the other hand, several groups have reported opposite effects of 

HIF-1 in cerebral ischemia, showing that HIF-1 is a likely mediator of BBB disruption. For example, Yeh 

et al. demonstrated that HIF-1α inhibitor YC-1was able to prevent ischemia/reperfusion-induced BBB 

hyperpermeability in both rat brain endothelial cell culture and in in vivo model
14

. Results by Chen et al. 

showed that early inhibition of HIF-1α by 2-methoxyestradiol (2ME2) provided neuroprotection after 

neonatal hypoxia-ischemia by preserving BBB integrity and attenuating brain edema. Moreover, HIF-1α 

upregulation by dimethyloxaylglycine (DMOG) increased the permeability of BBB and brain edema
15

. 

The discrepancy of these observations may be partly explained by distinctive effects of HIF-1 down-

stream targets in different cell types. For example, the angiogenic factor VEGF is the best defined HIF-1 

target protein in vascular biology
70

. It has been reported that VEGF mediates neuroprotection in cerebral 

ischemia by its angiogenesis and neurotropic effects
71-74

. However, VEGF is a strong inducer of vascular 

permeability, and it plays a critical role in causing BBB disruption and cerebral edema
22-25,75

. 

Experimental evidence has shown that VEGF down-regulated TJ proteins claudin-5
76

, occludin
76

and ZO-
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1
75,77

 expression in brain microvasculature. In this study, we observed significant increase in both HIF-1α 

and VEGF expression in diabetic brain microvessels, which correlated with aggravated BBB leakage after 

stroke. This result supports the concept that enhanced HIF-1α activity in diabetic mice brain promotes 

BBB damage after ischemia, possibly through upregulating VEGF expression. To further evaluating the 

contribution of endothelial HIF-1α signaling in BBB disruption, we utilized an endothelial specific HIF-

1α knock-out mouse model. We found that inhibition of HIF-1α attenuated BBB breakdown and brain 

infarction in both normoglycemic and hyperglycemic mice after MCAO/reperfusion, indicating that 

endothelial HIF-1α is an important mediator of BBB disruption in ischemic stroke.  

Although genetic depletion of endothelial HIF-1α reduced BBB leakage and brain infarct volume 

in diabetic mice, the BBB permeability in diabetic HIF-1α
∆/∆ 

mice was still significantly higher than the 

non-diabetic mice even though HIF-1α accumulation was largely diminished. These results suggested that 

there might be other pathways that are probably mediated independently of HIF-1α, and were involved in 

BBB disruption in diabetic stroke as well. For example, the activation of protein kinase C (PKC) is 

implicated in cerebral microvascular dysfunction in hyperglycemic stroke
78-80

. PKC activity is rapidly 

increased in endothelium in response to hyperglycemia due to de novo synthesis of doacyglycerol, the 

primary activator of PKC
81,82

. PKC activation can directly affect BBB permeability through its ability to 

phosphorylate ZO-1 and disrupt TJs 
83,84

as well as promote excessive superoxide production through 

NADPH oxidase which leads to endothelial barrier dysfunction 
78,79

. In a recent study, Cipolla et al. has 

demonstrated that the inhibition of PKC-β reversed the enhanced BBB permeability and prevented edema 

formation in STZ-induce diabetic rats subjected to MCAO
79

. Another important factor in vascular damage 

is the post-stroke inflammation. Hyperglycemia is known to be associated with increased expression of 

several pro-inflammatory transcription factors, such as NF-κB. These factors regulate the inflammatory 

responses by increasing the pro-inflammatory cytokines and promoting the adhesion of inflammatory 

cells to the vascular endothelium, which leads to BBB breakdown
5,6,85

. Moreover, our experiments only 

inhibited the HIF-1 signaling in endothelial cells of HIF-1α
∆/∆ 

mice. In ischemic brain, VEGF is also 

expressed by reactive astrocytes and astrocytic end-feet lie in close proximity to microvascular 
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endothelium
76

. VEGF secreted from astrocytes may interact with VEGF receptors on the ischemic vessels 

and induce BBB leakage in a paracrine manner
86

.  

Numerous studies have reported increased brain injury in hyperglycemic animals after 

reperfusion. However, in the animals without reperfusion, hyperglycemia seemed to have no adverse 

effect and might even have been beneficial
87-89

. The question of when hyperglycemia has its most 

deleterious effects is of great clinical importance since it provides guidelines for optimal glycemic control 

in acute ischemic stroke. We tested the hypothesis that the adverse effect of hyperglycemia may become 

most evident during reperfusion. The current study showed that both chronic and acute insulin treatments 

suppressed HIF-1α expression in ischemic brain microvessels of diabetic mice, indicating that 

hyperglycemia-induced HIF-1α accumulation was mainly due to the high blood glucose during 

reperfusion. Moreover, acute glycemic control at post-ischemic reperfusion in previously untreated 

diabetic subjects inhibited hyperglycemia-induced BBB permeability and reduced brain injury. In 

conclusion, the results suggested that insulin treatment in reperfusion could abolish HIF-1α upregulation 

and ameliorate BBB disruption. Insulin is the most commonly used agent to regulate blood glucose and 

has been shown to reduce ischemic brain damage in animal models
90-93

. It is unclear whether its protective 

effects are due to blood glucose correction or due to its direct interaction with brain tissue. To 

differentiate the protective mechanism of insulin, we administrated STZ mice with a low dose of insulin 

(2U/kg) which was not able to correct the mice blood glucose levels. The dose was chosen based on 

previous studies which showed that insulin at 2U/kg was able to activate insulin receptor signaling 

pathway in the animal brain
94

. We found that the low dose insulin did not affect HIF-1α expression, BBB 

permeability or brain injury comparing with the non-treated diabetic mice, indicating that the effects of 

insulin are predominantly via alteration in blood glucose rather than activation of insulin receptors 

signaling pathways. Examining the levels of the phosphorylation of insulin receptors and the key down-

stream kinases in the animal brain will surely help to validate the activation of insulin receptor signaling 

pathway and further differentiate the mechanism of insulin’s effects. A previous study showed that most 

of insulin’s protective effect was abolished by co-administration of a glucose infusion in a MCAO rat 
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model 
93

, which is in line with our observations that insulin benefits ischemic stroke by reducing the 

blood glucose. Although it is still debatable whether glucose-lowering treatment improves clinical 

outcome in patients with ischemic stroke, our study on mouse model suggested a favorable outcome of 

glycemic control given at the onset of reperfusion, which provides additional rationale for glucose control 

in hyperglycemic stroke patients.  

There are several limitations that need to be recognized. First, this study used only male and 

young animals. Second, we used STZ-induced type I diabetic mice model with severe hyperglycemia 

(around 450-500 mg/dl). However, clinical evidence suggests that blood glucose levels in stroke patients 

present with hyperglycemia at admission range between 140-200 mg/dl
4,95,96

. A mild-moderate 

hyperglycemia animal model will more closely resemble the clinical situation. In addition, we only 

examined the BBB permeability and neurological outcomes at 24 h reperfusion. Additional studies are 

warranted under conditions of a longer post-ischemia period which will provide long-term functional 

recovery information in stroke animals. Third, the ischemia was induced by the intraluminal suture 

occlusion of MCA mouse models. Unlike clinical stroke, there is no true clot in this model and thus no 

platelet or thrombus breakdown products released into the post-ischemic tissue, which could modulate 

reperfusion-induced BBB damage. In the future studies, a humanized thromboembolic clot model can be 

used to better recapitulate the clinical scenario where the clot persists with slow spontaneous reperfusion. 

In the present study, we found that hyperglycemia significantly increased HIF-1α and its 

downstream factor VEGF expression in the ischemic brain microvessels after MCAO. The enhanced HIF-

1 expression might represent an important mechanism for aggravated ischemic damage, particularly BBB 

disruption, during hyperglycemic stroke. Our study suggested that targeting HIF-1α may provide a novel 

therapeutic option for BBB protection in ischemic stroke patients with admission hyperglycemia.  
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CHAPTER 5 Conclusions and Outlooks 

In summary, this dissertation systemically explored two aspects of HIF-1 in ischemic stroke. 

First, neuronal expression of HIF-1α and its target factors EPO and GLUT-3 was upregulated inthe 

ischemic brain of rodents pretreated withantioxidant NAC, which was correlated with reduction in brain 

infarct and neurological deficits. Suppressing HIF-1 activity by HIF-1α inhibitors or specific knock-out of 

neuronal HIF-1α abolished NAC’s neuroprotective effects. NAC stabilized HIF-1α by enhancing its 

interaction with Hsp90. The study suggests that neuronal HIF-1 is an important mediator of NAC-induced 

neuroprotection in experimental ischemic stroke models. Indeed, many protective agents used to treat 

ischemic stroke in pre-clinical research have been reported to act via HIF-1 induction. HIF-1 activation 

can induce multiple target factors to minimize damage and promote repair. From a therapeutic stand-

point, this is attractive, since clinical trials with agents targeting single aspect of cell death in ischemic 

cascade have had disappointing results. In general, the therapeutic potential of development and use of 

small molecule HIF-1α stabilizers (PHD inhibitors) to improve cell survival after injury is gaining 

popularity in many different fields. Such drugs could provide significant protection for a variety of 

different cells during injury and pathological situations such as stroke. However, a major caveat, clear 

from the study outlined above, is that not all consequences of HIF-1 activation are beneficial and some 

can even be deleterious.  

A second focus of this dissertation explored the mechanism of hyperglycemia-aggravated BBB 

disruption in ischemic stroke. As shown in Chapter 4, hyperglycemia induced higher expression of HIF-

1α and its down-stream VEGF in brain microvessels after MCAO/reperfusion, which was in correlation 

with exacerbated BBB leakage, TJ disruption and increased brain damage. Specific inhibition of 

endothelial HIF-1α ameliorated BBB breakdown and brain infarction in diabetic animals. The study 

suggests that HIF-1 plays an important role in hyperglycemia-induced exacerbation of BBB disruption in 

ischemic stroke. Since this study shows that HIF-1 may disturb BBB function, the applications of agents 

that induce HIF-1α must be treated with caution. Enhanced edema and influx of other blood-borne 
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molecules as a result of increased BBB permeability will increase intra-cranial pressure and the transport 

of potentially detrimental substances into brain parenchyma. Additionally, the doses applied and the 

chemical toxicity of the PHDs inhibitors could also significantly modify cellular responses and contribute 

to damage. Thus the adverse effects of disrupted BBB integrity must be carefully assessed when 

administrating HIF-1 stabilizing drugs. It must also be emphasized, however, the timing of the 

stabilization of HIF-1 and the regions being targeted will likely be instrumental in obtaining a positive 

outcome during and after treatment and must also be taken into consideration.  

Overall considering its multifunctional roles, differential effects on different cell types and 

double-edged sword mode of action, it seems unlikely that that HIF-1α stabilization can be a magic 

solution to improving brain cell survival after injury. Future studies may focus on combination of 

thrombolytic treatment and HIF-1 stabilization. Additionally, since therapeutic activation of HIF-1 is 

likely to mimic the effects of hypoxia preconditioning, stabilization of HIF-1α in pretreatment may prove 

particularly useful in situations in which cerebral ischemia can be anticipated such as brain or heart 

surgery, cardiac arrest, and respiratory distress. Further studies to determine the full extent of HIF-1’s 

beneficial and detrimental effects will undoubtedly provide better clarification of its therapeutic potential. 

Although the study above indicates neuron-specific HIF-1α knock-out is detrimental while 

silencing HIF-1α in endothelial cells is protective via inhibiting BBB leakage, we do not exclude the 

possibility that HIF-1 can also play a negative role in neurons and a positive role in endothelial cells. In 

fact, HIF-1-mediated VEGF expression in endothelial cells is important for angiogenesis in the late 

recovery process. In addition, early upregulation of HIF-1 induces pro-apoptotic genes expression in 

neurons. Generally, in the view of risk of edema formation and deterioration of the neurological state, 

such risks are particularly relevant in the very early stroke phase. Since it is technically impossible to 

specific delivery HIF-1 stabilizer or inhibitor to a certain cell type, understanding the timing of HIF-1’s 

effect is very important for developing novel therapeutics. Also, it is helpful to conduct an in-depth 

exploration and validation of the molecular targets of HIF-1, including temporal and cell-specific 

expression and function profile in relation to the pathophysiology of stroke. Development of therapeutic 
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strategies targeting HIF-1 must take both the positive and negative aspects of the stroke response into 

consideration, to ensure that the treatments are administrated under the conditions that are most 

appropriate and that will produce greatest benefit.  

In the future, it will be important to explore the effect of inducing or inhibiting HIF-1α at 

different time point after ischemia. The current study is performed in a way in favor of a treatment effect 

by administrating NAC before experimental injury occurs. Moreover, by using transgenic mice, HIF-1α is 

also inhibited before the start of ischemia. This may be appropriate to prove HIF-1’s differential role in 

different cell types, but the clinical situation is not sufficiently reflected. In order to test the whether HIF-

1 stabilization may work in human clinical situation without inducing significant BBB leakage, the test 

HIF-1α stabilizer can be administrated at both early phase (less that 3 h after ischemia) and late phase 

(more than 12 h). In addition, longer follow-up period for assessment of the outcome will be used instead 

of 24 h. Apart from measuring histological infarct volume,the functional assessmentwill be evaluated by 

animal behavior studies. Furthermore, conflicting observations on how ROS modulate HIF-1α have been 

reported. Our study showed that antioxidant may stabilize HIF-1α in ischemic brain by enhancing its 

interaction with Hsp90. However, there is another school of thought that an increase in ROS stabilizes 

HIF-1α by inhibiting PHDs activity. Due to the controversial results, further study is needed to elucidate 

the exact mechanism of HIF-1α degradation/accumulation induced by ROS generated in ischemic brain. 

 


