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NEGATIVE DIFFUSION AND TRAVELING WAVES IN HIGH
DIMENSIONAL LATTICE SYSTEMS∗
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Abstract. We consider bistable reaction diffusion systems posed on rectangular lattices in two
or more spatial dimensions. The discrete diffusion term is allowed to have positive spatially periodic
coefficients, and the two spatially periodic equilibria are required to be well ordered. We establish
the existence of traveling wave solutions to such pure lattice systems that connect the two stable
equilibria. In addition, we show that these waves can be approximated by traveling wave solutions to
systems that incorporate both local and nonlocal diffusion. In certain special situations our results
can also be applied to reaction diffusion systems that include (potentially large) negative coefficients.
Indeed, upon splitting the lattice suitably and applying separate coordinate transformations to each
sublattice, such systems can sometimes be transformed into a periodic diffusion problem that fits
within our framework. In such cases, the resulting traveling structure for the original system has a
separate wave profile for each sublattice and connects spatially periodic patterns that need not be
well ordered. There is no direct analogue of this procedure that can be applied to reaction diffusion
systems with continuous spatial variables.
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1. Introduction. In this paper we consider the family of nonlocal systems

(1.1) ut(x, t) = γuxx(x, t) +

N∑
j=0

Aj [u(x+ rj , t)− u(x, t)] + f
(
u(x, t) ; ρ

)
,

parametrized by ρ ∈ V ⊂ R. The diffusion constant satisfies γ ≥ 0, the function u
takes values in R

n for some n ≥ 2, the real (n × n)-matrices Aj have nonnegative
entries, and the Jacobian D1f(· ; ρ) has nonnegative off-diagonal elements. The shifts
r0 < r1 < · · · < rN can be taken to be both positive and negative, i.e., r0 < 0 < rN .
We are interested in nonlinearities f that are bistable. In particular, writing 0 =
(0, . . . , 0) ∈ Rn and 1 = (1, . . . , 1) ∈ Rn, we assume that f(0; ρ) = f(1; ρ) = 0 are
two stable equilibria for all ρ ∈ V and that all other equilibria in the cube [0, 1]n are
unstable.

We are particularly interested in traveling wave solutions of (1.1) that connect
the two stable equilibria. Such solutions can be written in the form u(x, t) = φ(x−ct)
for some wave speed c ∈ R and some wave profile φ : R → Rn that satisfies the limits

(1.2) lim
ξ→−∞

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = 1.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1069

It is not hard to see that this pair (φ, c) must satisfy the differential equation

(1.3) −cφ′(ξ) = γφ′′(ξ) +
N∑
j=0

Aj [φ(ξ + rj , t)− φ(ξ)] + f
(
φ(ξ) ; ρ

)
.

Due to the presence of the shifts in the argument of φ that are both positive and
negative, the system (1.3) is referred to as a functional differential equation of mixed
type (MFDE).

Our contribution in this paper is to show that for each γ ≥ 0, (1.1) has a family
of traveling wave solutions, parametrized by ρ ∈ V . This family depends smoothly
on the parameter ρ whenever γ > 0 or the wave speed c is nonzero. In addition, upon
fixing the parameter ρ, traveling waves for (1.1) with γ = 0 can be approximated by a
sequence of traveling waves for (1.1) with γ = γn ↓ 0. As such, we generalize previous
results obtained in [32, 25] for scalar versions of (1.3), i.e., where n = 1.

Lattice differential equations. Let us emphasize here that our interest in (1.1)
is rather indirect. Indeed, our primary motivation for this paper comes from the study
of differential equations posed on lattices in two or more spatial dimensions. Consider,
for example, the system

(1.4)
d

dt
uij = αij [ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij ] + g(uij , ρ),

posed on the two-dimensional lattice (i, j) ∈ Z2. A typical smooth family of bistable
nonlinearities is given by the cubics

(1.5) g(u ; ρ) = u(u− ρ)(1 − u)

with 0 < ρ < 1. We now discuss a number of different scenarios for the diffusion
coefficients αij .

Positive diffusion. In the spatially homogeneous case αij = α > 0, the lattice
differential equation (LDE) (1.4) reduces to the system

(1.6)
d

dt
uij = α[ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij ] + g(uij , ρ),

which is often referred to as the two-dimensional discrete Nagumo equation. It has
been used to describe phenomena such as phase transitions in Ising models [3] and
to develop pattern recognition algorithms in image processing [11, 10]. Many authors
have studied this LDE, focusing primarily on the richness of the set of equilibria [30]
and the existence of traveling wave solutions [32, 43].

The LDE (1.6) with α = h−2 can be seen as the discretization of the PDE

(1.7) ∂tu = Δu+ f(u)

on a two-dimensional grid with node spacing h > 0. However, the two equations are
known to display significant differences in dynamical behavior, especially when α > 0
is small and one is far away from the continuous limit. In order to illustrate this, let us
consider waves that travel through the lattice in the direction (σ1, σ2) = (cos θ, sin θ).

Substituting the Ansatz

(1.8) uij(t) = φ
(
(i, j) · (σ1, σ2)− ct

)
= φ

(
iσ1 + jσ2 − ct

)D
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1070 H. J. HUPKES AND E. S. VAN VLECK

into (1.6), we arrive at the system

(1.9) −cφ′(ξ) = α[φ(ξ+σ1)+φ(ξ+σ2)+φ(ξ−σ1)+φ(ξ−σ2)−4φ(ξ)]+g
(
φ(ξ); ρ

)
= 0,

which is a scalar version of the MFDE (1.3) with γ = 0. As above, we require the
limits

(1.10) lim
ξ→−∞

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = 1.

Notice that the direction (σ1, σ2) appears explicitly in the traveling wave MFDE
(1.9), which does not happen for the PDE (1.7). As a consequence, the LDE (1.6)
admits spatial anisotropy in the sense that the wave speed c depends on the angle θ
of propagation through the lattice. Numerical illustrations of this fact can be found
in [25, 14, 27].

Notice furthermore that the traveling wave MFDE (1.9) becomes singular in the
limit c → 0. One of the consequences of this fact is that typically an entire range of
values of ρ can exist for which the wave speed satisfies c = 0. This phenomenon is
called propagation failure and does not occur for the PDE (1.7). It has been studied
extensively in [5], where one replaces the cubic nonlinearity g by an idealized cartoon
nonlinearity to obtain explicit solutions to (1.9). For each propagation angle θ, the
quantity ρ∗(θ) is defined to be the supremum of values ρ > 1

2 for which the wavespeed
satisfies c = 0. It is proven that this critical value ρ∗(θ) typically satisfies ρ∗ > 1

2 ,
depends continuously on θ when tan θ is irrational, and is discontinuous when tan θ
is rational or infinite. By now there is plenty of numerical [14, 25] and theoretical
[33, 21] evidence to suggest that this behavior is not just an artifact of the idealized
nonlinearity g but also occurs in the case of the cubic nonlinearity (1.5).

Periodic diffusion. One of the advantages of using the discrete system (1.4) is that
it is relatively easy to model spatial inhomogeneities. Many physical systems have a
periodic spatial structure [17, 15, 36], so it is natural to study (1.4) with coefficients
αij that vary in a periodic fashion. For example, let us suppose that αij = αo > 0
whenever i + j is odd and αij = αe > 0 whenever i+ j is even, with αo �= αe. Upon
writing

(1.11) uij(t) =

{
φo

(
iσ1 + jσ2 − ct

)
for odd i+ j,

φe
(
iσ1 + jσ2 − ct

)
for even i+ j,

we find the traveling wave MFDE
(1.12)
−cφ′o(ξ) = φe(ξ + σ1) + φe(ξ − σ1) + φe(ξ + σ2) + φe(ξ − σ2)− 4φo(ξ) + g

(
φo(ξ); ρ

)
,

−cφ′e(ξ) = φo(ξ + σ1) + φo(ξ − σ1) + φo(ξ + σ2) + φo(ξ − σ2)− 4φe(ξ) + g
(
φe(ξ); ρ

)
,

which clearly can be written in the form (1.3) with γ = 0. Compared to (1.9), much
less is known about (1.12). In section 3.1 we discuss this issue further and show how
general periodic diffusion problems fit into our framework.

Negative diffusion. Although PDEs with negative diffusion are typically ill-posed,
the discrete system (1.4) with αij = α < 0 does not suffer from this problem. In [39]
phase transitions are discussed for a grid of particles that have visco-elastic interac-
tions, which leads naturally to an LDE with negative diffusion. We refer to [4] for
an analysis of this problem on a one-dimensional lattice. Earlier results that provide
additional motivation for studying this type of antidiffusion can be found in [6, 7].
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1071

In section 3.2 we discuss a two-dimensional lattice with negative diffusion and
show how the framework in this paper can be used to construct traveling waves for
this system in special situations. The key observation is that splitting the lattice into
odd and even sites and applying a separate rescaling to the two sublattices transforms
the negative diffusion scalar system into a spatially periodic system. Whether this
rescaling can be performed in such a way that the rescaled system is bistable on the
cube [0, 1]2 depends on the structure of the nonlinearity. If this can be done, the
original system with negative diffusion has a traveling checkerboard solution, in the
sense that the odd and even lattice sites each have a separate wave profile traveling
with a common speed.

Continuous vs. discrete Laplacian. Let us briefly discuss our reasons for
including the second derivative term in (1.3), which clearly does not appear in the
traveling wave equations for the LDEs discussed above. First, as we have seen above,
very interesting features of LDEs arise in the regime where waves are pinned to the
lattice. Since the traveling wave systems (1.9) and (1.12) become singular as c → 0,
numerical methods have considerable trouble resolving the shape of the wave profiles
in this regime. As illustrated in [1, 14, 25, 27], this difficulty can be overcome by adding
a small second order term as in (1.3). By understanding the limit γ ↓ 0 we can hence
study how well numerical methods can resolve the fine structure of propagation failure.

Besides this technical issue, there is also a physical reason to introduce a local
diffusion term in (1.1). Such a term arises naturally if we consider systems which
have local as well as nonlocal interactions, and it allows us to perform continuation
from systems with a continuous Laplacian to systems with a discrete Laplacian. We
refer to the Frenkel–Kontorova equations [38, 37] as an example in solid-state physics
where this is useful.

Existence of waves. By now, many authors have considered the existence of
wave-like solutions for dissipative LDEs, using a varied palette of techniques. A
significant portion of the work has focussed on spatially homogeneous LDEs with
positive discrete diffusion. The seminal work of Weinberger [42] is applicable to both
PDEs and LDEs and contains results on the existence of traveling waves primarily for
monostable nonlinearities but also for bistable systems. Using index theory, Zinner
[43] established the existence of traveling waves for the discrete Nagumo equation
posed on a one-dimensional lattice. Mallet-Paret developed a linear Fredholm theory
in [31] for MFDEs and employed this in [32] to obtain structural results for scalar
versions of (1.1) with γ = 0. Bates, Chen, and Chmaj [2] used implicit function
theorem arguments to obtain the existence of traveling waves for LDEs with long-
range interactions that can be both attracting and repelling. In [23] Hupkes and
Sandstede developed a version of singular perturbation theory to construct traveling
waves for the two-component discrete FitzHugh-Nagumo system. In [22] modulated
traveling waves were constructed using a global center manifold analysis for (1.1) with
γ > 0. Finally, in a series of papers [34, 35] Shen studied scalar versions of (1.1) with
γ > 0 but with a time dependent nonlinearity. She employed comparison principles
to obtain existence, uniqueness, and stability results for wave-like solutions.

Main techniques. Roughly speaking, the arguments used to establish our main
results can be split into two main parts. In the first part, we fix the parameter ρ and
the constant γ > 0 and construct a traveling wave solution for (1.1). In the second
part, we show that traveling waves persist under small perturbations of ρ and γ. This
allows us to take the limit γ → 0 and obtain families of traveling waves for (1.1) even
for γ = 0.
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1072 H. J. HUPKES AND E. S. VAN VLECK

The techniques we use to attain the first goal differ from the approach taken in
[32, 25]. Indeed, the latter papers construct a global homotopy that transforms the
system (1.1) into a reference system that admits explicit solutions. The problem is
that this homotopy needs to be embedded into a so-called normal family that satisfies
a number of detailed technical constraints. It is unclear how these conditions can be
naturally generalized to higher dimensional systems.

In this paper, we avoid using any global homotopies or topological arguments
and directly construct traveling waves for (1.1) with γ > 0. In particular, we do
not follow the route taken in the classical papers [41, 12] where traveling waves are
constructed for PDE versions of (1.1) with γ > 0 that do not contain the nonlocal
terms but may include convective terms. Instead, we base our approach on the elegant
techniques developed by Chen [9], who studied scalar versions of (1.1) with γ > 0 and
constructed traveling waves using only comparison principles. In sections 4–7 we
adapt these results for use in our higher dimensional setting. Although the main
spirit of the arguments remains the same, significant modifications need to be made
in order to account for the increased complexity of the cube [0, 1]n that contains the
dynamics of (1.1) as compared to the interval [0, 1].

The analysis in the second part of this paper does build upon ideas introduced in
[32] for γ = 0 and [25] for γ > 0. In particular, if (φ, c) is a traveling wave solution to
(1.1), we consider the linear operator

(1.13) [Λc,γv](ξ) = −γv′′(ξ)− cv′(ξ)−
N∑
j=0

Aj [v(ξ + rj)− v(ξ)]−D1f(φ(ξ); ρ)v(ξ)

associated to the linearization of (1.3). We show in section 8 that Λc,γ is a Fredholm
operator and has a one-dimensional kernel that is spanned by the strictly positive
function φ′. Once established, this Krein–Rutman-type result allows the use of an
implicit function theorem argument to construct a local branch of traveling wave
solutions to (1.1) that depend smoothly on the parameter ρ.

The main difficulty towards understanding Λc,γ is that one needs to rule out
potential kernel elements that decay as ξ → ±∞ at a rate that is faster than any
exponential. Indeed, the ad hoc arguments used in [32] for this purpose cannot be
immediately transferred to the high dimensional setting of (1.3). Similarly, the ap-
proach taken in [33] to prove a related Krein–Rutman result exploits special structural
properties of the underlying system that are absent here.

Let us mention that recent results obtained in [8] actually cover some of the
cases considered here. Indeed, in [8] the authors construct traveling wave solutions
to LDEs that are posed on one-dimensional lattices and have periodic diffusion. It
turns out that whenever the pair (σ1, σ2) is rationally related, one can construct a
one-dimensional LDE covered by [8] for which the traveling wave system is equivalent
to (1.12). However, the techniques used in [8] differ considerably from those used here.
In particular, they work only for γ = 0 and as such cannot account for the transition
γ ↓ 0. In addition, the intricate parameter dependence of waves is not studied.

We conclude this introduction by giving a brief overview of the structure of this
paper. In section 2 we state our assumptions and main results, and in section 3 we
show how these results can be applied to three specific examples. In section 4 we state
some basic comparison principles for (1.1). In section 5 we study spatially invariant
solutions to (1.1) and analyze the separatrix that divides the basins of attraction for
the two stable zeroes of f . In sections 6–7 we consider the evolution of a smooth
initial condition for (1.1) with γ > 0 and prove that it converges to a traveling wave.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1073

In section 8 we study the traveling wave system (1.3) directly. In particular, we
generalize the local continuation results obtained by Mallet-Paret [32] to the current
high dimensional setting. We prove our main results in section 9 and end with a
discussion in section 10.

2. Main results. In this section we state our main results. We recall our main
family of nonlocal systems

(2.1) ∂tu(x, t) = γ∂xxu(x, t) +

N∑
j=0

Aj [u(x+ rj , t)− u(x, t)] + f
(
u(x, t) ; ρ

)
,

parametrized by ρ ∈ V , where we take V to be a closed subset of R. The diffusion
constant satisfies γ ≥ 0, the shifts are ordered as r0 < r1 < . . . < rN , and the function
u takes values in Rn for some n ≥ 2. For convenience, we introduce the quantities

(2.2) rmin := min
0≤j≤N

rj = r0, rmax := max
0≤j≤N

rj = rN .

Before we state the rest of our assumptions on (2.1), we need to introduce
some notation. First of all, we recall the shorthands 0 = (0, . . . , 0) ∈ Rn and
1 = (1, . . . , 1) ∈ R

n. Whenever B and C are two (p×q)-matrices, we use the notation
B ≥ C to indicate that Bij ≥ Cij holds for all integers 1 ≤ i ≤ p and 1 ≤ j ≤ q, while
B > C implies that Bij > Cij for all such i and j. The relations ≤ and < are defined
in the analogous fashion. Obviously, all these orderings transfer naturally to vectors.

We start by stating our assumption on the matrices {Aj}. Roughly speaking, all
these matrices must be nonnegative and together they must mix all the components
of u. Since adding a shift rN+1 = 0 does not affect (2.1), we caution the reader that
this condition should be read together with (2.5) below.
(HA) For all 0 ≤ j ≤ N , the n × n-matrix Aj satisfies Aj ≥ 0. In addition, the

matrix

(2.3) A :=

N∑
j=0

Aj

is irreducible in the sense that for each pair (i, j) ∈ {1, . . . , n}2 that has i �= j,
there exists an integer k ≥ 2 and a sequence 
1, . . . 
k with 
1 = i and 
k = j
such that

(2.4) A�1�2A�2�3 . . .A�k−1�k �= 0.

Here Apq denotes the (p, q)th element of the (n× n)-matrix A.
The following three conditions pertain to the nonlinearity f . They state that for each
parameter ρ ∈ V , the function f(· ; ρ) is order preserving in the terminology of [18]
and bistable when restricted to a neighborhood of the cube [0, 1]n.
(Hf1) The function f : Rn × V → R

n is C2-smooth. In addition, for any ρ ∈ V and
u ∈ Rn, there exists κ = κ(u, ρ) > 0 such that

(2.5) D1f(u ; ρ) ≥ A− κ(u, ρ)I.

(Hf2) For all ρ ∈ V , we have f(0 ; ρ) = f(1 ; ρ) = 0. In addition, if for some ρ ∈ V
and λ ∈ C we have

(2.6) det[D1f(v ; ρ)− λ] = 0

with either v = 0 or v = 1, then in fact Reλ < 0.
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(Hf3) For all ρ ∈ V , the set of vectors q ∈ Rn for which 0 < q < 1 and f(q; ρ) = 0
both hold is finite. In addition, for each such q there exists a λ ∈ C with
Reλ > 0 such that

(2.7) det[D1f(q ; ρ)− λ] = 0.

Our final two assumptions are technical conditions on the structure of the system
(2.1). In particular, (HS1) states that any off-diagonal elements of D1f −A are either
identically zero or strictly positive. This should be compared to condition (ii) in [32,
sec. 2]. The second condition (HS2) states that it is impossible to rewrite (2.1) in
such a way that all the shifts are either nonnegative or nonpositive. Let us emphasize
that we fully expect our results to remain valid without this condition. The only
reason that we include it is to keep our arguments in section 8 relatively streamlined.
Indeed, the proofs in [32] often have to use separate techniques for the two special
cases rmin = 0 and rmax = 0. In our current high dimensional setting this would
become even more convoluted.
(HS1) Consider any pair (k, l) ∈ {1, . . . , n}2 with k �= l. Then for each ρ ∈ V , the

function

(2.8) g(u) = fk(u; ρ)−Aklul

either satisfies ∂ul
g(u; ρ) > 0 for all u ∈ Rn or ∂ul

g(u; ρ) = 0 for all u ∈ Rn.
(HS2) Pick any ρ ∈ V and σ ∈ Rn and consider the function ũ that is given by

ũi(x, t) = ui(x + σi, t). For any choice of Ñ ≥ 1, F : (Rn)
˜N+1 → Rn and

r̃0 < r̃1 < · · · < r̃
˜N that allows us to rewrite (2.1) as

(2.9) ∂tũ(x, t) = γ∂xxũ(x, t) + F
(
ũ(x + r̃0), . . . , ũ(x+ r̃

˜N )
)
,

we have r̃0 < 0 < r̃
˜N .

Our first main result states that (2.1) admits a smooth family of traveling wave
solutions whenever γ > 0. It can be seen as the direct generalization of [25, Thm. 3.1],
which applies only to scalar systems.

Theorem 2.1. Suppose that (HA), (Hf1)–(Hf3), and (HS1)–(HS2) are all sat-
isfied. Then for any γ > 0, there exist C1-smooth functions cγ : V → R and
Pγ : V →W 2,∞(R,Rn) that satisfy the following properties.

(i) For any ρ ∈ V , the function P = Pγ(ρ) has the limits

(2.10) lim
ξ→−∞

P (ξ) = 0, lim
ξ→+∞

P (ξ) = 1

and satisfies P ′ > 0.
(ii) For any ρ ∈ V , the function

(2.11) u(x, t) = Pγ(ρ)
(
x− cγ(ρ)t

)
satisfies (2.1).

(iii) Consider any P ∈ W 2,∞(R,Rn) that satisfies the limits

(2.12) lim
ξ→−∞

P (ξ) = 0, lim
ξ→+∞

P (ξ) = 1

and suppose that u(x, t) = P (x−ct) satisfies (2.1) for some ρ ∈ V and c ∈ R.
Then we have c = cγ(ρ) and P (·) = Pγ(ρ)(· − ϑ) for some ϑ > 0.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1075

Our second main result shows that the traveling waves obtained in Theorem 2.1
can be used to approximate solutions to (2.1) at the critical value γ = 0. It generalizes
[25, Thm. 3.10], which as before only applies to scalar systems.

Theorem 2.2. Suppose that (HA), (Hf1)–(Hf3), and (HS1)–(HS2) are all satis-
fied. Consider two sequences γn > 0 and ρn ∈ V that have γn → γ∗ and ρn → ρ∗ as
n → ∞ for some γ∗ ≥ 0 and ρ∗ ∈ V . Then, possibly after passing to a subsequence,
we have cγn(ρn) → c∗ ∈ R and the limit

(2.13) P∗(ξ) := lim
n→∞Pγn(ρn)(ξ)

exists pointwise. The function P∗ is nondecreasing and satisfies the limits

(2.14) lim
ξ→−∞

P∗(ξ) = 0, lim
ξ→+∞

P∗(ξ) = 1.

If either γ∗ > 0 or c∗ �= 0, then the function u∗(x, t) := P∗(x − c∗t) satisfies (2.1)
with γ = γ∗ and ρ = ρ∗. On the other hand, if γ∗ = 0 and c∗ = 0, then the time-
independent function

(2.15) u∗(x, t) := lim
ξ↓x

P∗(ξ)

satisfies (2.1) for all x ∈ R and t ∈ R.
Our final main result describes the structure of the family of traveling wave so-

lutions to (2.1) at γ = 0 and should be seen as a generalization of [32, Thm. 2.1].
As in the latter result, the wave speed c is uniquely defined for all ρ ∈ V and the
accompanying wave profiles are unique whenever c �= 0.

Theorem 2.3 (cf. [32, Thm. 2.1]). Suppose that (HA), (Hf1)–(Hf3), and (HS1)–
(HS2) are all satisfied and fix γ = 0. Then there exists a continuous function c0 :
V → R that satisfies the following properties.

(i) Writing V∗ ⊂ V for the open set, where c0(ρ) �= 0, the function c0 is C1-
smooth on V∗.

(ii) There exists a C1-smooth function P0 : V∗ →W 1,∞(R,Rn) such that for any
ρ ∈ V∗, the function P = P0(ρ) has the limits

(2.16) lim
ξ→−∞

P (ξ) = 0, lim
ξ→+∞

P (ξ) = 1,

satisfies P ′ > 0, and generates a solution to (2.1) with γ = 0 by writing

(2.17) u(x, t) = P
(
x− c0(ρ)t

)
.

(iii) For any ρ ∈ V \ V∗, there exists a nondecreasing function P : R → Rn that
has the limits

(2.18) lim
ξ→−∞

P (ξ) = 0, lim
ξ→+∞

P (ξ) = 1,

such that the time-independent function

(2.19) u(x, t) = P (x)

satisfies (2.1).
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1076 H. J. HUPKES AND E. S. VAN VLECK

(iv) Consider any c �= 0 and a function P ∈W 1,∞(R,Rn) that satisfies the limits

(2.20) lim
ξ→−∞

P (ξ) = 0, lim
ξ→+∞

P (ξ) = 1.

Suppose that u(x, t) = P (x − ct) satisfies (2.1) with γ = 0 for some ρ ∈ V .
Then we must have c = c0(ρ) and P (·) = P0(ρ)(· − ϑ) for some ϑ > 0. In
particular, one has ρ ∈ V∗.

(v) Consider any nondecreasing function P : R → Rn that satisfies the limits

(2.21) lim
ξ→−∞

P (ξ) = 0, lim
ξ→+∞

P (ξ) = 1.

If u(x, t) = P (x) satisfies (2.1) with γ = 0 for some ρ ∈ V , then we must
have ρ ∈ V \ V∗.

3. Examples. In this section we illustrate our main results by considering three
examples, all of which are posed on the two-dimensional spatial lattice Z2. We use
the nearest-neighbor discrete Laplacian

(3.1) [Δ+u]ij = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij ,

together with the next-nearest-neighbor version

(3.2) [Δ×u]ij = ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1 − 4uij.

In the first example, the diffusion coefficients are positive but spatially periodic. The
second example considers a system that is spatially homogeneous but that has negative
nearest-neighbor diffusion. We show how the problem can be transformed into an
equivalent spatially periodic system with positive diffusion coefficients. The third
example builds upon the second by adding positive next-nearest-neighbor interactions.
In all cases we establish that the assumptions (HA), (Hf1)–(Hf3), and (HS1)–(HS2)
are all satisfied under reasonable conditions on the nonlinearity.

3.1. Periodic diffusion. In this example we study the system

(3.3) u̇ij = αij [Δ+u]ij + gij(uij ; ρ), i, j ∈ Z.

The diffusion coefficients satisfy αij > 0, and the system is periodic in the sense that
there exist integers p ≥ 1 and q ≥ 1 such that the identities

(3.4) αij = αi+p,j = αi,j+q, gij = gi+p,j = gi,j+q

hold for all i, j ∈ Z.
Let us decompose any pair (i, j) ∈ Z2 as

(3.5) i = i1p+ i2, 0 ≤ i2 < p, j = j1q + j2, 0 ≤ j2 < q.

Introducing pq functions vi2,j2 : Z2 × R → R, we write

(3.6) uij(t) = vi2,j2ij (t)

and look for a traveling wave solution

(3.7) vi2,j2ij (t) = φi2,j2(iν1 + jν2 − ct),
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1077

which travels through the lattice in the direction (ν1, ν2). Here for each pair of integers
0 ≤ i2 < p and 0 ≤ j2 < q, the function φi2,j2 : R → R satisfies the limits

(3.8) lim
ξ→−∞

φi2,j2(ξ) = 0, lim
ξ→+∞

φi2,j2(ξ) = 1.

The traveling wave system can be written as

(3.9)

−cφ′i2,j2(ξ) = αi2,j2 [φi2+1,j2(ξ + ν1) + φi2,j2+1(ξ + ν2)

+φi2−1,j2(ξ − ν1) + φi2,j2−1(ξ − ν2)]

+ gi2,j2
(
φi2,j2(ξ); ρ

)
with the understanding that φi2±p,j2 = φi2,j2±q = φi2,j2 . Upon embedding Rp × Rq

into Rpq, this can be written as an equation of the form (1.3) with n = pq.
The assumptions (Hf1)–(Hf3) and (HS1) can be satisfied by picking each of the

nonlinearities fij to be bistable, e.g.,

(3.10) gij(u; ρ) = u(1− u)(u− ρ), 0 < ρ < 1.

The irreducibility of the matrix A appearing in (HA) follows easily from the fact that
each point in the grid Z2 can reach any other point by a series of vertical and horizontal
jumps of unit length, mirroring the interactions encoded in the operator Δ+. Finally,
to verify (HS2) it suffices to consider σ ∈ Rp×Rq and look at the components of (3.9)
for which σi2,j2 is maximal and minimal. The former components are guaranteed to
have at least one positive shift and the latter components have at least one negative
shift.

3.2. Negative diffusion. In this example we consider a model that has repelling
nearest-neighbor interactions. In particular, we consider the system

(3.11) u̇ij = α[Δ+u]ij + g
(
uij ; ρ

)
, i, j ∈ Z

with α < 0. Let uij = vij for i+ j even and uij = wij for i+ j odd. Then (3.11) can
be rewritten as

(3.12)
v̇ij = α[wi+1,j + wi−1,j + wi,j+1 + wi,j−1 − 4vij ] + g

(
vij ; ρ

)
,

ẇij = α[vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4wij ] + g
(
wij ; ρ

)
.

The equilibrium solutions satisfy

(3.13) 0 = 4α(w − v) + g
(
v; ρ

)
, 0 = 4α(v − w) + g

(
w; ρ

)
,

which is the same pair of equations as encountered in the one-dimensional setting of
[4] upon replacing 4α by 2α.

Picking any pair of equilibria (v−, w−) and (v+, w+), let us introduce the new
variables

(3.14)
xij = (vij − v−)/(v+ − v−),

yij = (wij − w−)/(w+ − w−).

Using these new variables (3.12) transforms into the system

(3.15)
ẋij = de[yi+1,j + yi−1,j + yi,j+1 + yi,j−1 − 4xij ] + ge

(
xij ; ρ

)
,

ẏij = do[xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4yij ] + go
(
yij ; ρ

)D
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1078 H. J. HUPKES AND E. S. VAN VLECK

with modified diffusion constants

(3.16) de = α(w+ − w−)/(v+ − v−), do = α(v+ − v−)/(w+ − w−)

and modified nonlinearities

(3.17)

ge(x; ρ) = (v+ − v−)−1g
(
(v+ − v−)x + v−; ρ

)
+ 4α

v+−v−
[x
(
(v+ − v−)− (w+ − w−)

)
+ (v− − w−)],

go(y; ρ) = (w+ − w−)−1g
(
(w+ − w−)y + w−; ρ

)
+ 4α

w+−w− [y
(
(w+ − w−)− (v+ − v−)

)
− (v− − w−)].

In order to have de, do > 0 it suffices to demand (w+ − w−)(v+ − v−) < 0. Different
choices for equilibria that satisfy this requirement are listed in the table in section 5.3
of [4] for the cubic nonlinearity g(u; ρ) = u(1− u)(u− ρ).

Upon looking for a traveling wave solution

(3.18) xij(t) = φ1(iν1 + jν2 − ct), yij(t) = φ2(iν1 + jν2 − ct),

we can write the resulting traveling wave system as

(3.19) −cφ′(ξ) =
3∑

j=0

Aj [φ(ξ + rj)− φ(ξ)] + f
(
φ(ξ); ρ

)
.

Here the shifts are given by

(3.20) r0 = ν1, r1 = ν2, r2 = −ν1, r3 = −ν2,

while the matrices Aj ≥ 0 are given by

(3.21) A0 = A1 = A2 = A3 =

(
0 de
d0 0

)
,

and the nonlinearity f is defined as

(3.22) f
(
φ; ρ

)
=

(
−ge(φ1; ρ) + 4de(φ2 − φ1)
−go(φ2; ρ) + 4do(φ1 − φ2)

)
.

This allows us to compute
(3.23)
D1f(φ; ρ)

=

(
−(D1ge(φ1; ρ) + 4de) 4de

4do −(D1go(φ2; ρ) + 4do)

)
=

(
−[D1g

(
(v+ − v−)φ1 + v−; ρ

)
+ 4α] 4de

4do −[D1g
(
(w+ − w−)u2 + w−; ρ

)
+ 4α]

)
.

Clearly the irreducibility condition on A is satisfied together with (Hf1), (HS1), and
(HS2). In addition, the bistability criteria (Hf2)–(Hf3) can be verified by studying the
table in [4, sec. 5.3]. In the bistable case, we hence see that (3.12) admits a traveling
wave solution that connects (v−, w−) to (v+, w+).
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1079

3.3. Mixed diffusion. In this example we expand upon the model in section 3.2
by adding an attracting next-nearest-neighbor interaction. In particular, we consider
the system

(3.24) u̇ij = α[Δ+u]ij + β[Δ×u]ij + g
(
uij ; ρ

)
, i, j ∈ Z

with α < 0 ≤ β. We emphasize that there is no direct condition on the size of either α
or β, so our setup differs considerably from the perturbative context of [2]. We again
write uij = vij for i+ j even and uij = wij for i+ j odd, which transforms (3.24) into

(3.25)
v̇ij = α[wi+1,j + wi−1,j + wi,j+1 + wi,j−1 − 4vij ] + β[Δ×v]ij + g

(
vij ; ρ

)
,

ẇij = α[vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4wij ] + β[Δ×w]ij + g
(
wij ; ρ

)
.

Notice that the equilibrium conditions (3.13) remain unchanged. In particular, we
can repeat the coordinate change (3.14) to obtain the equivalent system

(3.26)
ẋij = de[yi+1,j + yi−1,j + yi,j+1 + yi,j−1 − 4xij ] + β[Δ×x]ij + ge

(
xij ; ρ

)
,

ẏij = do[xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4yij] + β[Δ×y]ij + go
(
yij ; ρ

)
,

in which the diffusion constants de, do and the nonlinearities ge, go are again given
by (3.16)–(3.17).

Substitution of the traveling wave ansatz (3.18) now yields the system

(3.27) −cφ′(ξ) =
7∑

j=0

Aj [φ(ξ + rj)− φ(ξ)] + f
(
φ(ξ); ρ

)
with shifts

(3.28)
r0 = ν1, r1 = ν2, r2 = −ν1, r3 = −ν2,
r4 = ν1 + ν2, r5 = ν1 − ν2, r6 = −ν1 + ν2, r7 = −ν1 − ν2

and matrices

(3.29) A0 = A1 = A2 = A3 =

(
0 de
d0 0

)
, A4 = A5 = A6 = A7 = βI.

The nonlinearity f is still given by (3.22). In particular, the presence of the next-
nearest-neighbor interactions does not affect the location of the equilibria or their
stability. This means that our main results are applicable to (3.24) whenever the
conditions described in section 3.2 hold for (3.11).

4. Preliminary results. In this section we obtain preliminary results on the
nonlinear system

(4.1) ∂tu(x, t) = [Du](x, t) + f
(
u(x, t)

)
.

Here we have introduced the nonlocal differential operator

(4.2) [Du](x, t) = γ∂xxu(x, t) + [J ∗ u](x, t),

in which

(4.3) [J ∗ u](x, t) =
N∑
j=0

Aj [u(x+ rj , t)− u(x, t)].

We impose the following condition on the nonlinearity f to reflect the fact that we
have dropped the dependence on the parameter ρ.
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(h)§4 The function f : Rn → Rn satisfies the conditions (Hf1)–(Hf3) with the
understanding that V = {0} and f(· ; 0) = f(·).

Before we proceed, we need to fix the function space in which we will consider
(4.1). To this end, we introduce the spaces
(4.4)
BC0(R,Rn) = {u ∈ C(R,Rn) | ‖u‖BC0 := supξ∈R

|u(ξ)| <∞},
BC2(R,Rn) = {u ∈ C2(R,Rn) | ‖u‖BC2 := max{‖u‖BC0 , ‖u′‖BC0 , ‖u′′‖BC0} <∞}.

We also introduce the set X that contains all functions u ∈ L∞(R× [0,∞),Rn) that
satisfy the following two properties.

(i)X For all t > 0 we have u(·, t) ∈ BC2(R,Rn) and ∂tu(·, t) ∈ BC0(R,Rn).
(ii)X As t ↓ 0 we have the uniform limit

(4.5) sup
x∈R

∣∣∣∣u(x, t)− ∫ ∞

−∞
Z(x− x′, t)u(x′, 0) dx′

∣∣∣∣ → 0,

in which Z denotes the standard heat kernel

(4.6) Z(ξ, t) =
1√
4πt

exp

[
−ξ

2

4t

]
.

In particular, functions in X can be spatially discontinuous at t = 0 and temporally
discontinuous as t ↓ 0. To accomodate functions that are smooth for all t ≥ 0 we
introduce the subset

(4.7) X̂ = {u ∈ X | u(·, 0) ∈ BC2(R,Rn)}.

Our first two results state a comparison and regularity principle for (4.1). The proof
of the comparison principle closely follows the arguments developed in [9, Thm. 5.1].

Proposition 4.1 (cf. [9, (C2)]). Consider the nonlinear system (4.1) with γ ≥ 0
and suppose that (HA) and (h)§4 are satisfied. Let u, v ∈ X be a pair of functions that
satisfy the uniform bounds

(4.8) −1 ≤ u(x, t) ≤ 2, −1 ≤ v(x, t) ≤ 2, x ∈ R, t ≥ 0,

together with the differential inequalities
(4.9)
∂tu(x, t) ≥ [Du](x, t) + f

(
u(x, t)

)
, ∂tv(x, t) ≤ [Dv](x, t) + f

(
v(x, t)

)
, t > 0

and the initial inequality

(4.10) u(x, 0) ≥ v(x, 0), x ∈ R.

Then if γ = 0, the inequality u(x, t) ≥ v(x, t) holds for all x ∈ R and t ≥ 0. On the
other hand, if γ > 0, then there exists a continuous matrix-valued function

(4.11) ηγ : R× (0,∞) → R
n×n
>0

that does not depend on u and v, such that the lower bound

(4.12) u(x, t)− v(x, t) ≥ ηγ(x, t)

∫ 1

0

[u(σ, 0)− v(σ, 0)]dσ

holds for all x ∈ R and t > 0.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1081

Proof. First assume that γ ≥ 0. Upon writing w(x, t) = u(x, t)− v(x, t) together
with

(4.13) I(x, t) =
∫ 1

0

Df
(
v(x, t) + ϑw(x, t)

)
dϑ,

the estimate

(4.14)
∂tw(x, t) ≥ [Dw](x, t) + f

(
u(x, t)

)
− f

(
v(x, t)

)
= [Dw](x, t) + I(x, t)w(x, t)

holds for all t > 0. In order to show that w(x, t) ≥ 0 for all t ≥ 0 and x ∈ R, let
us assume to the contrary that this is false. In particular, suppose that there exist
t∗ > 0, x∗ ∈ R and an integer 1 ≤ i ≤ n for which wi(x∗, t∗) = −ϑ < 0. Picking ε > 0
and K > 0 in such a way that ϑ = εe2Kt∗ , we can now define

(4.15) T := sup{t ≥ 0 | w(x, t) > −εe2Kt1 for all x ∈ R}.

The requirement (4.5) together with the convergence (ii)X implies that 0 < T ≤ t∗.
In addition, there exists an integer 1 ≤ i ≤ n with

(4.16) inf
x∈R

wi(x, T ) = −εe2KT ,

since otherwise the lower bound (4.14) together with the inclusionw(·, T ) ∈ BC2(R,Rn)
would allow the constant T to be increased. Without loss of generality we may there-
fore assume that wi(0, T ) < − 7

8e
2KT .

Consider now the function

(4.17) w−(x, t;σ) = −ε
(
3

4
+ σz(x)

)
e2Kt1,

in which σ > 0 is a parameter and z : R → R is a smooth function that has z(0) = 1,
z(±∞) = 3, 1 ≤ z ≤ 3, and |z′′| ≤ 1. Write σ∗ ∈ (18 ,

1
4 ] for the minimal value of σ for

which w(x, t) ≥ w−(x, t;σ) holds for all (x, t) ∈ R× [0, T ]. Since

(4.18) w−(±∞, t;σ∗) = −ε
[
3

4
+ 3σ∗

]
e2Kt1 < −9

8
εe2Kt1,

there exist 1 ≤ i0 ≤ n, x0 ∈ R and 0 < t0 ≤ T such that wi0 (x0, t0) = w−
i0
(x0, t0;σ∗).

The definition of σ∗ now implies that

(4.19)

∂twi0 (x0, t0) ≤ ∂tw
−
i0
(x0, t0;σ∗),

∂xwi0 (x0, t0) = ∂xw
−
i0
(x0, t0;σ∗),

∂xxwi0 (x0, t0) ≥ ∂xxw
−
i0
(x0, t0;σ∗),
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1082 H. J. HUPKES AND E. S. VAN VLECK

which in turns leads to the estimate
(4.20)

−7

4
εKe2Kt0

≥ ∂tw
−
i0
(x0, t0) ≥ ∂twi0(x0, t0)

≥ [Dw]i0 (x0, t0) + [I(x0, t0)w(x0, t0)]i0

= γ∂xxwi0(x0, t0) +

N∑
j=0

[Ajw(x0 + rj , t0)]i0 + [(I(x0, t0)−A)w(x0 , t0)]i0

≥ γ∂xxw
−
i0
(x0, t0) +

N∑
j=0

[Ajw
−(x0 + rj , t0)]i0 + [(I(x0, t0)−A)w−(x0, t0)]i0 .

In the last inequality we used the fact that all nondiagonal elements of I(x0, t0)−A
are nonnegative, where A is the matrix appearing in (HA). In particular, we obtain
the bound

(4.21) −7

4
εKe2Kt0 ≥ −3ε

⎡⎣γ + 2

N∑
j=0

|Aj |+
∥∥D2f

∥∥⎤⎦ e2Kt0 .

This leads to a contradiction upon choosing K 
 1 to be sufficiently large, showing
that indeed w(x, t) ≥ 0 for all x ∈ R and t ≥ 0.

From now on, we assume that γ > 0. We pick κ 
 1 in such a way that
I(x, t) ≥ κI+A holds for all x ∈ R and t ≥ 0. Writing ŵ(x, t) = eκtw(x, t), we obtain
the differential inequality

(4.22) ∂tŵ(x, t) ≥ γ∂xxŵ(x, t) +
N∑
j=0

Ajŵ(x+ rj , t), t > 0.

Similar arguments as above show that ŵ(x, t) ≥ ẑ(x, t) ≥ 0 for (x, t) ∈ R × [0,∞),
where ẑ ∈ X can be represented as

(4.23)

ẑ(x, t) =

∫
R

Zγ(x− x′, t)w(x′, 0)dx′

+

N∑
j=0

∫ t

0

∫
R

Zγ(x− x′, t− s)Aj ẑ(x
′ + rj , s)dx

′ds,

in which we have used the rescaled heat kernel

(4.24) Zγ(ξ, t) = Z(ξ, γt).

Indeed, notice that ẑ(x, 0) = w(x, 0) while also

(4.25) ∂tẑ(x, t) = γ∂xxẑ(x, t) +

N∑
j=0

Aj ẑ(x+ rj , t), t > 0.

Using the fact that A� > 0 for some integer 
 > 0, one can use a standard boot-
strapping argument to construct the function ηγ that satisfies the desired proper-
ties.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1083

Proposition 4.2 (cf. [9, C4]). Suppose that (HA) and (h)§4 are satisfied and

consider any u ∈ X̂ that satisfies (4.1) with γ > 0 for all t > 0. Suppose furthermore
that 0 ≤ u(x, 0) ≤ 1 holds for all x ∈ R. Then we have

(4.26) sup
t≥0

‖u(·, t)‖BC2 <∞.

Proof. By the comparison principle we have 0 ≤ u(x, t) ≤ 1 for all t ≥ 0. The
uniform bounds on ∂xu and ∂xxu can now be obtained by combining the parabolic
regularity results obtained in [28, Chap. V, sec. 3, Thm. 3.1.] and [28, Chap. VII,
sec. 5, Thm. 5.1.]; see also [13, Thm. A.8].

Before stating our next result, we need to introduce some notation. First of all,
we note that the Perron–Frobenius theorem [16] in combination with (Hf2) implies
that the largest eigenvalue λl of the matrix Df(0) is simple and that we can pick
vl ∈ Rn in such a way that

(4.27) Df(0)vl = λlvl, λl < 0, vl > 0, |vl| = 1.

In addition, upon writing λr for the largest eigenvalue of Df(1), we can pick vr ∈ Rn

in such a way that

(4.28) Df(1)vr = λrvr, λr < 0, vr > 0, |vr| = 1.

Furthermore, we introduce a C∞-smooth function H+ : R → [0, 1] that satisfies
0 ≤ H ′

+ ≤ 2, 0 ≤ H ′′
+ ≤ 4, H+(−1) = 0 and H+(1) = 1. For convenience, we also use

the function H− = 1−H+. Finally, we write

(4.29) H(ξ) = H−(ξ)vl +H+(ξ)vr .

Since |vl| = |vr| = 1, we see that |H(ξ)| ≤ 1 and |[DH](ξ)| ≤ κH with κH :=
4γ + 2n ‖A‖. Throughout the remainder of this section we use these functions to
construct sub- and super-solutions to (4.1) that approximate traveling waves.

Proposition 4.3. Consider the nonlinear system (4.1) with γ ≥ 0 and suppose

that (HA) and (h)§4 are satisfied. Consider any u ∈ X̂ that satisfies (4.1) for all
t > 0. In addition, suppose that ∂xu(x, t) > 0 for all x ∈ R and t ≥ 0 and that the
following limits hold for all t ≥ 0,

(4.30) lim
x→−∞u(x, t) = 0, lim

x→∞u(x, t) = 1.

Finally, suppose that there exists a C1-smooth function ξ : [0,∞) → R with ‖ξ′‖∞ <
∞ such that for every δ > 0, there exist constants M =M(δ) 
 1 and κ = κ(δ) > 0
that allow us to write

(4.31) |u(x, t)| < δ for x < ξ(t)−M, |1− u(x, t)| < δ for x > ξ(t) +M

together with

(4.32) ∂xu(x, t)(t) > κ1 for |x− ξ(t)| ≤M + 2+ (rmax − rmin)

for all t ≥ 0.
Then there exist constants σ1 
 1 and β > 0 such that for all sufficiently small

δ > 0, the functions

(4.33)
w+(x, t) = u(x+ σ1δ(1− e−βt), t

)
+ δe−βtH

(
x+ σ1δ(1− e−βt)− ξ(t)

)
,

w−(x, t) = u(x− σ1δ(1− e−βt), t
)
− δe−βtH

(
x− σ1δ(1− e−βt)− ξ(t)
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1084 H. J. HUPKES AND E. S. VAN VLECK

satisfy the differential inequalities
(4.34)

∂tw
+(x, t) ≥ [Dw+](x, t) + f

(
w+(x, t)

)
, ∂tw

−(x, t) ≤ [Dw−](x, t) + f
(
w−(x, t)

)
for all t > 0.

Proof. We will only consider the function w+, as the statements concerning w−

can be handled in a similar fashion. For convenience, we introduce the shorthand
y = x+ σ1δ(1− e−βt) and compute
(4.35)
∂tw

+(x, t) = ∂tu(y, t) + βσ1δe
−βt∂xu(y, t) + δe−βt

(
βδσ1e

−βt − ξ′(t)
)
H′(y − ξ(t)

)
− βδe−βtH

(
y − ξ(t)

)
.

In particular, upon writing

(4.36) J +(x, t) = ∂tw
+(x, t) − [Dw+](x, t)− f

(
w+(x, t)

)
,

we may compute
(4.37)

J+(x, t) = [Du](y, t) + f
(
u(y, t)

)
− [Dw+](x, t)− f

(
w+(x, t)

)
+ βσ1δe

−βt∂xu(y, t) + δe−βt
(
βδσ1e

−βt − ξ′(t)
)
H′(y − ξ(t)

)
− βδe−βtH

(
y − ξ(t)

)
= f

(
u(y, t)

)
− f

(
u(y, t) + δe−βtH

(
y − ξ(t)

))
− δe−βt[DH]

(
y − ξ(t)

)
+ βσ1δe

−βt∂xu(y, t) + δe−βt
(
βδσ1e

−βt − ξ′(t)
)
H′(y − ξ(t)

)
− βδe−βtH

(
y − ξ(t)

)
.

Pick δ0 > 0 and β > 0 to be sufficiently small to ensure that Df(u)vr ≤ −2βvr
holds for all u that have |u− 1| < δ0, while also Df(u)vl ≤ −2βvl for all u that have
|u| < δ0.

Restricting our attention to the setting y ≥M(δ0) + ξ(t) + 1− rmin, we see that

(4.38) [DH]
(
y − ξ(t)

)
= 0, H′(y − ξ(t)

)
= 0, H

(
y − ξ(t)

)
= vr,

which implies that

(4.39) J+(x, t) ≥ J+
0 (x, t) := f

(
u(y, t)

)
− f

(
u(y, t) + δe−βtvr

)
− βδe−βtvr.

We may now estimate

(4.40)
∣∣J+

0 (x, t) + δe−βtDf
(
u(y, t)

)
vr + βδvre

−βt
∣∣ ≤ 1

2

∥∥D2f
∥∥ δ2e−2βt |vr|2 .

In particular, by choosing a sufficiently small δ > 0, our choice of β > 0 ensures that

(4.41) J +(x, t) ≥ 1

2
βδvre

−βt > 0.

A similar estimate can be obtained for y ≤ ξ(t)−M(δ0)− 1− rmax.
We now turn to the case that |y − ξ(t)| ≤M(δ0) + 2 + rmax − rmin, which allows

us to estimate
(4.42)∣∣J+(x, t) − βσ1δe

−βt∂xu(y, t)
∣∣ ≤ ‖Df‖ δe−βt + δe−βtκH

+2δ2βσ1e
−2βt + δ ‖ξ′‖ e−βt + βδe−βt

= δe−βt
[
‖Df‖+ κH + 2δβσ1e

−βt + ‖ξ′‖+ β
]
.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1085

In particular, upon choosing

(4.43) σ1 = 4β−1κ(δ0)
−1

[
‖Df‖+ κH + ‖ξ′‖+ β]

and subsequently restricting δ to ensure that

(4.44) δ ≤ 1

8
κ(δ0),

the desired conclusion J+(x, t) > 0 follows easily.
Corollary 4.4. Consider the setting of Proposition 4.3. There exist constants

σ2 
 1, σ3 > 0, and β > 0 such that for any sufficiently small δ > 0 and any pair
w± ∈ X that satisfies (4.1) together with the initial bounds

(4.45) w+(x, 0) ≤ u(x, 0) + δ1, w−(x, 0) ≥ u(x, 0)− δ1,

the inequalities

(4.46)
w+(x, t) ≤ u

(
x+ σ2δ(1 − e−βt), t

)
+ σ3δe

−βt,

w−(x, t) ≥ u
(
x− σ2δ(1 − e−βt), t

)
− σ3δe

−βt

hold for all t ≥ 0.
Corollary 4.5. Consider the system (4.1) with γ ≥ 0 and suppose that (HA)

and (h)§4 are satisfied. Suppose furthermore that there exists a pair (P, c) ∈
BC2(R,Rn)× R that satisfies the limits

(4.47) lim
ξ→−∞

P (ξ) = 0, lim
ξ→+∞

P (ξ) = 1

has P ′(ξ) > 0 for all ξ ∈ R and yields a solution to (4.1) upon writing u(x, t) =
P (x− ct).

Then there exist constants σ2 
 1, σ3 > 0 and β > 0 such that for any sufficiently
small δ > 0 and any pair w± ∈ X that satisfies (4.1) together with the initial bounds

(4.48) w+(x, 0) ≤ P (x) + δ1, w−(x, 0) ≥ P (x)− δ1,

the inequalities

(4.49)
w+(x, t) ≤ P

(
x+ σ2δ(1− e−βt)− ct

)
+ σ3δe

−βt,

w−(x, t) ≥ P
(
x− σ2δ(1− e−βt)− ct

)
− σ3δe

−βt,

hold for all t ≥ 0.

5. Spatially invariant solutions. Throughout this section, we study the class
of spatially invariant solutions to our main nonlinear system (2.1). In particular, we
consider the initial value problem

(5.1) u′(t) = f
(
u(t)

)
, u(0) = u0 ∈ R

n

and impose the following condition on the nonlinearity f to reflect the fact that we
have dropped the dependence on the parameter ρ.
(h)§5 The function f : Rn → Rn satisfies the conditions (Hf1)–(Hf3) for some

irreducible matrix A ≥ 0 ∈ Rn×n with the understanding that V = {0} and
f(· ; 0) = f(·).
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1086 H. J. HUPKES AND E. S. VAN VLECK

Fig. 1. Panel (i) illustrates the definitions of K∗ and W∗ and depicts a number of trajectories

under the flow Φ. Panel (ii) highlights the relation between the definitions of the tangent spaces ̂T (q)

and ̂T±
δ1
(q). Finally, panel (iii) represents the tubular neighborhood U(δ1) and the constant κU .

We use the notation u(t) = Φ(t;u0) to refer to the unique solution of the initial value
problem (5.1). In addition, we are interested in the linearized problem

(5.2) v′(t) = Df
(
Φ(t;u0)

)
v(t), v(0) = v0 ∈ R

n

for any u0 ∈ Rn and write v(t) = Ψ(t;u0)v0 to refer to the solution of this system.
The eigenvectors vl > 0 and vr > 0 introduced in (4.27)–(4.28) can be used to

introduce a convenient forward-invariant set for (5.1) that is slightly larger than the
cube [0, 1]n.

Proposition 5.1. Consider the nonlinear ODE (5.1) and suppose that (h)§5 is
satisfied. Then there exists ε∗ > 0 such that for each 0 < ε ≤ 2ε∗ the set

(5.3) K(ε) = {u ∈ R
n | −εvl ≤ u ≤ 1+ εvr}

satisfies Φ
(
t;K(ε)

)
⊂ K(ε) for all t ≥ 0. In addition, if f(q) = 0 for some q ∈

K(ε∗) \ {0,1}, then in fact 0 < q < 1.
Using the constant ε∗ > 0 introduced above, we write K∗ = K(ε∗). We recall that

the ω-limit set for any u ∈ Rn is defined by
(5.4)

ω+(u) =

{
v ∈ R

n | there exists a sequence tk → ∞ with lim
k→∞

Φ(tk;u) = v

}
.

Note that (Hf2) implies that both 0 and 1 are stable. In particular, if 0 ∈ ω+(u) for
some u ∈ Rn, then in fact we have limt→∞ Φ(t;u) = 0 with a similar statement for 1.
A second consequence of (Hf2) is that the sets

(5.5) B(0) = {u ∈ K∗ | ω+(u) = {0}}, B(1) = {u ∈ K∗ | ω+(u) = {1}}

are both open in K∗. Our main focus in this section is the separatrix that divides
B(0) and B(1). In particular, we introduce the set

(5.6) W∗ = {u ∈ K∗ for which {0,1} ∩ ω+(u) = ∅},

illustrated in Figure 1(i). In addition, for any q ∈ W∗, we introduce the suggestively
named space

(5.7) T (q) = 0 ∪ {v ∈ R
n | Ψ(t; q)v /∈ R

n
≥0 ∪ R

n
≤0 for all t ≥ 0}
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1087

and write

(5.8) T (W∗) = {(q, ψ) | q ∈ W∗ and ψ ∈ T (q)}.

Our first main result summarizes some useful properties of the separatrix W∗ and
validates the notation used in the definitions above.

Proposition 5.2. Consider the nonlinear ODE (5.1) and suppose that (h)§5 is
satisfied. Then the following properties hold.

(i) The set W∗ is compact and satisfies Φ(t;W∗) ⊂ W∗ for every t ≥ 0.
(ii) Consider any continuous path Γ : [0, 1] → K∗ that has Γ(0) ∈ B(0), Γ(1) ∈

B(1), and

(5.9) Γ(t1) ≤ Γ(t2), Γ(t1) �= Γ(t2)

for all 0 ≤ t1 < t2 ≤ 1. Then there is precisely one 0 ≤ t∗ ≤ 1 such that
Γ(t∗) ∈ W∗.

(iii) The set W∗ is an (n− 1)-dimensional submanifold of K∗ that is C1-smooth.
For any q ∈ W∗, the tangent space to W∗ at q is given by T (q).

(iv) There exist constants K > 0 and α > 0 such that for all q ∈ W∗ and ψ ∈ T (q)
we have

(5.10) |Ψ(t; q)ψ| ≤ Ke−αt |ψ| |Ψ(t; q)1| .

(v) For every ε > 0 there exists ϑ = ϑ(ε) > 0 such that

(5.11) |Ψ(t; q)1| ≥ ϑe−εt

holds for all q ∈ W∗ and all t ≥ 0.
Our next point of concern is the construction of a tubular neighborhood around

the separatrix W∗. To this end, we pick any q ∈ W∗ and consider the following subset
of T (q):

(5.12) T̂ (q) = {ψ ∈ T (q) | 1+ ψ ≥ 0}.

In addition, for any δ1 > 0 and q ∈ W∗ ∩ [0, 1]n, we consider the restricted sets

(5.13)
T̂−
δ1
(q) = {ψ ∈ T̂ (q) | q − δ1[1+ ψ] ∈ [0, 1]n},

T̂+
δ1
(q) = {ψ ∈ T̂ (q) | q + δ1[1+ ψ] ∈ [0, 1]n},

as illustrated in Figure 1(ii). For any δ1 > 0, these sets allow us to define the regions
(5.14)

U−(δ1) = {u ∈ [0, 1]n | u ≤ q + δ1[1+ ψ] for some q ∈ W∗ ∩ [0, 1]n, ψ ∈ T̂+
δ1
(q)},

U+(δ1) = {u ∈ [0, 1]n | u ≥ q − δ1[1+ ψ] for some q ∈ W∗ ∩ [0, 1]n, ψ ∈ T̂−
δ1
(q)},

together with the tubular neighborhood

(5.15) U(δ1) = U−(δ1) ∩ U+(δ1) ⊂ [0, 1]n

depicted in Figure 1(iii). The final two main results of this section establish some
useful properties of this tubular neighborhood that will play an important role in the
construction of sub- and supersolutions for (2.1).

Proposition 5.3. Consider the nonlinear ODE (5.1) and suppose that (h)§5 is
satisfied. Then the following properties hold.
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1088 H. J. HUPKES AND E. S. VAN VLECK

(i) Pick a sufficiently small δ1 > 0 and consider any continuous path Γ : [0, 1] →
[0, 1]n that has Γ(0) = 0, Γ(1) = 1 and Γ(t1) ≤ Γ(t2) for all 0 ≤ t1 ≤ t2 ≤ 1.
Then there exists tl < t� < tr such that

(5.16) Γ(t�) = q ∈ W∗ ∩ [0, 1]n

together with

(5.17) Γ(tl) = q − δ1[1+ ψl], Γ(tr) = q + δ1[1+ ψr]

for some ψl ∈ T̂−
δ1
(q) and ψr ∈ T̂+

δ1
(q).

(ii) For any sufficiently small δ1 > 0, there exist constants ϑ = ϑ(δ1) > 0 and

T = T (δ1) 
 1 so that for every q ∈ W∗ ∩ [0, 1]n and every pair ψ± ∈ T̂±
δ1
(q)

there exist two functions

(5.18) φ±δ1(t) = φ±δ1(t; q, ψ±) ∈ C1([0,∞),Rn)

that satisfy the initial conditions

(5.19) φ−δ1(0) = q − δ1[1+ ψ−], φ+δ1(0) = q + δ1[1+ ψ+],

together with the estimates

(5.20) 0 ≤ φ−δ1(t) ≤ δ11, (1− δ1)1 ≤ φ+δ1 (t) ≤ 1, t ≥ T,

and the differential inequalities
(5.21)

d

dt
φ−δ1(t)− f

(
φ−δ1(t)

)
> ϑ1,

d

dt
φ+δ1(t)− f

(
φ+δ1(t)

)
< −ϑ1, t ≥ 0.

Proposition 5.4. Consider the nonlinear ODE (5.1) and suppose that (h)§5 is
satisfied. Then there exists a constant κU such that for any δ1 > 0, any q ∈ W∗∩[0, 1]n,
and any

(5.22) v ∈ R
n
≤0 ∪R

n
≥0, |v| ≥ κU δ1,

we have q + v /∈ U(δ1).
Throughout the remainder of this section we treat (h)§5 as a standing assumption

and provide the proofs of Propositions 5.1–5.4. We start by establishing that the
vector field of (5.1) points inwards on the boundary of K(ε).

Proof of Proposition 5.1. Since vl > 0 and Df(0)vl = λlvl for λl < 0, we can pick
ε > 0 to be sufficiently small to ensure that Df(−tεvl)vl ≤ λ

2 vl for all 0 ≤ t ≤ 1. This
implies that

(5.23) f(−εvl) = −ε
∫ 1

0

Df(−tεvl)vl > −ελ
2
vl > 0.

Similarly, we can ensure that f(1+ εvr) < 0. Now, consider any u ∈ ∂K(ε). Suppose
that for some integer 1 ≤ i ≤ n we have ui = −ε(vl)i. We may then compute

(5.24)
f(u)i = f(−εvl)i +

∑
j �=i

∫ 1

0
∂jfi(−ε(1− t)vl + tu)(uj + ε(vl)j) dt

≥ f(−εvl)i +
∑

j �=i Aij(uj + ε(vl)j) > 0.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1089

A similar argument shows that f(u)i < 0 if ui = 1 + ε(vr)i. In particular, the vector
field f points inwards on ∂K(ε), establishing that K(ε) is forward invariant under the
flow Φ.

We now turn to the claim concerning the equilibria. Let us first show that any
q ∈ ∂[0, 1]n \ {0,1} must have f(q) �= 0. Assuming to the contrary that f(q) = 0, we
introduce the three sets

(5.25) Σ1 = {i | qi = 0}, Σ2 = {i | qi = 1}, Σ3 = {j | 0 < qj < 1}

and observe that either Σ1 or Σ2 is nonempty. If Σ1 is nonempty, then for every
i ∈ Σ1 we can write

(5.26) 0 = f(q)i =
∑

j∈Σ2∪Σ3

∫ 1

0

∂jfi(tq)qj dt ≥
∑

j∈Σ2∪Σ3

Aijqj ≥ 0,

which shows that Aij = 0 whenever i ∈ Σ1 and j ∈ Σ2 ∪ Σ3. Since both these sets
are nonempty, this contradicts the irreducibility of A. A similar contradiction can be
obtained if Σ2 is nonempty.

To complete the proof, let us suppose that there exists a sequence εk → 0 and
qk ∈ K(εk) \ [0, 1]n with f(qk) = 0. After passing to a subsequence, we must have
qk → q∗ ∈ ∂[0, 1]n with f(q∗) = 0, which implies that q∗ ∈ {0,1}. This is impossible
due to the stability assumption (Hf2) on these zeroes.

Proof of Proposition 5.2(i). The compactness of W∗ is a consequence of the
disjoint union

(5.27) K∗ = B(0) ∪ B(1) ∪W∗.

In addition, the nature of ω-limit sets implies that W∗ inherits the forward invariance
of K∗.

In order to prove item (ii) of Proposition 5.2, we need to understand the topology
of W∗. In particular, we show that W∗ is completely unordered.

Lemma 5.5. For any pair p, q ∈ W∗ that has p �= q, neither of the two inequalities
p ≤ q and q ≤ p can hold.

Proof. Without loss of generality, let us suppose that p ≤ q. The comparison
principle now implies that for any t > 0 we have

(5.28) Φ(t; p) < Φ(t; q).

Pick any t∗ > 0 and consider the ray

(5.29) L = {u ∈ R
n | u = ϑΦ(t∗; p) + (1− ϑ)Φ(t∗; q) with 0 < ϑ < 1}.

A result due to Hirsch [19, Lem. 4.3] states that the set of u ∈ L that do not converge
to an equilibrium is at most countable. Therefore, since the set of equilibria in K∗ is
finite, there exist u1, u2 ∈ L with u1 < u2 that both converge to the same equilibrium
q∞. Now, we must have q∞ �= 0 and q∞ �= 1 since otherwise Φ(t; p) → 0 or Φ(t; q) → 1
as t → ∞. In particular, by Proposition 5.1 and (Hf3) the equilibrium q∞ must be
an unstable equilibrium. Obviously, u1 and u2 both lie on the center-stable manifold
Wcs(q∞) and Φ(t;u1) < Φ(t;u2) for all t ≥ 0.

Let us write λ∞ > 0 for the largest eigenvalue of Df(q∞) and v∞ > 0 for an
associated eigenvector. In addition, we write Vcs ⊂ Rn for the subspace spanned by
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1090 H. J. HUPKES AND E. S. VAN VLECK

the generalized eigenvectors of Df(q∞) that are associated to eigenvalues that have
Reλ ≤ 0. We claim that any nonzero v ∈ Vcs cannot have v ≥ 0 or v ≤ 0. Indeed,
if this is the case, then by the comparison principle we have Ψ(t; q∞)v > 0 for every
t > 0, which allows us to pick t0 and ε > 0 with Ψ(t0; q∞)v > εv∞. This implies that
Ψ(t + t0; q∞)v > εeλ∞tv∞, which gives a contradiction. In particular, there exists
C > 0 such that for any nonzero v ∈ Vcs we have

(5.30) v + |v|C1 /∈ R
n
≥0, v − |v|C1 /∈ R

n
≤0.

In the vicinity of q∞, the center-stable manifold Wcs(q∞) can be written as a graph
over Vcs. However, in view of (5.30) this contradicts the fact that Φ(t;u1) < Φ(t;u2)
must hold for all t ≥ 0.

Proof of Proposition 5.2(ii). Write Γ∗ = {Γ(t)}1t=0 and note that Γ∗ is a closed
subset of K∗. The existence of t∗ follows from the fact that the nonempty sets B(0)∩Γ∗
and B(1)∩ Γ∗ are both open in Γ∗, which means they cannot cover Γ∗ together. The
uniqueness of t∗ follows from Lemma 5.5.

We now set out to address the smoothness of the manifold W∗. To this end, we
pick any u ∈ Rn and introduce the hyperplane

(5.31) Vu = {v ∈ R
n | 〈v,1〉 = 〈u,1〉},

in which 〈·, ·〉 denotes the standard inner product on Rn. In particular, Vu contains
u and is perpendicular to 1. For any δ > 0, we also introduce the open subset

(5.32) Vu,δ = {v ∈ Vu | |v − u| < δ}.

As a first step, we modify an argument due to Hirsch [18] which allows us to show
that W∗ is a Lipschitz-smooth manifold of dimension n− 1.

Lemma 5.6 (cf. [18, Thm. 3.1]). Consider any q ∈ W∗ for which q /∈ ∂K∗. Then
there exists a constant δ > 0 and a Lipschitz-smooth function ρ = ρq : Vq,δ → R such
that

(5.33) v + ρ(v)1 ∈ W∗

for all v ∈ Vq,δ.
Proof. Pick ε > 0 to be sufficiently small to ensure that the two points q± := q±ε1

satisfy q± ∈ K∗ but q± /∈ ∂K∗. Lemma 5.5 implies that q− ∈ B(0) and q+ ∈ B(1).
Since both these basins of attraction are open, there exists δ > 0 such that Vq−,δ ⊂
B(0) and Vq+,δ ⊂ B(1). Proposition 5.2(ii) now implies that for every pair v± ∈ Vq±,δ

that is related by v+−v− = 2ε1, the line between v− and v+ has a unique intersection
with W∗. This intersection point can be used to define ρ(v) for v = 1

2v−+ 1
2v+ ∈ Vq,δ.

To see that ρ is Lipschitz continuous, consider two sequences vk, ṽk in Vq,δ that
have

(5.34) |ρ(vk)− ρ(ṽk)| / |vk − ṽk| → ∞ as k → ∞.

Write π : Rn → Vq for the linear projection onto Vq along 1. Upon defining

(5.35) wk = vk + ρ(vk)1, w̃k = ṽk + ρ(ṽk)1,

we obviously have

(5.36) vk = πwk, ṽk = πw̃k.
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In addition, we can compute

(5.37) |wk − w̃k| / |vk − ṽk| ≥
∣∣∣ |ρ(vk)1− ρ(ṽk)1| − |vk − ṽk|

∣∣∣/ |vk − ṽk| → ∞,

which implies that

(5.38) |wk − w̃k| / |vk − ṽk| → ∞ as k → ∞.

Upon writing αk = [wk − w̃k]/ |wk − w̃k|, this shows that

(5.39) |αk| / |παk| = 1/ |παk| → ∞ as k → ∞,

which means that παk → 0 as k → ∞. Switching vk and ṽk for the appropriate
values of k, this implies that αk → 1/ |1| as k → ∞, which shows that αk∗ > 0
for some integer k∗ > 0. However, the resulting inequality wk∗ > w̃k∗ contradicts
Lemma 5.5.

Before we can obtain additional smoothness properties for the separatrix W∗, we
need to develop some preliminary results for the tangent space T (W∗). In particular,
we set out to prove part (iv) of Proposition 5.2, which provides an exponential sepa-
ration for the linearized flow Ψ acting on T (q) and on the perpendicular direction 1.

Lemma 5.7. The set T (W∗) ∩ (W∗ × Sn−1) is compact in Rn × Rn.
Proof. Consider any sequence {(qk, ψk)} ∈ T (W∗) that has |ψk| = 1 for all k ∈ N.

Passing to a subsequence, we find qk → q∗ ∈ W∗ and ψk → ψ∗ ∈ S
n−1 as k → ∞, and

it suffices to show that ψ∗ ∈ T (q∗). If not, there exists T > 0 such that

(5.40) Ψ(T ; q∗)ψ∗ ∈ R
n
≥0 ∪ R

n
≤0.

The proof of the comparison principle in Proposition 4.1 now implies that for all t > 0
we actually have

(5.41) Ψ(T + t; q∗)ψ∗ ∈ R
n
>0 ∪R

n
<0.

Basic continuity properties can now be used to show that for all q sufficiently close to
q∗ and all ψ sufficiently close to ψ∗ we have

(5.42) Ψ(T + t; q)ψ ∈ R
n
>0 ∪ R

n
<0,

which leads to a contradiction.
Lemma 5.8. There exists δ∗ > 0 such that

(5.43) Ψ(t; q)1 ≥ δ∗ |Ψ(t; q)1|1

holds for all q ∈ W∗.
Proof. Fixing q ∈ W∗, let us consider the function

(5.44) g(t) = Ψ(t; q)1/ |Ψ(t; q)1| .

Upon writing q(t) = Φ(t ; q), a short computation shows that we may write g′(t) =
G
(
t, g(t)

)
after introducing the function

(5.45) G
(
t, g

)
= Df

(
q(t)

)
g − g〈Df

(
q(t)

)
g, g1〉.

By construction, we have g(t) ∈ Sn−1 ∩ Rn
>0 for all t ≥ 0. Let us suppose that we

have a sequence tk → ∞ with g(tk) → ∂Rn
≥0. By compactness, we may pass to a
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1092 H. J. HUPKES AND E. S. VAN VLECK

subsequence for which g(tk) → g∗ for some g∗ ∈ ∂Rn
≥0 ∩ Sn−1. Arguing similarly as

in the proof of Proposition 5.1, the conditions (Hf1) and (HA) imply that there exists
at least one integer 1 ≤ i ≤ n with (g∗)i = 0 and Gi(t, g∗) > ϑ > 0 for all t ≥ 0. Using
the fact that q(t) remains in the compact set W∗ for all t ≥ 0, we hence see that
there exists δ > 0 such that Gi(t, g) >

1
2ϑ > 0 whenever |g − g∗| < δ. This however

precludes g(t) from approaching g∗ and hence leads to a contradiction.
Proof of Proposition 5.2(iv). For any q ∈ W∗ and v ∈ T (q) ∩ Sn−1, we introduce

the two functions ψv(t) = Ψ(t; q)v and φv(t) = Ψ(t; q)Abs(v), where Abs(v) ∈ Rn
≥0

is the vector given by Abs(v)i = |vi|. Remembering that we cannot have v ≥ 0 or
v ≤ 0, the comparion principle now implies that for all t > 0 we have

(5.46) −φv,q(t) < ψv,q(t) < φv,q(t).

Pick any T∗ > 0. We now claim that there exists 0 < ϑ < 1 such that for all
(q, v) ∈ T (W∗) with |v| = 1, we have

(5.47) −ϑφv,q(T∗) ≤ ψv,q(T∗) ≤ ϑφv,q(T∗).

If not, there exist sequences (qk, vk) ∈ T (W∗), ik ∈ {1, . . . , n} and 0 < ϑk < 1 with
|vk| = 1 and ϑk → 1 such that

(5.48) |ψvk,qk(T∗)ik | > ϑkφvk,qk(T∗)ik .

Lemma 5.7 shows that after passing to a subsequence, we have qk → q∗ ∈ W∗,
vk → v∗ ∈ T (q∗), and ik → i∗. Continuity properties of Ψ now imply that

(5.49) |ψv∗,q∗(T∗)i∗ | = φv∗,q∗(T∗)i∗ ,

which gives a contradiction. Using the fact that Abs(ψv,q(T∗)) ≤ ϑφv,q(T∗), we may
iterate (5.47) to obtain

(5.50) −ϑkΨ(kT∗; q)1 ≤ −ϑkφv,q(kT∗) ≤ ψv,q(kT∗) ≤ ϑkφv,q(kT∗) ≤ ϑkΨ(kT∗; q)1,

which suffices to complete the proof.
In order to establish that the separatrix W∗ is C1-smooth, we need to study the

smoothness of the map v �→ ρq(v) introduced in Lemma 5.6. In particular, we show
that the sets T (q) are in fact vector spaces that can be used to describe the derivatives
of the map ρq.

Lemma 5.9. Pick any q ∈ W∗ and consider ψ1, ψ2 ∈ T (q). If either ψ1 ≤ ψ2 or
ψ1 ≥ ψ2 holds, then in fact ψ1 = ψ2.

Proof. Let us suppose for concreteness that ψ1 ≤ ψ2 but ψ1 �= ψ2. For all t > 0,
the comparison principle now implies that

(5.51) Ψ(t; q)ψ1 < Ψ(t; q)ψ2.

In particular, there exist t∗ > 0 and ε > 0 such that

(5.52) Ψ(t∗; q)[ψ1 + ε1] < Ψ(t∗; q)ψ2.

Lemma 5.8 and Proposition 5.2(iv) together imply that for sufficiently large T > 0
we have

(5.53) Ψ(t∗ + T ; q)[ψ1 + ε1] > 0.
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This however implies that also Ψ(t∗ + T ; q)ψ2 > 0, which contradicts the fact that
ψ2 ∈ T (q).

Lemma 5.10. Recall the hyperplane V0 defined in (5.31). For each q ∈ W∗, there
exists a bounded linear map τq : V0 → R such that for any v ∈ V0 we have

(5.54) v + (τqv)1 ∈ T (q).

In particular, the space T (q) is an (n− 1)-dimensional vector space.
Proof. We first show that T (q) is a vector space. Observe that the definition (5.7)

directly implies that for any λ ∈ R we have λψ ∈ T (q) whenever ψ ∈ T (q). Suppose
now that there exist ψ1, ψ2 ∈ T (q) with ψ1+ψ2 /∈ T (q). This implies that there exists
t∗ > 0 such that

(5.55) Ψ(t∗; q)ψ1 +Ψ(t∗; q)ψ2 ≥ 0,

possibly after switching ψ1 �→ −ψ1 and ψ2 �→ −ψ2. In particular, we have Ψ(t∗; q)ψ1 ≥
−Ψ(t∗; q)ψ2. This however contradicts Lemma 5.9 since both Ψ(t∗; q)ψ1 and Ψ(t∗; q)ψ2

are contained in T
(
Φ(t∗; q)

)
.

Let us now consider the open sets

(5.56)
V+(q) = {ψ ∈ Rn | Ψ(t∗; q)ψ > 0 for some t∗ ≥ 0},
V−(q) = {ψ ∈ Rn | Ψ(t∗; q)ψ < 0 for some t∗ ≥ 0}.

Pick any v ∈ V0. By choosing λ = 2 |v|, we can ensure that v ± λ1 ∈ V±(q). The
nonordering of T (q) now implies that there exists precisely one τ ∈ (−λ, λ) such that
v + τ1 ∈ T (q), which can be used to define the value τqv.

Lemma 5.11. Consider any q ∈ W∗ for which q /∈ ∂K∗. The function ρ = ρq :
Vq,δ → R defined in Lemma 5.6 is C1-smooth with

(5.57) Dρ(v) = τq(v), q(v) = v + ρ(v)1.

Proof. We start by showing that ρ is differentiable at q. Pick any v0 ∈ V0 with
|v| = 1. Let hk be a sequence of real numbers with hk → 0 and consider the sequence

(5.58) αk :=
1

hk
[ρ(q + hkv0)− ρ(q)] =

1

hk
ρ(q + hkv0),

where we used ρ(q) = 0. The Lipschitz continuity of g implies that αk is bounded. It
hence suffices to show that for any convergent subsequence αk → α∗ we in fact have
α∗ = τqv0. Suppose therefore that α∗ �= τqv0 and introduce the vectors

(5.59) vk = q + hkv0 ∈ Vq,δ, wk = vk + ρ(vk)1 ∈ W∗.

By construction, we have

(5.60) wk = q + hk[v0 + αk1].

Upon writing

(5.61) zk(t) := Φ(t;wk)− Φ(t; q),

together with q(t) = Φ(t; q), we may compute

(5.62)
z′k(t) =

[∫ 1

0

Df
(
q(t) + szk(t)

)
ds

]
zk(t)

= Df
(
q(t)

)
zk(t) +N

(
t, zk(t)

)
,
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in which we have N (t, z) = O(|z|2) and D2N (t, z) = O(|z|) as z → 0, uniformly for
t ≥ 0. In particular, we may write

(5.63) zk(t) = Ψ(t; q)zk(0) + Ψ(t; q)

∫ t

0

Ψ
(
− s; q(s)

)
N
(
s, zk(s)

)
ds.

Notice that

(5.64) zk(0) = hk[v0 + αk] = hkψ + ϑhk1+ o(hk) as k → ∞

with ψ = v0+(τqv0)1 ∈ T (q) and ϑ = α∗−τqv0 �= 0. In particular, there exists t∗ > 0
such that

(5.65) Ψ(t∗; q)[ψ + ϑ1] ∈ R
n
>0 ∪ R

n
<0.

This means that for sufficiently large k we must have either zk(t∗) > 0 or zk(t∗) < 0,
which violates the nonordering property of W∗ established in Lemma 5.5. Similar
arguments can be used to show that ρ is differentiable at all points v ∈ Vq,δ.

To see that (q, v) �→ τqv is continuous, consider a sequence vk → v∗ ∈ V0 and
qk → q∗ ∈ W∗. Writing ψk = vk+(τqkvk)1 ∈ T (qk), we observe that the sequence {ψk}
is bounded since {vk} is bounded and ‖τqk‖ ≤ 2. Consider an arbitrary convergent
subsequence ψk → ψ∗ ∈ Rn. Recalling the linear projection π : Rn → V0 onto V0

along 1, we note that πψk = vk, which in turn implies that πψ∗ = v∗. Since T (W∗)
is closed, we have ψ∗ ∈ T (q∗), which shows that

(5.66) ψ∗ = πψ∗ + (τq∗πψ∗)1 = v∗ + (τq∗v∗)1,

as desired.
We now proceed to establish part (v) of Proposition 5.2. The main idea is that

Ψ(t; q)1 cannot decay exponentially as t→ ∞, since a nonlinear argument would then
allow us to show that Φ(t; q + ε1) cannot converge to 1 as t→ ∞ for all small ε > 0.

Lemma 5.12. For every K > 0 and ε > 0, there exists a constant T∗ such that
for every q ∈ W∗ we have

(5.67) |Ψ(t∗; q)1| ≥ Ke−εt∗

for some t∗ = t∗(q) that has 0 ≤ t∗ ≤ T∗.
Proof. Arguing to the contrary, there exist two constants K∗ > 0 and ε∗ > 0

together with two sequences Tk → ∞ and qk ∈ W∗ such that

(5.68) |Ψ(t; qk)1| < K∗e−ε∗t for all 0 ≤ t ≤ Tk.

After passing to a subsequence, we have qk → q∗ ∈ W∗ as k → ∞ and by continuity
also

(5.69) |Ψ(t; q∗)1| ≤ K∗e−ε∗t for all t ≥ 0.

In order to show that this cannot happen, we will construct a supersolution to the
nonlinear ODE (5.1). In particular, we write q∗(t) = Φ(t; q∗) and consider the function

(5.70) u+(t) = q∗(t) + δ1(1 + δ1Ct)Ψ(t; q∗)1,

in which the constants C 
 1 and δ1 > 0 remain to be determined. Upon writing

(5.71) J+(t) =
d

dt
u+(t)− f

(
u+(t)

)
,
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1095

we may compute

(5.72)

J +(t) = f
(
q∗(t)

)
+Df

(
q∗(t)

)
δ1(1 + δ1Ct)Ψ(t; q∗)1+ δ21CΨ(t; q∗)1

− f
(
q∗(t) + δ1(1 + δ1Ct)Ψ(t; q∗)1

)
= −

[
f
(
q∗(t) + δ1(1 + δ1Ct)Ψ(t; q∗)1

)
− f

(
q∗(t)

)
−Df

(
q∗(t)

)
δ1(1 + δ1Ct)Ψ(t; q∗)1

]
+ δ21CΨ(t; q∗)1.

In particular, we find that

(5.73)
∣∣J+(t)− δ21CΨ(t; q∗)1

∣∣ ≤ 1
2

∥∥D2f
∥∥ δ21(1 + δ1Ct)

2 |Ψ(t; q∗)1|2 .

In view of Lemma 5.8, it is possible to choose C 
 1 in such a way that we have

(5.74) CΨ(t; q∗)1 ≥ 2K∗
∥∥D2f

∥∥ |Ψ(t; q∗)1|1

for all t ≥ 0. In addition, the assumption (5.69) allows us to choose δ1 > 0 in such a
way that

(5.75) (1 + δ1Ct)
2 |Ψ(t; q∗)1| ≤ 2K∗

for all t ≥ 0. These choices ensure that for all t ≥ 0 we have

(5.76)
∣∣J+(t)− δ21CΨ(t; q∗)1

∣∣ 1 ≤ 1

2
δ21CΨ(t; q∗)1

and hence J+(t) ≥ 0. In particular, u+(t) is a supersolution for (5.1), which means
that for all t ≥ 0 we have

(5.77) u+(t) ≥ Φ
(
t;u+(0)

)
> q∗(t).

However, after possibly decreasing the size of δ1 > 0 and increasing the size of ε∗ > 0
that appears in the definition of W∗, we see that Φ

(
t;u+(0)

)
→ 1 as t → ∞. This is

precluded by the definition (5.70), which requires u+(t)− q∗(t) → 0 as t→ ∞.
Proof of Proposition 5.2(v). Recall the constant δ∗ > 0 from Lemma 5.8 and

pick K > 0 in such a way that Kδ∗ > 1. Recall the constant T∗ = T∗(K, ε) from
Lemma 5.12 and choose ϑ > 0 to ensure that

(5.78) |Ψ(t; q)1| ≥ ϑ for all q ∈ W∗ and 0 ≤ t ≤ T∗,

which is possible by compactness. For every q ∈ W∗ we may estimate

(5.79) Ψ(t∗(q); q)1 ≥ δ∗ |Ψ(t∗(q); q)1| 1 ≥ Kδ∗e−εt∗(q)1 ≥ e−εt∗(q)1.

In particular, for any t ≥ 0 there is a chain 0 := t0 < t1 < · · · < t� with

(5.80) ti − ti−1 ≤ T∗, t− t� ≤ T∗, Ψ(ti; q)1 ≥ e−εti1

for all 1 ≤ i ≤ 
. This implies the desired conclusion

(5.81) |Ψ(t; q)1| ≥ e−εt�ϑ ≥ e−εtϑ.

In the final part of this section, we provide proofs for Propositions 5.3–5.4. We
start by establishing some basic properties of the restriction spaces T̂ (q) and T̂±

δ1
(q),

which will be used to construct the functions φ±δ1 mentioned in part (ii) of Proposi-
tion 5.3.

Lemma 5.13. The spaces T̂ (q) and T̂±
δ1
(q) satisfy the following properties.
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1096 H. J. HUPKES AND E. S. VAN VLECK

(i) There exists a constant C 
 1 such that

(5.82) 1 ≤ |1+ ψ| ≤ C

holds for any q ∈ W∗ and any ψ ∈ T̂ (q).
(ii) There exists a constant ϑ > 0 such that for any q ∈ W∗ and any v ≥ 0, the

inequalities

(5.83) |q + v − q̃| ≥ ϑ |v| , |q − v − q̃| ≥ ϑ |v|

hold for all q̃ ∈ W∗.
(iii) For all sufficiently small δ1 > 0, there exists a constant ε = ε(δ1) > 0 such

that for any q ∈ W∗ ∩ [0, 1]n and any pair ψ± ∈ T̂±
δ1
(q), the vectors

(5.84) u− = q − δ1[1+ ψ−] + ε1, u+ = q + δ1[1+ ψ+]− ε1

satisfy the inequalities

(5.85) 0 ≤ u− < q−, q+ < u+ ≤ 1

for some pair q± ∈ W∗. In particular, we have the limits

(5.86) lim
t→∞Φ(t;u−) = 0, lim

t→∞Φ(t;u+) = 1.

Proof. The lower bound in (i) is trivial, since we cannot have ψ ≤ 0. The upper
bound in (i) follows from the fact that the function

(5.87) G : T (W∗) ∩
(
W∗ × S

n−1
)
→ R

defined by

(5.88) G(q, ψ) = max
1≤i≤n

{ψi}/ min
1≤i≤n

{ψi} < 0

is well defined and continuous.
Restricting ourselves to sufficiently small v ∈ Rn

≥0, the statement in (ii) follows
from the compactness of T (W∗) together with the fact that any ψ ∈ T (q) cannot
have ψ ≤ 0 or ψ ≥ 0. For large |v|, we can use the compactness of W∗ together with
the fact that q ± v /∈ W∗. Finally, the statements in (iii) follow directly from (i) and
(ii).

Lemma 5.14. There exists a constant K > 0 such that for any pair w± ∈ K∗
that has w− < w+, the function

(5.89) φ(t) = φ(t;w−, w+) = e−KtΦ(t;w−) + (1− e−Kt)Φ(t;w+)

satisfies the estimate

(5.90) φ′(t)− f
(
φ(t)

)
≥ 1

2
Ke−Kt

[
Φ(t;w+)− Φ(t;w−)

]
> 0

for all t ≥ 0.
Proof. Writing J (t) = φ′(t)− f

(
φ(t)

)
, we can compute

(5.91)
J (t) = Ke−Kt

[
Φ(t;w+)− Φ(t;w−)

]
+ e−Kt

[
f
(
Φ(t;w−)

)
− f

(
φ(t)

)]
+ (1− e−Kt)

[
f
(
Φ(t;w+)

)
− f

(
φ(t)

)]
.
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This allows us to estimate

(5.92)

∣∣J (t)−Ke−Kt
[
Φ(t;w+)− Φ(t;w−)

]∣∣
≤ e−Kt ‖Df‖ |φ(t)− Φ(t;w−)|
+(1− e−Kt) ‖Df‖ |φ(t) − Φ(t;w+)|

≤ e−Kt ‖Df‖ (1− e−Kt) |Φ(t;w+)− Φ(t;w−)|
+(1− e−Kt) ‖Df‖ e−Kt |Φ(t;w+)− Φ(t;w−)|

≤ 2e−Kt ‖Df‖ |Φ(t;w+)− Φ(t;w−)| .

The desired bound (5.90) now follows upon choosing K = 4 ‖Df‖.
Proof of Proposition 5.3(i). The existence of t� follows directly from Proposi-

tion 5.2(ii). The existence of tl and tr follows from the fact that the (n−1)-dimensional
space T (q) can be written as a graph over the plane V0, which is perpendicular
to 1.

Proof of Proposition 5.3(ii). We restrict ourselves to constructing the function
φ−δ1(t). Recall the eigenvalue λl < 0 and the eigenvector vl ≥ 0 for Df(0) that were
defined in (4.27). Note that there exists a positive cone C ⊂ Rn

≥0 together with a
constant κ > 0 such that vl ∈ int(K) while

(5.93) f(u) ≤ −1

2
|λl|u

for any u ∈ Cκ, in which

(5.94) Cκ = {u ∈ C | |u| ≤ κ}.

Since λl is a simple eigenvalue for Df(0) and vl is the only eigenvector of Df(0) in
Rn

≥0, it is possible to choose a second cone C′ and constant κ′ > 0 in such a way that

(5.95) vl ∈ int(C′) ⊂ C′ ⊂ C, κ′ < κ,

both hold, together with the trapping bound

(5.96) Φ(t;u′) ∈ Cκ for all t ≥ 0 and u′ ∈ Cκ′ .

For any δ1 > 0, q ∈ W∗ ∩ [0, 1]n and ψ ∈ T̂−
δ1
(q), we now introduce the pair of vectors

(5.97)
w− = w−(δ1, q, ψ) = q − δ1[1+ ψ], w+ = w+(δ1, q, ψ) = q − δ1[1+ ψ] + ε(δ1)1,

using the quantity ε(δ1) defined in Lemma 5.13(iii). Since both w± ∈ B(0) and
w± ≥ 0, we find that there exists a time T such that Φ(t±∗ ;w±) ∈ C′

κ′ for some pair
0 ≤ t±∗ ≤ T . By compactness, this time T = T (δ1) can be chosen to be independent
of the pair (q, ψ).

We now construct φ−δ1 by recalling the function φ from Lemma 5.14 and writing

(5.98) φ−δ1(t) = φ(γδ1(t);w−, w+),

where γδ1 : [0,∞) → [0,∞) is a C1-smooth function that has γδ1(t) = t for all
0 ≤ t ≤ T (δ1), together with

(5.99) 0 < γ′δ1(t) ≤ 1, T (δ1) ≤ γδ1(t) ≤ T (δ1) + 1, t ≥ T (δ1).

D
ow

nl
oa

de
d 

06
/3

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1098 H. J. HUPKES AND E. S. VAN VLECK

Notice that

(5.100)
d

dt
φ−δ1(t)− f

(
φ−δ1 (t)

)
= γ′δ(t)φ

′(γδ(t);w−, w+)− f
(
φ(γδ(t);w−, w+)

)
.

By compactness, there exists a constant ν1 = ν1(δ1) such that

(5.101) Φ(t;w+)− Φ(t;w−) > ν11, 0 ≤ t ≤ T (δ1) + 1,

independent of the pair (q, ψ). In particular, for some constant ν2 = ν2(δ1) we have

(5.102) φ′(γδ(t);w−, w+)− f
(
φ(γδ(t);w−, w+)

)
> ν21, t ≥ 0.

In addition, there exists ν3 = ν3(δ1) such that

(5.103) −f
(
φ(γδ(t);w−, w+)

)
> ν31, t ≥ T (δ1),

since Φ(t;w±) ∈ Cκ for all t ≥ T (δ1) and φ(γδ(t);w−, w+) is bounded away from zero
uniformly for the choice of (q, ψ). In particular, for all t ≥ T (δ1) we have

(5.104)

d

dt
φ−δ1(t)− f

(
φ−δ1 (t)

)
= γ′δ(t)

[
φ′(γδ(t);w−, w+)− f

(
φ(γδ(t);w−, w+)

)]
− [1− γ′δ(t)]f

(
φ(γδ(t);w−, w+)

)
> γ′δ(t)ν21+ [1− γ′δ(t)]ν31,

which completes the proof.
Proof of Proposition 5.4. Recall the constants C 
 1 and ϑ > 0 appearing

in Lemma 5.13. Items (i) and (ii) of this lemma imply that it suffices to choose
κU = C(1 + ϑ−1).

6. Existence of traveling waves—initial estimates. In this section we re-
turn to the nonlinear system

(6.1) ∂tu(x, t) = [Du](x, t) + f
(
u(x, t)

)
,

in which the nonlocal differential operator D is defined in (4.2). Throughout this
section we restrict ourselves to the setting γ > 0. In addition to the condition (h)§4,
we need to impose the following assumption on the separatrix W∗ introduced in
section 5.
(HW) There exist constants ε > 0 and ϑ such that the inequality

(6.2) |Ψ(t; q)1| ≥ ϑeεt

holds for all q ∈ W∗ and t ≥ 0.
This condition is slightly stronger than the statement in Proposition 5.2(v). However,
in what follows we will use the fact that arbitrarily small perturbations of the system
(6.1) are sufficient to ensure that (HW) does in fact hold.

In order to show that (6.1) admits a traveling wave solution, we will consider the

long-term behavior of the function u∗ ∈ X̂ that satisfies (6.1) for all t > 0 and has
the initial profile

(6.3) u∗(x, 0) =
1

2

(
1 + tanh(x)

)
1.
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Fig. 2. Panel (i) illustrates the definitions of ξ−l (t; δ) and ξ−r (t; δ), the spatial coordinates
where u∗(·, t) crosses El(δ) and Er(δ). Panel (ii) zooms in near q�(t) and illustrates the definitions
of ξ+l (t; δ) and ξ−r (t; δ), the spatial coordinates between which u∗(·, t) is guaranteed to be inside the
tubular neighborhood U(δ).

Notice that u∗(·, 0) is strictly increasing, while limx→−∞ u∗(x, 0) = 0 and limx→+∞
u∗(x, 0) = 1. Our first main result in this section shows that these properties persist
for all t > 0. In particular, upon introducing the spaces

(6.4)
El(δ) = {0 < v ≤ δ1 for which vi = δ for some 1 ≤ i ≤ n},
Er(δ) = {(1− δ)1 ≤ v < 1 for which vi = (1− δ) for some 1 ≤ i ≤ n},

we see that for each t > 0, the function u∗(·, t) has unique intersection points with
El(δ) and Er(δ) whenever δ > 0 is sufficiently small. Our second main result states
that the distance between these intersection points can be uniformly bounded for
t ≥ 0. This key property allows the use of compactness arguments in section 7 to
show that u∗ converges to a traveling wave.

Proposition 6.1. Consider the system (6.1) with γ > 0 and suppose that (HA),
(h)§4, and (HW) are all satisfied. Then the function u∗ satisfies the following prop-
erties.

(i) For each t ≥ 0, the function u∗(·, t) is strictly increasing and satisfies the
limits

(6.5) lim
x→−∞u∗(x, t) = 0, lim

x→∞u∗(x, t) = 1.

(ii) Pick a sufficiently small δ > 0. For every t ≥ 0, there exist unique quantities

(6.6) ξ−l (t; δ) < ξ+l (t; δ) < ξ�(t) < ξ−r (t; δ) < ξ+r (t; δ)

with the property that

(6.7) u∗(ξ−l , t) ∈ El(δ), u∗(ξ+r , t) ∈ Er(δ)

together with

(6.8)

u∗(ξ�, t) = q� ∈ W∗ ∩ [0, 1]n,

u∗(ξ+l , t) = q� − δ[1+ ψl],

u∗(ξ−r , t) = q� + δ[1+ ψr]

for some pair ψl ∈ T̂−
δ (q�) and ψr ∈ T̂+

δ (q�); see Figure 2.
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1100 H. J. HUPKES AND E. S. VAN VLECK

(iii) For each sufficiently small δ > 0, there exist constants ε = ε(δ) > 0, C =
C(δ) 
 1, and T = T (δ) 
 1 such that for all t ≥ τ ≥ 0 we have

(6.9)
ξ−r (t; δ) ≤ ξ+r (τ ; δ) + 2ε−1 + C(t− τ),

ξ+l (t; δ) ≥ ξ−l (τ ; δ)− 2ε−1 − C(t− τ),

while for all τ ≥ 0 and t ≥ τ + T we have

(6.10)
ξ+r (t; δ) ≤ ξ−r (τ ; δ) + 2ε−1 + C(t− τ),

ξ−l (t; δ) ≥ ξ+l (τ ; δ)− 2ε−1 − C(t− τ).

(iv) There exists a constant δ > 0 and a constant h1 
 1 such that for all t ≥ 0
we have

(6.11) ξ−r (t; δ)− ξ+l (t; δ) ≤ h1.

Corollary 6.2. Consider the setting of Proposition 6.1. For every sufficiently
small δ > 0 there exists m1(δ) 
 1 such that for all t ≥ 0 we have

(6.12) ξ+r (t; δ)− ξ−l (t; δ) ≤ m1(δ).

Proof. Pick a sufficiently small δ > 0 and pick t > T = T (δ). We may then
compute

(6.13)
ξ+r (t; δ)− ξ−l (t; δ) ≤ ξ−r (t− T ; δ)− ξ+l (t− T ; δ) + 4ε−1 + 2CT

≤ h1 + 4ε−1 + 2CT.

For 0 ≤ t ≤ T , one can use the continuity of the quantities ξ+r and ξ−l with respect
to t.

Throughout the remainder of this section, we treat (HA), (h)§4, and (HW) as
standing assumptions and fix γ > 0. Roughly speaking, our approach towards es-
tablishing Proposition 6.1 is to adapt Lemmas 3.2 and 4.3 from [9] to our higher
dimensional setting. The chief obstacle is that we need to accomodate for the flow
along the separatrix W∗. Indeed, in the scalar context of [9] this flow is trivial as the
separatrix consists of a single point.

Lemma 6.3 (cf. [9, Lem. 3.2]). Recall the functions φ±δ defined in Proposition 5.3
and the functions H± defined in section 4. For any sufficiently small δ > 0, there
exist constants ε = ε(δ) > 0 and C = C(δ) 
 1 such that for any q ∈ W∗ ∩ [0, 1]n,

any pair ψ± ∈ T̂±
δ (q), and any θ ≥ 0, the functions

(6.14)
w+(x, t) = (1+ δvr)H+

(
1 + ε(x+ Ct)

)
+ φ−δ (t+ θ; q, ψ−)H−

(
1 + ε(x+ Ct)

)
,

w−(x, t) = −δvlH−
(
ε(x− Ct)− 1

)
+ φ+δ (t+ θ; q, ψ+)H+

(
ε(x− Ct)− 1

)
satisfy the differential inequalities (4.34).

Proof. We will prove the statement only for w+ and θ = 0, the arguments for w−

and θ > 0 being analogous. Writing y = 1 + ε(x+ Ct), we compute

(6.15) ∂tw
+(x, t) = εC(1+ δvr)H

′
+(y) + [φ−δ ]

′(t)H−(y) + εCφ−δ (t)H
′
−(y).

In particular, upon writing

(6.16) J +(x, t) = ∂tw
+(x, t) − [Dw+](x, t)− f

(
w+(x, t)

)
,
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we obtain
(6.17)

J +(x, t) = εC(1+ δvr)H
′
+(y) + [φ−δ ]

′(t)H−(y) + εCφ−δ (t)H
′
−(y)

− [D(1+ δvr)H+](y)− [Dφ−δ (t)H−](y)

− f
(
(1+ δvr)H+(y) + φ−δ (t)H−(y)

)
= εC

(
1+ δvr − φ−δ (t)

)
H ′

+(y)− f
(
(1+ δvr)H+(y) + φ−δ (t)H−(y)

)
− [D(1+ δvr)H+](y)− [Dφ−δ (t)H−](y) + [φ−δ ]

′(t)H−(y).

Possibly after decreasing the constant ε(δ) in Lemma 5.13, we have 1+ δvr −φ−δ (t) >
1
2δvr > 0 for all t ≥ 0. In addition, using the fact that the differential operator D
vanishes on constant functions, it is not hard to see that

(6.18) [D(1+ δvr)H+](y) + [Dφ−δ (t)H−](y) → 0 as ε→ 0,

uniformly for t ≥ 0 and y ∈ R. Finally, the inequality (5.21) implies that there exist
κ = κ(δ) > 0 and ν1 = ν1(δ) > 0 such that

(6.19) [φ−δ ]
′(t)H−(y)− f

(
(1+ δvr)H+(y) + φ−δ (t)H−(y)

)
> ν11

whenever H+(y) ≤ κ or H−(y) ≤ κ. In particular, for all such y we can arrange for
J +(x, t) ≥ 0 by picking a sufficiently small ε > 0.

On the other hand, there exists ν2 = ν2(δ) > 0 such that H ′
+(y) ≥ ν2 for all y ∈ R

for which κ ≤ H+(y) ≤ 1 − κ. Choosing C 
 1 to be sufficiently large ensures that
also J+(x, t) ≥ 0 for these values of y.

Proof of Proposition 6.1(i). At t = 0, the statements follow directly from our
choice (6.3) for u∗(x, 0). The fact that u∗(·, t) is strictly increasing for t > 0 follows
from the comparison principle and the fact that u∗(·, 0) is strictly increasing. For each
fixed t > 0, the limits (6.5) can be obtained by studying the functions w± constructed
in Lemma 6.3 and taking the limits δ → 0 and θ → ∞.

Proof of Proposition 6.1(ii). The existence of ξ� and q� follows from Proposi-
tion 5.2(ii). The existence of ξ+l and ξ−r follows from Proposition 5.3(i), while the
existence of ξ−l and ξ+r follows from the limits (6.5). The uniqueness of all these
quantities follows from the fact that u∗(·, t) is strictly increasing for all t ≥ 0.

Proof of Proposition 6.1(iii). We first focus on the bound (6.9) for ξ−r (t; δ). By
choosing δ > 0 to be sufficiently small, we can ensure that there exists a θ > 0 and
a pair q ∈ W∗ and ψ+ ∈ T̂+

δ (q) such that φ+δ (θ; q, ψ+) ≤ u∗(ξ+r (τ, δ), τ) while also
φ+δ (θ + t; q, ψ+) /∈ U(δ) for all t ≥ 0. In particular, recalling the function w−(x, t) =
w−(x, t; δ, q, ψ+, θ) from Lemma 6.3, we see that

(6.20) u∗(x, τ) ≥ w−(x+ Cτ − ξ+r (τ, δ), τ
)
.

Now, for all t ≥ τ we have

(6.21) w−(2ε−1 + Ct, t) = φ+δ1(t+ θ; q, ψ+) /∈ U(δ),

which by the comparison principle implies that

(6.22) ξ−r (t, δ) ≤ 2ε−1 + Ct− Cτ + ξ+r (τ, δ),

as desired. The bound for ξ+l follows in a similar fashion.
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1102 H. J. HUPKES AND E. S. VAN VLECK

We now turn to the bound (6.10) for ξ−l (t; δ). Write q = q�(τ) and ψ− = ψl(τ)
and recall the function w+(x, t) = w+(x, t; δ, q, ψ−, 0) from Lemma 6.3. For all x ∈ R,
we have

(6.23) u∗(x, τ) ≤ w+
(
x− ξ+l (τ, δ), 0

)
.

Notice furthermore that

(6.24) w+(−2ε−1 − C(t− τ), t− τ) = φ−δ (t− τ ; q, ψ−).

Recall the constant T = T (δ) introduced in Proposition 5.3(ii). Since φ−δ (t−τ ; q, ψ−) ≤
δ1 whenever t ≥ τ + T , the comparison principle implies that for all such t we have

(6.25) ξ−l (t, δ) ≥ −2ε−1 − C(t− τ) + ξ+l (τ, δ),

as desired. The bound for ξ+r follows in a similar fashion.
In order to establish item (iv) of Proposition 6.1, we need to understand the

flow of (6.1) near the separatrix W∗. The condition (HW) roughly states that this
separatrix is repulsive. Since solutions to (6.1) that have small spatial derivatives
locally tend to follow the flow of the ODE (5.1), it is reasonable to expect that u∗(·, t)
cannot become very flat near the separatrix.

In order to make this precise, we pick q ∈ W∗ and introduce the notation

(6.26) Bq(t) = Df
(
Φ(t; q)

)
.

Before considering the full nonlinear system (6.1), we focus on the linearized system

(6.27) ∂tv(x, t) = [Dv](x, t) +Bq(t)v(x, t)

in the next series of results. We use the notation H0 to refer to the Heaviside function
defined by

(6.28) H0(x) = 0 for x < 0, H0(x) = 1 for x ≥ 0.

Lemma 6.4. For all sufficiently large T 
 1, there exists ξ = ξ(T ) 
 1 such that

for any q ∈ W∗ and any ψ ∈ T̂ (q), the function w ∈ X that satisfies the linear PDE
(6.27) with the initial condition

(6.29) w(x, 0) = H0(x)[1+ ψ]

satisfies the bound

(6.30) w(x, T ) ≥ 4

5
Ψ(T ; q)1, x ≥ ξ,

together with

(6.31) w(x, T ) ≤ 1

5
Ψ(T ; q)1, x ≤ −ξ.

Proof. Pick any q ∈ W∗ and ψ ∈ T̂ (q) and consider the function

(6.32) w−(x, t) = H+(−1 + εx)Ψ
(
t; q

)
(1+ ψ)− νtΨ

(
t; q

)
1,
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1103

where ε > 0 and ν = ν(ε) > 0 remain to be determined. Upon writing

(6.33) J−(x, t) = ∂tw
−(x, t)− [Dw−](x, t) −Bq(t)w

−(x, t)

and introducing the new variable y = −1 + εx, we may compute

(6.34)

J−(x, t) = H+(y)Bq(t)Ψ(t; q)(1+ ψ)− νΨ(t; q)1− νtBq(t)Ψ(t; q)1

− [DΨ(t; q)(1+ ψ)H+](y)

−H+(y)Bq(t)Ψ(t; q)(1+ ψ) + νtBq(t)Ψ(t; q)1

= −νΨ(t; q)1− [DΨ(t; q)(1+ ψ)H+](y).

By Proposition 5.2(iv), Lemma 5.13, and the assumption (HW), there exist constants
K 
 1 and ϑ > 0 such that

(6.35) KΨ(t; q)1 > Ψ(t; q)(1+ ψ) + ϑ1

for all t ≥ 0, q ∈ W∗, and ψ ∈ T̂ (q). In particular, since

(6.36) [DvH+](y) → 0 as ε→ 0

uniformly for v ∈ Sn−1, we can choose ν(ε) > 0 in such a way that J −(x, t) ≤ 0
holds for all x ∈ R and t ≥ 0, while also ν(ε) → 0 as ε → 0. In particular, by the
comparison principle we have w(x, t) ≥ w−(x, t) for all x ∈ R and t ≥ 0.

Recall the constant δ∗ from Lemma 5.8. Upon choosing a sufficiently large T 
 1,
Proposition 5.2(iv) implies that

(6.37) |Ψ(T ; q)ψ| ≤ 1

10
δ∗ |Ψ(T ; q)1|

for all q ∈ W∗ and ψ ∈ T̂ (q). We now choose ε∗ > 0 in such a way that ν(ε∗)T ≤ 1
10

and write ξ = 2ε−1
∗ . For any x ≥ ξ, we can now use Lemma 5.8 to estimate

(6.38)

w−(x, T ) = Ψ(T ; q)(1+ ψ)− Tν(ε∗)Ψ(T ; q)1

≥ Ψ(T ; q)1− 1
10δ∗ |Ψ(T ; q)1|1− 1

10Ψ(T ; q)1

≥ Ψ(T ; q)1− 1
10Ψ(T ; q)1− 1

10Ψ(T ; q)1

= 4
5Ψ(T ; q)1.

The lower bound (6.31) can be obtained in a similar fashion by studying the function

(6.39) w+(x, t) = H+(1 + εx)Ψ
(
t; q

)
(1+ ψ) + νtΨ

(
t; q

)
1.

Lemma 6.5. There exists a constant C 
 1 such that for any q ∈ W∗ and any
ψ ∈ T̂ (q), the function w ∈ X that satisfies the linear PDE (6.27) with the initial
condition

(6.40) w(x, 0) = H0(x)[1+ ψ]

satisfies the bound

(6.41) |∂xw(x, t)| ≤ Ct−1/2 |Ψ(t; q)1|

for all x ∈ R and t > 0.
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1104 H. J. HUPKES AND E. S. VAN VLECK

Proof. We write y(·, t) for the Fourier transform of ∂xw(·, t), i.e.,

(6.42) y(ν, t) =

∫ ∞

−∞
e−iνx∂xw(x, t) dx.

Fixing ν ∈ R, a short computation shows that the function y(ν, ·) satisfies the ODE

(6.43) ∂ty(ν, t) =

⎡⎣−γν2 + N∑
j=0

(eiνrj − 1)Aj +Bq(t)

⎤⎦ y(ν, t)
for t ≥ 0 with the initial condition

(6.44) y(ν, 0) = 1+ ψ.

Let us now consider the nonlocal system

(6.45) ∂tv(x, t) = −γν2v(x, t) +
N∑
j=0

Aj [v(x+ rj , t)− v(x, t)] +Bq(t)v(x, t).

Upon writing

(6.46) v(x, t) = eiνxy(ν, t),

one readily sees that v and hence also ṽ(x, t) := Re v(x, t) solve (6.45). In view of the
initial estimate

(6.47) −
(
1+ ψ

)
≤ ṽ(x, 0) = cos(νx)[1+ ψ] ≤ 1+ ψ,

the comparison principle implies that

(6.48) |ṽ(x, 0)| ≤ e−γν2tΨ(t; q)[1+ ψ].

A similar result holds for the imaginary part of v(x, t), which in view of Proposi-
tion 5.2(iv) and Lemma 5.13 yields the estimate

(6.49) |y(ν, t)| ≤ 2e−γν2tΨ(t; q)[1+ ψ] ≤ C1e
−γν2tΨ(t; q)1

for some C1 
 1. In particular, we may compute

(6.50) |∂x(x, t)| =
∣∣∣∣ 12π

∫ ∞

−∞
eiνxy(ν, t)dν

∣∣∣∣ ≤ C1

2π

[∫ ∞

−∞
e−γν2tdν

]
|Ψ(t; q)1| ,

which establishes the desired bound.
Lemma 6.6. Recall the constant κU that appears in Proposition 5.4. There exists

a constant T∗ 
 1 such that for any q ∈ W∗ and any pair ψv, ψw ∈ T̂ (q), there exists
ξ∗ = ξ∗(q;ψv, ψw) ∈ R such that the solutions vI, wI ∈ X to the linear system (6.27)
with the initial conditions

(6.51) vI(x, 0) = H0(x)[1+ ψv], wI(x, 0) = −H0(−x)[1+ ψw]

satisfy the inequalities

(6.52) |vI(ξ∗, T∗)| ≥ 3κU , |wI(ξ∗, T∗)| ≥ 3κU .
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1105

Proof. First, we claim that for all t ≥ 0 we have the limits

(6.53) lim
x→−∞ vI(x, t) = 0, lim

x→+∞ vI(x, t) = Ψ(t; q)[1+ ψv],

together with their analogues

(6.54) lim
x→−∞wI(x, t) = −Ψ(t; q)[1+ ψw], lim

x→+∞wI(x, t) = 0.

Indeed, the comparison principle shows that 0 ≤ vI(x, t) ≤ Ψ(t; q)[1 + ψv] for all
x ∈ R and t ≥ 0. The limits in (6.53) can now be read off from the subsolution
w−(x, t) and the supersolution w+(x, t) constructed in (6.32) and (6.39). The limits
for wI follow after the replacements wI �→ −wI and x �→ −x.

Upon writing

(6.55) w̃I(x, t) = wI(x, t) + Ψ(t; q0)[1+ ψw],

Lemma 6.4 implies that after picking a sufficiently large T 
 1, we have

(6.56) vI(ξ(T ), T ) ≥
4

5
Ψ(T ; q)1, w̃I(−ξ(T ), T ) ≤

1

5
Ψ(T ; q)1.

Possibly after increasing T , we can ensure that

(6.57) Ψ(T ; q)[1+ ψw] ≤
6

5
Ψ(T ; q)1.

Using the fact that both vI(·, T ) and w̃I(·, T ) are nondecreasing functions, we see that
the inequalities
(6.58)

vI(x, T ) ≥
4

5
H0

(
x−ξ(T )

)
Ψ(T ; q)1, w̃I(x, T ) ≤

1

5
Ψ(T ; q)1+H0

(
x+ξ(T )

)
Ψ(T ; q)1

hold for all x ∈ R. In particular, we obtain

(6.59) w̃I(x, T ) ≤
1

5
Ψ(T ; q)1+

5

4
vI(x+ 2ξ(T ), T ).

The comparison principle now implies that for all t ≥ T we have
(6.60)

wI(x, t) = w̃I(x, t) −Ψ(t; q)[1+ ψw]

≤ 1

5
Ψ(t; q)1+

5

4
vI(x+ 2ξ(T ), t)−Ψ(t; q)1−Ψ(t; q)ψw

≤ −4

5
Ψ(t; q)1+

5

4
vI(x, t) +

5

2
Cξ(T )t−1/2 |Ψ(t; q)1|1+ |Ψ(t; q)ψw|1.

In view of (HW), it is possible to pick T∗ 
 T in such a way that

(6.61) −4

5
Ψ(T∗; q)1+

15

4
κU1+

5

2
ξ(T )CT

−1/2
∗ |Ψ(T∗; q)1|1+|Ψ(T∗; q)ψw|1 ≤ −3κU1

holds for all q ∈ W∗ and ψw ∈ T̂ (q). The requirements in the statement of this result
can now be satisfied by choosing ξ∗ = ξ∗(q, ψv) to ensure that

(6.62) |vI(ξ∗, T∗)| = 3κU .
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1106 H. J. HUPKES AND E. S. VAN VLECK

Fig. 3. Panels (i)–(iii) illustrate the initial conditions for the functions vI through vIII and wI

through wIII described in Lemmas 6.6–6.8.

We are now ready to turn to the full nonlinear system (6.1). We use the linear
solutions vI and wI defined above to obtain upper and lower bounds on solutions to
(6.1) that have increasingly intricate initial conditions; see Figure 3.

Lemma 6.7. Recall the constants T∗ and ξ∗ = ξ∗(q, ψv, ψw) introduced in
Lemma 6.6. There exists a constant δ1 > 0 such that for any q ∈ W∗ ∩ [0, 1]n,

ψv ∈ T̂+
δ1
(q), and ψw ∈ T̂−

δ1
(q), the solutions vII, wII ∈ X to the nonlinear system (4.1)

with the initial conditions

(6.63) vII(x, 0) = q + δ1H0(x)[1 + ψv], wII(x, 0) = q − δ1H0(−x)[1+ ψw]

satisfy the inequalities

(6.64) vII(ξ∗, T∗) ≥ Φ(t; q), wII(ξ∗, T∗) ≤ Φ(t; q),

together with the estimates

(6.65) |vII(ξ∗, T∗)− Φ(t; q)| ≥ 2δ1κU , |wII(ξ∗, T∗)− Φ(t; q)| ≥ 2δ1κU .

Proof. We set out to construct a subsolution for vII. To this end, we recall the
function vI(x, t) = vI(x, t; q, ψv) from Lemma 6.6 and write

(6.66) v−(x, t) = Φ(t; q) + δ1vI(x, t)− δ21CtΨ(t; q)1,

together with

(6.67) J −(x, t) = ∂tv
−(x, t)− [Dv−](x, t)− f

(
v−(x, t)

)
.

Writing q(t) = Φ(t; q), we compute
(6.68)
J −(x, t) = f

(
q(t)

)
+ δ1[DvI](x, t) + δ1Bq(t)vI(x, t)− δ21CΨ(t; q)1− δ21CtBq(t)Ψ(t; q)1

− δ1[DvI](x, t)− f
(
q(t) + δ1vI(x, t) − δ21CtΨ(t; q)1

)
= −

[
f
(
q(t) + δ1vI(x, t)− δ21CtΨ(t; q)1

)
− f

(
q(t)

)
−Df(q(t))[δ1vI(x, t)− δ21CtΨ(t; q)1]

]
− δ21CΨ(t; q)1.

In particular, we see that

(6.69)
∣∣J−(x, t) + δ21CΨ(t; q0)1

∣∣ ≤ 1
2

∥∥D2f
∥∥ δ21( |vI(x, t)| + δ1Ct |Ψ(t; q)1|

)2
.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1107

We now choose C 
 1 in such a way that

(6.70) CΨ(t; q)1 ≥ 4
∥∥D2f

∥∥ |vI(x, t)|2 1
holds for all x ∈ R and 0 ≤ t ≤ T∗. In addition, we choose δ1 to be sufficiently small
to ensure that

(6.71) 4δ21Ct
2 |Ψ(t; q)1|2 1 ≤ Ψ(t; q)1

for all 0 ≤ t ≤ T∗. This ensures that for all such t and x we have

(6.72)
∣∣J−(x, t) + δ21CΨ(t; q0)1

∣∣ 1 ≤ 1
2δ

2
1CΨ(t; q0)1,

which shows that J−(x, t) ≤ 0 for all x ∈ R and 0 ≤ t ≤ T∗. Since v−(x, 0) = vII(x, 0),
the comparison principle implies that vII(x, T∗) ≥ v−(x, T∗) for all x ∈ R. By further
decreasing δ1 to ensure that

(6.73) δ1CT∗ |Ψ(T∗; q)1| ≤ κU ,

the first estimate in (6.65) can be obtained. The estimate for wII can be obtained in
a similar fashion.

Lemma 6.8. Recall the constants T∗ and ξ∗ = ξ∗(q, ψv, ψw) introduced in
Lemma 6.6, together with the constant δ1 > 0 introduced in Lemma 6.7. There exists
a constant h2 
 1 such that for any q ∈ W∗ ∩ [0, 1]n, any ψv ∈ T̂+

δ1
(q), and any

ψw ∈ T̂−
δ1
(q), the solutions vIII, wIII ∈ X to the nonlinear system (4.1) with the initial

conditions

(6.74)
vIII(x, 0) = qH0(x+ h2) + δ1H0(x)[1+ ψv],

wIII(x, 0) =
(
1−H0(x− h2)

)
q + 1H0(x − h2)− δ1H0(−x)[1+ ψw]

satisfy the inequalities

(6.75) vIII(ξ∗, T∗) ≥ Φ(t; q), wIII(ξ∗, T∗) ≤ Φ(t; q),

together with the estimates

(6.76) |vIII(ξ∗, T∗)− Φ(t; q)| ≥ δ1κU , |wIII(ξ∗, T∗)− Φ(t; q)| ≥ δ1κU .

Proof. For any ν3 > 0, we introduce the C1([0,∞),R) function

(6.77) gν3(t) =

{
te−ν3t for 0 ≤ t ≤ ν−1

3 ,
ν−1
3 e−1 for t ≥ ν−1

3 .

Notice that g′ν3(t) ≥ 0 for t ≥ 0, together with gν3(0) = 0, g′ν3(0) = 1 and 0 ≤ gν3(t) ≤
ν−1
3 e−1. We again write q(t) = Φ(t; q) and consider the function

(6.78) v−(x, t) = vII(x, t)−q(t)H−
(
1+ε(x−ξ∗−C1(t−T∗))

)
−κ2teν2t1−C3gν3(t)1,

in which the constants ε > 0, ν2 > 0, ν3 
 1, C1 
 1, κ2 > 0, and C3 
 1 remain
to be determined. As before, we set out to show that J−(x, t) ≤ 0 for all x ∈ R and
0 ≤ t ≤ T∗, in which

(6.79) J −(x, t) = ∂tv
−(x, t)− [Dv−](x, t)− f

(
v−(x, t)

)
.
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1108 H. J. HUPKES AND E. S. VAN VLECK

Upon writing y = 1 + ε
(
x− ξ∗ − C1(t− T∗)

)
, we may compute

(6.80)
J −(x, t)
= [DvII](x, t) + f

(
vII(x, t)

)
− f

(
q(t)

)
H−(y) + C1εq(t)H

′−(y)− κ2e
ν2t1

− ν2κ2te
ν2t1− C3g

′
ν3(t)1− [DvII](x, t) + [Dq(t)H−](y)

− f
(
vII(x, t)− q(t)H−(y)− κ2te

ν2t1− C3gν3(t)1
)

= f(vII(x, t)) − f
(
vII(x, t)− q(t)H−(y)− κ2te

ν2t1− C3gν3(t)1
)
− f(q(t))H−(y)

− κ2(1 + ν2t)e
ν2t1− C3g

′
ν3(t)1− C1εq(t)H

′
+(y) + [Dq(t)H−](y).

Before we proceed further, we claim that for all 0 ≤ t ≤ T∗ we have the limit

(6.81) lim
x→−∞ vII(x, t) = q(t).

Indeed, after the substitution C �→ −C in (6.66), the function v− constructed there
is in fact a supersolution for vII. The limit (6.81) now follows from the limits (6.53).

For any ϑ ∈ (0, 1), we write yϑ for the unique y ∈ R that has H−(y) = ϑ and
introduce the constant

(6.82) M(ε) = sup
0≤t≤T∗, y≤y1−ε

|vII(x, t) − q(t)| .

Since x = x(y, t) = ε−1y + ξ∗ + C1(t − T∗) and y1−ε → −1 as ε ↓ 0, the limit (6.81)
implies that M(ε) → 0 as ε ↓ 0.

Let us now introduce the notation

(6.83) G(x, t) =
∣∣J−(x, t) + κ2(1 + ν2t)e

ν2t1+ C3g
′
ν3(t)1+ C1εq(t)H

′
+(y)

∣∣ .
Whenever y ≤ yε and 0 ≤ t ≤ T∗, we can use f(0) = 0 to obtain the estimate
(6.84)
G(x, t) ≤ |f(vII(x, t)) − f(q(t))|+ |1−H−(y)| |f(q(t))|

+ ‖Df‖
[
|vII(x, t) − q(t)|+ |(1−H−(y))q(t)| + |κ2teν2t1|+ |C3gν3(t)1|

]
+ |[Dq(t)H−](y)|

≤ 2 ‖Df‖M(ε) + ε(|f(q(t))| + ‖Df‖ |q(t)|)
+ |[Dq(t)H−](y)|+ κ2te

ν2t ‖Df‖ |1|+ C3gν3(t) ‖Df‖ |1| .

We now fix ν2 = 2 ‖Df‖ |1|. In addition, we choose
(6.85)
κ2 = κ2(ε) = 8 ‖Df‖M(ε) + 4ε sup

q∈W∗
[|f(q)|+ ‖Df‖ |q|] + 4 sup

q∈W∗,y∈R

|[DqH−](y)|

and remark that κ2(ε) → 0 as ε ↓ 0. By appropriately restricting ε > 0 we can hence
ensure that

(6.86) κ2(ε)T∗eν2T∗ ≤ 1

2
δ1κU .

With these restrictions in place, we obtain the estimate

(6.87) G(x, t) ≤ κ2te
ν2t ‖Df‖ |1|+ 1

4
κ2 + C3

1

ν3
e−1 ‖Df‖ |1| .
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1109

We now pick C3 
 1 in such a way that

(6.88) C3 ≥ 4 sup
q∈W∗

[|f(q)|+ ‖Df‖ |q|]

and ν3 
 1 to ensure that

(6.89) ν3 ≥ 4κ−1
2 C3e

−1 ‖Df‖ |1| , C3ν
−1
3 ≤ 1

2
δ1κU .

The first condition on ν3 ensures that

(6.90) G(x, t) ≤ 1
2κ2ν2te

ν2t + 1
2κ2,

which in turn implies that J−(x, t) ≤ 0 whenever y ≤ yε and 0 ≤ t ≤ T∗.
Whenever y ≥ yε, we can use the inequality H−(y) ≤ ε to estimate

(6.91)
G(x, t) ≤ ε |f(q(t))|+ ‖Df‖

[
ε |q(t)| + κ2te

ν2t1+ C3gν3(t)1
]

+ |[Dq(t)H−](y)|
≤ ε

(
|f(q(t))|+ ‖Df‖ |q(t)|

)
+ |[Dq(t)H−](y)|+ [κ2te

ν2t + C3gν3(t)] ‖Df‖ |1| .

This estimate is stronger than (6.84), so we do not have to consider it further.
It remains to consider the case that y1−ε < y < yε and 0 ≤ t ≤ T∗. In this case

we may estimate

(6.92)

G(x, t) ≤ H−(y) |f(q(t))|+ ‖Df‖
[
H−(y) |q(t)| + κ2te

ν2t1+ C3gν3(t)1
]

+ |[Dq(t)H−](y)|
≤ H−(y) |f(q(t))|+ ‖Df‖H−(y) |q(t)|

+ |[Dq(t)H−](y)|+ κ2te
ν2t ‖Df‖ |1|+ C3

1

ν3
e−1 ‖Df‖ |1| .

Our restrictions on κ2, ν2, and ν3 now yield

(6.93)

G(x, t) ≤ H−(y) |f(q(t))| + ‖Df‖H−(y) |q(t)|

+
1

2
κ2ν2te

ν2t +
1

2
κ2.

In addition, the restriction on C3 implies that there exists t∗ > 0 such that

(6.94) C3g
′
ν3(t) ≥ 2 |f(q(t))|+ 2 ‖Df‖ |q(t)|

holds for all 0 ≤ t ≤ t∗. This shows that J−(x, t) ≤ 0 for 0 ≤ t ≤ t∗.
Now, there exists ϑ > 0 such that

(6.95) q(t) ≥ ϑ1

holds for all t ≥ t∗, independent of the choice of q ∈ W∗ ∩ [0, 1]n. In particular, we
can choose C1 = C1(ε) 
 1 in such a way that

(6.96) C1εq(t)H
′
+(y) ≥ H−(y) sup

q∈W∗

[
|f(q)|+ ‖Df‖ |q|

]
1

and hence J −(x, t) ≤ 0 holds for all y1−ε < y < yε and t∗ ≤ t ≤ T∗.
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1110 H. J. HUPKES AND E. S. VAN VLECK

To complete the proof, we can pick

(6.97) h2 ≥ 2ε−1 − ξ∗ + C1(ε)T∗,

which ensures that

(6.98) vIII(x, 0) ≥ v−(x, 0), x ∈ R.

The desired inequality (6.76) for vIII now follows from the comparison principle to-
gether with the choices (6.86) and (6.89). The inequality for wIII can be established
in an analogous fashion.

Proof of Proposition 6.1(iv). Recall the constants T∗ and ξ∗ = ξ∗(q, ψv, ψw)
introduced in Lemma 6.6 and the constant δ1 > 0 introduced in Lemma 6.7. In
addition, recall the constant h2 
 1 and the functions vIII, wIII introduced in Lemma
6.8.

For any t0 ≥ 0, we set out to show that

(6.99) ξ−r (t0 + T∗, δ1)− ξ+l (t0 + T∗, δ1) ≤ max{ξ−r (t0, δ1)− ξ+l (t0, δ1), 2h2}.

Without loss of generality, we will assume that ξ�(t0) = 0. We write

(6.100) h+ = max{ξ−r (t0, δ1), h2}, h− = min{ξ+l (t0, δ1),−h2},

which shows that for all x ∈ R we have
(6.101)
u∗(x, t0) ≥ vIII(x−h+, 0 ; q�(t0), ψr(t0)), u∗(x, t0) ≤ wIII(x−h−, 0 ; q�(t0), ψl(t0)).

In particular, the comparison principle implies that

(6.102)
u∗(ξ∗, t0 + T∗) ≥ vIII(ξ∗ − h+, T∗; q�(t0), ψr(t0)),

u∗(ξ∗, t0 + T∗) ≤ wIII(ξ∗ − h−, T∗; q�(t0), ψl(t0)).

Using the definition of κU , we see that

(6.103) u(ξ∗+h+, t0+T∗) ∈ U+(δ1)\U(δ1), u(ξ∗+h−, t0+T∗) ∈ U−(δ1)\U(δ1).

In particular, we find that

(6.104) ξ−r (t0 + T∗, δ1) ≤ ξ∗ + h+, ξ+l (t0 + T∗, δ1) ≥ ξ∗ + h−,

which shows that

(6.105) ξ−r (t0+T∗, δ1)−ξ+l (t0+T∗, δ1) ≤ h+−h− ≤ max{2h2, ξ−r (t0, δ1)−ξ+l (t0, δ1)},

as desired. In order to establish the uniform bound (6.11), it now suffices to note that
for all 0 ≤ t ≤ T∗, we have

(6.106)
ξ−r (t, δ1)− ξl(t, δ1) ≤ ξ+r (0; δ)− ξ−l (0; δ) + 4ε−1 + Ct

≤ ξ+r (0; δ)− ξ−l (0; δ) + 4ε−1 + CT∗,

by Proposition 6.1(iii).
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1111

7. Existence of traveling waves—convergence. The preparations in sec-
tion 6 allow us to return to the nonlinear system

(7.1) ∂tu(x, t) = [Du](x, t) + f
(
u(x, t)

)
and establish the existence of traveling waves. In particular, in this section we set out
to prove the following result.

Proposition 7.1. Consider the nonlinear system (7.1) with γ > 0 and suppose
that (HA), (h)§4, and (HW) are all satisfied. Then there exists a constant c ∈ R and

a function P ∈W 2,∞(R,Rn) that satisfies the limits

(7.2) lim
ξ→−∞

P (ξ) = 0, lim
ξ→∞

P (ξ) = 1,

has P ′ > 0, and yields a solution to (7.1) upon writing

(7.3) u(x, t) = P
(
x− ct

)
.

Our approach towards proving the above result closely follows the arguments used
in steps 3 and 4 of [9, sec. 4]. In particular, we consider the evolution of the solution

u∗ ∈ X̂ to (7.1) that has the smooth initial profile (6.3). Combining regularity results
with the comparison principle, it is possible to show that in an appropriate comoving
frame u∗ converges temporally to a function U , which in turn must be the profile of
a traveling wave solution to (7.1).

Throughout the remainder of this section we fix γ > 0 and treat (HA), (h)§4, and
(HW) as standing assumptions. We also recall the functions ξ�, ξ±l , and ξ±r defined
in Proposition 6.1.

Lemma 7.2. For every M > 0 there exists a constant ηM > 0 such that

(7.4) ∂xu∗(x+ ξ�(t), t) ≥ ηM1

holds for all t ≥ 0 and −M ≤ x ≤M .
Proof. Applying Proposition 4.1 to the functions u(x, t) = u∗(x + h, t + τ) and

v(x, t) = u∗(x, t+ τ) and subsequently taking the limit h→ 0 shows that

(7.5) ∂xu∗(x, t+ τ) ≥ ηγ(x− y, t)

∫ y+1

y

∂xu∗(σ, τ) dσ

holds for all t > 0, τ ≥ 0, and x, y ∈ R. In view of Lemma 5.13(ii), there exists a
constant ν1 > 0 such that for all τ ≥ 0 we have

(7.6)
∣∣u∗(ξ−r (τ ; δ1), τ

)
− u∗

(
ξ+l (τ ; δ1), τ

)∣∣ ≥ ν1.

In particular, there exists a constant ν2 > 0 such that for all τ ≥ 0, there exists yτ ∈ R

that satisfies

(7.7) ξ�(τ) − h1 ≤ ξ+l (τ, δ1) ≤ yτ ≤ ξ−r (τ, δ1)− 1 ≤ ξ�(τ) + h1 − 1,

together with an integer 1 ≤ iτ ≤ n so that

(7.8)

∫ yτ+1

yτ

[∂xu∗(σ, τ)]iτ dσ ≥ ν2.
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1112 H. J. HUPKES AND E. S. VAN VLECK

This means that for all 1 ≤ j ≤ n and τ ≥ 0 we have

(7.9) [∂xu∗(x, τ + 1)]j ≥ ηγ(x− yτ , 1)jiτ ν2 > 0.

Notice that (6.9) and Corollary 6.2 imply that

(7.10)
|ξ�(τ + 1)− ξ�(τ)| ≤ ξ+r (τ, δ1)− ξ−l (τ, δ1) + 4ε−1(δ1) + 2C(δ1)

≤ m1(δ1) + 4ε−1(δ1) + 2C(δ1).

In particular, for eachM > 0, the quantity x−yτ appearing in (7.9) can be uniformly
bounded for all τ ≥ 0 and x ∈ R that have |x− ξ�(τ + 1)| < M .

In order to complete the proof, it now suffices to establish (7.4) for 0 ≤ t ≤ 1.
This can be achieved by using regularity and the fact that ∂xu∗(x, t) > 0 for all x ∈ R

and t ≥ 0.
Lemma 7.3. There exists a C1-smooth function U : R → Rn and a sequence

tj → ∞ such that

(7.11) u∗
(
·+ξ�(tj), tj

)
→ U, j → ∞,

where the convergence is in the space BC0(R,Rn). In addition, we have the inequality
U ′(ξ) > 0 for all ξ ∈ R together with the limits

(7.12) lim
ξ→−∞

U(ξ) = 0, lim
ξ→∞

U(ξ) = 1.

Proof. Since the family {u∗(·+ξ�(t), t)}t≥0 consists of strictly increasing bounded
functions, there exists a sequence tj → ∞ and a nondecreasing function U such that
the pointwise convergence

(7.13) u∗(ξ + ξ�(tj), tj) → U(ξ), j → ∞

holds for all ξ ∈ R. Obviously, the bounds 0 ≤ U ≤ 1 carry over from the correspond-
ing bounds for u∗. In addition, we have U(0) ∈ W∗ ∩ [0, 1]n by compactness. In view
of Corollary 6.2, the limits (7.12) can be obtained by observing that for all δ > 0 we
have

(7.14) U
(
−m1(δ)

)
≤ δ1, U

(
m1(δ)

)
≥ (1− δ)1.

Proposition 4.2 implies that there exists C1 
 1 such that |∂xu∗(x, t)| ≤ C1 for all
x ∈ R and t ≥ 0. Combining this estimate with Lemma 7.2, we obtain the inequality

(7.15) η|ξ|+1h1 ≤ U(ξ + h)− U(ξ) ≤ C1h1

for all 0 ≤ h ≤ 1. Applying Corollary 6.2, we see that the convergence u∗(· +
ξ�(tj), tj) → U holds in BC0(R,Rn). Another application of Proposition 4.2 yields
a uniform bound on ∂xxu∗, which combined with the Ascoli–Arzela theorem shows
that in fact U ∈ C1(R,Rn). Finally, the lower bound in (7.15) yields U ′(ξ) > 0 for
all ξ ∈ R.

We now introduce the function Ũ ∈ X̂ that solves the nonlinear system (7.1) with
the initial condition

(7.16) Ũ(x, 0) = U(x).
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1113

The uniform convergence (7.11) implies that for every δ > 0, we have the inequalities

(7.17) u∗(x+ ξ�(tj), tj)− δ1 < U(x) < u∗(x+ ξ�(tj), tj) + δ1

for all sufficiently large integers j. In view of Lemma 7.2, all the conditions of Corol-
lary 4.4 are satisfied, which shows that for all sufficiently large j and all t ≥ 0 we
have

(7.18)
Ũ(x, t) ≥ u∗(x+ ξ�(tj) + σ2δ(1 − e−βt), t+ tj)− σ3δe

−βt1,

Ũ(x, t) ≤ u∗(x+ ξ�(tj) + σ2δ(1 − e−βt), t+ tj) + σ3δe
−βt1.

Sending j → ∞ and subsequently δ → 0, we find

(7.19) lim sup
j→∞

u∗(x+ ξ�(tj), tj + t) ≤ Ũ(x, t) ≤ lim inf
j→∞

u∗(x+ ξ�(tj), tj + t)

for all x ∈ R and t ≥ 0. Using similar arguments as in the proof of Lemma 7.3, this
shows that

(7.20) u∗(·+ ξ�(tj), tj + t) → Ũ(·, t), j → ∞,

where the convergence is in the space BC0(R,Rn).
Lemma 7.4. For all t ≥ 0, we have the limits

(7.21) lim
|x|→±∞

∂xŨ(x, t) = 0.

Proof. There exists C > 0 such that the estimate

(7.22) ‖φ′‖2C([0,1],Rn) ≤ C ‖φ‖C([0,1],Rn) ‖φ‖C2([0,1],Rn)

holds for any φ ∈ C2([0, 1],Rn). Proposition 4.2 provides uniform bounds on ∂xxu∗,
which can be combined with Corollary 6.2 to yield

(7.23) lim
x→∞ sup

|ξ|≥x, t≥1

∂xu∗(ξ + ξ�(t), t) = 0.

In particular, an application of Ascoli–Arzela shows that for each t ≥ 0, the conver-
gence (7.20) holds in BC1(R,Rn). The limits (7.21) now follow from (7.23).

Corollary 6.2 implies that there exist δ0 > 0 and m0 
 1 such that

(7.24) u∗(x−m0, 1)− δ01 ≤ u∗(x, 0) ≤ u∗(x +m0, 1) + δ01.

Corollary 4.4 hence yields the estimates

(7.25)
u∗(x, t) ≥ u∗(x −m0 − σ2δ0(1− e−βt), t+ 1)− σ3δ0e

−βt1,

u∗(x, t) ≤ u∗(x +m0 + σ2δ0(1− e−βt), t+ 1) + σ3δ0e
−βt1.

Setting t = tj and sending j → ∞, we can use the convergence (7.20) to obtain

(7.26) Ũ(x−m0 − σ2δ0, 1) ≤ U(x) ≤ Ũ(x+m0 + σ2δ0, 1)

for all x ∈ R. This allows us to define two constants ξ∗ < ξ∗ with

(7.27) ξ∗ = sup{ξ | Ũ(·+ ξ, 1) ≤ U(·)}, ξ∗ = inf{ξ | Ũ(·+ ξ, 1) ≥ U(·)}.

D
ow

nl
oa

de
d 

06
/3

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1114 H. J. HUPKES AND E. S. VAN VLECK

Lemma 7.5. We have ξ∗ = ξ∗.
Proof. Assume to the contrary that ξ∗ > ξ∗. Then we have Ũ(x + ξ∗, 1) ≤ U(x)

for all x ∈ R, but Ũ(· + ξ∗, 1) �= U . This means that Ũ(x + ξ∗, 2) < Ũ(x, 1) for all
x ∈ R. In particular, for any M 
 1 there exists h = h(M) such that

(7.28) Ũ(x+ ξ∗ + 2σ2h, 2) < Ũ(x, 1)

holds for all x ∈ [−M,M ]. In view of the bound (7.21) on ∂xŨ , we can ensure that
the inequality

(7.29) Ũ(x+ ξ∗ + σ2(2 + σ3)h, 2)− h1 < Ũ(x, 1)

holds for all x ∈ R by fixing a sufficiently large M 
 1 and picking h = h(M).
The uniform convergence (7.11) implies that for all sufficiently large integers j

and all x ∈ R we have

(7.30) u∗(x, tj)−
h

8
≤ U

(
x− ξ�(tj)

)
≤ u∗(x, tj) +

h

8
,

which in turn implies that for all t ≥ 0 and x ∈ R we have
(7.31)

u∗

(
x− h

8
σ2, t+ tj

)
− h

8
σ31 ≤ Ũ(x− ξ�(tj), t) ≤ u∗

(
x+

h

8
σ2, t+ tj

)
+
h

8
σ31.

Combining this with (7.29) implies that

(7.32) u∗

(
x+ ξ∗ + σ2

(
7

4
+ σ3

)
h, tj + 2

)
−
(
1 +

1

4
σ3

)
h1 ≤ u∗(x, tj + 1).

A final application of the comparison principle now shows that for all t ≥ tj + 1 and
all x ∈ R we have

(7.33) u∗

(
x+ ξ∗ +

3

4
σ2(1 + σ3)h, t+ 1

)
− σ3

(
1 +

1

4
σ3

)
he−βt1 ≤ u∗(x, t).

Writing x = ξ + ξ�(tk) together with t = tk and subsequently sending k → ∞, we
may use (7.20) to obtain

(7.34) Ũ

(
ξ + ξ∗ +

3

4
σ2(1 + σ3)h, 1

)
≤ U(ξ),

which contradicts the definition of ξ∗.
Proof of Proposition 7.1. The argument used in the proof of Lemma 7.5 can be

repeated for any 1 ≤ t ≤ 2, which implies that for all 1 ≤ t ≤ 2 we have

(7.35) Ũ(x, t) = U
(
x− c(t)

)
for some function c(t). Since Ũ satisfies (7.1), one sees that c(t) must be a constant,

which implies that Ũ is a traveling wave solution to (7.1).
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8. Persistence of traveling waves. In this section, we turn our attention
directly to the traveling wave MFDE

(8.1) −γu′′(ξ)− cu′(ξ) =
N∑
j=0

Aj [u(ξ + rj)− u(ξ)] + f
(
u(ξ)

)
.

In order to reflect the fact that we have dropped the dependence of the nonlinearity
on ρ, we impose the following condition.
(h)§8 The conditions (HA), (Hf1)–(Hf3), and (HS1)–(HS2) are all satisfied with the

understanding that V = {0} and f(· ; 0) = f(·).
The main goal is to show that the techniques developed in [32, 25] for scalar

versions of (8.1) can be adapted to the current high dimensional setting. Although
the broad ideas used in [32] continue to work, there are important technical details
that need to be addressed. Briefly stated, the problem is that unlike scalars, nonzero
matrices cannot necessarily be inverted.

Our first main result states that (8.1) cannot simultaneously have heteroclinic
solutions that connect the two stable equilibria to an unstable equilibrium. This is
an essential ingredient towards understanding the limiting behavior of wave profiles
as system parameters are changed.

Proposition 8.1 (cf. [32, Lem. 7.1]). Consider the nonlinear MFDE (8.1) with
γ ≥ 0 and suppose that (h)§8 is satisfied. Consider any q∗ ∈ Rn that has 0 < q∗ <
1 together with f(q∗) = 0. Then there do not simultaneously exist nondecreasing
solutions u− and u+ to (8.1) that have
(8.2)
lim

ξ→−∞
u−(ξ) = 0, lim

ξ→+∞
u−(ξ) = q∗, lim

ξ→−∞
u+(ξ) = q∗, lim

ξ→+∞
u+(ξ) = 1.

Our second main result concerns the linearization of (8.1) around a solution u =
P , which we write as

(8.3) −γv′′(ξ)− cv′(ξ) =
N∑
j=0

Aj [v(ξ + rj)− v(ξ)] +Df
(
P (ξ)

)
v(ξ).

For convenience, write sγ = 1 if γ = 0 and sγ = 2 if γ > 0. We introduce the operator

(8.4) Λc,γ :W sγ ,∞(R,Rn) → L∞(R,Rn)

associated to the linear MFDE (8.3) that acts as

(8.5) [Λc,γv](ξ) = −γv′′(ξ)− cv′(ξ)−
N∑
j=0

Aj [v(ξ + rj)− v(ξ)] −Df
(
P (ξ)

)
v(ξ).

We also introduce the formal adjoint Λ∗
c,γ :W sγ ,∞(R,Rn) → L∞(R,Rn) that acts as

(8.6) [Λ∗
c,γv](ξ) = −γv′′(ξ) + cv′(ξ)−

N∑
j=0

Aj [v(ξ − rj)− v(ξ)] −Df
(
P (ξ)

)
v(ξ).

Our second main result gives conditions under which Λc,γ is a Fredholm operator with
a one-dimensional kernel and zero index. As in [32], this result allows us to use the
implicit function theorem to show that solutions to the nonlinear system (8.1) persist
under small changes of system parameters.
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1116 H. J. HUPKES AND E. S. VAN VLECK

Proposition 8.2 (cf. [32, Thm. 4.1]). Consider the linear MFDE (8.3) with
γ ≥ 0 and γ + |c| > 0 and suppose that (h)§8 is satisfied. Suppose furthermore that
for some α > 0 the function P ∈ BC(R,Rn) has the asymptotics

(8.7) |P (ξ)| = O
(
e−α|ξ|), ξ → −∞, |P (ξ)− 1| = O

(
e−α|ξ|), ξ → +∞.

Finally, suppose that that there exists a nontrivial solution p ∈W sγ ,∞(R,Rn) to (8.3)
that has p(ξ) ≥ 0 for all ξ ∈ R. Then the operator Λc,γ is a Fredholm operator with

(8.8) dimKer(Λc,γ) = dimKer(Λ∗
c,γ) = codimRange(Λc,γ) = 1.

In addition, the element p ∈ Ker(Λc,γ) satisfies p(ξ) > 0 for all ξ ∈ R and there exists
p∗ ∈ Ker(Λ∗

c,γ) that has p∗(ξ) > 0 for all ξ ∈ R.
The crucial ingredient in the proof of these two results is a detailed understand-

ing of the asymptotic behavior of solutions to (8.1). One expects that if a solution
approaches an equilibrium q, the asymptotic behavior can be understood by studying
the autonomous system

(8.9) −cv′(ξ) = γv′′(ξ) +
N∑
j=0

Aj [v(ξ + rj)− v(ξ)] +Df(q)v(ξ).

In particular, in the first part of this section we analyze the characteristic function

(8.10) Δc,γ,q(z) = −γz2 − cz −
N∑
j=0

Aj(e
zrj − 1)−Df(q)

and look for pairs λ ∈ C, w ∈ Cn that have Δc,γ,q(λ)w = 0. Indeed, any such pair
yields a solution to (8.9) upon writing v(ξ) = eλξw, and one hopes that the leading
order behavior of solutions to the nonlinear system (8.1) can be expressed in terms
of such eigensolutions. A result along these lines can be found in [31, Prop. 7.2].
However, when dealing with MFDEs, there is a possibility that solutions approach
their limits at a rate that is faster than any exponential. In the second part of this
section, we will develop comparison principles and find a specific restatement of (8.3)
that will allow us to rule out this pathological possibility.

Our analysis of the characteristic function (8.10) is aided considerably by earlier
work in [8]. In particular, upon writing

(8.11) Aq(λ) =
N∑
j=0

Aj(e
λrj − 1) +Df(q),

the authors studied the eigenvalue problem

(8.12) μv = Aq(λ)v, v ≥ 0,

which is closely related to (8.10). By Perron–Frobenius [16], this problem has a unique
solution pair μ = μq(λ), v = vq(λ) > 0 for each λ ∈ R. The results in [8] state that
μq is analytic and strictly convex with μq(λ) → ∞ as λ→ ±∞. In particular, for any
0 < t < 1 and λ1 �= λ2 we have the inequality

(8.13) μq(tλ1 + (1 − t)λ2) < tμq(λ1) + (1− t)μq(λ2).

Upon introducing the polynomial ψc,γ(λ) = −γλ2 − cλ, we see that any λ ∈ R that
solves

(8.14) ψc,γ(λ) = μq(λ)
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1117

automatically has Δc,γ,q(λ)vq(λ) = 0. Vice versa, if Δc,γ,q(λ)v = 0 for some nonzero
v ≥ 0, then (8.14) must be satisfied. Since ψ′′(λ) ≤ 0 and μ is strictly convex, (8.14)
has at most two real solutions. The next three results explore the relation between
the functions μq and Δc,γ,q.

Lemma 8.3. Suppose that (h)§8 is satisfied and pick any solution to f(q) = 0 for
which the equation det[Df(q)− λI] = 0 has no solutions with Reλ ≥ 0. Then (8.14)
with γ ≥ 0 has precisely two real solutions λ− < 0 < λ+.

Proof. This follows from the fact that our assumption on q implies that μq(0) < 0
while on the other hand ψc,γ(0) = 0.

Lemma 8.4. Suppose that (h)§8 is satisfied and pick any solution to f(q) = 0 for
which the equation det[Df(q)−λI] = 0 has at least one solution with Reλ > 0. Then
for any pair λ− < 0 < λ+, (8.14) with γ ≥ 0 cannot be satisfied for both λ = λ±.

Proof. This follows from the fact that our assumption on q implies that μq(0) > 0
while again ψc,γ(0) = 0.

Lemma 8.5. Suppose that (h)§8 is satisfied, pick any q ∈ [0, 1]n for which f(q) =
0, and consider the autonomous sytem (8.9) with γ ≥ 0. Suppose that (8.14) has two
distinct solutions λ− < λ+. Then the characteristic equation detΔc,γ,q(z) = 0 has
two simple roots at z = λ±. In addition, consider any z ∈ C \ {λ−, λ+} for which
detΔc,γ,q(z) = 0. Then either Re z ≤ λ− or Re z ≥ λ+ must hold, where equality is
only possible if γ = c = 0. If in fact Im z = 0, then we cannot have Δc,γ,q(z)v = 0
for any nonzero v ∈ R

n
≥0.

Proof. For convenience, we introduce the shorthand ψ(λ) = ψc,γ(λ). Note that
λ± are simple roots to (8.14), which means ψ′(λ±) �= μ′

q(λ
±). In order to show that

z = λ± are also simple roots of detΔc,γ,q(z) = 0, we must show that

(8.15)
d

dz
detΔc,γ,q(z)|z=λ± �= 0.

To see this, we introduce the function

(8.16) F(ψ, z) = det[ψI −Aq(z)],

which clearly satisfies F(μq(λ), λ) = 0 for all λ ∈ R. In addition, since μq(λ) is a
simple eigenvalue for Aq(λ) we must have D1F(μq(λ), λ) �= 0. The implicit function
theorem now yields

(8.17) μ′
q(λ) = −D2F

(
μq(λ), λ

)
/D1F

(
μq(λ), λ

)
.

Upon writing G(z) = detΔc,γ,q(z), we obviously have G(z) = F(ψ(z), z). We may
hence compute

(8.18) G′(z) = D1F(ψ(z), z)ψ′(z) +D2F(ψ(z), z),

which yields

(8.19)

G′(λ±) = D1F
(
ψ(λ±), λ±

)
ψ′(λ±) +D2F

(
ψ(λ±), λ±

)
= D1F

(
μq(λ

±), λ±
)
ψ′(λ±) +D2F

(
μq(λ

±), λ±
)

= D1F
(
μq(λ

±), λ±
)
[ψ′(λ±)− μ′

q(λ
±)].

In particular, we have G′(λ±) �= 0, as desired.
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1118 H. J. HUPKES AND E. S. VAN VLECK

Let us now consider a pair (z, vz) ∈ C×Cn that has Δc,γ,q(z)vz = 0. In addition,
let us suppose that λ− ≤ Re z ≤ λ+ but z �= λ±. Upon writing z = λ + iν with
λ, ν ∈ R, let us consider the nonlocal system

(8.20)

∂tv(x, t) = γ∂xxv(x, t) + (γλ2 + cλ)v(x, t)

+

N∑
j=0

Aj [e
λrjv(x+ rj , t)− v(x, t)] +Df(q)v(x, t).

A short calculation shows that the two functions

(8.21)
v(x, t) = Re eiν

(
x−(c+2γλ)t

)
vz,

w(x, t) = e(μq(λ)+γλ2+cλ)tvq(λ)

both satisfy (8.20). Since vq(λ) > 0, there exists κ > 0 such that

(8.22) −κw(x, t) ≤ v(x, t) ≤ κw(x, t)

holds for all x ∈ R and t ≥ 0. If λ− < λ < λ+, then w(x, t) → 0 as t → ∞, which
contradicts the fact that ‖v(·, t)‖∞ does not decay. Let us therefore suppose that
either λ = λ±. In this case w(x, t) = vq(λ) is constant in time and space. However,
by appropriately choosing κ we can ensure that v(x, 0) ≤ κw(x, 0) with equality
vi∗(x∗, 0) = κwi∗(x∗, 0) for some (but not all) x∗ ∈ R and 1 ≤ i∗ ≤ n. If γ > 0, the
comparison principle stated in Proposition 4.1 implies that v(x, t) < κw(x, t) for all
t > 0, which contradicts the fact that

(8.23) vi∗
(
(c+ 2γλ)t+ x∗, t

)
= vi∗(x∗, 0) = κwi∗(x∗, 0) = κwi∗(x∗, t).

If γ = 0, we can only conclude that v(x, t) ≤ κw(x, t) for all t > 0. If, however, c �= 0
also, then for all small t > 0 we have

(8.24) vi∗(x∗, t) < vi∗(x∗, 0) = κwi∗(x∗, t)

but also

(8.25) vi∗(x∗, 2π |νc|
−1

) = κwi(x∗, 2π |νc|−1
).

This violates the uniqueness of solutions to (8.20) with γ = 0 and hence completes
our proof.

We now turn our attention to the linear system

(8.26) −γv′′(ξ)− cv′(ξ) =
N∑
j=0

Ajv(ξ + rj) +B(ξ)v(ξ),

together with its inhomogeneous counterpart

(8.27) −γv′′(ξ)− cv′(ξ) =
N∑
j=0

Ajv(ξ + rj) +B(ξ)v(ξ) + h(ξ).

We remark that (8.26) reduces to (8.3) upon writing B(ξ) = Df(P (ξ))−A. Alterna-
tively, if u1 and u2 both satisfy (8.1), the difference v = u1 − u2 satisfies (8.26) with
coefficients

(8.28) B(ξ) =

∫ 1

0

[
Df

(
u2(ξ) + σ(u1(ξ)− u2(ξ))

)
−A

]
dσ.

This motivates the following condition on the function B.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1119

(hb) We have B ∈ L∞(R,Rn×n) and there exists κ > 0 such that B(ξ) + κI ≥ 0
for all ξ ∈ R. In addition, for any pair (i, j) ∈ {1, . . . , n}2 with i �= j we either
have Bij(ξ) = 0 for all ξ ∈ R or Bij(ξ) > κij > 0 for all ξ ∈ R.

In order to generalize the results in [32], we need to exploit some freedom that we
have in the formulation of the MFDE (8.26) that is not present in the scalar case. In
particular, for any v ∈ L∞(R,Rn) and σ ∈ Rn, we introduce the new function vσ that
has

(8.29) vσi (ξ) = vi(ξ + σi).

A short calculation shows that the homogeneous system (8.26) is equivalent to the
system

(8.30) −γDξξv
σ(ξ) − cDξv

σ(ξ) = [Jσvσ](ξ) +Bσ
diag(ξ)v

σ(ξ),

in which we have introduced the matrix-valued function

(8.31) [Bσ
diag]ik(ξ) = Bii(ξ + σi)δik,

together with the operator

(8.32) [Jσv]i(ξ) =

N∑
j=0

n∑
k=0

[Aj ]ikvk(ξ+ rj + σi −σk)+
∑
k �=i

Bik(ξ+ σi)vk(ξ+ σi − σk).

For convenience, we introduce the index set

(8.33) I = {0, . . . , N + 1} × {1, . . . , n}2

and rewrite the operator Jσ as

(8.34) [Jσv]i(ξ) =
∑

(j,k,l)∈I
δikβ

σ
jkl(ξ)vl(ξ + rj + σk − σl),

using appropriately defined scalar functions {βσ
jkl}.

The assumption (hb) implies that there exist constants {α±
jkl} that do not depend

on σ such that the inequalities

(8.35) 0 ≤ α−
jkl ≤ βσ

jkl(ξ) ≤ α+
jkl, (j, k, l) ∈ I,

hold for all σ ∈ Rn and ξ ∈ R. Furthermore, (hb) implies that the constants can be
chosen in such a way that α−

jkl = 0 automatically implies that also α+
jkl = 0. We now

introduce the sets

(8.36)

Iσ− = {(j, k, l) ∈ I | α−
jkl > 0 and rj + σk − σl < 0},

Iσ
0 = {(j, k, l) ∈ I | α−

jkl > 0 and rj + σk − σl = 0},
Iσ
+ = {(j, k, l) ∈ I | α−

jkl > 0 and rj + σk − σl > 0}.

In addition, we introduce the quantities

(8.37) rσmin = min
(j,k,l)∈Iσ

−
rj + σk − σl, rσmax = max

(j,k,l)∈Iσ
+

rj + σk − σl
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1120 H. J. HUPKES AND E. S. VAN VLECK

with the understanding that extrema over empty sets are taken to be zero. Finally,
we introduce the sets
(8.38)
Σσ

− = {l ∈ {1, . . . , n} for which (j, k, l) /∈ Iσ
− for all 0 ≤ j ≤ N + 1 and 1 ≤ k ≤ n},

Σσ
+ = {l ∈ {1, . . . , n} for which (j, k, l) /∈ Iσ

+ for all 0 ≤ j ≤ N + 1 and 1 ≤ k ≤ n},

together with the pair of projection operators

(8.39) πσ
± : Rn → R

n, [πσ
±v]i =

{
vi i ∈ Σσ

±,
0, i /∈ Σσ±.

For some of our results we will need to impose the following condition, which
should be compared to (HS2).

(hs) For all σ ∈ Rn we have Iσ
− �= ∅ and Iσ

+ �= ∅.
Lemma 8.6. Suppose that (hb) is satisfied. There exists σ∗ ∈ Rn such that for

every (j, k, l) ∈ Iσ∗− we have (j′, k′, k) ∈ Iσ∗− for some pair 0 ≤ j′ ≤ N + 1 and
1 ≤ k′ ≤ n.

Proof. We consider the weighted graph

(8.40) Ĝ =
(
V(Ĝ), E(Ĝ), wσ

E
)

with vertices

(8.41) V(Ĝ) = {1, . . . , n}

and (repeated) directed edges

(8.42) E(Ĝ) = {(j, k, l) ∈ I | α−
jkl > 0}, wσ

E (j, k, l) = rj + σk − σl

with the understanding that the edge (j, k, l) points from k to l. Stated in terms of
this graph, we need to prove that every vertex that has an outgoing edge with negative
weight must also have an incoming edge with negative weight.

For each σ, we write L(σ) ⊂ V(Ĝ) for the set of vertices that are part of a
directed loop with negative weight, i.e., we say k ∈ L(σ) if for some 
 ≥ 2 there exists
a sequence

(8.43) k1, . . . , k�, k1 = k� = k

together with a sequence

(8.44) j1, . . . , j�−1

such that for all 1 ≤ i ≤ 
− 1 we have (ji, ki, ki+1) ∈ Iσ−.
In addition, we write C(σ) ⊂ V(Ĝ) for the set of vertices that are reachable from

L(σ) via negative weight edges. More precisely, we say k ∈ C(σ) if for some 
 ≥ 1
there exists a sequence

(8.45) k1, . . . , k�, k1 ∈ L(σ), k� = k

together with a sequence

(8.46) j1, . . . , j�−1
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1121

such that for all 1 ≤ i ≤ 
 − 1 we have (ji, ki, ki+1) ∈ Iσ
−. Obviously, we have

L(σ) ⊂ C(σ).
We remark that it suffices to find σ∗ such that k ∈ C(σ∗) holds whenever (j, k, l) ∈

Iσ∗− . We therefore write

(8.47) P(σ) = {(j, k, l) ∈ Iσ
− | k /∈ C(σ)}

for the set of problematic edges. In addition, we write
(8.48)

Pmin(σ) = {(j, k, l) ∈ P(σ) | wσ
E (j

′, k′, l′) ≥ wσ
E (j, k, l) for all (j

′, k′, l′) ∈ P(σ)}

for the set of minimally weighted problematic edges, together with

(8.49) Vmin(σ) = {k ∈ V(Ĝ) | ∃(j, k, l) ∈ Pmin(σ)}

for the set of vertices with outgoing minimally weighted problematic edges.
We start at σ� = 0. If P(σ�) = ∅, we are done. If not, we write

(8.50) σk(t) =

⎧⎨⎩ [σ�]k if k /∈ Vmin(σ�),

[σ�]k + t
[k] if k ∈ Vmin(σ�),

where 
[k] ≥ 1 is the length of the longest chain of directed edges in Pmin(σ�) that
originates from k. This integer is well defined because Pmin(σ�) can contain no loops.

Our choice of σ(t) ensures that the weights of edges in Pmin are strictly increasing
as t increases. In particular, we may write t∗ > 0 for the first time t > 0 for which

either w
σ(t)
E (j, k, l) ≥ 0 for all (j, k, l) ∈ Pmin(σ�) or for which there exists (j, k, l) ∈

E(Ĝ) with either k /∈ C(σ�) or l /∈ C(σ�) such that

(8.51) w
σ(t)
E (j, k, l) ≤ w

σ(t)
E (j′, k′, l′) for all (j′, k′, l′) ∈ Pmin(σ�).

Varying t does not affect the weights of edges between elements of C(σ�). In
particular, we have

(8.52) C(σ�) ⊂ C
(
σ(t∗)

)
.

We can hence set σ� = σ(t∗) and repeat the process. Since the minimum weight of
the edges in P(σ�) increases with each step by an amount that is bounded away from
zero, we will have P(σ�) = ∅ after a finite number of steps.

Lemma 8.7. Suppose that (hb) and (hs) are satisfied. There exists σ∗∗ ∈ R such
that for every 1 ≤ l ≤ n there exists a pair 0 ≤ j ≤ N + 1 and 1 ≤ k ≤ n for which
(j, k, l) ∈ Iσ∗∗− . In particular, Σσ∗∗− = ∅.

Proof. We continue using the setup developed in the proof of Lemma 8.6 and
write σ∗ for the vector constructed there. The assumption (hs) implies that C(σ∗) is
nonempty. We write Cc(σ∗) for the complement of this set. If Cc(σ∗) is empty, there
is nothing to prove. We now introduce the function σ(t) by writing

(8.53) σk(t) =

⎧⎨⎩ [σ∗]k if k ∈ C(σ∗),
[σ∗]k + t if k ∈ Cc(σ∗).

Notice that at t = 0, all edges between C(σ∗) and Cc(σ∗) have nonnegative weight. In
addition, the weights of edges internal to C(σ∗) and Cc(σ∗) remain unchanged upon
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1122 H. J. HUPKES AND E. S. VAN VLECK

changing t. However, the weights of edges pointing from C(σ∗) to Cc(σ∗) decrease as
t increases, while the weights of edges that point from Cc(σ∗) to C(σ∗) increase as t
increases. In particular, there exists t� > 0 for which

(8.54) C(σ∗) ⊂ C(σ(t�)), C(σ∗) �= C(σ(t�)).

This process can be repeated as often as needed to find σ∗∗ ∈ Rn for which
Cc(σ∗∗) = ∅.

With these preparations in hand, we are ready to formulate two comparison prin-
ciples for (8.27). These should be seen as the analogue of results obtained in [32,
sec. 3] for γ = 0 and [25] for γ > 0. The latter case is easier to handle because the
comparison principle from section 4 can be invoked.

Proposition 8.8. Consider the inhomogeneous system (8.27) with h(ξ) ≥ 0 and
suppose that (HA), (hb), and (hs) are satisfied. Fix γ ≥ 0 and c ∈ R with either γ > 0
or c �= 0. Consider any function v ∈ W sγ ,∞(R,Rn) that has v(ξ) ≥ 0 for all ξ ∈ R

and satisfies (8.27) for all ξ ∈ R. If there exists a pair (i0, ξ0) ∈ {1, . . . , n} × R with
vi0(ξ0) = 0, then in fact v(ξ) = 0 for all ξ ∈ R.

Proposition 8.9. Consider the homogeneous system (8.26) with γ = c = 0 and
suppose that (HA), (hb), and (hs) are satisfied. Consider any function

(8.55) v ∈ L∞(R,Rn)

that satisfies (8.26) with γ = c = 0 for all ξ ∈ R and has v(ξ) ≥ 0 for all ξ ∈ R.
Suppose furthermore that there exists i0 ∈ {1, . . . , n} and τ ∈ R for which

(8.56) vi0(ξ) = 0, ξ ≥ τ.

Then we have v(ξ) = 0 for all ξ ∈ R.
Lemma 8.10 (cf. [25, Cor. A.7]). If γ > 0, all the statements in Proposition 8.8

are valid, even if (hs) is not satisfied.
Proof. Since h(ξ) ≥ 0, we observe that v(x, t) = v(x− ct) satisfies the differential

inequality

(8.57)

∂tv(x, t) = γ∂xxv(x, t) +

N∑
j=0

Ajv(ξ + rj , t) +B(x− ct)v(x, t) + h(x− ct)

≥ γ∂xxv(x, t) +

N∑
j=0

Ajv(ξ + rj , t) +B(x− ct)v(x, t),

which is covered by the comparison principle stated in Proposition 4.1. In particular,
if v does not vanish everywhere, we must have v(x, t) > 0 for all x ∈ R and t > 0.
This contradicts the fact that vi0(ξ0 + ct, t) = vi0(ξ0) = 0.

Lemma 8.11 (cf. [32, Lem. 3.1]). Consider the inhomogeneous system (8.27)
with h(ξ) ≥ 0 and suppose that (HA) and (hb) are satisfied. Fix γ = 0 and c �= 0
and consider any function v ∈ W 1,∞(R,Rn) that has v(ξ) ≥ 0 for all ξ ∈ R and
satisfies (8.27) for all ξ ∈ R. Suppose furthermore that there exists a pair (i0, ξ0) ∈
{1, . . . , n} × R such that vi0(ξ0) = 0. Then if c < 0, we have

(8.58) v(ξ) = 0, ξ ≤ ξ0 + nrmin,

while if c > 0 we have

(8.59) v(ξ) = 0, ξ ≥ ξ0 + nrmax.
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1123

Proof. We restrict ourselves to the case c > 0. Notice that for any 1 ≤ i ≤ n and
ξ∗ ∈ R for which vi(ξ∗) = 0, the system (8.27) implies that v′i(ξ∗) ≤ 0. In particular, a
standard differential inequality now implies that vi(ξ) = 0 for all ξ ≥ ξ∗. In addition,
a necessary condition for v′i(ξ∗) = 0 is that

(8.60) [Aj ]i�v�(ξ∗ + rj) = 0, 1 ≤ 
 ≤ n, 0 ≤ j ≤ N.

Using condition (HA) repeatedly, we now see that for all 1 ≤ 
 ≤ n there exists
ξ� ≤ ξ∗ + nrmax for which v�(ξ�) = 0, which completes the proof.

Lemma 8.12 (cf. [32, Lem. 3.3]). Suppose that (HA) and (hb) are satisfied and
fix τ ∈ R, γ ≥ 0, and c ∈ R with γ + |c| > 0. Recall the vector σ∗ ∈ R

n defined in
Lemma 8.6. Consider any function

(8.61) vσ∗ ∈ L∞((−∞, τ + rσ∗
max],R

n)

that satisfies the homogeneous system (8.30) for all ξ ≤ τ and suppose that

(8.62) vσ∗(ξ) = 0, τ + rσ∗
min ≤ ξ ≤ τ + rσ∗

max.

Suppose furthermore that vσ∗(ξ∗) �= 0 for some ξ∗ < τ + rσ∗
min. Then there exist two

pairs
(8.63)
(i−, ξ−) ∈ {1, . . . , n} × (−∞, τ + rσ∗

min], (i+, ξ+) ∈ {1, . . . , n} × (−∞, τ + rσ∗
min]

that have |ξ+ − ξ−| ≤ |rσ∗
min| together with

(8.64) vi−(ξ−) < 0 < vi+(ξ+).

Proof. Without loss of generality, we suppose that τ = 0 and σ∗ = 0. It suffices
to show that there exists δ > 0 such that (8.62) together with the inequality

(8.65) v(ξ) ≤ 0, 2rmin ≤ ξ ≤ rmin,

automatically implies that

(8.66) vl(ξ) = 0, −δ + rmin ≤ ξ ≤ rmin, 1 ≤ l ≤ n.

We pick δ > 0 in such a way that rj ≤ −2δ whenever rj < 0. Let us now consider
any (j, k, l) ∈ I0

− and any ξ∗ ∈ R that has

(8.67) −δ + rmin ≤ ξ∗ + rj ≤ rmin.

Our choice of δ > 0 shows that rmin ≤ ξ∗ ≤ 0, which means v′(ξ) = v′′(ξ) = 0 and
v(ξ + r) = 0 whenever 0 ≤ r ≤ rmax. In particular, (8.30) now implies that

(8.68) vl(ξ∗ + rj) = 0.

In particular, we have established (8.66) for all l /∈ Σ0
−.

Upon writing w(ξ) = π0
−v(ξ) and viewing this as an element of Rm with m =

#Σ0−, the properties described in Lemma 8.6 allow us to write

(8.69) −γw′′(ξ)− cw′(ξ) = L+(ξ)ev
+
ξ w + g(ξ),
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1124 H. J. HUPKES AND E. S. VAN VLECK

where L+(ξ) is a linear operator mapping C([0, rmax],R
m) into Rm and [ev+ξ w](θ) =

w(ξ + θ) for 0 ≤ θ ≤ rσmax. The function g(ξ) incorporates the contributions from
(I − π0

−)v and satisfies

(8.70) g(ξ) = 0, −δ + rmin ≤ ξ ≤ rmin.

In particular, the uniqueness of solutions to advanced equations now implies that also
w(ξ) = 0 for −δ + rmin ≤ ξ ≤ rmin, as desired.

Lemma 8.13. Consider the inhomogeneous linear system (8.27) with h(ξ) ≥ 0
and suppose that (HA), (hb), and (hs) are satisfied. Fix τ ∈ R, γ = 0, and c �= 0.
Consider any function v ∈ W 1,∞(R,Rn) that satisfies (8.27) for all ξ ∈ R and suppose
that

(8.71) v(ξ) = 0, ξ ≥ τ.

Suppose furthermore that v(ξ) ≥ 0 for all ξ ∈ R. Then we have v(ξ) = 0 for all
ξ ∈ R.

Proof. Recall the vector σ∗∗ ∈ Rn defined in Lemma 8.7. Since v vanishes on a
half line, it it clear that vσ∗∗ vanishes on an interval of length rσ∗∗

max − rσ∗∗
min. We can

now proceed as in the first part of the proof of Lemma 8.12, noting that in this case
Σσ∗∗− = ∅.

Proof of Propostion 8.8. If γ > 0, the claim follows from Lemma 8.10. If γ =
0, then Lemma 8.11 implies that v vanishes on an entire half line. Possibly after
substituting ξ �→ −ξ, Lemma 8.13 can be used to extend this conclusion to the full
line.

Lemma 8.14 (cf. [32, Lem. 3.3]). Suppose that (HA), (hb), and (hs) are satisfied
and fix τ ∈ R. Recall the vector σ∗∗ ∈ Rn defined in Lemma 8.7. Consider any
function

(8.72) vσ∗∗ ∈ L∞((−∞, τ + rσ∗∗
max],R

n)

that satisfies the homogeneous system (8.30) with γ = c = 0 for all ξ ≤ τ and suppose
that

(8.73) vσ∗∗(ξ) = 0, τ + rσ∗∗
min ≤ ξ ≤ τ + rσ∗∗

max.

Suppose furthermore that vσ∗∗(ξ∗) �= 0 for some ξ∗ < τ + rσ∗∗
min. Then there exist two

pairs
(8.74)
(i−, ξ−) ∈ {1, . . . , n} × (−∞, τ + rσ∗∗

min], (i+, ξ+) ∈ {1, . . . , n} × (−∞, τ + rσ∗∗
min]

that have |ξ+ − ξ−| ≤ |rσ∗∗
min| together with

(8.75) vσ∗∗
i− (ξ−) < 0 < vσ∗∗

i+
(ξ+).

Proof. We can proceed as in the first part of the proof of Lemma 8.12, noting
that (hs) again implies that Σσ∗∗− = ∅.

Proof of Proposition 8.9. Picking any pair (j, l0) ∈ {1, . . . , n}2 for which [Aj ]i0l0 >
0, we must have vl0(ξ) = 0 for all ξ ≥ τ + rj . In view of the irreducibility assumption
(HA), we can repeat this argument to show that v(ξ) = 0 for all ξ ≥ τ + nrmax. We
can now apply Lemma 8.14 to conclude that in fact v(ξ) = 0 for all ξ ∈ R.

As a final preparation before we turn to the proof of Propositions 8.1 and 8.2, we
need to rule out the possibility that solutions to the homogeneous system (8.26) decay
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1125

at a rate that is faster than any exponential. For γ > 0 we can proceed exactly as
in [25], but for γ = 0 we need to exploit the special properties of the restated system
(8.30).

Lemma 8.15 (cf. [25, Lem. A.1]). Consider the homogeneous system (8.26) and
suppose that (HA) and (hb) are satisfied. Fix γ > 0, c ∈ R, and τ ∈ R. There exists
a constant ϑ > 0 such that any function

(8.76) v ∈W 2,∞([τ − rmin,∞),Rn) ∩ L∞([τ,∞),Rn)

that satisfies (8.26) for all ξ ≥ τ − rmin and has v(ξ) ≥ 0 for all ξ ≥ τ must have

(8.77)
d

dξ
|v(ξ)| ≥ −ϑ |v(ξ)| , ξ ≥ τ − rmin.

Proof. Upon writing

(8.78) w(ξ) = e
c
2γ ξv(ξ),

a short computation shows that for all ξ ≥ τ − rmin we have

(8.79) −γw′′(ξ) +
c2

4γ
w(ξ) =

N∑
j=0

Aje
− c

2γ rjw(ξ + rj) +B(ξ)w(ξ).

Recalling the constant κ > 0 appearing in (hb), we can use this to estimate

(8.80)

w′′(ξ) =
c2

4γ2
w(ξ) − 1

γ

N∑
j=0

Aje
− c

2γ rjw(ξ + rj)−
1

γ
B(ξ)w(ξ)

≤
[
c2

4γ2
+

1

γ
κ

]
w(ξ).

We now write K = [ c2

4γ2 + 1
γκ]

1/2 and fix an arbitrary ξ0 ≥ τ − rmin. A standard

differential inequality shows that for every integer 1 ≤ i ≤ n, we have

(8.81) wi(ξ) ≤ C1,ie
K(ξ−ξ0) + C2,ie

−K(ξ−ξ0), ξ ≥ ξ0,

in which

(8.82) C1,i =
1

2K
[Kwi(ξ0) + w′

i(ξ0)], C2,i =
1

2K
[Kwi(ξ0)− w′

i(ξ0)].

Since w ≥ 0, we must have C1,i ≥ 0 for all 1 ≤ i ≤ n, which implies w′(ξ0) ≥
−Kw(ξ0). The bound (8.77) follows directly from this.

Lemma 8.16 (cf. [32, Prop. 4.5]). Consider the homogeneous system (8.26) and
suppose that (HA) and (hb) are satisfied. Fix γ = 0, c �= 0, and τ ∈ R. There exist
constants R > 0, ϑ > 0, and σ ∈ Rn such that any function

(8.83) v ∈W 1,∞([τ − rmin,∞),Rn) ∩ L∞([τ,∞),Rn)

that satisfies (8.26) for all ξ ≥ τ − rmin and has v(ξ) ≥ 0 for all ξ ≥ τ must have

(8.84)
d

dξ
|vσ(ξ)| ≥ −ϑ |vσ(ξ)| , ξ ≥ τ +R.

D
ow

nl
oa

de
d 

06
/3

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1126 H. J. HUPKES AND E. S. VAN VLECK

Proof. We restrict ourselves to the case c > 0, noting that the case c < 0 can be
treated similarly. We recall the constant σ∗ appearing in Lemma 8.6 and pick σ = σ∗.
Choosing R = −rmin + 2 |σ|, an initial estimate shows that for all ξ ≥ τ +R we have

(8.85) Dξv
σ(ξ) = −c−1[Jσvσ](ξ)− c−1Bσ

diag(ξ)v
σ(ξ) ≤ c−1κvσ(ξ).

In particular, upon writing ν = c−1κ and w(ξ) = e−νξvσ(ξ), we have w′(ξ) ≤ 0 for
ξ ≥ τ +R.

For any 1 ≤ i ≤ n, we write ei ∈ Rn for the standard unit vector (ei)j = δij .
Using these vectors, we construct the matrix

(8.86) Aσ
− =

∑
(j,k,l)∈Iσ

−

α−
jkle

ν(rj+σk−σl)eke
†
l .

We now pick ε > 0 to be so small that rj + σk − σl ≤ −2ε holds for all (j, k, l) ∈ Iσ−.
In addition, we pick any ξ1 ≥ τ + R − rmin + ε. For any τ + R − rmin ≤ ξ ≤ ξ1, we
have the inequality

(8.87)

w′(ξ) = −c−1
∑

(j,k,l)∈I
ekβ

σ
jkl(ξ)e

ν(rj+σk−σl)wl(ξ + rj + σk − σl)

− c−1[Bσ
diag(ξ) + κ]w(ξ)

≤ −c−1Aσ−w(ξ − 2ε).

Integrating (8.87) from ξ1 − ε to ξ1, we obtain

(8.88) w(ξ1)− w(ξ1 − ε) ≤ −εc−1Aσ
−w(ξ1 − 2ε).

Discarding the term w(ξ1) ≥ 0, this gives

(8.89) εc−1Aσ
−w(ξ1 − 2ε) ≤ w(ξ1 − ε).

Let us now consider any v ≥ 0 that has Aσ−v = 0. Since Aσ− ≥ 0, it is not hard to see
that (I−πσ

−)v = 0. In particular, upon writing K = Ker(Aσ
−), we can pick KΣ⊥ ⊂ Rn

and K⊥ ⊂ Rn in such a way that we have the decompositions

(8.90) R
n = K⊥ ⊕K, K = KΣ⊥ ⊕ spani∈Σσ

−
{ei}, πσ

−(KΣ⊥) = {0}.

There now exists a bounded operator Q : Range(Aσ−) → K⊥ such that the identity
Aσ

−v = w implies that

(8.91) v = Qw + qΣ⊥ + qΣ

for some qΣ⊥ ∈ KΣ⊥ and qΣ ∈ spani∈Σσ
−
{ei}. By compactness, there exists ε2 > 0

such that for all q ∈ KΣ⊥ with |q| = 1 we have

(8.92) min
1≤i≤n

qi < −ε2, max
1≤i≤n

qi > ε2.

If we require v ≥ 0 in (8.91), we may hence estimate

(8.93) |qΣ⊥ | ≤ C1 |Qw|
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NEGATIVE DIFFUSION IN LATTICE SYSTEMS 1127

for some C1 > 0. In addition, since our special choice of σ implies that πσ
−Aσ

− = 0,
there exists a constant C2 > 0 such that the inequality

(8.94)
∣∣(I − πσ

−)v
∣∣ ≤ C2

∣∣(I − πσ
−)w

∣∣
holds whenever Aσ

−v = w for some v ≥ 0.
The estimate (8.89) now implies

(8.95)
∣∣(I − πσ

−)w(ξ1 − 2ε)
∣∣ ≤ cε−1C2

∣∣(I − πσ
−)w(ξ1 − ε)

∣∣ .
In particular, for all ξ ≥ τ + R− rmin and 0 ≤ δ ≤ ε we have

(8.96)
∣∣(I − πσ

−)w(ξ − δ)
∣∣ ≤ ∣∣(I − πσ

−)w(ξ − ε)
∣∣ ≤ cε−1C2

∣∣(I − πσ
−)w(ξ)

∣∣ .
Repeating this estimate a sufficient number of times, we see that there exists a con-
stant C3 > 0 such that for all ξ ≥ τ +R− 2rmin + 2 |σ| we have

(8.97)
∣∣(I − πσ

−)w(ξ + rmin − 2 |σ|)
∣∣ ≤ C3

∣∣(I − πσ
−)w(ξ)

∣∣ .
Using the fact that α+

jkl = 0 whenever α−
jkl = 0, this allows us to compute

(8.98)

w′(ξ) ≥ −c−1
∑

(j,k,l)∈Iσ
−

ekα
+
jkle

ν(rj+σk−σl)[(I − πσ
−)w(ξ + rj + σk − σl)]l

− c−1
∑

(j,k,l)∈Iσ
0 ∪Iσ

+

ekα
+
jkle

ν(rj+σk−σl)[w(ξ + rj + σk − σl)]l

− c−1[Bσ
diag(ξ) + κ]w(ξ)

≥ −C4 |w(ξ)| 1

for some constant C4 > 0. Since w ≥ 0, this yields

(8.99)
d

dξ
|w(ξ)|2 = 2〈w(ξ), w′(ξ)〉 ≥ −2C4〈w(ξ),1〉 |w(ξ)| ≥ −2C4 |1| |w(ξ)|2

for all ξ ≥ τ + R− 2rmin + 2 |σ|. Upon increasing the constant R appropriately, this
estimate is sufficiently strong to complete the proof.

Lemma 8.17. Consider the homogeneous system (8.26) and suppose that (HA),
(hb), and (hs) are satisfied. Fix γ = 0, c = 0, and τ ∈ R. There exist constants
K > 0, b > 0, R > 0, and σ ∈ Rn such that any function

(8.100) v ∈ L∞([τ,∞),Rn)

that satisfies (8.26) for all ξ ≥ τ − rmin and has 0 < v(ξ2) ≤ v(ξ1) whenever τ ≤ ξ1 ≤
ξ2 must have

(8.101) |vσ(ξ1)| ≤ Keb(ξ2−ξ1) |vσ(ξ2)|

for all τ +R ≤ ξ1 ≤ ξ2.
Proof. We recall the constant σ∗∗ appearing in Lemma 8.6 and pick σ = σ∗∗. As

above, we pick ε > 0 to be so small that rj +σk −σl ≤ −2ε holds for all (j, k, l) ∈ Iσ
−.

Upon writing

(8.102) Aσ
− =

∑
(j,k,l)∈Iσ

−

α−
jkleke

†
l ,

D
ow

nl
oa

de
d 

06
/3

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1128 H. J. HUPKES AND E. S. VAN VLECK

we can pick R = −rmin + 2 |σ| and obtain the estimate

(8.103)

Aσ
−v

σ(ξ − 2ε) ≤
∑

(j,k,l)∈Iσ
−

ekβ
σ
jkl(ξ)v

σ
l (ξ + rj + σk − σl)

= −
∑

(j,k,l)∈Iσ
0 ∪Iσ

+

ekβ
σ
jkl(ξ)v

σ
l (ξ + rj + σk − σl)

−Bσ
diag(ξ)v

σ(ξ)

≤ κvσ(ξ)

for all ξ ≥ τ + R. Arguing as in the proof of Lemma 8.16 and remembering that
Σσ− = ∅, we see that there exists C2 > 0 such that

(8.104) |vσ(ξ − 2ε)| ≤ C2 |vσ(ξ)|

holds for all ξ ≥ τ + R. Repeating this estimate and exploiting the fact that v is
nonincreasing yields the desired bound (8.101).

Proof of Proposition 8.1. It suffices to show that the existence of u− implies that
Δc,γ,q∗(λ−)v− = 0 for some λ− < 0 and nonzero v− ∈ Rn

≥0, while the existence of
u+ implies that Δc,γ,q∗(λ+)v+ = 0 for some λ+ > 0 and nonzero v+ ∈ Rn

≥0. Indeed,
Lemma 8.4 precludes these two consequences from occurring simultaneously.

Assuming the existence of u−, we write y(ξ) = q∗ − u−(ξ) and observe that
y(ξ) ≥ 0 for all ξ ∈ R because u− is nondecreasing. Either Proposition 8.8 or 8.9
imply that in fact y(ξ) > 0 holds for all ξ ∈ R. Pick a sequence ξn → ∞ and define
the functions zn(ξ) = y(ξ + ξn)/ |y(ξn)|, which all satisfy |zn(0)| = 1. After passing
to a subsequence, we have the pointwise convergence zn → z for some nonincreasing
function z ∈ L∞(R,Rn). We claim that z satisfies the autonomous system (8.9) with
q = q∗ and does not decay faster than exponentially as ξ → ∞.

To see this, we will assume without loss of generality that σ∗ = σ∗∗ = 0 holds for
the constants appearing in Lemmas 8.16 and 8.17. If γ + |c| > 0, we can use either
Lemma 8.15 or Lemma 8.16 to conclude that

(8.105) 0 ≥ d

dξ
|zn(ξ)| ≥ −ϑ |zn(ξ)|

for all ξ ∈ R. In particular, since |zn(0)| = 1, the sequences zn and γz′n are uniformly
bounded and equicontinuous on each compact interval, which implies that the con-
vergence zn → z is in fact uniform on such intervals. To see that z satisfies (8.9), it
now suffices to look at an integrated version of (8.9), as in [29, proof of Thm. 3.1]. In
addition, the estimate (8.105) carries over to z, which together with |z(0)| = 1 shows
that z does not decay faster than exponentially as ξ → ∞. On the other hand, if
γ = c = 0, then the fact that z solves (8.9) is immediate and we can use Lemma 8.17
to rule out the faster than exponential decay of z.

Applying either [31, Prop. 7.2] or an argument similar to the proof of [32, Lem. 5.3],
we now obtain the asymptotic expansion

(8.106) z(ξ) =
�∑

i=1

Ki(ξ)pi(ξ)e
−bξeiνiξ +O(e−(b+ε)ξ), ξ → ∞,

for some b ≥ 0 and 
 ≥ 1, in which each Ki is a scalar function that never vanishes.
Furthermore, Ki is periodic if γ = c = 0 and the shifts {rj} are rationally related but
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constant otherwise. In addition, each pi is a Cn-valued nonzero polynomial for which
ξ �→ pi(ξ)e

−bξeiνiξ is an eigensolution to (8.9). Since z(ξ) ≥ 0, we must have νi = 0
for each 1 ≤ i ≤ 
, together with

(8.107) vi := lim
ξ→∞

ξ−deg(pi)pi(ξ) ∈ R
n
≥0.

In particular, we must have Δc,γ,q∗(−b)vi = 0, as desired.
Proof of Proposition 8.2. We first use the spectral flow theorem [31, Thm. C] to

show that ind(Λc,γ) = 0. In particular, let us write

(8.108) M(ϑ) = (1− ϑ)Df(0) + ϑDf(1) + ν(ϑ)I,

where the scalar function ν satisfies ν(0) = ν(1) = 0 and is further determined below.
In addition, we write

(8.109) Δϑ(z) = −γz2 − cz −
N∑
j=0

Aj(e
zrj − 1)−M(ϑ).

Since off-diagonal elements of M(ϑ) are nonnegative, we can introduce the functions
λl(ϑ) and λr(ϑ) that track the roots λ− and λ+ featured in Lemma 8.5, where we use
the function ν to ensure that these two roots never collide. Since the characteristic
equation

(8.110) detΔϑ(z) = 0

has no solutions with λl(ϑ) < Re z < λr(ϑ), we can use the inequalities

(8.111) λl(0) < 0 < λr(0), λl(1) < 0 < λr(1)

to conclude that every root of (8.110) that crosses the imaginary axis as ϑ is increased
from zero to one must also cross back. In particular, the crossing number for this
transition is zero, as desired.

Proposition 8.8 immediately implies that p > 0. Either Lemma 8.15 or Lemma 8.16
imply that p(ξ) does not decay faster than exponentially as ξ → ±∞. In particular,
we can use Lemma 8.3 and [31, Prop. 7.2] together with the inequality p ≥ 0 to
obtain the asymptotic expressions

(8.112) p(ξ) =

{
Cp

−v−e
−λ−|ξ| +O(e−(λ−+ε)|ξ|), ξ → −∞,

Cp
+v+e

−λ+|ξ| +O(e−(λ++ε)|ξ|), ξ → ∞

for some ε > 0 with

(8.113) λ− > 0, λ+ > 0, v− > 0, v+ > 0

and positive constants Cp
± > 0.

Suppose that there exists some x ∈ Ker(Λc,γ) that is linearly independent of p.
By adding some multiple of p and replacing x by −x if necessary, we may assume that
x satisfies a similar asymptotic expansion (8.112) with the same quantities (8.113)
but with Cx− ≤ 0 and Cx

+ = 0. We claim that there exists an integer 1 ≤ i0 ≤ n and
ξ0 ∈ R for which xi0 (ξ0) > 0. Indeed, assuming to the contrary that x(ξ) ≤ 0 for all
ξ ∈ R, we may argue as above to conclude that x(ξ) < 0 for all ξ ∈ R and hence also
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Cx
+ < 0, in contrast to our assumption. By choosing a sufficiently large μ0 
 1, we

hence see that

(8.114) pi0(ξ0)− μ0xi0 (ξ0) < 0.

We now consider the family p − μx ∈ Ker(Λc,γ) for 0 ≤ μ ≤ μ0. The asymptotic
expressions for p and x ensure that there exist τ, K, λ ∈ R such that

(8.115) p(ξ)− μx(ξ) ≥ Ke−λ|ξ|1 > 0, |ξ| > τ, 0 ≤ μ ≤ μ0.

This allows us to define the quantity

(8.116) μ∗ = sup {μ ∈ [0, μ0] | p(ξ)− μx(ξ) ≥ 0 for all ξ ∈ R} .

In view of the asymptotics (8.115), we must have pi∗(ξ∗) − μ∗xi∗(ξ∗) = 0 for some
integer 1 ≤ i∗ ≤ n and ξ∗ ∈ R. As above, this however immediately implies that
p(ξ) = μ∗x(ξ) for all ∈ R, which establishes dimKer(Λc,γ) = 1.

It now suffices to show that there exists a nontrivial p∗ ∈ Ker(Λ∗
c,γ) that satisfies

p∗ ≥ 0, since the strict inequality p∗ > 0 can then be obtained by repeating the argu-
ments used above for p. Assuming to the contrary that (p∗)i+(ξ+) > 0 > (p∗)i−(ξ−)
for two pairs 1 ≤ i± ≤ n and ξ± ∈ R, we remark that Lemma 8.12 implies that we
can pick a compactly supported continuous function h : R → Rn

≥0 for which

(8.117)

∫ ∞

−∞
〈p∗(ξ), h(ξ)〉 dξ = 0.

In particular, we have h = Λc,γx for some bounded function x : R → Rn.
Since x satisfies the homogeneous system (8.26) for all sufficiently large |ξ|, we

see that x enjoys the asymptotic expressions (8.112). In particular, the quantity

(8.118) μ∗ = inf {μ ∈ R | x(ξ) + μp(ξ) ≥ 0 for all ξ ∈ R}

is finite and we may write y = x+μ∗p. Obviously, we have y(ξ) ≥ 0 for all ξ ∈ R, but
y may not vanish identically since Λc,γy = h. Proposition 8.8 now implies that in fact
y(ξ) > 0 for all ξ ∈ R. In particular, y also enjoys the asymptotic expression (8.112)
with constants Cy

± > 0. This however means that for all sufficiently small ε > 0 we
have y − εp ≥ 0, which is a direct violation of the definition of μ∗.

9. Proof of main results. In this final section we prove the main results for-
mulated in section 2 for the family of nonlocal systems

(9.1) ∂tu(x, t) = [Du](x, t) + f
(
u(x, t); ρ

)
.

In order to accomplish this, we study how solutions to the traveling wave MFDE

(9.2) −γu′′(ξ)− cu′(ξ) =
N∑
j=0

Aj [u(ξ + rj)− u(ξ)] + f
(
u(ξ); ρ

)
behave as the parameter ρ is varied, paying special attention to the singular limit
γ → 0. In particular, we establish the following key result, which is stronger than
Theorem 2.2 and instrumental in the proof of the remaining theorems.
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Proposition 9.1. Suppose that (HA) and (Hf1)–(Hf3) are satisfied and consider
a sequence

(9.3) (γn, cn, ρn, Pn)n∈N ∈ [0,∞)× R× V ×W 2,∞(R,Rn)

for which γn + |cn| > 0 for all n ∈ N and for which we have the limits γn → γ∗ ≥ 0
and ρn → ρ∗ ∈ V as n→ ∞. Suppose furthermore that for every n ∈ N, the function
Pn has P ′

n(ξ) > 0 for all ξ ∈ R, solves the traveling wave MFDE (9.2) with c = cn,
γ = γn, and ρ = ρn, and satisfies the limits

(9.4) lim
ξ→−∞

Pn(ξ) = 0, lim
ξ→∞

Pn(ξ) = 1.

Then, possibly after passing to a subsequence, we have cn → c∗ ∈ R and the limit

(9.5) P∗(ξ) := lim
n→∞Pn(ξ)

exists pointwise. The function P∗ is nondecreasing and satisfies the limits

(9.6) lim
ξ→−∞

P∗(ξ) = 0, lim
ξ→+∞

P∗(ξ) = 1.

In addition, for almost all ξ ∈ R the function P∗ satisfies the MFDE (9.2) with γ = γ∗,
c = c∗, and ρ = ρ∗.

Our proof of the above result is largely based on ideas developed in [32, Thm. 2.3]
and [25, Thm. 3.10]. However, we borrow a technique from [9] in order to establish
that the wave speeds {cn} are bounded.

Lemma 9.2 (cf. [9, Thm. 3.5]). Consider the setting of Proposition 9.1. We have
the uniform bound

(9.7) sup
n∈N

|cn| <∞.

Proof. Pick any n ∈ N and write fn = f(·; ρn), together with

(9.8) [Dnu](x, t) = γn∂xxu(x, t) + [J ∗ u](x, t).

In addition, write vln > 0 and vrn > 0 for the eigenvectors described in (4.27) for Dfn.
Pick δ > 0, ε > 0, and C 
 1 and consider the function

(9.9) w−
n (x, t) = −δvlnH−

(
ε(x− Ct)

)
+ (1− δvrn)H+

(
ε(x− Ct)

)
.

Upon writing

(9.10) J −
n (x, t) = ∂tw

−
n (x, t) − [Dnw

−
n ](x, t)− fn

(
w−

n (x, t)
)

and introducing the shorthand y = ε(x− Ct), we may compute

(9.11)

J −
n (x, t) = CεδvlnH

′
−(y)− Cε(1− δvrn)H

′
+(y)

+ δ[Dnv
l
nH−](y)− [Dn(1− δvrn)H+](y)

− fn

(
− δvlnH−(y) + (1− δvrn)H+(y)

)
= −Cε(1− δvrn + δvln)H

′
+(y)

+ δ[Dnv
l
nH−](y)− [Dn(1− δvrn)H+](y)

− fn

(
− δvlnH−(y) + (1− δvrn)H+(y)

)
,
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in which we have used H ′
−(y) = −H ′

+(y). We now pick δ > 0 to be sufficiently small
to ensure that there exist constants κ > 0 and ϑ > 0 such that for all n ∈ N the
inequality

(9.12) fn

(
− δvlnH−(y) + (1− δvrn)H+(y)

)
> ϑ1

holds whenever |H−(y)| ≤ κ or |H+(y)| ≤ κ. This is possible because of (Hf1) and
the convergence ρn → ρ∗ ∈ V . In addition, we pick ε > 0 to be so small that

(9.13)
∣∣[Dnδv

l
nH−](y)− [Dn(1− δvrn)H+](y)

∣∣ < ϑ

2

holds for all y ∈ R and n ∈ N. This is possible because we have a uniform bound on
γn. Finally, we pick C 
 1 to be so large that for all n ∈ N we have
(9.14)

Cε(1− δvrn + δvln)H
′
+(y) > ϑ

21+
∣∣∣fn(− δvlnH−(y) + (1− δvrn)H+(y)

)∣∣∣1
whenever κ < H+(y) < 1− κ. This is possible because H ′

+(y) is bounded away from
zero on this region. Note that these choices ensure that J −

n (x, t) ≤ 0 for all x ∈ R

and t ≥ 0.
For each n ∈ N there exists a constant θn 
 1 such that

(9.15) Pn(x + θn) ≥ w−
n (x, 0)

holds for all x ∈ R, while also

(9.16) Pn(x∗ − θn) < w−
n (x∗, 0)

for some x∗ ∈ R. The comparison principle stated in Proposition 4.1 now implies that

(9.17) Pn(x+ θn − cnt) ≥ w−
n (x, t) = w−

n (x− Ct, 0).

We claim that this implies that cn ≤ C. Indeed, if this is not the case, a contradiction
can be obtained by choosing t = 2θn(cn −C)−1 and x = x∗ +Ct. Since the constant
C 
 1 does not depend on n, we have obtained a uniform upper bound for the wave
speed. A similar argument can be used to obtain a uniform lower bound.

Proof of Proposition 9.1. The existence of the limiting function P∗ follows from
the fact that P ′

n > 0, while the existence of c∗ ∈ R follows from Lemma 9.2. Arguing
as in the proof of [25, Thm. 3.10], we can conclude that P∗ satisfies the MFDE (9.2)
with γ = γ∗, c = c∗, and ρ = ρ∗ for almost all ξ ∈ R. In addition, if either γ∗ > 0 or
c∗ �= 0, then (9.2) is in fact satisfied for all ξ ∈ R. Finally, both limits

(9.18) v− = lim
ξ→−∞

P∗(ξ) ≥ 0, v+ = lim
ξ→+∞

P∗(ξ) ≤ 1

exist and satisfy f(v±; ρ∗) = 0.
The key issue is to show that

(9.19) v− = 0, v+ = 1.

To see this, let us pick δ > 0 in such a way that f(v; ρ∗) = 0 has no solutions
v ∈ [0, 1]n \ {0,1} that have either |v| ≤ δ or |v − 1| ≤ δ. We then consider the two
sequences {ζ−n }, {ζ+n } ⊂ R that are uniquely determined by the identities

(9.20)
∣∣Pn(ζ

−
n )

∣∣ = δ,
∣∣Pn(ζ

+
n )− 1

∣∣ = δ.
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By shifting the functions Pn appropriately, we may assume that ζ−n < 0 < ζ+n holds
for all n ∈ N. Note that it suffices to show that ζ+n − ζ−n is bounded. Indeed, this
means that the sequences ζ±n are both bounded separately, which in view of our choice
of δ > 0 directly implies the limits (9.19).

Arguing by contradiction, let us assume that ζ+n − ζ−n → ∞ and define the func-
tions

(9.21) x−n (ξ) = Pn(ξ + ζ−n ), x+n (ξ) = Pn(ξ + ζ+n ).

Arguing as above, we may pass to a subsequence for which we have the pointwise
limits x−n → x−∗ and xn+ → x+∗ , where both x±∗ solve the MFDE (9.2). In addition,
using the fact that there do not exist 0 < q1 < q2 < 1 for which f(q1) = f(q2) = 0,
we have the identical limits

(9.22) lim
ξ→+∞

x−∗ = q = lim
ξ→−∞

x+∗

for some 0 < q < 1 that has f(q) = 0. Proposition 8.1 now gives the desired
contradiction.

Proof of Theorem 2.1. For each ρ ∈ V , the existence of Pγ(ρ) and cγ(ρ) can
be obtained by approximating the nonlinearity f with a sequence of nonlinearities
fn that satisfy the assumption (HW) and using Proposition 9.1 to show that the
traveling waves obtained in Proposition 7.1 converge to a traveling wave for (9.1)
with the desired nonlinearity f .

In view of the preparatory results obtained in section 8, the uniqueness of this pair
Pγ(ρ), cγ(ρ) can be obtained by following the proof of [32, Prop. 6.5]. In addition,
the smooth dependence of Pγ and cγ on the parameter ρ can be obtained by following
the proof of [25, Prop 3.2] and invoking Proposition 9.1.

Proof of Theorem 2.2. The statements follow directly from Proposition 9.1.
Proof of Theorem 2.3. For each ρ ∈ V , the existence of the wave speed c0 and

the profile P described in (ii) and (iii) follows upon using Proposition 9.1 to write
c0 = limγ→0 cγ(ρ) and P (ξ) = limγ→0 Pγ(ρ)(ξ), where the limits are taken after
passing to an appropriate subsequence. In view of the preparatory results obtained in
section 8, the smoothness properties in (i) and (ii) can be obtained by following the
proof of [32, Prop. 6.4], while the uniqueness claims in (iv) and (v) can be established
as in the proof of [32, Prop. 6.5].

10. Discussion. In this paper we constructed traveling wave solutions to a class
of high dimensional LDEs that includes bistable reaction diffusion problems with spa-
tially periodic diffusion coefficients. This was achieved by adding a small continuous
diffusion term to the system and using parameter continuation techniques together
with the comparison principle.

A key ingredient in our approach was the analysis of the operator Λc,γ given in
(1.13), which arises when considering the linearization of (1.1) around a traveling wave.
We established a Krein–Rutman-type result for this Fredholm operator, allowing the
use of the implicit function theorem to construct solutions to parameter-dependent
families of reaction diffusion systems.

Let us emphasize here that we expect the results for Λc,γ to be useful in further
applications. Indeed, when considering LDEs posed on one-dimensional lattices, the
Fredholm properties of similar operators have been used to study the stability of waves
[24], glue waves together [26], and analyze singular perturbations [23]. In addition,
a recent result [20] provides a set of spectral conditions on Λc,0 that are sufficient
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to guarantee the nonlinear stability of the waves constructed in this paper for LDEs
posed on high dimensional lattices. Our results here are sufficiently strong to verify
an important subset of these conditions. Let us also mention the recent work [40],
where our results on Λc,0 are used to construct traveling waves for reaction diffusion
systems that do not admit a comparison principle, even after variable transformations
of the type used in section 3.2.

Models involving infinite range nonlocal interactions are attracting increasing
attention, motivated for example by the desire to discretize fractional Laplacians.
At present however, our techniques require us to limit our attention chiefly to finite
range interactions. We do wish to point out that small infinite range tails can be
incorporated into our framework from a bifurcational point of view. The chief obstacle
toward removing this restriction is that the Fredholm results developed in [31] and
[29] are stated only for finite-range operators. We believe that a careful study of the
proofs should allow most of the results to be extended to infinite range interactions.
Technical complications will however undoubtedly arise, similar to those encountered
when studying delay differential equations with infinite delays.
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