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ABSTRACT
We calculate the cosmic Mach number M – the ratio of the bulk flow of the velocity field on
scale R to the velocity dispersion within regions of scale R. M is effectively a measure of the
ratio of large-scale to small-scale power and can be a useful tool to constrain the cosmological
parameter space. Using a compilation of existing peculiar velocity surveys, we calculate M
and compare it to that estimated from mock catalogues extracted from the Large Suite of Dark
Matter Simulations (LasDamas, a � cold dark matter cosmology) numerical simulations. We
find agreement with expectations for the LasDamas cosmology at ∼1.5σ confidence level.
We also show that our Mach estimates for the mocks are not biased by selection function
effects. To achieve this, we extract dense and nearly isotropic distributions using Gaussian
selection functions with the same width as the characteristic depth of the real surveys, and
show that the Mach numbers estimated from the mocks are very similar to the values based
on Gaussian profiles of the corresponding widths. We discuss the importance of the survey
window functions in estimating their effective depths. We investigate the non-linear matter
power spectrum interpolator PKANN as an alternative to numerical simulations, in the study of
Mach number.

Key words: galaxies: kinematics and dynamics – galaxies: statistics – cosmology: observa-
tions – cosmology: theory – distance scale – large-scale structure of Universe.

1 IN T RO D U C T I O N

Ostriker & Suto (1990) introduced a dimensionless statistic of the
cosmological structure – the cosmic Mach number, as a way to
measure the warmth/coldness of the velocity field on some scale R.
Specifically, the Mach number is defined as a ratio

M(x0; R) ≡
( |u(x0; R)|2

σ 2(x0; R)

)1/2

, (1)

where u(x0; R) is the bulk flow (BF) of a region of size R centred
at x0 and σ (x0; R) is the velocity dispersion of the objects within
this region. The ensemble average over x0 gives the statistic M(R).
Since both |u(x0; R)|2 and σ 2(x0; R) scale equally by the amplitude
of the matter density perturbation, the statistic M is independent (at
least in linear approximation) of the normalization of the matter
power spectrum.

In linear theory, given the cosmological parameters, M can be
readily calculated and compared with its measured value from the
peculiar velocity field catalogues. However, comparing theoretical
predictions with observations is not straightforward: (i) one has to
correct for the small-scale non-linearities in observations as well as

� E-mail: sagarwal@ku.edu (SA); feldman@ku.edu (HAF)

take into account the fact that observations represent only a discrete
sample of the continuous velocity field. This can be remedied by
smoothing the velocity field on a suitable scale rs (∼5 h−1 Mpc,
since on larger scales the matter density field is expected to be lin-
ear), before estimating the quantities u(x0; R) and σ (x0; R). How-
ever, any residual non-linearity in the observed field can still bias
the M estimates; (ii) non-uniform, noisy and sparse sampling of the
peculiar velocity field can lead to aliasing of small-scale power on
to larger scales. When making comparisons with theory, one has to
carefully take into account the selection function and the noise of the
real data set. (iii) Peculiar velocity surveys have only line-of-sight
velocity information.

Over two decades ago, the statistic M has been investigated in a se-
ries of papers: Ostriker & Suto (1990) used linear theory and Gaus-
sian selection function to show that the standard cold dark matter
(sCDM) model is inconsistent (predicts M almost twice the observed
value) with observations at ∼95 per cent confidence level (CL);
Suto, Cen & Ostriker (1992), using top-hat and Gaussian selection
functions, studied the distribution of M using N-body simulations to
rule out the sCDM scenario at 99 per cent CL; Strauss, Cen & Os-
triker (1993) took into account the selection function of real surveys
and extracted mocks from numerical simulations over a range of
cosmologies including sCDM and tilted CDM (scalar spectral index,
ns �= 1) among others to reject the sCDM model at 94 per cent CL.

C© 2013 The Authors
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More recently, Ma, Ostriker & Zhao (2012) explored the potential of
using M in distinguishing cosmological models, including modified
gravity and massive neutrino cosmologies.

In this paper, (i) we estimate the cosmic Mach number for various
galaxy peculiar velocity data sets; (ii) we investigate how likely it is
to get these Mach values in a �CDM universe. To achieve this, we
study the statistical distribution of the expected Mach number by
extracting mocks of the real catalogues from numerical simulations
of a �CDM universe. We show that a �CDM universe with 7-yr
Wilkinson Microwave Anisotropy Probe (WMAP) type cosmology
is consistent with the Mach observations at ∼1.5σ CL; (iii) we
further show that our M estimates for the mocks are not biased by
their selection functions. Towards this, we extract dense and nearly
isotropic distributions with a Gaussian profile f (r) ∝ e−r2/2R2

with
R = 10–100 h−1 Mpc. We show that the Mach numbers estimated
from the mocks are very similar to the values based on Gaussian
profiles (of similar depth R as the mocks); (iv) we use the non-
linear matter power spectrum interpolation scheme PKANN (Agarwal
et al. 2012a) to check if we can avoid N-body simulations com-
pletely and predict M(R) by only using PKANN’s prediction for the
non-linear power spectrum. This is crucial because high-resolution
hydrodynamic N-body simulations are computationally expensive
and extremely time consuming. Exploring parameter space using
numerical simulations within reasonable time and computing re-
sources might not be possible. A full use of a statistic like M can
only be realized with a prescription for the non-linear matter power
spectrum. Matter power spectrum fitting functions based on higher
order perturbation theory (e.g. Saito, Takada & Taruya 2008, 2009;
Nishimichi et al. 2009) and halo models (HALOFIT; Smith et al.
2003) perform well on large scales (k � 0.1 h Mpc−1), but their
performance degrades on smaller scales. The fitting accuracy from
these fits is cosmological model dependent and may be as low as
50 per cent with HALOFIT at k ∼ 1 h Mpc−1 (Agarwal et al. 2012a).
On the other hand, PKANN has been designed to predict the power
spectrum accurate at the sub-per cent level for wavenumbers up to
k ≤ 0.9 h Mpc−1.

In Section 2, we discuss the cosmic Mach number statistic. In
Section 3, we describe the numerical simulations we use to extract
mock surveys. In Section 4, we describe the galaxy peculiar veloc-
ity surveys (Section 4.1) and the procedure we follow to extract the
mock catalogues (Section 4.2). In Section 5, we review the maxi-
mum likelihood estimate (hereafter MLE) weighting scheme that is
commonly used to analyse peculiar velocity surveys. In Section 6,
we show our results for the statistical distribution of the Mach num-
ber estimated using various mock catalogues. In Section 7, we test
the performance of PKANN – a non-linear matter power spectrum in-
terpolator, in predicting M(R) for the Large Suite of Dark Matter
Simulations (LasDamas) cosmology. The Mach number estimates
from real surveys are summarized in Section 8. We discuss our
results and conclude in Section 9.

2 T H E C O S M I C M AC H N U M B E R

Given a peculiar velocity field v(x), one can calculate the BF (see
Feldman & Watkins 1994 for details), which represents the net
streaming motion of a region in some direction relative to the back-
ground Hubble expansion. The BF u(x0; R) of a region of size R
centred at x0 can be defined as

u(x0; R) =
∫

dx v(x)F (|x − x0|, R), (2)

where F (|x − x0|, R) is the filter used to average the velocity field
v(x) on a characteristic scale R. Although top-hat and Gaussian
filters are the preferred choices, F (|x − x0|, R) can be designed to
mimic the selection function of the real data sets. This is useful when
dealing with data sets whose selection function depends strongly on
the position in the sky. In Fourier space, equation (2) can be written
as

u(x0; R) =
∫

dk v(k)W (k, R)e−ik·x0 , (3)

where v(k) and W (k, R) are the Fourier transforms of the peculiar
velocity field v(x) and the filter F (|x − x0|, R), respectively.

In linear theory of structure formation, at low redshifts, the ve-
locities are related to the matter overdensities via

v(k) = if H0δ(k)
k
k2

, (4)

where H0 is the present-day Hubble parameter in units of
km s−1 Mpc−1; δ(k) is the Fourier transform of the overdensity
field δ(x); the linear growth rate factor f can be approximated as
f = �0.55

m (Linder 2005). Thus, the velocity power spectrum Pv(k)
is proportional to the matter power spectrum P(k) at low redshifts,

Pv(k) = (H0f )2 P (k)

k2
. (5)

Using equations (3) and (5), the mean squared bulk value of u(x0; R)
can be shown to be

σ 2
v (R) ≡ 〈

u2(x0; R)
〉 = H 2

0 �1.1
m

2π2

∫
dk P (k)W 2(kR), (6)

where the average is taken over all spatial positions x0.
The squared velocity dispersion within a region of size R centred

at x0 can be similarly defined as

σ 2(x0; R) =
∫

dx |v(x)|2F (|x − x0|, R) − |u(x0; R)|2. (7)

In Fourier space, the ensemble average of equation (7) over x0

becomes

σ 2(R) ≡ 〈
σ 2(x0; R)

〉 = H 2
0 �1.1

m

2π2

∫
dk P (k)

(
1 − W 2(kR)

)
. (8)

Using equations (6) and (8), the cosmic Mach number can now be
defined as

M(R) ≡ 〈
M2(x0; R)

〉1/2 =
(

σ 2
v (R)

σ 2(R)

)1/2

. (9)

As discussed in the literature (Ostriker & Suto 1990; Suto et al.
1992; Strauss et al. 1993), the cosmic Mach number is essentially
a measure of the shape of the matter power spectrum (Watkins &
Feldman 2007). The rms BF σv(R) gets most of its contribution
from scales larger than R, while the velocity dispersion σ (R) is a
measure of the magnitude of velocities on scales smaller than R and
gets most contribution from small scales (for more detailed analyses
of velocity dispersion, see Bahcall, Gramann & Cen 1994; Bahcall
& Oh 1996; Watkins 1997). Furthermore, the statistic M is expected
to be independent of the matter power spectrum normalization – at
least on large scales, where the perturbations are still well described
by linear theory and affect both σ 2

v (R) and σ 2(R) equally. M can
be a powerful tool to test not only the �CDM scenario, but also
a wide range of cosmologies including models with massive neu-
trinos. Massive neutrinos suppress the matter power spectrum in a
scale-dependent way, thereby altering the velocity dispersion much
more prominently than the BF. The Mach number M provides an
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Table 1. The cosmological parameters and the design specifica-
tions of the LD-Carmen simulations.

Cosmological parameters LD-Carmen

Matter density, �m 0.25
Cosmological constant density, �� 0.75
Baryon density, �b 0.04
Hubble parameter, h (100 km s−1 Mpc−1) 0.7
Amplitude of matter density fluctuations, σ 8 0.8
Primordial scalar spectral index, ns 1.0

Simulation design parameters

Simulation box size on a side (h−1 Mpc) 1000
Number of CDM particles 11203

Initial redshift, z 49
Particle mass, mp (1010 h−1 M�) 4.938
Gravitational force softening length, fε (h−1 kpc) 53

easy-to-interpret technique to distinguish between various cosmo-
logical models.

In previous work (Watkins, Feldman & Hudson 2009; Feldman,
Watkins & Hudson 2010; Agarwal, Feldman & Watkins 2012b), we
have dealt with peculiar velocity surveys differently. We developed
the ‘minimum variance’ (hereafter MV) formalism to make a clean
estimate of the bulk, shear and the octupole moments of the veloc-
ity field as a function of scale using the available peculiar velocity
data. Higher moments get contribution from progressively smaller
scales. In this paper, instead of isolating the higher moments (shear,
octupole, etc.), we simply estimate the velocity dispersion σ (R)
that gets contribution from all scales smaller than R. In general,
the MLE scheme we employ here attempts to minimize the error
given a particular survey. The downside of the MLE formalism is
the difficulty to directly compare results from different surveys.
Since each survey samples the volume differently and although the
large-scale signal is similar across surveys, the small-scale noise is
unique. This leads to complicated biases or aliasing that are survey
dependent (see Watkins & Feldman 1995; Hudson et al. 2000). The
MV formalism corrects for small-scale aliasing by using a mini-
mization scheme that treats the volume of the surveys rather than
the particular way the survey samples the volume, thus eliminating
aliasing and allowing for direct comparison between surveys.

3 N- B O DY SI M U L AT I O N S

In order to study the statistical distribution of the cosmic Mach num-
ber, we extract mock surveys from the 41 numerical realizations of
a �CDM universe. The N-body simulation we use in our analysis is
LasDamas (hereafter LD; McBride et al. 2009; McBride et al. 2011,
in preparation1). The LD simulation is a suite of 41 independent re-
alizations of dark matter N-body simulations named Carmen and
has information at redshift z = 0.13. Using the Ntropy framework
(Gardner, Connolly & McBride 2007), bound groups of dark mat-
ter particles (haloes) are identified with a parallel friends-of-friends
(FOF) code (Davis et al. 1985). The cosmological parameters and
the design specifications of the LD-Carmen are listed in Table 1.

We extract 100 mock catalogues from each of the 41 LD-Carmen
boxes, for a total of 4100 mocks. The mocks are randomly centred
inside the boxes. They are extracted to mimic the radial distribu-

1 http://lss.phy.vanderbilt.edu/lasdamas

Figure 1. Top row: DEEP catalogue (left) and its radial distribution (right).
Bottom row: DEEP mock catalogue (left) and its radial distribution (right).

tion of the real catalogues (described in Section 4.1), as closely as
possible.

4 PE C U L I A R V E L O C I T Y C ATA L O G U E S

4.1 Real catalogues

We use a compilation of five galaxy peculiar velocity surveys to
study the Mach statistic. This compilation, which we label ‘DEEP’,
includes 103 Type Ia supernovae (SNIa; Tonry et al. 2003), 70 spiral
galaxy clusters (SC) Tully–Fisher (TF) clusters (Giovanelli et al.
1998; Dale et al. 1999), 56 Streaming Motions of Abell Clusters
(SMAC) Fundamental Plane (FP) clusters (Hudson et al. 1999,
2004), 50 early-type far galaxies (EFAR) FP clusters (Colless et al.
2001) and 15 TF clusters (Willick 1999). In all, the DEEP catalogue
consists of 294 data points. In Fig. 1, top row, we show the DEEP
catalogue (left-hand panel) and its radial distribution (right-hand
panel). The bottom row shows a typical mock extracted from the
LD simulations. The procedure to extract mocks is described in
Section 4.2.

4.2 Mock catalogues

Inside the N-body simulation box, we first select a point at ran-
dom. Next, we extract a mock realization of the real catalogue by
imposing the constraint that the mock should have a similar radial
distribution to the real catalogue. We do not constrain the mocks
to have the same angular distribution as the real catalogue for two
reasons: (i) the LD simulation boxes are not dense enough to give
us mocks that are exact replicas of the real catalogue and (ii) the
objects in a real survey are typically weighted depending only on
their velocity errors. Consequently, even though the real catalogue
and its mocks have similar radial profiles, their angular distributions
differ considerably, with the mocks having a relatively featureless
angular distribution. To make the mocks more realistic, we impose
a 10◦ latitude zone-of-avoidance cut.
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Using the angular position {r̂x , r̂y , r̂z}, the true radial distance
ds from the mock centre and the peculiar velocity vector v, we
calculate the true line-of-sight peculiar velocity vs and the redshift
cz = ds + vs for each mock galaxy (in km s−1). We then perturb the
true radial distance ds of the mock galaxy with a velocity error drawn
from a Gaussian distribution of width equal to the corresponding
real galaxy’s velocity error, e. Thus, dp = ds + δd, where dp is the
perturbed radial distance of the mock galaxy (in km s−1) and δd

is the velocity error drawn from a Gaussian of width e. The mock
galaxy’s measured line-of-sight peculiar velocity vp is then assigned
to be vp = cz − dp, where cz is the redshift we found above. This
procedure ensures that the weights we assign to the mock galaxies
are similar to the weights of the real galaxies. In Fig. 1, we show the
angular (left-hand panels) and radial (right-hand panels) distribution
of galaxies in the DEEP catalogue (top) and its mock (bottom).

5 TH E M L E M E T H O D

One of the most common weighting scheme used in the analysis of
the BF is the MLE method, obtained from a maximum likelihood
analysis introduced by Kaiser (1988). The motion of galaxies is
modelled as being due to a streaming flow with Gaussian distributed
measurement uncertainties. Given a peculiar velocity survey, the
MLE of its BF is obtained from the likelihood function

L[ui |{Sn, σn, σ∗}] =
∏

n

1√
σ 2

n + σ 2∗
exp

(
− 1

2 (Sn − r̂n,iui)2

σ 2
n + σ 2∗

)
,

(10)

where r̂n is the unit position vector of the nth galaxy, σ n is the
measurement uncertainty of the nth galaxy and σ ∗ is the 1D ve-
locity dispersion accounting for smaller scale motions. The three
components of the BF ui can be written as a weighted sum of the
measured radial peculiar velocities of a survey

ui =
∑

n

wi,nSn, (11)

where Sn is the radial peculiar velocity of the nth galaxy of a survey
and wi, n is the weight assigned to this velocity in the calculation
of ui. Throughout this paper, subscripts i, j and k run over the three
spatial components of the BF, while subscripts m and n run over the
galaxies. Maximizing the likelihood given by equation (10) gives
the three components of the BF ui with the MLE weights

wi,n =
3∑

j=1

A−1
ij

r̂n,j

σ 2
n + σ 2∗

, (12)

where

Aij =
∑

n

r̂n,i r̂n,j

σ 2
n + σ 2∗

. (13)

The 1D velocity dispersion σ ∗ is 1/
√

3 of the 3D velocity disper-
sion (see equation 8) which we aim to ultimately measure. Since the
weights wi, n (and ui) are themselves a function of σ ∗, we converge
on to the MLE for σ ∗ iteratively. See Strauss et al. (1993) for a
discussion on how to estimate the best-fitting ui and σ ∗.

The effective depth of a survey can be roughly estimated by a
weighted sum

∑
wnrn/

∑
wn of the radial distances rn of the sur-

vey objects, where wn = 1/(σ 2
n + σ 2

∗ ). This weighting scheme has
been used by Ma et al. (2012) in their analyses of peculiar ve-
locity data sets. A drawback of using weights wn = 1/(σ 2

n + σ 2
∗ )

in estimating the depth of a survey is that while the weights wn

take into account the measurement errors σ n, they do not make
any corrections for the survey geometry. A better estimate of the
effective depth can be made by looking at the survey window func-
tions W 2

ij . The window function gives an idea of the scales that
contribute to the BF estimates. Ideally, the window function should
fall quickly to zero for scales smaller than that being studied. This
ensures that the BF estimates are minimally biased from small-scale
non-linearities.

Armed with the MLE weights wi, n from equation (12), the angle-
averaged tensor window function W 2

ij (k) [equivalent to W2(kR) of
equation 6] can be constructed (for details, see Feldman et al. 2010)
as

W 2
ij (k) =

∑
m,n

wi,mwj,n

∫
d2k̂

4π
(r̂m · k̂)(r̂n · k̂)

× exp(ik k̂ · (rm − rn)). (14)

The diagonal elements W 2
ii are the window functions of the

BF components ui. The window function gives an idea of the
scales that contribute to the BF estimates. Ideally, the win-
dow function should fall quickly to zero for scales smaller than
that being studied. This ensures that the BF estimates are min-
imally biased from small-scale non-linearities. See the MLE
(Sarkar, Feldman & Watkins 2007) and MV (Watkins et al.
2009) window functions of the BF components for a range of
surveys.

Having constructed the survey window functions W 2
ii , the ef-

fective depth of the survey can be defined to be the one for
which W 2

ii is a close match to the window function for an ide-
alized survey. In order to construct the ideal window functions,
we first imagine an idealized survey containing radial velocities
that well sample the velocity field in a region. This survey con-
sists of a large number of objects, all with zero measurement un-
certainty. The radial distribution of this idealized survey is taken
to have a Gaussian profile of the form f (r) ∝ e−r2/2R2

, where R
gives a measure of the depth of the survey. This idealized survey
has easily interpretable BF components that are not affected by
small-scale aliasing and that reflect the motion of a well-defined
volume.

The MLE weights of an ideal, isotropic survey consisting of N′

exact radial velocities vn′ measured at randomly selected positions
r ′

n′ are

w′
i,n′ =

3∑
j=1

A−1
ij

r̂ ′
n′,j

N ′ , (15)

where

Aij =
N ′∑

n′=1

r̂ ′
n′,i r̂

′
n′,j

N ′ . (16)

Similar to equation (14), the window functions IW 2
ij for an ideal-

ized survey of scale R can be constructed as

IW 2
ij (k; R) =

∑
m,n

w′
i,m′w′

j,n′

∫
d2k̂

4π
(r̂ ′

m · k̂)(r̂ ′
n · k̂)

× exp(ik k̂ · (r ′
m − r ′

n)). (17)

In Fig. 2, left-hand panel, we show the diagonal window func-
tions W 2

ii (see equation 14) of the BF components calculated us-
ing MLE weights (see equation 12) for the DEEP catalogue. The
x, y, z components are dot–dashed, short-dashed and long-dashed
lines, respectively. Also shown are the ideal window functions IW 2

ij
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Figure 2. Left-hand panel: the window functions W 2
ii of the BF compo-

nents calculated using MLE weights for the DEEP catalogue. The x, y, z

components are dot–dashed, short-dashed and long-dashed lines, respec-
tively. The solid lines denote the ideal window functions IW 2

ij for scales

R = 10−40 h−1 Mpc (in 5 h−1 Mpc increments), the window functions
being narrower for larger scales. Right-hand panel: the window functions
for a subset of the 4100 DEEP mocks (solid lines). The characteristic depth
of the DEEP catalogue and its mocks is R = 34 h−1 Mpc (dashed line).

(see equation 17) for scales R = 10–40 h−1 Mpc (in 5 h−1 Mpc
increments), the window functions being narrower for larger scales.
To estimate the effective depth R of the DEEP catalogue, we per-
form a χ2 minimization of the difference between the DEEP and the
ideal window functions for a range of scales R = 5−100 h−1 Mpc
to obtain the best-fitting R = 34 h−1 Mpc. We note that the
weighted sum

∑
wnrn/

∑
wn gives the DEEP catalogue a depth

of 59 h−1 Mpc, an overestimation by nearly 70 per cent. Estimating
the survey depth correctly is crucial when it comes to compar-
ing the survey BF with theoretical predictions. One might have a
high-quality survey but a poorly estimated depth which can intro-
duce substantial errors when comparing with theory. Throughout
this paper, we define the characteristic depth R of a survey as the
one that minimizes the χ2 statistic between the survey and the
ideal window functions. The right-hand panel of Fig. 2 shows the
window functions for a subset of the 4100 DEEP mocks (solid
lines) extracted from the LD-Carmen simulations. The fact that the
mock window functions are nearly centred on the R = 34 h−1 Mpc
ideal window shows that our procedure for mock extraction works
well.

6 C OSMI C MAC H NUMBER STATI STI CS

6.1 Mach statistics for DEEP mocks

Using the MLE weighting scheme (Section 5), we estimated the
BF moments {ux, uy, uz}, the velocity dispersion σ and the cosmic
Mach number M for each of the 4100 DEEP mock realizations.
In Fig. 3, we show the probability distribution for the 4100 DEEP
mocks: BF u (left-hand panel), dispersion σ (middle panel) and the
cosmic Mach number M (right-hand panel). We found the rms BF
to be σv = 222 ± 86 km s−1with a velocity dispersion of σ = 511 ±
98 km s−1. Together this implies M = 0.43 ± 0.17 at 1σ CL. Since
the DEEP mocks have a characteristic depth of R = 34 h−1 Mpc,
we can say that for the LD cosmology, the expected Mach number
on scales of R = 34 h−1 Mpc is M = 0.43 ± 0.17.

6.2 Mach statistics for Gaussian realizations

In order to find the expected Mach number as a function of scale R
for the LD cosmology, we went to the same central points for each
of the 4100 DEEP mocks and computed the weighted average of
the velocities of all the galaxies in the simulation box, the weighting
function being e−r2/2R2

. We repeated this for a range of scales R =
10–100 h−1 Mpc in increments of 5 h−1 Mpc. We summarize the
expected values for the bulk, dispersion and Mach number for scales
R = 10–100 h−1 Mpc in Table 2. In Fig. 4, we show the expected
values for the bulk, dispersion and Mach number (dashed line) to-
gether with their 1σ CL intervals. The corresponding values for the
4100 DEEP mocks are shown by a solid circle at the characteristic
scale R = 34 h−1 Mpc.

The expected bulk (σv = 234 ± 94 km s−1), dispersion (σ = 517
± 56 km s−1) and Mach number (σ = 0.44 ± 17) for the Gaussian
window with R = 35 h−1 Mpc are in good agreement with the
corresponding values for the DEEP mocks. This shows that the
DEEP catalogue probes scales up to R ≈ 35 h−1 Mpc, and not R =
59 h−1 Mpc as one would have inferred from

∑
wnrn/

∑
wn using

the weights wn = 1/(σ 2
n + σ 2

∗ ).
Linear theory predictions for the LD cosmology are shown by

the solid lines in Fig. 4. The onset of non-linear growth in structure
formation at low redshifts boosts the velocity dispersion, causing
linear theory to overpredict the Mach values.

Figure 3. Histograms showing the normalized probability distribution for the 4100 DEEP mocks: BF u (left-hand panel), dispersion σ (middle panel) and the
cosmic Mach number M (right-hand panel). We also superimpose the best-fitting Maxwellian (for bulk and Mach) and Gaussian (for dispersion) distributions
with the same widths as the corresponding histograms. The rms values and the 1σ CL intervals are mentioned within each panel. The DEEP mocks were
extracted from the LD simulations (for the LD parameters, see Table 1).
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Table 2. The rms values of the BF (column 2), velocity dispersion (column 3) and cosmic
Mach number (column 4) together with their 1σ CL intervals for Gaussian windows with width
R (column 1). These values are calculated from the LD simulations (for the LD parameters,

see Table 1) using e−r2/2R2
as the galaxy weighting function, and correspond to the dashed

lines in Fig. 4. Linear theory predictions (columns 5–7) correspond to the solid lines in Fig. 4.

LD simulations Linear theory

R
√

〈u2〉
√

〈σ 2〉
√

〈M2〉
√

〈u2〉
√

〈σ 2〉
√

〈M2〉
(h−1 Mpc) (km s−1) (km s−1) (km s−1) (km s−1)

10 341 ± 133 379 ± 108 0.85 ± 0.33 369 299 1.23
15 308 ± 120 433 ± 89 0.68 ± 0.27 332 338 0.98
20 286 ± 111 464 ± 76 0.59 ± 0.23 303 365 0.83
25 267 ± 104 487 ± 68 0.53 ± 0.21 280 383 0.73
30 248 ± 96 504 ± 62 0.48 ± 0.19 259 397 0.65
35 234 ± 91 517 ± 56 0.44 ± 0.17 242 408 0.59
40 218 ± 85 526 ± 50 0.41 ± 0.16 227 417 0.54
45 204 ± 79 535 ± 47 0.38 ± 0.15 213 424 0.50
50 194 ± 75 541 ± 43 0.35 ± 0.14 202 430 0.47
55 182 ± 71 547 ± 40 0.33 ± 0.13 191 435 0.44
60 173 ± 67 551 ± 37 0.31 ± 0.12 181 439 0.41
65 163 ± 63 556 ± 35 0.29 ± 0.11 172 442 0.39
70 154 ± 60 560 ± 33 0.27 ± 0.11 164 445 0.37
75 145 ± 57 562 ± 31 0.26 ± 0.10 156 448 0.35
80 137 ± 53 565 ± 29 0.24 ± 0.09 150 450 0.33
85 130 ± 51 567 ± 27 0.23 ± 0.09 143 452 0.32
90 125 ± 48 569 ± 26 0.22 ± 0.08 138 454 0.30
95 118 ± 46 571 ± 25 0.21 ± 0.08 132 456 0.29
100 113 ± 44 572 ± 23 0.20 ± 0.07 127 457 0.28

Figure 4. The rms values of the BF (left-hand panel), dispersion (middle panel) and the cosmic Mach number (right-hand panel) are plotted as a function of
scale R. In each panel, the dashed line corresponds to measurements from the Gaussian realizations with the shaded region being the 1σ CL interval. The solid
circle at R = 34 h−1 Mpc is the result for the DEEP mocks. The error bar is the statistical variance of the mean calculated from the 4100 DEEP mocks. The
LD simulations are used to extract the Gaussian and the DEEP mocks. Linear theory predictions are shown by the solid line. The non-linear contributions to
the dispersion are clearly seen in both the middle and right-hand panels.

The probability distributions for u, σ and M from the Gaus-
sian realizations in the LD simulations are plotted in Fig. 5 for a
range of Gaussian widths R. For clarity, we only show scales R =
15, 35, 55, 75 and 95 h−1 Mpc.

As expected, the rms BF (dispersion) is a declining (increasing)
function of scale R (see Figs 4 and 5). This can be readily un-
derstood from the ideal window functions in Fig. 2. Larger scales
have narrower window functions in Fourier space. Only small-scale
modes (k ∝ 1/R) contribute to the rms BF integral in equation (6),
resulting in smaller BF on larger scales. The dispersion integral
(see equation 8) gets most of its contribution from higher k-values
(k > 1/R) and gradually increases with narrower windows. Similar

histogram trends were found by Suto et al. (1992) from numerical
simulations of a CDM universe.

6.3 Mach statistics for other mocks

In the following we extend our analysis to include various different
peculiar velocity surveys, specifically to show that our results are
not dependent on any radial or angular distributions, nor any distinct
morphological types. We compared the Gaussian realizations with
mocks (4100 each) created to emulate the radial selection function
of the surface brightness fluctuations (SBF; Tonry et al. 2001), early-
type nearby galaxies (ENEAR; da Costa et al. 2000; Bernardi et al.
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Figure 5. The same as Fig. 3, but for the Gaussian window with R = 15 h−1 Mpc (dotted), R = 35 h−1 Mpc (solid), R = 55 h−1 Mpc (short-dashed), R =
75 h−1 Mpc (long-dashed) and R = 95 h−1 Mpc (dot–dashed). For clarity, instead of the histograms, only the best-fitting Maxellian/Gaussian distributions
with the same widths as the corresponding histograms are shown. The rms values and the 1σ CL intervals for R = 35 h−1 Mpc are listed within each panel and
are in good agreement with the corresponding values for the DEEP mocks (shown in Fig. 3). Table 2 summarizes the results for Gaussian widths R = 10−
100 h−1 Mpc.

2002; Wegner et al. 2003), spiral field I-band (SFI++), SNIa and
SC peculiar velocity surveys. Note that the SC and SNIa surveys are
also part of our DEEP compilation. The SFI++ catalogue (Masters
et al. 2006; Springob et al. 2007, 2009) is the densest and most
complete peculiar velocity survey of field spirals to date. We use
data from Springob et al. (2009). The sample consists of 2720 TF
field galaxies (SFI++f) and 736 groups (SFI++g).

In Fig. 6, left-hand panels, we show the window functions W 2
ii of

the BF components for the SBF, ENEAR, SFI++g, SNIa, SFI++f,
DEEP and SC catalogues (top to bottom row, respectively). The
right-hand panels show the window functions for a subset of the

corresponding mocks. Through a χ2 minimization of the difference
between the ideal window functions (solid lines in Fig. 6, left-hand
panels) and those of the real catalogues, we obtain the characteristic
depths of the SBF, ENEAR, SFI++g, SNIa, SFI++f, DEEP and
SC catalogues to be R = 10, 19, 20, 23, 30, 34 and 40 h−1 Mpc,
respectively. The ideal window functions for these depths are shown
in the right-hand panels (dashed lines, top to bottom row).

In Table 3, we summarize the results for the various surveys
(column 1), where the surveys are listed in order of increasing
characteristic depth R (column 2) (based on the window functions
in Fig. 6, as described in Section 5). The error-weighted depths

Figure 6. Similar to Fig. 2, for the SBF, ENEAR, SFI++g, SNIa, SFI++f, DEEP and SC catalogues (top to bottom row, respectively).
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Table 3. Peculiar velocity statistics for various surveys (column 1). For each survey, 4100 mocks were extracted from the LD
cosmology (for the LD parameters, see Table 1). The characteristic depth R (column 2) of the mock catalogues is estimated
from the effective width of their window functions shown in Fig. 6. For reference, the error-weighted depth

∑
wnrn/

∑
wn

where wn = 1/(σ 2
n + σ 2∗ ), is listed in the third column. The rms values of the BF (column 4), velocity dispersion (column 5)

and cosmic Mach number (column 6) together with their 1σ CL intervals. Columns 7−9 correspond to the real surveys with
the quoted errors calculated using the radial distance uncertainties.

Mocks Real

Survey R
∑

wnrn∑
wn

√
〈u2〉

√
〈σ 2〉

√
〈M2〉 u σ M

(h−1 Mpc) (h−1 Mpc) (km s−1) (km s−1) (km s−1) (km s−1)

SBF 10 19 322 ± 125 415 ± 100 0.74 ± 0.29 354 ± 66 428 ± 32 0.83 ± 0.15
ENEAR 19 34 262 ± 102 490 ± 104 0.53 ± 0.21 292 ± 46 528 ± 24 0.55 ± 0.09
SFI++g 20 35 280 ± 101 473 ± 66 0.59 ± 0.18 221 ± 57 436 ± 27 0.29 ± 0.08
SNIa 23 42 275 ± 107 465 ± 73 0.58 ± 0.21 430 ± 87 478 ± 47 0.90 ± 0.18
SFI++f 30 52 240 ± 86 510 ± 81 0.47 ± 0.15 320 ± 44 503 ± 22 0.42 ± 0.06
DEEP 34 59 222 ± 86 511 ± 65 0.43 ± 0.17 312 ± 61 446 ± 27 0.70 ± 0.14
SC 40 75 227 ± 88 485 ± 43 0.47 ± 0.15 116 ± 123 520 ± 74 0.22 ± 0.23

Figure 7. Similar to Fig. 4, including results for the SBF (open triangle), ENEAR (solid triangle), SFI++g (open square), SNIa (solid square), SFI++f (open
circle), DEEP (solid circle) and SC (cross) mocks. The DEEP compilation includes the SC, SNIa, SMAC, EFAR and Willick surveys.

∑
wnrn/

∑
wn, where wn = 1/(σ 2

n + σ 2
∗ ), are listed in column 3

and are typically ∼75 per cent larger than R. For the mock surveys,
the expected values for the bulk, dispersion and Mach number and
their 1σ CL intervals are summarized in columns 4−6. Columns
7−9 are computed using the real surveys. The quoted errors are
calculated using the measurement uncertainties σ n of the nth galaxy
of a survey. Comparing columns 6 and 9, the Mach estimates for
all catalogues agree at ∼1.5σ CL for the LD cosmology. Also,
comparing the bulk, dispersion and Mach numbers for Gaussian
mocks (Table 2, columns 2–4) with the corresponding numbers for
the survey mocks (Table 3, columns 4–6), we see that our estimates
for the effective survey depth R are correct to within ±5 h−1 Mpc.

Similar to Fig. 4, we show results for the SBF, ENEAR, SFI++g,
SNIa, SFI++f and SC mocks in Fig. 7. Except for the SBF and SC
catalogues, the results for the other catalogues are a close match
to their Gaussian counterparts. Our SBF mocks are deeper than
the real SBF survey because the LD simulations are not dense
enough to extract mocks with depths less than ∼R = 12 h−1 Mpc.
This explains why the SBF window functions for the mocks (see
Fig. 6, first row, right-hand panel) are narrower than the one for the
SBF’s depth of R = 10 h−1 Mpc. Narrower window functions de-
crease (increase) our BF (dispersion) estimates for the SBF mocks.
For the SC mocks, the BF (dispersion) gets excess (suppressed)
contribution from smaller scales due to the extended tails of the
window functions (see Fig. 6, row 7). The SC catalogue, with only

70 clusters, does not have a good sky coverage. The DEEP compi-
lation, however, has a much better sky coverage, and the results (see
Fig. 7, solid circle) match those from R ≈ 35 h−1 Mpc Gaussian
mocks. We have included the results for the SBF and SC catalogues
to specifically show that if the selection function of the real survey
is not properly modelled, the predictions (in our case, based on the
Gaussian selection function) can be misleading.

For reasonably dense and well-sampled velocity surveys, like
DEEP, SFI++f and SFI++g, a close match between the mock
and the Gaussian results shows that the Mach analysis for such
catalogues is not overly sensitive to the selection functions of the
individual mocks. As such, one can skip the step of extracting
mock realizations of the observations from N-body simulations,
and simply use Mach predictions based on the Gaussian selection
function e−r2/2R2

with R set to the characteristic depth of the survey
being studied.

7 M OV I N G B E YO N D N-BODY SI MULATI O NS :
M AC H P R E D I C T I O N S U S I N G PKANN

In Section 6, we showed that for velocity surveys with low contam-
ination from small scales, reasonably accurate predictions for the
Mach number can be made by extracting mocks having a Gaussian
radial profile e−r2/2R2

, R being the characteristic depth of the survey
being studied.
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Figure 8. Similar to Fig. 7, but instead of showing linear theory predictions, we plot predictions based on the non-linear matter power spectrum for the LD
cosmology estimated using PKANN.

A further simplification in the Mach analysis one can hope to
achieve is to be able to predict M(R) as a function of scale R
without resorting to N-body simulations. Running high-resolution
N-body simulations, even in the restricted parameter space around
7-yr WMAP (Komatsu et al. 2011) central parameters, is beyond
present-day computing capabilities. It would be much easier and
faster to explore the parameter space using a prescription for the
matter power spectrum, and using equations (6) and (8) to predict
the cosmic Mach number. So far, this has been possible by using
linear theory. However, for linear theory results to be applicable, as
mentioned in Section 1, one needs to correct for the non-linearities
in the observed velocity field. Any residual non-linearity can still
bias the Mach predictions.

In this section, we attempt to predict M(R) using PKANN (Agarwal
et al. 2012a) – a neural network interpolation scheme to predict the
non-linear matter power spectrum up to k � 0.9 h Mpc−1 between
redshifts z = 0 and 2. Although PKANN accuracy worsens (starts un-
derpredicting the non-linear spectrum for k � 0.9 h Mpc−1), we do
not attempt to correct this by smoothing the velocity field over the
relevant spatial scale. In Fig. 8, we replace linear theory predictions
shown in Fig. 7 with the ones calculated using PKANN for the LD
cosmology. PKANN (solid lines) gives a good match with the N-body
results (dashed lines) on all scales, showing that PKANN can substi-
tute numerical simulations for the purpose of calculating the Mach
number given a set of cosmological parameters. Since PKANN pre-
dicts the power spectrum only up to k � 1 h Mpc−1, the non-linear
corrections are expected to be underestimated for smaller scales
(∼5 h−1 Mpc) which get non-negligible contribution from higher
k-modes. Although, we have shown PKANN’s performance for only
the LD cosmology, it is expected to perform satisfactorily for cos-
mologies around 7-yr WMAP central parameters for which PKANN

has been specifically trained. See Agarwal et al. (2012a) for details
on the parameter space of PKANN’s validity.

8 M AC H NUMBER ESTIMATES FROM RE AL
C ATA L O G U E S

Ma et al. (2012) measured the Mach number for four peculiar ve-
locity surveys (SBF, ENEAR, SNIa and SFI++f) and found that
the �CDM model with 7-yr WMAP parameters is mildly consis-
tent with the Mach number estimates for these four surveys at
3σ CL. However, as the authors mention in their work, their es-
timates are based on using a linear approximation for the power

spectrum. Given the fact that at low redshifts structure formation
has gone non-linear on small scales, it is necessary to consider non-
linearities when making theoretical predictions. Comparing Figs 7
and 8 (middle panels), one can see that dispersion is significantly
boosted by non-linearities, lowering the Mach predictions (third
panels) by 1σ level.

Further, they work with top-hat window functions in their analy-
sis. A top-hat filter assumes a volume-limited survey with a sharp
edge in real space. However, the number density of objects sampled
in a real survey typically falls at large distances. Real surveys thus
have a narrower depth than what a top-hat would suggest. The sharp
edge of a top-hat creates both ringing and extended tails in k-space.
Since it is the small-scale modes that are most contaminated by non-
linearities at low redshifts, a top-hat filter leads to aliasing of small-
scale power on to larger scales. As such, a top-hat filter is a poor
choice if one wants to isolate the contribution from small scales.

It is worth mentioning here that using a Gaussian window func-
tion W 2(kR) = e−K2R2

overdamps the high-k tails associated with
a top-hat. The reason being that we only observe the line-of-sight
component of the velocity field, whereas the equations presented in
Section 2 are based on the full 3D velocity measurements. The line-
of-sight component extends the tails of the survey window functions
in k-space (see Grinstein et al. 1987; Kaiser 1988). This is the reason
why in our analysis, we do not use W 2(kR) = e−K2R2

; instead, we
compute the ideal window functions using only the line-of-sight in-
formation (see equation 17). The extended tails of the ideal window
functions can be seen in Fig. 6 and should be contrasted against
W 2(kR) = e−K2R2

.
Ma et al. (2012) estimated the characteristic depth of these sur-

veys using
∑

wnrn/
∑

wn, where wn = 1/(σ 2
n + σ 2

∗ ). Specifically,
they found depths of 16.7, 30.5, 30.7 and 50.5 h−1 Mpc for the SBF,
ENEAR, SNIa and SFI++f, respectively. However, from Fig. 6
and Table 3 (rows 1, 2, 4 and 5), we show that these surveys probe
scales of R ≈ 10, 19, 23 and 30 h−1 Mpc, respectively. Using linear
theory with top-hat filters, and neglecting the survey window func-
tions while estimating the effective depths, makes the BF (and any
derived) statistic highly complicated to interpret.

In Section 6.3, we used numerical simulations to study the Mach
statistic for SBF, ENEAR, SFI++g, SNIa, SFI++f, DEEP and SC
mocks. Now, we calculate the bulk, dispersion and the Mach num-
bers using the real catalogues themselves. The results are shown
in Fig. 9 and summarized in Table 3, columns 7−9. We find
that the Mach observations lie within the ∼1.5σ interval for a
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Figure 9. Similar to Fig. 8, but instead of the mocks, we plot the results for the real surveys. The error bars are calculated using the radial distance uncertainties.

�CDM universe with LD parameters. We attribute the high un-
certainty in the Mach number for the SC catalogue to its poor sky
coverage.

9 D I S C U S S I O N A N D C O N C L U S I O N S

The estimates of BF and dispersion on scale R are subject to ob-
servational errors stemming from the accuracy levels of distance
indicators used and the survey geometry. Typically, the velocity
power spectrum is smoothed using top-hat or Gaussian filters, with
results depending on the exact smoothing procedure used. Often,
BF results are quoted and inferences drawn about our cosmological
model, without paying much attention to the survey window func-
tions which are essential in determining the scales that contribute
to quantities derived from peculiar velocities. A statistic such as the
cosmic Mach number can be a useful tool to test theories of structure
formation, provided the observational uncertainties are accounted
for and the scale is properly determined.

In this paper, we studied the statistical distribution of the Mach
number by extracting mock realizations of the real peculiar ve-
locity catalogues from LD numerical simulations. We showed that
the Mach number estimates from the real catalogues agree with
the expectations for a �CDM universe at the ∼1.5σ level at the
characteristic scales of the surveys. We checked if our Mach ex-
pectations derived from mock surveys were biased by the selection
function effects: we extracted realizations with a Gaussian profile
f (r) ∝ e−r2/2R2

and found no significant change to our Mach values
for the mock surveys.

We compared results from numerical simulations to show that
theoretical prediction of the Mach number based on linear theory
of structure formation is inaccurate. Specifically, small-scale non-
linearities increase velocity dispersion, thereby lowering the Mach
predictions by about 1σ for a �CDM universe with WMAP-type
cosmology. We presented an alternative method to study the cosmic
Mach number – by using a prescription for the non-linear matter
power spectrum, instead of running time-consuming and compu-
tationally intensive numerical simulations. Non-linear power spec-
trum interpolators like PKANN offer tremendous leverage over nu-
merical simulations, by being able to explore the parameter space
quickly. The role of such interpolating schemes in the study of
quantities derived from peculiar velocities needs further investiga-
tion. Also, in the future we plan to employ a MV-like formalism to
study this statistic, reduce the non-linear signal to below the statis-
tical errors and thus create a truly linear Mach number statistic that

can be used to directly compare results from disparate surveys as a
function of the volume chosen and probed.
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Pellegrini P. S., Rité C., Maia M. A. G., 2002, AJ, 123, 2990
Colless M., Saglia R. P., Burstein D., Davies R. L., McMahan R. K., Wegner

G., 2001, MNRAS, 321, 277
da Costa L. N., Bernardi M., Alonso M. V., Wegner G., Willmer C. N. A.,
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