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Abstract 

Network science is a field that applies mathematical techniques to study complex systems, and 

the tools of network science have been used to analyze the phonological network of language 

(Vitevitch, 2008). The phonological network consists of a giant component, lexical islands, and 

several hermits. The giant component represents the largest connected component of the 

network, whereas lexical islands constitute smaller groups of words that are connected to each 

other but not to the giant component. To determine if the size of the network component that a 

word resided in influenced lexical processing, three psycholinguistic tasks (word shadowing, 

lexical decision, and serial recall) were used to compare the processing of words from the giant 

component and word from lexical islands. Results showed that words from lexical islands were 

more quickly recognized and more accurately recalled than words from the giant component. 

These findings can be accounted for via a spreading activation framework. Implications for 

models of spoken word recognition and network science are also discussed.   
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Introduction 

Network science is an emerging interdisciplinary field, which uses mathematical 

techniques to analyze a diverse array of complex systems such as biological, telecommunication, 

cognitive, and social networks (Barabási, 2009; Watts, 2004). In these complex networks, nodes 

represent entities such as people in a social network, Internet web pages, or words of a language, 

and connections typically represent relationships between any pair of these entities; for instance, 

friendships among individuals, links between web pages, or phonological or semantic similarity 

between pairs of words. In recent years network science has been applied to the study of 

complex cognitive systems, in particular, the semantic and phonological networks of language 

(Steyvers & Tenenbaum, 2005; Vitevitch, 2008).  

In the phonological network of Vitevitch (2008), nodes represented phonological word 

forms and links (or edges) represented phonological similarity. Two words are phonologically 

similar if the first word can be transformed to the second word via the substitution, addition or 

substitution of one phoneme in any position (Landauer & Streeter, 1973; Luce & Pisoni, 1998). 

Vitevitch (2008) analyzed the phonological network using the tools of network science and 

found that the network possessed the features of a small-world network: short average path 

lengths and high clustering coefficients relative to an equally dense random network.  

Although short average path lengths and high clustering coefficients (relative to a random 

network) are typical of most real-world networks (Watts & Strogatz, 1998), the phonological 

network differed from other real-world networks in two aspects. First, the degree distribution of 

the phonological network resembled that of a truncated power law (Arbesman et al., 2010b), 

whereas real-world networks such as the World Wide Web tended to display a scale-free degree 

distribution (Barabási & Albert, 1999). The presence of scale-free degree distributions in 



	   2 

networks is primarily driven by the presence of “hubs”—nodes that have an exceedingly large 

number of connections compared to most other nodes (Barabási & Albert, 1999). Barabási and 

Albert (1999) proposed that networks grow via preferential attachment, where new nodes are 

more likely to attach to existing nodes with several connections, and showed that these networks 

tend to display a scale-free degree distribution. Since the phonological network does not display 

a scale-free degree distribution, this implies that alternative mechanisms such as preferential 

acquisition and lure of attachment, or a modified preferential attachment model that takes into 

account the costs of adding new connections, could better account for the observed degree 

distributions of language networks (Arbesman et al., 2010b; Hills et al., 2009).  

Second, the largest connected component (also known as the “giant component”) of the 

phonological network consisted of 6,508 out of 19,340 words, about 33.7% of the entire 

network. The proportion of words residing in the giant component of the network is small 

relative to other real-world networks, where typically almost all nodes are connected to form a 

single connected component (Newman, 2001). Interestingly, this seems to be a feature of the 

phonological networks of various languages—in a comparative analysis of phonological 

networks of various languages, it is striking that for the Mandarin network, which has the largest 

proportion of words residing in the giant component, the proportion of words residing in the 

giant component is merely 50% (Arbesman et al., 2010b).  

The results of these network analyses of the phonological network has led to further 

investigation of these structural characteristics in spoken word recognition. Studying the 

structural characteristics of the phonological network has demonstrated that the local structure of 

words influences various aspects of spoken word recognition and production, as well as short 

and long-term memory processes (Chan & Vitevitch, 2009; 2010; Vitevitch et al., 2012). Chan 
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and Vitevitch (2009; 2010) showed that the clustering coefficient, or C, of a word has 

measurable effects on psycholinguistic tasks, such as perceptual identification, lexical decision 

and picture naming. Clustering coefficient refers to the extent to which phonological neighbors 

of a word are also neighbors of each other (Watts & Strogatz, 1998). The phonological neighbors 

of high C words tend to be neighbors of each other, whereas the phonological neighbors of low C 

words do not tend to be neighbors of each other. Chan and Vitevitch found in various tasks that 

low C words were responded to more accurately and quickly than high C words. 

To account for their findings, Chan and Vitevitch (2009) proposed a spreading activation 

framework. In this account, activation spreads from the target word to its neighbors, and 

activation from neighbors spread back to the target word. As the neighbors of high C words are 

also neighbors of each other, activation tends to be trapped within this densely connected local 

neighborhood. This makes it difficult for the target node to “stand out” among its phonological 

neighbors and be subsequently recognized (Chan & Vitevitch, 2009). In contrast, the activation 

level of low C words tends to be higher than its phonological neighbors as the activation of these 

phonological neighbors spreads back to the target node and to the rest of the network rather than 

being trapped within the local neighborhood of the target node. Therefore, the recognition of low 

C words occurs more rapidly than high C words. 

Note that these findings could not be readily accommodated by existing theories of 

speech perception and spoken word recognition, as these theories do not explicitly take into 

account the network structure of the mental lexicon. Indeed, since high and low C words were 

matched on variables that are known to influence lexical processing, current theories would 

predict that there would be no difference in the response latencies and recognition accuracies 

between words of high clustering coefficients and words of low clustering coefficients. This has 
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been corroborated by the results of the simulations of TRACE and Shortlist models of spoken 

word recognition conducted by Chan and Vitevitch (2009), who showed that these models were 

unable to account for the finding that low C words were recognized more accurately and quickly 

than high C words. This speaks to the potential of network science approaches to contribute 

invaluable insights beyond that of current perspectives into lexical retrieval mechanisms and 

further clarify our understanding of these processes.  

An important point to emphasize is that the stimuli used in these studies (Chan & 

Vitevitch, 2009; 2010; Vitevitch et al., 2012) constitute words from the giant component. Recall, 

however, that the giant component consists of words that make up about 33.7% of the entire 

mental lexicon. The majority of words are either lexical hermits, that is, words that do not have 

any phonological neighbors, or reside in lexical islands, which are small groups of words that are 

connected to each other but disconnected from the giant component. One reason for the existence 

of lexical islands and hermits in the phonological network is due to the criteria used to denote 

phonological similarity between pairs of words. In the phonological network constructed by 

Vitevitch (2008), words were connected only if the first word could be transformed to the second 

via the substitution, addition, or deletion of 1 phoneme in any position (Luce & Pisoni, 1998). 

Based on this definition of phonological similarity, longer, multisyllabic words tend to have few 

or no phonological neighbors and are disconnected from the giant component, such that they 

either form their own smaller networks (lexical islands), or become lexical hermits.  

In complex networks of other domains, an overwhelming majority of nodes are located 

within the giant component (Newman, 2001). Therefore it is common practice to exclude smaller 

groups of nodes and individual nodes that are detached from the giant component from further 

analyses as these nodes are considered to be outliers (e.g., Newman, 2001; Steyvers & 
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Tenenbaum, 2005). In the phonological network, however, the majority of words constitute 

lexical islands and hermits. Hence, it does not make sense to treat these words as outliers and 

exclude them from further investigation; in fact, it is imperative that we extend our investigation 

to include these words.   

Unfortunately, little research has explicitly focused on examining words residing in 

lexical islands. There is one exception, however. Arbesman et al. (2010a) compared the 

morphology of lexical islands of English and Spanish, and found that Spanish words belonging 

to the same lexical island tended to share similar morphology, whereas this was less true of 

English words that belonged to the same lexical island. It is argued that this result could be a 

viable explanation for the finding that the typically inhibitory neighborhood effect is not true for 

Spanish words. For instance, Vitevitch and Rodríguez (2005) found that phonologically similar 

Spanish words were recognized more quickly than phonologically distinct Spanish words; and it 

was speculated that the processing of phonologically similar words could be facilitated if these 

words map onto a similar semantic referent, as in Spanish. The Arbesman et al. (2010a) study is 

an example of how the analysis of words residing in lexical islands could provide additional 

insights into the lexical processes underlying spoken word recognition.  

The present work represents the first experimental approach aimed at investigating 

whether there are any processing differences between words residing in the giant component and 

words residing in lexical islands by comparing their performance on word recognition and short-

term memory tasks. For ease of exposition, the term “giant component words” refers to words 

residing in the giant component of the phonological network, and the term “lexical island words” 

refers to words residing in lexical islands, which are disconnected from the giant component. 
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There are three possible outcomes of the present investigation: (a) giant component 

words are recognized and remembered more rapidly and accurately than lexical island words, (b) 

lexical island words are recognized and remembered more rapidly and accurately than giant 

component words, and (c) there are no differences between giant component words and lexical 

island words. Regardless of the outcome, we stand to gain a clearer understanding of the way in 

which lexical island words are processed relative to giant component words.  

As mentioned, words residing in lexical islands tend to be long and multisyllabic. In 

contrast, most, if not all, of short, monosyllabic words are found in the giant component 

(although it should be noted that the giant component consists of both short and long words). 

Given the inverse relationship between word frequency and word length, such that high 

frequency words tend to be short words and low frequency words tend to be longer words (Zipf, 

1935), this suggests that a large proportion of processing activity related to word recognition and 

lexical retrieval occurs within the giant component. This distribution of words also raises 

interesting questions about how “detached” words might be retrieved from the lexicon. Although 

the two sets of words will be matched on various characteristics including word frequency, the 

fact that processing activity tends to occur within the giant component could afford some 

processing advantage to giant component words that cannot be accounted for by the individual 

characteristics of those words alone.  

However, the opposite scenario where lexical island words are recognized more quickly 

and accurately than giant component words is also possible. Recall that lexical islands are 

essentially smaller networks that are not connected to the giant component. If one applies the 

spreading activation framework as described by Chan and Vitevitch (2009), activation would be 

more widely dispersed for the giant component words compared to lexical island words, as giant 



	   7 

component words are embedded in a very large network of words where activation ultimately 

spreads to the entire network, whereas lexical island words are embedded in a small network of 

words where activation would be trapped within that network.  

Here it is important to point out the differences between this speculation and the 

explanation given by Chan and Vitevitch (2009) to account for the clustering coefficient effect, 

where low C words are more quickly and accurately recognized compared to high C words. 

Although lexical island words may appear to be analogous to high C words because the network 

structure of both types of words seem to lead to more “trapped” activation, the opposite effect is 

predicted—lexical island words may be processed more quickly and accurately than giant 

component words because activation spreads back to the target word in a lexical island but may 

be more dispersed in the giant component.  

To distinguish between these hypotheses, words were selected from the giant component 

and lexical islands such that both sets of words were matched on various lexical, phonological 

and network science characteristics that are known to influence processing. A variety of tasks 

commonly used in cognitive psychology, which include word naming (Experiment 1), lexical 

decision (Experiment 2) and serial recall (Experiment 3), were conducted to compare the 

performance of lexical island words and giant component words on spoken word recognition and 

short-term memory processes. 
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Experiment 1 

 

Method 

Participants 

Twenty native English speakers were recruited from the Introductory Psychology subject 

pool at the University of Kansas. All participants had no previous history of speech or hearing 

disorders and received partial course credit for their participation.   

Materials 

Ninety-six English words were selected as stimuli for this experiment. Half of the stimuli 

were selected from the giant component of the phonological network and half were selected from 

lexical islands. Table 1 shows the means and standard deviations of lexical characteristics of 

words from the giant component and words from lexical islands. A list of the word stimuli and 

their individual lexical characteristics is included in the Appendix.  
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Table 1. Summary of lexical characteristics of giant component and lexical island word stimuli. 

	  	   	  	  
Giant	  component	   	  	   Lexical	  islands	  

	  	  

Number	  of	  phonemes	   	   5.35	  (0.53)	   	   5.40	  (0.64)	   	  

Subjective	  familiarity	   	   6.60	  (0.78)	   	   6.77	  (0.43)	   	  

Log	  frequency	   	   1.93	  (0.71)	   	   2.11	  (0.77)	   	  

Neighborhood	  density	   	   2.73	  (0.84)	   	   2.83	  (0.72)	   	  

Log	  neighborhood	  frequency	   	   1.70	  (0.53)	   	   1.65	  (0.47)	   	  

Mean	  positional	  probability	   	   0.0533	  (0.00852)	   	   0.0542	  (0.00760)	   	  

Mean	  biphone	  probability	   	   0.00562	  (0.00180)	   	   0.00590	  (0.00194)	   	  

Clustering	  coefficient	   	   0.274	  (0.353)	   	   0.236	  (0.311)	   	  

Onset	  duration	  (ms)	   	   58	  (3)	   	   58	  (4)	   	  

Stimuli	  duration	  (ms)	   	   556	  (92)	   	   583	  (70)	   	  

Overall	  file	  duration	  (ms)	   	  	   675	  (93)	   	  	   700	  (72)	   	  	  

 

 

Word length. Word length refers to the number of phonemes in a given word. Giant 

component words had a mean word length of 5.35 (SD = 0.53) and lexical island words had a 

mean word length of 5.40 (SD = 0.64), F (1,94) < 1, p = .73. 

Subjective familiarity. Subjective familiarity values were obtained on a 7-point scale, 

where words with high familiarity scores were perceived to be more familiar (Nusbaum et al., 

1984). Giant component words had a mean familiarity value of 6.60 (SD = 0.78) and lexical 

island words had a mean familiarity value of 6.77 (SD = 0.43), F (1,94) = 1.79, p = .19. 

Therefore both sets of words were highly familiar.  

Word frequency. Word frequency refers to how often a given word occurs in a 

language. Log-base 10 of the raw frequency counts from Kučera and Francis (1967) were used. 
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Giant component words had a mean word frequency of 1.93 (SD = 0.71) and lexical island words 

had a mean word frequency of 2.11 (SD = 0.77), F (1,94) = 1.45, p = .23. 

Neighborhood density. Neighborhood density refers to the number of words that are 

phonologically similar to a given word (Luce & Pisoni, 1998). Phonological similarity is defined 

as the substitution, addition, or deletion of one phoneme in a given word to form a phonological 

neighbor. Giant component words had a mean neighborhood density of 2.73 (SD = 0.84) and 

lexical island words had a mean neighborhood density of 2.83 (SD = 0.72), F (1,94) < 1, p = .52. 

Neighborhood frequency. Neighborhood frequency is the mean word frequency of a 

word’s phonological neighbors. Word frequency counts were obtained from Kučera and Francis 

(1967) and converted to log base 10 values. Giant component words had a mean log 

neighborhood frequency of 1.70 (SD = 0.53) and lexical island words had a mean log 

neighborhood frequency of 1.65 (SD = 0.47), F (1,94) < 1, p = .60. 

Phonotactic probability. The phonotactic probability of a word refers to the probability 

that a segment occurs in a certain position of a word (positional segment probability), and the 

probability that two adjacent segments co-occur (biphone probability; Vitevitch & Luce, 2004). 

Giant component words had a mean positional segment probability of 0.0533 (SD = 0.00852) 

and lexical island words had a mean positional segment probability of 0.0542 (SD = 0.00760), F 

(1,94) < 1, p = .57. Giant component words had a mean biphone probability of 0.00562 (SD = 

0.00180) and lexical island words had a mean biphone probability of 0.00590 (SD = 0.00194), F 

(1,94) < 1, p = .48. 

Clustering coefficient. The clustering coefficient, C, of a word refers to the extent to 

which a word’s phonological neighbors are also neighbors of each other. C ranges from 0 to 1; 

when C = 1, this implies that all neighbors of the word are neighbors of each other, and when C 
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= 0, this implies that no neighbors of the word are neighbors of each other. Giant component 

words had a mean C of 0.274 (SD = 0.353) and lexical island words had a mean C of 0.236 (SD 

= 0.311), F (1,94) < 1, p = .58.  

Duration. The duration of the stimulus sound files was equivalent across both sets of 

words. The mean overall duration of sound files was 675 ms (SD = 93) for giant component 

words and 700 ms (SD = 72) for lexical island words, F (1,94) = 2.18, p = .14. The mean onset 

duration, measured from the beginning of the sound file to the onset of the stimuli, was 58 ms 

(SD = 3) for giant component words and 58 ms (SD = 4) for lexical island words, F (1,94) < 1, p 

= .59. The mean stimulus duration, measured from the onset to the offset of the word, was 556 

ms (SD = 92) for giant component words and 583 ms (SD = 70) for lexical island words, F (1,94) 

= 2.64, p = .11.  

Procedure 

Participants were tested individually. Each participant was seated in front of an iMac 

computer that was connected to a New Micros response box. Stimuli were presented via 

BeyerDynamic DT100 headphones at a comfortable listening level and PsyScope 1.2.2 was used 

to randomize and control the presentation of stimuli. The response box contains a dedicated 

timing board which provides millisecond accuracy for the recording of response times.  

In each trial, the word “READY” appeared on the screen for 500ms. Participants heard 

one of the randomly selected word stimuli and were instructed to repeat the word as quickly and 

accurately as possible. Reaction times were measured from stimulus onset to the onset of the 

participant’s verbal response. Verbal responses were also recorded for offline scoring of 

accuracy. The next trial began 1s after the participants’ response was made. Prior to the 

experimental trials, each participant received 5 practice trials to familiarize themselves with the 
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task, and these trials were not included in the subsequent analyses. There were a total of 96 trials 

and the experiment lasted 10 minutes.  

 

Results 

Both reaction times and accuracy were the dependent variables of interest. Accuracy was 

manually scored offline by the author. Trials containing mispronunciations of the word or 

responses that triggered the voice-key prematurely (e.g., coughing, “uh”) were coded as incorrect 

and excluded from the analyses. Trials with reaction times that were less than 500ms or more 

than 2000ms were considered to be outliers and also excluded. Excluded trials accounted for less 

than 2.92% of the data.  

The convention in psycholinguistic research is to perform two types of analyses on 

participant and item means, treating participants and items as random factors in each of these 

analyses respectively. There is increasing awareness within the field, however, that participant 

analyses fail to take into account the systematic variability due to individual items and item 

analyses fail to take into account the systematic variability due to participants, such that neither 

analysis represents an appropriate description of all random sources of variability within the 

outcome variable (Locker, Hoffman, & Bovaird, 2007). Alternative data analysis approaches 

such as multilevel modeling and hierarchical regression have been proposed. In particular, 

hierarchical regression has proven to be especially useful in assessing the variability accounted 

for by an additional variable, over and above the variability that is already accounted for by other 

variables in the model, and this technique has been fruitfully applied in recent psycholinguistic 

studies (e.g., Yap & Balota, 2009).  
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Although both sets of words have been carefully selected such that they are closely 

matched on a variety of relevant lexical characteristics, hierarchical regression analyses on item 

means affords us the ability to determine if the location of the word in the network (i.e., whether 

the word resides in the giant component or in a lexical island) accounts for significant variability 

over and above that accounted by traditional lexical characteristics. Therefore, item-level 

regression analyses were conducted on the mean reaction times and accuracies for the stimuli. A 

two-step hierarchical approach was used. Number of phonemes, familiarity, frequency, 

neighborhood density, neighborhood frequency, positional and biphone probabilities, C, and 

stimuli duration were entered in Step 1. Location, a dummy coded variable indicating whether a 

word resided in the giant component or in a lexical island, was entered in Step 2. If a word 

belonged to a lexical island, it was coded as ‘1’; if a word belonged to the giant component, it 

was coded as ‘0’. The motivation for partitioning the regression analysis into two steps is to 

determine if location of the word within the network accounts for additional variance over 

previously entered variables.   

Reaction times 

Table 2 presents the results of regression analyses on naming reaction times.  
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Table 2. Hierarchical regression results for Experiment 1 (reaction times).  

Variable	   b	   SE	   t	   P	   R2	   ΔR2	  

	   	   	   	   	   	   	   	  Reaction	  times	  
	   	   	   	   	   	  

	   	   	   	   	   	   	   	  Step	  1	  
	   	   	   	   	   	  

	  

Number	  of	  phonemes	   0.019	   10.45	   0.20	   .84	  

	   	  

	  

Subjective	  familiarity	   -‐0.061	   9.14	   -‐0.68	   .50	  

	   	  

	  

Log	  frequency	   -‐0.22	   7.74	   -‐2.44	   .02*	  

	   	  

	  

Neighborhood	  density	   -‐0.032	   6.65	   -‐0.39	   .69	  

	   	  

	  

Log	  neighborhood	  frequency	   0.148	   10.65	   1.76	   .08+	  

	   	  

	  

Positional	  probability	   0.344	   922.3	   2.96	   .004**	  

	   	  

	  

Biphone	  probability	   -‐0.208	   4336	   -‐1.65	   .10	  

	   	  

	  

Stimuli	  duration	   0.633	   0.07	   7.00	   <.001***	  

	   	  

	  

Clustering	  coefficient	   -‐0.061	   15.56	   -‐0.75	   .46	  

	   	  

	  
	  

	   	   	   	  

0.482***	  

	  

	   	   	   	   	   	   	   	  Step	  2	  
	   	   	   	   	   	  

	  

Location	  (dummy	  variable)	   -‐0.177	   10.00	   -‐2.24	   .03*	  

	   	  

	   	   	   	   	   	  

0.511***	   0.029*	  

	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

Note:	  +	  p	  <	  .10,	  *	  p	  <	  .05,	  **	  p	  <	  .01,	  ***	  p	  <	  .001	  
	   	  

	   	  
 

 

In Step 1, frequency, positional probability and stimulus duration significantly predicted 

naming reaction times. Frequency was negatively correlated with reaction times, standardized β 

= -0.22, t (86) = -2.44, p < .05, such that high frequency words were responded to more quickly 

than low frequency words. Positional probability was positively correlated with reaction times, 

standardized β = 0.344, t (86) = 2.96, p < .01, such that words with high phonotactic probability 

were responded to less quickly than words with low phonotactic probability. Stimulus duration 

was positively correlated with reaction times, standardized β = 0.633, t (86) = 7.00, p < .001, 

such that words of longer durations were responded to less quickly than words of shorter 
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duration. Together, the variables entered at Step 1 explained 48.2% of the variance in naming 

reaction times, accounting for a significant proportion of the variance in naming reaction times, 

R2 = .482, F (9,86) = 8.90, p < .001.  

In Step 2, location significantly predicted naming reaction times, standardized β = -0.177, 

t (85) = -2.24, p < .05, such that lexical island words were responded to more quickly than giant 

component words. The influence of location accounted for an additional 2.9% of the variance, 

ΔR2 = .029, F (1,85) = 5.03, p < .05. Together, the variables entered at both steps explained 

51.1% of the variance in naming reaction times, accounting for a significant proportion of 

variance in naming reaction times, R2 = .511, F (10,85) = 8.89, p < .001. 

Accuracy 

Table 3 presents the results of regression analyses on naming accuracies. 
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Table 3. Hierarchical regression results for Experiment 1 (accuracy rates).  

Variable	   b	   SE	   t	   P	   R2	   ΔR2	  

	   	   	   	   	   	   	   	  Accuracy	  
	   	   	   	   	   	  

	   	   	   	   	   	   	   	  Step	  1	  
	   	   	   	   	   	  

	  

Number	  of	  phonemes	   0.080	   0.89	   0.66	   .51	  

	   	  

	  

Subjective	  familiarity	   0.328	   0.78	   2.84	   .006**	  

	   	  

	  

Log	  frequency	   0.053	   0.66	   0.46	   .65	  

	   	  

	  

Neighborhood	  density	   -‐0.021	   0.57	   -‐0.20	   .84	  

	   	  

	  

Log	  neighborhood	  frequency	   0.054	   0.91	   0.50	   .62	  

	   	  

	  

Positional	  probability	   0.084	   79.13	   0.56	   .58	  

	   	  

	  

Biphone	  probability	   -‐0.128	   372	   -‐0.79	   .43	  

	   	  

	  

Stimuli	  duration	   0.017	   0.006	   -‐0.15	   .88	  

	   	  

	  

Clustering	  coefficient	   0.081	   1.34	   0.78	   .44	  

	   	  

	  
	  

	   	   	   	  

0.148	  
	  

	   	   	   	   	   	  
	   	  

Step	  2	  
	   	   	   	  

	   	  

	  

Location	  (dummy	  variable)	   0.112	   0.88	   1.08	   .28	   	   	  

	  
	  

	   	   	   	  

0.16	   0.012	  

	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

Note:	  +	  p	  <	  .10,	  *	  p	  <	  .05,	  **	  p	  <	  .01,	  ***	  p	  <	  .001	  
	   	   	   	   

 

In Step 1, only familiarity significantly predicted naming accuracies, standardized β = 

0.328, t (86) = 2.84, p < .01, such that more familiar words were responded to more accurately 

than less familiar words. Together, the variables entered at Step 1 explained 14.8% of the 

variance in naming accuracies, which did not account for a significant proportion of variance in 

naming accuracies, R2 = .148, F (9,86) = 1.66, p = .11. 

In Step 2, location did not significantly predict naming accuracy, standardized β = 0.112, 

t (85) = 1.08, p = .28, nor did it explain a significant proportion of variance, ΔR2 = .012, F (1,85) 

= 1.17, p = .28. Together, the variables entered at both steps explained 16.0% of the variance in 
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naming accuracies, which did not account for a significant proportion of variance in naming 

accuracies, R2 = .160, F (10,85) = 1.62, p = .12. 

Table 4 shows the subject and item reaction time and accuracy means for the lexical 

island and giant component words. Reaction times for lexical island words (M = 956 ms, SD = 

55 ms) were faster than reaction times for giant component words (M = 968 ms, SD = 72 ms), 

and this was consistent across subject means as well.  

Accuracies were very high across both lexical island and giant component conditions, 

although slightly higher accuracy rates were observed for the lexical island words (M = 97.71%, 

SD = 3.41%) as compared to giant component words (M = 94.46%, SD = 4.94%). This was 

consistent across subject means as well. The fact that accuracy rates are close to ceiling could 

explain why the location of word within the network did not significantly affect accuracy rates.   

This also suggests that there was no speed-accuracy trade-off in the performance of the task. 

 

  



	   18 

Table 4. Subject and item means for giant component and lexical island words in Experiment 1. 

	  	   	  	  
Lexical	  island	  words	   	  	  

Giant	  component	  
words	   	  	  

Subject	  means	  
	   	   	   	   	  

	   	   	   	   	   	  
Reaction	  times	  (ms)	   	   955	  (107)	   	   967	  (110)	   	  
Accuracy	  (%)	  

	  
97.71	  (3.09)	  

	  
96.46	  (4.06)	  

	  
	   	   	   	   	   	  
Item	  means	   	   	   	   	   	  
	   	   	   	   	   	  
Reaction	  times	  (ms)	   	   956	  (55)	   	   968	  (72)	   	  
Accuracy	  (%)	   	  	   97.71	  (3.41)	   	  	   96.46	  (4.94)	   	  	  

 

 

The results of the word naming task is compatible with the hypothesis that lexical island 

words are processed more quickly than giant component words. As mentioned in the 

Introduction, the spreading activation framework can be used to account for the present results. 

Lexical island words are more quickly recognized than giant component words because 

activation is trapped within the network structure of a lexical island, whereas for giant 

component words, activation spreads to the rest of the network. This would allow lexical island 

words to have higher activation levels compared to giant component words and are therefore 

more easily retrieved and produced in the word naming task. In order to establish that this 

finding is consistent across different kinds of experimental tasks and is not an artifact of a 

specific experimental paradigm, a second experiment employing auditory lexical decision was 

conducted using the same stimuli.   

 

  



	   19 

Experiment 2 

 

Method 

Participants 

Twenty native English speakers were recruited from the Introductory Psychology subject 

pool as described in Experiment 1. All participants were right-handed and had no previous 

history of speech or hearing disorders. None of the participants in the present experiment took 

part in Experiment 1.  

Materials 

The word stimuli for the present experiment consisted of the same 96 words used in 

Experiment 1. In addition, a list of 96 phonotactically legal nonwords was constructed by 

replacing a phoneme (at any position except the first and last positions) of the word stimuli with 

another phoneme. For instance, the nonword porcel (/poɹsl/) was created by replacing /ɑ/ in 

parcel (/pɑɹsl/) with /o/. The phonological transcriptions of nonwords are listed in the Appendix.  

The nonwords were recorded by the same male speaker in a similar manner as in 

Experiment 1. The same method for editing and digitizing the word stimuli was used to create 

individual sound files for each nonword. 

Duration. The duration of the stimulus sound files was equivalent across both words and 

nonwords. The mean overall duration of sound files was 687 ms (SD = 84) for words and 665 ms 

(SD = 75) for nonwords, F (1,190) = 3.70, p = .06. The mean onset duration, measured from the 

beginning of the sound file to the onset of the stimuli, was 58 ms (SD = 3) for words and 57 ms 

(SD = 5) for nonwords, F (1,190) < 1, p = .40. The mean stimulus duration, measured from the 
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onset to the offset of the word, was 569 ms (SD = 82) for words and 550 ms (SD = 75) for 

nonwords, F (1,190) = 2.84, p = .09.  

Procedure 

Participants were tested in groups no larger than three. As in Experiment 1, each 

participant was seated in front of an iMac computer that was connected to a New Micros 

response box. Stimuli were presented via BeyerDynamic DT100 headphones at a comfortable 

listening level and PsyScope 1.2.2 was used to randomize and control the presentation of stimuli. 

The response box contains a dedicated timing board which provides millisecond accuracy for the 

recording of response times.  

In each trial, the word “READY” appeared on the screen for 500ms. Participants heard 

one of the randomly selected stimuli and were instructed to decide, as quickly and accurately as 

possible, whether the item heard was a real English word or a nonword. If the item was a word, 

participants pressed the button labeled ‘WORD’ with their right (dominant) index finger. If the 

item was a nonword, participants pressed the button labeled ‘NONWORD’ with their left index 

finger. Reaction times were measured from stimulus onset to the onset of the participant’s button 

press. The next trial began 1s after the participants’ response was made. Prior to the experimental 

trials, each participant received 8 practice trials to become familiar with the task, and these trials 

were not included in the subsequent analyses. There were a total of 192 trials and the experiment 

lasted 15 minutes.  

 

Results 

Both reaction times and accuracy were the dependent variables of interest. In lexical 

decision, only accurate responses for word stimuli were analyzed. Trials with reaction times that 
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were less than 500ms or more than 2000ms were excluded. Excluded trials accounted for less 

than 9.53% of the data. As in Experiment 1, hierarchical regression analyses were conducted on 

the item means. 

Reaction times 

Table 5 presents the results of regression analyses on lexical decision reaction times.  

 

Table 5. Hierarchical regression results for Experiment 2 (reaction times).  

Variable	   b	   SE	   t	   p	   R2	   ΔR2	  

	   	   	   	   	   	   	   	  Reaction	  times	  
	   	   	   	   	   	  

	   	   	   	   	   	   	   	  Step	  1	  
	   	   	   	   	   	  

	  

Number	  of	  phonemes	   0.039	   17.05	   0.4	   .69	  

	   	  

	  

Subjective	  familiarity	   -‐0.475	   14.91	   -‐5.12	   <.001***	  

	   	  

	  

Log	  frequency	   -‐0.158	   12.62	   -‐1.7	   .09+	  

	   	  

	  

Neighborhood	  density	   -‐0.089	   10.90	   -‐1.06	   .29	  

	   	  

	  

Log	  neighborhood	  frequency	   0.027	   17.37	   0.31	   .76	  

	   	  

	  

Positional	  probability	   0.284	   1505	   2.37	   .02*	  

	   	  

	  

Biphone	  probability	   -‐0.07	   7074	   -‐0.53	   .60	  

	   	  

	  

Stimuli	  duration	   0.341	   0.11	   3.66	   <.001***	  

	   	  

	  

Clustering	  coefficient	   -‐0.113	   25.38	   -‐1.36	   .18	  

	   	  

	  
	  

	   	   	   	  

0.452***	  

	  

	   	   	   	   	   	   	   	  Step	  2	  
	   	   	   	   	   	  

	  

Location	   -‐0.203	   16.2	   -‐2.52	   .01*	  

	   	  

	   	   	   	   	   	  

0.490***	   0.038*	  

	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

Note:	  +	  p	  <	  .10,	  *	  p	  <	  .05,	  **	  p	  <	  .01,	  ***	  p	  <	  .001	  
	   	  

	   	  
 

 

In Step 1, familiarity, positional probability and stimulus duration significantly predicted 

lexical decision reaction times. Familiarity was negatively correlated with reaction times, 
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standardized β = -0.475, t (86) = -5.12, p < .001, such that more familiar words were responded 

to more quickly than less familiar words. Positional probability was positively correlated with 

reaction times, standardized β = 0.284, t (86) = 2.37, p < .05, such that words with high 

phonotactic probability were responded to less quickly than words with low phonotactic 

probability. Stimulus duration was positively correlated with reaction times, standardized β = 

0.341, t (86) = 3.66, p < .001, such that words of longer durations were responded to less quickly 

than words of shorter durations. Together, the variables entered at Step 1 explained 45.2% of the 

variance in lexical decision reaction times, accounting for a significant proportion of the variance 

in lexical decision reaction times, R2 = .452, F (9,86) = 7.86, p < .001.  

In Step 2, location significantly predicted lexical decision reaction times, standardized β 

= -0.203, t (85) = -2.52, p = .01, such that lexical island words were responded to more quickly 

than giant component words, and accounted for an additional 3.8% of the variance, ΔR2 = .038, F 

(1,85) = 6.35, p < .05. Together, the variables entered at both steps explained 49.0% of the 

variance in lexical decision reaction times, accounting for a significant proportion of variance in 

lexical decision reaction times, R2 = .490, F (10,85) = 8.15, p < .001. 

Accuracy 

Table 6 presents the results of regression analyses on lexical decision accuracies. 
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Table 6. Hierarchical regression results for Experiment 2 (accuracy rates).  

Variable	   b	   SE	   t	   p	   R2	   ΔR2	  

	   	   	   	   	   	   	   	  Accuracy	  
	   	   	   	   	   	  

	   	   	   	   	   	   	   	  Step	  1	  
	   	   	   	   	   	  

	  

Number	  of	  phonemes	   -‐0.013	   2.03	   -‐0.15	   .88	  

	   	  

	  

Subjective	  familiarity	   0.616	   1.77	   7.83	   <.001***	  

	   	  

	  

Log	  frequency	   0.192	   1.50	   2.44	   .02*	  

	   	  

	  

Neighborhood	  density	   -‐0.061	   1.29	   -‐0.86	   .39	  

	   	  

	  

Log	  neighborhood	  frequency	   -‐0.050	   2.07	   -‐0.68	   .50	  

	   	  

	  

Positional	  probability	   0.027	   178.9	   0.27	   .79	  

	   	  

	  

Biphone	  probability	   -‐0.032	   841.3	   -‐0.29	   .77	  

	   	  

	  

Stimuli	  duration	   0.157	   0.01	   1.99	   .05+	  

	   	  

	  

Clustering	  coefficient	   0.073	   3.02	   1.04	   .30	  

	   	  

	  
	  

	   	   	   	  

0.606***	   	  

	   	   	   	   	   	  
	   	  

Step	  2	  
	   	   	   	  

	   	  

	  

Location	  (dummy	  variable)	   0.058	   1.99	   0.82	   .41	  
	   	  

	  
	  

	   	   	   	  

0.609***	   0.003	  

	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

Note:	  +	  p	  <	  .10,	  *	  p	  <	  .05,	  **	  p	  <	  .01,	  ***	  p	  <	  .001	  
	   	   	   	   

 

In Step 1, familiarity and frequency significantly predicted lexical decision accuracies. 

Familiarity was positively correlated with accuracies, standardized β = 0.616, t (86) = 7.83, p < 

.001, such that more familiar words were responded to more accurately than less familiar words. 

Frequency was also positively correlated with accuracies, standardized β = 0.192, t (86) = 2.44, p 

< .05, such that high frequency words were responded to more accurately than low frequency 

words. Together, the variables entered at Step 1 explained 60.6% of the variance in lexical 

decision accuracies, accounting for a significant proportion of variance in lexical decision 

accuracies, R2 = .606, F (9,86) = 14.69, p < .001. 
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In Step 2, location did not significantly predict lexical decision accuracy, standardized β 

= 0.058, t (85) = 0.82, p = .41, nor did it explain a significant proportion of variance, ΔR2 = .003, 

F (1,85) = 0.62, p = .44. Together, the variables entered at both steps explained 60.6% of the 

variance in lexical decision accuracies, accounting for a significant proportion of variance in 

lexical decision accuracies, R2 = .606, F (10,85) = 13.24, p < .001. 

Table 7 shows the subject and item reaction time and accuracy means for the lexical 

island and giant component words. Reaction times for lexical island words (M = 978ms, SD = 

83ms) were faster than reaction times for giant component words (M = 1019ms, SD = 114ms), 

and this was consistent across subject means as well.  

Accuracies were very high across both lexical island and giant component conditions, 

although higher accuracy rates were observed for the lexical island words (M = 93.02%, SD = 

8.92%) as compared to giant component words (M = 87.92%, SD = 17.74%). This was consistent 

across subject means as well.  
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Table 7. Subject and item means for giant component and lexical island words in Experiment 2. 

	  	   	  	  
Lexical	  island	  words	   	  	  

Giant	  component	  
words	   	  	  

Subject	  means	  
	   	   	   	   	  

	   	   	   	   	   	  
Reaction	  times	  (ms)	   	   974	  (71)	   	   1006	  (92)	   	  
Accuracy	  (%)	  

	  
93.02	  (5.33)	  

	  
87.92	  (6.43)	  

	  
	   	   	   	   	   	  
Item	  means	   	   	   	   	   	  
	   	   	   	   	   	  
Reaction	  times	  (ms)	   	   978	  (83)	   	   1019	  (114)	   	  
Accuracy	  (%)	   	  	   93.02	  (8.92)	   	  	   87.92	  (17.74)	   	  	  

 

 

The results of the lexical decision task are similar to that of the word naming task in 

Experiment 1—lexical island words are more quickly processed and recognized as compared to 

giant component words.  

It is important to reemphasize that the giant component and lexical islands words were 

closely matched on a variety of variables that are known to influence lexical processing. Current 

models of spoken word recognition would not predict any differences between these two sets of 

words. Nevertheless, the results of Experiments 1 and 2 have shown that lexical island words are 

more quickly processed than giant component words in both word shadowing and lexical 

decision tasks. These results strongly suggest that there is psychological reality to the idea that 

phonological word-forms in the mental lexicon are indeed organized as a complex network, 

which includes a giant component, several lexical islands, and hermits. Since both sets of words 

were matched on lexical and network science variables including degree and C, the present 

results showed that the processing differences observed between the two sets of words could be 

attributed to whether the word resided in the giant component or in one of the lexical islands. 
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This further suggests that the size of the network component that a word resides in has an 

important influence in lexical processing, beyond that of the individual lexical and network 

characteristics of words.   

In the next experiment, a serial recall task will be employed to investigate whether an 

advantage for recalling lexical island words as compared to giant component words exists. Using 

a serial recall task offers another way to compare giant component and lexical island words on a 

different aspect of lexical processing, especially as it has been argued that short-term memory 

processes involves similar processes that occur in speech perception (Ellis, 1980; Schweickert, 

1993). In addition, given that the dependent variable of interest in the serial recall task is recall 

accuracy, the serial recall task may reveal differences in accuracy rates between giant component 

and lexical island words that were not observed in Experiments 1 and 2. Based on the results of 

Experiments 1 and 2, one would expect that lexical island words would be more accurately 

recalled than giant component words.  

 

Experiment 3 

In a serial recall task participants are presented with a sequence of items and have to 

recall items in the same serial order. The serial recall task is a widely used experimental 

paradigm that cognitive psychologists use to explore the limits of short-term memory and its 

underlying cognitive processes (Baddeley et al., 1975; Ebbinghaus et al., 1913; Hulme et al., 

1991). As there is a strong correlation between short-term memory span (the number of items 

that are recalled in its correct order) and the rate at which words are articulated (e.g., Hulme et 

al., 1991), researchers argue that there exists a speech-based component that influences the speed 

at which information in the short-term memory store is refreshed and therefore short-term 
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memory involves processes that are common to speech perception (Schweickert, 1993). Hence, 

the serial recall task complements the psycholinguistic tasks that are predominantly used to 

investigate lexical processing, as demonstrated by Vitevitch et al. (2012) who employed the 

serial recall task to examine the effect of clustering coefficient on short-term memory. Note that 

although short-term memory processes are typically thought to influence serial recall 

performance, there is evidence that suggests that long-term memory contributes to serial recall 

ability as well (Hulme et al., 1997; Tehan & Humphreys, 1988; Watkins, 1977).  

 

Method 

Participants 

Thirty-two native English speakers were recruited from the Introductory Psychology 

subject pool. All participants had no previous history of speech or hearing disorders and received 

partial course credit for their participation. These participants did not participate in Experiments 

1 and 2.   

Materials 

The word stimuli for the present experiment consisted of the same 96 words used in 

Experiment 1. The words in each condition were pseudo-randomly assigned to ensure that no 

phonological neighbors appeared in the same list. 8 lists consisting of 6 giant component words 

each and 8 lists consisting of 6 lexical island words each were created. In addition, two different 

samples of the 16 lists (Versions A & B) were created to minimize order effects.  

Procedure 

Participants were tested individually. Each participant was randomly assigned to one of 

the two versions of the word lists; 16 participants were assigned to Version A and 16 participants 
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were assigned to Version B. As in the previous experiments, each participant was seated in front 

of an iMac computer. Stimuli were presented via BeyerDynamic DT100 headphones at a 

comfortable listening level and PsyScope 1.2.2 was used to randomize and control the 

presentation of stimuli. 

In each trial, the word “READY” appeared on the screen for 500ms. Participants were 

presented with one of the 16 randomly selected lists over headphones, at a rate of approximately 

1 word per second. At the end of each list, the prompt “RECALL” appeared on the screen and 

participants recalled out loud the list of words in the same order as they were presented. 

Participants were instructed to say “pass” if they could not recall the word in any particular 

position. Verbal responses were recorded for offline scoring of accuracy. The next trial began 

when participants finished recalling the words and pressed the spacebar. Prior the experimental 

trials, each participant received 4 practice trials to become familiar with the task, and these trials 

were not included in the subsequent analyses. There were a total of 16 trials and the experiment 

lasted 15 minutes.  

 

Results 

In contrast to the previous two experiments, recall accuracy was the dependent variable 

of interest in this experiment. Accuracy was manually scored offline by the author. Trials which 

contained mispronunciations of the word, or in which the participant said “pass” (or some 

indication of recall failure, e.g. “skip” or “don’t know”) were coded as incorrect trials. 

A 2 × 6 two-way within-participants ANOVA was conducted. The independent variables 

are location (2; lexical island or giant component) and serial position (6; 1 through 6). The 

dependent variable was the participants’ mean accuracy rate in each condition. The location × 
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position interaction was significant, F (5,155) = 3.32, p < .01. To ensure that the significant 

interaction was not due to specific ordering effects of either Version A or Version B, list was 

included as a third independent variable in the ANOVA. Since the three-way interaction was not 

significant, this implied that the nature of the significant two-way interaction observed between 

location and position was consistent across both lists.  

To further interpret the nature of the significant location × position interaction, tests of 

simple main effects of location were conducted at each level of position. At position 1, the 

simple main effect of location was significant, F (1,31) = 9.83, p < .01. At positions 2 to 6, the 

simple main effect of location was not significant, Fs < 1.70, ps > .20.  

As shown in the accuracy rates in Table 8 below, recall for words belonging to lexical 

islands was significantly better than words belonging to the giant component, but only for words 

in the first position of the serial recall curve. Recall for words belonging to lexical islands or 

giant component did not significantly differ across the other positions along the serial recall 

curve. 
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Figure 1. Serial recall curve showing proportion of accurate recall of giant component and 

lexical island words at each serial position.  
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Table 8. Accuracy rates for giant component and lexical island words in Experiment 3.  

	  	   	  	   Serial	  Position	  

	  	   	  	   1	   2	   3	   4	   5	   6	  

	   	  
	   	   	   	   	   	  

Lexical	  island	  words	  

	  

0.855	  	  
(0.135)	  

0.555	  	  
(0.218)	  

0.387	  
(0.218)	  

0.160	  
(0.136)	  

0.102	  
(0.116)	  

0.230	  
(0.206)	  

	  
	  

	   	   	   	   	   	  
Giant	  component	  
words	  

	  

0.719	  	  
(0.211)	  

0.543	  	  
(0.251)	  

0.363	  
(0.211)	  

0.203	  
(0.200)	  

0.078	  
(0.113)	  

0.246	  
(0.243)	  

	  	   	  	   	   	   	   	   	   	  
Note:	  Standard	  deviations	  are	  in	  parentheses.	   	   	   	   	  

 

 

Serial recall of lexical island words was more accurate than recall of giant component 

words, although this was only observed for words in the initial serial position. Based on the 

existing memory literature, there are three different explanations that can account for the present 

findings. 

The first explanation draws on much older findings reported in the memory literature, 

which showed that items presented in early serial positions were retrieved from long-term 

memory, whereas items presented in late serial positions were retrieved from short-term memory 

(Craik, 1968; Watkins, 1977). Given that an advantage for lexical island words was only 

observed in the first serial position (i.e., a primacy effect), this would suggest that long-term 

memory plays a role in the superior serial recall performance of lexical island words in the first 

serial position. Given that the mental lexicon is part of long-term memory, it is perhaps not 

surprising that effects were observed for where in the lexicon a word resides (i.e., islands vs the 

giant component). 
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More recently, Hulme et al. (1997; see also Hulme et al., 1991; Schweickert, 1993) 

showed that the success of short-term serial recall depends on two components: a speech-based 

component whereby recall accuracy or short-term memory span depends on the same processes 

that underlie speech production and perception, and long-term memory, which specifically 

includes the process of redintegration. The second account of the present results involves the 

same spreading activation mechanism process used to account for the results of Experiments 1 

and 2 as they relate to speech perception and lexical processing, whereas the third account of the 

present results involves the process of redintegration.  

Based on the spreading activation account, lexical island words are better recalled than 

giant component words because activation only spreads to other words within the same lexical 

island. Activation tends to become trapped within the island, whereas the activation of a giant 

component word would spread to the rest of the giant component. Therefore, the spreading 

activation account used to account for the findings of Experiments 1 and 2 can also be used to 

explain the differences in serial recall performance observed between lexical island and giant 

component words.  

A third, alternative account involving redintegration of representations by long-term 

memory could also account for the present finding. Redintegration occurs when the 

representations held in short-term memory are partially degraded. This degraded representation 

is then compared to phonological representations that are stored in long-term memory in order to 

“clean up” the representations in short-term memory and enable successful retrieval of the target 

word (Hulme et al., 1991; Roodenrys et al., 2002). Furthermore, redintegration can also be 

described in terms of the spreading activation mechanism used to account for the results of 

Experiments 1 and 2, which is consistent with the proposal that redintegration is a by-product of 
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speech perception processes (Hulme et al., 1997). The study by Vitevitch et al. (2012) comparing 

the recall accuracies of high and low C words in a serial recall task is an example of how the 

spreading activation mechanism can be useful in explaining the redintegration process.   

Vitevitch et al. (2012) found that high C words were recalled more accurately than low C 

words in a serial recall task, although this was true only for words presented in the final 

positions. To account for their findings, an explanation based on the redintegration phenomenon 

as described by Hulme et al. (1997) was proposed. According to Hulme et al. (1997; Roodenrys 

et al., 2002), redintegration occurs when the representations held in short-term memory are 

partially degraded. These degraded representations are then compared to phonological 

representations that are stored in long-term memory in order to “clean up” the representations in 

short-term memory (Hulme et al., 1997). Due to the fact that the neighbors of high C words tend 

to be neighbors of each other, activation tends to remain within the local neighborhood, and 

spreads back to the degraded target word, thus resulting in redintegration and superior recall 

performance (Vitevitch et al., 2012). On the other hand, for low C words, activation tends to be 

dissipated to the rest of the network, and the lack of activation remaining within the 

neighborhood leads to a lack of scaffolding for the degraded representations, such that 

redintegration for low C words is not as successful and low C words are not recalled as 

accurately.  

This phenomenon can also be applied to explain the finding in Experiment 3, where 

lexical island words were better recalled than giant component words in a serial recall task. As 

lexical islands are separate from the rest of the phonological network, activation of the target 

word tends to be trapped within the lexical island. This leads to more successful redintegration 

for lexical island words as compared to giant component words, because the circulation of 
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activation within the island can better “clean up” the degraded representations, whereas for giant 

component words, the diffusion of activation to the rest of the network does not facilitate the 

redintegration of the degraded target word. 

It is important to point out, however, that Vitevitch et al. (2012) observed that recall 

performance for high and low C words began to diverge toward the end of the word list. This is 

consistent with the hypothesis that redintegration occurs for words presented later in the list as 

representations tend to become more degraded in the later part of the word list (Hulme et al., 

1997; Roodenrys et al., 2002).  

In the present study, however, better performance was observed for lexical island words 

in the first serial position. Nevertheless, redintegration remains a plausible explanation for the 

following reasons. First, the words used in the present study were longer than those used in 

Vitevitch et al. (2012) (mean number of phonemes = 5.38, SD = 0.58), as words in lexical islands 

generally tend to be multisyllabic. In contrast, the stimuli in Vitevitch et al. (2012) were 

monosyllabic and were of the CVC pattern (i.e., all words were 3 phonemes long). It could be 

argued that the longer words used in the present experiment led to degradation occurring even at 

the earliest serial positions, so it is plausible that redintegration could have taken place for words 

in the earliest serial position. 

This possibility is supported by prior research on the word length effect in serial recall 

performance—the well-established finding whereby superior serial recall was observed for short 

words compared to longer words (Baddeley et al., 1975; Hulme et al., 2006; but see Service, 

1998). Although alternative explanations exist for the word length effect (e.g., Caplan et al., 

1992; Service, 1998), the most widely accepted account relates to the articulatory loop in 

Baddeley and Hitch’s (1975) model of working memory—because it takes longer to articulate 
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multisyllabic words than monosyllabic words, the representations of multisyllabic words begin to 

decay to a greater extent and multisyllabic words are recalled less accurately than monosyllabic 

words (Baddeley et al., 1975, Tehan & Tolan, 2007). Therefore, it is plausible to surmise that the 

longer stimuli used in the present experiment could have been subject to rapid degradation or 

decay, which allowed redintegration to occur for lexical island words even at the first serial 

position.  

In addition, it may take time for redintegration effects to emerge, especially for words 

that are presented in later positions. The spreading of activation does not happen instantaneously; 

it is a process that occurs over time and differences in activation levels emerge after some time. 

In fact, researchers who have attempted to model spreading activation in networks have 

simulated the spreading of activation as an accumulative process that occurs over a number of 

discrete time steps (Vitevitch et al., 2011; see also Anderson, 1983). In the present experiment, 

words were presented at a rate of 1 word per second and participants began recalling the word 

list immediately after the word list was presented. A future study could address whether 

decreasing the presentation rate of the stimuli, or increasing the interstimulus interval of the 

serial recall task would allow redintegration effects to emerge for words presented at the final 

positions of the word list. 

In summary, three different accounts exist that can explain the results of Experiment 3. 

The first one posits that the primacy effect for lexical island words in the early positions 

compared to giant component words reflect the involvement of long-term memory. The other 

two accounts draw on the hypothesis that the serial recall of words depends on processes that 

influence two different kinds of representations—direct retrieval from short-term memory via the 
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same processes that underlie lexical processing, and indirect retrieval via redintegration that 

occurs among long-term memory representations (Schweickert, 1993). 

Although the present thesis does not explicitly distinguish between each of the three 

accounts, future studies could differentiate among them by measuring each participant’s speech 

rate for each set of words and using speech rate as a covariate to control for the influence of 

short-term memory, which is shown to be highly correlated with the rate at which participants 

are able to articulate the items (as in Hulme et al., 1991). If an effect of word location remains 

even after the effect of speech rate is accounted for (i.e., lexical island words are still recalled 

more accurately than giant component words after controlling for speech rate), then this would 

indicate that long-term memory representations, as exemplified by the redintegration process, do 

influence serial recall performance.  

Finally, although the mechanisms of the last two possible explanations are very similar 

because they both involve spreading activation, they are qualitatively different because 

redintegration focuses on the recovery of degraded representations in long-term memory whereas 

direct retrieval from short-term memory relies on the difference in activation levels of short-term 

memory representations during on-line lexical processing. The key distinction between the two 

explanations is that redintegration occurs only when the representations are partially degraded. 

Hulme et al. (1997) suggested that the likelihood of redintegration increases for long words and 

low frequency words because the representations of these words degrade more rapidly; in 

particular, the likelihood of redintegration increases to a greater extent if long words and low 

frequency words are found towards the end of the word list. To distinguish between the two 

accounts, an experiment manipulating word length or word frequency within words that reside in 

either lexical islands or the giant component could be conducted. The crucial result would be 
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whether a word’s location within the phonological network interacts with, or is additive with 

word length or frequency across serial positions. An interaction would suggest that the difference 

in serial recall performance between lexical island and giant component words may be partly due 

to redintegration processes that occur among long-term memory representations, whereas 

additivity would suggest that the difference in serial recall performance between lexical island 

and giant component words is primarily due to spreading activation processes that occur among 

short-term memory representations.  

 

General Discussion 

Across three experiments, a processing advantage was observed for lexical island words 

compared to giant component words. Compared to giant component words, lexical island words 

were produced more quickly in a word shadowing task, recognized more quickly in a lexicon 

decision task, and recalled more accurately in a serial recall task. As these two sets of words 

were matched on a number of lexical, phonological, and network characteristics known to 

influence lexical processing, the present set of findings strongly suggest that the size of the 

network component that words happen to reside in plays a role in influencing lexical retrieval in 

spoken word recognition and short-term memory. Specifically, the processing of words 

belonging to smaller components of the phonological network (i.e., lexical island words) was 

facilitated relative to words belong to the largest component of the phonological network (i.e., 

giant component words).  

Spreading activation framework 

As discussed in the Introduction, Chan and Vitevitch (2009) introduced a spreading 

activation framework to account for their finding that high C words were more quickly and 
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accurately recognized than low C words. Recall that high C words have phonological neighbors 

that are also neighbors of each other, whereas the neighbors of low C words do not tend to be 

neighbors of each other. When the target word is activated, activation spreads from the target 

word to its neighbors. Activation then spreads from these words back to the target word, and also 

to their own neighbors. The crucial difference lies in the extent of interconnectivity that resides 

in the local neighborhoods of these words, which affects the activation levels of the target words. 

For high C words, a higher proportion of activation remains within this local neighborhood since 

the neighbors of the targets are also neighbors of each other.  Relative to high C words, a lower 

proportion of activation is “trapped” in the local neighborhoods of low C words, and most of the 

activation spreads to the rest of the network. Therefore, it is easier to recognize low C words, 

because they tend to “stand out” from their neighbors (in terms of activation levels) whereas the 

activation levels of high C words and their neighbors tend to be more similar to each other, 

making it difficult to recognize high C words.  

This spreading activation framework can also be applied to account for the processing 

advantage observed for lexical island words compared to giant component words. The process 

begins similarly for both sets of words. Activation spreads from the target word to its neighbors, 

and from its neighbors back to the target node and to their own neighbors. This process continues 

over time, until most of the initial activation has dissipated to the rest of the network. This is 

where the difference in the component size becomes important. The sizes of lexical islands are 

very small compared to the size of the giant component; the largest island consists of 53 words 

and the giant component consists of 6,508 words. As lexical islands constitute small sections of 

the phonological network that are independent of and separate from the giant component, this 

implies that activation tends to become “trapped” within lexical islands as the spread of 
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activation is bounded by the size of the lexical island. As for giant component words, activation 

would ultimately spread to the rest of the giant component. This would result in lexical island 

words having higher activation levels compared to giant component words, thus accounting for 

the participants’ superior performance for lexical island words on various experimental tasks.  

At first sight, this explanation may appear to contradict the explanation described earlier 

to account for difference between high and low C words, especially as the reason for poorer 

performance for high C words appears identical to the reason for superior performance for 

lexical island words: a higher proportion of “trapped” activation. It is important to emphasize 

here that in the case of clustering coefficient, activation is trapped within a word’s local 

neighborhood. For the lexical island words, activation is trapped within the lexical island that 

these words resided in. In fact, as lexical island words and giant component words were matched 

on the number of phonological neighbors and C, it can be further assumed that the local 

neighborhood characteristics of lexical island and giant component words are equivalent. That is, 

at the initial time steps, the amount of activation remaining within the target word’s local 

neighborhood can be assumed to be comparable across both sets of words. For giant component 

words, activation will ultimately spread to the rest of the giant component. On the other hand, for 

lexical island words, activation will be trapped within the island, and spread back to the target 

word, thus boosting activation levels of lexical island words relative to giant component words. 

In Experiment 3, a serial recall task was conducted in order to investigate a different 

aspect of lexical processing – the representations of lexical island and giant component words in 

short-term memory. As mentioned, this finding can be accounted for by a number of various 

cognitive mechanisms. However, the most parsimonious account would be the one whereby the 

same spreading activation mechanism used to account for the findings of Experiments 1 and 2 
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can also be applied to account for the finding that lexical island words are more accurately 

recalled than giant component words. Lexical island words are better recalled than giant 

component words because activation only spreads to other words within the same lexical island 

and tend to be trapped within the island, whereas the activation of a giant component word 

would spread to the rest of the giant component. This account would also be consistent with the 

idea that the processes that underlie short-term memory are similar to the processes that support 

speech perception and speech production (Schweickert, 1993).  

Implications for theories and models of spoken word recognition 

The past 60 years or so of speech perception research has witnessed the proliferation of a 

number of models of spoken word recognition. The more widely known models include the 

Cohort Model (Marslen-Wilson, 1987; the latest adaptation being the Distributed Cohort Model, 

Gaskell & Marslen-Wilson, 1997), TRACE, the interactive-activation model proposed by 

McClelland and Elman (1986), Shortlist B (Norris & McQueen, 2008), Neighborhood Activation 

Model (NAM; Luce & Pisoni, 1998) and PARSYN, the computational instantiation of NAM 

(Luce, Goldinger, Auer & Vitevitch, 2000). Although these models have vastly different 

theoretical assumptions and architectural premises, they have been highly successful in 

accounting for and modeling several well-established effects of word frequency, phonological 

neighborhood density and phonotactic probability.  

Recall that lexical island and giant component words selected for the present set of 

experiments were closely matched on a variety of lexical characteristics that are known to 

influence spoken word recognition. Therefore, the two sets of words differed only whether they 

resided within the giant component or within lexical islands of the phonological network. 

Current models of spoken word recognition, such as Cohort Model, TRACE, Shortlist B and 
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Neighborhood Activation Model, would not predict any differences between the two sets of 

words as they have similar lexical characteristics.  

Nevertheless, this paper presents converging evidence from three experiments showing 

that lexical island words are recognized more quickly and recalled more accurately than giant 

component words. Without explicitly incorporating the overall network structure of the 

phonological network, it is difficult to see how any of these theories or models could account for 

the present findings, as well as clustering coefficient effects reported in Chan and Vitevitch 

(2009; 2010) and the redintegration of high C words reported in Vitevitch et al. (2012). The 

present findings present significant challenges to current theories and models of spoken word 

recognition, as they strongly suggest that the overall network structure of the phonological 

network, as well as the size of the network component, play an important role in cognitive 

processes of word recognition and short- and long-term memory.  

Implications for network science 

In the network science literature, an overwhelming amount of work has focused on 

analyzing and investigating large-scale complex networks that consist of thousands of nodes 

(e.g., Internet (Yook et al., 2002); the human brain (Bullmore & Sporns, 2009); online social 

networks (Adamic & Adar, 2003)), although networks of a smaller scale have also been studied 

(e.g., Zachary’s karate club; Zachary, 1977). The present work presents evidence suggesting that 

the size of the network may represent an important factor to consider when investigating 

networks. In particular, small networks may be susceptible to boundary effects, as described by 

Kohonen (1982) in his study of self-organizing feature maps. These maps are a type of 

unsupervised artificial neural network that are created based on local interactions between nodes 

and used to cluster high-dimensional input into lower-dimensional groups. Kohonen (1982) 
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showed that for nodes residing at the edges of 2-dimensional networks, their weight vectors tend 

to be “contracted” as these nodes do not have as many neighbors that they could interact with as 

compared to nodes found in the center of the map. The boundary effect is the phenomenon that 

nodes at the edges exert a kind of “pressure” on a map that causes distortions to its final form 

near the edges of the 2-dimensional map.  

Due to the small sizes of lexical islands, most lexical island words tend to be found near 

or at the edges of the network as compared to giant component words which tend to be 

embedded more deeply within the giant component. A word that is more deeply embedded in the 

network would have activation spreading in a more symmetrical fashion around itself, whereas a 

word located at or near the edge of the network, might have a more asymmetrical distribution of 

activation spreading around itself, leading to the distortion observed for the mechanisms and 

processes that occur at the edges of the network. Future work could investigate these 

speculations by specifically comparing words found at the edges of networks and words that are 

more deeply embedded within the giant component to investigate whether the location of these 

words indeed leads to differences in processing.  

The size of the network could also have implications for the spread of information within 

a network. Although it may be easier for information to spread to all nodes in a small, highly 

clustered network compared to a large network (Newman, 2000), the small size of the network 

could lead to a form of information saturation or devaluation as redundant information continues 

to circulate somewhat indefinitely in a small network, akin to how the same pieces of gossip 

which circulate within a tight knit clique of friends quickly begin to lose their informational 

value. Therefore, although the same mechanisms and network principles can be applied to both 

large and small network components, the difference in size in the components could result in 
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qualitatively different outcomes in real life contexts. The results of the present set of experiments 

suggest that network scientists and other researchers using network science techniques in their 

respective areas should also consider how the size of networks (or network components) could 

affect processing in these systems.   

Future work and conclusions 

In this paper, three experiments were conducted to investigate whether words residing in 

lexical islands were processed differently compared to words residing in the giant component of 

the phonological network. Across all experiments it was consistently shown that lexical island 

words were recognized more quickly and recalled more accurately than giant component words, 

even though both sets of words were matched on a variety of lexical, phonological, and network 

characteristics that are known to influence spoken word processing. An account of how a 

spreading activation framework applied to network components of different sizes could lead to 

higher activation levels for lexical island as compared to giant component words was offered. In 

addition, it was speculated that “boundary effects” could have emerged more strongly for lexical 

island words as most of these words constitute the edges of these smaller networks, and there is a 

possibility that mechanisms that occur at the edges of networks become warped or distorted 

(Kohonen, 1982). It should be noted, however, that these are simply verbal, post-hoc 

explanations for the present findings. This paves the way for future work to validate these 

explanations by using computer simulations to model spreading activation in networks of 

varying sizes and of nodes residing at the edges of a network (as in Vitevitch et al., 2011) or by 

investigating the influence of other types of network characteristics on lexical processing.  

The results of these experiments have shown that the size of the network component that 

words happen to reside in plays an important role in spoken word recognition and memory 
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processes, over and beyond the lexical and network characteristics of individual words. 

Importantly, these findings also contribute to the growing body of research showing that network 

structure of the mental lexicon has measurable and considerable influences on cognitive 

processes (e.g., Hills et al., 2009; De Deyne et al., 2012), and is testament to the growing 

recognition of the notion that the mental lexicon can be modeled as a complex network, and that 

the nature of its overall network structure can proffer meaningful insights into the mechanisms of 

these processes.  
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beckon	   bEk|n	   5	   6.58	   1.00	   3	   1.85	   0.0590	   0.00690	   0.333	   56.6	   425.2	   61.0	   542.8	  

mission	   mIS|n	   5	   7.00	   2.89	   2	   2.22	   0.0557	   0.00630	   0.000	   55.1	   478.9	   63.8	   597.9	  

portion	   porS|n	   6	   7.00	   2.79	   3	   1.00	   0.0582	   0.00840	   0.000	   59.5	   566.0	   59.5	   685.0	  

taken	   tek|n	   5	   6.50	   3.45	   4	   1.76	   0.0489	   0.00510	   0.500	   59.5	   486.2	   60.9	   606.6	  

concede	   kxnsid	   6	   6.67	   1.90	   3	   1.66	   0.0596	   0.00830	   1.000	   53.7	   644.4	   62.5	   760.5	  

concern	   kxnsRn	   6	   6.92	   2.99	   2	   1.39	   0.0616	   0.00760	   0.000	   61.0	   661.8	   69.7	   792.4	  

confine	   kxnfYn	   6	   6.92	   1.30	   3	   1.26	   0.0569	   0.00640	   0.333	   59.5	   671.9	   55.2	   786.6	  

consign	   kxnsYn	   6	   6.17	   1.30	   4	   1.57	   0.0626	   0.00800	   0.167	   63.9	   702.4	   72.5	   838.8	  

coffin	   kcfxn	   5	   7.00	   1.85	   3	   2.06	   0.0568	   0.00540	   1.000	   56.6	   532.6	   61.0	   650.2	  

deafen	   dEfxn	   5	   6.17	   1.00	   1	   1.00	   0.0599	   0.00680	   0.000	   62.4	   460.0	   58.1	   580.5	  

siphon	   sYfxn	   5	   4.42	   1.00	   3	   1.20	   0.0623	   0.00570	   0.000	   61.0	   582.0	   56.6	   699.5	  

soften	   scfxn	   5	   6.92	   1.60	   4	   1.85	   0.0587	   0.00510	   0.500	   66.8	   621.1	   63.8	   751.7	  

banish	   b@nIS	   5	   6.33	   1.60	   3	   1.23	   0.0581	   0.00710	   0.333	   58.0	   603.7	   63.8	   725.6	  

furnish	   fRnIS	   5	   7.00	   2.46	   3	   1.53	   0.0462	   0.00300	   0.000	   52.2	   714.0	   49.3	   815.6	  

manage	   m@nIJ	   5	   6.92	   2.30	   3	   2.31	   0.0584	   0.00810	   0.000	   59.5	   582.0	   56.5	   698.0	  

marriage	   m@rIJ	   5	   7.00	   2.98	   2	   2.17	   0.0548	   0.00640	   0.000	   52.2	   586.3	   55.2	   693.7	  

domain	   domen	   5	   6.83	   1.95	   2	   1.00	   0.0480	   0.00160	   0.000	   61.0	   560.2	   55.2	   676.3	  

regain	   rIgen	   5	   6.75	   1.00	   3	   2.00	   0.0508	   0.00570	   0.333	   56.6	   577.6	   56.6	   690.8	  

remain	   rImen	   5	   7.00	   2.97	   3	   1.35	   0.0571	   0.00670	   0.333	   58.0	   626.9	   63.8	   748.8	  

retain	   rIten	   5	   6.75	   2.04	   4	   2.06	   0.0604	   0.00660	   0.167	   61.0	   641.5	   66.8	   769.2	  

partition	   pXtIS|n	   7	   6.67	   1.78	   3	   1.87	   0.0521	   0.00760	   0.333	   66.8	   650.2	   61.0	   777.9	  

permission	   pXmIS|n	   7	   7.00	   2.43	   2	   1.39	   0.0497	   0.00710	   1.000	   55.1	   638.5	   58.0	   751.7	  

petition	   pxtIS|n	   7	   7.00	   2.18	   3	   2.05	   0.0568	   0.00790	   0.000	   55.1	   626.9	   55.1	   737.2	  

position	   pxzIS|n	   7	   6.92	   3.38	   4	   2.04	   0.0503	   0.00700	   0.167	   58.0	   667.6	   66.8	   792.4	  

central	   sEntrL	   6	   7.00	   3.21	   3	   1.36	   0.0719	   0.01000	   0.000	   52.2	   583.4	   52.3	   687.9	  

locus	   lok|s	   5	   6.00	   1.30	   3	   1.79	   0.0468	   0.00460	   0.000	   61.0	   615.3	   63.8	   740.1	  

notice	   not|s	   5	   7.00	   2.77	   2	   1.98	   0.0473	   0.00510	   0.000	   61.0	   560.2	   58.1	   679.2	  

report	   rIport	   6	   7.00	   3.24	   4	   1.42	   0.0590	   0.00630	   0.167	   61.0	   600.8	   55.1	   716.9	  

lizard	   lIzXd	   5	   7.00	   1.00	   4	   1.33	   0.0468	   0.00340	   0.500	   58.0	   522.4	   58.0	   638.5	  

nervous	   nRvxs	   5	   7.00	   2.38	   3	   1.99	   0.0414	   0.00310	   0.333	   61.0	   626.9	   52.2	   740.1	  

service	   sRvxs	   5	   6.50	   3.50	   2	   2.84	   0.0571	   0.00380	   0.000	   61.0	   716.9	   55.1	   833.0	  

warrant	   wcrxnt	   6	   6.75	   2.30	   3	   1.77	   0.0618	   0.00840	   0.000	   49.3	   577.6	   52.3	   679.2	  

happen	   h@pxn	   5	   7.00	   2.80	   2	   1.00	   0.0622	   0.00740	   1.000	   55.1	   522.4	   60.9	   638.5	  

margin	   marJ|n	   6	   7.00	   2.00	   3	   1.33	   0.0559	   0.00850	   0.333	   58.0	   551.5	   58.1	   667.6	  

peasant	   pEzNt	   5	   6.92	   1.85	   4	   2.04	   0.0534	   0.00210	   0.167	   58.0	   487.6	   55.1	   600.8	  

revolve	   rIvalv	   6	   6.67	   1.00	   3	   1.60	   0.0402	   0.00480	   0.333	   55.1	   690.8	   61.0	   806.9	  

gallop	   g@lxp	   5	   6.83	   1.60	   2	   1.00	   0.0557	   0.00580	   1.000	   52.2	   481.8	   52.2	   586.3	  

nominee	   namxni	   6	   7.00	   1.48	   3	   1.35	   0.0560	   0.00750	   0.333	   55.1	   629.8	   60.9	   745.9	  

felon	   fEl|n	   5	   6.67	   1.00	   3	   1.51	   0.0621	   0.00760	   0.000	   55.1	   638.5	   69.7	   763.4	  

village	   vIlIJ	   5	   6.92	   2.86	   3	   1.26	   0.0503	   0.00580	   0.333	   58.0	   568.9	   61.0	   687.9	  
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cunning	   k^nIG	   5	   6.75	   1.70	   3	   3.05	   0.0578	   0.00550	   0.333	   58.0	   473.1	   66.7	   597.9	  

retail	   ritel	   5	   7.00	   2.30	   3	   1.72	   0.0415	   0.00230	   0.000	   52.2	   566.0	   58.1	   676.3	  

memory	   mEmXi	   5	   7.00	   2.88	   2	   1.00	   0.0541	   0.00400	   0.000	   58.0	   507.9	   52.2	   618.2	  

trophy	   trofi	   5	   6.92	   1.90	   3	   1.00	   0.0421	   0.00500	   0.000	   52.2	   560.2	   58.1	   670.5	  

treasure	   trEZX	   5	   7.00	   1.60	   2	   1.95	   0.0412	   0.00520	   0.000	   58.0	   496.3	   55.1	   609.5	  

solemn	   salxm	   5	   6.83	   2.08	   2	   1.39	   0.0689	   0.00600	   0.000	   52.2	   603.7	   52.2	   708.2	  

radio	   redio	   5	   7.00	   3.08	   2	   1.35	   0.0361	   0.00250	   0.000	   58.0	   548.6	   58.1	   664.7	  

plaza	   pl@zx	   5	   7.00	   1.30	   2	   2.17	   0.0502	   0.00350	   0.000	   55.1	   545.7	   61.0	   661.8	  
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parcel	   parsL	   5	   6.33	   1.00	   3	   1.45	   0.0600	   0.00695	   0.333	   55.1	   487.6	   63.8	   606.6	  

ceiling	   silIG	   5	   7.00	   2.49	   2	   1.82	   0.0538	   0.00485	   0.000	   61.0	   592.1	   55.1	   708.2	  

driven	   drIvxn	   6	   7.00	   2.64	   3	   1.00	   0.0596	   0.00786	   1.000	   61.0	   444.1	   52.3	   557.3	  

temple	   tEmpL	   5	   6.73	   2.58	   4	   1.67	   0.0459	   0.00532	   0.667	   58.0	   403.4	   60.9	   522.4	  

comic	   kamIk	   5	   6.67	   1.95	   3	   1.52	   0.0578	   0.00853	   0.333	   58.0	   566.0	   66.8	   690.8	  

century	   sEnCXi	   6	   7.00	   3.32	   2	   1.72	   0.0620	   0.00644	   0.000	   56.6	   560.2	   59.5	   676.3	  

panther	   p@nTX	   5	   7.00	   1.00	   3	   1.00	   0.0615	   0.00595	   0.333	   58.0	   519.5	   66.8	   644.3	  

facet	   f@s|t	   5	   5.58	   1.30	   4	   1.55	   0.0653	   0.00595	   0.000	   56.8	   448.4	   59.5	   564.7	  

cumber	   k^mbX	   5	   4.82	   1.00	   4	   2.21	   0.0485	   0.00385	   0.500	   58.0	   409.3	   55.2	   522.4	  

stutter	   st^tX	   5	   6.67	   1.00	   1	   1.00	   0.0548	   0.00687	   0.000	   56.6	   535.5	   66.8	   658.9	  

rollick	   ralIk	   5	   3.58	   1.00	   3	   1.36	   0.0542	   0.00543	   0.000	   52.2	   492.0	   58.1	   602.3	  

scepter	   sEptX	   5	   4.92	   1.00	   3	   2.26	   0.0690	   0.00545	   1.000	   63.9	   545.7	   61.0	   670.5	  

brittle	   brItL	   5	   7.00	   1.48	   3	   1.44	   0.0587	   0.00638	   0.000	   55.1	   326.5	   68.2	   449.9	  

filing	   fYlIG	   5	   7.00	   2.28	   3	   1.88	   0.0431	   0.00455	   0.333	   59.5	   603.7	   68.2	   731.4	  

scant	   sk@nt	   5	   6.92	   1.70	   3	   2.14	   0.0569	   0.00535	   0.000	   59.5	   592.1	   59.5	   711.1	  

mountain	   mWntN	   5	   7.00	   2.52	   2	   2.34	   0.0517	   0.00575	   0.000	   58.0	   597.9	   66.7	   722.7	  

spiral	   spYrL	   5	   6.92	   1.90	   2	   1.35	   0.0408	   0.00280	   0.000	   58.0	   661.8	   61.0	   780.8	  

drench	   drEnC	   5	   6.92	   1.00	   3	   1.81	   0.0443	   0.00475	   1.000	   55.1	   563.1	   58.1	   676.3	  

repeat	   rIpit	   5	   7.00	   2.42	   3	   1.48	   0.0612	   0.00607	   0.000	   56.6	   564.5	   58.1	   679.2	  

grunt	   gr^nt	   5	   7.00	   1.30	   4	   2.00	   0.0510	   0.00462	   0.500	   58.0	   490.5	   60.9	   609.5	  

coroner	   kcrxnX	   6	   6.92	   1.70	   3	   1.41	   0.0609	   0.00656	   0.333	   55.1	   563.1	   66.8	   685.0	  

remind	   rImYnd	   6	   7.00	   2.18	   2	   1.48	   0.0532	   0.00638	   0.000	   55.3	   586.3	   59.5	   701.1	  

defend	   dxfEnd	   6	   7.00	   2.32	   3	   2.49	   0.0419	   0.00368	   0.000	   56.8	   615.3	   60.9	   733.0	  

mention	   mEnC|n	   6	   7.00	   2.70	   4	   1.95	   0.0607	   0.00814	   0.500	   61.0	   577.6	   66.8	   705.3	  

receive	   rIsiv	   5	   7.00	   2.88	   4	   1.55	   0.0560	   0.00920	   0.167	   53.9	   635.6	   63.9	   753.4	  

limber	   lImbX	   5	   7.00	   1.30	   3	   2.04	   0.0482	   0.00475	   0.000	   58.0	   550.0	   58.0	   666.0	  

hardly	   hardli	   6	   7.00	   3.03	   1	   2.62	   0.0519	   0.00548	   0.000	   56.8	   600.8	   47.6	   695.3	  

minute	   mIn|t	   5	   7.00	   2.72	   4	   1.21	   0.0743	   0.00855	   0.167	   56.8	   378.8	   50.8	   486.3	  

squid	   skwId	   5	   7.00	   1.00	   4	   1.39	   0.0433	   0.00330	   0.000	   55.3	   589.2	   61.0	   705.5	  

straighten	   stretN	   6	   7.00	   1.85	   1	   3.08	   0.0509	   0.00590	   0.000	   56.8	   644.4	   63.9	   765.0	  

supposed	   sxpozd	   6	   6.82	   2.81	   1	   2.99	   0.0417	   0.00180	   0.000	   53.9	   878.0	   65.3	   997.2	  

collect	   kxlEkt	   6	   7.00	   2.20	   3	   1.91	   0.0623	   0.00692	   0.333	   55.3	   547.1	   61.0	   663.7	  

mustard	   m^stXd	   6	   7.00	   2.30	   2	   1.24	   0.0573	   0.00820	   0.000	   58.0	   552.9	   59.5	   670.4	  

cartridge	   kartrIJ	   7	   6.50	   1.78	   3	   1.10	   0.0611	   0.00895	   0.333	   61.0	   586.3	   60.9	   708.2	  

languor	   l@GgX	   5	   4.67	   1.00	   3	   2.60	   0.0364	   0.00313	   0.333	   63.9	   492.0	   65.3	   621.1	  

dribble	   drIbL	   5	   6.83	   1.00	   3	   1.23	   0.0445	   0.00525	   0.333	   63.9	   445.5	   56.6	   566.0	  

magnet	   m@gn|t	   6	   6.75	   1.48	   2	   1.00	   0.0578	   0.00576	   0.000	   55.1	   554.4	   52.3	   661.8	  

parable	   p@rxbL	   6	   5.67	   1.48	   3	   1.16	   0.0602	   0.00692	   0.333	   55.1	   531.2	   63.9	   650.2	  

remit	   rImIt	   5	   4.92	   1.00	   3	   1.50	   0.0648	   0.00718	   0.000	   59.5	   561.6	   63.9	   685.0	  

reverse	   rIvRs	   5	   7.00	   2.26	   3	   1.26	   0.0466	   0.00558	   0.000	   63.9	   714.0	   55.1	   833.0	  

knowledge	   nalIJ	   5	   6.83	   3.16	   2	   2.21	   0.0434	   0.00493	   0.000	   58.0	   647.3	   58.1	   763.3	  

device	   dxvYs	   5	   7.00	   2.74	   3	   2.19	   0.0370	   0.00205	   1.000	   61.0	   615.3	   63.8	   740.1	  
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chapter	   C@ptX	   5	   6.83	   2.87	   2	   1.42	   0.0516	   0.00418	   0.000	   59.5	   554.4	   65.3	   679.2	  

hamper	   h@mpX	   5	   7.00	   1.70	   3	   1.32	   0.0495	   0.00565	   0.333	   53.7	   496.3	   62.4	   612.4	  

temporal	   tEmpXL	   6	   6.33	   1.70	   2	   2.33	   0.0447	   0.00482	   1.000	   53.9	   542.8	   58.1	   654.7	  

colleague	   kalig	   5	   7.00	   1.95	   2	   1.15	   0.0562	   0.00718	   1.000	   63.9	   631.3	   66.8	   761.9	  

danger	   denJX	   5	   7.00	   2.85	   2	   1.15	   0.0463	   0.00198	   1.000	   59.5	   502.1	   62.4	   624.0	  

salvage	   s@lvIJ	   6	   6.83	   1.70	   2	   1.67	   0.0542	   0.00378	   0.000	   62.4	   685.0	   65.3	   812.7	  
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Nonwords  

Nonword	   IPA	   	  	   Nonword	   IPA	  

beton	   bɛtɨn	  
	  

porcel	   poɹsl	  
mizzion	   mɪʒɨn	  

	  
ceilong	   siloŋ	  

pontion	   ponʃɨn	  
	  

druven	   dɹuvən	  
tapen	   tepɨn	  

	  
tample	   timpl	  

conzede	   kənzid	  
	  

cowic	   kɑwɪk	  
conbern	   kənbɝn	  

	  
cendury	   sɛndɚi	  

comfine	   kəmfaɪn	  
	  

panker	   pænkɚ	  
conlign	   kənlaɪn	  

	  
fapet	   fæsot	  

cothin	   kɔθən	  
	  

cumler	   kʌmlɚ	  
deamen	   dɛmən	  

	  
stoitter	   stɔɪtɚ	  

suphon	   sufən	  
	  

romick	   ɹɑmɪk	  
saften	   sAfən	  

	  
sepger	   sɛpgɚ	  

bonish	   bonɪʃ	  
	  

brimmle	   bɹɪml	  
fugish	   fɝgɪʃ	  

	  
fileg	   faɪleŋ	  

magage	   mægɪʤ	  
	  

scaft	   skæft	  
madiage	   mædɪʤ	  

	  
moontain	   mʊntn	  

dogain	   dogen	  
	  

spooral	   spʊɹl	  
reshain	   ɹɪʃen	  

	  
drenth	   dɹɛntʃ	  

redain	   ɹɪden	  
	  

repout	   ɹɪpaʊt	  
refain	   ɹɪfen	  

	  
glunt	   glʌnt	  

partution	   pɚtʊʃɨn	  
	  

corofer	   kɔɹədɚ	  
pernission	   pɚnɪʃɨn	  

	  
rehind	   ɹɪhaɪnd	  

perition	   pəɹɪʃɨn	  
	  

dejend	   dəjɛnd	  
polition	   pəlɪʃɨn	  

	  
mendion	   mɛndɨn	  

cendral	   sɛndɹl	  
	  

rebeive	   ɹɪbiv	  
lercus	   lɝkɨs	  

	  
lomber	   lombɚ	  

nopice	   nopɨs	  
	  

harply	   hɑɹpli	  
rekort	   ɹɪkoɹt	  

	  
minupe	   mɪnot	  

lipard	   lɪpɚd	  
	  

sqad	   spwɪd	  
navous	   nAvəs	  

	  
stroten	   stɹotn	  

sernice	   sɝnəs	  
	  

summosed	   səmozd	  
weerant	   wɪɹənt	  

	  
colluct	   kəlukt	  

halen	   hælən	  
	  

musgard	   mʌsgɚd	  
mardin	   mɑɹdɨn	  

	  
curtridge	   kuɹtɹɪʤ	  

peasart	   pɛzɹt	  
	  

langdor	   læŋdɚ	  
repolve	   ɹɪpɑlv	  

	  
driggle	   dɹɪgl	  

goillop	   gɔɪləp	  
	  

magzet	   mægzɨt	  
nomidee	   nɑmədi	  

	  
paradle	   pæɹədl	  

fenon	   fɛnɨn	  
	  

remut	   ɹɪmʌt	  
vittage	   vɪtɪʤ	  

	  
relerse	   ɹɪlɝs	  

cuzzing	   kʌʒɪŋ	  
	  

knowpedge	   nɑpɪʤ	  
rezail	   ɹizel	  

	  
degice	   dəgaɪs	  

medory	   mɛdɚi	  
	  

chapmer	   tʃæpmɚ	  
tromy	   tɹomi	  

	  
hamler	   hæmlɚ	  

trosure	   tɹoʒɚ	  
	  

temtoral	   tɛmtɚl	  
somemn	   sɑməm	  

	  
comeague	   kɑmig	  
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ravio	   ɹevio	  
	  

dadger	   dedʤɚ	  
plara	   plæɹə	   	  	   salgage	   sælgɪʤ	  

 


