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ABSTRACT  

Flight has fascinated humans for centuries. Human inventions such as missiles, 

aircraft , unmanned aerial vehicles (UAV), and micro air vehicle (MAV) are inspired by 

natural flying expertise. As natural flyers usually operate in a vortex-dominated 

environment, interactions between their wings and the vortices have significant 

influences on force generation and flying efficiency. Some interesting phenomena 

induced from such vortex-body interactions have gotten a lot of attention in the past few 

decades.  

A good example is that birds and insects are credited with extracting energy from 

ambient vortices. In a simpler form, bio-inspired airfoils with either passive or active 

flapping motions are found to have the potential to harvest energy from incoming vortices 

generated from an upstream object, i.e. a cylinder. The current study identified the 

interaction modes of the leading edge vortex (LEV) and trailing edge vortex (TEV) 

between the active flapping airfoil and the incoming vortices. The relation between the 

interaction modes and the energy extraction capacity of an active harvester is investigated 

guided by a potential theory. The interaction modes induced by a passive energy harvester 

always benefit the energy extraction efficiency. However, the dynamic response of the 

passive harvester was found to vary corresponding to the properties of the incoming 

vortical wake. A profound appreciation of energy extracting mechanisms can provide a 

solution for the energy consumption issue of MAV and UAV. However, difficulties are 

encountered in practical applications of energy harvesting on how to detect the locations 

of generated vortices and what the trajectory of the vortex downstream of the moving 

body is. Some observations are realized and the fluid dynamics of the phenomena is 
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beyond the fundamentals described in the textbook. One well-known instance is the 

asymmetric wake formed downstream of a symmetric sinusoidal heaving airfoil. In this 

study, factors that influence the formation of the asymmetric wakes on both the near 

wake and far wake regions are demonstrated. Novel vortex models are developed to 

explore the vortex dynamic mechanisms of the asymmetric wake and its development 

from the near wake region to the far wake region.  

 In order to analyze the flow fields for the bio-inspired problems, Computational Fluid 

Dynamics (CFD) provides powerful and convenient tools. The shape of bio-inspired 

wings/airfoils and their maneuvers are usually very complicated. In CFD, the immersed-

boundary (IB) method is an advantageous approach to simulate such problems. In this 

study, an immersed-boundary method is implemented in a parallel fashion in order to 

speed up the computational rate.. A variety of numerical schemes have been applied to 

the IB method, including different spatial schemes and temporal schemes; their 

performances are investigated. In addition, the IB method has been successfully 

implemented with the fluid-structure interaction models for studying passive mobile 

objectives, i.e. the energy harvester. The possibility of coupling other fluid dynamic 

models, i.e. species transport model and turbulence models, is also demonstrated.  
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1 Introduction 

This introduction discusses the background of the current research, the methods used 

to meet the objectives, and the organization of this thesis. 

1.1 Research Objectives and Background 

1.1.1 Asymmetric Wakes Downstream of Heaving Airfoils 

Flow around oscillating airfoils has received a lot of attention because of its wide 

variety of applications in the area of micro-aerial vehicles. At the beginning of last 

century, it was found that flapping airfoils were able to create a normal force to produce 

both lift and thrust1, . Flapping wings can therefore be used as an alternative of 

conventional propeller. In the following decades, aerodynamics of flapping airfoils was 

studied systematically for heaving and pitching motions. Garrick3 and Theodorsen4 

analytically proved that plunging airfoils generate thrust over a wide frequency range, 

while pitching only airfoils do so only for high frequencies. Koochesfahani5, Jones et al.6, 

Lua et al.7, and Bratt8 explored the vortex patterns of flapping airfoils both 

experimentally and numerically. 

An interesting phenomenon, a deflected vortex wake, was observed in the flow 

downstream of a  heaving symmetric airfoil by Jones et al.6. Although the heaving motion 

was symmetric and periodic, the wake deflected to one side of the airfoil rather than 

locating symmetrically along the line of the mean plunging location of the airfoil. 

Deflected wakes were also recorded earlier by Bratt8 in experiments of flow over a 

symmetrically pitching NACA0015 airfoil. Unsurprisingly, similar deflected wakes were 

found in flow with asymmetric sinusoidal airfoil motions9. However, unlike the cases 
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with asymmetric airfoil motions, this phenomenon, with a pure symmetric sinusoidal 

heaving motion, only occurred at high Strouhal number that Lai and Platzer10 defined as 

2πf*h*/U∞, where f* and h* are the dimensional frequency and amplitude of the heaving 

motion, respectively. It was noted6 that the direction of deflection did not change in 

numerical simulation, whereas in experiment, small disturbances might influence the 

flow and randomly change the direction of the deflected wake. Heathcote and Gursul11 

presented that the switching of direction of the deflected wake was quasi-periodic in 

experiments. 

Recently, a number of studies have concentrated on the deflected wake. Lewin and 

Haj-Hariri12 showed that the direction of the deflected wake could even be altered in the 

middle of  simulation. Blondeaux et al.13 found a chaotic flow pattern when the heaving 

amplitude was large, which might be another way to explain the observation in Lewin 

and Haj-Hariri12. Zhang et al.14 studied the effect of the geometric shape on the trend of 

the deflected wake and found that it is easier and faster for slender foils to form an 

asymmetric downstream wake. In addition, Lua et al.7 experimentally showed the 

interactions between leading edge vortices (LEV) and trailing edge vortices (TEV) might 

lead to a deflected wake. To quantify the deflection angle, the location of the maximum 

streamwise velocity in the wake was used to determine the deflection angle11, 15, 16. 

Godoy-Diana et al.17 proposed a vortex dipole model to provide a quantitative prediction 

of the symmetry-breaking wake based on two consecutive counter-rotating vortices in the 

wake. A symmetry-breaking criterion based on the phase velocity and an idealized self-

advection velocity of vortex dipole was discussed. More recently, Liang et al.18 found that 
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the wake of a heaving airfoil with a larger Reynolds number would form a larger 

deflection angle. 

Lately, a number of studies have concentrated on the vortex-dipole patterns in the 

deflected wake. It is recognized18 that the vortex dipole pattern is the major reason for the 

asymmetric wake. A vortex dipole model was proposed to quantitatively provide a 

symmetry-breaking criterion based on the two counter-rotating vortices in the dipole. It 

related the onset of the asymmetric wake to the strength of the vortices and distances 

among them. The effect of vortex strength on the asymmetric wake was also evident19, 20 

where numerical studies showed that a larger deflection angle was formed in the wake of 

a heaving airfoil with a larger Reynolds number. The effect of distance among vortices 

was readily supported by the conclusions made in previous papers6, 15. Recently, Zheng & 

Wei20 extended the model of  Godoy-Diana et al.17 by considering two consecutive 

dipoles, which consist of three vortices, in the calculation of the symmetry-breaking 

criterion. One of these two consecutive dipoles tends to break the symmetry of the wake, 

while the other one is inclined to hold it. Zheng & Wei20 not only confirmed the criterion 

for the onset of the asymmetric wake by Godoy-Diana17 but also fulfilled a more general 

purpose in addressing other quantities of the asymmetric wake and the variation of the 

deflection. 

In the present study, deflected wakes of a symmetric heaving airfoil with a zero angle 

of attack are investigated numerically in 2D. Factors that influence the near wake 

deflection, including deflection direction and vortex pairing mechanisms, Strouhal 

number, frequency, amplitude, and Reynolds number, are investigated in detail. The 

deflection angle is found to be correlated with the symmetry-breaking and symmetry-
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holding effective phase velocities. Later, it is found that the near wake deflection angle 

changes in the far wake. In order to explain this phenomenon, the effective-phase velocity 

concept is extended to the cross-flow direction of an already deflected wake. The vortex 

dynamics mechanisms that cause the effective-phase velocity changes are investigated by 

employing a vortex dipole model. Finally, a vortex dynamic model based on the Biot-

Savart law is proposed to explain why the distance between the vortices and the direction 

of self-induced velocity of the vortex dipole varies from the near wake to the far wake. 

These mechanisms pertaining to the far wake behaviors can provide important 

information on far-wake signal detection and how following objects in the far wake 

region interact with the wake.  

1.1.2 Energy Harvesting of Flapping Foils 

In additional to the force generation, the topic of energy consumption for MAVs 

becomes attractive since they need to cover sufficient distances on their own power 

supplies. Most importantly, the potential renewable energy for MAVs –wind power- is 

abundently stored in their operational environments.  

As a bio-inspired masterpiece, MAVs often adopt the flapping wing as it is the most 

common force generator of natural flyers or swimmers. Studies of marine animals21, 22 

also inspired the concept of extracting energy from ambient flows through the flexible 

dynamo. The ocean, as a sustainable energy supplier, provides abundant and consistent 

power. Aquatic animals harvest energy from their living environments with their foils or 

undulating bodies to enhance their swimming performance23 or even detect their prey24. 

In analogy to the ocean, the atmosphere also contains an appreciable amount of energy 
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resulting in possible improvement in the mechanical efficiency of MAVs. The capability 

of a single flapping airfoil extracting energy from the uniform freestream has been widely 

discussed with either forced motions25-29 or vortex excited motions30-32. Moreover, for 

unsteady incoming flows, Wu33 theoretically proved that oscillating foils obtain the 

energy extraction potential in surface waves. Similar capabilities were discovered for fish 

to exploit vortices to decrease their muscle activities while swimming34. Gopalkrishnan et 

al.35 carried out experiments with flapping foils in the wake of an oscillating D-cylinder. 

Interaction modes were identified corresponding to different streamwise distances 

between the cylinder and airfoil, and the relationship between the different modes and 

energy harvesting was discussed. Hydrodynamic performances of a flapping airfoil or a 

fishlike undulating foil downstream of a D-cylinder, later, have been numerically 

investigated by Shao and Pan36 and Shao et al.37, respectively. In addition, Streitlien et 

al.38 established an invisid analysis and revealed that the phase between foil motion and 

the arrival of inflow vortices is a critical parameter to tune the efficiency of the energy 

extraction. Furthermore, Beal et al.23 emphasized that the energy extraction is achieved 

when the harvester resonates with incoming vortex wakes. Last but not the least, the size 

of the energy harvester is not negligible as it may substantially influence the energy 

extraction under certain circumstances39, 40.  

Among biologists, similar issues have been broadly discussed for natural flyers with 

tandem wings, i.e. dragonflies41, 42. Such a configuration with a forewing and a hindwing 

was reported to obtain better aerodynamic performance compared with that of a single 

wing43, 44. The phase difference of the motions between the two foils has the capability to 

tune types of force production for the sake of fulflling flying tasks in different conditions, 
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and a trade-off between the propulsion and lift forces was observed43-46. It is further 

concluded 44, 45, 47, 48 that the phase relationship between the fore- and hindwing primarily 

influences the formation of the LEV, which is directly related to the sign of the 

interacting vortex and the local flow conditions, i.e. local speeds and angles. Akhtar et 

al.49 further reported that the local effective angle of attack near the LE resulting from the 

interactions predominantly determines the formation of the LEV.   

In this study, energy extraction of a flapping airfoil in the wake of an oscillating D-

cylinder is investigated with two-dimensional simulations. Interaction modes between the 

incoming vortices and flapping airfoils are categorized into two types: suppressing mode 

and reinforcing mode; their relevance to the formation of both LEVs and TEVs are 

quantitatively demonstrated by a potential theory proposed in the current study. The 

topology of the incoming vortices corresponding to the airfoil was found to be of critical 

importance in activating different interaction modes. The importance of the topology will 

also be emphasized in order to explain the distinctions between heaving and pitching 

airfoils in terms of their influence on the interaction modes and the capacity of energy 

extraction.  

Similar phenomena occur for passively heaving foils in the wake of the cylinder. 

LEVs and TEVs are usually induced to help extract energy from the wake. However, 

different widths of the incoming vortical wake impact the dynamic responses of the 

passively mobile energy harvester. The relationships between properties of the vortical 

wakes and performance of the energy harvesters are discussed.  
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1.2 Numerical Methods 

1.2.1 Immersed Boundary Method  

Immersed-boundary methods were first introduced by Peskin50 to investigate a flow 

field around the flexible leaflet of a human heart. It exhibits powerful evidence for this 

method to predict the flow phenomena in low Reynolds numbers with complicate moving 

or morphing objects. The advantages of using IB methods are primarily 1) only simple 

Cartesian grids are needed, 2) no conforming mesh is required to simulate an object in 

motion, and 3) the shape/arrangement of the objects can be arbitrary. The computation is 

performed as if there are no solid objects in the flow field. In order to achieve these 

advantages, a proper artificial forcing term is essential for the Navier-Stokes equation to 

represent the effect of immersed boundaries in the simulation. In addition, the approach 

to implement this artificial forcing term identifies different types of the IB methods. 

Since the emergence of the IB methods, numerous modifications and improvements have 

been introduced and many variations have been developed. The IB methods can be 

primarily categorized into four types: feedback forcing methods, direct forcing methods, 

sharp interface methods, and penalization methods51.  

The original IB method by Peskin50, 52 falls into the first category, the feedback forcing 

method. In this method, a set of elastic fibers are used to represent the immersed 

boundaries. These fibers numerically are a collection of massless points that move with 

the local fluid velocity and their locations are tracked in a Lagrangian frame. This method 

is very attractive for flows with immersed elastic boundaries, including biological52-57 and 

multiphase flows58, 59. However, such a forcing term specifically designed for elastic 

boundaries generally does not perform well in the rigid limit, i.e. for rigid bodies. Early 
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researchers, e.g. Goldstein et al.60, circumvented this problem by introducing a spring 

with a restoring force, f(t), attached to an equilibrium location.  

      
t

o
t d t    f u u  (1.1) 

This system provides feedback control of the velocity near the surface but brings in two c

ase-dependent empirical parameters, α and β. Although promising results of simulating lo

w Reynolds number flows has been exhibited, the feedback forcing IB method has potent

ial to encounter stability problems for highly unsteady flows because of those empirical p

arameters. In addition, since the choice of α and β completely depends on the physical pr

oblems, the robustness of the feedback forcing IB method is intrinsically limited.  

To remedy this drawback of the feedback forcing IB method, the direct forcing IB 

method was proposed for problems involving rigid bodies; pioneers include Mohd-Yusof 

61, Uhlmann62, and among others. In this type of IB methods, the forces at immersed 

boundaries are directly calculated from numerical solution based on the temporally 

discretized momentum equation. 

 
1n n

RHS
t

 
 

u u
f  (1.2) 

where the right-hand-side (RHS) includes the convective, viscous and pressure gradient. 

On the immersed boundary, the forcing term in Eq. (1.2) can be obtained by enforcing the 

physical velocity of the boundary Vn+1 to the background grid node for the next time, i.e. 

un+1 = Vn+1.  
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f  (1.3) 

In each time step, the forcing term acts as a velocity compensator in order to correct 

the error between the desired (physical) boundary velocity and the computed velocity on 

the boundary surface. It is apparent that the absence of user-specified parameters in Eq. 

(1.3) helps the direct forcing IB method eliminate the stability constraints and improve 

the robustness. With this considerable progress, the direct forcing IB methods are widely 

used in simulating unsteady flow problems, e.g. Zhang & Zheng63 and Fadlun et al.64.    

In addition, the direct forcing concept is successfully implemented in not only the 

velocity fields but also other flow variables, such as streamfunction65. However, no 

matter if it is the feedback forcing, i.e. Eq. (1.1), or direct forcing, i.e. Eq. (1.3), the 

forcing terms exhibited above are only valid when the background grid nodes coincide 

with the immersed boundary. If the coincidence is not there, the force at the interface 

need to be distributed to the background grid nodes using discrete delta functions, which 

is expressed as follows 

      s h s s  f x f x x x x  (1.4) 

where δh is a discrete delta function and xs is Lagrangian points representing the 

immersed boundary. With this delta function, the effect of the immersed boundaries is 

distributed to the neighboring background grid nodes. As a result, the real interface is 

slightly diffused. This diffused interface issue decreases the accuracy near the boundary, 

which is less desirable for simulations with high Reynolds number flows.  
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In order to treat the immersed boundary as a “sharp” interface with no spreading, the 

sharp interface IB method is developed with the emphasis on the local accuracy near the 

IB. The concept of the sharp interface IB method is to modify the computational stencil 

near the immersed boundary and directly impose the boundary condition on the IB. The 

sharp interface IB method, strictly speaking, belongs to the type of the direct forcing IB 

method since it as well constructs the forcing term directly from the existing flow field. 

The fundamental distinction is that the sharp interface IB method does not involve any 

discrete delta function; therefore, the direct forcing IB method discussed in the previous 

paragraph sometimes is called discrete direct forcing IB method. The boundary condition 

on the immersed boundary in the sharp interface IB method is enforced through the use 

of “ghost points”, i.e. “G” in Fig. 1-1, which is defined in the solid but has at least one 

neighbor in the fluid.  

 

Figure 1-1 Representation of the points in the vicinity of an immersed boundary used in the sharp 

interface IB method.  
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It is according to Mittal & Iaccarino51. Fi are fluid points, G is the ghost point, and Bi and Pi are 

locations where the boundary conditions can be applied. Pi is the immersed boundary intercept with 

grid edge between Fi and G. B1 is the midway between P1 and P2. B2 is the normal intercept from the 

ghost node, G, to the immersed boundary.  

The flow variable, ϕ, for the ghost points is obtained by the interpolation schemes. A 

simple option is bilinear (trilinear in 3D) which reads 

 1 2 3 4C xy C x C y C      (1.5) 

The ϕ of “G” can be evaluated by Eq. (1.5) and the four coefficients can be obtained 

corresponding to the information of F1, F2, F3 and B2. The point B1 can be a good 

alternative of B2 since it is easier to find the former in the geometrical sense. With the Eq. 

(1.5), the boundary condition for the sharp interface IB method can be precisely 

specified; therefore, this type of IB methods improves the local resolution in the vicinity 

of the boundary compared with the discrete direct forcing IB method, and the boundary 

layers on the surface can be resolved better. The linear reconstruction is successfully 

applied to simulate high Reynolds number flows66, 67 as the first grid point is located in 

the viscous sub-layer. The higher-order interpolation68,69, is also developed in case the 

resolution near the boundary is marginal for high Reynolds number flows. In addition, 

the sharp interface IB method can be easily implemented with finite volume approach 

and conservation laws for the cells in the vicinity of the IB can be satisfied by the cut-cell 

methodology70-72. As a consequence, further refined local resolutions near the immersed 

boundary can be achieved.  

The penalization method, which can also be considered as a direct forcing IB method, 

is usually employed to model porous media. The forcing term is constructed to allow 

some convection and diffusion existing in the immersed boundaries. 
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       p

s f x u x u x  (1.6) 

where χs is the mask function, which is 1 inside the porous media and 0 outside, λ is the 

penalization parameter, and up
 is the fluid velocity allowable in the porous media. It is not 

mandatory to smoothly distribute the forcing term near the immersed boundaries; 

however, the smooth distribution can help improve numerical stability and avoid 

numerical oscillations73, 74.  

The current study primarily employs the discrete direct forcing IB method, which is 

developed by Zhang & Zheng63. This IB method can arbitrarily tune the number of points 

to represent the immersed boundary, which provides the robustness to achieve high 

resolution of the immersed boundary interpolation. The penalization IB method is also 

used when the immersed objectives involve porous media. 

1.2.2 Parallel Computation 

It is not a trivial task to develop a parallel solver with the immersed boundary method. 

The pressure Poisson equation included in this algorithm costs the most computational 

time. Several powerful scientific computing libraries are available. Hypre75 is well-

known for its multigrid preconditioners and FEniCS76 is famous for the automated error 

control and adaptation. PETSc77, a Portable Extensible Toolkit for Scientific computation, 

is employed in the current study because its linear solvers based on the Krylov subspace 

methods have outstanding performance and scalability in parallel computation. PETSc is 

developed in Argonne National Laboratory. It provides a powerful set of tools for the 

numerical solutions of partial differential equations. It consists of a variety of libraries 

based on FORTRAN, C, and C++, which provides an easy way for code reuse and 
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flexibility. The foundation of all inter-processes communication in PETSc is MPI; 

however, many details of message passing within PETSc are shielded from users by 

default. This creates the possibility for agile programming of large scale applications. In 

addition, PETSc provides tools to assist in the management of parallel data. A good 

example is the distributed array (DA). The distributed array (DA) object is adopted for 

delivering the information required in data parallelization and communication between 

processes. In the current work, numerical tools with multilevel Krylov subspace methods 

78 for solving a large sparse algebraic linear system of equations are used for the Poisson 

equation. Multiple previous researchers studied and revealed its power in computational 

fluid dynamics, i.e. Bozkurttas et al.79, Hicken et al. 80, and Hsu et al.. Indeed, it is a very 

tedious job to implement the IB method in a parallel fashion. Small improvements could 

speed up the computation dramatically. The details of the implementation will be 

demonstrated in detail in the next chapter.  

1.2.3 Fluid-Structure Interactions and Temporal Schemes 

To capture fluid-structure interactions (FSI) for passively mobile objects, the dynamic 

model is essential, which can be broadly separated into two categories: the monolithic 

(strongly-coupled) approach81, 82 and the partitioned (weakly/loosely-coupled) approach. 

The former treats the fluid and structure dynamics in the same mathematical framework 

and develops equations for a single strongly coupled system solved simultaneously by a 

unified algorithm. Therefore, iterations between the fluid field and dynamic system are 

required. This approach has the capability of being more accurate for a multidisciplinary 

problem, but it may require substantially more computational resources. Moreover, since 
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the governing equations for the structure domain are implicitly integrated in time, the 

strongly-coupled approach has a considerable overhead to solve large implicit linear 

matrices in parallel computation. The strongly-coupled FSI has been successfully coupled 

with the IB method in previous studies83, 84. Lately, Yang and Stern85 proposed to 

calculate the forces exerted on the immersed boundary by the fluid using the direct 

forcing concept. They further detected that the pressure gradient near the immersed 

boundary does not affect the forcing term at all. As a consequence, the Poisson equation 

involved in the IB methods to couple the velocity and the pressure fields is only required 

to be solved once in one time step regardless of the number of iterations between the flow 

field and the dynamic system. The computational resources can be substantially saved 

since obtaining the solution of the Poisson equation is usually the most expensive part for 

the flow solver. 

 On the other hand, the partitioned approach solves the fluid and the structure 

separately with respect to different mesh and numerical algorithms. The structure solver 

can be built upon any existing solver. The interfacial information exchange between fluid 

and solid is explicit, which is easily implemented for parallel computations. However, the 

loosely-coupled approach suffers from numerical stability issues, especially when the 

added-mass effect overcomes the natural mass of the structure83. In addition, van 

Brummelen86 found that the added mass in the incompressible flow asymptotes to a 

constant as the time step approaches to zero, which implies that the FSI scheme may not 

be stable with incompressible flows no matter how small the time step size is. The 

loosely-coupled FSI was successfully coupled with IB methods87, 88 and Uhlmann62 
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demonstrated a stable loosely-coupled scheme for density ratio of the structure to fluid  as 

low as 1.2. 

In order to achieve better real-time feedback of forces for the FSI model and more 

relax numerical stability, a temporal scheme with a higher order of accuracy is desirable. 

A good example is the predictor-corrector scheme of the low-storage third order Runge-

Kutta (RK3) scheme, where all terms in the right-hand-side of the momentum equation 

are advanced explicitly. Similar RK3-schemes have also been employed in several 

previous studies for immersed boundary methods. However, their approaches to construct 

the forcing term may exacerbate the spurious force oscillations for immersed boundary 

methods, especially for moving body problems, although some of the studies also 

discussed special techniques to alleviate such a numerical error.  

 

1.2.4 Turbulence Model 

In order to simulate flow with moderate to high Reynolds numbers, turbulence models 

are required. Two major types of turbulence models are popular nowadays: the Reynolds 

Averaged Numerical Simulation (RANS) and the Large Eddy Simulation (LES).  

(a) 
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(b) 

Figure 1-2 Decomposition of the energy spectrum of the solution associated with the (a) Reynolds 

Averaged Numerical Simulation (RANS) and (b) LES.  

It is according to Sagaut89. E(k) is the turbulent energy and k is the wavenumber.  

RANS models, e.g. k-ε models, k-ω models, and the Spalart-Allmaras model, have 

been widely employed in engineering applications90-94. However, RANS models only 

resolve the averaged flow field and employ mathematical models to obtain all 

wavenumber modes in the energy spectrum, as shown in Fig. 1-2. Unsteady RANS 

models may resolve certain low wavenumber energy modes but still model the rest of it. 

Therefore, RANS models highly rely on the mathematical models to describe physical 

behaviors in turbulent flow. However, those mathematical models often involve multiple 

empirical parameters, which are sensitive to different physical problems95-101. On the 

other hand, LES resolves most of the wavenumber modes, which represent the larger 

three-dimensional unsteady turbulence motions102, whereas the effects of the smaller-

scale motion associated with higher wavenumber modes are modeled. Because the large-

scale unsteadiness is directly simulated, LES is expected to be more accurate and robust 

than RANS models. It offers a suitable method for solving complex flow problems 

dominated by large scale phenomena, especially for three-dimensional unsteady flows, i.e. 

the flow over bluff bodies with flow separations, reattachments, and vortex shedding.  In 

addition, unlike direction numerical simulation (DNS), which resolves all of the scales of 
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flow field solution, LES only resolves large scales of the solution but models the fine 

scale turbulence, which is the most expensive part in DNS. Therefore, the computational 

expense of LES lies between that of RANS and DNS.  

 

Figure 1-3 Sketch of turbulent energy spectrum according to Durbin and Pettersson Reif103 

The principal operation in LES is low-pass filtering. The filtered flow field obtains no 

effect on higher wavenumber modes, which requires to be modeled by mathematical 

model, e.g. the Smagorinsky model104. One empirical parameter, the Smagorinsky 

coefficient, is involved in the Smagorinsky model. Lily105 theoretically derived the value 

of this parameter under the condition that the high wavenumber modes all fall into the 

Kolmogorov scale of the turbulence energy spectrum102. It implies that the size of the 

filter in LES needs to be small enough to resolve the all wavenumber modes which are 

larger than the Kolmogorov scale. In other words, the cut-off wavelength associated with 

the filter should be inside of the Kolmogorov scale region in the turbulent energy 



18 

 

spectrum shown in Fig. 1-3. Since the computational grid size is usually used as the LES 

filter, high resolution of mesh is desired for LES106, 107. 

It is worth noting that the standard Smagorinsky model obtains nonzero eddy viscosity 

at solid boundaries. It contradicts the fact that the eddy viscosity should be zero where 

there is no turbulence, i.e. at the wall. The dynamic Smagorinsky model proposed by 

Germano et al.108 revisited the Smagorinsky coefficient and treated make it as a variable 

rather than a constant. The variable Smagorinsky coefficient can automatically be 

reduced to zero near solid boundaries, which results in zero eddy viscosity. Although the 

dynamic Smagorinsky model improves the robustness of LES, it dramatically increases 

the complexity of the implementation and requirement of the computational resources. 

An alternative is to use the van Driest damping function109, i.e. Eq. (1.7).  
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 (1.7) 

It is based on the turbulent logarithmic law (log-law)110 and has the capacity to damp 

out the eddy viscosity at the wall as well. However, the use of van Driest damping 

formulation requires the accurate computation of wall shear, which has generally been 

accomplished by high grid resolution in the near-boundary regions. When the mesh 

resolution is marginal, the wall function is essential. The simplest wall function again 

follows the logarithmic law110 for the near-wall velocity profile, i.e. Eq. (1.8).  
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where μ is the dynamic viscosity of the fluid, u//  is the flow velocity parallel to the wall, κ 

is the Karman constant and its value is 0.41, and C+ is a constant with a value of 5.0 for 

smooth walls. With the log-law, the first off-boundary grid outside the viscous sub-layer 

can be used to calculate the wall shear. The approach with van Driest damping function 

and log-law model is an algebraic wall model; although it is very simple and widely used 

in engineering problems111, 112, its limitation is obvious and inherent since the log-law is 

derived from fully developed turbulence flow over a flat plate. In other words, it would 

not perform very well with highly-curved surfaces. The zonal two-layer wall model 

proposed by Balaras and Benocci113 provides a good solution to this problem.  

 

Figure 1-4 Representation of the primary and secondary grids for the zonal two-layer wall model89 

The zonal two-layer wall model assumes that all first off-boundary grids are located in 

the buffer layer or logarithmic zone. It only employs LES to solve up to the first off-

boundary grid (the large dots in Fig. 1-4) and establishes the secondary grids (the small 

dots in Fig. 1-4) to compute a simplified turbulent boundary-layer equation, i.e. Eq. (1.9). 
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The subscript n in Eq. (1.9) stands for the wall-normal direction, i.e. xn = y following 

the convention of Eq. (1.8). The van Driest damping function can be used to obtain the 

turbulent eddy viscosity, υt, in Eq. (1.9). Other options are also available, i.e. Eq. (1.10) 

used in Wang & Moin114 and Tessicini et al.115  
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Last but not least, as reviewed in the IB method section, the linear interpolation of IB 

forcing term is only valid while the near boundary resolution is fine enough to ensure the 

first off-boundary grids locating inside the viscous sub-layer. With a marginal grid 

resolution near the boundary, the higher-order interpolations of IB method are required116, 

117. However, an interpolation of IB method that can reproduce the log-law near the 

boundary is infeasible. Instead, with the linear interpolation of the IB method, Ji et al.118 

recommended to generate a fictitious velocity on the boundary based on the wall shear 

obtained from the wall function. This modification makes the scheme preferably preserve 

the Neumann boundary of the wall shear rather than the no-slip boundary condition.  It 

makes sense since the wall shear is of pivotal importance for wall-bounded turbulent flow.  
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1.3 Organization of Thesis 

 

Figure 1-5 Organization of the thesis (from left to right) 

Details and formulations of the immersed boundary method, FSI model and large eddy 

simulations are demonstrated in Chapter 2. The special treatment of the RK3 for IB 

method is also discussed.  

Chapter 3 is about the coupling of the immersed boundary method, different numerical 

schemes, and fluid dynamic models. Details of parallel implementation of the IB method 

are also discussed and the performance is studied. The first order temporal scheme was 

found to be adequate for most cases, yet, the 3rd-order RK3 scheme is necessary for the 

FSI model and LES since these two fluid dynamic models require a higher temporal 
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resolution and better numerical stability. In addition, the less restrictive time step size of 

the RK3 scheme is also advantageous for 3D simulations for the sake of saving 

computational resources. Benchmark validation cases are carried out and good 

agreements are achieved. It is also attempted to couple LES with the IB method. 

Although the implementation is not completed, comments and suggestions are made 

correspondingly for future research.  

Chapter 4 focuses on the added-mass effect with the flow over rapid pitching airfoils. 

The IB method is validated and obtains good agreement with other results, including 

simulations, experiments and theories. It was found that the added-mass effect becomes 

inevitable when the swift acceleration/deceleration is present. Since the loosely-coupled 

FSI model is coupled with IB method in the current work, the sudden change of the 

motion is not desirable for the studying objectives. 

In Chapter 5, the asymmetric wake downstream of the single two-dimensional heaving 

airfoil is investigated. The mechanism of near wake deflection is firstly discussed and 

that of the far wake deflection is then demonstrated. Theoretical fluid dynamics is highly 

involved. The vortex dipole model and point vortex model based on the Biot-Savart law 

are greatly helpful for obtaining in-depth comprehension of those mechanisms.  

Chapter 6 concentrates on the energy harvesting with either an actively or passively 

flapping foil in the vortical wake of a cylinder. The vortex/foil interactions are important 

for understanding and improving energy harvesting capacity of the foil. The potential 

theory is also used as a guideline to analyze the modes of vortex-foil interactions.  

Finally, conclusions are listed in Chapter 7.  
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2 Numerical Method 

2.1 Governing Equations Without Turbulence Models 

The immersed-boundary method is an effective way to simulate flow around a moving 

structure. A direct-forcing IBM in the light of Zhang and Zheng is selected for simulation 

in this study. However, some major changes have been applied in the implementation 

procedure, which will be explicitly discussed in this section.  

The governing equations for incompressible fluid flow are used: 
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where f is the body forcing term representing the virtual boundary force. The definition of 

the forcing term is 
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where V is the velocity vector of the solid object, Re is the Reynolds number defined 

based on incoming flow velocity (U ∞ ) and the characteristic length. Different 

characteristic length was chosen based on different objects in the flow, i.e. chord length 

for airfoils or wings, diameter for cylinder and spheres.  

The boundary force has non-zero values only on the boundary surface, while zero 

anywhere else. For immersed boundary points, xs, on solid objects, the forcing term is 

obtained by 
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 This equation is only valid when the forcing mesh point coincides with the immersed 

boundary points xs. However, practically, the forcing point exists not only on the 

immersed boundary but inside the body, i.e. on the internal layer. Thus an interpolation 

procedure is required. The bilinear weighting functions, D(x), are widely used and the 

current study employed the one from Zhang & Zheng, of which the two-dimensional 

format reads 
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and 

    s sDf x f x  (2.7) 

A penalization immersed boundary method has been implemented in the study of flow 

through/around porous media. For the immersed boundary point in the porous media, the 

forcing terms are constructed based on Zwikker-Kosten (ZK) model, which has been used 

previously for numerical calculations of sound propagations in porous media 119, 120. The 

ZK type of source term is applied in place of the forcing term in Eq. (2.4) 
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where σ is the dimensionless flow resistivity of the porous medium (non-dimensionalized 

by u H ). The flow resistivity is inversely proportional to the porosity of the 

microporous material. 

The momentum equation, Eq. (2.1), is solved on a staggered Cartesian grid by using a 

2nd order differencing scheme. Three different types of temporal discretization will be 

discussed later. Regardless of temporal schemes, the predictor-corrector process is 

essential to obtain a divergence-free flow field under the condition of incompressibility.  

2.2 Temporal Discretization 

The temporal scheme exactly following Zhang and Zheng63 obtains the 1st-order 

accuracy with the 2nd order Adams-Bashforth scheme for convection.  

The velocity predictor equation is: 

    1 1 1 *3 1 1
ˆ

2 2 Re

n n n n n n n nt P   
         

 
u u u u u u u f  (2.9) 

The pressure can be determined by Eq. (2.10) , 

  2 * n n nP      
 

u u f  (2.10) 

Then, the correction steps involve a pressure corrector, ϕ, and the equation in the 1st-

order temporal scheme is 

 2 ˆ n
n

t



  u  (2.11) 

 ˆn n t   u u  (2.12) 
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 *n nP P    (2.13) 

Such a temporal scheme needs to solve the Poisson equation twice, i.e. Eqs. (2.11) and 

(2.12). The flow chart associated can be found in Appendix I. It requires substantial 

computational resources to obtain solutions of the Poisson equation, including memory 

and time. Therefore, it would be a wiser choice if the Poisson equation is only required to 

be solved one time. The alternative method has been presented in multiple previous 

studies66, 121. They simply skip calculating the pressure field with Eq. (2.10) and time-

marching the pressure from the time n to n+1 corresponding to the pressure corrector; 

The flow chart is in Appendix II. 

 1n n nP P    (2.14) 

For numerical stability, both of these 1st-order schemes requires, 
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 (2.15) 

where h is the computational grid size122. The first method will be called the 1st-order 

temporal scheme with pressure, and the second one will be named as the 1st-order 

temporal scheme without pressure. The 1st-order temporal scheme without pressure seems 

to save lots of computational resources especially the simulation time. However, it does 

not always perform better than the one with pressure, which will be demonstrated later.  
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As mentioned before, in order to improve the accuracy of the real-time flow field, 

force calculations, and numerical stability, the low-storage 3rd-order Runge-Kutta (RK3) 

scheme123 is employed for simulations involving the FSI model or turbulence model. The 

velocity predictor is obtained by 

 
   

1
1 2 1ˆ k k

k k k k

k k k P
t

  



  

    
u u

H u H u f  (2.16) 

where 

  
1

Re

k k k k    H u (u )u u  (2.17) 

where the RK3 coefficients are αk, ρk, and γk; their values will be given later. Then, under 

the incompressibility condition, the following correction steps are carried out in order to 

achieve divergence-free flow quantities. 

 2 ˆ k
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 
  u  (2.18) 

 ˆk k
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1k k kP P    (2.20) 

The condition for the numerical stability for two-dimensional flow is 
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The value of CFL is theoretically equal to 3  but varies in practical problems124 . 

Although this temporal scheme requires solving the Poisson equation, i.e. Eq. (2.18), 

three times for each time steps, it provides a more relax numerical stability.  

 In Eqs. (2.18)-(2.20), k is the stage index, which ranges from 1 to 3; ˆ k
u  is the 

intermediate velocity. In order to temporally match flow quantities from time step n to 

n+1, the following relations are also essential: 
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The coefficients for this RK3 scheme are 
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 (2.24) 

It is noted that, since ρ1 = 0, Eq. (2.24) at the 1st stage does not require any information 

from time step n-1. In each substep of the RK3-scheme, the forcing term is obtained by 

rearranging Eq. (2.16). 
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 In Eq. (2.25), Vk is the desired boundary velocity. This equation is only valid when 

the forcing mesh point coincides with the immersed boundary point xs. However, 

practically, the forcing point exists not only on the immersed boundary but also inside the 
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body, i.e. on the internal layer. Thus an interpolation procedure is required. With the 

bilinear weighting function stated in Eqs. (2.6) and (2.7), the forcing term becomes 

        1 1 2 1
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Notice the weighting function used in Eq.(2.26) is the two-dimensional version. The 

three-dimensional version is not used here to avoid the ambiguity of k. Only considering 

those forcing points, the momentum equation, i.e. Eq. (2.16), turns out to be 
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Both sides of Eq. (2.27) have the term 1/δt; therefore Eq. (2.27) can be reduced to 
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Interestingly, no time-marching term explicitly appears in Eq. (2.28). This indicates 

that the temporal accuracy of the velocity on the forcing points is not directly influenced 

by any high-order time-matching schemes, in this case the RK3 scheme.  

Equation (2.28) can be further rearranged into Eq. (2.29) by plugging in the weighting 

function: 
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The temporal accuracy of ˆ k
u  on the forcing points hence primarily depends on that of 

uk-1, which is, in fact, not guaranteed to be 2nd-order accurate in time. For example, the 1st 

stage of this RK3 scheme is apparently a forward Euler method with an effective time 

step of αk=1δt, which can only ensure 1st-order temporal accuracy for the intermediate 

velocities of the corresponding stage. The weighting function, in the 3rd term of the RHS 

of Eq. (2.29), brings the 1st-order error into the interpolation of the forcing term. This 

would introduce an additional source of error for spurious pressure oscillations. 

Furthermore, the choice of Vk becomes of pivotal importance to the accuracy of ˆ k
u as 

well because of the correction required by the continuity equation. One option for Vk 

could be the reconstructed intermediate velocity based on the effective time step in each 

substep of Eq. (2.18), αkδt124. This approach projects ˆ k
u  by the intermediate physical 

velocity and flow velocity; hence, a few potential defects and several difficulties of 

implementation exist. First, it is not trivial to obtain intermediate physical velocity for a 

non-prescribed motion. Even for a prescribed motion, once the intermediate physical 

velocity is determined, the intermediate position of the object is also required. Since the 

forcing points vary in terms of the position of the object, each substep, then, has to 

identify its own set of forcing points, which is additional overhead, especially for parallel 

computation125. Finally, the effective time step for a substep, which is smaller than the 

actual computational time step size, would increase spurious pressure oscillations, 

according to the discussions by Lee et al.126.  

The alternative approach proposed in the current study is to obtain ˆ k
u  for forcing 

points only at the 1st stage of the RK3-scheme with Vk=1 = Vn. In other words, 
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and, 

 
1ˆ (if  > 1)k k ku u  (2.31) 

This concept is originated from the fact that the velocity field for the forcing points is 

not directly related to the time integration as discussed before. The procedure involving 

Eqs. (2.30)-(2.31), which is illustrated in the flow chart in Appendix III, directly projects 

the forcing points corresponding to the physical velocity on the next time step, which 

requires only one set of forcing points for one stage of the object’s position. Most 

importantly, it only adopts the velocity field in the last time step, which guarantees the 

2nd-order temporal accuracy and satisfying the continuity. On the other two stages, the 

intermediate velocities and pressures for the forcing points are only updated to meet the 

incompressibility condition.  

Another alternative was to apply Eq. (2.29) for all three substeps with Vk = Vn, which 

as well needs only one stage of physical location. However, the intermediate pressure 

corrector, ϕk, would introduce another source of error by doing that. Consider that after 

the intermediate velocities for the forcing points are obtained by Eq. (2.29) at the 1st stage, 

their values were corresponding to the physical velocity on the next time step. However, 

the intermediate velocities for the fluid points immediately next to the forcing points are 

only advanced αkδt in time. Since the velocity gradient between these two types of miss-

matching velocities was involved in Eq. (2.18), the intermediate pressure correctors 

would not guarantee an accurate final velocity for the corresponding stage, uk, near the 
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boundary. This inaccurate velocity would be an additional source of spurious pressure 

oscillations if it was used to construct the forcing term in the next stage.  

2.3 Fluid-Structure Interaction Model 

In the current study, only the translational (vertical) motion of the foil along the cross 

flow direction is allow. Assuming the mass is concentrated at the center of the objective, 

the motion equation of the body can be formulated in the inertial frame of reference as 

 

2
2

2 2

1 1 1
4 4

2
Y

red red red

Y Y
Y C

t U t U M
 

 
  

 
 (2.32) 

The non-dimensional coefficients in the above equation are defined corresponding to 

mass, M, damping factor, C, and stiffness of the spring, K. The variable Y is the vertical 

displacement of the object.  

The dimensionless damping coefficient is 
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where the critical damping factor is 

 2crC MK  (2.34) 

The reduced velocity is 
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where the structure natural frequency is 

 2
K

f
M

    (2.36) 

The reduced mass is defined as 
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The solution of Eq. (2.32) is obtained by a loosely-coupled FSI implementation83 with 

the scheme: 
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Then, the location of the object is updated based on 
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2.4 Large Eddy Simulation 

The governing equations are filtered Navier-Stokes equation: 
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where 
iu is the velocity component of the resolved scales, and p is the corresponding 

pressure. The non-resolvable subgrid scale stresses, τij, describe the influence of the 

small-scale structures on the larger eddies, which have to be modeled by a subgrid scale 

model. The well-known Smagorinsky model89, 102 is often used for LES. In analogy to 

Newton’s law of friction (or viscous stresses in laminar flows), the turbulent stresses, 

based on the Boussinesq hypothesis110, are proportional to the mean velocity gradient, or 

more specifically, to the large-scale strain rate tensor ijS :  

 

2

1

2

ij T ij

ji
ij

j i

S

uu
S

x x

  

 
  

   

 (2.42) 

The eddy viscosity, νT, is a function of the strain rate tensor and the Smagorinsky 

length-scale (or subgrid length) l: 

 2 2T ij ijl S S   (2.43) 

The Smagorinsky length-scale l is assumed to be proportional to the filter width , 

which typically is correlated with the grid spacing by the cube root of the cell volume:  

  
1

3
s sl C C x y z       (2.44) 

Taking into account the reduction of the subgrid length near the solid walls, it is 

suggested127, 128 that the length scale should be multiplied by a Van Direst damping 

function as 



35 

 

 

0.5
3

1 exp
25s

y
l C

  
    

   

 (2.45) 

where Cs is the Smagorinsky coefficient, which is theoretically derived to be around 0.17 

for homogenous, isotropic turbulence based on the Kolmogorov spectrum. However, 

smaller values are usually applied in LES computations of non-homogeneous and non-

isotropic flows; Cs = 0.1 is suggested as a typical value for practical applications of the 

Smagorinsky model127.  

The y+ in Eq. (2.45) is the dimensionless wall distance for a wall-bounded flow: 
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y is the distance to the nearest wall, ν is the local kinematic viscosity of the fluid, and 

uτ is the friction velocity or wall shear, which is related to wall shear stress τw. The 

approach to obtain the friction velocity is not trivial, which will be explicitly discussed in 

the corresponding section in the next chapter.   
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3 Parallel Implementation and Validations 

3.1 Parallel Implementation 

Notice that the computational cost for solving the Poisson equation is the most 

expensive part ofthe current numerical scheme. In order to fully speed up this method, a 

Poisson equation solver has been obtained based upon PETSc, which is a scientific 

parallel computational library. In a parallel implementation, the right-hand side of the 

Poisson equation is calculated in all sub-domains separately. The domain is decomposed 

in all directions automatically by the PETSc function in the process of establishing a 

uniform coordinate system. One extra layer of ghost points is generated manually to 

fulfill the task of communicating data with neighbor processes to construct the 2nd-order 

partial differential equation with the 2nd-order accurate computational scheme. While 

distributing immersed objects to each sub-domain, the immersed boundary points, which 

contain non-zero forcing terms, should be separated corresponding to the ghost layer to 

distinguish them from the genuine boundary of sub-domains. In other words, the 

immersed boundary points can be overlapped with the aid of ghost layers between two 

neighbor processes if the genuine boundary of these two neighbor processes cuts though 

the immersed object. The data communication among processes is done with MPI 

derived data type. This approach can minimize the fixed overhead of MPI traditional 

sending and receiving procedures, especially for non-homogenous large scale data that 

are not contiguous in memory.  
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Figure 3-1 2D Grid partitioning with 1 process (top left), 2 processes (top right), 4 processes (bottom 

left) and 8 processes (bottom right) 

Primitive variables to be transferred among processes are velocities in different 

directions, pressure, and pressure correctors. A single data communication follows the 

conventional MPI mechanism. Since arrays are defined along the x-direction in this study, 

values along the green lines in Fig. 3-1 can be treated as a series of data stored in arrays, 

which can be communicated all together in MPI. On the other hand, each value of two 

overlapping layers of ghost points along the red lines in Fig. 3-1, needs to be sent and 

received one after another as they are not contiguous in arrays. If we only use the y-

direction mesh partitioning (green lines), the number of data in the overlapping region 

will be much more than the case with mesh partitioning in both directions. This problem 

becomes severe when the number of grids is large. It should be noted that without 

changing the number of processes, the total number of grids leads to an increment of 

ghost points assigned in the overlapping region. In order to resolve the issue of non-

contiguous data communication, all data which need to be transferred among processes 
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can be pre-packed into an additional local array and be communicated as contiguous ones. 

In the current study, this method has not implemented. It apparently requires more 

memory to operate data communication.  

 

Figure 3-2 Ratio of computational time costs in data communication with different numbers of 

processes 

Following MPI derived data types, the current computational program pre-defines 

customary data types in MPI. It is similar to the data packing method, but it uses pointers 

rather than physically allocated additional arrays so that much less memory is required. It, 

moreover, reduce communication time cost compared to single data commutation with 

MPI, as shown in Fig. 3-2. The ratio of computational time costs in Fig. 3-2 is defined as 

T2/T1, where T2 is the data communication time cost when using the conventional single 

data communication and T1 is the one when using the MPI derived data type. In Fig. 3-2, 

it was found that the latter method gives access to reduce waiting, sending, and receiving 

times between neighbor processes and achieve better parallel synchronization. A ratio 

value of around “2” happens in the simulation with 4 and 8 processes. This shows a good 
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speed-up by using MPI data type replacing conventional methods. It can be concluded 

that the MPI derived data type has the capability to reduce both the communication time 

cost and memory requirements in data communication. All the tests in this section are 

based on validation simulation with a stationary cylinder.  

Once the right-hand side is constructed, the Poisson equation can be solved in the 

serial manner with MUDPACK or parallel manner with the assistance of PETSc. PETSc 

is recognized as a good portable parallel library for solving partial differential equations 

(PDEs). The mathematical theory of PETSc is thoroughly summarized in Smith at el. .  

The soul of PETSc is predefined tools dealing with the preconditioned Krylov subspace 

problems. The solution of a nonsingular system of Ax = b can be determined in multiple 

ways in PETSc, including parallel and sequential, direct and iterative. The iterative 

approaches are often well-known for their outstanding performance in massively parallel 

computations with large scale problems. The conjugate gradient (CG) method is one of 

the best in the family of iterative linear solvers. The CG method requires matrices to be 

symmetric positive definite, which limits its use for many applications in computational 

fluid dynamics. However, this method was mentioned to be optimal for the symmetric 

positive definite class of problems because it minimizes the residual over a Krylov 

subspace . On account of the advantage of the IB method, uniform Cartesian mesh is 

usually used to solve the Poisson equation, which results in a symmetric positive definite 

matrix. Consequently, the CG method is selected as the linear solver in the current work. 

Moreover, a great number of preconditioners are ready in PETSc.  Preconditioners are 

typically used to alter the spectrum of the linear system and hence accelerate the 

convergence rate of the iterative technique, because the rate of convergence of the Krylov 
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projection method for a particular linear system is strongly dependent on its spectrum. 

The preconditioner adopted by the current study is the algebraic multigrid method 

(AMG). This approach has been proved quite effective on scalar equations. A native 

algebraic multigrid method in PETSc works well with moderately non-symmetric 

matrices; therefore, it is always coupled with the CG method to solve the symmetric 

positive definite problem. A good reference is edited by McCormik129 showing the 

mathematical theory behind the AMG and its applications.  

The parallel implementation of the IB method is firstly developed to validate flow 

over a spatially periodic porous matrix. The geometry of the structures can be square rods, 

circular rods, cubes and spheres. Square and circular rods are considered as two-

dimensional patterns, while cubes and spheres are three-dimensional patterns. An 

example of an REV in a periodic array of square rods is shown in Fig. 3-3. The flow is 

from left to right and perpendicular to all arrays of rods. 
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Figure 3-3Computational domain of a representative unit structure; the depth is  H. 

The REVs with the impermeable structures are considered a unit with solid objects, 

namely a solid REV unit, which only have macroscopic porosity, or porosity for short, in 

this study. On the other hand, if the objects have smaller-scale material porosity, the REV 

is called a microporous REV unit. The macroscopic porosity (ε) is determined by two 

length parameters of the unit: the length scale of the REV (H) and the objects (D). In the 

current study, the three-dimensional computational domain is a unity cube; therefore, the 

length scale of the REV (H) is fixed and assigned as the side length of the cube. The 

length scale of objects (D) is different in terms of different types of structures: the side 

length is for cubes or square rods and the diameter for spheres or circular rods. Since the 

macroscopic porosity represents a volume blockage of the structures in an REV, its 

formula varies with the geometry of the structures130, 131.  

By using the REV unit and appropriate boundary conditions, the computational 

domain ensures the periodicity of flow in all of the x-, y- and z-directions. Because under 
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most circumstances of interest, flow inside porous media is of low speed, only laminar, 

low Reynolds number flows are considered in this study, where the Reynolds number, 

Re H u  , is based on the fluid density ρ, viscosity μ, length scale of the REV H, 

and the volume averaged velocity u . The volume for averaging the velocity in the 

current work is H3, which is the total volume of an REV. For non-dimensional 

computation in this study, the side length H acts as a characteristic length and is always 

chosen as 1, and the Reynolds number is selected as 10, for which the Darcy-

Forchheimer law holds 131-133. 

Periodic boundary conditions are specified in all three directions for velocity 

components134, 135. The periodic boundary conditions are also applied to the pressure 

equation, Eq. (3.1), except for the streamwise direction (the x-direction): 
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 (3.1) 

where Δp is a constant related to the total mass flow rate in an REV unit. The 

dimensionless flow rate through the periodic cell was set equal to unity by tuning the 

value of Δp. In most of the studies in the literature, the non-periodic pressure condition in 

the flow direction was transformed to a periodic boundary condition by adding a global 

pressure gradient to the pressure, resulting in a source term in the momentum equation. In 

the present numerical solution procedure, that approach would not be applicable because 

the all-direction periodic pressure boundary conditions do not work with the Poisson 

solver.    
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In this study, we concentrate on the impermeable square rods cases. The fluid/solid 

interaction problem in this unique structure is already interesting and was selected to be 

the validation case before further investigations were conducted. We also use this study to 

investigate the effectiveness of the parallel implementation of the IB method.  

All square rods have the size D = 0.5H, and the corresponding porosity that the REV 

represents is 1-(D/H)2 = 0.75. Simulations in the commercial CFD solver, FLUENT17, are 

all two-dimensional; boundary conditions are the same as used in the IB method, 

including the periodicity and the pressure drop in the streamwise direction. A value of 

410  is used for the impermeable material in the solid REV.  
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(a)

(b) 

Figure 3-4 Velocity profiles at the outlet for grid independence check for flow through an REV with 

impermeable square rods with (a) FLUENT (b) IB method 

First of all, the grid independent study is carried out for the commercial CFD solver. 

Since a nearly structured Cartesian mesh is used in FLUENT, all grid cells in the mesh 

are approximately squares, and the size is very close to the maximum cell size, which is 

indicated as [Δx]max in Fig. 3-4(a). Figure 3-4(a) illustrates that the discrepancy of the 

results between the case with the mesh of [Δx]max = 0.01 and the one with the finest mesh 
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of [Δx]max = 0.005 is very small; therefore, the mesh of [Δx]max = 0.01 is chosen for 

further simulations with the commercial solver.  

Furthermore, a similar grid independence study is performed with the IB method. It 

was found in Fig. 3-4(b) that the result with the mesh of Δxi = 0.01 not only achieves a 

grid independent convergence for the IB method but also provides a reasonable result 

which has a good agreement with the result from the commercial software. Additionally, 

contours of streamwise velocity shown in Fig. 3-5 from these two approaches are very 

close to each other. This good comparison of contours reinforces the validity of the result 

with this mesh. The mesh with Δxi = 0.01, hence, is used in the further study for all 

simulation cases of the IB method. In order to achieve the numerical stability of the IB 

method, the time step size is 0.0001, based on Eq. (2.15). 
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(a) 

(b) 

Fig. 3-5. A comparison of streamwise velocity contours between (a) FLUENT and (b) the IB method. 

The contour level is 0~3 for both pictures. 

The total grid number in the IB method, with the selected mesh size, is 100×100×100; 

for this validation case, around 25% of them are flagged as inside the objects, which need 

to be applied with the forcing term for Eq. (2.8). As most IB applications with uniform 

meshes usually involve around 1~5% grids with the “inside” flag, the 25% is a relatively 

large fraction of total computational grids inside the objects. This requires a lot of 
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memory and computational sources. In order to access more memory and speed up the 

computational rate, the IB method is implemented in a parallel fashion. The parallel 

scalability is also tested with the flow through impermeable square rods with one million 

grids for ten-thousand time steps. 

 
Fig. 3-6. The parallel speedup with different numbers of processes.  

The value of speedup in Fig. 3-6 is determined by a ratio of T1/Tn, where Tn indicates 

the time cost for the program with “n” processes. The ideal speedup with ‘n’ processes 

(S(n)) is obtained from Amdahl’s Law, Eq. (3.2), with 100% parallel fraction of the code 

(Φ).  

  
1

1
S n

n




 (3.2) 

The scalability is tested in a supercomputing cluster with Intel E5-2650 Dual 8 core 

CPU. Figure 3-6 shows that the computational time is reduced by an order of 1.8 when 

the number of processes is doubled. This indicates a good scalability of the IB method in 
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the current work. However, if the number of processes keeps increasing and exceeds 8, 

the scalability would suffer from overhead of inter-node communication. Since the 

computation with 8 processes provides acceptable speed, all cases in the current tests 

were simulated with 8 processes.  

3.2 Temporal Schemes and the FSI Model 

The following numerical examples are conducted to simulate flow over 2D cylinders 

with prescribed motions and vortex-induced vibrations. The grid-size independence test is 

performed for all the cases with uniform grid sizes of 0.05, 0.025, and 0.0125. Based on 

these test results, the grid size of 0.025 is selected. The computational domain size, 

25.6×12.8, is tested to assure an independent solution to domain size. The total number of 

immersed boundary points of 1280 is selected, as recommended in Zhang & Zheng63.  

 

Figure 3-7 Sketch of the configuration of the system involving only one cylinder. 
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Accordingly, the center of the cylinder is located at 7-unit from the inlet in order to 

avoid inlet boundary effects. All boundary conditions are shown in Fig. 3-7. 

3.2.1 Stationary Cylinder 

The flow over a stationary cylinder at Re = 40 is the threshold case to validate the IB 

method with RK3-scheme employed in the current study. Firstly, the steady state solution, 

as shown in Fig. 3-9, preserves good agreements on comparisons of pressure coefficients 

against previous studies. The convergence criterion is 10-10 corresponding to L2-norm of 

u-velocity for the entire computational domain 

  
2

1

1

Residual
gridN

n n

i i grid

i

u u N



   (3.3) 

where Ngrid is the total number of grids and n represents the time step. 

 

Figure 3-8 Cp on the top surface of a stationary cylinder at Re = 40. Compare the current result with 

δt = 256-1 to the results from Zheng & Zhang63. 
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In addition, the cases with δt = 256-1, 512-1, and 1024-1 are simulated to one unit time 

for the sake of obtaining the order of temporal accuracy for the current scheme. The order 

of temporal accuracy, γ, is calculated as 

  1
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256

512

ln ln 2t

t
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E

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 
 (3.4) 

The L2-norm of u-velocity is defined corresponding to the result with the finest time 

step size, i.e. δt = 1024-1. 
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The value of γ obtained by this set of tests is 1.83, which is a reasonable value to 

demonstrate a 2nd-order temporal accuracy for the current scheme.  

It is worth to notice that two assumptions are made for the above method of 

determining the temporal order of accuracy. The first assumption is, as all the cases were 

matched t = 1, none of them should really converge to the steady state, since the steady 

state solutions are time-independent. If this assumption holds, the results at t = 1 can be 

treated as solutions of “unsteady” simulations, which allows the potential to obtain the 

temporal order of accuracy. In the current test, the residual of all cases at t = 1 is O(10-5), 

which is far from the true steady solution. The second assumption is the result from the 

case with the finest δt can represent the exact solution for the “unsteady case” at t = 1, 

which is also valid in the test based on its comparison against the case with δt = 2048-1. 
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3.2.2 Oscillating Cylinder with Prescribed Motions 

Since spurious pressure oscillations often occur for the IB method with moving 

objects126, 136, cases with a two-dimensional transversely-oscillating cylinder is simulated. 

The motion of the cylinder is prescribed as 

    sin 2c c cy t h f t  (3.6) 

To facilitate comparisons, the dimensionless amplitude, 0.15, and frequency, 0.18, are 

chosen to be the same as those in Zheng & Zhang137, and the Reynolds number is 200. 

The time step, δt, is fixed to be 256-1 unless specifically pointed out otherwise.  

 

Figure 3-9 Time-periodic variation of the lift coefficient between two RK3 schemes. 

RK3 – Three-sublocation implementation: The Vk in Eq. (20) is reconstructed as intermediate 

physical velocities corresponding to the substep physical positions, based on the effective time step, 

αkδt. 

RK3 - 1st stage: It is proposed by the current study, which only applies the momentum equation with 

non-zero forcing terms for forcing points at the 1st stage of the RK3 scheme. 

As mentioned before, the reconstructed Vk corresponding to intermediate physical 

velocities based on the effective time step has the potential to introduce much more 
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spurious pressure oscillations, as illustrated in Fig. 3-9. The effective time step, which is 

smaller than the actual computational time step, can possibly amplify the non-physical 

behaviors of the pressure near the IB points126. Some techniques to reduce such 

oscillations have been discussed in the literature, e.g. the “field extension” in Yang & 

Balaras123 and “artificial mass” in Kim et al. 138. Nonetheless, they require extra 

computational resources to either extrapolate the fluid field near the IB or construct 

additional mass terms. Consequently, the method proposed by the current study could be 

an efficient alternative or augment.  

 

Figure 3-10 Time-periodic variation of the lift coefficient among three temporal schemes: 

RK3 – All 3 stages: the flow quantities for forcing points are interpolated with Vk = Vn for all three 

stages of the RK3 scheme; 

RK3 – First 2 stages: the flow quantities for the forcing points are interpolated with Vk = Vn for the 

1st two stages of the RK3 scheme; 

RK3 – 1st stage: the RK3 scheme proposed in the current study δt = 256-1 

Figure 3-10 demonstrates that the more substeps used to construct the forcing term, 

the worse spurious pressure oscillations there will be. The intermediate velocities of the 

RK3 scheme is neither physical nor guaranteed 2nd-order accurate; therefore, involving 

them in the forcing term introduces an additional source of error for flow quantities near 
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the IB. The RK3 scheme presented in the current work only implements the forcing term 

at the first stage. In other words, it only uses the final velocities of the RK3 scheme that 

are ensured 2nd-order accurate and divergence-free.  

 

Figure 3-11 Time-periodic variation of the lift coefficient among three temporal schemes: 

The 1st-order Time Marching: The time marching scheme follows Zhang & Zheng63 (the 1st-order 

temporal scheme with pressure), which obtain an overall 1st order temporal accuracy; 

RK3 – 1st stage: the RK3 scheme proposed in the current study δt = 256-1 

RK3 – 1st stage - 2δt: the RK3 scheme proposed in the current study with 2δt = 128-1 

The spurious pressure oscillations showed with the current RK3 scheme are almost the 

same amplitude as that from the simulation with the 1st-order temporal scheme if other 

computational settings are the same. This demonstrates that the spurious pressure 

oscillations of the IB method are not exacerbated by the current multi-stage temporal 

scheme; it is still primarily caused by spatial discretization errors of the linear weighting 

functions126.  A local smoothing technique for those discrete weighting functions136, may 

further reduce this type of non-physical behavior. However, since the current scheme 

allows larger computational time step sizes, it can be an alternative relief for spurious 

pressure oscillations. The simulation with 2δt = 128-1 obtains a distinctly smaller pressure 
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oscillations compared with that of δt = 256-1, as shown in Fig. 3-11. The time step size of 

2δt cannot provide computational stability for the testing case with the 1st-order scheme; 

consequently, the corresponding result is not plotted.  

3.2.3 Validation Cases for FSI Model – Vortex-Induced Vibration 

 

Figure 3-12 The variation of the response amplitude with the reduced velocity for a single vortex-

induced vibrating cylinder and its comparison with previous studies83, 139, 140. 

In order to validate the fluid-structure interaction model, the vortex induced vibration 

problem with a single two-dimensional cylinder at Re = 150 is studied. This is 

accomplished by varying the reduced velocity, Ured, with increments of 1 from 3 to 8. The 

damping coefficient is zero and the reduced mass, Mred, is fixed at 2. The comparisons 

between the current study and previous literature, as shown in Fig. 3-12, are in good 

agreement. Note that it requires a very long time to achieve a quasi/periodic solution for 

simulations with high reduced velocity since their dimensional dynamic frequency is 

relatively low, according to Eq. (2.35). The reduction of time step size by the RK3 
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scheme is greatly helpful to save computational resources. The computational time step 

size is, again, 256-1 for all the validation cases.   

3.2.4 Other Comments on Temporal Schemes 

Although the power of RK3 has been demonstrated, its weakness is also observed. 

Similar to the 1st-order temporal scheme without pressure, RK3 does not directly obtain 

pressure fields, yet the pressure is accumulated by time integration of a pressure corrector. 

This may require higher resolution on the spatial discretization.  

A set of tests is carried out for the flow over a three-dimensional sphere at Re = 300. 

The sketch of the domain in the center plane of z-direction and the boundary conditions 

are similar to Fig. 3-7 except the computational domain is 16×9.6×9.6. Uniform 

Cartesian meshes are used with a grid size of either 0.05 or 0.025. Three different 

temporal schemes are coupled with the IB method respectively and the results are 

compared against Johnson & Patel141. The time step size for all tests remains at 0.005. 
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(a) 

(b) 

Figure 3-13 Comparison of pressure components of drag coefficient.  

(a) the current simulation with the 1st-order temporal scheme without pressure and dx = 0.025.  

(b) Johnson & Patel141, phase angle ϕ from 0-2π corresponds to an arbitrary beginning and end of 

one period of flow.  

Figure 3-13 demonstrates that the 1st-order temporal scheme without pressure had a 

good agreement with the previous study if the dx = 0.025. The Strouhal number reported 

in Fig. 3-13 (a) is around 0.136, which agrees well with the value of 0.137 found by 

Johnson & Patel141.  
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Figure 3-14 Comparisons of wake axis distributions of average streamwise velocity and its root-

mean-square (r.m.s.) for the flow over a sphere at Re = 300 

Figure 3-14 exhibits the wake axis distribution of the average streamwise velocity and 

its r.m.s. The x = 0 in the figure indicates the center of the sphere. The time periods to 
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average the result or calculate the r.m.s. is corresponding to the Strouhal number 

discussed in Fig. 3.13. It is very obvious that neither method, without directly obtaining 

pressure, i.e. the 1st-order w/o pressure and RK-3, can achieve any acceptable agreements 

in the urms with the coarse mesh, i.e. dx = 0.05. Refining the mesh definitely improves 

their results, though they can only obtain comparably good results with finer meshes as in 

the simulation with the 1st-order temporal scheme with pressure and the coarse mesh. 

Similar behaviors are detected in the comparison of uavg.  

This indicates that by skipping the step of calculating pressure, a higher requirement 

of computational mesh is desired. My suggestion is that if enough computational power, 

i.e. computing units, is accessible, then the 1st-order temporal scheme without pressure 

could be adopted; otherwise, the one with pressure should be employed. Nonetheless, if 

the RK3 scheme has to be used for the sake of higher temporal accuracy, the better 

resolution on the computational mesh is mandatory. 

3.3 Large Eddy Simulation 

As mentioned before, it is attempted to couple LES with the current IB method. The 

objective is the flow over a three-dimensional sphere at Re = 3700. The computational 

setup is exactly the same as the one for the flow over the sphere at Re=300. The dx 

remains at 0.05 and time step size is 0.001. There are several difficulties in the 

implementation of the turbulence model with the IB method.  

The threshold one is the friction velocity in Eq. (2.46). The general form of the friction 

velocity reads 
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where μ is the dynamic viscosity of the fluid and u//  is the flow velocity parallel to the 

wall. However, the above formula is only valid when the computational grid of u// falls 

into the viscous sub-layer, i.e. y+ < 5.  If not, multiple approaches can be adopted114, 142-

144. The simplest way is to obtain the wall shear directly from the logarithmic law110 

 / / 1
ln

u yu
C

u



  

   (3.8) 

where κ is the Karman constant and its value is 0.41. The C+ is a constant and its value is 

5.0 for smooth walls. The value of uτ can be easily obtained by Eq. (3.8) with the 

Newton-Raphson method. The test carried out in the current work shows that without 

using Eq. (3.8) to calculate friction velocity while y+ > 5, the program would blow up 

very quickly.  
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Figure 3-15 Comparisons of wake axis distributions of average streamwise velocity and its root-

mean-square (r.m.s.) for flow over a sphere at Re = 3700 

Figure 3-15 exhibits that the current scheme, although it becomes executable after 

introducing Eq. (3.8), does not have good agreement with previous literature145. Ji et 

al.118 recommended modifying the boundary velocities on the IB to fulfill the Neumann 

boundary condition based on the wall shear; unfortunately, it does not help much with the 

current IB method. 

The idea to improve the results may start with refining the mesh. As discussed in the 

previous section, the coarse mesh dx = 0.05 does not work very well with the RK3 

scheme even in laminar flow simulations, let alone LES, which inherently requires high 

mesh resolutions. However, the program becomes substantially slow with refined mesh, 

i.e. dx = 0.025. This brings an issue of parallel implementation of the IB method. PETSc 

has very powerful and robust domain decomposition algorithms for structure meshes. It 

usually divides the total computational domain evenly corresponding to the number of 

processes; this makes each process obtain an equal same amount of computational 

loading. However, the load balance in PETSc does not consider the computational cost 
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required for the IB points. Although divided corresponding to the boundary of the sub-

domains, IB points are obtained by very few processers. In other words, only few 

processers proceed with the calculations related to the IB points in semi-parallel manner 

while other processers are waiting. This would reduce the stability of the whole program, 

especially with LES. LES requires a lot more calculations on the IB points, i.e. obtaining 

friction velocity. In addition, as the total number of IB points should increase as the mesh 

size decreases63, the issue of not fully parallelizing the calculation of IB points becomes 

more severe for simulations with the refined mesh. The ultimate way to solve this 

problem might be using the dynamic loading tools to balance the computational weight of 

the whole domain, including the IB points.  

Furthermore, a better way to refine the mesh is to use the adaptive mesh. Due to the 

inherent advantage of the IB method, totally unstructured mesh might be a waste, so 

structured adaptive mesh refinement (S-AMR)146 would be the best approach. Scientific 

computing packages that can solve Poisson equations with S-AMR include SAMRAI147 

(Structured Adaptive Mesh Refinement Application Infrastructure), Hypre75, and so on. 

However, it is not a trivial task to couple S-AMR with the IB method. The formulation of 

the IB forcing term may need to be modified to handle hanging cells148. Last but not least, 

inflow conditions involved in LES may not be identical to those without LES, especially 

for wall-bounded flows149, 150. The influence of LES on the free stream inlet flow has not 

been discussed yet.  

All in all, the current study attempted to couple LES with the IB method, yet not 

succeeded. In order for those in the future to make better achievements, a few suggestions 

are stated to my limited knowledge. Firstly, the S-AMR is essential to carry out reliable 
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computations of LES with the IB method. Previous studies without adaptive mesh cannot 

employ IB method with LES to handle bluff bodies well; most of them deal with plane 

flows with non-smooth surface66, 116. Even though few literature118 exhibited results of the 

IB method and LES simulating flow over the cylinder in the turbulence region, only 

comparisons of averaged flow quantities are shown, and the agreement with experimental 

results are not perfectly acceptable. Secondly, the computation for IB points needs to be 

implemented in a fully parallel manner. Since dynamic load balancing is necessary for S-

AMR, it is not hard to take the IB points into account to balance the load of the entire 

computational domain. Finally, one should be aware of the inflow condition, especially 

for wall-bounded flows.   
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4 Rapid Pitching Airfoils  

Since most applications in this work are related to flapping foils, this section will 

further validate the current numerical scheme with a two-dimensional airfoil in a pitch-up 

and pitch-down maneuver with a foil and compare it with previous simulations151, 

experiments152, and canonical theories3, 153. The added-mass effect will be studied.  

4.1 Comparisons of Vorticity and Forces 

 The foils used in the current work are a flat plate, SD0073, and an ellipsoidal foil with 

a ratio of 10:1. The pivoting point for all simulation is at the quarter chord from the 

leading edge. The motion function is the same as in Eldredge et al.151, shown in Fig. 4-1. 
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 (4.1) 

where k is the reduced frequency, A is a coefficient for speed of transition, selected as 100 

in the present work, and c is the chord length.  

The airfoil remains at a zero angle of attack until ΔTs. A linear pitch-up reaches a 

maximum angle of αm=40o. A hold-on period at this angle has a duration of ΔTh. Finally, 

the airfoil pitches down linearly back to a zero angle of attack. Equation  is an explicit 

function of the motion. In all simulation cases, the same values of ΔTs and ΔTh are used. 

However, the value of ΔTp varies with different cases because of the different reduced 

angular velocity. Two reduced angular velocities are considered, i.e. k = 0.2 and 0.7. In 

the present validation, the start-up interval, ΔTs , is 1.0 c/U∞. The duration of pitch-down 
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and pitch-up, ΔTp, is m


, where  is the angular velocity. The hold interval,  ΔTh, is 0.5 

c/U∞. 

 

Figure 4-1 Basic pitch-up, pitch-down kinematics (with k = 0.7 shown here) from Eldredge et al.151 

Eldredge et al.151 gave the vorticity contours of flat plate cases for k = 0.2 and 0.7 

from their simulation at Re=1000. In addition, Ol152 exhibited the vortex pictures based 

on his dye injection experiments at Re = 10k.  
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Figure 4-2 Comparisons of vorticity fields for the flat plate cases for k = 0.7, among the current 

simulation (left), Eldredge et al151 (center), and Ol152 Re=10k (right).  

From the top to bottom rows: halfway to pitch-up; the moment reaching the maximum angle of 

attack; halfway to pitch-down; at the end of pitch-down; 0.5 time units after completion of pitch-

down. 
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Figure 4-3 Same as previous figure but for k = 0.2, and Row 6 is for the results of 0.875 time units 

after completion of pitch-down. 

Figures 4-2 and 4-3 depict comparisons for flat plate cases with k = 0.7 and 0.2, 

respectively. Pictures in these two figures have the same color scale. The moments of 

time to capture the vorticity field are the same as the previous two studies, except for the 

last two rows of Fig. 4-3. Because the previous two studies do not have any common 
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instant for vorticity contours after the plate goes back to a zero angle of attack, two 

images are captured from the current simulation, each corresponding to one of the two 

data sets. In general, the results from the current simulation have a good agreement with 

these two studies. At the beginning of the motion, a clockwise leading edge vortex is 

generated. This small vortex plays a very important role in producing lift in all cases. It 

keeps attaching with the flat plate until the pitch-down motion.  

The current simulation gives more detailed vortex structures than the results of 

Eldredge et al151, in comparison to the experiment152, especially for the k = 0.7 case. For 

example, the experimental results in rows 3~5 of Fig. 4-2 show a small shedding vortex 

under the clockwise trailing edge vortex, which starts to form approaching half-way to 

pitch-down (row 3 of Fig. 4-2) and eventually attaches to the clockwise trailing edge 

vortex after some time at the end of pitch-down (row 5 of Fig. 4-2). This process is 

clearly captured in the current simulation.  

However, in Figs. 4-2 and 4-3, very small vortex structures in the experiment are not 

resolved in either of the simulations because of the Reynolds number limit in the 

simulations, which is ten times smaller than that in the experiment. 

Figure 4-4 shows a good comparison between the current simulation and previous 

work151. At the beginning, when the angle of attack is zero, the lift coefficient remains 

zero with a very small drag coefficient. There are several short-lived spikes that are due 

to forces generated by non-circulatory flow (i.e. added mass force, to be explained in the 

next section). These forces are particularly significant in high acceleration rate motion. 

Moreover, based upon discussions on the vorticity field in the previous section, the 

“hump” region of the lift coefficient for the lower pitch rate case is shown in Fig. 4-3 
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during pitch-down at the time unit 3-3.7 because of the second leading edge vortex for 

the case of relatively low pitch rate. For the same reason, the lift coefficient for this case 

does not reach zero immediately after the motion is completed. On the other hand, for the 

case with a faster pitch rate, because of the stronger vortex and delayed detach time near 

its leading edge, the negative drag coefficient for this case has a “cave-up” region during 

time units 1.6~1.9 in Fig. 4-4. 

 

 

 

Figure 4-4 Lift and drag coefficient comparisons of the k = 0.2 cases between the current simulation (left) and Eldredge et al151 

(right).  

The solid line is for the flat plate, dashed line for the elliptical airfoil, and dash-solid line for SD7003 (which was not simulated 

by Eldredge et al151)
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4.2 Added-Mass Effect 

It was mentioned above that the short-lived spikes appearing in Fig.4-2 may be due to 

forces generated by non-circulatory flow.  Theodorsen’s theory153 suggests that the lift on 

an unsteady airfoil can be generated by non-circulatory and circulatory flow components. 

The former part generally does not have a significant effect on slow airfoil motion in air 

flow because of the low rate of the motion and the small density value of the air property. 

In contrast, it plays a more important role in water. It is studied here because of rapid 

pitch motions involved, which indeed show evidence of forces generated by non-

circulatory flow. 

A recent summary of the theory can be found in McGowan et al.154 and Leishman155. A 

lift coefficient can be separated into two parts:  

 
l lss lpitchC C C   (4.2) 

The first part is the steady-state contribution, Clss, resulting from the mean angle of 

attack. By integrating the angle of attack of the airfoil following the motion in Eq. (4.1) 

from time 0 to infinity, this part turns out to be zero. The second part is the pitch 

contribution, Clpitch, resulting from the instantaneous pitch motion. 

The lift coefficient contributed by the pitch has also two parts: (1) the non-circulatory 

flow contribution, the first term on the right hand side of Eq. (4.3), resulting from high 

rate acceleration of the motion described in Theodorsen’s work153; (2) the circulatory 

flow contribution, the second term on the right hand side of Eq. (4.3), resulting from the 

effect of vortex distribution on the flow. Following Leishman155, the lift coefficient can 

be expressed as 
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where C(k), called Theodorsen’s function, is a complex function that takes into 

consideration the effect of the wake vorticity on the flow. Based on McGowan et al154, the 

expression for Theodorsen’s function is 
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where the argument, k, is originally the reduced frequency for harmonic oscillation 

motion. However, for the problem of the current study, this parameter has, strictly 

speaking, an ambiguous meaning. Wagner’s theory is thus used here for the circulatory 

part. This theory has a solution for the indicial lift on a thin airfoil undergoing a step 

change in the angle of attack155. Hence, the total lift coefficient consists of the non-

circulatory part from original Theodorsen’s theory and the circulatory part from Wagner’s 

theory:    
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where  is the Wagner function. For simplicity of calculation, an exponential 

approximation of the Wagner function, which was found to agree with the exact solution 

with accuracy within 1%155, is used here: 

 0.0455 0.3( ) 1.0 0.165 0.335s ss e e      (4.6) 
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The drag coefficient is deduced following the propeller theory of Garrick3 that was 

originated from Theodorsen’s theory:  

 2

d lpitchC S C    (4.7) 
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Since the first term of Eq. (4.7) is derived from vorticity distribution, it is recognized 

as a contribution from circulatory flow. Additional drag contributed by circulatory flow is 

in the circulatory part of the lift (i.e. the second term of Eq. (4.7)). Consequently, the only 

non-circulatory part of the drag is brought about by the non-circulatory part of the lift.  

Notice there is still a Theodorsen Function in Eq. (4.8). It has a real part and an 

imaginary part. The real part denotes the calculation associated with the motion as a 

cosine function, and the imaginary part as a sine function. In the following calculation, 

the imaginary part has been employed for calculation of the pitch-up interval since the 

attack angle is zero at the beginning (i.e. a sine motion), while the real part has been used 

for calculation of the pitch-down interval. 

We select the flat plate airfoil cases for comparisons. Figure 4-5 shows the 

comparisons of lift and drag coefficients between the current simulation and the 

theoretical results from Theodorsen’s theory. As the motion here is non-periodic, k in the 

Theodorsen function is simply selected as the reduced angular velocity. However, this 

may cause some discrepancies in the results of the circulatory part of the drag coefficient, 

especially in the case of k = 0.2. In the case of k = 0.7, since the ramp time is relatively 
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short, the simulation results still show a good agreement with the theoretical results. It 

should be noted that Theodorsen’s theory is suitable for small angles of attack, and 

therefore the comparison is apparently always better for smaller angles of attack.  

 

 

Figure 4-5 Comparisons of lift and drag coefficients between the current simulation and 

Theodorsen’s theory for the cases of k = 0.7 (left) and k=0.2 (right). 

In Fig. 4-6, we zoom into high-acceleration-rate time intervals to show detailed lift 

coefficient comparisons of the cases of k=0.7 and k=0.2. The non-circulatory part has a 

significant effect on these times due to the high acceleration of the angle of attack. 

Especially when the angle of attack is small (i.e. rows 1 and 3 in Fig. 4-6), both the 

simulation and theoretical results show that the lift is contributed entirely from the non-

circulatory part, though there is a small time shift between the two results. On the other 
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hand, the circulatory part barely has an effect during the high-rate acceleration and keeps 

its value almost the same before and after the acceleration. 

 

Figure 4-6 Comparisons of lift coefficient between the current simulation and Theodorsen’s theory 

for the cases of k = 0.7 (left) and k=0.2 (right).  

Top row: at the beginning of pitch-up; middle row, in the interval of hold; bottom row: at the end of 

pitch-down motion. 
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4.3 Summary for the Rapid Pitching Airfoil 

The IB method is used to simulate the canonical pitch-hold-return cases for flat plate, 

elliptical, and SD 7003 airfoils. The IB method is validated and good agreements in 

comparison with other numerical methods, experiments and canonical theories were 

obtained.  By using Theodoren’s theory for unsteady airfoils, the non-circulatory 

contribution (added-mass effect) to the lift and drag has been found to be the major 

component when the airfoil experiences a high-rate acceleration or deceleration.  Since 

the loosely-coupled FSI employed in the current work suffers from the added-mass effect, 

the high-rate change of motion is not preferable.  
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5 Asymmetric Wakes 

 

Figure 5-1 Definition sketch of set-up of simulations in this study 

The sinusoidal heaving motion of a symmetric airfoil, a NACA0012 airfoil, is 

specified as 

 
( ) sin( )

2

y t h kt

k f




  (5.1) 

Again, all the equations and variables are dimensionless. The characteristic length and 

velocity are the airfoil chord length and the free stream velocity, respectively. The 

frequency, f, and reduced frequency, k, in Eq. (5.1) are respectively, * /f f c U
 
and 

*2 2 /k f f c U    . The simulation is performed for a heaving airfoil under four 

different Reynolds numbers (Re = 200, 300, 400 and 500) and three Strouhal numbers (Vp 

= 2πf*h*/U∞=kh = 0.96, 1.08, 1.2 and 1.3). The Strouhal number, which is the product of 
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reduced frequency and dimensionless heaving magnitude, is considered a primary factor 

that influences the wake of a heaving airfoil6, 7, 9, 10, 12, 15. 

The computational domain size selected for this study is 19.2 × 12.8, shown in Fig. 

5-1. This mesh setup provides an acceptable grid-resolution-independent solution for all 

the computational cases in this study. Although the immersed-boundary method is not 

limited to a uniform grid mesh, the uniform grid implemented in the simulation provides 

good results for the objectives of the current study. In addition, the physical phenomena 

corresponding to the subject of this study do not change if the computational domain size 

is enlarged in both streamwise and cross-flow directions. The size of the computational 

domain is selected so that the size of the domain does not influence the results. The airfoil 

is located at 7-unit lengths downstream of the inlet flow boundary to leave sufficient 

space for reducing the effect of the inlet boundary condition. The grid size is Δx = Δy = 

0.0125, which provides an acceptable grid-resolution-independent solution for all 

computational cases in this study after a grid-size convergence study. The Dirichlet-type 

boundary condition is employed at the inlet for velocity; the symmetry boundary 

condition is used for both the upper and lower boundaries; and the outlet is specified with 

the Neumann-type boundary condition. All velocity profiles presented in this study were 

averaged over four airfoil oscillation cycles after the simulation results became periodic.  

5.1 Near Wake Deflections 

An interesting phenomenon was observed in the flow of a heaving airfoil by Jones et 

al.6,  where the wake vortex street after a symmetric airfoil, with a symmetric periodic 
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sinusoidal heaving motion, deflected to one side of the airfoil rather than locating 

symmetrically along the line of the mean plunging location of the airfoil. 

 

(a) 

(b) 

Figure 5-2 Vorticity contours for the case of k = 10, h = 0.12, and Re = 400. 

(a) the heaving starts with an upward motion; (b) the heaving starts with a downward motion. The 

dashed lines indicate the approximate center of a vortex. The contour color range is from -30 to 30 

Previous studies reported that the vortex deflection direction is affected by the initial 

direction of the heaving motion6, 10, 15. This is also confirmed in the current study, as 

shown in Fig. 5-2. When the airfoil starts moving upward at the beginning of the heaving 

motion, the wake deflects downward, and vice versa.  

This phenomenon is attributed to the pairing pattern of the wake vortices 

downstream of the airfoil. Figure 5-2 (a) is a case when the airfoil starts periodic heaving 

with an initially upward motion. Figure 5-2(a) shows that the distance between vortices 
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“A” and “B” is longer than that between vortices “B” and “C”. According to the Biot-

Savart vortex induction law, a shorter distance amounts to a stronger vortex interaction. 

Therefore, vortices “B” and “C” are recognized as a pair instead of “A” and “B”, 

indicating a strong interaction between “B” and “C”. Since the negative vortex (darker 

gray - blue line in Fig. 5-2) is rotating clockwise and the positive vortex (lighter gray - 

red online in Fig. 5-2) counter-clockwise, such a pairing pattern induces a downward 

motion. This downward motion thus results in a downward vortex wake deflection. The 

situation in Fig. 5-2(b) is when the airfoil starts with a downward motion. The wake 

deflection is then in the direction opposite to the case in Fig. 5-2(a). The vortex pair now 

formed by “A” and “B” in Fig. 5-2(b), with a positive vortex on the left and a negative 

vortex on the right, causes an upward wake vortex deflection.  

Following the vortex pairing argument stated above, if the distances between two 

adjacent vortices are equal, no deflection should be detected. Several no-deflection cases 

shown later in the study will confirm this claim.  
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(a)

(b) 

Figure 5-3 The pairing competition among the first few vortices of a heaving airfoil, (a) with an 

initially upward motion and (b) with an initially downward motion. 

Now the follow-up question is why the different vortex pairing patterns occur when 

the starting motion is upward versus downward. Figure 5-3 shows the vorticity field at 

the nascent stages after the airfoil starts to move. It can be seen when the airfoil starts 

with an upward motion in Fig. 5-3 (a), a starting vortex “A” in the negative sense 

(clockwise) is generated at the trailing edge. This is because the total lift on the airfoil is 

negative during the initial upward motion, which is created by an overall circulation 

around the airfoil in the positive sense. A strong positive sign vortex “B” is generated in 

the consecutive downward motion, followed by a strong vortex negative sign vortex “C” 

generated during a later upward motion shown in Fig. 5-3(a). Due to its lower strength, 

the starting negative vortex “A” loses the pairing competition with the positive vortex “B” 

in the wake against the stronger negative vortex “C”. Such a pairing, as discussed in the 

previous paragraph, leads to a downward deflection of the wake. Vice versa, the opposite 
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pairing pattern and thus deflection direction can be seen in Fig. 5-3(b) when the airfoil 

starts with a downward motion. 

 

Figure 5-4 Parameters used in calculating the effective phase velocities 

 To detect the wake deflection trend quantitatively, Godoy-Diana17 proposed a 

symmetry-breaking condition depending on the vortex pair (the dipole) structure and the 

vortex phase speed. We extend this condition by making use of the effective phase 

velocity to quantitatively define the trends of symmetry breaking and symmetry holding. 

In the dipole structures (between I and II, and II and III) shown in Fig. 5-4, the wake 

tends to deflect downward. The effective phase velocity for a vortex dipole, Up
*, is then 

defined as 

 * ( )cosp dipole phaseU U U U     (5.2) 
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 As the deflection is downward in this case, the symmetry-breaking effective phase 

velocity is calculated based on a dipole that induces the downward motion on the pair of 

vortices in the dipole. In this case, the symmetry-breaking dipole is represented by 

vortices II and III, which is the same as the pair selection stated previously. The other 

pair, vortices I and II, which induces an upward motion in the dipole, is to produce a 

symmetry-holding effective phase velocity and considered a symmetry-holding dipole. 

The definition of the variables in Eq. (5.2) follows those in Godoy-Diana17. Specifically, 

Uphase
 
, in Eq. (5.2), is the averaged x-direction velocity of the motion of the two vortex 

centers in dipole. The center of a vortex is defined as the location of the local maximum 

vorticity. And Udipole
 
is calculated as 

 
2

dipoleU



  (5.3) 

and and α are defined in Fig. 5-4. The circulation of the dipole, Γ, is calculated using 

the method of vorticity area integration in the rectangular area indicated in Fig. 5-4. The 

choice of rectangular integration contours, instead of the elliptical ones that would have 

better followed the vortex shape, was made in order to avoid errors from interpolation of 

the velocity data17. The size of the rectangular area is determined by using Gaussian fits, 

exp(-xi
2/σi

2), along the vertical and horizontal axes centered on positions of the maxima 

and minima of vorticity. The sizes of the vortex along the x- and y-direction are defined 

as 2σi. The circulation value is the average circulation of the two vortices in the dipole.  

 We calculated the effective phase velocities of symmetry-breaking and symmetry-

holding for the cases shown in Fig. 5-3. When the wake is deflected either downward 

(Fig. 5-3a) or upward (Fig. 5-3b), for both cases, the effective symmetry-breaking phase 
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velocity is 0.32, while the effective symmetry-holding phase velocity is 0.21. This is 

primarily due to the fact thatin the symmetry-breaking dipole is smaller than that in the 

symmetry-holding dipole, which is the same factor to determine vortex pairing as 

discussed earlier. Since the symmetry-breaking effective velocity is greater than the 

symmetry-holding effective phase velocity, the wake deflects. Subsequent discussions 

will make rigorous use of this criterion. 

 

5.2 Discussions of the Factors Influencing Near Wake Deflection  

5.2.1 Effects of the Strouhal Number versus the Individual Effects of the Reduced 

Frequency and Amplitude  

In the discussion of the magnitude of the wake deflection angle, previous work put 

more concentration on the effect of the Strouhal number only10, 15. The current study is 

the first that has investigated the effect of amplitude and frequency individually on the 

wake deflection angle. A general consensus in the previous work7, 10, 12, 15 was that a 

larger value of Vp is related to a larger deflection angle. However, it was reported6, 7 that 

in some cases, a flow with larger Strouhal number might not show any wake deflection. 

Another exception, illustrated in Fig. 5-5, is that the case with h = 0.12 and k = 9 has a 

larger deflection angle than the case with h = 0.24 and k = 5, although the latter has a 

larger Strouhal number (Vp = 1.2) than the former (Vp = 1.08).  
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Figure 5-5 Streamwise velocity profiles downstream of the airfoil with h = 0.12, k = 9 (dash-dot lines) 

and h = 0.24, k = 5 (solid lines).  

Dashed lines indicate four locations in the flow direction (x-direction) for the downstream distances 

from the airfoil TE to where the velocity profiles are recorded. Rectangular symbols imply locations 

of maximum velocity. 

  The way to express the deflection angle in terms of maximum values in velocity 

profiles in Fig. 5-5 follows that of Ref. 16. The zero value in the y axis is the mean 

position of the airfoil heaving motion. Four vertical dashed lines indicate the downstream 

distances from the trailing edge of the airfoil to where the velocity profiles are recorded. 

These locations are 0.5, 2, 3.5, and 5 in the x-direction downstream of the trailing edge. 

The shape of the velocity profiles in Fig. 5-5 indicates the velocity magnitude at a 

particular location. Rectangular symbols, which show the locations of maximum value of 

each profile, are formed to represent the wake deflection angle. Numerical values of the 

deflection angle (i.e. 0º and 0.567º in Fig. 5-5) are calculated based on the vertical and 
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horizontal location differences of maximum values sampled at the two locations of 0.5 

and 2. The type of graph as in Fig. 5-5, with omitted curves for velocity profiles, will be 

frequently employed in the following discussion to compare the wake deflection angles. 

It is noted that the symbol at x = 0.5 is defined as a marker to identify the near wake 

deflection, while the symbol at x = 5 denotes the far wake deflection.  

 

 
Figure 5-6 The vertical location of the maximum value of downstream x-direction velocity profiles 

for cases with Re = 500, where y = 0 is the mean location of the heaving airfoil and x = 0 is the 

location of the trailing edge of the airfoil. 

Figure 5-6 shows that the deflection angle increases as Vp increases by increasing the 

reduced frequency, k, at a fixed heaving amplitude10, 15 (h=0.12 and 0.16, respectively). In 

this case, the magnitude of maximum downstream velocity also increases as the symbols 

on curves with the same line type (solid or dot-dash, indicating h=0.12 and 0.16, 

respectively) from the same location increase their magnitudes in the abscissa direction. 
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The increasing velocity magnitude is consistent with the fact that higher heaving 

frequency leads to higher input power from the airfoil, which provides more propulsive 

force9, 12.  

(a)

(b) 

Figure 5-7 Vorticity contours of cases with the same Vp=1.2, (a) h = 0.12, k = 10 and (b) h = 0.24, k = 

5 .  

Figure 5-6 also confirms the individual effect of reduced frequency and magnitude at 

the same Vp that is the product of these two factors. Each of the cases is represented by 

square, diamond, or circle symbols, and has the same Vp values of 1.2, 1.08, and 0.96 

respectively. Note the symbols with solid lines have a lower magnitude and higher 

frequency than the ones with dash-dot lines. The closer distance between the two vortices 

in a dipole, which appears in the cases of higher frequency such as in Fig. 5-7(a), gives 

rise to stronger interactions between the vortices that therefore create a larger angle of 

deflection in the wake. The cases with higher frequency generate more vortices within the 

same distance downstream of the airfoil. In Fig. 8, the frequency in the higher frequency 
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case is twice the low frequency case, while the Vp value remains the same as 1.2, the 

highest Vp value among the cases in Fig. 5-6. In this particular case, the lower frequency 

case, with h=0.24 and k=5, even does not have a deflected wake. As stated earlier, the 

pairing of the vortices into a dipole and their interactions are the reason that the wake 

deflects. Such a pairing pattern does not appear in the lower frequency case in Fig. 5-7(b), 

where the vortices are evenly distributed like a symmetric, reversed von Karman vortex 

street7, 17. 

At the same time, by comparing the two wakes in Figs. 5-7(a) and 5-7(b), each 

individual vortex at the same distance downstream the airfoil has almost the same 

strength in both the higher frequency and lower frequency cases. However, the higher 

frequency case has twice the number of vortices in the wake as a non-symmetric pairing 

pattern. This again proves that the vortex pairing pattern is the reason for the wake 

deflection, not just the vortex strength itself that is somehow related to the Strouhal 

number (when then Reynolds number is fixed). 

(a) (b) 

Figure 5-8 Deflection angle and effective phase velocities versus the reduced frequency for cases 

presented in Fig. 7. (a) h = 0.12 and (b) h = 0.16 



87 

The criterion based on the effective phase velocities presented in the previous section 

has been applied in the cases here to check its applicability. Figures 5-8 contain the plots 

of the deflection angles and the effective phase velocity versus the reduced frequency for 

the cases presented in Fig. 5-6 with h=0.12 and h=0.16, respectively. In both cases in Fig. 

5-8, when the deflection angle increases with the reduced frequency, the symmetry-

breaking effective phase velocity apparently increases while the symmetry-holding phase 

velocity either decreases slightly or remains almost the same. This result shows that when 

the difference between the two effective phase velocities increases, the deflection angle 

increases. Such a trend reaffirms the use of effective phase velocity to correlate with the 

deflection angle17. 

(a) 
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(b) 

Figure 5-9 Deflection angle and the difference between the symmetry-breaking and symmetry-

holding effective phase velocities versus the reduced frequency k and heaving amplitude h for the 

case of Re = 500.  

(a) Solid lines with circle markers: Vp = 1.2; Dash lines with square markers: Vp = 1.08; Dash-dot 

lines with diamond markers: Vp = 0.96. Solid markers: deflected wakes; Hallow markers: symmetry 

wakes. (b) A particular case of Vp =1.2. 

Figure 5-9(a) presents the results from a study of the deflection behavior in a wider 

range of reduced frequencies and heaving amplitude at three Strouhal numbers, Vp=0.96, 

1.08, and 1.2. It confirms that the deflection occurs in a regime of moderate heaving 

amplitude and frequency7, 12, 15, 156.   

 Furthermore, it should be noted that some of previous work7, 10, 15 showed that, for 

a certain value of Vp, the wake does not have any deflection for very small or large values 

of k, while it has quite a significant deflection at moderate values of k. Figure 5-9(b) 

illustrates the relationship between the deflection angle and the difference between the 

symmetry-breaking and symmetry-holding effective phase velocities at a fixed Strouhal 
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number Vp = 1.2. The reduced frequency increases in the range of 5<k<60, with a 

correspondingly decreasing h value. The results in Fig. 5-9(b) indicate that the deflection 

angle occurs when the value of k is greater than 7.5. For large values of k, such as 60, 

with an extremely small h of 0.02 for the same Vp value of 1.2, the flow exhibits a nicely 

symmetric wake. Therefore, the deflection angle increases to a maximum value at a 

moderate value of k and reduces towards zero, as the results show in Fig. 5-9(b). This 

trend can also be correlated to the difference between symmetry-breaking and symmetry-

holding effective phase velocities. In Fig. 5-9(b), the deflection angle increases when the 

difference between the two effective phase velocities increases. 

5.2.2 Reynolds number effect on the deflection angle  

(a) 

(b) 

Figure 5-10 Vorticity contours of the beginning of the down-stroke for the case of h = 0.12, k = 10 

with Re = 200 (a) and Re = 400 (b). 
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Liang et al.19 claimed that, to their knowledge, they were the first to find the 

increment of the deflection angle when the Reynolds number increases. The current study 

has further studied the mechanism for this phenomenon. The results in Figs. 5-10 and 5-

11 are for the cases at different Reynolds numbers but at the same Vp value of 1.2. Figure 

5-10 compares contours of cases with Re = 200 and 400. Apparently, the case with Re = 

400 has a larger deflection angle in its wake than the case with Re = 200. The primary 

factor is the stronger vortices associated with the higher Reynolds number. It is then 

easily understood that the stronger the vortex pairs, the larger the resultant deflection 

angles, because the induced motion in the vortex pairs directly causes the deflection. As a 

higher Reynolds-number flow results in lower vorticity dissipation, Figure 5-11 illustrates 

that vortices in the wake of the higher Reynolds number case (Re = 400) decay more 

slowly than those of the lower Reynolds number case (Re=200). The vortex pairing 

pattern also disappears in the lower Reynolds number case, resulting in an almost non-

deflecting wake.  
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Figure 5-11 Deflection angle comparisons with different Reynolds numbers 

The increment of the deflection angle as the Reynolds number increases between 200 

and 500 is illustrated in Fig.5-11. It also shows that the increase of the Reynolds number 

causes the increase of the magnitude of the maximum velocity, as the symbols indicating 

the maximum velocity from the same location shift further right in the abscissa direction 

for larger Reynolds numbers. The correlation between the effective phase velocities and 

the deflection angle is again presented in Fig. 5-12. The symmetry-breaking effective 

phase velocity increases and the symmetry-holding effective phase velocity decreases 

with the increase of the Reynolds number. This once more correlates the increase of the 

difference between the two effective phase velocities with the increase of the deflection 

angle. 
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Figure 5-12 Deflection angle and effective phase velocities versus the Reynolds number 

5.3 Summary of the Near Wake Deflections 

In this section, the formation of deflected wakes downstream of a heaving airfoil has 

been studied numerically. The reason for the deflection is attributed to the vortex pairing 

pattern in the wake, which causes a downward deflection wake if the airfoil starts the 

heaving motion upward, and vice versa. The deflection trend is determined by the 

competing mechanism between the symmetry-breaking and symmetry-holding effective 

phase velocities. These velocities are defined and calculated according to the vortex 

pairing pattern. At the same Strouhal number, the deflection angle achieves its maximum 

value at a moderately reduced heaving frequency. Particularly, at a very small or very 

large reduced frequency, the pairing pattern that causes the wake deflection disappears, 

and a symmetric, reversed von Karman street wake is generated. In addition, the 
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Reynolds number also influences the wake deflection. For a fixed Strouhal number, the 

deflection angle increases with the Reynolds number. This is because the vortex strength 

in the wake is stronger in a high Reynolds number flow, which exacerbates the pairing 

pattern that causes the wake deflection. In the low Reynolds number cases, the vortices 

are weaker and the pairing pattern may no longer exist, resulting in a weak, non-deflected 

wake. Based on this study, it is evident that the size of the deflection angle is proportional 

to the difference between the symmetry-breaking effective phase velocity and the 

symmetry-holding effective phase velocity. Although this conclusion is based on the 

results of changing one variable at a time in this study, such as reduced frequency or the 

Reynolds number, the trend should remain the same even under a multi-variable situation.    

5.4 The Phenomena of Far-Wake Deflection and Switching of Vortex Pattern 

The previous section deliberately discussed the wake deflection in the near wake 

region, and this section will focus more on the deflection angle, which can change from 

the near wake to the far wake regions. 
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Figure 5-13 Deflection trends of the cases of Vp = 1.2 and Re = 500 at different reduced frequencies 

and amplitudes 

In the current study, the trend of change of the deflection from the trailing edge of the 

airfoil to the far wake field is represented by the cross-flow locations of the maximum 

streamwise velocities in the wake. It is very similar to the idea of the deflection angle 

used in the previous studies15, 16, 20, 157. 

The onset of the asymmetric wake and the formation of the deflected wake were areas 

of concentration for most previous studies7, 10-12, 15, 17, 18, 20, 156. Few of them investigated 

the variation process of the deflected wake at different downstream locations. In this 

study, cases with different frequencies and amplitudes restricted to a fixed Strouhal 

number of 1.2 were first simulated. It is shown in Fig. 5-13 that the deflection of the 

wake keeps enlarging as the heaving frequency goes from a very low value (k = 5.0) to a 

moderate number (k = 15 for the near wake region and k = 10.9 for the far wake region), 

and then decreases monotonously to zero. It not only confirms a conclusion made by 
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earlier studies 7, 12, 17, 18, 20 that the asymmetric wake only occurs at moderate heaving 

frequencies and amplitudes, but also evidently exhibits that a maximum deflection exists 

at a reduced frequency value for a fixed Strouhal number. Furthermore, it illustrates that 

the deflection initially increases swiftly with the frequency in both the near wake (i.e. x = 

0.5 markers) and far wake regions (i.e. x = 5 markers) once the onset of the asymmetric 

wake occurs in the low frequency range (i.e. k = 7.5). Then, the far wake deflection angle 

firstly starts to decrease with the increment of frequency (i.e. from k = 12 to k = 15), 

although the near wake deflection, in the meanwhile, is still amplified with the increase 

of frequency and about to reach its peak value (i.e. at k = 15). Later, as the heaving 

frequency continues to increase, the near wake deflection eventually begins to decline 

until a symmetric wake reappears at a very high frequency (i.e. k = 60). A similar trend 

has been reported in Ref.12 that, for a fixed Strouhal number, the symmetric wake appears 

at very small reduced frequencies and reappears at very large ones; in between, 

asymmetric wakes show up at moderate reduced frequency. It can also be observed from 

Fig. 5-13 that the wake deflection downstream of a heaving airfoil develops faster as well 

as vanishes earlier in the far wake than in the near wake. The fact that the deflection 

increases faster with the increasing frequency in the far wake region at relatively low 

frequencies is not difficult to explain, as vortices shed from the airfoil need a certain 

distance to fully develop from zero deflection at the airfoil trailing edge to a non-zero 

deflection.  
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Figure 5-14 Vorticity contours of the case with Vp =1.2, k = 20, and Re = 500 

However, the reason that the far wake deflection starts to decrease when the heaving 

frequency further increases is a little more complicated. The vortex pairing mechanism in 

the far wake, although different from that in the near wake, is again recognized as the key 

reason in the current study. The relationship of the vortex paring mechanism and 

formation of the asymmetric wake was discussed in the literature17, 18, 20. However, only 

vortex pairs in the near wake region have been investigated carefully. Fig. 5-14 shows 

that, in the near wake, the two counter-rotating vortices in a vortex dipole stay close to 

each other, while the distance between the neighboring vortex dipoles is relatively large. 

This type of vortex pairing pattern triggers the formation of the asymmetric wake 

downstream of the heaving airfoil. The two proximal counter-rotating vortices, in the 

near wake region of Fig. 5-14, can be simply considered as an isolated vortex dipole, 

which results in a downward dipole velocity; it implies a downward deflection.  The 

deflection in the far wake region, however, is much less than that in the near wake region. 

In Fig. 5-14, in the region located about two chord lengths from the airfoil trailing edge, 
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the characteristic vortex pairing pattern that evokes the asymmetric wake disappears. 

Alternatively, an opposite vortex pairing pattern (a counter-clockwise vortex closely 

followed by a clockwise vortex) emerges (see the dash-dot box in Fig. 5-14), which turns 

the downward deflected wake back to upward in the far wake region. A similar 

phenomenon has been recorded in Ref.158. However, the vortices are extensively 

dissipated before the switch of the vortex pattern in their experiments. To our knowledge, 

the current study is the first to document clear views of vortex switching. The reason that 

initiates the swap of vortex patterns will be discussed in a quantitative sense later. 

Interestingly, among all the cases in the current study, only a maximum of one time 

switching is observed (and some cases have none). This is because of the low Reynolds 

number in the studied cases so that the vortices dissipate quickly after just one switch and 

are not able to maintain sufficient strength to make another one.  

 

Figure 5-15 Vorticity contours of the case with Vp = 1.2, k = 14, and Re = 500 at the end of an 

upstroke. The contour color range is from -20 to 20.  
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Figure 5-16 Vorticity contours of the case with Vp = 1.3, k = 14 and Re = 500.  

The dissipation of vortices may also be the reason that the cases with a low heaving 

frequency do not show any switch of the vortex pattern. By comparing Fig. 5-15 against 

Fig. 5-14, the lower frequency case in Fig. 5-15 exhibits fewer vortices in the wake, 

which prolongs the distance for the vortices to possibly trigger the switch. If their 

strengths have already dissipated before reaching the condition for the pattern switch, the 

switch may not be activated. When there is no switch, the wake of the far wake region is 

nevertheless deflected less than the wake of the near wake region. Another example to 

demonstrate the relationship between the vortex strength and the vortex-pattern switch is 

seen by comparing Fig. 5-15 with Fig. 5-16.  Fig. 5-16 is a case for a slightly higher 

Strouhal number (Vp  = 1.3) with the same heaving frequency. The same heaving 

frequency ensures that the number of vortices in the wake is about the same for these two 

cases. The larger Strouhal number results in larger heaving amplitude, which indicates 

stronger vortices generated at the trailing edge of the airfoil in Fig. 5-16. A vortex-pattern 

switch apparently occurs in Fig. 5-16 (the dash-dot box in Fig. 5-16). The stronger 
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vortices in the case of Vp = 1.3 dissipate relatively more slowly and trigger the switch at 

the 12th vortex (the white arrow in Fig. 5-16). It is shown that the 13th  vortex in Fig. 5-16 

is much stronger than the one in Fig. 5-16 (the white arrow in Fig. 5-16). Hence, there is 

a switch with Vp = 1.3, but no switch with Vp = 1.2.  

 

Figure 5-17 Vorticity contours of the case with Vp = 1.3, k = 14, and Re = 300 at the end of an 

upstroke. 

It is noted that the Reynolds number has a strong influence on the vortex strength and 

its dissipation. Similar to the effect of the Strouhal number, the weaker vortices in Fig. 5-

17 with the lower Reynolds number dissipate relatively faster than vortices with the 

higher Reynolds number in Fig. 5-16. The 12th vortex in the low Reynolds-number case 

(the white arrow in Fig. 5-17) is much weaker than the one in Fig. 5-16. Consequently, 

the vortex-pattern switch occurs with Re = 500 in Fig. 5-16, but not with Re = 300 in Fig. 

5-17.   
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5.4.1 The Cross-flow Effective Phase Velocity 

To quantitatively reveal the factors inducing the vortex-pattern switch, a model based 

on the vortex dipole analysis, which is in light of the method of Godoy-Diana17 and 

Zheng & Wei20, has been further developed. Here, a cross-flow effective phase velocity 

of a vortex dipole is defined as 

 *

dipole phasesinpU U V   (5.4) 

where 

 
avg

dipole
2

U



  (5.5) 

Following the concept originally introduced by Godoy-Diana et al.17, the 

“symmetrizing” effect of the subsequent vortices on the target vortex dipole, which is 

represented by the effective phase velocity, is still the key factor. However, the effective 

phase velocity defined in Eq. (5.4) only considers the effect that is projected to the cross-

flow direction rather than to the direction of the vortex-dipole velocity as in Godoy-Diana 

17 and Zheng & Wei20. In their studies, for the purpose of discussing the onset of wake 

deflection, the criterion based on the effective phase velocity projected to the direction of 

the vortex-dipole velocity can also be considered as a criterion based on the effective 

phase velocity projected to the streamwise direction. However, the purpose of the present 

study is to quantify the magnitude of the local deflection of an already-formed 

asymmetric wake. Therefore, the effective phase velocity used for the criterion in the 

current case needs to be projected to the cross-flow direction, which is the direction of the 
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local deflection. The terms representing the dipole phase velocity in the streamwise 

direction and the free stream velocity in the previous studies17, 20 are not included in Eq. 

(5.4) because their projections in the cross-flow direction are zero. It will be shown later 

that the effective phase velocity in the cross-flow direction provides an effective 

quantitative criterion to indicate the switching of the vortex wake deflection direction. 

 

Figure 5-18 Schematic view of parameters used in calculating the effective phase velocities 

The method to obtain the circulation of each vortex in Godoy et al.17 has been 

implemented in the current study. More detailed procedures can be found in Zheng & 

Wei20. The approach to measure the dipole velocity angle, α, is illustrated in Fig. 5-18. 

Without losing generality, we consider only the cases with downward deflected wakes in 

the near wake region, as the upward deflected wakes can be discussed in a vice-versa way. 

In Fig. 5-16, the vortex dipole carrying a self-induced velocity towards the downward 

direction, i.e. the vortex pair with vortices “A” and “B", act as the symmetry-breaking 
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vortex dipole. Conversely, the vortex dipole having an upward self-induced velocity, i.e. 

the vortex pair with vortices “B” and “C” in Fig. 5-16, behaves like the symmetry-

holding one. Zheng & Wei20 suggested that the difference in the effective phase velocity 

between these two consecutive vortex dipoles indicates the trend of the deflection. In 

other words, the competition of the effective phase velocity between the symmetry-

breaking and symmetry-holding dipoles determines the local deflection of the wake. 

Nonetheless, only the near-wake deflection of the heaving airfoil has been deliberately 

explained in Zheng & Wei20 since only the behaviors of vortex dipoles in the near wake 

region were investigated.  

 

Figure 5-19 The history of the difference of the effective phase velocity of two consecutive vortex 

dipoles in the case of Vp = 1.3, k = 14, Re = 500 along with a 2nd-order polynomial fitting curve. 

In the interest of unfolding the mechanisms of the wake deflection pattern switching, 

the approach in Zheng & Wei20 is extended to record the histories of the effective-phase-
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velocity difference while these two vortex dipoles (“A&B” and “B&C” in Fig. 5-16) 

travel from the near wake to the far wake. This difference at each instant represents the 

moving trend of these two consecutive vortex dipoles at that moment. If the effective 

phase velocity of the symmetry-breaking dipole is larger than that of the symmetry-

holding dipole at a certain moment, these two consecutive vortex dipoles are inclined to 

follow the near wake deflection direction and keep moving away from the mean position 

of the heaving airfoil. On the other hand, if the symmetry-breaking dipole has a smaller 

effective phase velocity than the symmetry-holding dipole, this vortex pattern has the 

tendency to break the near wake deflection trend and move upwards.  

 Fig. 5-19 shows the history of the difference of the effective phase velocity 

between the two consecutive vortex dipoles in the case of Vp = 1.3, k = 14, and Re = 500, 

with the vorticity contours for this case already shown in Fig. 5-16. The difference of the 

effective phase velocity is a subtraction of the effective phase velocity of the vortex 

dipole “B&C” from that of “A&B”. 

 It is readily seen in Fig. 5-19 that the 2nd-order polynomial fitting curve captures 

the primary trend of the changing difference of the effective phase velocity over the time 

and smoothes out the noise generated in the unsteady simulation and post-processing 

during the calculation of the effective phase velocity. For this reason, fitted curves of the 

histories of effective-phase-velocity difference are selected hereafter for determining the 

deflection tendency. We call these fitted curves “trend lines” for this study. The trend line 

in Fig. 5-19 shows that the difference of the effective phase velocity between the two 

consecutive vortex dipoles reduces as they travel towards the far wake. In particular, the 

difference of the effective phase velocity begins to have negative values around t = 24.7, 
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when the three pertaining vortices (A, B and C) reach the deflection switching region 

(marked as the dash-dot box in Fig. 5-16). As the time goes on, the difference of the 

effective phase velocity tends to be more negative. This proves the fact that the two 

consecutive vortex dipoles tend to change their moving direction to cause a local 

deflection switch inside the region of the dash-dot box in Fig. 5-16.  Therefore, the 

difference of the effective phase velocity is recognized as an indicator of deflection 

switching. In what follows, we will reveal the mechanisms that cause such a change in 

the difference of the effective phase velocity over time in the wake. 
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(a)

(b) 

Figure 5-20 Trend lines illustrating (a) the effect of the two terms in Eq. (5.4) 

1st term: Udipolesinα; 2nd term: (-Vphase); 

(b) individual effects of Udipole and sinα ratio on the difference of the 1st term in Eq. (5.4). 

The details are actually in the individual effects of each of the two terms in Eq. (5.4). 

Fig. 5-20(a) evidently illustrates that the effective-phase-velocity difference due to the 1st 

term of Eq. (5.4) plays the dominant role. The curve of the difference of the 1st term has 

almost the same shape as the curve of the effective-phase-velocity difference; the 

discrepancy between these two curves is nearly a constant, which is the contribution from 

the difference of the vortex phase velocity in the cross-flow direction. Additionally, the 
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individual effects of the self-induced dipole velocity and sinα in the 1st term of Eq. (5.4) 

have been separated and plotted in Fig. 5-20(b). Since the 1st term in Eq. (5.4) is a 

production of self-induced dipole velocity and sinα, the ratios of these two quantities 

between the two dipoles are used to facilitate the discussion. The ratio of a quantity is 

defined as the ratio between the quantity of the dipole “A&B” and that of the dipole 

“B&C” in Fig. 5-16. It is noticed in Fig. 5-20(b) that the effect of Udipole, which 

symbolizes the difference of the self-induced dipole velocities between the symmetry-

breaking and symmetry-holding vortex dipoles, is the primary driving factor for the 

variation of the 1st term in Eq. (5.4).  

Consequently, it can be concluded that the change in the difference of the effective 

phase velocity between the two consecutive vortex dipoles is mainly due to the difference 

of their self-induced dipole velocity. In the following two sections, we will first discuss 

the change in the self-induced dipole velocity from the near wake to the far wake and 

then comment on the minor factor of the dipole angle, α. 
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Figure 5-21 Individual effects of Γ ratio and 1/ξ ratio on the ratio of dipole velocity 

 

Figure 5-22 Comparisons of the histories of ξ  
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5.4.2 The Change of the Self-Induced Dipole Velocity 

A further question is what leads to the change in the difference of dipole velocities in 

the far wake. As the Biot-Savart law shows in Eq. (5.5), the dipole velocity is obtained by 

dividing the vortex strength by the distance between the two vortices in the dipole. 

Therefore, the ratios of these two quantities between the two successive dipoles are 

plotted in Fig. 5-21, which are similar to the plots in Fig. 5-10. Fig. 5-11 exhibits that the 

vortex dipoles with “A&B” and “B&C” have almost the same average dipole strength all 

the time. However, there is a significant drop of the 1/ξ-ratio that obviously results in the 

reduction of the ratio of the dipole velocity. Fig. 5-22 illustrates the history of the two ξ’s. 

The ξ between vortices “A” and “B” starts with a very small value when these two 

vortices just detach from the trailing edge of the airfoil, and it keeps increasing as these 

two vortices travel farther downstream. The ξ between vortices “B” and “C” has a 

reversed trend: it has a very large initial value when vortices “B” and “C” are in the near 

wake and continue to decrease as the vortices move far downstream. The two ξ values of 

“A&B” and “B&C” reach an identical value around t = 24.7. The same phenomenon can 

also be qualitatively observed in Fig. 5-16. The distance between the vortices of dipole 

“A&B” is apparently shorter than that between the vortices of dipole “B&C” in the near 

wake. In the far wake region, near where the dash-dot line box is indicated, the distances 

between any two consecutive vortices among three vortices of the two dipoles become 

approximately the same.  
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Figure 5-23 Schematic view of parameters for calculating the Biot-Savart induced velocities 

The final questions are what causes the change of the distance between the two 

vortices in a dipole, and why does the size of the symmetry-breaking dipole increase as it 

travels from the near wake to the far wake while the size of the symmetry-holding dipole 

is decreasing during the time? To answer these two questions we start by looking at the 

influence of each individual vortex on other vortices in the vicinity based upon the Biot-

Savart law. For example, VI  in Fig. 5-23 is the induced velocity by vortex “II”, and it 

tends to move vortex “I” to the direction of “VI” in an infinitesimal time Δt. After this 

infinitesimal time, the expected location of the center of vortex “I”, as shown in the dash-

dot-dot circle in Fig. 5-24, can be calculated based upon the location of vortex “I” at the 

current moment and VIΔt. A similar procedure can be applied to vortex “II” and vortex 

“III”. It should be noted that vortex “II” has two induced velocities – one is due to vortex 

“I” and the other is vortex “III”.  
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Figure 5-24 Expected locations of vortices based on the Biot-Savart law 

The fact that no other vortices need to be considered will be carefully discussed at the 

end of this section. Moreover, for simplicity, the influence from vortex “III” on vortex “I” 

is neglected, since the distance between these two vortices is large enough that the 

induced velocity is negligible. After the expected locations of vortices “I”, “II” and “III” 

are obtained, as shown in Fig. 5-24, the expected distances between the two vortices in a 

dipole can be calculated. Then the change of this distance, Δξ, can be determined by the 

difference between the expected ξ and the original ξ obtained by the numerical simulation. 

This Δξ indicates a predicted tendency of the change of ξ in the dipole. A positive Δξ 

means the distance between the two vortices in the dipole is expected to be increasing 

and the two vortices tend to get away from each other, and vice-versa. The vortices “A”, 

“B” and “C” in Fig. 5-16 are denoted as vortices “I”, “II” and “III” in the Biot-Savart law 

described in Fig. 5-23. It is noted that Fig. 5-23 illustrates a general vortex model rather 
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than specifically only for vortices “A”, “B”, and “C” in Fig. 5-16, the notations in Fig. 5-

24 are different from that in Fig. 5-16. (This same statement also applies to Fig. 5-18, 

which indicates a general definition rather than what is shown in Fig. 5-16).  

 

Figure 5-25 Histories of Δξ of the two consecutive dipoles 

Fig. 5-25 shows that Δξ in dipole “A&B” is always positive, which explains why ξ of 

dipole “A&B” in Fig. 5-22 keeps increasing. In addition, the value of Δξ keeps growing 

over the time in Fig. 5-25, which confirms that the rate of change of ξ of “A&B”, in Fig. 

5-22, is getting larger. On the other hand, for Δξ of dipole “B&C”, Fig. 5-25 shows its 

value is always negative. This explains why ξ of dipole “B&C”, in Fig. 5-22, remains 

decreasing. Likewise, the magnitude of Δξ of “B&C” decreases with time, providing the 

reason why the rate of change of ξ of “B&C”, in Fig. 5-22, is getting smaller over the 

time. Another interesting phenomenon is that the magnitude of Δξ of “B&C” is larger 

than that of “A&B” at the beginning in Fig. 5-24 (t = 22.5). This means that the rate of ξ 
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decrease of “B&C” is larger than the rate of ξ increase of “A&B”, a phenomenon also 

shown in Fig. 5-22. It is worth noticing that the vortex model described in Figs. 5-23 and 

5-24 can theoretically predict the motion of vortices described in these two figures and 

the trend is consistent with that shown in Fig. 5-25; details can be found in the Appendix 

IV. 

Now, we come back to explain why the effect of other vortices is excluded. If the 

vortices are far away from the considered unit (the two vortex dipoles of “A&B” and 

“B&C”), their effect can be neglected because of the reciprocal-distance influence of the 

Biot-Savart law. There are two neighboring positive vortices whose effect has been 

neglected: one near the right boundary of the considered unit and the other near its left 

boundary in Fig. 5-16. Here we discuss the effect of the one near the right boundary, 

vortex “D”, and the one near the left boundary can be discussed in the same way. If the 

effect of vortex “D” is involved in calculating the expected location of the center of 

vortex “C”, vortex “D” will actually push “C” away from “D”, because the structure 

combining “C” and “D” is very similar to dipole “A&B”. Fig. 5-24 has already exhibited 

that such a pattern between vortices “A” and “B” causes them to push each other away. 

Therefore, the effect of vortex “D” on vortex “C” actually reinforces the effect of vortex 

“B” on vortex “C” since vortex “B” tends to attract vortex “C” moving towards vortex 

“B”. Consequently, the effect of vortex “D” on vortex “C” does not change the way that 

vortex “C” moves in the original discussion. Therefore, for simplicity and the purpose of 

understanding the trend, the effect of vortex “D” can be excluded when calculating the 

expected location of the center of vortex “C”. The same reason can be applied to the 
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calculation of the expected position of vortex “A” involving a positive vortex near the left 

boundary of the considered unit.   

 

(a) 

(b) 

Figure 5-26 (a) The individual effect of sinα of ‘A&B’ and ‘B&C’ (b) Comparisons of α between 

‘A&B’ and ‘B&C’ 

5.4.3 The Effect of the Dipole Angle, α 

As is plotted in Fig. 5-20(b) and mentioned previously, the change of ratio of sinα has 

some minor contributions to the variation of the 1st term in Eq. (5.4).  Fig. 5-26(a) shows 
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that the change of sinα over time is primarily due to the change of sinα of “A&B”. The 

variation of that of “B&C” is very small. This is also confirmed by Fig.5-26 (b). In order 

to investigate the physics behind the change of α of “A&B” over time, the Biot-Savart 

law has been employed here again.  

 

Figure 5-27 Histories of Δα of “A” and “B” predicted by the Biot-Savart Law 

Fig. 4-27 shows that Δα of “A&B” is always negative. Therefore, the angle of dipole 

“A&B” is expected to decrease with time, which is consistent with what Fig. 5-26(b) 

exhibits. In addition, the magnitude of the Δα of “A&B” decreases with time, which is 

also shown in Fig. 5-26(b) that the slope of the curve of α of “A&B” reduces as the 

vortices propagate from the near wake to the far wake. Since the change of α has the 

opposite tendency from the change of ξ, it therefore further enhances the change of the 

effective phase velocity, because the 1st term of Eq. (5.4) is proportional to sinα/ξ.  
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5.5 Summary of the Far Wake Deflection and Vortex Switching 

 Asymmetric vortical wakes downstream of a two-dimensional heaving airfoil have 

been studied numerically. The results confirm that a heaving airfoil with an extremely 

high amplitude or frequency does not produce asymmetric wakes. A switch of vortex 

pairing patterns was found to be the key factor that reduces the asymmetry of the vortex 

wake in the cases of high heaving frequencies or amplitudes. Due to this type of vortex 

pattern switching, the deflection trend develops faster but disappears earlier in the far 

wake than in the near wake as the frequency increases at a fixed Strouhal number. The 

vortex strength and its dissipation were revealed to be the primary reason why the switch 

of the vortex pattern only occurs in the cases with a relatively high Strouhal number or a 

high Reynolds number.   

The mechanisms of the switch of the vortex pairing pattern were carefully investigated 

by a vortex dipole model. This model is different from that in Godoy-Diana et al.220 in 

the sense that the cross-flow effective phase velocity was introduced to analyze the 

already-formed asymmetric wake behind the airfoil. The change of the distance between 

the vortices was the key factor leading to the toggle condition of the switching in the far 

wake. The change of the angle of Udipole enhanced the effect of the change in the distance 

between the vortices to cause switching of the vortex pattern. A vortex dynamics model 

based on the Biot-Savart law was employed to support the argument that the distance 

between the vortices and the angle of Udipole vary from the near wake to the far wake. The 

theoretically predicted trends of the change for these two quantities were consistent with 

the numerical simulation results. Furthermore, the changing orientation of the vortex-
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dipole self-induced velocity also enhances the effect of the changing distance between the 

vortices on the switch of the vortex pattern. 

6 Energy Harvesting 

6.1 Energy Harvesters with Active Heaving/Pitching Motions 

This section numerically studies the response of a two-dimensional flapping airfoil in 

the wake downstream of an oscillating D-shape cylinder. The airfoil has either heaving or 

pitching motions. The leading edge vortex (LEV) and trailing edge vortex (TEV) of the 

airfoil are ascertained to be critical to energy harvesting. Two major interaction modes 

between the airfoil and incoming vortices, the suppressing mode and the reinforcing 

mode, are identified, which are of pivotal importance to the formation of LEVs and TEVs. 

However, distinctions exist between the heaving and pitching motion in terms of their 

contributions to the interaction modes and the efficiency of the energy extraction. A 

potential theory and related fluid dynamics analysis are developed to quantitatively 

demonstrate that the topology of the incoming vortices corresponding to the airfoil is the 

primary factor that determines the interaction modes. Finally, the trade-off between the 

input and output is discussed. It is found that appropriate operational parameters for the 

heaving motion are preferable in order to preserve acceptable input power for energy 

harvesters, while appropriate parameters for the pitching motions are essential to achieve 

decent output power.  
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Figure 6-1 Sketch of the configuration of the system of a cylinder and a foil. 

The IB scheme has been extensively proved capable of dealing with unsteady flow 

problems involving single or multiple bodies20, 159-161. It is further validated with the 

configuration of a circular cylinder and elliptical airfoil, as shown in Fig. 6-1. In the 

validation case, the diameter of the cylinder is identical to the chord length of the airfoil, 

and both them are stationary. The angle of attack of the airfoil keeps at 30º, and its 

streamwise distance from the center of the cylinder is 5-unit lengths. The transverse 

positions of the airfoil vary at d = -1, 0, and 1, and the Reynolds number remains 500. 

The comparisons in Fig. 6-2 show good agreements with the results in Ref.162 for the 

analysis of histories of forces on the airfoil downstream of  the cylinder. 
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Figure 6-2 Histories of lift and drag coefficients acting on the stationary airfoil at L = 5, angle of 

attack = 30º, and d = 0 [the 1st row], 1 [the 2nd row], and -1[the 3rd row]. The left column shows the 

results from the current simulation, and the right column shows these from Liao et al.162  

In the following investigation of energy harvesting, as suggested in previous studies21, 

23, 38, 40, 163 a heaving D-shape cylinder is chosen to be located upstream. Its motion is 

specified as 
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 ( ) sin(2 )c c cy t h f t  (6.1) 

where hc  and f are the heaving amplitude and frequency, respectively. Their values are 

fixed at hc = 0.25 and f = 0.2 in order to obtain identical wakes upstream of the airfoil for 

all the cases. Moreover, an elliptical airfoil with either heaving or pitching motion is used. 

The heaving motion is defined as 

 ( ) sin(2 )a ay t h ft    (6.2) 

and the pitching one is 

 sin(2 )a aA ft     (6.3) 

Notice that the frequency of the airfoil for either motion is equal to that of the cylinder, 

because the resonance between the airfoil and the cylinder is required for good response 

of energy harvesting23, 38. Moreover, ϕ in Eqs. (6.2) and (6.3) indicates the phase 

difference between the moving cylinder and the purely heaving/pitching airfoil. The 

value of ϕ increases from 0º to 360º with an interval of 45º. The ah  is selected as 0.05, 

0.1, 0.2, 0.4, 0.8 and aA  are 12.5º, 25º, 60º. The pivoting point in the pitching motion is 

at half chord and αa is positive in the clockwise direction. The distance between the 

airfoil and the cylinder is 7-unit lengths in order to ensure a fully developed vortex street 

upstream of the airfoil159. The Reynolds number in all the cases of for the investigation of 

energy harvesting is fixed at 200.  

Following the literature38, the efficiency of the energy extraction is defined as the ratio 

of average output power, TFU∞, and average input power , PF 
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F

T U

P
   (6.4) 

where TF is the average thrust force coefficient. The instantaneous input power is 

 a adh d
P L M

dt dt


      (6.5) 

The moment coefficient, M, is positive in the clockwise direction, which is in the same 

sign convention as αa. In the current study, the discussions mostly focus on individual 

values of input and output power rather than their ratio – the efficiency. Basically, low or 

negative input power is favorable, so is a high and positive output power.  

The computational domain is 25.6 × 12.8, and the grid size of 0.0125 is determined to 

provide an acceptable grid-resolution-independent solution for all computational cases in 

this study after a careful grid-resolution-convergence check. All mean values of the 

power presented in this work were averaged over three airfoil oscillation cycles after the 

simulation results became periodic. In order to explicitly identify primary vortices, the 

color range of all vorticity contours in this study is from -3 to 3.   

6.1.1 Interaction Modes and A Potential-Theory Analysis 

In order to expressly investigate the effect of interaction modes between the incoming 

vortices and the LEVs/TEVs of the airfoil, the distance between the center of the cylinder 

and the airfoil is fixed, while the phase between the motion of the cylinder and that of the 

airfoil varies. It has a notable advantage of doing this over changing the distance between 

the two as in the previous studies15, because the incoming vortices interacting with the 

airfoil in all the cases studied here would have similar strengths. Consequently, the 
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differences in the resultant powers are primarily led by the interaction modes. The 

relation between the interaction modes and the energy harvesting performance of the 

airfoil will be deliberately demonstrated in the next section. In the following context of 

this section, the two primary interaction modes will be illustrated, and a potential-theory 

analysis that assists to comprehend the onset of the interaction modes is presented here.  

 

 

Figure 6-3 (a) The suppressing mode of the LEV occurs in the case of ha = 0.1 and ϕ = 225˚, and (b) 

The reinforcing mode of the LEV occurs in the case of ha = 0.1 and ϕ = 45˚. A quarter cycle of the 

airfoil down stroking motion is experienced from “the current moment” to “the next moment” 

in this figure.   

The two primary interaction modes are the suppressing mode and the reinforcing 

mode. They are possibly formed with either heaving airfoils or pitching ones for the LEV 

or the TEV. Figure 3 illustrates a pair of typical interaction modes for the LEV observed 

in the cases with heaving airfoils. In Fig. 3(a), there is an LEV attached to the lower 
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surface of the airfoil at “the current moment”. The strength of this LEV is apparently 

reduced in “the next moment” of Fig. 3(a). Therefore, this LEV is suppressed and the 

suppressing mode of the LEV occurs in Fig. 3(a). In the contrast, the strength of LEV is 

enhanced from “the current moment” to “the next moment” in Fig. 3(b). In other words, 

this LEV in Fig. 3(b) is reinforced and the reinforcing mode of the LEV occurs in Fig. 

3(b). In addition, by comparing Figs. 3(a) & 3(b), one may easily observe that the 

topology of the incoming vortices corresponding to the airfoil is very different for 

different interaction modes. In order to better comprehend the connection between the 

topology of the incoming vortices and the interaction modes, a potential theory for invisid 

incompressible flow is developed.  

 

Figure 6-4 A sketch of the complex potential theory and coordinate transformation 

Based on the method of images164-166, the complex velocity potential on a circular 

cylinder with a point vortex outside can be established in a complex plane ξ = R·eiθ . 

Because only quantities on the cylinder are concentrated on in the current study, the R is 

the cylinder radius, and the origin is on the center of the cylinder. The angle, θ, increases 

counter-clockwise from zero at the trailing edge of the cylinder. In addition, a complex 
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potential of the free stream velocity, Ux, and vertical velocity, Uy, are superimposed. The 

full equation of velocity potential for the flow field described in Fig. 6-3(a) is expressed 

as 

    
2 2 2

0 0

Freestream Velocity Vertical Velocity Point Vortex

ln ln
2 2

x x y y

R R i i R
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In Eq.(6.6), Γ stands for the circulation of the point vortex. Its location is ξ0 = γ+δi 

and its conjugate 0 is γ-δi. The components of the complex velocity field can be directly 

obtained from the complex potential by differentiation.   
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 (6.7) 

In order to map the cylinder in the ξ plane to an elliptic airfoil in the physical plane z = 

x’+y’i, the Joukowski transformation is employed: 
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Therefore, the complex velocity field in the z-plane is 

 
   dF z dF d

dz d dz

 


  (6.9) 

Finally, the pressure can be calculated from the Bernoulli equation 
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   1

2

dF z d F z
p

dz d z
   (6.10) 

It should be noted again that only the pressure along the surface of the elliptic airfoil is 

important to the current study.  

It is well known110, 167-169 that there is a very high possibility to have a flow separation 

when the boundary layer travels far enough against an adverse pressure gradient. 

Therefore, in this study, the value of adverse pressure gradient will be employed as an 

indication for possible flow separation to occur on the airfoil surface to form LEVs and 

TEVs.  



125 

(a) 

(b) 

Figure 6-5 (a) Vorticity contours for the case with a heaving airfoil ha = 0.1, ϕ = 0º. (b) A sketch of the 

relative locations of the vortices in the potential theory  

To avoid ambiguity, several terminologies need to be clarified here for the description 

and discussion in the current study. For example, in Fig. 6-5(a), the blue vortices are 

negative, which are recognized as clockwise (CW) vortices, while red ones are positive, 

and counter-clockwise (CCW) vortices. Likewise, the LEVs and TEVs are also 

distinguished by CW and CCW. In the vicinity of the airfoil, three important regions will 

often be mentioned in the following contents, which differ by their streamwise distances. 

Their ranges are x = 12 ~ 13.5 for region #1, 13.5 ~ 14.5 for region #2, and 14.5 ~ 16 for  

region #3. The positions of vortices are identified by the streamwise location of their 
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centers. The vortices are recognized as “in front of the airfoil” if their centers are in the 

region #1, “in the airfoil region” if in region #2 and “behind the airfoil” if in region #3. 

Regions upstream of region #1 and downstream of region #3 are neglected, since the 

following potential theory shows that the vortices in region #1~3 play the most important 

roles in interaction modes with the airfoil.  

Figure 6-5(b) illustrates the vortex locations in the potential theory analysis, where x’ 

= x-14. A positive Uy in the potential theory indicates that the airfoil is undergoing a 

downstroke heaving in the simulation. The vortices at x’ = -2 & -1 are in front of the 

airfoil, with x’ = -0.5, 0 & 0.5 in the airfoil region and x’ = 1 & 2 behind the airfoil. The 

magnitude of y’ is always 0.7, which is the position of the incoming vortices in the cross-

flow direction in the numerical simulation and thus the theoretical analysis is about this 

value after they entering region #1. Moreover, the circulation of vortices is calculated 

based on a vorticity area integration method20 and the values are nearly π; therefore, the Γ 

is selected as π in the potential theory. Moreover, the interaction modes are identified 

corresponding to their influences on the formation of LEVs and TEVs compared with the 

case of a single airfoil in a uniform flow without any incoming vortices. This baseline 

case, which is only involved in the potential theory analysis here, will be called as “single 

airfoil case” in the following content.  
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Figure 6-6 While the CCW vortex is approaching, the distribution of the pressure coefficient in the 

vicinity of the leading edge and trailing edge of an airfoil on its (a) lower surface and (b) upper 

surface. The motions of the leading edge and trailing edge in this figure are both 2πfa×0.4 downward. 

For the lower surface, the degree increases counter-clockwise from zero at the leading edge to 180 

degree at the trailing edge of the airfoil. For the upper surface, the degree increases clock-wise from 

zero at the leading edge to 180 degree at the trailing edge. 

Without incoming vortices, the single airfoil case with VLE=VTE=2πfa×0.4 (see Figs.6-

6 ), obtains a relatively high adverse pressure gradient near the leading edge (LE) of the 

airfoil. In addition, the lowest pressure near the LE occurs on the upper surface. These 

indicate that the flow is possible to form an LEV on the upper surface of the airfoil. 

Interestingly, near the trailing edge (TE) of the airfoil, an adverse pressure gradient and a 

low pressure value exist on the lower surface, whose magnitudes are comparable to those 

on the airfoil upper surface near the LE. However, the distance from the lower pressure 

point to TE might be too short for flow to travel long enough with the adverse pressure 

gradient. Therefore, it is expected that the lower surface has less chance to form a TEV 

than the upper surface to form a LEV; nevertheless, the possibility might not be 

negligible.  

When the positive CCW vortex enters region #1, i.e. x’=-2 in Fig. 6-7, the magnitude 

of the adverse pressure gradient increases in the vicinity of the LE on both the upper and 
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lower surface of the airfoil compared with that in the single airfoil case. Moreover, the 

lowest pressure still exists on the upper surface. Consequently, it has more possibility to 

form an LEV on the upper surface than in the single airfoil case. This possibility 

increases as the CCW vortex approaches the airfoil and achieves a higher adverse 

pressure gradient at x’=-1, yet it begins to decrease after that and reaches a relatively 

lower value at x’=-0.5. As the CCW vortex keeps moving horizontally, i.e. x’>-0.5, the 

magnitudes of the adverse pressure gradient and lowest pressure for both LE and TE are 

substantially reduced compared with the single airfoil case. Since the LEV on the upper 

surface and TEV on the lower surface are usually clockwise and counter-clockwise, 

respectively, during the downstroke heaving motions, it can be concluded that the 

incoming CCW vortex strongly reinforces the formation of the CW LEV and CCW TEV 

while it is in region #1 and strongly suppresses them while in regions #2 & #3. 

Alternatively, the former vortex obtains a strong reinforcing mode for the latter two 

vortices in region #1 and a strong suppressing mode in regions #2 & #3. 

 

 
Figure 6-7 While the CW vortex is approaching, the distribution of the pressure coefficient in the 

vicinity of the leading edge and trailing edge of an airfoil on its (a) lower surface and (b) upper 

surface.  

The motions of the leading edge and trailing edge in this figure are both 2πfa×0.4 downward. The 

degree increases counter-clockwise from zero at the leading edge of the airfoil. 
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The situation is opposite while a CW vortex is getting close to the airfoil, i.e. Fig. 6-7. 

Compared with the single airfoil case, the magnitudes of both pressure and its gradient in 

the vicinity of either LE or TE are tremendously reduced due to the presence of the CW 

vortex in front of the airfoil; however, they are noticeably boosted while the CW vortex is 

inside the airfoil region or behind the airfoil. Consequently, the CW vortex has a strong 

suppressing mode for the CW LEV and CCW TEV in region #1, but a strong reinforcing 

mode in regions #2 &3.    

 

Figure 6-8 While the CCW vortex is approaching, the distribution of the pressure coefficient in the 

vicinity of the leading edge and trailing edge of an airfoil on its (a) lower surface and (b) upper 

surface.  

The motions of the leading edge and trailing edge in this figure are both 2πfa×0.1 downward. The 

degree increases counter-clockwise from zero at the leading edge of the airfoil. 
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Figure 6-9 While the CW vortex is approaching, the distribution of the pressure coefficient in the 

vicinity of the leading edge and trailing edge of an airfoil on its (a) lower surface and (b) upper 

surface.  

The motions of the leading edge and trailing edge in this figure are both 2πfa×0.1 downward. The 

degree increases counter-clockwise from zero at the leading edge of the airfoil. 

Figures 6-8 and 6-9 illustrate the pressure distributions on the airfoil with smaller 

heaving velocities; they are very similar to Figs. 6-6 and 6-7, yet a few differences exist. 

The first one happens for the single airfoil case. The single airfoil case obtains relatively 

small magnitudes of pressure and its gradient in Figs. 6-6 and 6-7. It indicates that the 

single airfoil heaving under such a low speed motion rarely generates any LEVs or TEVs, 

which is reasonable. This directly results in another primary distinction between Figs. 6-6 

& 6-7 and Figs. 6-8 & 6-9. For example, the lowest pressure always occurs on the upper 

surface near the LE wherever the CW vortex is in Fig. 6-7; however, in Fig. 6-9, its 

location switches to the lower surface as the CW vortex stays in region #1. In addition, 

the magnitudes of the pressure and its gradient, with this condition, are larger than that of 

the single airfoil case. This implies that a CW vortex in region #1 may trigger an onset of 

an LEV on the lower surface of the airfoil. This is acceptable because of the following 

reasons. Figure 7 concluded that a CW vortex in region #1 preserves the strong 

suppressing mode for the LEV on the upper surface of the airfoil, while the airfoil has a 
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strong tendency to generate this LEV if the CW vortex is absent. Suppression on one side 

may reinforce the other side. Especially, with a very small possibility to form any LEVs 

in the single airfoil case with low speed motions, this strong suppressing mode for the 

LEV on the upper surface may eventually conduces to be a weak reinforcing mode for the  

LEV on the lower surface. Similar phenomena occur for the CW vortex influencing the 

formation of the TEV in Fig. 6-9 and CCW vortex impacting the formation of both the 

LEV and TEV in Fig. 6-8.  

The summary of locations of the vortices and the interaction modes is tabulated in 

Table 1.  The “weakly influenced” in Table 1 indicates that suppression of one side would 

weakly reinforce the other side and vice versa. Such a weak influence can usually be 

ignored in the cases involving incoming vortices interacting with airfoils undergoing high 

speed flapping motions, but not for those with low speed motions.  

 

Table 1 The relation between incoming vortex positions and interaction modes with an airfoil 

undergoing a downstroke heaving motion. 

 

CW LEV 

on upper surface 

CCW LEV 

on lower surface 

CCW TEV 

on upper surface 

CW TEV 

on lower surface 

CCW 

Vortex 

Region #1 + * * + 

Region #2 - * * + 

Region #3 - * * - 

CW 

Vortex 

Region #1 - * * - 

Region #2 + * * - 

Region #3 + * * + 

+: reinforcing mode or onset;   
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-: suppressing mode or no influence; 

*: weakly influenced or only the magnitude of the pressure gradient increases, yet the lowest pressure 

occurs on the other side of the airfoil; 

The rule-of-thumb can be briefly extracted from Table 1. Basically, an upstream vortex 

suppresses the LEVs with the same sign in region #1 yet reinforces them in the other two 

regions; similarly, it reinforces the TEVs with the same sign in region #3 but suppresses 

them in the other two regions.  

It should be emphasized again that interaction modes deduced from the potential 

theory only provide a guideline. High possibilities may not guarantee existence. 

Moreover, the amplitude of the heaving motion is intentionally chosen to be small to 

avoid substantial interactions with the cores of the vortices for the validity of the potential 

theory. In the next section, the cases with airfoils tremendously interacting with the 

vortices exhibit bad resultant power, which makes the discussion of interaction modes 

become less valuable under such circumstances. Moreover, the interaction modes in Table 

1 are only for the airfoil experiencing a downstroke heaving motion. In analogy to this 

table, Table 2 is made for the airfoil undergoing an upstroke heaving motion.  

 

Table 2 The relation between incoming vortex positions and interaction modes with an airfoil 

undergoing an upstroke heaving motion. 

 

CW LEV 

on upper surface 

CCW LEV 

on lower surface 

CCW TEV 

on upper surface 

CW TEV 

on lower surface 

CCW 

Vortex 

Region #1 * - - * 

Region #2 * + - * 

Region #3 * + + * 
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CW 

Vortex 

Region #1 * + + * 

Region #2 * - + * 

Region #3 * - - * 

+: reinforcing mode or onset;   

-: suppressing mode or no influence; 

*: weakly influenced or only the magnitude of the pressure gradient increases, yet the lowest pressure 

occurs on the other side of the airfoil; 

The extra value of making Table 2 is for the cases with a purely pitching airfoil. A 

purely heaving motion should maintain a VLE=VTE in Fig. 6-5, yet a purely pitching 

motion with the half chord as the pivoting point can be recognized as having VLE=-VTE. 

Since only 10 degrees is considered near the LE and TE for interaction modes in Figs. 6-

6~6-9, it is acceptable to assume that the speeds are constant near the end of the airfoil 

for a pitching motion. Furthermore, as discussed above for Figs. 6-6~6-9, the strongest 

suppression or reinforcement often occurs when the vortices are located around x’ = -1 

and 1, which will be called “critical positions” in the later discussion. The effect of 

vortices on the airfoil is gradually reduced as they are far away from the airfoil, i.e. x’ < -

2 or x’ > 2. Therefore, the impacts on vortices to the flapping airfoil in those regions are 

neglected in the current study. 

The interaction modes in the potential theory are identified by looking at individual 

incoming vortices. In reality, multiple vortices may fall into region #1~3 and 

simultaneously interact with the airfoil. Therefore, the overall leading interaction modes 

should be determined by the competition among those vortices in the numerical 

simulations. Since the histories of coefficients and the heaving/pitching velocity are 

periodic and symmetric corresponding to zero, only a half cycle, i.e. the downstroke 
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heaving or the counter-clockwise pitching, is plotted out in the following contents for 

analysis. The demonstration of the other half should be very similar. Finally, t/T = 0 is 

assumed to be the moment that the airfoil reaches its maximum vertical displacement for 

heaving or its maximum angle of attack for pitching.  

6.1.2 Purely Heaving Motions 

 

Figure 6-10 Input and output powers for the cases with different heaving amplitudes and phase 

differences.  

As mentioned in the section on potential theory analysis, the half width of the 

incoming vortex stree in front of the airfoil is around 0.7, based on which the choice of 

the heaving amplitude can be roughly categorized into three types. The first type is for 

small amplitudes, i.e. ha = 0.05, 0.1, 0.2, which provides a relatively safe region for the 

airfoil to heave rather than substantially interacting with the cores of the incoming 

vortices. Among these cases, the changing trends of either input power or output power 

are very similar, as shown in Fig. 6-10. The peak values are obtained at ϕ = 45˚ and 255˚. 

The best result input power always comes with the worst output power. Most importantly, 

the magnitude of the peak values increases as the amplitude of the airfoil motion enlarges. 
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The second type is for intermediate amplitudes, i.e. ha  = 0.4; the heaving airfoil gradually 

has stronger interaction with the cores of the incoming vortices as the amplitude increases. 

There is a possibility for the airfoil to interfere with the shape and the travel path of the 

incoming vortices. The potential theory can only be partially employed to interpret the 

flow phenomena under this circumstance, which will be demonstrated later. With the 

operation parameters in this category, the resultant powers usually are not comparably 

with that of the small amplitude type. For example, the worst scenario of both input and 

output power of the case with ha = 0.4 are much worse than that with ha = 0.2, whereas 

the best scenario in the former cases is not better than that in the latter cases. The last type 

is for amplitudes larger than 0.7, i.e. ha  = 0.8, which guarantees significant interactions 

with incoming vortices and may noticeably deform them or change their paths. The 

potential theory is totally not valid. Particularly, the resultant powers for ha  = 0.8 are not 

plotted in Fig. 6-10, since even the lowest input power is as high as 0.47 at ϕ = 180˚; the 

range of the output power is comparable to that of the cases in Fig. 6-10 (b).These badly 

resultant powers make the discussion of the interaction modes less valuable with the large 

heaving amplitudes. In the following contents, the case with ha = 0.1 and 0.4 will be 

brought out as examples for the first and second types of heaving amplitudes, respectively, 

in order to demonstrate the relationship between the interaction modes and their 

influences on the resultant powers under different circumstances.  
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6.1.2.1 Small heaving amplitudes 

 

Figure 6-11 Input and output powers for the cases with ha = 0.1. 

Dashed lines in the figures indicate the input/output power for a single elliptical airfoil with the 

absence of the upstream cylinder 

 A typical case of small amplitude is exhibited in Fig. 6-11, which shows, with 

different phase differences, the resultant powers vary. The output power in the presence 

of incoming vortices is always enhanced against the single airfoil case. It may be caused 

by the reserved von-Karman vortex street generated by the heaving cylinder in the 

current study170, which embeds the thrust force in its wake. On the other hand, the 

incoming vortices have the capability to either increase or decrease the input power of the 

airfoil.  Those distinctions will be explicitly revealed by the analysis corresponding to the 

interaction modes in the following sections.   



137 

 

Figure 6-12 Lift and thrust coefficients, translational velocity, and vorticity contours of the 

airfoil over the half cycle of downstroke for the case of ha = 0.1 and ϕ = 45˚.  

Figure 6-12 illustrates the case of an unfavorable input power. At the beginning of the 

downstroke, in Fig. 6-12(a), a CW vortex is in the airfoil region, a CCW vortex is in front 

of the airfoil, and another CCW one is behind. Based on the potential theory in Table 1, 

the CCW vortex in the front of airfoil produces the reinforcing mode for the CW LEV 
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which slightly suppresses the CCW LEV. This effect may be cancelled by that of the 

CCW vortex behind the airfoil, which is near its critical position, i.e. x’ = 1. However, the 

CW vortex above the airfoil falls into the airfoil region, which brings about a reinforcing 

mode for the CW LEV and hence a suppressing one for the CCW LEV. Consequently, at 

this moment t/T = 0, the existing CCW LEV is being suppressed. From t/T = 0 ~ 0.25, the 

CCW vortex in front of the airfoil gradually travels to its critical position, i.e. x’ = -1, and 

the one behind the airfoil moves away from x’ = 1; the reinforcing mode for the CW LEV 

from the former vortex overwhelms the suppressing mode from the latter one. In addition, 

the CCW vortex on the top of the airfoil stays in the airfoil region. Therefore, the CCW 

LEV is obviously enervated, yet a CW LEV is formed, as shown in Fig. 6-12(c). This 

CW LEV keeps growing till the end of this stroke.  

In terms of the CW TEV, both the CCW vortex behind the airfoil and the CW one in 

the airfoil region suppress it, and only the CCW vortex in front of the airfoil reinforces it 

with limited strength; hence, this CW TEV is being suppressed. As suggested in the 

potential theory, in the conditions with small heaving amplitudes, a CCW TEV may be 

triggered on the other side of the airfoil during the consecutive downstroke heaving due 

to the strong suppressing mode for the CW TEV, which is confirmed by Figs. 6-12 (d) & 

13(e). This phenomenon will be further demonstrated in the discussion for the next figure.  

The mapping between the input power and the LEV and TEV can also be investigated 

by Fig. 6-12. At t/T = 0, although a small CCW LEV and a small CW TEV remain from 

the last half cycle of the upstroke, the lift coefficient is positive due to the presence of the 

CW vortex closely staying above the airfoil. Therefore, at this initial stage, the input 

power is unfavorably positive since the sign of lift coefficient and airfoil heaving velocity 
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is different. With the development of both the LEV and TEV on the upper surface of the 

airfoil, the lift coefficient stays positive. Particularly at t/T = 0.375 (Fig. 6-12 (d)) the 

CCW vortex is about to enter the airfoil region while the CW one is about to leave; 

therefore, their direct contributions to the normal force on the airfoil could be cancelled. 

However, an obvious positive lift coefficient still exists which should be primarily 

attributed by the well-formed CW LEV and CCW TEV on the upper surface of the airfoil. 

Although, from this moment to the end of the downstroke, the lift coefficient becomes 

negative because of the rising influence of the CCW vortex below the airfoil, the 

magnitude of the negative lift coefficient and the airfoil heaving velocity are both very 

small; hence, the resultant favorably negative input power is limited compared to the total 

amount of positive input power generated in the previous part of this half cycle.  
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Figure 6-13 Lift and thrust coefficients, translational velocity, and vorticity contours of the airfoil 

over the half cycle of downstroke for the case of ha = 0.1 and ϕ = 225˚. 

The situation is opposite for the case of ϕ = 225˚, which produces a negative total 

input power. At the beginning of the downstroke (Fig. 6-13(a)) a negligible CW LEV and 
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a small CCW TEV remain on the top of the airfoil. The suppressing impact from the CW 

vortex in front of the airfoil for the CW LEV is comparable to the reinforcing one from 

the CW vortex behind the airfoil. Nonetheless, the strong suppressing mode for the CW 

LEV from the CCW vortex in the airfoil region results in no CW LEVs apparently 

formed in the duration of t/T = 0 ~0.125. Instead, a CCW LEV is generated on the bottom 

of the airfoil around t/T = 0.25. This phenomenon is again predicted by the potential 

theory, which has been distinctly pointed out in the discussion for Figs. 6-8 and 6-9. At 

this moment in Fig. 6-13(c), the CW vortex in front of the airfoil reaches the critical 

position, and the CCW vortex is under the TE; both these vortices have strong 

suppressing modes on the CW LEV, which, as mentioned in the section on the potential 

theory, have a tendency to trigger the onset of the CCW LEV on the other side of the 

airfoil if a low speed heaving motion is applied. Although the CW vortex behind the 

airfoil has a weak suppressing mode on this CCW LEV, this LEV has been developed 

from t/T = 0.25 ~ 0.375 in the numerical simulation. Interestingly, the situation is 

completely changed in the interval of t/T = 0.375 ~ 0.5. With another CCW vortex freshly 

entering the region in front of the airfoil and producing a suppressing mode to the CCW 

LEV, the reinforcing mode from the CCW vortex under the airfoil is balanced. 

Furthermore, once the centroid of the CW vortex above the airfoil passes the LE of the 

airfoil, its interaction mode for the CCW LEV shifts from the reinforcing mode to the 

suppressing one. As a consequence, these swift switches in a very short period weaken 

the strength of the CCW LEV in Fig. 6-13(e) right after its full development in Fig. 6-

13(d). Fortunately, this procedure is of pivotal importance in preventing such an LEV 
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from making any adverse contributions to the favorable input power for the consecutive 

upstroke heave.  

Likewise, the CCW TEV at t/T = 0 is majorly suppressed by the CCW vortex under 

the airfoil, and the impact from one CW vortex cancels the other. Due to this suppressing 

mode, the CCW TEV quickly detaches the airfoil from t/T = 0 to 0.25. Similarly, a CW 

TEV is about to be formed at t/T = 0.375 as a result of the competition between the 

reinforcing mode from the CCW vortex under the airfoil and the suppressing mode from 

the CW vortex in front of the airfoil. 

The histories of the lift coefficient and heaving velocity in Fig. 6-13 further 

demonstrate the importance of the interaction modes for good input power, especially 

through the formation of the CCW LEV and CW TEV. The lift coefficient is roughly zero 

at the beginning of the downstroke. Because of the detachment of the TEV and absence 

of the LEV, the CCW vortex under the airfoil plays a very important role in generating 

the negative lift coefficient during t/T = 0 ~ 0.25, which contributes significantly to the 

favorable input power. After that, although the CW vortex starts entering the airfoil 

region and producing a positive lift coefficient, the developing LEV and TEV on the 

lower surface of the airfoil make their effort to balance the negative impact contributed 

by the CW vortex to the favorable input power. Particularly, in Fig. 6-13(e), the centroid 

of the CW vortex is inside the airfoil region and the CCW vortex is outside; because of 

the presence of the TEV on the lower surface of the airfoil, the lift coefficient becomes 

almost zero again, making it more than ready to achieve the favorable input power for the 

consecutive upstroke.   
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In addition to the input power, the interaction modes also influence the output power. 

Due to the small heaving amplitude of the airfoil, incoming vortices would not be 

substantially disturbed by the airfoil motions and the reserved von-Karman vortex street 

should remain downstream of the airfoil. This indicates that the difference in the output 

power between the cases in Figs. 6-12 and 6-13 would primarily be contributed by the 

LEVs and TEVs. Since both cases in these two figures form TEVs and their strengths are 

comparable, the LEVs become the key to the difference in the output power. In Fig. 6-11, 

reinforced LEVs create low pressure regions in the vicinity of the LE, which is also 

illustrated in the potential theory. Such low pressures provide noticeable suction forces 

and give the airfoil the ability to obtain thrust rather than drag. In contrast, with the 

absence of the LEV in Fig. 6-12, the airfoil keeps producing drag and results an overall 

negative output power, as shown in Fig. 6-10.  
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6.1.2.2 Intermediate Heaving Amplitudes 

 

Figure 6-14 Lift coefficients, translational velocity, and vorticity contours of the airfoil over the 

half cycle of downstroke for the case with ha = 0.4 and ϕ = 45˚.  

The first impressions of the vorticity contours in Fig. 6-14 compared to those in Fig. 

6-12 are the strong LEVs and TEVs. In addition, the strength of the incoming vortices is 

weakened by their substantial interactions with the airfoil. As mentioned before, the 
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potential theory proposed in the current work has some limitations under such a 

circumstance.  A good example is that the theory does not include the effect of one strong 

LEV/TEV on another LEV/TEV. Therefore, the analysis for Fig. 6-14 does not involve 

such influences related to developed LEVs and TEVs. Moreover, since the impact of 

diminished vortices downstream of the airfoil is limited, the vortices in front of the airfoil 

and in the airfoil region will be mostly concentrated for the current analysis.  At t/T = 0, 

both the CW vortex in the airfoil region and the CCW vortex in front of the airfoil carry 

reinforcing modes for the CW LEV, which suppress the existing CCW LEV in Fig. 6-14 

(a). In Fig. 6-14 (b) & 6-14(c), the CW LEV starts to develop and wrap up the CW vortex 

on the top of the airfoil. This wrapping-up keeps the CW vortex staying in the airfoil 

region and eventually merging itself with the CW LEV, which strengthens its reinforcing 

mode for the CCW TEV. Although the CCW vortex in the front of the airfoil obtains a 

suppressing mode for this TEV, a strong CCW TEV has eventually been formed in the 

numerical simulation. With the presence of both a strong LEV and TEV, relatively 

positive large lift coefficients are generated, which make substantially negative 

contributions to the input power. The situation does not change until Fig. 6-14 (e) while 

most of the CCW vortex enters the airfoil region and begins to balance the positive lift 

produced by the fully developed LEV and TEV. 

Although strong LEVs are formed, the strong TEVs ruin the output power in this case. 

Worse still, the weakened vortices behind the airfoil are often located in the mean 

position of the heaving motion, which induces suction pressure for drag generation. This 

might explain why the output power for this case is almost zero in Fig. 6-10, which is 

worse than that for the case in Fig. 6-12.  
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Figure 6-15 Lift coefficients and translational velocity and vorticity contours of the airfoil over 

the half cycle of downstroke for the case with ha = 0.4 and ϕ = 225˚.  

The topology of the vortices and TEVs in Fig. 6-15 is very similar to that in Fig. 6-13. 

The primary difference between these two figures is the appearance of the CCW LEV.  

Since the heaving amplitude was small, the CW LEV was not observed in Fig. 6-13 due 

to the overall suppressing mode from the vortices surrounding the airfoil; instead, a CCW 
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LEV was formed on the lower surface of the airfoil in Figs. 6-14(c)~(e), which assists 

producing a favorable input power. In Fig. 4-42, the overall suppressing mode still exists 

in Figs.  6-15(a) to (c); however, maybe due to the strong tendency of generating a CW 

LEV for the airfoil with large heaving amplitudes, a thin boundary layer with the negative 

(CW) vorticity sign is formed rather than a fully developed CW LEV. Although this thin 

boundary layer results in much smaller positive lift coefficients than the fully developed 

CW LEV in Fig. 6-14, it still makes adverse contributions to the favorable input power 

until it is mostly suppressed in the interval between Figs. 6-15(c) and 6-15(d). After that, 

a thin boundary layer and a strong CW TEV are formed on the lower surface of the airfoil 

to improve the input power. However, the positive impact from this thin boundary layer 

and CW TEV emerges too late for the downstroke in Fig. 6-15. As shown in Fig. 4-37, 

the final averaged input power for this case of Fig. 6-15 is not better than that for the case 

in Fig. 6-13, whereas the peak lift coefficients in Fig. 6-15 are almost twice as larger as 

that in Fig.6-13. 

Furthermore, with the relatively large amplitude, there are few moments in Fig. 6-15 

when strong vortices are located right behind the TE of the airfoil, i.e. Figs. 6-15 (a) and 

6-15(e). This would tremendously destroy the resultant output power. Compared with Fig 

6-13 that the vortices behind the airfoil are always far away from the TE and hence the 

drag is mostly contributed by the small TEVs, it is not unexpected that the case in Fig. 6-

15 leads to an apparently worse output power against that in Fig. 6-13 (see Fig. 6-10).  
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6.1.3 Purely Pitching Motions 

 

Figure 6-16 Input and output powers for the cases with different pitching amplitudes and phase 

differences.  

For purely pitching motion, the cases with Aa = 12.5º and 25º can be categorized as the 

small pitching amplitude type, since their corresponding maximum vertical displacements 

of the LE of the airfoil are 0.108 and 0.211, respectively.  The cases with Aa = 60º are the 

intermediate pitching amplitude type, in which the equivalent vertical amplitude for the 

LE of the airfoil is around 0.43. Compared with purely heaving motion, the purely 

pitching motion barely provides negative input powers. The trade-off between the input 

and output power is still detected. Most importantly, the phase difference in pitching 

motion primarily tunes the output power rather than input power compared with that in 

heaving motion. For example, compared with the heaving cases with ha = 0.1 and the 

pitching ones with Aa = 12.5º, both of them obtain comparable vertical displacements for 

the LE of the airfoil. However, the heaving cases result in a variation of input powers (the 

maximum value minus the minimum value) to be around 0.1 and of the output powers to 

be 0.05, while the pitching ones lead 0.02 as the variation of input powers and 0.15 for 

output powers. This implies that good operational parameters of pitching motions mainly 
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help to fulfill the requirement for satisfying output power and good ones of heaving 

motions primarily make contributions to a great input power. Moreover, the phase 

difference for the best scenarios of resultant powers for the purely pitching motion in Fig. 

6-16 is always around 90º away from that for the purely heaving motion exhibited in Fig. 

6-10. It confirms the conclusion made by previous studies35, 38, 163 that, in order to achieve 

the best propulsion efficiency with such a cylinder-airfoil configuration, a flapping 

motion involving both heaving and pitching is necessary; in addition, a phase lag between 

the heaving and pitching motion is essential and the value of the lag should be around 90º.  
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6.1.3.1 Small Pitching Amplitudes 

 

Figure 6-17 Moment coefficients and angular velocity and vorticity contours of the airfoil over 

the half cycle of downstroke for the case with Aa = 12.5º and ϕ = 135˚.  

The chord of the airfoil is considered to be approximately parallel to the streamwise 

direction in cases with small pitching amplitudes. Therefore, the analysis of interaction 
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modes for LEVs under such a circumstance is similar to that with purely heaving motions. 

The remained CW LEV at t/T = 0 is associated with reinforcing modes from both the 

CCW vortex in front of the airfoil and the CW vortex in the airfoil region. Although the 

suppressing mode from the CCW vortex behind the airfoil exists, the CW LEV, on the 

whole, is being reinforced from t/T = 0 to 0.25. At t/T = 0.25, a CW vortex newly enters 

the region in front of the airfoil, which carries a strong suppressing mode for the CW 

LEV. In addition, the centroid of the CW vortex under the airfoil just passes the LE of the 

airfoil and steps into the airfoil region, where it also obtains a suppressing mode to the 

CW LEV. An overall suppressing mode for the CW LEV is established at t/T = 0.25, 

though the reinforcing mode from the CW vortex behind the airfoil remains. In analogy 

to the analysis for purely heaving motion with small amplitudes, this suppressing mode 

for the CW LEV on the upper surface of the airfoil accelerates the onset of the CCW LEV 

on the lower surface since the pitching amplitude in Fig. 6-17 is very small. This CCW 

LEV is fully developed at the end of the counter-clockwise pitching motion, i.e. Fig. 6-17 

(e), which is about to generate a negative moment coefficient and destroy the input power 

for the consecutive clockwise pitching.  

On the other hand, differing from that with purely heaving motions, the analysis of 

interaction modes for TEVs with purely pitching motions should employ the conclusions 

in Table 2.  At t/T = 0, no TEV is clearly observed. With the counter-clockwise pitching 

motion, a CW TEV may be formed on the lower surface of the airfoil in the single airfoil 

case. However, with the vortex topology in Figs. 6-17(a) and (b), the suppressing modes 

are exerted from both the CW vortex on the top of the airfoil and the CCW vortex behind 

the airfoil, yet the reinforcing mode is only from the CCW vortex in front of the airfoil. 
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As a consequence, there is no CW TEV formed in these two figures, yet a very weak 

CCW TEV appears on the upper surface of the airfoil at t/T = 0.25. Unfortunately, the 

vortex topology since then, i.e. t/T = 0.25, 0.375, and 0.5, preserves an overall 

suppressing mode for this low strength CCW TEV. Hence, it is swiftly suppressed and 

almost vanishes at t/T = 0.375.   

In terms of the moment generation, the interaction modes matter. At t/T = 0 (see Fig. 

6-17(a)), the CW vortex on the top of the airfoil is approximately aligned on the center of 

the airfoil with a distance and no other vortex is in the airfoil region. The moment 

coefficient, only with this vortex, might be close to zero. However, the resultant moment 

coefficient at t/T = 0 almost reaches its largest value in Fig. 6-17. Therefore, it can be 

speculated that the small CW LEV is critical for producing the positive moment 

coefficient. Indeed, the presence of this LEV makes adverse contributions to the 

favorable input power, and the overall suppressing mode is not achieved until t/T = 0.25. 

Fortunately, at the next stage, i.e. t/T = 0.125, the CCW vortex in front of the airfoil gets 

into the airfoil region under the LE, and the CW vortex reaches above the TE. Both of 

them induce negative moment coefficients, which balance the potential positive value 

that the CW LEV would produce. Hence, a very small positive moment coefficient is 

actually obtained from the simulation at t/T = 0.125. After that, the CW vortex on the top 

of the airfoil travels away, and the CCW on its bottom contributes more and more to 

negative moment coefficients. In Fig. 4-44(e), the CCW vortex may still do no harm to 

the input power since it is just aligned on the center of the airfoil, yet the developed CCW 

LEV on the lower surface of the airfoil retains the negative moment coefficient.   
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It is worth noticing that the CW LEV Fig. 6-17(a) is reinforced by the CCW vortex in 

front of the airfoil and the CW one above the airfoil. Although the presence of the CW 

LEV is not good for the favorable input power, its negative impact is immediately 

alleviated by the positive efforts made by the latter two vortices. This balancing process 

will often observed in the future analysis of purely pitching airfoils. With this process, the 

best input power with purely pitching motions would not be too low and the worst one 

would not be too high. The situation is just the opposite in the analysis with purely 

heaving motions. A good example is the CW vortex on the top of the airfoil. Because this 

vortex is in the airfoil region, it not only reinforces the formation of the CW LEV but also 

directly produces a positive lift coefficient; both of these consequences make appreciably 

negative contributions to favorable input power. Therefore, a very bad input power is 

obtained. All in all, the balancing process could be the key to explain why the variation of 

the resultant input power with purely pitching motions is much smaller than that with 

purely heaving motions.  

On the other hand, the formed LEVs and TEVs influence the output power of purely 

heaving airfoils primarily through skin friction, while their impact on the output power of 

purely pitching airfoils can be directly through pressure, which is an order of magnitude 

larger than the skin friction. This situation becomes more severe when the pitching 

amplitude is relatively large. Consequently, it is acceptable that the variation of the 

resultant output power with purely pitching motions is usually larger than that with 

purely heaving motions. 
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Figure 6-18 Moment coefficients, angular velocity, and vorticity contours of the airfoil over the 

half cycle of downstroke for the case with Aa = 12.5º and ϕ = 315˚.  

The vortex topology in Figs. 6-18 (a) and (b) obtains two reinforcing modes for the 

CCW LEV on the lower surface of the airfoil from both the CW vortex in front of the 
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airfoil and the CCW one in the airfoil region. Although one suppressing mode is 

presented from the CW vortex behind the airfoil, the CCW LEV is reinforced and 

growing till t/T = 0.25. After that, a CCW vortex freshly enters the region, in front of the 

airfoil, the CW vortex above the airfoil steps into the airfoil region and the CCW below 

the airfoil travels away from the airfoil, as shown in Fig. 6-18(c). An overall suppressing 

mode is obtained for the CCW LEV and slightly triggers the formation of the CW LEV 

on the upper surface of the airfoil, as shown in Fig. 6-17(e).  

The vortex topology in Figs. 6-17 (a) and (b) produces an overall suppressing mode 

with the CCW TEV, which stirs the formation of the CW TEV on the lower surface of the 

airfoil. However, this CW TEV starts to be suppressed in Fig. 6-17(c), since the vortex 

topology is substantially changed. Therefore, even though the strength of the CW TEV is 

not obviously diminished in Figs. 6-17(c)~(e), this TEV is no longer attached to the 

airfoil.    

A balancing process mentioned in the discussion of Fig. 6-16 is again observed for the 

case in Fig. 6-17. The CCW vortex in the airfoil region in Fig. 6-17 (a) directly induces 

positive moment coefficients which overwhelm the negative ones potentially produced by 

the CCW LEV, which is reinforced by the former vortex. The maximum positive moment 

coefficient is achieved at t/T = 0.25 in Fig. 6-17(c). when the CCW LEV is almost 

suppressed, the CW TEV is fully developed and the CW vortex just reaches the spot 

above the LE of the airfoil.  

In addition, the trade-off between the input and output power is again detected for the 

cases with small pitching amplitudes, i.e. in Figs. 6-16 and 6-17. Because of the small 

pitching amplitude, differences of output power are primarily contributed by the LEVs 



156 

and TEVs. The LEVs in Fig. 6-16 are always formed on the airfoil surface that does not 

encounter the flow directly. Therefore, with the absence of any TEVs, the drag is not 

surprisingly produced, and a bad output power is achieved. On the other hand, both LEVs 

and TEVs in Fig. 6-17 are formed on the airfoil surface that confronts the flow. 

Consequently, thrust is generated and a good output is accomplished. 
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6.1.3.2  Intermediate/Relatively Large Pitching Amplitudes 

 

Figure 6-19 Moment coefficients, angular velocity, and vorticity contours of the airfoil over the 

half cycle of downstroke for the case with Aa = 60º and ϕ = 135˚.  

Dashed lines in (a) are drawn from LE/TE in the normal direction corresponding to the chord of 

the airfoil.  
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The approach to determine interaction modes through the potential theory becomes 

complicated in the cases with relatively large pitching amplitudes, i.e. Fig. 6-19. Region 

#1~3 in the potential theory, strictly speaking, is defined corresponding to the airfoil 

whose chord is aligned with streamwise direction; those regions should be extrapolated 

very carefully in Fig. 6-19. For example, the CW vortex at x = 14.5 should be roughly 

recognized as “just entering the airfoil region”, the CCW vortex at x = 12.5 is “in the 

airfoil region but below the airfoil” and the CW vortex at x = 16 is behind the airfoil. 

Additional approximations could be added if acceptable. First, the effect of the CW 

vortex at x = 16 is negligible since its distance from the airfoil is too large, i.e. > 2. 

Moreover, the reinforcing mode with CW LEV on the upper surface of the airfoil from 

the CW vortex at x = 14.5 might overwhelm the suppressing mode from the CCW vortex 

at x = 12.5, because the distance between the LE and the former vortex is noticeably 

smaller than the one between the LE and the latter vortex. Consequently, the reinforcing 

mode is identified for this CW LEV on the upper surface as the reinforcing mode in Fig. 

6-19 (a). Notice that the balancing process does not exist yet since both the CW vortex at 

x = 14.5 and its reinforced CW LEV make adverse contributions to the favorable input 

power. This could be the reason that the cases with relatively large pitching amplitudes 

achieve much worse input power than that with small pitching amplitudes. Although the 

presence of the CCW vortex below the LE of the airfoil in Fig. 6-19(c) reduces the 

moment coefficient from its peak value obtained in Fig. 6-19(b), the moment is still 

positive until Fig. 6-19(e). Moreover, the CCW vortex located near the x = 14 in Fig. 6-19 

(d) & (e) is approximately considered as “in the airfoil region” and primarily tends to 

establish a suppressing mode with the CW LEV. As the LEV on the upper surface of the 
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airfoil is suppressed and the CCW vortex near x = 14 gradually assists generating more 

negative moment, a negative moment coefficient is finally achieved in Fig. 6-19 (e). 

Similar to the discussion above, the overall interaction modes for the CCW TEV in 

Fig. 6-19 are mostly suppressing modes or nearly negligible influences, which results in 

no apparently observed TEV with the case in Fig. 6-19.  

Last but not least, the CW LEV appearing in Figs. 6-19 (b) and (c) is on the surface of 

the airfoil that does not encounter the flow directly. In addition, because of the large 

pitching amplitude,  there are some moments that the vortices stay in a region 

downstream but very close to the airfoil, i.e. the CW vortex at x = 14.5 in Fig. 6-19 (a) 

and the CCW vortex at x = 14.5 in Fig. 6-19 (e). Therefore, it can be speculated that the 

resultant output power for the case in Fig. 6-19 is not good or even worse than that for 

cases with small pitching amplitudes, which is exactly confirmed by Fig. 6-16. 
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Figure 6-20 Moment coefficients, angular velocity, and vorticity contours of the airfoil over the 

half cycle of downstroke for the case with Aa = 60º and ϕ = 315˚.  

Interaction modes with LEVs and TEVs in Fig. 6-20 are not very clear. However, due 

to the relatively large pitching amplitudes, the airfoil substantially interacts with 

incoming vortices and changes their shapes and paths. Additionally, the pitching motion 
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makes it tougher to identify the “real” positions of the incoming vortices corresponding 

to the airfoil. The rules-of-thumb from the potential theory concluded in Tables 1 and 2 

are not suggested for the analysis under this circumstance. 

6.1.4 Summary of Active Energy Harvesters 

The energy harvesting of a purely heaving/pitching airfoil in the wake of an oscillating 

D-cylinder was studied numerically. This configuration including an upstream vortex 

generator, i.e. a cylinder, and a downstream airfoil can be easily extended to mimic 

natural flyers with tandem foils, i.e.  a dragonfly or an MAV flying in the wake of objects, 

i.e. building. The phase difference between the motion of the cylinder and airfoil was 

confirmed to be of pivotal importance for the resultant powers. It was quantitatively 

demonstrated by the potential theory that the topology of the incoming vortices has the 

capability to tune the interaction modes between the incoming vortices and the LEVs and 

TEVs. The latter two edge vortices, then, directly influence the force generation and the 

resultant powers. Simple rules-of-thumb were made out of the potential theory to 

expressly comprehend the mapping between the phase difference and the resultant 

powers. Those theoretical predictions exhibited an acceptable capacity to analyze two-

dimensional results from numerical simulations. A trade-off between input and output 

power was found for both purely heaving and purely pitching airfoils. Also, with purely 

heaving motions, the input power has the tendency to be negative, which is barely 

observed in cases with purely pitching motions. Moreover, the phase-lag between the 

heaving and pitching motions was confirmed to be around 90˚ in order to achieve the best 

efficiency of energy extraction with combined flapping motions. Furthermore, under 
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similar circumstances, i.e. vertical displacements of the LE point of the airfoil, the range 

of input power that can be tuned by purely heaving motion is larger than that by pitching 

motions, yet the situation for output power is just the opposite. Particularly, with 

relatively large purely heaving amplitudes or pitching amplitudes, there are some risks to 

access very bad input or output powers, respectively. In other words, the choices of 

operational parameters for flapping airfoils with combined motion are biased. Good 

operational parameters for the heaving motion have the highest priority when an excellent 

input power is expected, while good ones for the pitching motion have precedence for 

requests of substantial output powers. This is particularly true for combined motions 

involving both relatively large heaving and pitching motions, i.e. some bio-inspired 

applications43-46. 

Finally, future work could be accomplished to discuss the influence of the advance 

ratios171 on the capacity of the energy extraction. The conclusions can be used later to 

interpret the energy extraction of an MAV not only flying in the wake of an object but 

also approaching it. 

6.2 Energy Harvesters with Passive Heaving Motions 

A two-dimensional problem similar to the previous section is considered. In order to 

provide significant incoming vortical wakes, a D-cylinder is chosen to generate the 

incoming vortices. The D-cylinder is forced to heave as 

 ( ) sin(2 )c c cy t h f t  (6.11) 
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The frequency, fc, is fixed at 0.2 for all the cases, and hc varies from 0.1 to 0.7 with an 

increment of 0.15. The foil has an elliptical shape with a ratio of 10 and is only mobile in 

the transverse direction. The pitching motion is not considered in the current study, firstly, 

for the sake of simplicity. Secondly, as mentioned in previous studies31, 172, the energy 

extraction from pitching motions is negligible compared to that from heaving motions. 

The foil is mounted on a spring and a damper; foils with zero damping would not retrieve 

any energy harvesting capability. The dynamical properties are Mred = 2, Ured = 4, and ξ = 

0.5. The diameter of the cylinder is equivalent to the chord length of the foil, which 

results in Re = 200. The distance between the airfoil and the cylinder are integers from 4 

to 7. The presence of the foil would disturb the formation of vortices generated by the D-

cylinder if a smaller distance was used40.  

After the numerical tests with variable domain sizes and grid sizes, the computational 

domain is selected as 25.6×12.8 and 0.0125 for the grid size. The RK3 scheme is used 

and the time step size is 256-1. At the beginning of the simulation, the upstream cylinder 

heaves and the foil remains stationary until its force coefficients achieve periodic states. 

Then, the fluid-structure interaction model is enabled for the foil only.   

In the interest of quantifying the energy harvesting capacity of the passive heaving 

airfoil, the energy harvesting efficiency is defined as the portion of the incoming flow 

energy flux through the cross-sectional area covered by the moving foil32, 172, 
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where Y+ and Y- are the highest and lowest vertical positions of the center of the foil and 

U is the speed profile of the incoming flow. With uniform incoming flows, the efficiency 

can be calculated with U = U∞
30, 32; the same condition is adopted to estimate the 

efficiency in the current study, since the vortices generated from the cylinder are 

symmetrically distributed corresponding to the mean position of the foil and 

approximately propagated with the free stream velocity. The extracted energy, or input 

power, is represented as PF, which is the time-averaged value of instantaneous power 

transfer from the flow to the foil, 

 F Y

dY
P C

dt
  (6.13) 

where CY is the force coefficient on the vertical direction, i.e. the lift coefficient.  
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6.2.1 Types of Foil Responses 

 

Figure 6-21 Histories of vertical positions for all the cases with varying hc but same L = 7.  

Three primary types of dynamic response are identified among all the cases simulated 

in the current study. Examples are illustrated in Fig. 6-21. Typically, the foil in the cases 

with very small hc, e.g. 0.1, undergoes quasi-periodic heaving motions. The second type 

of response is a semi-periodic motion which occurs at relatively high intermediate hc, i.e. 

Fig. 6-21(c). The final type, which is the periodic response, is achieved with either a 

moderate intermediate hc, e.g. 0.25, or a very large hc, e.g. 0.55 and 0.7. It is not difficult 

to explain the periodic response with a large hc. If the amplitude of vortex generator is 

very large, the incoming vortices are away from the foil and their influence on the foil 

becomes negligible, according to the Biot-Savart law. Then, the foil extracts energy from 

the flow close to uniform flow and that type of interactions easily shows periodic. 
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However, it should be noted that with the same dynamic parameters of the studied foil 

here, no motion has been detected for a single foil with just uniform incoming flow. 

Therefore, the cases with a large hc in the current work still retain energy harvesting 

capability. Our interest is more in the cases with an intermediate hc, i.e. 0.25. They 

produce not only periodic responses but also larger foil motion amplitudes, e.g. ya, 

compared with those cases with a very large hc. We call this type of responses the desired 

periodic response, since larger foil amplitudes in periodic motions usually imply better 

energy harvesting performance, which will be discussed later. 

Since cross-flow distance between the two layers of the incoming vortices is 

proportional to the heaving amplitude of the vortex generating cylinder, observations 

detected in Fig. 6-21 can be summarized in the subsequent way. With an increasing 

vortex street span of incoming vortices, which is due to the increasing amplitude of the 

vortex generating cylinder, the response of the foil is gradually recovering back to that of 

a single foil. Before that, non-periodic responses are usually obtained, yet the foil has a 

chance to achieve the desired periodic response at moderate intermediate span of the 

incoming vortex street.  
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Figure 6-22 FFT for the histories of ya for different cases with L = 7 

The primary driven frequency is 0.2, which is the oscillating frequency of the 

upstream vortex generator, for all of the three kinds of dynamic responses. Cases with 

periodic responses, i.e. hc = 0.25 in Fig. 6-22, obtains a very clean frequency spectrum. 

On the other hand, random noises appear in the cases with non-periodic responses, i.e. hc 

= 0.1 or 0.4 in Fig. 6-22. Therefore, it is not a trivial task to choose the averaging period 

for the input power, PF. Based on Figs. 6-21 and 6-22, seven oscillation periods of the 

upstream cylinder, which is 35 dimensionless computational time, are selected to be the 

averaging interval for the calculation of energy efficiency.  



168 

 (a) 

(b) 

Figure 6-23 Comparison of (a) energy harvesting efficiency and (b) input power among all cases 

As discussed before, with a very large hc, i.e. 0.55 or 0.7, both the energy harvesting 

efficiency and the input power are very low; this also occurs at a relatively high 

intermediate hc, e.g. 0.4. The input power is almost zero, which is the value obtained by 

the simulation with a single airfoil without incoming vortices. The other two curves in 

Fig. 6-23, e.g. hc = 0.1 & 0.25, gain more attention. The cases with hc = 0.25 achieve 
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desired periodic responses with larger maximum ya compared with other periodic 

response cases, which are with a very large hc. Therefore, significantly better energy 

harvesting efficiency is expected for the former cases, which is consistent with Fig. 6-23. 

On the other hand, in Fig. 6-21, the maximum ya of the case with hc = 0.1 is apparently 

larger than that of the case with hc = 0.25, yet neither the energy harvesting efficiency nor 

the input power of the former cases is better than that of the latter ones. It confirms that 

non-periodic responses are not desired for efficient energy harvesters30, 32, 172. 

Finally, it is because of the vortex dissipation due to the viscous effect that both the 

efficiency and input power decrease as the distance between the foil and the cylinder 

increases for the cases with certain heaving amplitude of the cylinder.  



170 

6.2.2 Vortex Topology 

 

Figure 6-24 The history of approximate foil positions and vorticity contours over the oscillating 

cycle of the foil for the case with hc = 0.25 

The vortices shown in Fig. 6-24 are very clean, which is the case of the moderate 

intermediate amplitude csae. Both incoming vortices and induced vortices on the surface 

of the foil make positive contributions to the dynamic response of the foil. A good 

example is illustrated in Fig. 6-24 (b). At this moment, the foil is in the middle of stroking 
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downwards. Not only is an incoming positive vortex under the foil, but also a leading 

edge vortex (LEV) is induced on its lower surface and no trailing edge vortex (TEV) is 

attached. Both of these vortices are obligated to produce the negative lift coefficient, 

which reinforces the foil’s down-stroking motion. In Fig. 6-24 (b) and (c), the positive 

vortex under the foil is travelling away from the region of the foil, which is defined as the 

streamwise area from the leading edge to the trailing edge of the foil in the current work, 

and the negative incoming vortex above the foil has not arrived yet. However, the 

topology of incoming vortices in these two figures has the tendency to reinforce the 

formation of the positive LEV and the negative TEV; the strong induced surface vortex 

on the bottom of the foil still helps generate negative lift force until the end of the period. 

A good discussion of the impacts of incoming vortices on the formation of the LEVs and 

TEVs of the foil can be found in the last section or Wei & Zheng173. Interestingly, 

although the LEV and TEV that remain in Fig. 6-24 (c) are strong, at the next moment, 

e.g. Fig. 6-24 (d), the strength of the positive LEV on the lower surface of the foil is 

quickly suppressed, and instead, a negative LEV is formed on its top surface. In addition, 

the TEV is detached from the foil. Most importantly, the negative incoming vortex enters 

the foil region and is located very close to the foil. The vortex topology swiftly shifts and 

becomes favorable to assist the foil in stroking upwards, which is consistent with the 

moving trend of the foil at this moment according to ya history plotted in Fig.6-24.  
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Figure 6-25 The history of approximate foil positions and vorticity contours over the oscillating 

cycle of the foil for the case with hc = 0.4 

The vortices and their topologies exhibited in Fig. 6-25 for the high intermediate 

amplitude case are very similar to those in Fig 6-24. However, differences can still be 

detected. First, the vertical distances between the incoming vortices and the foil in Fig. 6-

25 are larger than those in Fig. 6-24, which prevents significant influences from incoming 

vortices on the foil including force generations and formations of LEVs and TEVs. As a 
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consequence, the force generations due to such vortex topologies have weaker resistance 

to the damper attached to the foil, resulting in less extracted energy than the case with hc 

= 0.25. Moreover, since the effects of incoming vortices on the foil cannot be completely 

ignored in this case, the competitions among the damper, incoming vortices, and weakly-

induced surface vortices do not give the system a very distinctly stable response; instead, 

it results in a semi-periodic response, as shown in Fig. 6-21 (c). 

 

Figure 6-26 The history of approximate foil positions and vorticity contours over the oscillating 
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cycle of the foil for the case with hc = 0.1 

It is apparent that the vertical locations of the incoming vortices in Fig. 6-26 for the 

small amplitude case are very close to the mean position of the foil before their 

interactions. Under this circumstance, the foil substantially interacts with the incoming 

vortices and drastically influences the trajectories of the incoming vortices. Consequently, 

a two-way coupling is established between the incoming vortices and the energy 

harvester, and very non-linear phenomena may be induced. This could be the primary 

reason that, with hc = 0.1, the dynamic response of the foil is quasi-periodic, which is not 

a good way to extract energy from the vortical wake.  

6.2.3 Summary of Passive Energy Harvesters 

It is found that energy harvesters, i.e. foils, function better with the presence of vortex 

generators, i.e. cylinders. However, well controlled properties of the generated wakes are 

necessary for good performance. A moderate width of a wake vortex street is preferable 

for the desired dynamic responses and optimal energy extraction performance of the 

harvesters.  

In reality, it is not obligatory for good vortex generators to be very complicated; good 

examples could be a stationary cylinder, a passive mobile cylinder, or an actively 

oscillating cylinder. Simple objects like those have the potential to boost the performance 

of the harvester. Nevertheless, it may demand another systematic study to reveal the ideal 

size of the cylinders, their dynamic properties, and the relative positions corresponding to 

the harvester. 
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7 Conclusion 

The conclusions for each section have been summarized previously. In this chapter, 

the overall achievements of this thesis are illustrated in Fig. 7-1.  

 

Figure 7-1 Summary of the dissertation.  

The primary CFD algorithm employed in the current study is the IB method. The 

contributions of this dissertation regarding to the IB method can be summarized into the 

following three aspects.  

1. The IB method is implemented in the parallel fashion with the assistance of the 

PETSc. It achieves good agreements in validations of the flow over solid bodies or 

through porous media. Implementation details are demonstrated; advanced MPI functions 

and good coding manner with parallel programs were found to be greatly helpful to 

enhance the parallel performance. The acceptable scalability is achieved; nonetheless 

potential improvements can still be made for future research. For example, the 
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calculations related to the IB points are not implemented in a completely parallelized 

approach, which may become a bottleneck to scale the current scheme to large-scale 

problems. 

2. Different types of temporal schemes are discussed. The 1st-order temporal scheme 

with pressure shows its advantage in a three-dimensional simulation with coarse meshes. 

Without directly calculating the pressure field, the temporal schemes, i.e. the 1st-order 

temporal scheme without pressure and the RK3 scheme, require higher spatial resolutions 

compared with the one with the direct pressure solution, i.e. the 1st-order temporal 

scheme with pressure. The RK3 scheme provides much better numerical stability and 

higher order temporal accuracy, which is used in the IB method coupling with the FSI 

model and LES. The loosely-coupled FSI model is successfully coupled with IB method 

and the validation cases obtains good agreement in comparisons. 

3. The IB method is tested to couple with LES, yet it has not been fully accomplished. 

Nevertheless, results and comments are summarized based on numerous testing cases for 

future research. The S-AMR is highly recommended since the near wall high spatial 

resolution is inherently desired for LES. Furthermore, the IB method with discrete 

forcing term in the current study suffers from the diffused interface issue; therefore, the 

sharp interface IB method is suggested to improve the local resolution of the IB method 

near the immersed boundaries.  

With the IB method, three aerodynamic problems related to flapping foils have been 

studied. The contributions are achieved on the in-depth understanding of fluid dynamics.  

1. The IB method is further validated with the case of rapid pitching airfoil. The 

results are well agreed with other simulations, experiments and canonical theories. 
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Theodorsen’s theory divides the force generation of the airfoil to the circulatory part and 

the non-circulatory one, i.e. the added-mass effect. It explicitly demonstrated that the 

high-rate of sudden change of the motion results in substantial added-mass effect, which 

is unfavorable in terms of the loosely-coupled FSI model employed in the current work.  

2. The current study deliberately investigated the asymmetric wakes downstream of a 

single heaving airfoil. It not only discussed the factors influencing the near wake 

deflection and theoretically interpolates the magnitude of the deflection angle but also 

explains the switch of vortex pattern in the far wake region. The potential theory is 

established to predict the development of the deflection angle from the near wake region 

to the far wake region. It provides a guideline to detect the trajectory of the irregular 

vortical wakes downstream of the airfoil. 

3. The energy harvesting capacity of either passive or active flapping foil from vortical 

wakes is discussed. Two major vortex-body interaction modes are identified. The relation 

between the interaction modes and the energy extraction capacity of the active harvester 

is investigated. A potential theory is established to quantitatively demonstrate that the 

onset of those modes is primarily driven by the topology of the incoming vortices 

corresponding to the airfoil. Moreover, the passive energy harvester was found to perform 

better with the presence of the incoming vortical wakes instead of uniform free streams. 

However, moderate amplitudes of the wake are found to be preferable for desired stable 

response of the passive energy harvester to achieve an optimal energy harvesting 

capacity. 
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Appendix I 

Flow Chart for the 1st-order Temporal Scheme with Pressure 
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Appendix II 

Flow Chart for the 1st-order Temporal Scheme without Pressure 
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Appendix III 

Flow Chart for the 3rd-order Runge-Kutta Scheme in the current work 
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Appendix IV 

Theoretical Prediction of the Motion of Vortices 

 

The example is made between the vortices II & III. 

The distance for current moment 

    
2 22

2 3 2 3current x x y y       

The distance for the next moment 
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2 22

2 2 3 3 2 2 3 3

2 2

2 3 2 3 2 3 2 3

2 2

2 3 2 3 2 3 2 3

2 2

2 3 2 3 2 3 2 3

2

2

next x x x x y y y y

x x x x y y y y

x x x x x x x x

y y y y y y y y

                  

               

        

        

  

The difference between the distances is 
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next currentL
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     

        

        

  

Then 

 
     

     

2 3 2 3 2 3

2 3 2 3 2 3

2

2

x x x x x x
L

y y y y y y

       
 

        

  

Therefore, if L is proved to be negative, the distance between vortices II and III will 

decreases.  

If the arrangement of these three vortices is I at the left, II at the middle and III at the 

right, then  2 3 0x x   

If the arrangement of these three vortices is I at the bottom, II at the top and III at the 

bottom, then  2 3 0y y   

Based on the vortex model, 2 12 12 23 23cos cosdipole dipolex U U     and

3 23 23cosdipolex U   . Therefore, 2 3 12 12cos 0dipolex x U     . The reason to use 

‘approximate equal’ is that 3x should depend on the induced velocity at vortex III from 

vortex II rather than dipole velocity of vortices II and III. But the induced velocity is very 

close to the dipole velocity in terms of magnitude. 

Similarly, the vortex II is moving downwards and the vortex III is moving upwards. 

Therefore, 2 0y  and 3 0y  . In conclusion  2 3 0y y    
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The sign of each term of the previous equation reads 

 

     

     

2 3 2 3 2 3

( ) ( ) ( )

2 3 2 3 2 3

( ) ( ) ( )

2

2

L x x x x x x

y y y y y y

  

  

 
        
 
 

 
       
 
 

  

If the magnitude of  2 3x x is larger than that of  2 3x x  and magnitude of 

 2 3y y is larger than  2 3y y  , L decrease. However, that is only for the usual cases. 

For cases that  

1. The magnitudes of  2 3x x and  2 3x x  are in almost the same order, for 

example, 2 3x x . 

2. The magnitude of  2 3y y and  2 3y y  are in almost the same order, for 

example, 2 3y y . 

Then, the changing trend of L is unpredictable.  

 

 


