
IDENTIFICATION AND CLINICAL ASSESSMENT OF DELETION STRUCTURAL 

VARIANTS IN WHOLE GENOME SEQUENCES OF ACUTELY ILL NEONATES 

 

By 

Copyright 2014 

Aaron C. Noll 

 

 

Submitted to the graduate degree program in Clinical Research and the Graduate Faculty of the 

University of Kansas in partial fulfillment of the requirements for the degree of Master of Science 

 

________________________________        

    Chairperson Edward F. Ellerbeck, MD, MPH 

 

________________________________        

Stephen F. Kingsmore, MB, BAO, ChB, DSc, FRCPath 

________________________________        

Peter G. Smith, PhD 

 

Date Defended: April 7, 2014 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213405917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


   ii 
 

The Thesis Committee for Aaron C. Noll 

certifies that this is the approved version of the following thesis: 

IDENTIFICATION AND CLINICAL ASSESSMENT OF DELETION STRUCTURAL 

VARIANTS IN WHOLE GENOME SEQUENCES OF ACUTELY ILL NEONATES 

 

 

      ________________________________ 

Chairperson Edward F. Ellerbeck: Chair, MD 

 

 

       

Date approved:  April 17, 2014 

  



   iii 
 

ABSTRACT 

Background 

Effective management of acutely ill newborns with genetic conditions requires rapid and comprehensive 

identification of causative haplotypes.  It has been previously shown that whole genome sequencing 

(WGS) can identify small variants contributing to the genetic illness of such patients in less than 50 

hours.  Deletion structural variants (SVs) >50 nucleotides are implicated in many genetic diseases and 

with WGS data can now be identified with a performance and timeframe sufficient for diagnosis in 

neonatal intensive care units.  Here we describe the development of a solution that combines consensus 

calls from two SV detection tools (Breakdancer [BD] and GenomeStrip [GS]) with a novel filtering 

strategy. 

 

Results 

WGS simulation data demonstrated BD and GS consensus calls had 83% sensitivity and 99% positive 

predictive value with high precision. Through raw data inspection in the integrated genome viewer (IGV) 

consensus calls overlapping with SNP arrays were found to be 95% true positive and were subsequently 

used for filter parameterization.  Consensus calling and filtering were implemented as a computational 

pipeline.  IGV evaluation of pipeline results in a tetrad demonstrated calls were over 80% true positive 

but insensitive.  Pipeline usage in 10 proband family sets revealed a possibly causative deletion SV in the 

MMP21 gene for two siblings.  MMP21 is thought to play a role in embryogenesis in humans and may be 

responsible for the heterotaxy phenotype in humans.  Further studies are needed to confirm these results.   

 

Conclusions 

The identification of deletion SVs has the potential to increase the diagnostic yield of WGS data.  The 

methods described in this study may be useful in the research of disease detection in acutely ill neonates.   
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INTRODUCTION 

Burden of genetic disease in neonates 

Genetic conditions are uncommon individually but as a whole consume substantial healthcare 

resources.
20,21,22

  Genetic diseases from chromosomal aberrations, and congenital malformations or 

deformations contribute to at least 1/5 of infant mortalities in the US.
25-27 

 Recent advances in genomics 

technologies and computational analysis have yielded unprecedented progress towards understanding the 

relationship of genomic variation to human morbidity and mortality.
23

 

 

Whole genome sequencing and types of mutations in genetic diseases 

By detecting disease causing single nucleotide (nt) variants (SNVs) and small nucleotide (< 50nt) 

insertions and deletions (indels), whole-genome sequencing (WGS) has been shown to accelerate and 

improve the sensitivity for the diagnosis of genetic illness in neonates.
25

  In certain situations the 

causative mutations may be of classes other than small nucleotide variants and a patient will remain 

undiagnosed.  A subset of such complex cases may be potentially explained through the impact of 

genomic structural variants (SVs).  SVs (insertions, deletions, translocations and inversions > 50bp in 

length) are known to contribute to birth defects and other spontaneous traits, Mendelian diseases, and 

complicated genetic conditions.
24

  Insertion and deletion SVs or copy number variants (CNVs) are the 

most common form of SV.
35

 

 

CNV characteristics 

It is estimated that the average diploid human genome differs from the human genome reference by ~5M 

SNVs (Kingsmore et al., unpublished) and one thousand CNVs >500nt
 36

 SNVs are thought to arise at a 

constant rate
 
(~2.5x10

-8
 per nt per generation)

37
 but CNV rates can vary widely at different loci (1.7x10

-6
 

to 1x10
-4

 per locus per generation)
38

.  CNVs are thought to cover 30% of the human genome versus < 2% 

for SNVs, albeit our knowledge of genomic CNV burden is primitive
 34

.  The mutation mechanism and 

selection pressure differ between insertions and deletions
31

.  Meiotic deletion SV rates in human sperm at 
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4 hotspots were shown to be at least two-fold higher for deletions than insertions
1
.  De novo CNV 

mutations arise via genomic rearrangements, in 'cis' (via intrachromosomal events) or in 'trans' 

(interchromosomal), and through non-allelic homologous recombination and non-homologous 

recombination. CNV length varies from a few hundred to several million nucleotides
39,40  

and the size 

distribution for deletions is right skewed with smaller variants being the most frequent
34,31

.  There is a 

strong purifying selection for deletions in exons and introns due to their potential for deleterious traits
31

.   

The impact of deletion SVs can range from having no discernible outcome to being incompatible with 

life, and the threshold for disease is most likely somewhere between these two extremes
35

.   

 

Deletion SVs known to cause genetic disease 

Single gene deletions have been implicated in Duchenne Muscular Dystrophy, Neurofibromatosis type 1, 

Tuberous Sclerosis, Sotos syndrome, CHARGE syndrome, Spinal Muscular Atrophy, and Pelizaeus-

Merzbacher Disease
35

.  Medelian inheritance for deletions is seen in Williams-Beuren syndrome, Smith 

Magenis syndrome, Hereditary Neuropathy with liability to Pressure Palsy, Miller-Dieker lissencephaly, 

22q11.2 deletion syndrome, Gaucher disease, Pituitary dwarfism, Thalassemia, Ichthyosis, juvenile 

Batten disease, and red green color blindness
34

.  A high frequency of de novo deletion SVs is thought to 

be a risk factor for autism spectrum disorder
41

 and rare deletion SVs have been associated with 

Schizophrenia
42

.  Deletions near genes are thought to contribute to Crohn's disease, psoriasis and 

osteoporosis
31

.  Routine tests are available for many of these conditions; however, the next logical step is 

to uncover the entire spectrum of deletion SVs for routine genotyping and to better understand the 

contribution of deletion SVs to human disease.
31

 

 

Methods for diagnosis of genetic disease in neonates  

Karyotyping and FISH (Fluorescent In Situ Hybridization) were used to generate initial views of common 

and rare genome structural variation
26

.  Both techniques are restricted to small sample sizes and large SVs 

(0.5 to 5Mb) because of their low throughput and poor resolution.
28

  Array comparative genomic 
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hybridization (array CGH) and single nucleotide polymorphism (SNP) arrays have been extensively used 

to discover CNVs
32

.  Array CGH requires a test and reference sample to be labeled for comparative 

hybridization.  CNV gains or losses are then inferred from this signal ratio.  A single sample is first 

hybridized for SNP arrays, and at each SNP probe log ratios for clustering intensities are used to detect 

CNV gains or losses
33

.  Both have low breakpoint resolution.  Most arrays and analysis algorithms detect 

large CNVs equally well but unless custom designed for specific loci, are insensitive to events less than 

10Kb
30

.  WGS data can also be used to detect insertion and deletion SVs
30

.  Paired End Mapping (PEM), 

Depth of Coverage (DOC), Split Read Mapping (SRM), and local assembly are the four principal 

methods used to detect SVs in WGS data
4
.  The DOC approach identifies CNVs by interrogating read 

depth in sequential genomic windows that is greater or less than a predefined (e.g. using a parametric 

model) or dynamically determined background level.  Paired ends are nucleotide sequences read from the 

ends of DNA fragments, as is typical for Illumina next generation sequencing.  In the PEM model, pairs 

with a mapping distance congruent with the intended DNA fragment size and expected orientation are 

deemed concordant.  Non-concordant pair mapping signatures are used to infer if an event is an insertion 

(mapping distance less than expected), deletion (mapping distance greater than expected), inversion 

(mapping orientation opposite to expected) or translocation (pairs map to different chromosomes).  In 

PEM the maximum detectable insertion size is limited by the library fragment length but inversions, 

translocations and other complex rearrangements (e.g. fusion genes) are not detectable by arrays.  The 

SRM method assumes CNV breakpoints occur within reads.  At least one of the segments resulting from 

read bifurcation must align to a unique genome location.  Of these four modes of SV discovery, whole 

genome assembly may hold the greatest, long-term promise for accurately typing all SV forms
34

.  

Unfortunately none of these approaches is comprehensive.  In the interim, for a typical WGS sample, 

large proportions of validated SVs will be unique to each method.  Although only DOC accurately 

predicts absolute gains or losses it does not resolve breakpoints well.  PEM requires consistent fragment 

sizes and performs poorly in repetitive loci.  Similarly, SRM is unreliable in non-unique areas, and short 

read sequence assembly is heavily biased to repeats and falls apart over such regions
30

.  Numerous 
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permutations of these four paradigms and other novel methods have been implemented as computational 

tools yet there is a lack of consensus regarding which programs are the best at accurately detecting SVs.   

Goals for CNV (SV) detection in WGS 

Clinical grade SV detection is critical for the diagnosis of certain genetic disorders, and broadly for the 

assessment of missing causative haplotypes. Our goal was to formally compare existing tools designed to 

detect SVs in WGS data, and to develop a SV detection pipeline.  We focused on the deletion subset of 

SVs since as a class they are thought to be the most numerous
1,2

, deleterious
3
, and readily detectable in 

paired end WGS
 
data

4
. 

 

Recently we have been performing WGS of familial triads or tetrads in which the proband is an acutely ill 

neonate or infant receiving care in an intensive care unit. The goal of these studies has been to develop 

methods for molecular diagnosis in a time-frame consistent with clinical management decisions and that 

are comprehensive for genetic diseases. The focus of the current study was to expand the range of 

causative mutations to include deletion SVs.    

 

RESULTS 

Whole genome sequences of acutely ill neonates 

74 WGS samples were analyzed.  14 were unrelated, 2 were a pair, 54 were trios, and 4 were part of a 

tetrad.  One sample (NA12878) was used as the control in trio and tetrad comparisons.  Human genome 

GRCh37.p5 was used as the reference version for alignments and simulations.  Most samples were 

sequenced as 2 x100 nucleotide reads with a fragment size of 200-400nt and a mean read depth of 40X 

(40 fold).   

Structural variation detection tool identification 
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A literature survey identified 50 whole genome sequence (WGS) structural variation (SV) software 

programs.  Ten of these did not require substantial effort for installation or execution, did not require a 

control sample, supported the widely used .bam format
11

 for genome sequence data, and could be run 

concurrently on multiple processors (Table 1).  The performance of the ten tools for SV deletion 

identification was evaluated using simulated genomic data.

 

Table 1. Ten software tools were evaluated for performance in detection of deletion SVs in genome 

sequences.  (‘x’ indicates a tool passed a simulation evaluation.  ‘–‘ indicates Breakdancer did not meet 

criteria to pass the Chr1 sim but was retained on account of prior experience with the tool on a different 

project. [DOC – depth of coverage, PEM – paired end mapping, SRM – Split read mapping, HMM – 

hidden markov model, SNP – single nucleotide polymorphism]) 

Evaluation of tools using simulated Chromosome 1 deletions 

Tool performance was initially evaluated using synthetic data. 270 homozygous deletion SVs of size 500 

– 10,000 nucleotides (nt) were created in a representation of human chromosome (Chr) 1 with 40X 

coverage by 2x100nt paired reads.  Reads were simulated from this modified Chr 1 GRCh37.p5 sequence 

file using wgsim 0.3.0
11

 (with default parameters).  Simulated reads were aligned to the human reference 



   6 
 

GRCh37.p5 using GSNAP
10

 version 2012-07-12, and sam files were converted to the bam form using 

samtools
11

 0.1.18. 

Read depth, repetitive regions, and GC content can influence the accuracy of deletion predictions.
9
 To 

ensure that the simulated data set was comparable to the reference sequence, values for these attributes in 

the simulated chromosomes were compared to the Chr 1 reference.  GC content and repeat feature 

frequency for the simulated deletions differed < 10% from the Chr 1 reference, and simulation mean read 

depth was found to be nearly identical to the target 40X (Figure 1).  

When visually inspected in the integrated genome viewer (IGV), simulated deletions were found to have 

stretched read pairs spanning breakpoints with uniform inner and outer read depths which are critical for 

the PEM and DOC detection methods, respectively (Figure 2).  Together these findings demonstrated that 

the simulated Chr 1 dataset was suitable for an initial evaluation of deletion SV detection tools.   

Five of the 10 tools yielded SV predictions that overlapped a simulated Chr 1 deletion by at least one 

nucleotide (genome coordinate overlaps were determined by standard Linux utilities and bedtools 

2.17.0
12

; Table 2). Breakdancer was retained due to prior success with the tool on another project.  These 

six tools were evaluated further. 

 

Table 2.  Five of the 10 tools yielded SV predictions that overlapped a simulated Chr 1 deletion by at 

least one nucleotide. 
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Figure 1. Simulated versus expected values for Chr 1 and whole genome simulation.  Substantial 

simulation bias for GC content, repeat features and mean depth all have the potential to influence tool 

prediction performance.  Curated repetitive regions found by RepeatMasker
5
, Tandem Repeat Finder

6
, 

and Dust
7
 for Chr 1 were obtained from Ensembl

8
 and used to calculate repeat feature frequency.  Less 

than 10% difference was observed between expected and simulated values. 

 

 

 

 

 

a) 

b) 

 

c) 
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Figure 2.  An example of a homozygous deletion SV (1:26,950,977-26,954,445) in the Chr1 

simulation that features both reduced depth of coverage and stretched read pairs. The top panel (a) 

shows the currently chosen reference (GRCh37), chromosome (1) and coordinates for the chromosome 

region being displayed.  The middle panel (b) has a chromosome ideogram with a red box indicating the 

section of the chromosome being displayed.  The ruler reflects the visible portion of the chromosome.  

Tick marks indicate chromosome locations.  The span lists the number of nucleotides currently displayed.  

The bottom panel (c) shows depth and read tracks.  Read pairs are displayed as dyads of rectangles each 

joined by a line. Pairs with normal separation are shown in grey. Stretched pairs are shown in red.  

Compressed pairs are shown in blue. 

Whole genome simulations 

There is not yet a “gold standard” set of known deletion SVs for a reference WGS
13,14

.  However, the 

1,000 genomes project (1KGP) structural variation analysis group (SVAG) has constructed a putative and 

partially validated SV deletion set from 185 human genomes
15

.  To evaluate the six tools at genome scale, 

three WGS samples with known deletions were simulated with parameters derived from SVAG analyses.  

Deletion SVs were simulated with random length (from 600 to 8000 nt) and intra-chromosomal 

placement, while being distributed proportionally to chromosomes by their size at a rate of one per 400Kb 

(~7500 per sample).  Previous WGS experience was used to establish rates for SNPs (1 per Kb), small 

insertions and deletions (0.1 per Kb), and nucleotide errors (5 per Kb). Sequence fragment size was 400nt, 

read length was 2 x 100 nt, and read depth was 40X.  Read simulation, alignment, and bam file creation 

were as before.  Differences between WGS simulation and expected genome reference values for GC 

content, repetitive feature frequency and target depth were < 10%, similar to the Chr 1 simulation (Figure 

1).  Three independent WGS samples were simulated to reduce potential tool deletion position advantages 

occurring by chance via random placement.  To compare sensitivity for homozygous and heterozygous 

deletion SVs, the simulated deletion SVs were 98% heterozygous and 2% homozygous.  A subset of 

deletion SVs were visually inspected for each sample using IGV (Figure 3). 
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Figure 3.  Heterozygous (Chr 2:84,271,069-84,277,071) and homozygous (Chr 11:73,476,280-

73,478,163) deletion SVs from a WGS simulation, displayed in IGV.  Most WGS simulated deletion 

SVs had stretched pairs with appropriate read depth. The top panel (a) shows the currently chosen 

reference (GRCh37), chromosome (2;11) and coordinates for the chromosome region being displayed.  

The middle panel (b) has a chromosome ideogram with a red box indicating the section of the 

chromosome being displayed.  The ruler reflects the visible portion of the chromosome.  Tick marks 

a) 

b) 

 

c) 

 

 

a) 

b) 

 

c) 
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indicate chromosome locations.  The span lists the number of nucleotides currently displayed.  The 

bottom panel (c) shows depth and read tracks.  Read pairs are displayed as dyads of rectangles each 

joined by a line. Pairs with normal separation are shown in grey. Stretched pairs are shown in red.  

Compressed pairs are shown in blue. 

Evaluation of deletion prediction tools with whole genome simulations 

Nine evaluation sets, comprising three iterations for each of the three independent samples, were 

attempted for each SV deletion detection tool.  ERDS failed repeatedly and was removed from further 

analysis.  Tool predictions were compared to simulated deletion SVs (depicted as set notation where 

intersection is ∩, not intersecting is  ̅, and union is U) at 6 discrete reciprocal overlap values (1bp, 1%, 

25%, 50%, 90% and 99%) since, to our knowledge, no standard SV coordinate overlap criteria yet exist.  

Performance measures were true positives (TPs), false positives (FPs), false negatives (FNs), sensitivity 

(SENS), positive predictive value (PPV) and F1-measure.  With an unknown quantity of true negatives 

the F1-measure substituted for specificity.  TPs, FPs and FNs were counted and SENS, PPV, and F1 were 

calculated for each tool (SENSITIVITY = TP/(TP+FN); PPV= TP/(TP+FP); F1 = 

2*(SENS*PPV)/(SENS+PPV)).  Tools were iteratively executed for each sample three times to evaluate 

the precision of predictions. The difference in sensitivity between homozygous and heterozygous deletion 

predictions was less than 1%. 

Tool performance measures were obtained for the combined homozygous and heterozygous set for each 

of the simulated WGS samples. Breakdancer (BD) and GenomeStrip (GS) exhibited excellent sensitivity, 

F1, precision and PPV (Figure 4).  In general, prediction performance decreased as the reciprocal overlap 

criterion increased, although BD and GS performance was excellent from 1bp - 90% overlap  

(BD∩
90%

GS, Figure 4).  Lumpy’s performance dropped significantly at overlap criteria > 50%.  Control-

Freec predicted many large deletions that had poor overlap with TPs.  Clever had the most imprecision 

(variability between iterations) and consistently predicted the fewest deletions.  WGS simulation results 

indicated that TP deletion SVs were detected by PEM alone (BD), although combining PEM, DOC, and 
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SRM (GS) was optimal.  Compared to BD or GS alone, a 90% (BD∩
90%

GS) prediction overlap 

(reciprocal overlap was required for all comparisons) was 3.8% less sensitive but yielded a 3.3% 

reduction in the ratio of FPs to TPs.  We concluded that BD and GS exhibited the best deletion detection 

in simulated WGS, and that the subset of BD and GS predictions with 90% overlap (BD∩
90%

GS) 

appeared to achieve an optimal balance of sensitivity and specificity. 

 

Figure 4.  Performance measures for five CNV detection tools as determined by reciprocal overlap 

of predictions from three iterations on one of three WGS simulations.  Shown are WGS simulation 

results as measured by TPs (A), FPs (B), FNs (C), SENS (D), PPV (E), and F1 (F).  BD and GS had the 

best performance overall and were selected for analysis of experimental WGS.  Similar results were 

observed for two other WGS simulations. (Supplementary figures S1 and S2) 
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Evaluation of BreakDancer and GenomeStrip with experimental WGS 

NA12878, a HapMap CEU trio child
16 

was chosen for initial experimental testing, as it had been 

extensively sequenced by the 1KGP
17

, and has been selected as a future SV benchmark by the National 

Institutes of Standards and Technology
18

.  We generated an experimental NA12878 dataset comprising a 

2 x 100 nt, 40X WGS.  BD and GS WGS deletion predictions were compared with two Affymetrix SNP 

array technical replicates (array replicate 1 [AR1] and array replicate 2 [AR2]), for which we also 

generated NA12878 experimental data. While it had been assumed that the SNP array data would serve as 

a ‘gold standard’ deletion SV set, the AR1∩
90%

AR2 replicate overlap was only 22% of AR1UAR2 

(67/(131+175)). There were significant differences in quality metrics between the array replicates, which 

could explain this lack of overlap. Thus it did not appear that Affymetrix SNP array data had sufficient 

precision to be a ‘gold standard’ comparator.   

Nevertheless, we compared BD∩
90%

GS predictions to array replicate predictions (AR1∩
90%

AR2) using a 

10% overlap cutoff ((BD∩
90%

GS)∩
10%

(AR1∩
90%

AR2)).  Predictions were further validated by visual 

inspection in IGV.  We observed a TP ratio of 39% for BD alone (n=28), 63% for GS alone (n=24), 67% 

for BD∩
90%

GS (n=21), and 95% for (BD∩
90%

GS)∩
10%

(AR1∩
90%

AR2) (n=16).  Although GS had 

outperformed BD only slightly on simulated WGS, this difference was substantial for NA12878 WGS.  

Consistent with simulated WGS, NA12878 WGS BD∩
90%

GS slightly outperformed GS alone, and 

appeared possibly to have sufficient specificity for use as a screening test. However, the much larger 

number of deletions predicted by GS or BD in WGS than by array hybridization suggested the potential 

for substantial FPs. Therefore we sought to develop a quality filter that retained TPs while reducing 

possible FPs. 

Establishment of filtering criteria via WGS deletion SV predictions overlapping with arrays   

Our filtering strategy focused on common WGS deletion characteristics used by detection algorithms, 

tool-generated quality metrics, and knowledge gained from NA12878 WGS FP visualizations.  The depth 

of coverage (DOC) model assumes deletions have significantly less read depth than flanking regions. 
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Paired end mapping (PEM) predicts a deletion when distances between aligned read pairs bordering the 

deletion were greater than expected
19

.  When viewed in IGV, many FPs were very large or associated 

with ineffective unique read mapping to repetitive regions.  For each prediction, GS provided a 

breakpoint confidence interval (GSCI [0 to #] where lower is better) and BD generated a quality score 

(BDS [0-99] where higher is better) that appeared to be useful as quality measures.  Thus, a novel quality 

filter was developed that combined a maximum depth ratio (ratio of read depth within a deletion to that 

flanking the deletion), GSCI, overlapping repeat feature count and prediction size, with minimum cutoff 

values for BDS and quantity of supporting pairs.  Based on the results from NA12878 WGS 

(BD∩
90%

GS)∩
10%

(AR1∩
90%

AR2), we assumed a high TP ratio for all BD∩
90%

GS∩
95%

AR.  Thus, filter 

values were parameterized on BD∩
90%

GS∩
95%

AR predictions (n=112) from sequencing and array assays 

for 14 samples (Table 3). 

 

Table 3. Filter criteria derived from 112 likely true positive BD∩
90%

GS ∩
90%

AR deletion 

predictions.  

Development of WGS deletion detection pipeline 

BD, GS, filter parameters, and overlapping genomic features were incorporated into a computational 

pipeline that ran in parallel starting from a bam file (Figure 5). Computation was completed on most 

WGS samples within eight hours.  Coverage plots of deletion predictions were automatically generated 

with IGV to facilitate initial validation by visual inspection. 
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Figure 5. A cartoon of the deletion detection pipeline. GS and BD are executed concurrently on a bam 

file.  Filter attributes, overlap %, and annotations are obtained for each prediction.  For family sets 

additional steps are performed. 

Analysis of precision in replicate sets before and after filtering 

Three datasets were used to assess the effects of filtering on the sensitivity and specificity of BD∩
90%

GS. 

The first was an assessment of run-to-run precision of deletion predictions in two samples (UDT173 and 

pg96), each with three WGS experimental replicates (r1, r2, and r3). While the replicates utilized the 

same sample, alignment and prediction tools, the sequencing methods differed among them. UDT173, for 

example, was sequenced with: r1. NextSeq 500 2 x 120 nt reads with version 4 (v4) chemistry, r2. HiSeq 

2500 2 x 100 nt reads with v3 chemistry and a 26 hour recipe, and r3. HiSeq 2500 2 x 100 nt reads with 

v4 chemistry and an 18 hour recipe. Pg96 was sequenced with: r1. HiSeq 2500 2 x 250 nt reads r2. HiSeq 

2500 2 x 120 nt reads, 11 day protocol, and v3 chemistry, and r3. HiSeq 2500 2 x 100 nt reads, v4 

chemistry and 18 hour recipe.  Given these methodological differences, we expected greater similarity for 

r2∩
90%

r3 than for r3∩
90%

r1 or r2∩
90%

r1, which matched actual results (Figure 6 and Table 4). Application 

of the filters decreased the total number of deletion predictions by 11.7-fold and 3.2 fold in UDT173 and 
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pg96, respectively (Table 4). In contrast, filtering decreased the r1∩
90%

r2∩
90%

r3 class by only 2.2-fold and 

1.3-fold, respectively, indicating that filtering improved prediction quality (Table 4). 

 

Figure 6. Comparison of deletion predictions in experimental WGS replicates before and after 

filtering.  Filtering resulted in the greatest increase in the r1∩
90%

r2∩
90%

r3 class as a proportion of total. 

Sample r1 r2 r3 r1∩
90%

r2 r2∩
90%

r3  r1∩
90%

r3  r1∩
90%

r2∩
90%

r3  

UDT173 743 1,299 394 266 10,187 24 968 

UDT173 filtered 39 152 153 15 367 19 446 

pg96 1,101 127 1,160 244 2,161 87 551 

pg96 filtered 337 618 242 77 333 82 423 

Table 4.  Deletion predictions in three sets of WGS performed with each of samples UDT173 and pg96, 

showing the effect of filtering. 
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Analysis of deletion SV prediction segregation in trios and a tetrad 

The vast majority of nuclear genome variations should obey the rules of Mendelian inheritance in WGS 

of familial trios and tetrads. Thus, inheritance information is very useful in assessing the veracity of 

deletion predictions. The segregation of predicted deletion SVs was assessed in WGS of one tetrad and 9 

trios, each comprising an acutely ill infant proband and both parents. BD∩
90%

GS for parent 1 (p1), 

parent2 (p2), and proband (pb) (with family member 1 (f1) or affected sibling (pb2) for tetrads) were 

compared to identify familial deletion SV segregation.  IGV inspection of several thousand filtered 

BD∩
90%

GS deletion SV predictions indicated that those with 0.1% reciprocal overlap in a trio were 

overwhelmingly identical, and therefore were merged.  For example [pb 

(BD∩
90%

GS)]∩
0.1%

[p1(BD∩
90%

GS)] ∩
0.1%

[p2(BD∩
90%

GS)] were designated as trio shared predictions.  

Furthermore, IGV visualization of 1,384 deletion SV predictions in a familial tetrad revealed 100% 

Mendelian inheritance of genotypes (Figure 8).  Thus deletions that did not exhibit Mendelian inheritance 

in trios represented false negative categorizations that stemmed from tool insensitivity.  Filter constraints 

(depth ratio, GSCI or BDS), overlap requirements or lack of a deletion SV prediction from one or both 

tools contributed most to insensitivity. 

In 9 trios filtering increased the total proportion for pb∩p1∩p2, pb∩p1, and pb∩p2 by 8.95%, 1.92%, and 

4.97% but decreased pb unique prediction by 15.84% respectively.  These results are concordant with 

expected Mendelian inheritance where the majority of deletions will be shared with parents and few will 

be de novo.  (Figure 7).  Gratifyingly, 78% of 1,384 filtered deletion predictions in a tetrad were true 

positives, as assessed by IGV.  IGV tetrad analysis demonstrated a TP% and SENS estimate for 

pb1∩
90%

pb2 ̅90%
p1 ̅90%

p2 to be 72% and 50% respectively. For pb1∩
90%

pb2∩
90%

p1∩
90%

p2 TP% and 

SENS estimates were 67% and 25% respectively.  The TP% for pb1 alone was 81% (Figure 8).  Although 

filter and overlap criterion reduced FPs for each individual sample, insensitivity yielded FNs which 

established incorrect familial associations for deletion SV predictions.  
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Figure 7. Summary results for overlap of deletion SV predictions in 9 trios pre- and post-filtering 

Filtering increased the total proportion for pb∩p1∩p2, pb∩p1, and pb∩p2 by 8.95%, 1.92%, and 4.97% 

but decreased pb unique predictions by 15.84% respectively.  Each trio had an acutely ill infant proband. 
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Figure 8.  Venn diagram showing overlap of deletion predictions in a tetrad after filtering. 

CMH000184 and CMH000185 were affected sibling stillbirths. CMH000186 and CMH000202 were 

parents.  TP rates were promising but sensitivity was lower than desired. (f = filtered) 

Analysis of deletion SVs predicted to overlap with genes 

We next sought deletion SVs that overlapped genes and were likely to be associated with disease 

phenotypes. Of 8872 filtered BD∩
90%

GS deletions identified in WGS of 30 individuals, 2,119 overlapped 

genes. They ranged in size from 563 - 484,514 nt and affected 0 - 373 exons each. On average, an 

individual WGS sample had 71 gene-associated deletion SVs, encompassing 701,233 nt, that affected a 

total of 226 exons. The 30 individuals represented 10 trios, each with an acutely ill infant proband. After 

merging overlapping deletions in each of the ten familial trios, 1,165 unique deletion SVs remained. 

Proximity of start and stop sites, however, indicated that many of these were recurrent among trios.  After 

merging recurrent deletions, 466 distinct deletions remained. Of these, 281 were unique to single trios 

(Table 5).  A frequency distribution of these 281 deletion SVs demonstrated that most ranged between 

1Kp to 10Kbp in size (Figure 9).  Since rare diseases cannot be caused by common mutations, the subset 



   19 
 

of those 281 deletions that was present in each proband contained candidates for disease causality for 

each proband. These 281 deletions were visually inspected with IGV and zygosity/TP status in the 

proband and inheritance pattern in the trio were recorded (TP=84%; Hom=0%; all Mendelian). 

Pseudogenes, olfactory or taste receptors, and MHC genes were omitted. Finally, the biological 

plausibility of the genes for the phenotype was assessed.   

 

Assessment of deletion SV predictions overlapping with exons and identified to be only in proband 

Deletions were assessed in IGV and identified as occurring in either the proband alone, in the proband 

and parent or sibling, or in the proband and both parents.  If an exon deletion was identified as 

heterozygous, that gene was further interrogated to determine if any mutations (e.g. SNPs, small 

insertions, or deletions) might be present on the remaining allele. 

All 50 exon overlapping deletion SVs occurring in the proband were heterozygous.  CMH222 and 

CMH223 were unique in that the trio consisted of two affected siblings and a parent.  Two exonic 

heterozygous deletion SV predictions were found in both siblings but not in the parent.  The first was in 

the OSBPL2 gene which encodes an oxysterol binding protein with unknown function.  The second was 

found in SNORD116-12 which has been implicated in Prader-Willi syndrome although phenotypes for 

CMH222 and CMH223 did not match this disorder.   No additional mutations were identified in CMH222 

and CMH223 for either gene.   

A heterozygous deletion of exon 3 in the RCC1 gene was identified in the proband CMH725 and one 

parent.  No additional mutations were identified in CMH725 for RCC1.  A heterozygous deletion 

overlapping the terminal exon of CTC-260E6 and ZNF486 was found in the proband CMH531 and both 

parents.  No additional mutations were identified for CMH531 in either gene.   

Two heterozygous deletions were identified in the proband CMH436 and parents.  The first deleted the 

entire coding sequence of the heat shock protein HSP90AA4.  The second impacted a region of 
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chromosome 1 encompassing the genes MSTO1, MSTOP2P and GON4L.  No additional mutations were 

identified for CMH436 in these genes. 

Assessment of deletion SV predictions overlapping with exons and identified to be in proband and 

one parent 

Of 79 putative deletion SVs predicted to exist in the proband and one parent, 6 were of interest.  A 

heterozygous deletion of exon 1 in GRID2IP was identified in CMH222, 223 and 224.  No additional 

mutations were identified for either sibling in this gene. 

A heterozygous deletion in RGS17 was found in CMH396 and one parent.  No additional mutations were 

identified for CMH396 in this gene.   

A heterozygous deletion of MMP21 gene was identified in CMH184, CMH185, and the unaffected parent 

CMH186.  Interestingly, a small deletion induced frameshift was also identified in MMP21 for CMH184, 

CMH185, and the other unaffected parent CMH202 (Figure 10).  MMP21 encodes a matrix 

metalloproteinase and is reported to be involved in the normal physiologic breakdown of the extracellular 

matrix during embryonic development and tissue remodeling
45

.
 
 Mice homozygous for an ENU-induced 

mutation in MMP21 have been reported to exhibit heterotaxy and related cardiovascular defects
46

 which 

is a phenotype similar to that of both CMH184 and 185.
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Figure 9.  Distribution of sizes for unique deletion SV predictions found in trios and overlapping with 

exons.     

Feature Nucleotides Exons Repeats Number 

# predicted filtered deletions (merged by 

trios)    1,165 

# predicted filtered deletions 21,037,001 6,770  2,119 

# unique deletions (present in only 1 trio)    281 

Max 484,514 373 1,404 30 
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Min 563 0 0 1 

Average 701,233 226  71 

average size 9928       

 

Table 5.  Statistics for deletion SV predictions from 10 trios that overlapped with exons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Data shown for tetrad and presumed causative mutation MMP21 for siblings CMH184 and 

185.  A) CMH184 (proband 1) Upper region demonstrates that coverage over predicted region (horizontal 

red bar) follows a heterozygous deletion SV pattern.  Lower region depicts a dark vertical line over the 

sixth MMP21 exon which corresponds to small deletison that induced a frame shift.  Red stretch pairs 

flanking the prediction region provide additional evidence for a deletion SV. 

 

A) 

B) 

 

C) 

 

D) 

 

E) 

F) 
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B) CMH186 (unaffected parent 1) Upper region demonstrates that coverage over predicted region follows 

a heterozygous deletion SV pattern.  Lower region shows a normal haplotype in reads.  Red stretch pairs 

flanking prediction region provide additional evidence for a deletion SV. 

C) CMH202 (unaffected parent 2) Upper region demonstrates normal coverage over predicted region 

without signs of deletion.  Lower region depicts a dark vertical line over sixth MMP21 exon which 

corresponds to small deletion which induced a frame shift. 

D) CMH185 (proband 2) Upper region demonstrates that coverage over predicted region follows a 

heterozygous deletion SV pattern.  Lower region depicts dark vertical line over sixth MMP21 exon which 

corresponds to small deletion which induced frame shift.  Red stretch pairs flanking prediction region 

provide additional evidence for a deletion SV. 

E) NA12878 (control sample) Upper region demonstrates normal coverage over predicted region without 

signs of deletion.  Lower region demonstrates no abnormalities over sixth MMP21 exon. 

F)  MMP21 gene with blue rectangles corresponding to exons and line corresponds to untranslated 

regions of gene. 

 

Extent and impact for deletions in 73 individuals by WGS 

Finally, we assessed the size distribution and impact of the unique non-overlapping BD∩
90%

GS deletion 

SVs predicted for 73 individuals (13 were unrelated, 2 were a pair, 54 were trios, and 4 were part of a 

tetrad).  BD∩
90%

GS predictions were filtered as before, and merged if overlapped by at least one 

nucleotide resulting in 5107 unique deletions. (median size=2,067nt, mean size=8,111nt)  Most deletions 

were under 10Kb in size, and those that overlapped with genes had a similar frequency distribution to the 

overall set while those that overlapped with exons tended to be larger.  Of the 5107 unique deletions, 

2579 (50%) and 701 (13%) overlapped by at least one nucleotide with a gene or exon respectively (Figure 

11). The frequency of this unique set was highest on chromosomes 6, 7, 17, and 18 and was the lowest for 

chromosome Y (Figure 12).  SVAG found 22,025 deletions in 185 unrelated individuals with a median 
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SV size of 729 nt and mean of 8Kb with 9381 (43%) and 1093 (5%) overlapping with a gene or exon 

respectively
15

.  Despite differences in the relatedness of individuals sequenced, our findings were similar 

to those of the SVAG in terms of mean size and overlap with genes and exons. 

 

Figure 11.  BD∩
90%

GS deletion SV predictions in 73 samples were filtered and merged to achieve a 

unique set.  5107 total unique deletions were found with 50% overlapping with genes and 13% 

overlapping with exons.   
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Figure 12.  BD∩
90%

GS deletion SV predictions in 73 samples were filtered and merged to achieve a 

unique set.  The frequency of this unique set was highest on chromosomes 6, 7, 17, and 18 and the lowest 

for chromosome Y. 
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Figure 13.  Shown is a trio analysis flow diagram for isolation of putative disease causing deletions SVs. 

MATERIALS and METHODS 

Study Participants 

WGS data were drawn from individuals previously enrolled in the Center for Pediatric Genomic Medicine 

research repository and approved by the institutional review board at Children’s Mercy Hospital Kansas 

City, MO. 

Whole Genome Sequencing 

Isolated genomic DNA was prepared for WGS with a modification of the Illumina TruSeq sample 

preparation. Briefly, 500 ng of DNA was sheared with a Covaris S2 Biodisruptor, end-repaired, A-tailed, 

and adaptor-ligated. Polymerase chain reaction (PCR) was omitted. Libraries were purified with SPRI 

beads (Beckman Coulter).  Quantitation was carried out by real-time PCR.  Libraries were denatured with 

0.1 M NaOH and diluted to 2.8 pM in hybridization buffer.  Samples for rapid WGS were each loaded 

onto two flowcells, followed by sequencing on Illumina HiSeq 2500 instruments.  Cluster generation, 

followed by 2 × 100 cycle sequencing reads, separated by paired-end turnaround, were performed 

automatically by the instrument.   
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Next Generation Sequencing Analysis 

Sequence data was generated with Illumina RTA 1.12.4.2 & CASAVA-1.8.2, aligned to the human 

reference GRCh37.p5 using GSNAP
10

.  Sequence analysis employed FASTQ files, the compressed binary 

version of the Sequence Alignment/Map format (bam, a representation of nucleotide sequence 

alignments).  Analysis programs were either written in Perl, R, make or the shell scripting language. 

Affymetrix SNP/CNV array materials and methods 

Isolated genomic DNA was prepared using the four day workflow using the standard 8 step Affymetrix 

cytoscan assay protocol.  Arrays were then washed, stained and scanned.  Raw .cel and .dat files were 

converted to .cychp files using CytoScan® HD Array.  Chromosome Analysis Suite 2.0 NetAffx 32.3 

(hg19) was used for final analysis and exporting of deletion calls. 

DISCUSSION 

If outcomes are to be improved for acutely ill neonates suspected of having a genetic condition, it is 

paramount to confirm or refute a molecular diagnosis in a timely manner.  The full potential for WGS 

data to inform care providers in this regard has not yet been fully realized.  Indeed, as more and more rich 

genomic datasets are generated, the impediment preventing comprehensive SV identification is more 

analytical than technical
34

.  The abundance of SV detection tools reflects the complexity of this challenge, 

and also the absence of a robust benchmark that all tools can be measured by.  In this study much effort 

was devoted to constructing an alternative source for SV tool evaluation.  Poor overlap between NA12878 

Affymetrix array technical replicates indicated arrays could not substitute as a standard SV set, since they 

appeared to lack sufficient sensitivity or precision.  It is critical to evaluate SV detection tools formally 

since there is no default commonly employed program, as currently exists for WGS nucleotide variant 

detection (i.e. GATK
43

).  SV detection tool run times can vary from hours to several days for a WGS data 

set, and our initial Chr 1 (~8% of entire genome) test was appropriately sized to efficiently assess 

programs, while still resembling a whole genome test. It should be noted that for clinical use, SV 
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detection tools must run as quickly as tools used for small variant detection. Our whole genome 

simulation was based on characteristics from a validated subset of CNVs from 185 1KGP samples.  This 

analysis led us to select the 90% reciprocally overlapping predictions (BD∩
90%

GS) from the top two 

performing tools Breakdancer (BD) and GenomeStrip (GS) as our consensus set, since this approach 

decreased the ratio of FPs to TPs, while not dramatically altering sensitivity.  From NA12878 WGS and 

array comparisons we confirmed BD∩
90%

GS
 
decreased the ratio of FPs to TPs compared to either tool 

alone, and concluded that BD∩
90%

GS∩
90%

AR would represent a high quality set of predictions.   

A filter for deletion predictions was parameterized from 112 BD∩
90%

GS∩
90%

AR.  A computational 

pipeline was implemented to overlap, filter and annotate putative BD and GS deletion SVs, while 

completing in less than 8 hours per WGS dataset.  We assessed our pipeline and filtering though analysis 

of WGS experimental replicates, trio inheritance patterns, and inspection of raw data for a tetrad in IGV.  

Experimental replicate analysis demonstrated that filtering enriched for predictions shared between 

replicates.  Our two NA12878 array technical replicates yielded 22% overlap yet 

r1∩
90%

r2∩
90%

r3/r1Ur2Ur3 for the two WGS experimental replicate sets pg96 and UDT173 equaled 20% 

and 37% respectively.  When considering the fundamental differences between WGS experimental 

replicates and that the consensus for each set was based on a three way comparison there is evidence that 

our WGS pipeline performance is equal to or better than arrays which are the current SV detection 

standard.  Trio analysis indicated that filtering enhanced Mendelian inheritance patterns and reduced the 

quantity of de novo predictions unique to probands.  Inspection in IGV of selected regions from a tetrad 

Venn diagram (Figure 8) demonstrated high specificity but relative insensitivity.  WGS from 73 

individuals yielded a deletion SV size distribution similar to the structural variation analysis group 

(SVAG) results in terms of mean size, and the proportion that overlapped with genes and exons.  Our 

higher proportion of deletion SVs overlapping with genes and exons could be due to a greater disease 

burden in our sample or a more extensive set of annotations.   
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Our pipeline prioritized specificity over sensitivity, for the greatest current utility, and the resultant 

limitations of a hard filter became most apparent in familial analysis.  A similar challenge had faced early 

SNP detection methods, and was, in part, solved through the use of training set population data to 

improve analytical performance
44

. This is, unfortunately, not yet an effective solution for SV detection 

since few validated sets of SVs exist.  Using a more flexible filter and or only one tool to increase 

sensitivity would currently decrease the specificity of results unacceptably.  Additional problems remain 

for deletion SV detection, such as inaccurate breakpoints around repetitive regions and multiple 

overlapping predictions.  We had expected to find a higher rate of de novo deletions which empirically 

appears to be close to zero.   

Our clinical approach for effective diagnosis of deletion SV disorders in newborns will be restricted to 

familial sets where predictions from each tool are 1) intersected, 2) filtered, and 3) annotated, with all 

common deletions being removed. The latter is a powerful filter for genetic disease diagnosis, since rare 

diseases cannot be causally associated with common SVs
25

.  Finally, the last step in our clinical 

computational pipeline will be to focus on those genes predicted to be associated with a newborn’s 

specific phenotype
25

.  (Figure 13)  This also is a powerful filter, given the availability of tools to nominate 

disease genes comprehensively on the basis of symptoms. However, it is not useful when the patient's 

disease features are atypical or reflective of an early phase in disease evolution, or if the patient has a 

novel genetic disease.  The combination of allele frequency and phenotypic filters allows greater 

tolerance of non-specificity, which, in turn, enables parameterization for greater analytic sensitivity. The 

end goal of this clinical strategy is to find homozygous gene-overlapping deletion SVs or heterozygous 

deletion SVs where a disease causative nucleotide mutation exists on the other DNA strand.  Using WGS 

to clinically diagnose genetic conditions is a powerful strategy since both SNPs and deletion SVs can be 

interrogated in the same dataset. 

The next immediate step will be to validate a large number of potentially-disease causing putative 

deletion SVs though either qPCR, Sanger sequencing, arrays or RNA-seq.  We expect that additional 
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experience from the routine use of the deletion SV detection pipeline for WGS neonatal disease diagnosis 

will yield insights for ways to increase sensitivity (e.g. filter modifications).  By changing our upstream 

alignment approach, GS is expected to gain additional ability to identify deletion SVs within reads and 

increase sensitivity though its SRM functionality.  Finally, validated deletion SVs from each new sample 

sequenced will be added to an internal reference database of TP pathogenic and benign deletion SVs. 

CONCLUSIONS 

Identification of deletion SVs, when combined with small variant detection in a rapid software pipeline, 

can prove to be an effective tool for identifying disease causing mutations in neonates.  Results from this 

study indicate that deletion SVs in WGS data can be expeditiously detected with high specificity using 

open source tools and special criterion.  We expect our computational pipeline to be continuously 

improved through routine clinical use, Mendelian inheritance patterns and molecular validation 

techniques. 
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