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Abstract 
 

The transition to animal multicellularity involved the evolution of single cells 

organizing into sheets of tissue.  The advent of tissues allowed for specialization and 

diversification, which led to the formation of complex structures and a variety of body 

plans.  These epithelial tissues undergo morphogenesis during animal development, 

and the establishment and maintenance of their polarity and integrity is crucial for 

homeostasis and prevention of pathogenesis.  This architecture is dynamically 

maintained through a variety of cellular processes including the regulation of 

intracellular transport, cytoskeletal modulation, and cell adhesion.  While studies in 

established model organisms and cell culture have contributed to our current knowledge 

of these processes, evolutionary and in vivo perspectives are largely lacking.  Our 

efforts to gain a better understanding of epithelial biology have centered around two 

main themes: 1) Ancient mechanisms of morphogenesis during animal development 

and 2) Modulation of epithelial architecture during pathogenesis. 

First, to address the ancient mechanisms of epithelial morphogenesis, we 

examine tentacle development in the cnidarian Nematostella vectensis as a model of 

outgrowth formation.  Through drug treatments, transcriptional analysis and imaging 

experiments, our study identifies molecular and cellular mechanisms that act during 

elongation of the tentacles and body column.  At the onset of tentacle development, we 

observe an ectodermal placode that forms at the oral end of the animal, which is 

transcriptionally patterned into four tentacle buds.  Subsequently during morphogenesis, 

our results show that cell shape changes and cell rearrangements act during elongation 
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of the bud into a mature tentacle.  In the body column during elongation, we also 

observe a period of oriented cell divisions along the oral-aboral axis.  Together, our 

results reveal ancient cellular and molecular mechanisms of epithelial morphogenesis 

during development in an early-branching metazoan.   

Second, to explore alterations in epithelial architecture and integrity during 

bacterial pathogenesis, we express a Shigella bacterial virulence protein, VirA, in 

Drosophila and vertebrate tissue.  Previous reports on the function of VirA have only 

employed in vitro and cell culture assays, so the function of VirA in an epithelial context 

remains largely unknown.  Through in vivo expression and imaging experiments, we 

show that VirA expression in Drosophila disrupts epithelial architecture and cell polarity, 

with no discernible effects on microtubule stability.  In the Drosophila salivary gland and 

eye imaginal disc, cells expressing VirA round and lose polarity markers. We observe a 

similar apical cell rounding phenotype when VirA is expressed in chick neural tube, 

implying a conserved mechanism of VirA function in vertebrates.  Finally, we 

demonstrate a mislocalization of Rab11 in VirA expressing epithelia, suggesting a 

potential defect in vesicle trafficking.  Taken together, our results reveal a novel function 

for VirA in disruption of cell polarity or adhesion, possibly through vesicle trafficking, 

leading to a breakdown of epithelial integrity facilitating the pathogenesis of Shigella in 

the human intestinal epithelium.       
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The transition to animal multicellularity involved single cells organizing into tissue 

sheets.  The formation of tissues allowed for the evolution of more complex structures 

and the diversity of body plans that exist among animals.  Thus, epithelia are a common 

and defining feature of all metazoan animals, which allow for tissue morphogenesis 

during the development of organs and structures and serve as barriers to body 

compartments and pathogens from the outside environment.  This tissue type is 

characterized by its distinctly apical-basal polarized, adherent cells (reviewed in 

Fristrom, 1988).  The research during my graduate career has focused on two main 

topics: 1) Ancient mechanisms of epithelial morphogenesis during development of a 

basal metazoan and 2) How epithelial architecture and integrity are altered during 

pathogenesis.  Accordingly, the introduction to this dissertation concentrates on these 

themes by first covering the fundamentals of epithelial tissue polarity and architecture.  

Subsequently, I explore the topics of mechanisms of epithelial morphogenesis during 

animal development and epithelial integrity during bacterial pathogenesis.     
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Epithelial tissue polarity and architecture 

 

Cell polarity, adhesion, and tissue architecture  

To study the processes of morphogenesis and integrity of epithelial tissue, we 

must first understand how these tissues are polarized and assembled into sheets.  

Epithelial cells’ ability to self-organize into tissue sheets is based on their apical-basal 

polarization.  Adherent cells orient with the apical surfaces towards the outside 

environment or lumen.  The basal surface generally contacts a secreted extracellular 

matrix, the basal lamina.  Polarized epithelial cells contain two main domains along the 

apico-basal axis: apical and basolateral.  Each membrane domain has a specific 

composition containing distinct sets of proteins and is physically separated by junctional 

complexes.  The establishment and maintenance of polarity involves various cellular 

processes including polarized vesicle trafficking, polarity protein localization, and 

physical separation of the domains by the junctions.   

Studies in Drosophila and vertebrate model systems have revealed differences 

between their junctional architecture (Figure 1.1).  These junctions and their associated 

proteins assist in the functions of paracellular barrier, adhesion, linking the membrane to 

the cytoskeleton, and the establishment and maintenance of polarity.  At the most apical 

region of the lateral membrane in Drosophila is the subapical region (SAR) or marginal 

zone, which is devoid of junctions and functions in cell polarity (Tepass, 1996).  Apical 

protein determinants including Crumbs, Atypical Protein Kinase C (aPKC), and Par3 

(Bazooka in Drosophila) are localized here (Tepass, 1996; Wodarz et al., 2000).  Just  

 



4 
 

 

 

 

 

 

 

 

Figure 1.1 – Epithelial cell junctions in Drosophila and vertebrates 

Schematic representation of the epithelial cell junctions in Drosophila melanogaster and 

vertebrates from Macara (2004).  In Drosophila, there are two main apical junctions:  the 

adherens junctions (zona adherens) and the more basally localized septate junctions.  

Vertebrates instead have apical tight junctions and more basal adherens junctions.  

Each junction localizes a different subset of proteins including those involved in the 

establishment and maintenance of polarity.       
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basal to the SAR lie the adherens junctions or zonula adherens, which are sites of 

localization for E-cadherin and-catenin (the homolog is Armadillo in Drosophila).   

Additionally, adherens junctions play an important role in linking the membrane to the 

actin cytoskeleton (Tepass and Hartenstein, 1994).  Immediately basal of the adherens 

junctions in Drosophila are the septate junctions, which assist in the paracellular barrier 

function and polarization of the epithelial cell (Lamb et al., 1998; Genova and Fehon, 

2003).  Polarity proteins including Discs large (Dlg), Lethal giant larvae (Lgl), and 

Scribble (Scrib) localize at the septate junctions (Bilder et al., 2000; Bilder and 

Perrimon, 2000; reviewed in: Bilder, 2001; Tepass et al., 2001; Knust and Bossinger, 

2002).  In vertebrate epithelia, there are no septate junctions, but instead tight junctions.  

Tight junctions similarly play a role in barrier function and polarity, but are located 

apically in a region similar to the Drosophila SAR (reviewed in: Tsukita et al., 2001, 

Knust and Bossinger, 2002, and Tsukita and Furuse, 2002).  Located basal to the tight 

junctions in vertebrate epithelia are the adherens junctions.  Additional lateral 

membrane junctions in both vertebrate and invertebrate epithelia are gap junctions, 

which allow the transmission of ions and small molecules between neighboring cells 

(reviewed in Phelan and Starich, 2001).  Desmosomes, which are lateral membrane 

junctions that link the cytoskeletal intermediate filaments of cells, exist in vertebrates, 

but not invertebrates (reviewed in Hynes and Zhao, 2000 and Delva et al., 2009).  The 

maintenance of cell polarity and junctional architecture must be regulated during both 

morphogenesis and homeostasis.                  
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Rab GTPase mediated vesicle trafficking in epithelial cells  

To establish and maintain polarity, proteins must be localized to specific 

subcellular sites.  One way to achieve this is delivering vesicle cargo with particular 

proteins to distinct structures in the cell, such as junctions, lateral membranes, or apical 

membranes.  Thus, vesicle trafficking is essential for the maintenance of polarity, barrier 

function, and cell signaling, secretory and endocytic pathways amongst other functions.  

Additionally, the loss of proper polarity or trafficking can lead to pathogenesis from 

external sources and various diseases including cancer.  Rab GTPases are a major 

regulator of vesicle trafficking in eukaryotic cells.  This class of small GTPases act as 

molecular switches and alternate between active and inactivate states.  There are more 

than 60 different Rab GTPase proteins in humans and over 30 in Drosophila (Pereira-

Leal and Seabra, 2001; reviewed in: Zerial and McBride, 2001; Schwartz et al., 2007; 

Zhang et al., 2007).  While localizing to distinct membrane domains, these GTPases 

recruit effector proteins to organize most of the intracellular traffic in eukaryotic cells 

(Chavrier et al., 1990). 

Rab GTPases generally exist in two different states: an active, GTP bound and 

inactive, GDP bound state (Figure 1.2A).  In the inactive state, the GDP-Rab complex is 

stabilized by the GDP dissociation inhibitor protein (GDI), which can additionally 

function in Rab recycling and delivery to the correct membrane compartment (Matsui et 

al., 1990; Ullrich et al., 1993; Soldati et al., 1994; Ullrich et al., 1994).  Guanine 

nucleotide exchange factors (GEFs) facilitate the release of GDP in order to allow 

binding of GTP, and therefore, assist in the conversion to an active Rab GTPase 

(Delprato et al., 2004; reviewed in Barr and Lambright, 2010).  In the active state, the 



8 
 

Rab GTPase hydrolyzes its bound GTP, which converts it back into the GDP bound, 

inactive state; this reaction is catalyzed by the GTPase-activating proteins (GAPs) 

(Haas et al., 2007).  There is also an associated conformational change in the Rab 

proteins between the GTP and GDP bound states (Stroupe and Brunger, 2000).  Rab 

effector proteins generally prefer the GTP bound (active) state, although exceptions do 

exist (Shirane and Nakayama, 2006). 

Within the cell cytosol is a highly complex system of intracellular compartments 

and transport between them (Figure 1.2B).  While it is not completely understood how 

Rab GTPases are targeted to the correct membrane, some data suggest that GDI 

displacement factors in the membrane recognize specific Rab-GDI complexes and 

facilitate the removal of the GDI allowing the Rab GTPase to associate with the 

membrane (Soldati et al., 1994; Sivars et al., 2003; Ohya et al., 2009).  However, some 

recent data from experiments that anchor mislocalized GEFs suggest that these 

proteins may also play a role in the localization of Rab GTPases (Gerondopoulos et al., 

2012; Blumer et al., 2013).              

Rab11, which is known to be localized on recycling endosomes (Calhoun and 

Goldenring, 1996; Ren et al., 1998; Casanova et al., 1999), has more recently been 

implicated in the regulation of cell polarity, adhesion, and epithelial integrity (Figure 

1.2C).  It was reported that Rab11 mediated trafficking is important for E-cadherin 

recycling and targeting to the adherens junctions in both Drosophila and mammalian 

cells (Langevin et al., 2005; Lock and Stow, 2005; Desclozeaux et al., 2008).  Further, 

studies in Drosophila have implicated the necessity of Rab11 for the maintenance of cell 

polarity and epithelial integrity (Roeth et al., 2009; Xu et al., 2011).      
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Figure 1.2 – Rab GTPase mediated vesicle trafficking in epithelial cells 

(A-C)  Schematic representation of Rab GTPases and their mediation of vesicle 

trafficking in epithelial cells adapted from Stenmark (2009).  (A)  Rab proteins generally 

exist in an active (GTP bound) or inactive (GDP bound) form.  Guanine nucleotide 

exchange factor proteins (GEFs) convert the inactive into an active state by releasing 

the GDP from the Rab protein, so GTP can bind.  Conversely, GTPase activating 

proteins (GAPs) stimulate the hydrolysis of the bound GTP to inactivate the Rab protein.  

(B)  An epithelial cell showing the complicated network of vesicle trafficking and the Rab 

proteins associated with the various types of intracellular vesicles and compartments.  

(C)  Rab11 is found on recycling endosomes and is important in trafficking proteins to 

the apical membrane.           
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Epithelial morphogenesis during development and evolution 

 During embryonic development in most animals, individual blastomeres become 

polarized and adhere to each other to form an epithelial sheet.  This sheet of cells, 

generally formed by the blastocyst stage or during cellularization, will contribute to the 

germ layers and give rise to adult organs and structures.  During development, 

morphogenetic processes drive changes in the shape of epithelial sheets that give rise 

to these adult formations.       

 

 

Mechanisms of epithelial morphogenesis during animal development 

During animal development, epithelial tissues are patterned and undergo 

morphogenesis to form a diversity of body plans, organs, appendages, and structures.  

Studies in bilaterian model organisms, such as mouse, chick, Xenopus, and Drosophila, 

have identified several processes that drive morphogenesis, three of which I will 

highlight here.  First, changes in the shape of epithelial cells can increase or decrease 

the surface area of an epithelial sheet.  With a reduction in the apico-basal axis of cells, 

the surface area of the sheet will increase; this occurs during Xenopus epiboly and 

Drosophila wing morphogenesis (Figure 1.3A; Keller, 1980; reviewed in Fristrom, 1988).  

Conversely, columnarization, thickening of cells with an increase in the apico-basal axis, 

occurs in some follicle cells during oogenesis in Drosophila (Figure 1.3A; Zarnescu and 

Thomas, 1999).  Second, oriented cell divisions can result in directional expansion of a 

tissue.  One example of this is germband extension in the Drosophila embryo where 

cells preferentially divide along the anterior-posterior axis (Figure 1.3B; da Silva and 
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Vincent, 2007).  Oriented cell divisions also play a role during zebrafish gastrulation, 

where a subset of cells in the epiblast divide along the anterior-posterior axis during 

elongation (Concha and Adams, 1998).  Third, cell intercalation and convergent 

extension act to shape developing embryos through a combination of tissue and cellular 

movement.  These morphogenetic movements result in the narrowing and elongation of 

a sheet of cells (Figure 1.3C).  The best described example of convergent extension 

occurs in the mesodermal cells during Xenopus gastrulation (Keller, 1978; Keller et al., 

1992; Shih and Keller, 1992).  However, this process has also been described in the 

epithelium of the Drosophila embryo during germband extension and in ascidian 

epithelia during notochord development (Irvine and Wieschaus, 1994; Munro and Odell, 

2002).  

At the tissue level, placodes are primordial structures that precede 

morphogenesis during the development of multiple organ and appendage structures.  

These thickened epithelial structures are molecularly patterned through signaling 

pathways and gene expression before being elaborated into an adult structure (Figure 

1.3D).  The ectodermal appendages of vertebrates originate from placodes, including 

teeth, feathers, and scales (reviewed in Pispa and Thesleff, 2003).  Additionally, the 

sensory placodes contribute to development of the eye lens and inner ear (reviewed in 

Baker and Bronner-Fraser, 2001; Streit, 2007).  However, placodes have not only been 

described in vertebrate model organisms; they are known to contribute to the 

development of the Drosophila trachea and imaginal discs (Franch-Marro et al., 2006; 

reviewed in Fristrom, 1988).  More recently, placodes have been studied in the context 

of ascidian sensory organs (Manni et al., 2004).  Nevertheless, most of our current  
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Figure 1.3 – Mechanisms of epithelial morphogenesis during development 

(A-C)  Schematic representations of cellular processes that drive morphogenesis of 

epithelial sheets during development.  Cell shape changes (A), including flattening and 

columnarization, act to increase or decrease the surface area of an epithelial sheet.  

Oriented cell divisions (B) can result in directed expansion of a tissue.  Cell intercalation 

and convergent extension (C) act to narrow and elongate a cell sheet.  (D)  At the tissue 

level, thickened epithelial placodes serve as primordia that are patterned and 

subsequently undergo morphogenesis to form adult organs and structures, including 

teeth, the eye lens, and the Drosophila wing.        
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knowledge about the molecular and cellular mechanisms involved in these 

morphogenetic processes has been elucidated in select bilaterian model systems.     

 

 

Nematostella vectensis as a model system for exploring ancient mechanisms of 

epithelial morphogenesis 

 

Genome content 

To explore the ancient mechanisms of morphogenesis, we use the basal 

metazoan Nematostella vectensis, a sea anemone and an emerging model system.  

This model is being used as a powerful tool in the evolution and development field to 

explore the evolution of the germ layers (Wikramanayake et al., 2003; Martindale et al., 

2004; Technau, 2010), signaling pathways (Kusserow et al., 2005; Rentzsch et al., 

2006; Matus et al., 2007; Matus et al., 2008; Kumburegama et al., 2011; Marlow et al., 

2012), the nervous system (Marlow et al., 2009; Nakanishi et al., 2012), and axial 

patterning (Finnerty, 2003; Wikramanayake et al., 2003; Rentzsch et al., 2006; Saina et 

al., 2009; Sinigaglia et al., 2013).  With the advantage of its phylogenetic position, as 

the sister group to the bilaterians, cnidarians provide evolutionary insight into the 

developmental mechanisms used by higher organisms (Figure 1.4; Collins et al., 2006; 

Putnam et al., 2007; Dunn et al., 2008; Hejnol et al., 2009).  The genome of 

Nematostella has been sequenced, which revealed a surprising similarity in the 

organization and content of its genome with that of higher organisms, including humans 

(Putnam et al., 2007).  It is estimated to be around 450 Mbps in size and contain around  
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Figure 1.4 – Metazoan phylogeny 

Phylogeny showing the major classes of metazoan organisms as well as their closest 

unicellular ancestor, Choanoflagelata.  Dotted lines indicate positions that are currently 

still debated at the base of the metazoan tree.  The ‘Non-Bilateria’ includes Ctenophora 

(comb jellies), Porifera (sponges), Placozoa (Trichoplax), and Cnidaria.  Cnidaria is 

broadly divided into Anthozoa (sea anemones and corals) and Medusozoa (Hydra and 

jellyfish).  Bilateria includes Deuterostomia (ex. echinoderms and vertebrates), 

Lophotrochozoa (ex. flatworms and mollusks), and Ecdysozoa (ex. Drosophila and C. 

elegans).   
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Figure 1.4  
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18,000 genes (Putnam et al., 2007).  Additionally, Nematostella’s genome contains 

more orthologs of human genes than some of the more closely evolutionarily related 

organisms; this even includes genomes of established model systems such as 

Drosophila and C. elegans.  Furthermore, it also contains orthologs of genes known to 

contribute to various human diseases (Sullivan and Finnerty, 2007).  Since the genome 

is similar to that of higher bilaterians, Nematostella contains many of the genes and 

signaling pathways known to be involved in developmental processes of these 

organisms; this includes a Hox gene cluster (Finnerty and Martindale, 1999; Chourrout 

et al., 2006), Fibroblast Growth Factors (FGFs; Matus et al., 2007), Bone 

Morphogenetic Proteins (BMPs; Rentzsch et al., 2006), Hedgehog (Hh) proteins (Matus 

et al., 2008), Wnts (Kusserow et al., 2005), and Notch pathway members (Marlow et al., 

2012).  Given that the Nematostella genome is so similar to that of vertebrates, it 

suggests that the genome has retained the complexity of the bilaterian‐cnidarian 

common ancestor (eumetazoan ancestor).  Additionally, the genomes of many currently 

used model organisms, like fly and worm, seem to have undergone genome 

condensation, losing many genes during evolution, and are generally regarded as 

‘derived’ examples. 

Since the Nematostella genome has been sequenced, more techniques and 

tools can be used to explore development and other processes.  As previously 

discussed, comparative genomics can be used to compare genes of Nematostella with 

those of other species.  Currently, tools are being developed and used for reverse 

genetics in this organism.  This includes knockdown with antisense morpholinos 

(Rentzsch et al., 2008; Genikhovich and Technau, 2011; Nakanishi et al., 2012; 
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Sinigaglia et al., 2013; Wolenski et al., 2013), expression of mRNA (Tsukita and Furuse, 

2002; Rentzsch et al., 2006; Rentzsch et al., 2008; Kumburegama et al., 2011; Layden 

et al., 2012; Marlow et al., 2012; Rottinger et al., 2012; Layden et al., 2013), and 

generation of transgenic animals (Renfer et al., 2010; Nakanishi et al., 2012). 

 

Lifecycle of Nematostella 

Nematostella are simple and inexpensive to culture in the lab through their entire 

reproductive cycle (Hand and Unlinger, 1992; Stefanik et al., 2013).  They can be 

maintained in artificial sea water, and adults are fed Artemia nauplii, brine shrimp 

larvae.  An established spawning protocol allows us to easily obtain large numbers of 

animals on a regular basis (Fritzenwanker and Technau, 2002b; Stefanik et al., 2013).  

This protocol includes changes in light, temperature, and diet that induce the animals to 

reproduce sexually.  Using this protocol, spawning can be induced at a desired time to 

have embryos for microinjection or other experiments.  In addition, the association of 

egg masses with females permits their isolation during spawning; there are no 

morphological differences between male and female individuals.  These segregated 

females are kept separate from males, so the timing of fertilization can be controlled.  

In addition to a sexual mode of reproduction, Nematostella can also reproduce 

asexually.  Asexual reproduction can occur by two different methods of transverse 

fission: physal pinching and polarity reversal (Reitzel et al., 2007).  During physal 

pinching, the animal constricts at the aboral end, which leads to separation of this 

portion from the rest of the adult animal.  This aboral fragment is able to develop into a 

separate adult animal.  Polarity reversal occurs by the development of a new oral pole 
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at the aboral tip.  The animal will constrict its body column between the two new oral 

ends to produce two separate adults.  Additionally, Nematostella can regenerate after 

being cut transversely, providing the potential for regeneration studies using this 

organism (Reitzel et al., 2007).  

In the laboratory, we most often spawn Nematostella sexually to obtain large 

numbers of animals for experiments as described above (Hand and Unlinger, 1992; 

Fritzenwanker and Technau, 2002b).  Fertilization occurs externally after females and 

males have released eggs and sperm, respectively (Figure 1.5).  The embryo 

undergoes several rounds of chaotic cell division, becoming a blastula and then 

gastrulating.  This key developmental event, gastrulation, results in the formation of two 

germ layers, the ectoderm and endoderm.  After gastrulation, there is a swimming 

planula larval phase.  The planula larva settles and further growth and differentiation 

take place to form the four‐tentacle primary polyp.  Interestingly, development to this 

stage does not involve feeding, but subsequent growth and tentacle addition requires 

nutrition.   

 

Body plan 

The bauplan of the adult polyp consists of a cylindrical body column with eight 

mesenteries and a pharynx, mouth, and approximately 16 tentacles at the oral end of 

the animal (Figure 1.6).  The ectoderm and endoderm are separated by a layer of 

mesoglea, extracellular matrix.  Even though the body plan is very simple, Nematostella 

has about 20 types of differentiated cells including myoepithelial cells, secretory cells, 

nerve cells, and nematocysts (reviewed in Erwin, 2009).  Cnidarians are early-branching  
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Figure 1.5 – Life cycle of Nematostella vectensis 

Nematostella adults release eggs and sperm into the water.  Fertilized embryos 

undergo chaotic cell division, gastrulate to form two germ layers, and develop into a 

swimming planula larva.  The larva settles and undergoes metamorphosis to form a 

four-tentacle primary polyp.  Primary polyps begin feeding, grow, and add additional 

tentacles as they mature to the adult stage.     
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Figure 1.6 –Nematostella adult anatomy  

Adult Nematostella polyp (12 tentacle stage) on the left with structures labeled on the 

right.  At the oral end of the animal is the head containing a mouth and radiating 

tentacles.  The tentacles are used for prey capture and feeding.  The mouth opening 

leads into the pharynx, which opens into the body cavity.  Ingestion of food, expulsion of 

waste, and spawning all occur through the mouth opening.  The tube-shaped body 

column houses the eight mesenteries.  The aboral end of the animal is referred to as 

the foot.      
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metazoan animals with defined appendage structures, tentacles.  Nematostella uses its 

tentacles to capture prey and feed.  These appendages can also be articulated and 

retracted into the body.  They contain numerous cell types including nematocysts, 

spirocytes, and myoepithelial cells, and are innervated (Marlow et al., 2009; Renfer et 

al., 2010).  Ctenophores might also have appendage‐like structures, but the 

phylogenetic position of this group is still being debated (Schram, 1991; Nielsen et al., 

1996; Collins, 1998; Zrzavy et al., 1998; Kim et al., 1999; Peterson and Eernisse, 2001; 

Ryan et al., 2013).   

 

 

Epithelial morphogenesis in basal metazoans  

Ancient mechanisms of epithelial morphogenesis in basal metazoan animals are 

largely unknown.  Most of our current knowledge comes from studies of organisms 

within the cnidarian clade.  The cnidarians are phylogenetically divided into two main 

groups: Anthozoa (sea anemones and corals) and Medusozoa (jellyfish and Hydra) 

(Collins, 2002; Marques and Collins, 2004; Collins et al., 2006; Daly et al., 2007; Kayal 

et al., 2013).  Mechanisms of morphogenesis in Nematostella, an anthozoan cnidarian, 

have only been explored in the context of gastrulation.  Gastrulation occurs by 

invagination in Nematostella, where the epithelial cells at the blastopore undergo cell 

shape change, constriction at the apical apex to form bottle cells (Magie et al., 2007; 

Kumburegama et al., 2011).    

Within the broad Medusozoa, Hydra has been a subject of laboratory study for 

over 250 years.  During this time, many scientists have used Hydra to investigate topics 
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including reproduction, regeneration, and stem cell biology.  Recently, the genome of 

Hydra magnipapillata has also been sequenced (Chapman et al., 2010).  Due to the 

lack of an inducible spawning protocol, most studies in Hydra examine development 

and morphogenesis in the light of regeneration, asexual budding, and adult 

maintenance.  Epithelial morphogenesis in Hydra has largely been studied in the 

context of asexual budding.  At the initiation of bud formation on the body column, there 

is a thickening of the epithelial cells along their apico-basal axis, which flatten as the 

bud forms (Gelei, 1925; Graf and Gierer, 1980).  Additionally, during bud evagination, 

clusters of cells intercalate into elongated arrays of cells (Philipp et al., 2009).  It has 

also been shown that cells in the ectoderm have oriented cell divisions along the oral-

aboral axis; however, the endoderm cells have oriented cell divisions as well that are 

oriented perpendicular to the body axis (Shimizu et al., 1995).  These oriented cell 

divisions are not thought to play a role during elongation or bud formation.                

Another emerging hydrozoan cnidarian model, Clytia hemisphaerica, has also 

recently been used to study development in a basal metazoan (Houliston et al., 2010).  

This medusozoan model has a lot of potential since there is an established spawning 

protocol, and the genome is currently being sequenced (Roosen-Runge, 1970; Carre 

and Carre, 2000; Houliston et al., 2010; Verlhac et al., 2010).  In Clytia, cell intercalation 

is also thought to play a role in larval elongation along the oral-aboral axis (Momose et 

al., 2012).    

To study ancient mechanisms of epithelial morphogenesis, we used 

Nematostella tentacle development as a model of organ or appendage formation.  This 

process has not been previously described or studied in Nematostella.  While tentacle 
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formation has not been well addressed in developing hydrozoan cnidarians, some data 

from these systems has shed light on the processes of tentacle maintenance and 

regeneration.  Hydra adults have constantly dividing cell populations in both germ layers 

that continually replace the cells of its body (Campbell, 1967b; David and Murphy, 1977; 

Yaross et al., 1986; Dubel et al., 1987).  These include proliferating epithelial cells as 

well as interstitial stem cells (i-cells), which give rise to neuronal cells (including 

nematocytes), gland cells, and germ cells (David and Murphy, 1977; Bosch and David, 

1987; reviewed in Bode, 1996).  In the apical portion of the body column, these cells 

migrate toward the head (Figure 1.7A).  A subset of these cells enters the tentacle zone 

and becomes specified by an unidentified morphogenetic gradient originating from the 

hypostomal organizer region.  Once a cell is specified to become part of the tentacle, 

division ceases, and then it is able to differentiate (Takahashi et al., 2005).  The mature 

tentacles are continuously repopulated in this fashion with the oldest cells being 

sloughed off the distal tip of the tentacles.   

There have been some studies on the molecular mechanisms that underlie 

Hydra tentacle maintenance and regeneration.  Ectopic activation of canonical Wnt 

signaling, by drug treatment, is sufficient to induce tentacle formation all along the body 

column (Philipp et al., 2009).  As another example, Hym‐301, a novel Hydra protein, has 

been shown by gain- and loss-of-function experiments to regulate the number of 

tentacles that form during asexual budding and regeneration (Takahashi et al., 2005).  

Unfortunately, all of these studies are based on experiments using budding (asexual 

reproduction) or regenerating Hydra, NOT on experiments investigating the normal 

developmental process as a result of embryogenesis.  
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Figure 1.7 – Cnidarian tentacle maintenance in Hydra and Clytia 

(A) Schematic representation of adult Hydra tentacle maintenance adapted from Smith 

et al. (2000).  Proliferating epithelial cells (orange dots) and interstitial stem cells (teal 

dots) in the body column move upward toward the head.  In the tentacle zone, they 

receive a signal secreted from the hypostome (organizer), which informs them of their 

tentacle fate.  Cells differentiate and migrate to form the epithelial cells (peach ovals) 

and nematocytes (purple ovals) of the tentacles.  Cells of the tentacle are continuously 

repopulated, and the oldest cells are sloughed off of the tentacle tips.  (B) Schematic 

representation of Clytia adult tentacle maintenance and nematocyte 

differentiation/maturation adapted from Denker et al. (2008).  Stem cells (yellow) in the 

tentacle bulb proliferate to give rise to the differentiating nematoblasts (orange).  These 

cells continue to develop (maturing nematoblasts; red) into the mature nematocytes 

(purple) as they migrate along the tentacle.           

.   
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Even though tentacle development has not yet been addressed in Clytia, one 

study has shed light on the process of tentacle maintenance in the adult medusa 

(Denker et al., 2008).  There seems to be a mechanism of tentacle population similar to 

that of Hydra (Figure 1.7B).  At the base of each tentacle is a specialized structure 

called the tentacle bulb.  Here, there are localized regions of stem cell proliferation, 

which produce cells that differentiate to form the nematoblasts, mature into the 

nematocytes, and migrate to populate the tentacles (Denker et al., 2008).  While the 

homology of polyp and medusa tentacles has not been addressed, these two hydrozoan 

examples appear to have similar mechanisms of tentacle maintenance where specific 

populations of proliferating progenitor cells differentiate and migrate to give rise to the 

non-proliferative tentacle cells.      

Even though Hydra and Nematostella are both members of Cnidaria, they are 

thought to be very evolutionary distant from one another.  The distance of their 

divergence is similar to the protostome – deuterostome split (Putnam et al., 2007).  

Therefore, Hydra and Nematostella are just as evolutionary distant as flies and humans.  

The Hydra genome has undergone condensation and lost genes that were present in 

the eumetazoan ancestral genome (Chapman et al., 2010).  Additionally, there are 

differences in their development.  Hydra development is devoid of a larval stage, and 

the polyp develops directly from the embryo by hatching from a cuticle (Martin et al., 

1997; Bottger et al., 2006).  Further, interstitial stem cells (i-cells) have not been 

identified outside of the Medusozoa.  Together, this information suggests that the 

processes of tentacle development and homeostasis between these two cnidarian 

organisms might be very different. 
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Disruption of epithelial integrity during pathogenesis 

 Another important role of epithelia is the maintenance of their polarity and 

integrity in the prevention of disease.  As a barrier against the environment, they are 

essential for defense against pathogenic bacteria.  However, bacteria have evolved a 

variety of protein tools that they use to evade the host immune system and infect, 

reproduce, and spread.  These pathogenic bacteria can gain access to the body by 

several routes, one of which is fecal-oral.  This can happen when sanitary conditions 

are not present and food and water become contaminated with sewage.  Therefore, the 

intestinal epithelium plays a major role in the defense of pathogens and the immune 

system.  One of its functions is to act as a barrier between the body and the gut 

contents, so the bacteria must first cross this barrier or obtain access to the epithelial 

cells.   

To explore the mechanisms of bacterial modulation of host epithelial architecture, 

we are using a virulence effector, VirA, from Shigella flexneri, a gram negative 

bacterium.  Shigella is a human specific pathogen that infects through the fecal-oral 

route and causes inflammation and destruction of the human intestinal epithelium.  The 

ingestion of only 100 bacteria is enough to illicit an infection resulting in bacillary 

dysentery (DuPont et al., 1989).  Shigella is a major threat to human health with 80 

million cases a year worldwide resulting in 700,000 deaths; 90 percent of these cases 

are in developing nations (WHO, 2005).  There is currently no vaccine to prevent the 

spread of this disease. 
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Shigella flexneri pathogenesis 

After ingestion, Shigella must gain access to its host by crossing the intestinal 

epithelial barrier.  Bacteria are initially transported across the host gut epithelium by 

microfold cells (M cells), which are specialized immune cells that constantly sample the 

gut contents for antigens (Figure 1.8; Wassef et al., 1989; reviewed in Sansonetti et al., 

1996).  After passing through the M cell to the basal side of the epithelium, the resident 

macrophages engulf the bacteria.  Shigella is able to escape degradation by the 

macrophage by inducing its cell death (Zychlinsky et al., 1992).  The bacterium is then 

free to infect and spread through the basolateral surfaces of the intestinal epithelial cells 

(Mounier et al., 1992).  This ultimately results in breakdown of the epithelial barrier and 

diarrhea.  Using a type III secretion system (T3SS), Shigella secretes and injects 

effector proteins into host cells that can alter various aspects of host cell biology 

including the cytoskeleton, immune response, and intracellular signaling cascades, 

enabling the bacteria to replicate and spread (reviewed in Schroeder and Hilbi, 2008 

and Parsot, 2009).  

 

 

Bacterial modulation of epithelial architecture 

Studies from bacterial pathogens have revealed effector protein functions in 

altering tissue integrity.  One of the strategies is modulation of the apical junctions to 

facilitate infection (reviewed in Kim et al., 2010).  Clostridium difficile, an intestinal 

bacterial pathogen, is known to secrete toxins, toxin A and toxin B, which disrupt tight 

junctions by dissociating integral proteins (including Occludin, ZO-1, and ZO-2) from 
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these sites (Nusrat et al., 2001; Chen et al., 2002).  Also, Vibrio cholera, the bacteria 

that causes cholera, secretes Hemagglutinin protease, which has been shown through 

cell culture assays to degrade the extracellular domain of Occludin, a tight junction 

component (Wu et al., 2000b).  Bacteroides fragilis, a commensal gut bacteria that can 

become pathogenic, also secretes a protease, Fragilysin, which affects adherens 

junctions by cleaving the extracellular domain of E-Cadherin (Wu et al., 1998).  

Additionally, bacterial effectors are known to modulate intracellular trafficking through 

activation or inactivation of Rab GTPases; this has mainly been studied for the functions 

of establishing a replicative niche and avoiding autophagy (reviewed in Ham et al., 

2011).   

 

 

VirA structure and function 

One of these effector proteins that Shigella injects into the gut epithelial cells 

using its T3SS is the effector protein, VirA.  From VirA mutant bacterial infection 

assays, VirA is known to be essential for the effective infection and spreading of 

Shigella (Uchiya et al., 1995).  This protein belongs to the EspG family, which includes 

EspG and EspG2 from enteropathogenic Escherichia coli (EPEC) and 

enterohaemorrhagic Escherichia coli (EHEC; Elliott et al., 2001; Smollett et al., 2006).  

Based on in vitro data and cell culture assays, VirA was initially reported to be a 

cysteine protease that cleaved microtubules by binding Tubulin heterodimers (Yoshida 

et al., 2002; Yoshida et al., 2006).  This function was thought to assist the bacteria in  
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Figure 1.8 – Shigella flexneri pathogenesis  

Schematic representation of Shigella pathogenesis adapted from Schroeder and Hilbi 

(2008).  Shigella bacteria present in the gut lumen as a consequence of ingestion are 

internalized by M cells during surveillance of the gut contents, which allows the bacteria 

to pass through the epithelium.  On the basal side, they are engulfed by macrophages.  

Through a variety of mechanisms, they ultimately cause apoptosis of the macrophage 

and are then able to infect and spread through the basolateral side of the colonic 

epithelium.  Shigella pathogenesis eventually destroys the epithelial integrity.     
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intracellular movement.  However, more recent studies that also reported the crystal 

structure of the VirA protein have refuted this claim (Davis et al., 2008; Germane et al., 

2008).  These findings, centered on the protein’s structure and inability to reproduce 

similar results, reopen the question of the function of VirA during Shigella pathogenesis.   

Recent reports have suggested various new functions for VirA (Clements et al., 

2011; Bergounioux et al., 2012; Dong et al., 2012).  Yeast two hybrid data reported by 

Clements et al. (2011) suggest that VirA binds to a golgi resident membrane protein, 

GM130.  Additionally, Clements et al. (2011) reports that secretion by HeLa cells 

expressing VirA was significantly reduced by a secreted embryonic alkaline 

phosphatase (SEAP) assay.  In another recent study using VirA mutant bacteria, HeLa 

cell culture and in vitro biochemical assays, Bergounioux et al. (2012) report that VirA 

acts to increase Calpain protein levels by causing degradation of its inhibitor, 

Calpastatin.  Since Calpains have a variety of cellular substrates, the authors suggest 

that the increase in Calpain may assist in infection through cytoskeletal elements and 

degradation of p53 to reduce host cell death.  Additionally through biochemical and cell 

culture assays, Dong et al. (2012) report that VirA acts as a Rab1 GAP, which results in 

inactivation of the Rab1 protein.  The authors suggest that this functions in Shigella’s 

ability to escape autophagy in host cells.  While these studies report various potential 

functions for VirA in Shigella pathogenesis, they all use in vitro biochemistry and cell 

culture assays; none explore the function of VirA in the context of an in vivo tissue.  Our 

study of VirA expression in Drosophila epithelia and chick neural tube is the first to 

examine its function in an epithelial tissue, which is more similar to where it would be 

expressed in a human host.  Further, our results shed light on a mechanism where 
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bacteria effector proteins could alter host cell polarity to disrupt epithelial integrity during 

pathogenesis.      
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Summary 

 The evolution of epithelial tissues allowed for specialized function and thus, the 

amazing diversity of animal body plans.  These polarized, adherent sheets must 

maintain their integrity during morphogenesis and homeostasis.  This is regulated by a 

multitude of cellular processes including vesicle transport, cytoskeletal modulation, and 

cell adhesion.  While much has been uncovered from studies in Drosophila, chick, 

Xenopus, mouse, and tissue culture, there are still large gaps in our knowledge of these 

processes, especially outside of these systems.  The work in this dissertation focuses 

on filling knowledge in two of these unknown areas: mechanisms of epithelial 

morphogenesis in a basal metazoan and the modulation of epithelial polarity and 

integrity during bacterial pathogenesis.         

 What are the ancient mechanisms for epithelial morphogenesis?   

Our efforts to understand metazoan development have largely been limited to a select 

set of bilaterian model organisms.  With the recent advances in sequencing technology 

and the subsequent addition of sequenced genomes, more models are constantly 

emerging.  One of these, Nematostella vectensis, is becoming more established for the 

study of development and evolution.  In chapter 2, we take advantage of this simple 

organism to observe the processes of epithelial morphogenesis during the tentacle 

development, as a model for organ or appendage outgrowth.  Our results not only 

establish the initial report on this process, but also lead to many other questions in 

developmental and regenerative biology.   

 How is epithelial architecture modulated by bacteria during pathogenesis? 

Epithelial tissues are not only important during development of organs and structures, 
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but also the maintenance of their polarity and integrity is essential for the prevention of 

diseases, such as cancer and infections.  Much is still unknown as to the function of 

bacterial effector proteins and how they hijack the endogenous cellular processes to 

their own advantage.  It was not our initial intent to study bacterial pathogenesis in a 

developmental biology lab.  We originally sought to use VirA as a tool for severing 

microtubules in distinct subcellular locations.  However, our observations of Shigella 

effector protein, VirA, expression in a tissue context highlight the importance of in vivo 

experiments.  While previous studies have only examined the function of VirA in cell 

culture and in vitro assays, ours is the first to use an in vivo tissue system and has shed 

light on potential cellular and tissue level mechanisms for pathogenesis.   
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Chapter 2:  Mechanisms of tentacle morphogenesis in the sea 
anemone Nematostella vectensis 
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Abstract 

Evolution of the capacity to form secondary outgrowths from the principal embryonic 

axes was a crucial innovation that potentiated the diversification of animal body plans.  

Nevertheless, precisely how such outgrowths develop in early-branching metazoan 

species remains poorly understood.  Here we demonstrate that three fundamental 

processes contribute to embryonic tentacle development in the cnidarian Nematostella 

vectensis.  First, a pseudostratified ectodermal placode forms at the oral pole of 

developing larvae and is transcriptionally patterned into four tentacle buds.  

Subsequently, Notch signaling-dependent changes in apico-basal epithelial thickness 

drive elongation of these primordia.  In parallel, oriented cell rearrangements revealed 

by clonal analysis correlate with shaping of the elongating tentacles.  Taken together, 

our results define the mechanism of embryonic appendage development in an early-

branching metazoan, and thereby provide a novel foundation for understanding the 

diversification of body plans during animal evolution.   
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Introduction 

During development, changes in epithelial cell shape and cell number are central 

to the formation of organs and appendage structures.  Studies of epithelial 

morphogenesis in bilaterian model systems have identified four basic mechanisms that 

initiate and drive organ and appendage outgrowth.  First, changes in cell shape can 

dramatically alter the surface area of an epithelial sheet.  For example, epithelial cells 

reduce the length of their apico-basal axis during wing morphogenesis in Drosophila 

and epiboly in Xenopus, resulting in increased surface area (Keller, 1980; Fristrom, 

1988).  Second, oriented cell division has been shown to direct tissue expansion during 

germband extension in Drosophila and primitive streak elongation in chick (Wei and 

Mikawa, 2000; da Silva and Vincent, 2007).  Third, cell intercalation or convergent 

extension can longitudinally extend a tissue, such as during Drosophila embryonic 

germband extension and gastrulation in Xenopus (Keller, 1978; Irvine and Wieschaus, 

1994).  Fourth, many organ and appendage structures initiate morphogenesis as 

thickened epithelial placodes.  In vertebrates, these include ectodermal appendages 

such as teeth, feathers, and scales, as well as the sensory placodes that give rise to 

structures like the eye lens and inner ear (Baker and Bronner-Fraser, 2001; Pispa and 

Thesleff, 2003; Streit, 2007).  Placodes are not only a vertebrate innovation; these 

structures also contribute to the development of Drosophila trachea and imaginal discs, 

as well as sensory organs in ascidians (Fristrom, 1988; Manni et al., 2004; Franch-

Marro et al., 2006).  Nevertheless, most of our current knowledge about the molecular 

and cellular mechanisms involved in these morphogenetic processes has been 

elucidated in select bilaterian model systems.  
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 To identify ancient pre-bilaterian mechanisms of epithelial morphogenesis, we 

are studying tentacle development in the cnidarian sea anemone, Nematostella 

vectensis (Collins et al., 2006; Putnam et al., 2007; Dunn et al., 2008; Hejnol et al., 

2009).  Cnidarians are among the earliest branching metazoans with defined 

appendage structures used for prey capture and feeding.  The adult Nematostella polyp 

exhibits 16 tentacles at the oral end of the animal, providing an ideal system to 

investigate mechanisms of epithelial morphogenesis during appendage development 

and regeneration.  Furthermore, despite a deceptively simple diploblastic body plan, the 

Nematostella genome exhibits similar organization and content to that of vertebrates 

(Putnam et al., 2007).  Accordingly, the genome encodes many proteins known to be 

involved in appendage development of arthropods and vertebrates; including a Hox 

gene cluster (Finnerty and Martindale, 1999; Chourrout et al., 2006), Fibroblast Growth 

Factors (FGFs) (Matus et al., 2007), Bone Morphogenetic Proteins (BMPs) (Rentzsch et 

al., 2006), Hedgehog  (Hh) proteins (Matus et al., 2008), Wnts (Kusserow et al., 2005), 

and Notch pathway members (Marlow et al., 2012).  At present, however, the 

contribution of these pathways to Nematostella tentacle development is largely 

unknown. 

Cnidarians are broadly subdivided into two clades, Anthozoa (including sea 

anemones and corals) and the medusazoans (jellyfish and Hydra species; Collins et al., 

2006).  Previous studies in hydrozoan systems have examined the origin of cells that 

populate and maintain tentacles.  In these cases, tentacle growth was primarily studied 

in the context of adult homeostasis, regeneration, and budding, but not as a result of 

embryonic development.  In Hydra, interstitial stem cells (i-cells) and epithelial cells in 
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the oral pole of the body column proliferate and move progressively up towards the 

tentacle zone (Campbell, 1967a; Campbell, 1967b; David and Challoner, 1974; David 

and Gierer, 1974; Bouillon, 1994).  Once in the tentacle zone, they receive signals 

secreted from the hypostomal organizer (Broun and Bode, 2002), stop dividing, 

differentiate, and migrate into the tentacle (Campbell, 1967b; Holstein et al., 1991).  A 

similar mechanism is observed in the jellyfish, Clytia.  In this case, populations of cells 

proliferate in a bulb at the base of the tentacle and then differentiate and move further 

into the tentacle itself (Denker et al., 2008).  Although the degree of homology of polyp 

and medusa tentacles is still unclear, these two examples suggest a common 

mechanism in hydrozoans, wherein tentacle growth and maintenance is driven by 

migration of progenitor cells that only proliferate outside of the tentacle.   

Here, we show that the mechanism of Nematostella tentacle development does 

not involve localized cell proliferation as in Hydrozoa, but rather formation of a thickened 

ectodermal placode followed by changes in epithelial cell shape and cell arrangement 

along the oral-aboral axis.  In a broader context, our findings hint at the ubiquity of 

fundamental aspects of epithelial morphogenesis throughout animals, and also define 

the formation of thickened epithelial placodes as a common initiating mechanism 

underlying outgrowth from the main body axes during animal development. 
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Materials and Methods 

 

Nematostella culture and differential interference contrast (DIC) imaging  

Animals were raised at 16°C in 12 parts per thousand (ppt) artificial seawater 

(Sea Salt; Instant Ocean).  Adult populations were spawned using an established 

protocol (Hand and Unlinger, 1992; Fritzenwanker and Technau, 2002a).  For imaging, 

planula larvae through four-tentacle primary polyps were relaxed in 7% MgCl2 (Sigma) 

in artificial seawater for ten minutes and fixed in 4% paraformaldehyde (Electron 

Microscopy Sciences) in artificial seawater for one hour at room temperature.  Fixed 

specimens were washed three times in PTw (PBS with 0.1% Tween-20; Sigma), 

incubated in 87% glycerol (Sigma), mounted on glass slides, and imaged on a Leica 

SP5 confocal microscope.   

 

 

EdU incorporation in planula and primary polyps  

Animals in artificial seawater were incubated with EdU (300 M from a stock 

dissolved in DMSO) for 15 minutes (Click-it Alexa Fluor 488 kit; Molecular Probes) as 

previously reported in Meyer et al. (2011).  After incorporation, animals were relaxed in 

7% MgCl2 in artificial seawater for ten minutes, fixed in cold 4% paraformaldehyde and 

0.2% glutaraldehyde (Electron Microscopy Sciences) in artificial seawater for 90 

seconds, and then 4% paraformaldehyde for one hour at room temperature.  

Specimens were washed three times in PBS and permeabilized in PBT (PBS with 0.5% 

TritonX-100; Sigma) for 20 minutes.  The reaction cocktail was prepared based on the 
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Click-it kit protocol and incubated with the animals for 30 minutes.  After three washes in 

PBS, the samples were labeled with Hoechst 34580 (1 g/mL; Molecular Probes) in 

PBT overnight at 4°C.  Animals were imaged on a Leica SP5 confocal microscope and 

z-stacks were made using Leica Application Suite Advanced Fluorescence software 

(LAS AF).          

 

 

Immunohistochemistry, RNA in situ hybridization, and imaging  

Animals were fixed and stained according to a protocol adapted from 

Genikhovich and Technau (2009a).  After fixation animals were stained with primary 

(mouse anti--Tubulin; Sigma; 1:1000) and secondary antibodies (goat anti-mouse IgG 

Alexa Fluor 488; Molecular Probes; 1:500). Phalloidin (2 units/mL; Alexa Fluor 546 

Phalloidin; Molecular Probes) was used to label F-Actin.  Nuclei were counterstained 

with Hoechst 34580 (1 g/mL; Molecular Probes).  Animals were imaged on a Leica 

SP5 confocal microscope with LAS AF software.       

For DAPI staining to mark cnidocytes, animals were fixed in 4% 

paraformaldehyde with 10 mM EDTA for one hour (Szczepanek et al., 2002; Marlow et 

al., 2009).  They were washed four times in PBS and stored at 4°C.  Before staining, 

animals were washed three times in PBT (PBS + 0.2% TritonX-100 + 0.1% BSA) and 

then incubated with DAPI (28 M; Invitrogen) in PBT overnight at 4°C.  After staining, 

animals were washed at least seven times in PBT.  Animals were imaged as described 

above.  DAPI was excited with both the UV and 488 confocal lasers.       
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 RNA in situ probes were designed to cover at least 500 or more nucleotides.  

Regions were amplified from cDNA translated from total RNA (isolated from mixed 

stages of animals with the RNeasy Mini Kit; Qiagen) using the standard protocol of the 

OneStep RT-PCR kit (Qiagen) and the primers listed in supplementary material Tables 

S2 and S3.  Gene fragments were cloned into the TOPO-PCR4 sequencing vector 

(Invitrogen).  Antisense probe was synthesized by in vitro transcription (MEGAScript kit; 

Ambion) driven by T3 or T7 RNA polymerase with DIG incorporation (Roche).  Probes 

were ethanol precipitated and resuspended in hybridization buffer to a concentration of 

50 ng/L.  RNA in situ hybridization was carried out according to the protocol of 

Genikhovich and Technau (2009b).  Briefly, animals were fixed in 0.2% glutaraldehyde 

and 3.7% formaldehyde (Sigma) in artificial seawater for 90 seconds and then in 3.7% 

formaldehyde in artificial seawater for one hour at room temperature.  They were then 

washed, dehydrated in methanol (Sigma), and stored in methanol at -20°C until needed.  

Probes were hybridized to the animals for between 16 and 48 hours at 65°C.  Animals 

were imaged on an Axiovert 200 widefield microscope (Zeiss) with an Axiocam HRc 

camera using AxioVision software.          

         

            

Microinjection 

Unfertilized eggs were first dejellied in 4% Cysteine solution (in artificial 

seawater, pH = 7.4-7.6) for 10 minutes and then washed three times in artificial 

seawater (Fritzenwanker and Technau, 2002a).  Following dejellying, eggs were 

fertilized and injected with linearized ubiquitin-GFP plasmid (Mark Martindale; Kewalo 
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Marine Laboratory; Honolulu, HI, USA) at 30 ng/L using Femtojet express (Eppendorf).  

Injected eggs were raised at room temperature in the dark and fixed at specific 

developmental stages for phalloidin staining: embryos (24 hours), early planula larvae 

(two days), late planula larvae (four days) and primary polyps (seven to eight days). 

 

 

Drug treatment of planula larvae  

Prior to Cytochalasin D (Cyto D; Calbiochem) treatment, animals were raised for 

10 days at 16°C in artificial seawater.  1 M Cyto D was applied in 0.1% DMSO in 

artificial seawater for 48 hours at room temperature in the dark.  Concurrently, control 

animals were incubated in 0.1% DMSO in artificial seawater.  Animals were fixed, 

stained, and imaged as described above.  Phenotypes were quantified by the 

percentage of animals that developed tentacles.  For quantification of body column 

ectoderm thickness, animals from three independent experiments were measured using 

LAS AF software (Leica).  Statistics were done using a Student’s t-test.             

Prior to DAPT (Sigma) treatment, animals were raised for eight days after 

spawning at 16°C in artificial seawater.  They were incubated in 20 M DAPT with 0.1% 

DMSO in artificial seawater for two days at room temperature in the dark.  In parallel, 

control animals were incubated with 0.1% DMSO in 12 ppt artificial seawater.   

Phenotypes following Cyto D or DAPT treatment were quantified by the 

percentage of animals that developed tentacles.  To quantify the thickness of the body 

column ectoderm, measurements were taken from three independent experiments 

using LAS AF software.  Statistical analyses were calculated using a Student’s t-test. 
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Microarray design and data analysis 

Total RNA was extracted from dissected animals using the miRNeasy kit 

(Qiagen) with Trizol (Invitrogen).  RNA quality was verified using a Bioanalyzer 2100 

with Pico Total RNA chips (Agilent).   RNA was amplified and labeled with Cyanine 3-

CTP or Cyanine 5-CTP (Quick AMP Labeling Kit; Agilent).  The array was designed in 

October of 2008 and comprised a 43,803 60-mer probe set targeting 43,787 sequences 

consisting of 20,456 JGI predictions and EST clusters, 16,816 StellaBase predictions, 

and 6,515 UniGene predictions, EST clusters, and mRNAs. This probe set was 

submitted to Agilent for their 4x44k platform under design ID: 022085.  Further details 

are available upon request.  Microarray data were analyzed in the R environment. The 

linear modeling package Limma (Smyth, 2004) was used to derive gene expression 

coefficients and calculate p-values. P-values were adjusted for multiple hypothesis 

testing using the method of Benjamini and Hochberg (1995). Genes were considered 

differentially expressed if they had adjusted p-values of less than 0.05 and an 

expression ratio of at least 2-fold in a given comparison.  The data and array platform 

have been deposited in GEO under the accession numbers: GSE45588 and GPL16896.   
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Results   

 

Cell proliferation is not spatially patterned in developing tentacles 

Tentacle development in anthozoans has not been described in detail, and we 

therefore outlined the basic stages of this process in Nematostella.  In early planula 

larvae, the first visible step in tentacle development was transition of the oral ectoderm 

to a thickened, epithelial placode (Figure 2.1A,E).  In slightly later stages, the first four 

tentacle buds arose from within this region (Fig. 2.1B,F, brackets), and subsequently, 

grew out from the body (Figure 2.1C,G) and elongated into the four juvenile tentacles 

(Figure 2.1D,H).  At this stage, planula larvae settled and further growth and 

differentiation took place to form the four-tentacle juvenile polyp.  Concurrent with 

tentacle elongation, we noted that the body column also progressively elongated along 

the oral-aboral axis (Figure 2.1C,D).  Additionally, the endoderm thinned along with the 

ectoderm, although this cell layer was not as rigidly organized (Figure 2.2).  Importantly, 

all developmental events to this point took place in the absence of feeding, while the 

subsequent addition of tentacles and their growth were nutrient-dependent (data not 

shown).             

A general theme emerges from previous analyses of tentacle maintenance in 

adult hydrozoan cnidarians, wherein specific populations of proliferating progenitor cells 

stop dividing, differentiate, and migrate into the tentacles (Campbell, 1967a; Campbell, 

1967b; Holstein et al., 1991; Denker et al., 2008).  Still, given the substantial 

evolutionary distance between Hydrozoa and the more basal Anthozoa  
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Figure 2.1 – Stages of tentacle development in Nematostella 

(A-H) DIC images with (A-D) lateral views and (E-H) oral views of animals during 

tentacle development at sequential stages: early planula (A,E), budded planula (B,F), 

growing tentacles (C,G), and primary polyp (D,H).  Nematostella has two cells layers: 

the ectoderm and endoderm (A).  Buds arise within the oral placodal ectoderm, 

indicated by brackets (B).  These buds elongate from the body (C-D, G-H) to form the 

four primary polyp tentacles (D,H).  The oral pole is represented by the asterisks and is 

oriented to the right in all lateral images.  Scale bar in A represents 100 m.   
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Figure 2.2 – Cell shape changes in the endoderm during development 

(A-D)  Animals at subsequent stages of development were stained with phalloidin to 

label F-Actin (Phalloidin; green) and Hoechst to label the nuclei (Hoechst; red).  As the 

body column ectoderm progressively obtains a flattened morphology, the endoderm 

appears to make a similar transition. Yellow brackets denote the approximate thickness 

of the endodermal cell layer.  The scale bar represents 10 m.        
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Figure 2.3 - Spatially uniform proliferation during tentacle development in 

Nematostella 

(A-C) Confocal z-stacks of animals stained for EdU incorporation (green) and Hoechst 

(red) to visualize S-phase cells and nuclei, respectively, at sequential stages during 

tentacle development: early planula (A), budded planula (B), growing tentacles (C), and 

primary polyp (D).  (A’-D’) The EdU channel from the images in A-D shows that there 

are no spatially-restricted populations of proliferating cells.  (A”-D”) Magnification of the 

boxed regions from A’-D’.  EdU positive cells can be seen in the growing and mature 

tentacles (see C” and D”).  The outline of the animal is indicated (dashed line).  Scale 

bar in A is 100 m.     
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(Collins et al., 2006; Putnam et al., 2007), highly divergent mechanisms could govern 

tentacle morphogenesis in each group.  To determine if Nematostella tentacle 

outgrowth or maintenance involves a similar mechanism of progenitor cell proliferation 

and migration, we isolated animals from the early planula through primary polyp stages 

and visualized S-phase incorporation of the nucleotide analog EdU.  Throughout 

tentacle development, cell proliferation occurred in both the ectoderm and endoderm all 

along the body column (Figure 2.3A-D’).  Unlike the previously studied hydrozoan 

systems, cell proliferation was not obviously localized to any specific region in the 

developing animal.  Additionally, we observed EdU positive cells in the tentacle 

ectoderm at all stages analyzed, consistent with continuous heterogeneous proliferation 

throughout development (Figure 2.3A”-D”).  

 

 

Radical changes in the apico-basal thickness of ectodermal cells during tentacle 

elongation 

While we did not identify localized domains of cell proliferation correlating with 

tentacle outgrowth, we did observe striking changes in the morphology of ectodermal 

epithelial cells during this process.  To investigate this further, we tracked cytoskeletal 

dynamics using probes for both Actin and Tubulin.  At the early planula stage before the 

initiation of tentacle development, cells in the body column and oral ectoderm 

constituted a thickened, pseudostratified epithelium (Figure 2.4A,E,I; Meyer et al., 

2011).  Just prior to tentacle bud formation, the oral ectoderm thickened in comparison  
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Figure 2.4 – Changes in ectodermal morphology during tentacle and body column 

elongation 

(A-D) Confocal sections of whole animals stained with an antibody against -Tubulin (-

Tub; green), phalloidin to visualize F-Actin (red), and Hoechst to label nuclei (blue) at 

sequential stages: early planula (A), budded planula (B), growing tentacles (C), and 

primary polyp (D).  (E-H) Confocal sections of buds or tentacles at representative 

stages corresponding to A-D.  Cells in the ectoderm change apico-basal dimension 

during tentacle development.  (I-L) Similar cell shape changes are seen in the body 

column ectoderm at corresponding stages.  (I’-L’) F-Actin channel of I-L demonstrating 

the thickness of the ectoderm (brackets).  (I”-L”) Ectodermal cell cilia, as visualized by 

-Tubulin staining, shorten during body column elongation.  Brackets indicate length of 

cilia.  (M) Quantification of body column and oral ectodermal thickness during 

elongation at stages that correlate with A-D.  *P<0.001 (Student’s t-test)  (N) 

Quantification of cilia length from early planula and primary polyp stages.  Error bars 

represent s.d.; n, number of individuals examined for each stage.  Scale bars: 100 m in 

D; 10 m in H,L”.   
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Figure 2.4 
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to the body column, and the first four tentacle buds formed within this oral epithelial 

placode (Figure 2.4B,F; quantified in Figure 2.4M).  As the buds elongated into 

tentacles, we observed a concomitant progression of the thickened, pseudostratified 

ectoderm into a simple columnar, then cuboidal and finally a more flattened morphology 

(Figure 2.4F-H).  Interestingly, cells in the tentacle tips did not flatten (Figure 2.4D, 

arrows), perhaps allowing for a higher density of nematocysts used for prey capture.  

Similar cellular events were observed in the body column ectoderm during elongation of 

the oral-aboral axis (Figure 2.4I-L).  Early in larval development the thickness of the 

body column ectoderm averaged 27.2 +- 3.2 m, which thinned to an average of only 

6.2 +- 0.9 m by the primary polyp stage (Figure 2.4I’-L’ and quantified in Figure 2.4M). 

Interestingly, during the progressive thinning of the ectodermal epithelium, the cilia 

associated with these cells also became progressively shorter (Figure 2.4I”-L”, 

quantified in Figure 2.4N).  

 

 

Actin dynamics are required for elongation of the body column and tentacles 

The observations above suggest that changes in ectodermal cell shape could 

vastly increase the surface area of primary polyps, thereby representing a primary driver 

of tentacle outgrowth and the elongation of the body column.  To functionally test the 

role of cell shape changes during elongation, we disrupted Actin polymerization with 

Cytochalasin D (Cyto D; 1 M in 0.1% DMSO; Casella et al., 1981).  For these 

experiments, animals were raised at 16°C for ten days post-fertilization, and then 

swimming planula were treated with Cyto D for 48 hours during the period of normal cell  
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Figure 2.5 – Cytochalasin D treatment of planula larvae inhibits ectodermal cell 

shape changes  

(A-D) Confocal sections of whole mount animals stained with phalloidin to label F-Actin 

(red) and Hoechst to visualize nuclei (green).  (A’-D’) Magnified view of body column 

ectoderm from animals corresponding to A-D.  Brackets indicate ectodermal thickness.  

Animals were treated at the planula stage (A,A’).  Control animals elongated their body 

columns and grew tentacles (B,B’).  Cytochalasin D (Cyto D)-treated animals were not 

able to elongate their body columns or grow tentacles (C,C’).  This was accompanied by 

a lack of cell shape change in the ectoderm (compare C’ with the control in B’).  Animals 

recovered after Cyto D was washed off (D,D’).  (E) Phenotypes of the Cyto D-treated 

animals were quantified by the percentage of animals that developed tentacles (n=66).  

(F) Apico-basal thickness of the body column ectoderm in Cyto D-treated animals. 

*P<0.001 (Student’s t-test).  The ectoderm of control, Cyto D-treated, and Cyto D-

treated + wash animals was significantly thinner than at the start point.  The Cyto D-

treated animals had a significantly thicker body column ectoderm than controls.  The 

treated + wash animals were able to thin the ectoderm to a thickness that was similar to 

controls.  Error bars represent s.d.; n, number of individuals examined for each 

condition.  Scale bars: 100 m in A; 10 m in A’.   
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Figure 2.6 – Cell proliferation is reduced with Cytochalasin D treatment 

(A-B)  Control (A-A’) and Cyto D treated (B-B’) animals were stained for EdU 

incorporation (EdU; green) and nuclei (Hoechst; red).  While Cyto D animals still show 

some proliferation (B’), it is reduced as compared to controls (A’).  Scale bar represents 

100 m.       
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shape change and elongation (Figure 2.5A).  Control animals elongated their body 

columns and formed growing tentacles in these two days (Figure 2.5B), but animals 

treated with Cyto D were unable to form tentacles or elongate the body column (Figure 

2.5C, quantified in Figure 2.5E).  These defects correlated with a block in epithelial 

morphogenesis.  While the ectoderm of control animals thinned normally (Figure 2.5A’, 

B’), drug treated animals retained a thickened, pseudostratified epithelium (Figure 2.5C’, 

quantified in Figure 2.5F).   

Additionally, we examined cell proliferation by EdU incorporation in the Cyto D 

treated and control animals.  Although there was still some cell proliferation after Cyto D 

treatment, it was reduced compared to that in control animals (Figure 2.6).  Intriguingly, 

upon removal of the drug treatment, these animals were able to continue development 

to become primary polyps (Figure 2.5D).  These changes directly correlated with a 

thinning of the ectoderm into a more flattened epithelium as in controls (Figure 2.5D’, 

quantified in Figure 2.5F).  Combined, these results indicate that Actin polymerization is 

required for changes in ectodermal cell shape and the associated elongation of the 

body column and tentacles.     

 

 

Elongation is directed by cell rearrangements and orientated cell division 

While a dramatic reduction in apico-basal thickness of ectodermal cells can 

account for an increase in surface area of the entire animal, it cannot explain the 

directional expansion along the oral-aboral axis.  To address how this is achieved, we 

used mosaic expression analysis.  We microinjected one cell stage embryos with a  
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Figure 2.7 – Analysis of ectodermal cell clones during body column and tentacle 

elongation 

GFP-marked cell clones (green) in representative animals stained with phalloidin to 

label F-Actin (red).  Ectodermal surface views are shown.  (A,A’) Embryos exhibited 

irregular and largely isometric clone morphologies.  (B,B’) In early planula, the clone 

shape was not significantly different from that of the embryo.  (C,C’) By the late planula 

stage, cell clones appeared to elongate along the oral-aboral axis.  The inset shows a 

clone of GFP-positive cells with both a rounded shape and a linear array of cells 

extending along the oral-aboral axis.  (D,D’)  Primary polyps had highly elongated clone 

shapes. Asterisks indicate the position of the oral pole.  Scale bars in A is 25m. 
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Figure 2.7 
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Figure 2.8 - Additional examples of Ubiquitin-GFP injected animals showing the 

shape of ectodermal GFP-marked cell clusters during body column and tentacle 

elongation  

(A-D) GFP-marked cell clones (GFP; green) in animals stained with phalloidin to label 

F-Actin (F-ACT; red) show additional examples of clone shape in embryos (A) and early 

planula larvae (B). Elongating cell clones appear in late planula larvae (C). Primary 

polyps exhibit highly elongated clones along the oral-aboral axis (D). Scale bars 

represent 25 m. 
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Figure 2.8 
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construct expressing Green Fluorescent Protein (GFP) under the control of the 

Nematostella ubiquitin promoter, taking advantage of the resulting mosaic expression of 

GFP to observe the behavior of cell clones.  Strikingly, there were clear changes in the 

shape of GFP-expressing clones at different stages of body column and tentacle 

elongation (Figure 2.7, Figure 2.8).  At both embryonic and early planula larvae stages, 

animals had irregular but largely isometrically shaped GFP-expressing clones (Figure 

2.7A-B’; Figure 2.8A,B).  As late planulae began to undergo elongation of the body 

column and tentacles, we observed both irregularly-shaped and elongated clones 

(Figure 2.7C,C’; Figure 2.8C).  Intriguingly, by the primary polyp stage almost all clones 

comprised linear arrays of cells stretching along the oral-aboral axis in both the body 

column and tentacles (Figure 2.7D,D’; Figure 2.8D).   

The rearrangement of cell clones into linear oral-aboral morphologies could be 

explained by either cell rearrangements, such as convergent extension, or oriented cell 

division.  To distinguish between these two possibilities, we analyzed the orientation of 

cell division during elongation of the body column and tentacles.  In order to determine 

the angle of the spindle, animals from embryonic to primary polyp stages were stained 

to visualize microtubules and DNA, thus revealing orientation of metaphase and 

anaphase figures.  The angle of the spindle was measured in degrees from the oral-

aboral axis for the body column (Figure 2.9A,A’).  While the spindle orientation early in 

development was random (Figure 2.10A-B), spindle orientations became biased along 

the oral-aboral axis during body column elongation (Figure 2.10C-F).  As elongation 

progressed in the budded planula stage, this bias weakened and spindle orientation 

became more random (Figure 2.10G-I).  Additionally, we measured the angles of mitotic  
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Figure 2.9 – Method for measurement of the orientation of cell division  

 (A-A’) During body column elongation, the angle between the mitotic spindle (dashed 

yellow line) and the oral-aboral axis (solid yellow arrow) was defined as the spindle 

angle. White arrowheads indicate mitotic figures.  (B-C)  In both developing buds (B-B’) 

and tentacles (C), the angle of the spindle was measured from the proximo-distal axis 

(solid white arrow). This axis is parallel to the thickness of the bud and tentacle (solid 

yellow lines). Scale bars represent 25 m. 
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Figure 2.10 - Orientation of ectodermal cell division during Nematostella 

development  

(A-I) Animals were stained for -Tubulin to label mitotic spindles (green) and Hoechst to 

label nuclei (red). Orientation of the mitotic spindles was measured in embryos (A-B), 

early planula larvae (C-D), late planula larvae (E-F), budded planula larvae (G-H), and 

primary polyps (I).  Asterisks indicate the oral pole.  The boxed regions in A,C,E,G are 

magnified in A’,C’,E’,G’ to show detailed views of the ectoderm.  Double headed arrows 

indicate mitotic figures as well as the orientation of the mitotic spindle.  The angular 

deviation of the mitotic spindle was measured as degrees from the oral-aboral axis 

(B,D,F,H,I).  n, number of mitotic figures used for quantification.  Note the strong 

alignment of mitotic spindles along the oral-aboral axis in late planula stage animals (E-

F).  (J-M) Angular deviation of mitotic spindle alignment from the proximo-distal axis of 

tentacle buds (J-K) and mature tentacles (L-M). The boxed regions in J and L are 

magnified in J’ and L’.  The dashed line in J indicates the approximate boundary of the 

bud.  The small green -Tubulin-positive rings are nematocyst capsules.  Scale bars: 25 

m.   
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spindles in the tentacle buds and tentacles in degrees from the proximo-distal axis 

(Figure 2.9B,C).  Interestingly, here we did not observe any bias in spindle orientation 

(Figure 2.10J-M).  Taken together, these results suggest that both cellular 

rearrangements and oriented cell division play a role in elongation of the body column.  

In developing tentacles, however, we found evidence for cellular rearrangements but did 

not observe a bias in mitotic spindle orientation.   

 

 

Notch signaling is required for tentacle elongation    

A relatively limited set of developmental signaling pathways regulate the 

patterning and morphogenesis of tissues and organs in all animals (Gerhart, 1999; 

Pires-daSilva and Sommer, 2003).  Interestingly, the transmembrane receptor, Notch, 

and its ligand, Delta, are expressed orally and around the tentacle primordia in 

Nematostella larvae (Marlow et al., 2012).  To investigate the role of Notch during 

tentacle morphogenesis, we modulated signaling using a pharmacological inhibitor, 

DAPT (Dovey et al., 2001; Kasbauer et al., 2007; Marlow et al., 2012).  DAPT inhibits -

secretase, the enzyme responsible for cleaving the Notch intracellular domain (NICD; 

Geling et al., 2002).  We applied 20 M DAPT in 0.1% DMSO to planula stage animals 

for two days during the expected period of body column and tentacle elongation (Figure 

2.11A).  As expected, control animals elongated their body columns and formed 

growing tentacles in these two days (Figure 2.11B,B’), morphogenetic events that were 

accompanied by changes in ectodermal cell shape (Figure 2.11B”).  In direct contrast, 

DAPT treated animals failed to develop tentacles (Figure 2.11C, quantified in Figure 
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2.11D), and the oral ectoderm retained its thickened tentacle buds (Figure 2.11C’).  

Surprisingly, while normal morphogenesis of the tentacle ectoderm was blocked, DAPT 

treated animals exhibited normal thinning of the body column ectoderm and were still 

able to elongate their body columns along the oral-aboral axis (Figure 2.11C,C”, 

quantified in Figure 2.11E).  Additionally, cell proliferation and cnidocyte localization 

appeared unaffected (Figure 2.12 and Figure 2.13).  These unexpected results 

demonstrate that epithelial shape changes in the body column and tentacular ectoderm 

are subject to distinct forms of upstream regulation.  Specifically, disruption of Notch 

signaling did not affect the cell shape changes or elongation of the main body column, 

but did have a dramatic effect on cell shape change and elongation of the tentacles.  

These results further support the hypothesis that the cell shape change in the ectoderm 

is important for elongation, since the tentacle buds remained thickened and did not 

elongate from the body (Figure 2.11B’, C’). 

Notch signaling generally acts through activation of downstream transcriptional 

targets, and we therefore sought to identify factors modulated by DAPT treatment.  We 

examined the expression patterns of six previously identified tentacle domain markers 

and confirmed that the homeodomain transcription factor OtxB is expressed in 

developing tentacle buds and at the tips of tentacles in primary polyps (Mazza et al., 

2007; Table 2.1; Figure 2.14A,B).  In animals treated with DAPT for 48 hours at the 

planula stage, OtxB was no longer expressed in the tentacle buds.  Instead, we 

observed OtxB misexpression in the oral pole of the mesenteries, which are internal 

endomesodermal structures (Figure 2.14C).  These results imply a role for Notch 

signaling in regulating the expression of OtxB.  None of the other genes we examined  
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Figure 2.11 – Notch signaling is required for tentacle elongation 

(A-C) Confocal sections of whole animals stained with phalloidin to visualize F-Actin 

(green) and Hoechst to label nuclei (red).  (B’,C’) Higher magnification confocal 

sections of the tentacle regions indicated by the larger boxes in B and C.  (B”,C”) 

Higher magnification confocal sections of the body column ectoderm indicated by the 

smaller boxes in B and C.  Animals were treated at the planula stage (A).  Control 

animals had growing tentacles (B,B’) and elongated body columns, which had 

undergone a cell shape change (B”).  DAPT-treated animals remained budded and 

were not able to elongate tentacles (C,C’), but still elongated their body columns and 

underwent a cell shape change (C,C”).  (D) The percentage of animals that developed 

tentacles in the presence and absence of DAPT.  (E) Quantification of body column 

ectoderm thickness.  Errors bars represent s.d.; n, number of individuals examined in 

each condition.  *P<0.001 (Stendent’s t-test).  The body column ectoderm thickness 

was similar in control and DAPT-treated animals and significantly thinner than at the 

start point.  Scale bars: 100m in C; 25 m in C’; 10m in C”. 
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Figure 2.11 
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Table 2.1: Genes screened by in situ hybridization after DAPT treatment 
 

Sequence name Accession Expression Pattern Change? 

ZicC AB231868 no 

OtxA FJ824849 no 

OtxB FJ824850 yes 

OtxC FJ824851 no 

Crossveinless-2 XM_001625111 no 

Homeobrain HM004558 no 

Anthox2 AF085283.1 no 

FoxL2 JGI: 82873608 no 

Forkhead1 XM_001630267.1 no 

Forkhead2 XM_001638841.1 no 

Growth factor receptor XM_001637818 no 

G protein receptor XM_001636348.1 no 
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Figure 2.12 – Cell proliferation is not affected by inhibition of Notch signaling 

(A-B)  Confocal stacks of animals stained for EdU incorporation (EdU; green) and nuclei 

(Hoechst; red) for Control (A) and DAPT treated (B) animals.  (A’-B’) EdU channel from 

A-B.  DAPT treated animals still had many EdU positive cells (B’).  The scale bar 

represents 100 m.      
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Figure 2.13 – Inhibition of Notch signaling during elongation did not dramatically 

alter cnidocyte localization 

(A-C)  Confocal stacks of animals stained with DAPI to visualize cnidocytes.  Animals at 

the start of the experiment (A, A’) had cnidocytes.  Both control (B, B’) and DAPT 

treated (C, C’) animals had many cnidocytes all over their bodies.  Red channel shows 

nuclei and cnidocytes excited by the UV laser.  The green channel and bottom panel 

(A’-C’) shows cnidocytes excited by the 488 laser.  The scale bar represents 100 m.   
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Figure 2.14 – OtxB expression is altered after inhibition of Notch signaling  

(A-C) Oral (top row) and lateral (bottom row) views of RNA in situ hybridization with 

probes for OtxB.  OtxB is normally expressed in the tentacle primordia (A) (Mazza et al., 

2007) and then at the tips of the tentacles (C).  It was also expressed at the aboral pole 

throughout development (A-B).  After DAPT treatment, OtxB was misexpressed in the 

oral regions of the mesenteries, but aboral expression was maintained (C).  
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had detectable changes in localization of expression domain with DAPT treatment 

(Table 2.1), suggesting that tentacle patterning was not completely disrupted by 

inhibition of Notch.  Additionally, we examined the expression patterns of Notch 

pathway components after DAPT treatment.  Notch, Delta, and HES3 did not appear to 

have qualitatively altered expression patterns (Figure 2.15).  However, as expected, 

HES3 levels were reduced after DAPT treatment (Figure 2.15C,F), and our results 

suggest that Notch and Delta are also downregulated after inhibiting the pathway 

(Figure 2.15A-B,D-E).     

 

 

Unbiased identification of tentacle-specific genes by transcriptional profiling 

To gain further insight into the transcriptional programs underlying tentacle 

morphogenesis and Notch signaling, we identified novel tentacle markers genes that 

could be used to screen for changes in their expression patterns following DAPT 

treatment.  To take an unbiased approach, we designed a novel microarray from the 

sequences deposited in three publically available databases: Joint Genome Institute 

(JGI), National Center for Biotechnology Information (NCBI), and Stellabase (Sullivan et 

al., 2006; Sullivan et al., 2008).  To identify genes potentially involved in tentacle 

initiation, outgrowth, and maintenance, we performed transcriptional profiling at three 

different stages:  late planula larvae with tentacle buds, animals with growing tentacles, 

and four-tentacle polyps (Figure 2.16A).  In each case, animals were microdissected 

with a sharp tungsten needle to isolate tentacle tissue from the rest of the larval body.   
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Figure 2.15 – Notch pathway components do not have altered expression patterns 

after DAPT treatment 

(A-C)  RNA in situ expression patterns of NvNotch (A), NvDelta (B) and NvHES3 (C) in 

control animals.  Expression of these transcripts was endodermal.  Scale bar represents 

100 m.  (D-F) Corresponding expression patterns in DAPT treated animals.  All of the 

Notch pathway components had similar expression patterns in Control and DAPT 

treated animals.  The DAPT treated animals may downregulate all of these genes as 

observed by reduced in situ staining.     
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Figure 2.16 – An unbiased screen for novel tentacle markers 

(A)  The budded planula, growing tentacles and primary polyp stages were used to 

identify novel tentacle-specific genes by transcriptional profiling.  Animals were 

dissected at the base of the tentacles (dashed line) and gene expression differences 

between the tentacle domain and corresponding body column were measured by 

custom microarrays in duplicate.  (B)  Venn diagram of the transcripts that were at least 

two fold upregulated in the oral/tentacle tissues from the three stages examined.  A 

large proportion of tentacle-specific genes were common to all stages, suggesting an 

absence of major transcriptional changes underlying successive stages of development.  

(C-E)  MA plots of normalized duplicate microarray analyses from budded planula (C), 

animals with growing tentacles (D), and primary polyps (E).  Colored dots represent 

spots on the microarray.  Duplicate experiments demonstrated consistent results.     
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Figure 2.16 
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Each animal was bisected perpendicular to the main body axis at the base of the 

tentacles, generating cognate body column and oral- tentacle fragments (Figure 2.16A).  

RNA was isolated from each sample and subjected to a single round of amplification, 

dye labeling, and hybridization to a microarray chip in duplicate (Figure 2.16C-E).  We 

found that many of the genes in the oral body portion were common among the different 

stages of development, suggesting they are consistently expressed during tentacle 

initiation, elongation and maintenance (Figure 2.16B).      

For bioinformatics analysis of the results, highly differentially expressed 

sequences were manually subjected to BlastX search at NCBI to look for similarity to 

any known proteins in the non-redundant database.  Additionally, the nucleotide 

sequence for each potential hit was blasted against the Nematostella EST database 

(NCBI) and EST clusters at JGI.  Lastly, we used the protein sequence of candidate 

genes to identify conserved domains and to extract functional information using 

InterProScan from the European Bioinformatics Institute.    

We chose 50 candidate genes to validate by RNA in situ hybridization.  Attractive 

candidates included sequences with the highest fold change values or that contained 

transcription factor or signaling molecule domains.  From these, we identified six genes 

that were not previously known to have tentacle domain expression patterns (Figure 

2.17; Table 2.2).  Two of these were previously identified genes, but were not known to 

have tentacle specific expression: anthox2 (AF085283.1; Figure 2.17A; Finnerty et al., 

2003; Ryan et al., 2006) and foxL2 (JGI: 82873608; Figure 2.17B; Magie et al., 2005).  

Two more of these six contained forkhead domains, which we called forkhead1 

(XM_001630267.1; Figure 2.17C) and forkhead2 (XM_001638841.1; Figure 2.17D).  Of  
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Figure 2.17 – Novel transcriptional tentacle domain markers  

(A-F) RNA in situ hybridization of tentacle marker genes identified from the microarray 

analysis.  Most of these genes were expressed early in the oral placodal ectoderm 

before being expressed in the tentacle buds (A-C, F).  growth factor receptor-like was 

expressed in the endoderm early, before exhibiting endodermal tentacle tip expression 

in primary polyps (E).  
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Figure 2.17 
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Table 2.2: Tentacle domain markers identified in the microarray screen 

Sequence name Accession Primer pair for in situ probe 

Anthox2 AF085283.1 CATGTCTTCGTCCTTCTACATTGACT 
AGGTTGCCCCGAATATAGTACATT 

FoxL2 JGI: 82873608 ATTAACTGTGTCACACACAAGCGC 
TTCATGTACGGGTATACAGGAGGTAC 

Forkhead1 XM_001630267.1 CACCGCACCACTGCAGCAAT 
CCTGCGACGGAAATTCCCCT 

Forkhead2 XM_001638841.1 GGATGATGCAAAGCAAGCGA 
TCTCAGAGGGATGTTTAGCCGA 

Growth factor receptor-
like 

XM_001637818 CTTGCACTCATTGACCGACATG 
ACGATTGGATTGCGTGGTTG 

G protein receptor-like XM_001636348.1 ATGTCCACAAACACAAGCACCTC 
AGAAAATCTTGTCGGCGGTCT 
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Table 2.3: In situ hybridization primer pairs  
 

Sequence name Accession Primer pair for in situ probe 

OtxB FJ824850 AAGAGCTGGGGGCCACGGATTACATC 
TATCTCGGCGCCATGGAATGCACG 

Notch JN982705 GCATGGGCTTTGCTTGGATT 
CAGTTACTCCCAGTGTATCCAGGTCT 

Delta JN982706 
 

ATGCAGCTACTACCACTCCAGCCA 
GACACGCGCCATCAAAGCAA 

HES3 JN982709 GGCCGTTGACTGCATCGATA 
TGTGCTGACGATAGTCGTCTGC 
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the remaining two, one contained a growth factor receptor domain (growth factor 

receptor-like; XM_001637818; Figure 2.17E) and the other contained a G protein  

receptor domain (g protein receptor-like; XM_001636348.1; Figure 2.17F).  Most of 

these genes were expressed early in some or all of the oral placodal ectoderm before 

bud formation, and then exhibited bud-specific expression when the tentacle primordia 

formed (Figure 2.17A-D,F).  However, growth factor receptor-like was expressed 

ubiquitously in the endoderm until the growing tentacle stage, when it also became 

expressed in the tips of the tentacle endoderm (Figure 2.17D).  When we screened 

these genes for changes in their expression patterns after DAPT treatment, none were 

altered (Table 2.1), suggesting that tentacle patterning was not disrupted following 

inhibition of Notch signaling.  From the expression patterns of these genes as well as 

those previously published in the literature, we propose a model for tentacle patterning 

whereby the oral tissue is progressively subdivided into tentacle competent and non-

competent domains (Figure 2.18).   
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Figure 2.18 – Model for the transcriptional patterning of tentacles 

A conceptual model for tentacle patterning in which oral cells are subdivided into 

tentacle-competent and non-competent domains.  In early planulae, genes such as 

FoxB (Magie et al., 2005), Wnt1 (Kusserow et al., 2005), and Notch (Marlow et al., 

2012), are expressed orally (blue).  At the oral placode stage, genes such as WntA 

(Kusserow et al., 2005), forkhead2, and Delta (Marlow et al., 2012) are expressed 

broadly in the oral placode (green).  Once budded, planula larvae express a subset of 

genes in the buds, such as PaxA (Magie et al., 2005) (green), between the buds, such 

as homeobrain (Mazza et al., 2010) (red), and encircling the buds, such as Delta 

(Marlow et al., 2012) (orange).  Patterning becomes more complicated at the primary 

polyp stage, when some genes are expressed along the length of the tentacle, such as 

muscle LIM and Rx (Martindale et al., 2004; Mazza et al., 2010) (green), or at the tips of 

the tentacles like sprouty (Matus et al., 2007) (yellow).   

 

 

 

 

 



98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 2
.1

8
 



99 
 

Discussion 

 

A new model for pre-bilaterian appendage development 

Our results establish a novel model for tentacle morphogenesis in Nematostella.  

The initial step in tentacle development is formation of a thickened ectodermal placode 

at the oral pole of the animal, approximately five days after fertilization at 16°C (Figure 

2.1A, Figure 2.4A,E).  This placode is progressively subdivided into four distinct tentacle 

domains (Figure 2.1B, Figure 2.4B,F), presumably through the spatially-restricted 

expression of key effector genes (Figures 2.17 and 2.18).  Once the tentacle buds are 

thus formed, Notch signaling activity is required to trigger apico-basal thinning of the 

tentacular ectoderm (Figure 2.11), radically increasing the surface area of the 

presumptive tentacle.  Actin dynamics are required for this process to occur in both the 

body column and oral ectoderm (Figure 2.5), and cell proliferation occurs stochastically 

along the length of the tentacle throughout development (Figure 2.13C-D”).  Cell 

lineage-tracing experiments further reveal a concomitant axial rearrangement of cell 

clones from irregular and isometric (Figure 2.7A,B and Figure 2.8A,B) to linear 

morphologies (Figure 2.7C,D and Figure 2.8C,D) during tentacle outgrowth.  We 

propose that these changes in epithelial architecture of the oral ectoderm contribute to 

elongation of the tentacles.  Intriguingly, although elongation of the main body column 

appears to involve oriented cell division (Figure 2.10E-H), we did not observe oriented 

cell division in the tentacles (Figure 2.10J-M).   

Currently, we do not have enough molecular data from Nematostella appendage 

development or from other basal metazoans to make a comparison to bilaterian 
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appendage development.  Even though arthropod appendages and vertebrate limbs are 

not homologous, both exhibit distalless/Dlx expression at the presumptive distal portion 

of the appendage (Angelini and Kaufman, 2005; Kraus and Lufkin, 2006).  The 

published RNA expression pattern of the Nematostella Dlx homolog does not show 

expression at the tentacle tips or in any tentacle tissue during development (Ryan et al., 

2007).  Our current data would not support a model where Nematostella tentacles are 

homologous to any of the bilaterians appendages, but more data from Nematostella as 

well as other basal metazoan species is still needed.          

 

 

Notch signaling and tentacle elongation  

Pharmacological inhibitor studies with DAPT indicate a key role for Notch 

signaling in tentacle elongation (Figure 2.11).  Consistent with this, Notch pathway 

components are expressed in the oral and tentacle bud ectoderm prior to and during 

metamorphosis (Marlow et al., 2012), and signaling through this pathway is generally 

known to affect downstream transcription (Petcherski and Kimble, 2000; Wu et al., 

2000a; Artavanis-Tsakonas and Muskavitch, 2010).  When we inhibited Notch signaling, 

the tentacle bud expression of OtxB was disrupted (Figure 2.14).  Additionally, Notch 

signaling restricts PaxA expression to the tentacle primordia (Marlow et al., 2012).  

These results indicate that Notch signaling directly or indirectly leads to the specific 

tentacle expression patterns of these genes.   

However, our results do not support the hypothesis that Notch signaling is 

required for global tentacle patterning since many other tentacle markers were 
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unaffected by Notch inhibition (Table 2.1).  A previous study of Notch signaling in 

Nematostella reported fused tentacles and an expanded tentacle field (based on PaxA 

expression) following 72 hours of DAPT treatment (10 M in 1% DMSO) in three days 

post-fertilization planulae raised at 25°C.  In contrast, we used eight day old planula 

larvae raised at 16°C, and treated them with a tenth of the concentration of DMSO but a 

higher concentration of DAPT for 48 hours.  Given these differences, our data do not 

support a general expansion of the tentacle field following DAPT treatment, since 

numerous tentacle markers did not change their expression pattern and our animals 

developed four tentacle buds which failed to elongate (Figures 2.11 and 2.14; Table 

2.1).     

 

 

Nematostella and Hydra tentacle development likely occur through different 

mechanisms 

In hydrozoans, tentacle development has mainly been studied in adult animals, in 

regeneration, and in the asexual budding of polyps, but not during embryonic 

development.  Hydra polyps replace all of the cells in their bodies with cells derived from 

their i-cells and from constantly dividing epithelial cells (David and Campbell, 1972; 

David and Murphy, 1977; Bode and David, 1978).  This is unlikely the case in 

Nematostella, where i-cells have not been identified.  Another hallmark of Hydra 

tentacle development and maintenance is a distinct border at the tentacle zone.  This is 

delineated by an absence of cell division and sharply defined gene expression domains 

(Holstein et al., 1991; Smith et al., 1999; Bode, 2001).  Based on our EdU staining 
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results as well as known expression patterns, we do not see the same evidence for a 

‘tentacle zone’ in Nematostella during development or adult maintenance (Figure 2.3).  

Furthermore, in Hydra, activation of canonical Wnt signaling is sufficient to cause 

tentacle outgrowth along the body column (Hassel et al., 1993; Broun et al., 2005).  In 

contrast, recent studies in Nematostella show that ectopic activation of canonical Wnt 

signaling can only induce tentacle and oral fates at the aboral pole of developing 

animals, not along the body column (Trevino et al., 2011).  Additionally, we have 

demonstrated that Notch signaling is required for tentacle elongation in Nematostella 

(Figure 2.11).  Notch signaling in Hydra is important for stem cell development and 

detachment of the asexual bud from the parent animal (Kasbauer et al., 2007; Munder 

et al., 2010), but its role in embryonic tentacle development is unknown.  While more 

data is needed from Hydra embryonic development, these previous results provide 

further evidence that the tentacle development program may be very different between 

Hydra and Nematostella.   

   

 

Epithelial placodes as a common theme in organ and appendage outgrowth  

It is well established that thickened epithelial placodes (similar to those described 

herein) play a role in the development of various tissues and organs of bilaterian 

organisms.  The imaginal discs of Drosophila, for example, are larval primordia that give 

rise to all the appendages of the adult body (Cohen, 1993).  These structures all 

develop as pseudostratified epithelial placodes prior to undergoing radical metamorphic 

cell shape changes that result in elongation of the larval epithelia into their adult forms 
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(Fristrom, 1988).  Placodes are also central to development of outgrowths in vertebrate 

systems, including hair follicles, teeth, feathers, ears, and the lens of the eye among 

others (Baker and Bronner-Fraser, 2001; Pispa and Thesleff, 2003; Streit, 2007).    

Remarkably, it remains poorly understood why thickened epithelial primordia are such a 

common theme in animal development. We have now shown that a similar mechanism 

occurs during appendage morphogenesis of a basal metazoan, indicating deep 

evolutionary constraints that favor this cellular mechanism, regardless of its molecular 

basis in each lineage. 

 There are two potential scenarios for the evolution of placodal development.  The 

first is that placodal development is a conserved feature inherited from the common 

cnidarian-bilaterian ancestor.  In this situation, Hydra might represent a derived situation 

where the placode-dependent mechanism for tentacle development has been lost.  

Investigation of additional cnidarian species, especially anthozoans, would be needed to 

support this contention.  The second possibility is that the appearance of epithelial 

placodes throughout Metazoa is a product of convergent evolution; appearing 

independently in multiple lineages.  Currently, the sensory placodes of vertebrates are 

the best studied in the light of evolution, yet prior to data from chordates and 

urochordates, these were thought to be a vertebrate innovation (Graham and Shimeld, 

2013).  The evolution of mechanisms to control the development of integumental 

placodes (which give rise to the ectodermal appendages of vertebrates) has not been 

addressed, although there do seem to be common molecular themes (Mikkola, 2007).  

Nevertheless, more invertebrate and basal metazoan species would need to be 

examined before there is sufficient data to support a definitive hypothesis.   
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Regardless of the evolutionary scenario, the widespread appearance of placodes 

in animal embryos indicates a crucial utility in formation and patterning of secondary 

outgrowths of the main body axis.  This raises the question of why placodal 

development is such an important mechanism.  Using a thickened placode where the 

cells are packed closely together may allow for high density patterning of a large 

primordial structure in a relatively small space.  Once the pattern is formed, 

morphogenesis of the epithelium through changes in apico-basal cell thickness could 

then directly expand the primordium into a larger structure, organ or outgrowth.  
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Chapter 3:  Disruption of epithelial integrity and cell polarity by VirA, a 
bacterial effector protein 
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Abstract  

Bacterial pathogens have evolved a variety of protein tools that allow them to evade the 

host immune system and hijack endogenous processes for their own infection and 

replication.  Shigella flexneri injects a host of these effector proteins into cells during its 

pathogenesis that are known to alter the cytoskeleton and intracellular signaling among 

other processes.  However, the function of virulence factor, VirA, which is known to be 

vital for effective infection and spreading, remains controversial.  While most previous 

studies have been conducted in vitro or with cell culture assays, the function of VirA in 

an epithelial context remains unknown.  Here, we demonstrate that VirA expression 

disrupts epithelial cell polarity with no discernible effects on microtubule stability.  We 

show that transgenic Drosophila expressing VirA results in a mislocalization of polarity 

proteins, cell rounding, and loss of epithelial integrity.  A strikingly similar effect is 

observed after expression of VirA in the chick neural tube epithelium, implicating a 

conserved activity of VirA from arthropods to vertebrates.  Further, we show a potential 

defect in vesicle trafficking by examining Rab11 localization in epithelia expressing VirA, 

suggesting a mechanism for loss of polarity and tissue architecture.  Our results reveal 

a novel cellular mechanism for VirA in disruption of cell polarity leading to a breakdown 

of epithelial integrity, which may facilitate the infection and spreading of Shigella in the 

human intestinal epithelium.       
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Introduction 

The maintenance of epithelial integrity and polarity is essential for barrier function 

and assists in resistance to pathogens.  Bacteria have evolved the ability to penetrate 

and hijack this endogenous barrier through the secretion of various effector proteins.  

Shigella flexneri infects the human intestinal epithelium after ingestion of contaminated 

food or water and is a paramount problem for public health, especially in developing 

countries, claiming around 700,000 lives worldwide every year (WHO, 2005).  VirA, a 

Shigella effector protein, is known to be vital for effective infection and spreading of the 

bacteria in mammalian cells (Uchiya et al., 1995).  However, the cellular mechanism by 

which it assists in the infection of the human gut remains unclear.    

Shigella bacteria are initially transported across the host intestinal epithelium by 

microfold cells (M cells), which are specialized immune cells that constantly sample the 

gut contents for antigens (Wassef et al., 1989; Sansonetti et al., 1996).  After passing 

through the M cell to the basal side of the epithelium, the bacteria are engulfed by 

macrophages.  Shigella induces macrophage death, allowing the bacteria to infect 

through the basolateral membrane of the epithelial cells, ultimately resulting in 

breakdown of the epithelial barrier and diarrhea (Mounier et al., 1992; Zychlinsky et al., 

1992).  Using a type III secretion system, Shigella injects effector proteins into host cells 

that can alter the cytoskeleton, innate immune response, and the host cell 

transcriptome, enabling the bacteria to replicate and spread (reviewed in Schroeder and 

Hilbi, 2008).    

VirA was initially reported to be a cysteine protease that cleaved microtubules by 

binding to Tubulin heterodimers, thus assisting the bacteria in intercellular movement 
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(Yoshida et al., 2002; Yoshida et al., 2006).  More recent reports have refuted this claim 

(Davis et al., 2008; Germane et al., 2008) and suggested other functions including 

potential binding to GM130 (a golgi membrane protein), activation of calpain and 

inactivation of Rab1 (Clements et al., 2011; Bergounioux et al., 2012; Dong et al., 

2012).  However, these studies only examined the function of VirA in vitro and using cell 

culture assays.  None explored the function of VirA in the context of an in vivo tissue 

system, where VirA would act in the human intestine.   

Here, using Drosophila and vertebrate systems, we examined the function of 

VirA in epithelial tissue in vivo.  We confirmed in both mammalian cells and Drosophila 

tissue that VirA expression does not abolish polymerized microtubules.  However, it 

does affect tissue integrity and cell polarity.  We validated the use of Drosophila as a 

pathogenesis model by observing similar phenotypes in two vertebrate systems.  

Additionally, we show that VirA expression correlates with a mislocalizaton of Rab11, 

potentially suggesting a function of VirA in vesicle trafficking.  Finally by utilizing an in 

vivo epithelial system, our studies uncover a novel cellular function of VirA in Shigella 

pathogenesis by disrupting tissue integrity and cell polarity, which could lead to 

breakdown of the host gut epithelium aiding in infection.                         
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Materials and Methods 

 

Fly stocks and genetics 

To generate VirA transgenic Drosophila, VirA (gift from the Sasakawa Lab) was 

cloned into the PUAS-T vector to produce a fusion with Green Fluorescent Protein 

(GFP; Brand and Perrimon, 1993). Transgenic lines were obtained by standard 

methods (Genetic Services, Cambridge MA).  For this study, w; UAS-VirA-GFP/TM6B 

was used.  Other transgenic lines used in this study were obtained from Bloomington 

Drosophila Stock Center: yw, flpout Gal4; MKRS-Flp/TM6B; w; GMR-Gal4; UAS-GFP; 

and UAS-p35.   

 

 

Immunofluorescence and imaging  

To induce the expression of VirA clones, w; UAS-VirA-GFP/TM6B was crossed 

to yw,flpout Gal4; MRKS-Flp/TM6B.  Larval progeny were heat shocked for 5 or 10 

minutes at 37°C.  24 hours after heat shock, wandering third instar larvae were 

dissected, fixed, and stained by the standard protocol (Meyer et al., 2011).  Expression 

of VirA in the eye disc was driven by the GMR promoter, and wandering third instar 

larvae were dissected, fixed, and stained by the standard protocol.  Primary antibodies 

included mouse anti--Tubulin (1:1000, Sigma), mouse anti-Rab11 (1:200, BD 

Biosciences), mouse anti-Discs Large (1:500, C. Goodman), and mouse anti-Armadillo 

(1:100, E. Wieschaus).  Secondary antibody was goat anti-mouse IgG Alexa Fluor 647 

(1:500, Molecular Probes).  F-Actin was stained by Alexa Fluor 546 phalloidin (1:250; 
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Molecular Probes).  Salivary glands and eye imaginal discs were mounted on glass 

slides in glycerol and imaged on a Leica SP5 confocal microscope.              

 

 

HeLa transfection, culture, and imaging  

VirA was cloned into the eGFP-C1 vector (Invitrogen) to produce a fusion protein 

with GFP under the control of the CMV promoter.  Plasmid DNA was transfected into 

HeLa cells using FuGENE HD (Promega), and cells were cultured in TransfectaGRO 

(Corning) for 24, 30, or 48 hours.  Cells were rinsed once with PBS and fixed in 4% 

paraformaldehyde for 30 minutes at room temperature.  After fixation, cells were 

permeabilized with 0.2% TritionX-100 in PBS for 5 minutes, rinsed 4 times with PBS, 

and subsequently stained.  Primary (anti-Tubulin; 1:1000; Sigma) and secondary 

antibodies (goat anti-mouse IgG Alexa Fluor 647; 1:500; Molecular Probes) were 

incubated in PBS with 3% BSA.  Alexa Fluor 546 phalloidin (1:250; Molecular probes) 

was applied in PBS with 0.1% TritionX-100.  Cells were mounted with glycerol with a 

coverslip and imaged on a Leica SP5 confocal microscope.   

 

 

Chick embryo electroporation and imaging 

VirA was cloned in the pCAGGS vector (gift from O. Pourquie), which put VirA 

and zsGreen (separated by an IRES sequence) under the control of the chick -actin 

promoter.  Gallus gallus eggs (purchased from commercial sources) were incubated for 
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48 hours at 37°C.  A hole was cut in the eggshell and the plasmid DNA was injected into 

the lumen of the neural tube.  DNA was electroporated into one side of the neural tube 

using an electrode with three pulses of 20 V for 50 milliseconds each with 100 

milliseconds between pulses.  Eggs were covered with parafilm and further cultured for 

five hours.  Embryos were removed from the yolk and fixed in 4% paraformaldehyde for 

two hours at room temperature.  They were subsequently washed in PBS + 0.1% 

TritionX-100 (PBT), incubated with Alexa Fluor 546 phalloidin in PBT (Invitrogen; 

1:100), and washed again (in PBT).  Embryos were mounted on slides with spacers and 

imaged on a Leica SP5 confocal microscope.  The cell rounding phenotype was 

quantified by counting the number of apically rounded zsGreen expressing cells in 

control and VirA embryos.          
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Results and Discussion  

 

VirA expression does not disrupt microtubules in vivo 

To address the previously reported, controversial microtubule-severing function 

of VirA (Yoshida et al., 2002; Yoshida et al., 2006), we transiently expressed VirA in 

mammalian cell culture.  HeLa cells were transfected with a plasmid containing VirA 

fused to Green Fluorescent Protein (GFP) or only GFP under the control of the CMV 

promoter.  After 24 hours of post-transfection culture, both control and VirA expressing 

HeLa cells contained numerous polymerized microtubules (Figure 3.1A-B”).  To ensure 

that our culture duration was sufficient, we also examined HeLa cultures 48 hours after 

transfection and still observed polymerized microtubules in the control and VirA 

expressing cells (Figure 3.1C-D”).  These results support the previous reports that 

suggest VirA does not deplete mammalian cells of microtubules (Davis et al., 2008; 

Germane et al., 2008; Germane and Spiller, 2011; Bergounioux et al., 2012; Dong et al., 

2012).       

Further, we sought to confirm these results using an in vivo tissue instead of cell 

culture.  The Drosophila salivary gland provides a tractable system to express proteins 

of interest within the epithelial tissue context.  We induced expression of the VirA::GFP 

fusion protein or GFP alone using the Gal4-UAS system (Brand and Perrimon, 1993).  

This system was under further temporal control by employing heat shock FLPout to 

induce random clonal expression (Golic, 1991; Pignoni and Zipursky, 1997).  We heat 

shocked the larvae 24 hours before dissection of wandering third instar larval salivary  
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Figure 3.1 – VirA expression does not disrupt microtubule architecture in HeLa 

cells 

(A-D) HeLa cells transiently transfected with GFP (A,C; Control) or VirA::GFP (B,D; 

VirA) under the control of a CMV promoter and cultured for 24 (A,B) or 48 (C,D) hours 

after transfection.  GFP positive cells (green) are shown stained with anti-Tubulin 

(Tub, red).  VirA expression does not disrupt the polymerization of microtubules 

compared to controls (A’-D’).  Enlarged images from A’-D’ show polymerized 

microtubules in these cells (A”-D”, yellow arrows).  Scale bar in A represents 25 m.   

 

  

 

 

 

 

 



114 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 F
ig

u
re

 3
.1

 



115 
 

glands.  In the post-mitotic, endoreplicating salivary gland cells, there is a meshwork of 

polymerized Tubulin at the basal periphery of the cells.  This meshwork still exists in the 

VirA expressing salivary gland cells where we can observe polymerized microtubules 

(Figure 3.2A-B”).  These data support the proposed model that VirA does not sever 

microtubules (Davis et al., 2008; Germane et al., 2008; Germane and Spiller, 2011; 

Bergounioux et al., 2012; Dong et al., 2012).   Further, we demonstrate this in an in vivo 

tissue context. 

 

 

VirA expression disrupts epithelial architecture and cell polarity in vivo 

While VirA expression did not cause a loss of microtubules in Drosophila 

epithelia, we did notice a striking loss of normal tissue architecture.  When clone 

induction resulted in only a few VirA::GFP expressing cells, the overall salivary gland 

tubular structure, with large cubodial cells surrounding a central lumen, was maintained 

(Figure 3.3A-A’, B-B’).  However, when the majority of cells in the salivary gland 

expressed VirA::GFP, the tissue architecture was completely lost including an absence 

of the lumen (Figure 3.3C-C’).  Additionally, these VirA::GFP expressing cells contained 

F-Actin rich structures in the cytoplasm (Figure 3.3A”,B”,C”).  Previously, VirA was 

reported to inactivate Rab1 GTPase, important for ER-to-golgi trafficking, which might 

explain the accumulation of these structures (Dong et al., 2012).  Some of these Actin 

rich structures can also be seen in the non-GFP cells of the VirA::GFP salivary glands.  

If the larvae are not heat shocked, these Actin rich structures can still be seen in many 

of the VirA::GFP salivary glands, which are absent in the controls (Figure 3.4),  
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Figure 3.2 – VirA expression does not disrupt microtubule architecture in vivo 

(A-B) Surface view of salivary glands clonally expressing GFP (A, Control, green) or 

VirA::GFP (B, VirA, green) stained for anti-Tubulin (Tub, blue) and F-Actin (red).  

Cells in the salivary gland expressing GFP or VirA still contained polymerized 

microtubules (A’,B’).  Examples are denoted by yellow arrow in A” and B”.  Scale bar in 

A represents 50 m.      
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Figure 3.3 – Disruption of tissue architecture in Drosophila salivary glands 

expressing VirA 

(A-C)  GFP (A, Control, green) or VirA::GFP (B-C, VirA, green) expression was clonally 

induced in the salivary gland, and they were stained for F-Actin (red).  Salivary glands 

with only a few VirA expressing cells (B) retained their tissue structure, while glands 

with many VirA expressing cells (C) lost tissue architecture and the lumen (yellow 

dotted line in A’,B’,C’).  Cells expressing VirA also contained numerous Actin rich 

structures (yellow arrows in B”,C”).  Scale bar in A represents 100 m.   
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Figure 3.4 – Background expression of VirA in salivary glands without heat shock 

(A-C) Salivary glands from yw, flpout Gal4; UAS-GFP; MKRS-Flp (Control, A) or yw, 

flpout Gal4; UAS-VirA-GFP; MKRS-Flp (VirA, B-C) larvae that have not been heat 

shocked.  Glands were stained with phalloidin (F-Actin, red) and Hoechst (blue).  Some 

of the VirA glands showed actin rich structures to varying degrees even the in absence 

of induction of expression (yellow arrows).  Scale bar in A represents 50 m.     
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suggesting that there is a low level of background VirA expression in these salivary 

glands. 

To confirm the loss of tissue architecture in a separate epithelial context, we additionally 

expressed VirA::GFP in the post mitotic cells of the Drosophila eye imaginal disc using 

the GMR promoter and Gal4/UAS system (Moses and Rubin, 1991; Brand and 

Perrimon, 1993).  In this system, we also observed a loss of normal epithelial 

architecture (Figure 3.5A-H’).  Behind the morphogenetic furrow, VirA expressing cells 

lost their pseudostratified epithelial structure, rounded, and even apically extruded from 

the tissue, accumulating in the lumen between the two layers of the imaginal disc 

(Figure 3.5C,D,G,H).  Since we observed this disruption of normal epithelial 

architecture, we were interested to explore if cell polarity was maintained during this 

process.  To address this question, we assayed cell polarity markers for their 

localization in the VirA expressing eye discs.  Discs Large (Dlg), a well-known apical 

polarity protein, localized to the septate junctions in control discs (Figure 3.5A-C’).  

However, Dlg localization was disrupted in the GMR domain where VirA::GFP was 

expressed (Figure 3.5B-D’).  Similarly, Armadillo (Arm), the Drosophila homolog of -

Catenin, localized to the apical adherens junctions in control discs (Figure 3.5E-G’).  

This localization was disrupted in the GMR domain of the VirA::GFP eye discs (Figure 

3.5F-H’).  These results reveal a potential tissue level function of VirA that was not 

previously identified in cell culture assays.  Our data suggest that VirA expression 

causes a loss of normal tissue architecture in both the salivary gland and eye disc, and 

this is accompanied by the loss of cell polarity (Dlg and Arm localization) in the eye disc.   
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Figure 3.5 – Disruption of tissue architecture and cell polarity in Drosophila eye 

imaginal discs expression VirA 

(A-H)  GFP (A,C,E,G; Control; green) or VirA::GFP (B,D,F,H; VirA; green) expression 

was driven with the GMR promoter posterior to the furrow in the eye imaginal disc.  Not 

only did VirA expression cause a loss of normal tissue architecture, but also caused the 

loss of localization of the polarity markers Discs Large (A-D’, red) and Armadillo (E-H’, 

red).  Yellow brackets denote areas of GFP positive expression.  Anterior side of discs 

is oriented to the left.  Scale bars in A, C, E, and G represent 25 m.   

 

 

 

 

 

 



124 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 3
.5

 



125 
 

VirA expression results in cell rounding in vivo 

 To validate the use of Drosophila as a pathogenesis model and to rule out 

Drosophila specific phenotypes, we expressed VirA in two distinct vertebrate systems 

and observed the resulting cellular phenotypes.  As described previously, we transiently 

expressed GFP or VirA::GFP in HeLa cells.  After 24 hours of culture, the VirA::GFP 

expressing cells appeared largely similar to the control cells (Figure 3.1A-B; quantified 

in Figure 3.6E).  While the majority of VirA::GFP cells appeared similar to controls after 

30 hours of culture, a subset of the VirA::GFP expressing cells displayed a rounded 

morphology (Figure 3.6A-B, quantified in E).  By 48 hours of culture, the majority of the 

VirA::GFP expressing cells exhibited a rounded phenotype (Figure 3.6C-D, quantified in 

E).  This rounding of the cells was very similar to the phenotype we observed in the 

Drosophila tissue systems, particularly in the eye imaginal disc where cells rounded 

before apically extruding from the epithelium (Figure 3.5).   

 Additionally, we expressed VirA in a vertebrate epithelium in vivo.  The chick 

neural tube is amenable to electroporation of plasmid DNA constructs.  In our construct, 

VirA and zsGreen or zsGreen alone was expressed under the control of the chick -

Actin promoter.  Interestingly, the VirA expressing cells rounded up at the apical side of 

the epithelium, a strikingly similar phenotype to the Drosophila eye imaginal disc (Figure 

3.7A-B’, quantified in C, compare to Figure 3.5).  These results from two different 

vertebrate systems recapitulate our results from Drosophila that VirA expression results 

in rounded cells and validates the use of Drosophila as a pathogenesis model.   
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Figure 3.6 – VirA expression results in cell rounding in HeLa cells 

(A-E)  HeLa cells were transiently transfected with GFP (A,C; Control; green) or 

VirA::GFP (B,D; VirA; green) and cultured for 30 (A-B) or 48 (C-D) hours.  Cells were 

stained for anti-Tubulin (Tub, blue) and F-Actin (red).  Most of the VirA expressing 

cells were rounded by 48 hours of culture (D).  Quantification of the percentage of 

rounded GFP positive cells for control (grey) and VirA (black) after 24, 30, and 48 hours 

of culture is shown in E.  Scale bar in A represents 15 m.   
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Figure 3.7 – VirA expression results in apical cell rounding in chick neural tube  

(A-C) Chick embryonic neural tube was electroporated with a construct expressing 

zsGreen (A, A’; Control; green) or VirA and zsGreen (B, B’; VirA; green).  The embryos 

were also stained for F-Actin (red).  Control cells expressing zsGreen largely exhibit the 

pseudostratified epithelial structure of the neural tube, while VirA expressing cells round 

up at the apical side of the epithelium.  Quantification of the percentage of apically 

rounded zsGreen positive cells for control (grey) and VirA (black) embryos is shown in 

C.  Scale bar in A represents 25 m.              

 

 

 

 

 

 

 



129 
 

 

 

 

 

 

 

Figure 3.7 
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Rab11 localization is altered in VirA expressing cells 

 The establishment and maintenance of epithelial polarity and integrity requires 

localization of distinct proteins to specific sites in the cell.  Thus, vesicle trafficking is 

essential for maintaining and regulating proper epithelial structure.  Since the disruption 

of epithelial architecture was accompanied by the loss cell polarity (Figure 3.5), we were 

interested to examine if there was a defect in vesicle trafficking in VirA expressing 

epithelial cells.  Rab GTPases are well known regulators of vesicle trafficking in 

eukaryotic cells.  Rab11 has been shown to be important for targeting recycling 

endosomes to the apical surface (Calhoun and Goldenring, 1996; Ren et al., 1998; 

Casanova et al., 1999) and has roles in epithelial adhesion and integrity (Langevin et 

al., 2005; Lock and Stow, 2005; Desclozeaux et al., 2008; Roeth et al., 2009; Xu et al., 

2011).  We again induced clonal expression of VirA::GFP or GFP alone in the 

Drosophila salivary gland.  Control salivary glands exhibited peripheral staining of 

Rab11 near the apical plasma membrane (Figure 3.8A,A',C,C'; Zhang et al., 2007).  

Interestingly, gland cells overexpressing VirA::GFP had strongly increased Rab11 

antibody signal that was no longer restricted to the apical periphery of the cells (Figure 

3.8B,B’,D,D’).   

To confirm this mislocalization of Rab11 in another epithelial context, we 

additionally examined Rab11 localization in the eye imaginal disc.  As previously 

described, we expressed VirA::GFP or GFP under the control of the GMR promoter.  In 

control discs, there was punctate staining for Rab11 in the GFP expressing cells (Figure 

3.9A-B’).  However, VirA::GFP expression resulted in increased staining with numerous 

and aggregating clusters of Rab11 positive puncta (Figure 3.9C-D’).  To rule out the  
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Figure 3.8 – Mislocalization of Rab11 in Drosophila salivary glands expressing 

VirA 

(A-D)  Salivary glands clonally expressing GFP (A,C; Control; green) or VirA::GFP (B,D; 

VirA; green) stained for Rab11 (blue) and F-Actin (red).  Normal localization (A’,C’) was 

lost in the VirA expressing glands, and Rab11 signal was increased (B’,D’).  Scale bar in 

A represents 50 m.  
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Figure 3.9 – Rab11 mislocalization in the Drosophila eye imaginal disc following 

VirA expression  

 (A-F)  GFP (A-B; Control; green), VirA::GFP (C-D; VirA; green), and VirA::GFP, p35 (E-

F; VirA, p35; green) were expressed in the GMR domain of the eye disc.  Discs were 

stained for Rab11 (blue) and F-Actin (red).  Top panels show the eye disc while the 

bottom panels show a magnified portion from the top panel.  VirA::GFP and VirA::GFP, 

p35 discs showed increased Rab11 staining.  The discs are oriented with posterior to 

the right.  Scale bar in A represents 25 m.  
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possibility that this phenotype was caused by cell death, we co-expressed p35 with 

VirA::GFP in the GMR domain.  In this condition, we still observed the same 

accumulation of Rab11 (Figure 3.9E-F’).  These results both suggest that in vivo VirA 

expression causes mislocalization and possibly accumulation of Rab11, which may alter 

the trafficking of proteins near the membrane.  Consistent with our results, a recent 

study reported the data from an in vitro GTP hydrolysis enzymatic assay using VirA and 

various Rab proteins, which shows that Rab11 could act as a substrate for VirA (Dong 

et al., 2012).  Further, Rab11 mediated trafficking is known to be important for E-

cadherin targeting and recycling at the apical junctions and has been implicated in cell 

polarity and tissue integrity (Langevin et al., 2005; Lock and Stow, 2005; Desclozeaux 

et al., 2008; Xu et al., 2011; Nakanishi et al., 2012).  This suggests a mechanism where 

VirA may act as a Rab11 GAP to alter cell polarity and adhesion, ultimately leading to 

compromised epithelial integrity.      
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Conclusions 

 While a few recent studies have investigated potential molecular mechanisms of 

VirA, outside of severing microtubules, the tissue level functions have been largely 

overlooked.  This is the first and only study that examines the function of VirA in an in 

vivo tissue.  Our data suggest a novel function of VirA where its expression leads to 

disruption of cell polarity and tissue integrity.  Both key apical polarity proteins, 

Armadillo (-catenin) and Discs large, were no longer correctly localized after VirA 

expression (Figure 3.5).  We also show the localization of Rab11 was disrupted in VirA 

expressing salivary gland cells and the eye imaginal disc (Figures 3.8 and 3.9).  The 

loss of cell polarity caused by VirA expression might be accomplished by defects in 

Rab11 trafficking of polarity or adhesion proteins to the apical plasma membrane 

(Desclozeaux et al., 2008; Roeth et al., 2009).  Ultimately, this could lead to a 

breakdown of the epithelial architecture and integrity, assisting in the infection and 

spreading during Shigella pathogenesis.        
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The evolution of multicellularity and epithelial tissue was a crucial innovation that 

potentiated the diversity of animal body plans we see in the natural world.  The 

polarized, adherent tissue architecture must be established and maintained during 

development and homeostasis.  Loss of polarity or integrity during either of these 

processes can be catastrophic for the organism leading to developmental defects or 

disease.  Epithelial architecture is maintained through dynamic regulation by a multitude 

of cellular processes including intracellular transport, cytoskeleton modulation, and cell 

adhesion during epithelial morphogenesis as well as adult homeostasis.  While studies 

from model systems and cell culture have contributed to our understanding of these 

processes, many questions remain unanswered.  Our efforts to uncover ancient 

mechanisms of epithelial morphogenesis in a basal metazoan and how normal epithelial 

architecture can be altered during pathogenesis have contributed new insights to these 

processes and in the field of epithelial biology.       

        

 

Ancient mechanisms of epithelial morphogenesis 

 Studies of epithelial morphogenesis in Drosophila, chick, Xenopus, and mouse 

have laid the foundation for cellular and molecular mechanisms that are involved during 

development (reviewed in Schock and Perrimon, 2002).  However, these few systems 

are not a total representation of the diversity of animals, and do not include more basal 

organisms, which may provide insight into the evolution of these developmental 

mechanisms.  Our study (Chapter 2) explores ancient mechanisms of development in a 
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basal metazoan model, Nematostella vectensis.  Using the tentacle as a model of an 

organ or appendage, we have identified ancient cellular mechanisms that drive 

morphogenesis in this simple system.  Our work not only described this process for the 

first time, but also lays the basis for future studies in tentacle development, addition, 

and regeneration (Fritz et al., 2013).   

 

Cellular and molecular mechanisms of morphogenesis 

We uncovered cellular mechanisms that play a role during elongation of both the 

body column and tentacles during development.  Cell shape changes in the ectoderm 

from columnar to flattened correlate with elongation of both the body column and 

tentacles (Figure 2.4).  We demonstrate by drug treatment that this conversion requires 

Actin dynamics (Figure 2.6).  The flattening of the ectodermal epithelial cells can 

expand the surface area of the tissue.  However, in both the body column and tentacles, 

it is directed specifically into elongation.  By labeling cells and exploring their behavior 

during development, we observed elongating cell clones (Figures 2.7 and 2.8), 

suggesting cell rearrangements are involved in directing the tissue expansion into 

elongation.  Additionally, we observed oriented cell division in the body column during 

elongation, where divisions were biased along the oral-aboral axis (Figure 2.10).  These 

cellular processes are very similar to the mechanisms that are involved during 

morphogenetic events of bilaterian organisms, such as Xenopus epiboly, Drosophila 

germ band extension, and ascidian notochord development (Keller, 1980; Irvine and 

Wieschaus, 1994; Munro and Odell, 2002; da Silva and Vincent, 2007).    
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While we were able to identify cellular mechanisms that function during body axis 

and tentacle elongation, we still do not know what underpins the initiation or regulation 

of these processes.  One interesting candidate is the planar cell polarity (PCP) pathway, 

also known as non-canonical Wnt signaling, since it is independent of -catenin.  First 

identified in Drosophila and later studied in vertebrates, the PCP pathway has been 

implicated in the regulation of oriented cell division, cell rearrangements, and axis 

elongation during development (Gubb and Garcia-Bellido, 1982; Nubler-Jung et al., 

1987; Jessen et al., 2002; Park and Moon, 2002; Wallingford and Harland, 2002; Gong 

et al., 2004; Baena-Lopez et al., 2005; Ciruna et al., 2006; Mao et al., 2011; reviewed in 

Gray et al., 2011).  In this pathway, interaction of Frizzled and Dishevelled lead to the 

activation of downstream kinases including RhoA, c-Jun N-terminal Kinase (JNK), and 

Rho-associated protein kinase (ROCK) (reviewed in Simons and Mlodzik, 2008).  

Modulation of the Actin cytoskeleton is known to be regulated by RhoA downstream of 

PCP signaling in Drosophila and vertebrates (Fanto et al., 2000; Winter et al., 2001; 

Marlow et al., 2002).  Polarity across a field of cells can be achieved by asymmetrical 

localization of the core PCP components: Frizzled, Dishevelled, Strabismus/Van Gogh, 

Diego, and Prickle (reviewed in Gray et al., 2011).  Recently, this pathway has been 

explored in two cnidarians, Hydra and Clytia, suggesting its conservation from 

cnidarians to mammals (Philipp et al., 2009; Momose et al., 2012).  In Hydra when the 

pathway is inhibited by drug treatment, asexual bud and tentacle evagination was 

disrupted; these processes are normally accompanied by lateral cell intercalation and 

Actin reorganization (Philipp et al., 2009).  Similarly in Clytia, when PCP signaling was 
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inhibited by a morpholino against Strabismus, embryo elongation was inhibited, which 

was accompanied by a lack of normal cell intercalation (Momose et al., 2012).   

The Nematostella genome contains the PCP components, but no functional 

studies have been done during Nematostella development (Guder et al., 2006; Lee et 

al., 2006; Rigo-Watermeier et al., 2012).  Thus, it would be interesting to explore the 

functions of this pathway during Nematostella body column and tentacle elongation.  To 

explore if PCP signaling is required for proper cell intercalations, oriented cell division, 

or actin dynamics during elongation, we could inhibit the pathway using drug treatment 

(SP600125, inhibits JNK) or antisense morpholinos against PCP pathway members, 

such as Strabismus (Han et al., 2001; Philipp et al., 2009; Momose et al., 2012).  Our 

imaging assays, clonal analysis or quantification of the orientation of cell division could 

be repeated at various stages during elongation after PCP signaling inhibition.  

Additionally, to confirm the phenotypes are caused by the PCP pathway,  canonical Wnt 

signaling can be activated as a control by using drug treatment (alsterpaullone; Lahusen 

et al., 2003; Broun et al., 2005) or expression of dominant negative proteins (DN-

Glycogen synthase kinase 3; Pierce and Kimelman, 1995).  

 

Placodes as a mechanism for development 

Our results emphasize the use of placodes as a common mode of development 

across a diverse group of animals.  These thickened, epithelial, primordial structures are 

observed in animals from cnidarians to humans.  The Drosophila imaginal discs are a 

prime example of these in invertebrates (Fristrom, 1988; Cohen, 1993).  Placodes are 

also involved in the development of structures in vertebrates, including hair follicles, 
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teeth, feathers, the inner ear, and the lens of the eye to name a few (Baker and 

Bronner-Fraser, 2001; Pispa and Thesleff, 2003; Streit, 2007).  The sensory placodes of 

vertebrates are the best molecularly characterized, but more data from chordates and 

urochordates is emerging (reviewed in Graham and Shimeld, 2013).  However, the 

evolution of these structures outside of vertebrates remains unclear (reviewed in 

Graham and Shimeld, 2013, Patthey et al., 2014, and Schlosser et al., 2014).  Further, 

both the evolution of and cellular mechanisms that underlie integumental placodes 

(ectodermal appendages) remain largely unknown (reviewed in Mikkola, 2007 and 

Biggs and Mikkola, 2014).  While the vertebrate examples are more complicated and 

involve the interaction of mesenchymal cells, placodes remain a common feature of 

developmental mechanisms across diverse species.  It remains unknown and 

underappreciated as to why these seem to be important during development.  We 

propose the model that when the epithelial cells are thickened, the cells are packed 

more closely together.  This would allow for patterning of the primordia to occur over a 

relatively small area.  Once molecularly patterned, epithelial morphogenesis by a variety 

of cellular mechanisms could elaborate this into the adult structure.  

 

Tentacle patterning       

Through our unbiased microarray approach, as well as from the literature, we 

identified a potential mechanism of sequential patterning of the oral ectoderm into 

tentacle competent and non-competent regions (Figure 2.18).  However, further studies 

will be needed to verify and characterize the role of these genes in patterning and 

development.  In order to study these processes as well as others in later stages of 
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development, past the embryonic stage, the creation of new tools for inducible gene 

expression and loss- and gain-of-function studies will be essential (discussed below).  

Generation of transgenic animals has been reported (Renfer et al., 2010; Nakanishi et 

al., 2012), as well as the use of antisense morpholinos (Rentzsch et al., 2008; 

Genikhovich and Technau, 2011; Nakanishi et al., 2012; Sinigaglia et al., 2013; 

Wolenski et al., 2013) and expression of mRNA or dominant negative constructs 

(Tsukita and Furuse, 2002; Rentzsch et al., 2006; Rentzsch et al., 2008; Kumburegama 

et al., 2011; Layden et al., 2012; Marlow et al., 2012; Rottinger et al., 2012; Layden et 

al., 2013).  However, these technologies currently do not persist long enough to affect 

gene function late or do not allow inducible expression to avoid early developmental 

toxicity.   

 

Subsequent tentacle addition 

While our study has examined how the first four tentacles form during 

development, it would also be interesting to examine the patterning and morphogenesis 

of the subsequent tentacles.  These are added as the animal begins feeding and 

growing overall in size.  Are similar cellular mechanisms involved?  It would be 

necessary to analyze the morphology of these subsequent tentacle buds to see if they 

similarly begin as thickened, pseudostratified epithelial that flatten as the tentacle 

elongates.  Also, we could explore the gene expression patterns of known tentacle 

markers during tentacle initiation and elongation, including the ones identified from our 

microarray analysis.   
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Tentacle regeneration 

Nematostella has an amazing capacity for regeneration (Reitzel et al., 2007).  

While there have been limited studies on animal regeneration in Nematostella, nothing 

is currently known about tentacle regeneration.  Following amputation of the whole oral 

section of the body, cell proliferation is increased, and this proliferation is necessary for 

regeneration of the oral structures (Passamaneck and Martindale, 2012; Bossert et al., 

2013).  Therefore, we could characterize patterns of cell proliferation after amputation of 

a tentacle to examine if proliferation similarly upregulated.  Also, are there cell shape 

changes or cytoskeletal rearrangements during regeneration of a tentacle?  For both 

tentacle and head amputation, it would be interesting to explore the patterns of gene 

expression for tentacle marker genes to see if the same developmental program is 

redeployed or if regeneration involves a new molecular mechanism.   

 

Generation of genetic tools 

To establish Nematostella as a tractable genetic system, more tools to carry out 

functional experiments will be required.  Both mouse and Drosophila have systems for 

inducible gene expression including heat shock/FlpOut (Golic and Lindquist, 1989; 

Golic, 1991; Chou and Perrimon, 1992; Struhl and Basler, 1993; Xu and Rubin, 1993; 

reviewed in Branda and Dymecki, 2004 and McGuire et al., 2004), Gal4/UAS (Brand 

and Perrimon, 1993) and Lox/CRE (Gu et al., 1993).  By the creation of transgenic 

Nematostella carrying members of these systems, it may be possible to develop a 

method for inducible gene expression.  New technologies are rapidly being developed 
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and employed in model organisms for genome editing including transcription activator-

like effector nucleases (TALENs; Miller et al., 2011; Wood et al., 2011) and the 

clustered regulatory interspaced short palindromic repeat (CRISPR)-Cas system (Cong 

et al., 2013; Mali et al., 2013).  If any of these systems could be applied to 

Nematostella, we could generate both knock-in and knock-out strategies.  Current 

efforts in our lab are to develop methods for inducible expression, genome editing, and 

gain- and loss-of-function studies, which will help to drive the field forward.       

 

 

Hijacking of vesicle trafficking as a mechanism of pathogenesis 

 Epithelial tissues are not only essential for the formation of a diversity of 

structures and body plans, but also the maintenance of their architecture during 

homeostasis is important for the prevention of pathogenesis, such as bacterial 

infections and cancer.  During infection, bacteria secrete a host of effector proteins that 

can hijack endogenous processes for their own replication, survival, and spreading.  In 

our study, we used the Shigella effector protein, VirA, to examine its effect on epithelial 

architecture.  VirA is known to be essential for the effective infection and spreading of 

Shigella, however, its function in this process still remains unclear (Uchiya et al., 1995).  

The previous studies examining VirA function have only used in vitro and cell culture 

assays (Clements et al., 2011; Bergounioux et al., 2012; Dong et al., 2012).  We are the 

first to express VirA in an epithelial tissue, and our results from three different systems 

in two separate organisms highlight the importance of using an in vivo model.  In the 

Drosophila salivary gland, eye imaginal disc, and chick neural tube, expression of VirA 
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caused rounding of the epithelial cells (Figures 3.4, 3.5, and 3.7).  Additionally in 

Drosophila, VirA expression resulted in a loss of normal epithelial architecture, an 

accumulation of Actin-rich structures, and a loss of polarity markers, Armadillo and -

catenin (Figures 3.3 and 3.5).  These results suggest a function for VirA in polarity or 

vesicle trafficking, which is supported by the mislocalization of Rab11 in tissue 

expressing VirA (Figures 3.8 and 3.9).     

Bacteria effector proteins accomplish a variety of functions during pathogenesis, 

including modulation of host tissue integrity (reviewed in Kim et al., 2010).  Proteins 

secreted by Clostridium difficile and Vibrio cholera, among others, are known to 

accomplish this through modulation of the tight junctions (Wu et al., 2000b; Nusrat et al., 

2001; Chen et al., 2002).  Other pathogens, such as Bacteroides fragilis, alter tissue 

architecture by targeting the adherens junctions (Wu et al., 1998).  Further, other 

bacterial effectors proteins modulate intracellular trafficking by activating or inactivating 

Rab proteins (reviewed in Ham et al., 2011).  Nevertheless, most of these studies have 

been conducted in cell culture, and more in vivo tissue studies will be required to 

confirm these functions.   

Overall, our results propose a model where VirA may contribute to Shigella 

pathogenesis by altering cell polarity or adhesion, ultimately causing loss of normal 

intestinal epithelial architecture and integrity, which could facilitate the invasion of more 

bacteria.  This may be achieved by modulation of vesicle trafficking through Rab 11.  

Rab11, which localizes to recycling endosomes, is known to function in cell polarity, 

adhesion, and tissue integrity through the targeting and recycling of E-cadherin to the 

adherens junctions (Langevin et al., 2005; Lock and Stow, 2005; Desclozeaux et al., 
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2008; Roeth et al., 2009; Xu et al., 2011).  By mis-localizing or inactivating Rab11, VirA 

could cause disruption of the adherens junctions, which may lead to a loss of cell 

polarity and tissue architecture.    

It is still unclear as to the mechanism of how VirA expression leads to alteration 

of Rab11 localization and disruption of polarity in epithelial cells.  A drawback of our 

current approach is we are overexpressing VirA at high levels, potentially a non-

physiological condition.  However, it is still possible that with lower levels of expression 

VirA could have an impact on the junctional architecture or polarity to at least ‘loosen 

up’ the epithelium.  More studies will be necessary to determine the mechanisms that 

underlie this function.  Biochemical experiments could be done to determine if the 

interaction between VirA and Rab11 is direct or not.  Further, VirA modulation of Rab11 

localization could be confirmed in a vertebrate model, such as the chick neural tube.  A 

promising hypothesis is that VirA may act as a Rab11 GAP to inactive it.  In vitro data 

reported by Dong et al. (2012) suggest that Rab11 is a potential substrate for VirA GAP 

activity.  Genetic experiments in Drosophila expressing dominant negative or 

constitutively active Rab11 mutants may also shed light on the molecular function of 

VirA.   

Much is still unclear about the function of effector proteins during bacterial 

pathogenesis of a host tissue.  What is known has largely only been examined through 

in vitro and cell culture assays.  In contrast, our pioneering in vivo studies take 

advantage of tractable, in vivo systems to examine the effects of bacterial effectors.  

Our studies have contributed novel insight into the cellular and tissue level mechanisms 

that contribute to bacterial pathogenesis.   
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Concluding Remarks 

As a critical innovation in the evolution of metazoans, epithelial tissues have 

allowed for the diversification of organs and body plans.  The maintenance of polarity 

and integrity in epithelia play key roles in morphogenesis during development and 

homeostasis in preventing disease and infection.  The efforts to understand these 

processes have largely come from studies in bilaterian model systems and cell culture 

assays.  This dissertation focused on adding to these efforts in two largely unexplored 

contexts:  1) Ancient mechanisms of epithelial morphogenesis in a basal metazoan and 

2) Modulation of epithelial polarity and integrity during bacterial pathogenesis.  In an 

effort to uncover ancient mechanisms involved in epithelial morphogenesis, we used 

Nematostella tentacle development as a model for outgrowth formation.  Our results 

established the initial study of this process and identified molecular and cellular 

mechanisms involved during development.  Additional studies of tentacle development, 

addition, and regeneration will build from our initial results.  To explore the modulation of 

epithelial architecture during bacteria pathogenesis, we expressed VirA, a Shigella 

effector protein, in Drosophila and vertebrate tissue.  Our study is the first to explore the 

function of VirA in epithelial tissue.  Our data suggest a novel mechanism for VirA 

function in disruption of cell polarity and tissue integrity during Shigella pathogenesis.  

The results stemming from our unique approach highlight the importance of in vivo 

experiments in studying the mechanisms of bacterial pathogenesis.  Combined, our 

efforts to understand mechanisms of tissue morphogenesis, polarity, and integrity have 

contributed evolutionary and mechanistic insights in the fields of developmental biology, 

pathogenesis and epithelial biology.     
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