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Abstract 

Correlative techniques for estimating environmental requirements of species—

variably termed ecological niche modeling or species distribution modeling—are 

becoming very popular tools for ecologists and biogeographers in understanding 

diverse aspects of biodiversity. These tools, however, are frequently applied in 

ways that do not fit well into knowledge frameworks in population ecology and 

biogeography, or into the realities of sampling biodiversity over real-world 

landscapes. We offer 10 ‘fixes’—adjustments to typical methodologies that will 

take into account population ecological and biogeographic frameworks to 

produce better models.  

 

 

Introduction  

The past 15 years have seen a massive increase in the popularity of 

techniques that link known occurrences of species with environmental variation 



across landscapes to estimate ecological niches and geographic distributions, 

generally termed ecological niche modeling or species distribution modeling (for 

further discussion regarding this latter term, see below). The literature taking 

advantage of this novel analytical functionality has increased massively (Figure 

1), and two book-length syntheses have now appeared (Franklin 2010, Peterson 

et al. 2011). Two recent papers have seen massive citation in the field—Elith et 

al. (2006) has been cited 1050 times, and Phillips et al. (2006) has been cited 

842 times (Web of Science, consulted 30 January 2012)—such massive 

attention in the literature indicates considerable popularity. More importantly, 

these coarse-resolution summaries of ecology and distribution have been 

incorporated into the basic ‘toolkit’ of the macroecologist and biogeographer, 

such that optimizing their use and implementation becomes critical. 

 Many uses of niche modeling in the literature, however, have been rather 

inappropriate. That is, the computational tools that have been developed for 

niche modeling are easily used, and frequently have been used in ways that are 

not in good accord either with what is known of population biology of species, 

ideas from modern biogeography, or the realities of sampling biodiversity 

phenomena across real-world landscapes. These misuses, unfortunately, detract 

from the genuine potential utility of the tools, and cause mistrust and 

misunderstanding on the part of the broader biodiversity science community.  

 A comparison with another field of biodiversity science is perhaps 

illustrative. Modern phylogenetics can arguably be stated to have begun with the 

publication of Willi Hennig’s framework for reconstruction of evolutionary history 



(Hennig 1950). This thinking framework preceded by 2-3 decades the 

appearance of computational tools for implementation and use of phylogenetic 

thinking in systematics—the first software packets for cladistic analyses did not 

appear until the 1980s (Wiley 1981), and were not broadly available for several 

years more (Felsenstein 1986, Berlocher and Swofford 1997). As such, the 

thinking framework for cladistics was available long before the technique was 

easy to implement. Niche modeling, however, has seen the opposite evolutionary 

trajectory: tools that, in effect, estimate niches have been around for decades 

(Nix 1986, Austin et al. 1990, Stockwell and Noble 1992), yet a conceptual 

framework for the technique has been much slower to appear (Soberón and 

Peterson 2005, Soberón 2007, Soberón and Nakamura 2009, Godsoe 2010, 

Soberón 2010, Peterson et al. 2011). We argue that this mismatch between 

practice and theory has handicapped the development of this emerging field, and 

has limited the inferences that have been possible.  

 In this contribution, we outline 10 critical considerations that must be taken 

into account in development of ecological niche models as powerful tools in 

ecology and biogeography. In each case, the consideration is not widely 

appreciated in this field; some have appeared in the literature, and others will 

appear soon. The point, nonetheless, is that, for lack of a solid conceptual 

framework for the field, key conceptual-to-empirical links have failed, and the 

field has been handicapped as a consequence. 

 

BAM Scenario 



 The niche concept was originally presented in a verbal model (Grinnell 

1917, 1924) that lacked formal structure. A more quantitative and comprehensive 

presentation (Hutchinson 1957), however, described biotic and abiotic 

dimensions of niche, but failed to acknowledge spatial considerations in 

structuring the environmental and geographic distributions of species. Addition of 

this third dimension of determinants of species’ distributions did not appear 

broadly in the ecological literature until much later (Pulliam 2000, Soberón and 

Peterson 2005). This three-part concept (Biotic, Abiotic, Mobility, or BAM) of how 

species’ distributions are structured now provides a useful guide in developing 

ecological niche models. 

 The BAM concept envisions a universe of areas under consideration G, 

within which the species encounters areas presenting appropriate abiotic 

conditions that can be labeled A, and areas presenting appropriate biotic 

conditions B. The intersection of these two areas ( ∩ ) is the area that is 

fully suitable for the species, or what can be termed the potential distribution of 

the species. Not all of GP, however, is readily available to the species, perhaps 

being inaccessible owing to the presence of a dispersal barrier or simply being 

too far away—this consideration of access is conceptualized as M. We can term 

the area that is not accessible but that is suitable as the invadable distributional 

area, or GI. As a result, the “actual” or occupied distributional area ∩ ∩

∩ .  

This BAM scenario (see Figure 2 for a visual presentation of these same 

ideas) will guide much of concept-based thinking in ecological niche modeling. 



For instance, if we assume B not to constitute a strong constraint on species’ 

distributions, of the resulting four “AM” configurations [e.g., ⊂ , ⊂ , 

, ⊂ ∩ ⊂ ], niche models can be developed successfully for two, 

but niche models are rarely if ever better than random expectations for the other 

two ( ⊂ ,	 ). These BAM configurations are not uncommon in nature 

(e.g., landscapes that are highly dissected, with limited area-to-area access for 

individuals of species), and thus BAM-based considerations have obvious and 

important implications for niche modeling (Saupe et al. In review). 

 

Fundamental versus Existing Fundamental Ecological Niche 

 Working from the same BAM framework, an immediate corollary is 

simultaneously subtle and of critical importance. If A is determined by 

physiological limitations of the species, which can be termed the fundamental 

ecological niche (NF), but if the broader representation of those conditions on real 

landscapes is constrained also by geographic factors, not all of the conditions 

within NF are necessarily available to the species for colonization (Figure 2). That 

is, either G or M may limit the manifestation of the species’ ecological breadth to 

some subset of NF, which we term the existing fundamental ecological niche and 

denote as NF*. The existing fundamental niche may, in turn, be reduced still 

further by interactions with other species (Hutchinson 1957, 1978).This concept, 

namely that the real-world manifestation of a fundamental ecological niche is 

invariably only partial (Colwell and Futuyma 1971), turns out to have very real 

implications for many aspects of this field (Soberón and Peterson 2011). 



 A particularly important implication of these ideas is the following 

inequality: 

 

 

 

where (M) denotes the set of environments manifested within M. As pointed out 

by Soberón and Peterson (2011), this inequality immediately handicaps any 

attempts to use observed environmental distributions of species as a proxy for 

niche estimates, particularly in testing for niche differentiation: quite simply, such 

tests (e.g., Broennimann et al. 2007, Fitzpatrick et al. 2007, Medley 2010) will be 

confused by additional factors that “distort” the estimate of the fundamental 

niche: those related to uneven sampling of existing environments, and those 

related to interactions with other species (Peterson 2011). Rather, the only tests 

for such differentiation that will be appropriate will be those that take M into 

account explicitly in the tests (e.g., background similarity tests in Warren et al. 

2008). 

 This inequality also has less-obvious implications for model calibration. 

Specifically, because M affects the set of areas and environments that will be 

available to the species, the known set of occurrences G+ must come from GO, 

such that the associated environments  are already filtered by M. The result 

is that niche models that have been calibrated based on M-limited areas will 

frequently under-characterize the true niches of the species in question—an 

excellent illustration of this point can be drawn from the criticisms of the work of 



Beale et al. (2008) by two other lab groups (Araújo et al. 2009, Jiménez-Valverde 

et al. 2010). 

 

Models of Niche or Models of Distribution? 

 The BAM framework also allows clear-minded reflection on the issue of 

what this suite of techniques should most appropriately be named. A Google 

Scholar search (20 Feb 2012) on “ecological niche model” yields 659 matches, 

while a search on “species distribution model” yields 831. Hence, the field 

appears more or less evenly divided between the two terminologies.  

In a BAM framework, however, the resolution of the debate is more or less 

clear. These models that relate known occurrences of species to underlying 

environmental characteristics seek an environmental association of GO. 

Nonetheless, M will frequently be defined in terms that are not characterizable in 

terms of environment—it might be a fine barrier, such as a river, or a hard barrier 

that is in effect the “end of the world,” such as an ocean for terrestrial species. As 

a result, modeling algorithms will estimate GP more directly, rather than GO, 

which would require a hypothesis of the geometry of M. Put another way, 

estimating GO requires information beyond the usual occurrence and 

environment characterization that are fed into niche/distribution modeling 

algorithms. 

 

M Governs Everything 



 A recent publication (Barve et al. 2011) emphasized the crucial role of M 

in determining the outcome of many niche-model-related exercises. That is, M 

delineates the set of areas to which the species has had access over relevant 

time periods. As a consequence, only areas within M have the potential to offer 

presence records, and only areas within M offer a clear, environment-based 

interpretation of absence data—in these areas, the species has had the potential 

to visit, but has not established populations there. As a result, M becomes the 

critical arena for development of these models; Barve et al. (2011) demonstrated 

that M affects model calibration, model evaluation, and model comparisons in 

important ways, and therefore hypotheses of M in effect predetermine almost all 

results in niche modeling studies. 

 To give some illustrations of this point, models calibrated within areas that 

are overly broad (i.e., including areas that were not accessible to the species 

over relevant time periods) will inevitably be confused. Areas within GI will be 

tallied as absence data, even though they present conditions that are perfectly 

suitable for the species to establish populations. Furthermore, because most 

algorithms have some convergence criterion, models calibrated over too-broad 

areas will tend to be overly general. At the other end of the spectrum, if the 

definition of M is too narrow, models will be calibrated based on comparisons that 

are not particularly comprehensive, and will thus be representative of too little of 

environmental space (see discussion of MESS below). Barve et al. (2011) also 

documented significant effects of M definitions on model evaluations (too-broad 

definitions of M make for easy conclusion of significant predictivity of models) 



and model comparisons (too-broad definitions of M make for easy conclusion of 

significant model similarity). Hence, careful choice of M for such studies is 

crucial, and biological and methodological bases for these choices must be 

stated clearly and explicitly as part of the Methods sections in any publications of 

these analyses. 

 

S-intersect-M as Study Area 

 A modification of the basic schema of M as determining the area of 

analysis takes into account the fact that not all sectors of the distribution of the 

species may have been sampled equally thoroughly (we will refer to the area that 

was sampled to the point that occurrences have some probability of being 

detected as S). In particular, in many cases, some areas are very well sampled, 

while others remain unsampled or only lightly sampled. These imbalances can 

introduce biases into model calibration, and can change model results rather 

dramatically (Ward et al. 2009, Peterson et al. 2011). 

 In concept, analysis should not be limited just to M, as we have argued 

before (Barve et al. 2011), but rather to the area that is delimited by ∩ , with 

implications for how one delimits the study area and for how one includes or 

excludes known occurrence points. The problem with this observation is that 

sampling ‘bias’ can be spatial or environmental in nature. That is, an ecological 

niche is in itself a sort of bias of distribution in environmental space; the sampling 

biases to which we are referring in this section are biases in geographic space, in 



which some regions are sampled more intensively than others, regardless of 

whether the particular species of interest is detected.  

 The quick and easy approach to these sampling biases is to detect 

oversampled areas visually, and to reduce their sampling density via manual 

subsampling at random; this approach, however, can be quite subjective, and 

does not capture the fine details of the sampling landscape. A more rigorous 

approach, however, is to characterize the sampling landscape quantitatively, as 

was explored in presentation of a methodology for evaluating probability of true 

absences (Anderson 2003)—basically, under circumstances in which sampling of 

the species of interest was assembled by application of a standard methodology 

that accumulated other species as well, one can create a picture of sampling 

intensity by summarizing the sampling of those other species. This surface of 

sampling intensity can then be used to weight presence points such that each is 

weighted commensurate with the intensity of sampling from that region. For a 

more technical summary of problems involved in sampling for niche modeling, 

see Ward et al. (2009) and Phillips et al. (2009). 

 

Correct Balance of + and – Occurrence Error Weightings 

 A probabilistic summary of the generation of presence and absence data 

that describe the distributions of species leads to some useful insights into the 

relative weighting that each should be given (Peterson et al. 2011). Specifically, 

presence data are relatively rarely misleading: only when errors of identification 

or of georeferencing create a false positive record would presence data not be 



useful and informative. On the other hand, absence data are much more prone to 

being misleading: here, areas outside of M will be ‘absent’ regardless of whether 

conditions are suitable or not. What is more, any non-environmental cause of 

apparent absence will produce false negatives as well: extirpation of populations 

owing to anthropogenic pressures, lack of sampling of sites, non-detection of the 

species during sampling, or non-reporting of members of the species that were 

detected. In short, many factors will produce false-negative data, but relatively 

few will produce false positives—this imbalance suggests that the two types of 

error should be weighted differentially in niche modeling applications. 

 These considerations of differential weighting of false-positive and false-

negative errors can improve model calibration dramatically. Most modeling 

algorithms optimize some quantity—for example, regression-based approaches 

might minimize least-squares model deviations, while evolutionary-computing 

approaches maximize a measure of predictive accuracy (Stockwell and Noble 

1992). These calibration objectives, however, do not necessarily incorporate the 

correct balancing of error types, such that the models that result are not optimal. 

Improved approaches may either re-weight error types in the actual calibration 

process, or may instead filter replicate models post-calibration to extract those 

solutions that balance error components appropriately (Anderson et al. 2003). 

 Error weighting also enters the picture importantly in model evaluations 

(Peterson et al. 2011). Common approaches such as the Kappa statistic and the 

area under the curve (AUC) of the receiver operating characteristic (ROC) curve, 

unfortunately, weight the two components of error equally (Fielding and Bell 



1997, Lobo et al. 2008, Peterson et al. 2008), and thereby are not appropriate 

measures of model predictivity in such analyses. Indeed, given that ‘absence’ 

data are almost never genuinely at hand, these approaches must commonly rely 

on pseudoabsence data of some sort, which becomes an arbitrary and non-

objective exercise (Peterson et al. 2008, Barve et al. 2011). Correct weighting of 

the two error types will depend on the specific characteristics of a particular study 

region, environmental dimensions, and occurrence data. 

 

“E” in Model Calibration / Thresholding / Evaluation / Comparison 

 The errors mentioned above that are inherent in data documenting 

presences of species are dependent on numerous considerations, and must be 

pondered carefully for each analysis. Peterson et al. (2008) introduced the idea 

of a parameter E, which is an estimate of the proportion of presence data that are 

likely to be sufficiently erroneous as to place the species under inappropriate 

environmental conditions. E will be higher when data are ‘found,’ and not 

collected specifically and carefully for a given project, and also when spatial 

resolution is finer. E was originally proposed as part of revised methodologies for 

model evaluations (Peterson et al. 2008), but the concept turns out to be critical 

in a number of situations. 

 E is quite useful in model calibration and thresholding, as it offers a means 

to align model thresholds with performance regarding known occurrences of the 

species. That is, the least training presence thresholding approach (Pearson et 

al. 2007) offers the correct prioritization of false-negative error over false-positive 



error, but does not consider that false-positive error rates may be non-zero; E 

offers a means of incorporating these potential errors. While the least training 

presence approach seeks the threshold that includes 100% of the presence data 

used to calibrate the model (T100), a modification of this approach considers that 

some of those presence data may be erroneous, and seeks instead the threshold 

that includes (100 – E)% of the presence data (T100-E). This thresholding 

approach both prioritizes false-negative error over false-positive error and takes 

into account the error inherent in the presence data available. 

 More briefly, in model evaluation, E also provides a useful consideration of 

expected error versus undesired error. Specifically, Peterson et al. (2008) used E 

to outline the area of ROC space that includes desirable model predictions, as 

opposed to predictions that are not useful or informative. By specifying a lower 

value of E, one can focus model predictions on the challenge of anticipating the 

entire distribution of a species, rather than on partial characterization. Finally, in 

model comparisons (Warren et al. 2008), E-adjusted thresholds become critical 

in avoiding meaningless nonsimilarity measures caused by overfitting of model 

predictions to well-sampled areas (Peterson et al. 2007), which can lead to 

spurious conclusions of niche differentiation (Maher et al. 2010, Peterson 2011). 

 

Overfitting, Dimensionality, and Complexity of Models 

 Ecological niche models are frequently calibrated in highly dimensional 

environmental spaces, where they run considerable risk of overfitting (Peterson 

et al. 2011). That is, if care is not taken, models calibrated in highly dimensional 



spaces will be overly specific, and will not be able to anticipate phenomena that 

are manifested under slightly different conditions—an excellent example is that of 

recent modeling efforts regarding fire ant (Solenopsis invicta) distributional 

potential that purported to document significant niche differentiation between 

native and invasive popultions (Fitzpatrick et al. 2007), but that turned out to be 

highly dependent on the environmental data employed, and particularly on their 

dimensionality (Peterson and Nakazawa 2008). Such overfitting has been a 

common cause of incorrect conclusions of niche differentiation in comparisons 

among species and populations (Peterson 2011). 

 Controlling the dimensionality of environmental spaces in niche modeling 

exercises is a rather complex task. One line of thinking focuses on pre-selecting 

a reduced set of environmental dimensions that is particularly important to 

species’ distributional ecology (Huntley et al. 2008), but such approaches run the 

risk of missing critical dimensions, or under-informing models in the calibration 

process. More commonly, researchers attempt to reduce dimensionality of 

environmental spaces by removing redundant information—because 

intercorrelations among environmental dimensions are rampant (Jiménez-

Valverde et al. 2009), it is quite feasible to reduce dimensionality either by 

removing members of highly correlated variable pairs manually, or via principal 

components analysis. These steps not only make efficient and effective 

calibration more feasible, but also simplify model interpretation considerably. 

 

Spatial Autocorrelation 



 Another consideration is that of spatial autocorrelation—indeed, a 

common idea is that the ‘only law’ of geography is that things nearby tend to be 

similar, and things far away tend to be less similar. This frequent phenomenon of 

spatial autocorrelation can complicate niche modeling applications because 

occurrence points may not be independent of one another, simply because they 

are nearby (Diniz-Filho et al. 2003). This non-independence can cause problems 

in model calibration by artificially over-emphasizing certain environmental 

conditions, rather than allowing the algorithm to fit a model that covers the entire 

environmental breadth of the species; it also causes problems in model 

evaluation by artificially inflating sample sizes for testing model predictions 

(Diniz-Filho et al. 2003, Segurado et al. 2006, Dormann et al. 2007, Peterson et 

al. 2011). 

 Clearly, it is desirable to understand and incorporate spatial 

autocorrelation in niche modeling applications, although this factor is perhaps not 

as ‘fatal’ as has been implied by some (see discussions in Diniz-Filho et al. 

2003). Several GIS and analysis programs provide the possibility of calculating 

spatial lag distances for environmental data sets—these distances are the 

distance over which the proximity effect no longer holds, such that points 

separated by these distances will be independent of one another. These 

distances can range over 101-103 km, and constitute a serious constraint on 

sample sizes in niche modeling: that is, the raw number of presence points that 

one has may not matter much, if they are separated by distances that are less 

than the spatial lag of the particular environmental dimensions in question. 



 In practice, once the lag distance has been calculated for each 

environmental dimension, occurrence data would ideally be filtered to be 

separated by at least the minimum of the lag distances across all of the 

environmental dimensions under consideration. In many cases, however, this 

step will reduce the number of presence records so much as to leave too few for 

model calibration; an alternative approach is to seek new environmental data 

sets that have a spatial lag more amenable to the presence records that are 

available, although such choices must be appropriate also to the temporal and 

spatial characteristics of the occurrence data as well (Peterson et al. 2011). By 

means of these steps, any similarity in environmental dimensions among 

presence records will be a consequence of niche preferences, rather than an 

artifactual result of spatial proximity. 

 Spatial autocorrelation enters the picture much more powerfully in model 

evaluation (Peterson et al. 2011). Here, the common practice of subsetting 

presence data at random into calibration and evaluation data sets (e.g., Manel et 

al. 1999) will frequently fall into two traps: (1) points that are closely positioned 

(and therefore non-independent) may fall into both calibration and evaluation 

subsets, and yet are not independent of one another; and (2) evaluation data 

may include many points that are close to one another (and therefore non-

independent), thereby inflating sample sizes artificially. Indeed, at least the 

second of these problems may plague even the spatial subsetting exercises that 

have been purported to be superior (e.g., Peterson et al. 2007). 



 A solution is to subset the evaluation data at random, but subject to the 

constraint that they are separated by at least the lag distance characteristic of the 

environmental data set being used. In this way, once again, any similarity among 

evaluation points, or any shared tendency toward coincidence of the evaluation 

data with the model prediction, will be the consequence of biological factors, and 

not simply spatial proximity and consequent non-independence. As mentioned 

above for model calibration, however, these steps are rather severe, and will 

frequently cause serious problems of minuscule sample sizes for model 

evaluation. 

 

Transferring and Extrapolating: MESS and Clamping 

 A final point that we will explore is that of the perils of transferring models 

that have been trained within ∩  to broader areas; we can distinguish between 

model transfer, which is to conditions over which the model was calibrated, and 

model extrapolation, which is to conditions outside of the range over which the 

model was calibrated—model extrapolation is, quite generally, perilous and 

should be avoided if possible. Elith et al. (2011) outlined a means of visualizing 

areas on maps that are highly different and “out of range” as referred to a 

reference set of areas (called “MESS”). The implementation that Elith et al. 

(2011) provided as an option in Maxent calculates MESS surfaces that refer to 

the occurrence points; we suggest that the more relevant areas for MESS 

calculations are instead those within M—i.e., the areas that the species has 

explored and found either suitable or not. Otherwise, MESS calculations will 



confound niche differences with environmental extrapolation, and will 

underestimate environmental similarity. A more detailed treatment of these points 

is currently in preparation (KU Niche Modeling Group, in prep.). 

 

Discussion 

 In this paper, we have provided a broad overview of an important set of 

transitions that we see as necessary and important in ecological niche modeling. 

That is, with the broad availability of occurrence data, environmental data, and 

modeling algorithms, we see considerable potential for many users simply to 

“push the button,” and interpret what comes out. This simple approach, 

unfortunately, will frequently lead users to inaccurate, inappropriate, and 

incorrect conclusions. 

 In this contribution, we outline 10 adjustments that must be made to the 

simple button-pushing. In each case, the change is intended to place the 

particular analysis in a context of the ecology and biogeography of species’ 

distributions in environmental and geographic spaces, as well as in the context of 

the realities of sampling of species’ occurrences across real-world landscapes. 

This shift towards development of niche models in appropriate conceptual 

frameworks has much to offer to the future development of this approach in 

ecology, biogeography, evolution, and conservation biology. 

 Beginning with a recent synthesis (Peterson et al. 2011), and continuing 

with a series of insights both from our own lab group and other lab groups, we 

are eager to see this emerging set of tools mature into a more synthetic science. 



The 10 points treated in this paper are not the only 10, but rather are a first cut; 

returning to our earlier analogy to phylogenetics, the six decades since Hennig’s 

initial insights (Hennig 1950) have not been static in any way … rather, new 

insights and methodological improvements have continued right up to the present 

(e.g., Alfaro and Holder 2006). This paper is our attempt to provide a 

compendium of recent advances and insights in niche modeling that will open 

doors to a firmer conceptual foundation for these new approaches. 
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Figure 1. Summary of representation in the literature of concepts related to ecological niche modeling and 
species distribution modeling, based on a Web of Science search for "ecological niche" or "species 
distribution" under title or topic, over the period 1950-2011. Note that the number of publications is shown on 
a log10 scale. 

 



 
Figure 2. Summary of geographic (G: Venn diagram and map) and 
environmental spaces (E: scatterplot at bottom). Shown are all combinations of 
annual precipitation and temperature across the Americas, in which a 
fundamental niche has been identified (ellipse in E-space); note that the full 
extent of this fundamental niche is not represented anywhere in the Americas. In 
the map, the spatial footprint of this niche can be seen, but the species is limited 
to a particular M (see ellipse in map), and thus does not actually inhabit the 
remainder of its invadable area, GI. 
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