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Abstract  

In this article we provide a review of the literature with respect to fluctuations in real systems and 
chaos. In doing so, we contrast the order and organization hypothesis of real systems to nonlinear chaotic 
dynamics and discuss some techniques used in distinguishing between stochastic and deterministic behavior. 
Moreover, we look at the issue of where and when the ideas of chaos could profitably be applied to real 
systems.  
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1. Introduction 

As Århem, Blomberg, and Liljenström (2000, 
p. ix) put it in their Preface to their edited 
volume, Disorder Versus Order in Brain 
Function, 

 
“life is associated with a high degree 
of order and organization. However, 
disorder in various contexts referred 
to as fluctuations, noise or chaos is 
also a crucial component of many 
biological processes. In evolution, 
random errors in the reproduction of 
the genetic material provides a 
variation that is fundamental for the 
selection of adaptive organisms. At 
a molecular level, thermal 
fluctuations govern the movements 
and functions of the 
macromolecules in the cell. Yet, 
such problems have been 
remarkably little studied and a 
critical analysis of the positive and 

negative effects of disorder for the 
living systems is much needed.” 

 
 Our purpose in this paper is to provide a 

review of recent state-of-the-art developments in 
dynamical systems theory and their relevance 
and usefulness in studying real systems in a 
variety of disciplines, such as astronomy, 
biology, and economics. In doing so, we shall 
concentrate on the ideas of chaos --- i.e., 
deterministic systems with stochastic behavior. 
It is now well known that perfectly deterministic 
systems (i.e., systems with no stochastic 
components) of low dimensions (i.e., with a 
small number of state variables) and with simple 
nonlinearities (i.e., a single quadratic function) 
can have stochastic behavior. The discovery that 
such systems exist has brought about a profound 
reconsideration of the issue of randomness. 

Moreover, as Schiff et al. (1994, p. 615) 
argue, 

“following the recent theoretical 
prediction that chaotic physical systems 
might be controllable with small 
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perturbations, there has been rapid and 
successful application of this technique 
to mechanical systems, electrical circuits, 
lasers and chemical reactions. Following 
the demonstration of the control of 
chaos in arrhythmic cardiac tissue, there 
are no longer any technical barriers to 
applying these techniques to neural 
tissue.” 
 
In the following sections we shall try to 

make the basic notions of chaos and other 
related concepts more precise, having in mind 
their actual or potential applications to real 
systems. In doing so, we shall take the geometric 
(or topological) approach to the study of 
dynamical systems, based on the theory of 
differential/difference equations. This approach, 
has been very successful in the study of 
low-dimensional systems (systems with one and 
perhaps two variables). For higher-dimensional 
systems, however, a different approach based on 
the axiomatic formulation of probability theory 
and aimed at the investigation of the statistical 
properties of chaos, known as the ergodic 
approach, is more suitable. A discussion of 
dynamical systems from an ergodic point of 
view is well beyond the scope of this article. 

2. Dynamical Systems  

 Dynamical systems, occurring in biology, 
meteorology, climate, and possibly economics 
and finance, can be modelled with deterministic 
time evolutions that have either a continuous 
time 
 

∈= xxfx ),(& Rn   (1) 
 

or discrete time 
 

∈=+ xxTx tt ),(1 Rn ∈t, ℕ.  (2) 
 

Equations like (2) are often referred to as 
iterated maps since their orbits are obtained 
recursively given an initial condition xt. For 
example, if we compose T with itself, then we 
get the second iterate 
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and by induction on n we get the nth iterate 
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Hence, by the notation Tn(x), we mean T 
composed with itself n-1 times --- not the nth 
derivative of T or the nth power of T. 

 Notice the following difference between the 
orbits of continuous-time and those of 
discrete-time systems: the former are continuous 
curves in the state space, whereas the latter are 
sequences of points in space. Also, the fact that a 
map is a function implies that, starting from any 
given point in space, there exists only one 
forward orbit. If the function is non-invertible, 
however, backward orbits are not defined. In this 
essay we focus on deterministic time evolutions 
that have a discrete time.  

3. Strange Attractors (‘Fractal Sets’)  

To discuss recurrence properties of orbits of a 
dynamical system, we shall start from the notion 
of attractors. The simplest type of an attractor is 
a stable fixed point also known as a stable 
equilibrium. Ascertaining the existence of a 
fixed/equilibrium point mathematically amounts 
to finding the solutions of a system of algebraic 
equations. Let's consider the one-dimensional 
‘logistic map,’ one of the most common type of 
dynamical system encountered in applications of 
chaos theory 
 
      ),1(1 ttt xrxx −=+      (3) 
 
with x∈ [0,1] and r∈ (0,4]. To find the fixed 
points of (3), we put xxx tt ==+1 and solve 
for x , finding 01 =x and rx /112 −= . 
 In general, we can examine the dynamical 
information contained in the derivative of the 
map at the fixed point, )(' xT . If 1)(' ≠xT , 
x is called hyperbolic fixed point. In fact a fixed 
point x is stable (or attracting) if 1)(' <xT , 
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unstable (or repelling) if 1)(' >xT , and 

superstable (or superattractive) if 1)(' =xT  
--- superstable in the sense that convergence to 
the fixed point is very rapid. Fixed points whose 
derivatives are equal to one in absolute value are 
called nonhyperbolic (or neutral) fixed points. 
 Next in the scale of complexity of invariant 
sets, we consider stable periodic solutions, or 
limit cycles. For maps, a point x  is a periodic 
point of T with period k, if xxT k =)(  for 

1>k  and xxT j ≠)(  for kj <<0 . In 
other words, x  is a periodic point of T with 
period k if it is a fixed point of Tk. In this case 
we say that x  has period k under T, and the 
orbit is a sequence of k distinct points 

)}(,),(,{ xTxTx kK which, under the iterated 
action of T, are repeatedly visited by the system, 
always in the same order. Since all points 
between x and )(xT k are also period k points, 
the resulting sequence is known as a period k 
cycle or alternatively a k-period cycle. Notice 
that k is the least period --- if k = 1, then x  is a 
fixed point for T. 
 The third basic type of attractor is called 
quasiperiodic. If we consider the motion of a 
dynamical system after all transients have died 
out, the simplest way of looking at a 
quasiperiodic attractor is to describe its 
dynamics as a mechanism consisting of two or 
more independent periodic motions --- see 
Hilborn (1994, pp. 154-157) for a non-technical 
discussion. Quasiperiodic orbits can look quite 
complicated, since the motion never exactly 
repeats itself (hence, quasi), but the motion is 
not chaotic (as it was wrongly once 
conjectured). 
 Attractors with an orbit structure more 
complicated than that of periodic or 
quasiperiodic systems are called chaotic or 
strange attractors. The strangeness of an 
attractor mostly refers to its geometric 
characteristic of being a ‘fractal’ set, whereas 
chaotic often refers to a dynamic property, 
known as ‘sensitive dependence on initial 
conditions,’ or equivalently, ‘divergence of 
nearby orbits.’ Notice that strangeness, as 
defined by fractal dimension, and chaoticity, as 

defined by sensitive dependence on initial 
conditions, are independent properties. Thus, we 
have chaotic attractors that are not fractal and 
strange attractors that are not chaotic. 
 As we shall see, separation of nearby orbits, 
or, equivalently, amplification of errors is the 
basic mechanism that makes accurate prediction 
of the future course of chaotic orbits impossible, 
except in the short run. On the other hand, as 
chaotic attractors are bounded objects, the 
expansion that characterizes their orbits must be 
accompanied by a ‘folding’ action that prevents 
them from escaping to infinity. The coupling of 
‘stretching and folding’ of orbits is the 
distinguishing feature of chaos, and it is at the 
root of both the complexity of its dynamics and 
the ‘strangeness’ of its geometry. 
 In what follows, we shall briefly discuss the 
‘fractal’ property of chaotic attractors, whereas 
the ‘sensitive dependence on initial conditions’ 
property of chaos will be given greater attention 
in the next section; this property of chaos is, in 
our opinion, the most relevant in real systems.  

4. Fractal Dimension  

The term ‘fractal,’ coined by Mandelbrot 
(1985), refers to geometrical objects 
characterized by non-integral dimensions and 
‘self-similarity.’ Intuitively, a snowflake can be 
taken as a natural fractal. The problem of 
defining measurement criteria finer than the 
familiar Euclidean dimensions (length, area, 
volume) in order to quantify the geometric 
properties of ‘broken’ or ‘porous’ objects was 
tackled by mathematicians long before the name 
and properties of fractals became popular. There 
now exists a rather large number of criteria for 
measuring qualities that otherwise have no clear 
definition (such as, for example, the degree of 
roughness or brokenness of an object), but we 
shall limit ourselves here to discuss the simplest 
type concisely. 

Let S be a set of points in a space of 
Euclidean dimension p (think, for example, of 
the points on the real line generated by the 
iterations of a one-dimensional map). We now 
consider certain boxes of side ε  (or, 
equivalently, certain spheres of radius ε ), and 
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calculate the minimum number of such cells, 
)(εN , necessary to ‘cover’ S. Then, the fractal 

dimension D of the set S will be given by the 
following limit (assuming it exists) 

 

)/1log(
))(log(lim

0 ε
ε

ε

ND
→

= .   (4) 

 
The quantity defined in equation (4) is also 
called the (Kolmogorov) capacity dimension. It 
is easily seen that, for the most familiar 
geometrical objects, it provides perfectly 
intuitive results. For example, if S consists of 
just one point, 1)( =εN  and 0=D ; if it is a 
segment of unit length, εε /1)( =N , and 

1=D ; if it is a plane of unit area, 
2/1)( εε =N  and 2=D ; finally, if S is a 

cube of unit area, 3/1)( εε =N and 3=D , etc. 
That is to say, for ‘regular’ geometric objects, 
dimension D does not differ from the usual 
Euclidean dimension, and in particular, D is an 
integer.  

The concept of fractal dimension is useful in 
the geometric analysis of dynamical systems, 
because it can be conceived of as a measure of 
the way trajectories fill the phase space under 
the action of a flow or a map. A non-integer 
fractal dimension, for example, indicates that 
trajectories of a system fill up less than an 
integer subspace of the phase space. Also, the 
concept of fractal dimension is useful in the 
quantitative analysis of chaotic attractors. For 
example, the dimension of the attractor of a 
system, as measured by (4), can be taken as an 
index of complexity, as indicated by the 
essential dimension of the system.  

5. Lyapunov Exponents  

As already noted, sensitive dependence on 
initial conditions is the most relevant property of 
chaos and its characterization in terms of 
Lyapunov exponents is the most satisfactory 
from a computable perspective. Lyapunov 
exponents measure average exponential 
divergence or convergence between trajectories 
that differ only in having an ‘infinitesimally 

small’ difference in their initial conditions and 
remain well-defined for noisy systems. A 
bounded system with a positive global 
Lyapunov exponent is one operational definition 
of chaotic behavior and reflects the impossibility 
of long-term predictability. 

Although Lyapunov exponents could be 
discussed in a rather general framework, we 
shall deal with the issue in the context of 
one-dimensional maps, since they are by far the 
most common type of dynamical system 
encountered in applications of chaos theory. 
Consider, therefore, the discrete time map 

 
∈=+ xxTx tt ),(1 R ∈tn , ℕ.  (5) 

 
We want to describe the evolution in time of two 
orbits originating from two nearby points 0x  
and ε+0x (where ε  is the difference, 
assumed to be infinitesimally small, between 

0x  and ε+0x ). If we apply the map function 
T, n times to each point, the difference between 
the results will be related to 0x  as follows 
 

ελ )( 0xn
n ed = , 

 
where dn is the difference between the two 
points after they have been iterated by the map T, 
n times and )( 0xλ  is the rate of convergence 
or divergence.  

Taking the logarithm of the above equation 
and solving for )( 0xλ , asymptotically we shall 
have 

ε
λ n

n
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The quantity )( 0xλ  is called Lyapunov 
exponent. Note that the right hand side of (6) is 
an average along an orbit (a time average) of the 
logarithm of the derivative. From equation (6), 
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the interpretation of )( 0xλ  is straightforward: 
it is the (local) asymptotic exponential rate of 
divergence of nearby orbits. 

 The sign of Lyapunov exponents is 
especially important to classify different types of 
dynamical behavior. In particular, the presence 
of a positive Lyapunov exponent signals that 
nearby orbits diverge exponentially in the 
corresponding direction. In fact, the presence of 
a positive Lyapunov exponent is intimately 
related to the lack of predictability of dynamical 
systems, and thus it is an essential feature of 
chaotic behavior.  

6. Where Can Chaos be Applied?  

 In recent years, following the theoretical 
prediction that chaotic systems might be 
controllable by changing their bifurcation 
parameters, there has been a number of 
interesting applications of chaos theory to 
biological systems --- see, for example, 
Garfinkel et al. (1992) for an application to 
cardiac chaos and Schiff et al. (1994) regarding 
chaos in the brain. The application, however, of 
chaos theory to finance, economics, and social 
science phenomena has not, so far, produced 
especially useful results, although successful 
tests for the existence of chaos have been 
reported, such as Barnett and Chen (1988) and 
Serletis and Gogas (1997). The evidence so far 
is against low-dimensional chaos in economic 
and financial time series (stock prices, interest 
rates, and exchange rates). Of course, the failure 
to detect low-dimensional chaos does not 
preclude the possibility of high-dimensional 
chaos in these variables. The presence, however, 
of dynamic noise makes it difficult and perhaps 
impossible to distinguish between (noisy) 
high-dimensional chaos and pure randomness. 
 In fact, meaningful analyses of real systems 
(heart, brain, economy, planetary orbits) in terms 
of chaos theory should consider a number of 
theoretical and practical issues. As Ruelle (1994, 
p. 27) puts it 
 

 “real systems can in general be 
described as deterministic systems with 
some added noise. This description is 

sufficiently vague that it appears to 
cover everything. In economics, for 
instance, such a description is familiar 
and the noise is called ‘shocks.’ A first 
remark concerning the above picture is 
that the separation between noise and 
the deterministic part of the evolution is 
ambiguous, because one can always 
interpret ‘noise’ as a deterministic time 
evolution in infinite dimension.” 
 

 Hence, the possible existence of chaos 
could be exploitable and even invaluable if the 
deterministic part of the system is 
low-dimensional and its noisy part is of a small 
amplitude. Moreover, it is useful to know how 
the noise comes into the deterministic signal. For 
example, an additive noise contribution could be 
easily removed from a low-dimensional 
deterministic signal, even if its amplitude is 
large, thereby rendering short-run, 
nonlinear-based prediction and control possible. 
Of course, prediction and control over long 
periods is impossible, since they are ruined by 
the sensitive dependence on initial conditions 
property of chaos. 
 Although low-dimensionality is crucial in 
the reconstruction of the dynamics of a 
deterministic dynamical system, knowledge of 
the fundamental (difference or differential) 
equations of time evolution is necessary for 
effective short-run prediction and control. In the 
case of astronomy, for example, such equations 
are known with great precision, providing 
reliable models with a prediction time on the 
order of thousands of years. However, 
dynamical systems occurring in meteorology, 
climate, biology, and possibly economics, 
finance, and social science phenomena are more 
perplexing, with interesting time evolutions, but 
much shorter prediction times. In meteorology, 
for example, chaotic models have a prediction 
time on the order of a few days, and models in 
climate seem to have the same problem for the 
same reasons as well as the added problem of 
time-varying parameters. 
 Overall, regarding the relevance and 
usefulness of dynamical systems theory, as 
Ruelle (1994, p. 30) puts it, 
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 “the theory of dynamical systems has 
made important contributions to our 
understanding of the ‘real world,’ and in 
particular the role played in it by 
‘chaos.’ One can expect further valuable 
contributions, especially in the difficult 
domain of biology. But a necessary 
condition for progress is that the 
relations between models and the real 
world be properly assessed.”  

7. Conclusion  

 We have provided a brief review of the 
recent literature about the ideas of chaos. Chaos 
is a nonlinear deterministic process which looks 
random. In fact, chaotic processes have first and 
second moment properties that are the same as 
for white noise processes. The distinguishing 
feature of chaotic systems, however, is that they 
exhibit sensitive dependence on initial 
conditions, meaning that nearby identical 
chaotic systems in slightly different states will 
rapidly evolve toward very different states. We 
have also argued that chaos is important since 
evidence of chaos implies that 
(nonlinearity-based) prediction is possible, at 
least in the short run and provided that the actual 
generating mechanism is known exactly. In the 
long run, chaos implies that prediction is all but 
impossible due to sensitive dependence on initial 
conditions. 
 But as already noted, the relations between 
our models and the real world should be 
properly assessed for further significant 
contributions regarding the workings of real 
systems. In this regard we should also note that 
there is a second type of nonlinear process, 
known as self-organized criticality, recently 
discovered in physics by Bak et al. (1987). 
Self-organized criticality applies to large 
interactive systems such as the human body and 
the stock market. Unlike chaos, however, 
self-organized criticality is a probabilistic 
process. It incorporates a dominant long-run 
trend toward greater sensitivity and a short-run 
catastrophic element, which is triggered by 
random shocks within the system. There is thus 
another issue, that of whether real systems are 

chaotic or self-organized critical. 
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