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ABSTRACT

Modulating molecular chaperones is emerging as an attra-
ctive approach to treat neurodegenerative diseases asso-
ciated with protein aggregation, DPN (diabetic peripheral
neuropathy) and possibly, demyelinating neuropathies.
KU-32 [N-(7-((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-
dimethyl-tetrahydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-
2H-chromen-3-yl)acetamide] is a small molecule inhibitor
of Hsp90 (heat shock protein 90) and reverses sensory
deficits associated with myelinated fibre dysfunction in
DPN. Additionally, KU-32 prevented the loss of myelinated
internodes induced by treating myelinated SC (Schwann
cell)-DRG (dorsal root ganglia) sensory neuron co-cultures
with NRG1 (neuregulin-1 Type 1). Since KU-32 decreased
NRG1-induced demyelination in an Hsp70-dependent
manner, the goal of the current study was to clarify how
Hsp70 may be mechanistically linked to preventing
demyelination. The activation of p42/p44 MAPK (mito-
gen-activated protein kinase) and induction of the
transcription factor c-Jun serve as negative regulators of
myelination. NRG1 activated MAPK, induced c-Jun expres-
sion and promoted a loss of myelin segments in DRG
explants isolated from both WT (wild-type) and Hsp70
KO (knockout) mice. Although KU-32 did not block the
activation of MAPK, it blocked c-Jun induction and pro-
tected against a loss of myelinated segments in WT mice. In
contrast, KU-32 did not prevent the NRG1-dependent
induction of c-Jun and loss of myelin segments in explants

from Hsp70 KO mice. Overexpression of Hsp70 in
myelinated DRG explants prepared from WT or Hsp70 KO
mice was sufficient to block the induction of c-Jun and the
loss of myelin segments induced by NRG1. Lastly, inhibiting
the proteasome prevented KU-32 from decreasing c-Jun
levels. Collectively, these data support that Hsp70 induction
is sufficient to prevent NRG1-induced demyelination by
enhancing the proteasomal degradation of c-Jun.
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INTRODUCTION

Molecular chaperones, such as Hsp90 (heat shock protein 90) and

Hsp70, are essential for the folding of nascent polypeptides (client

proteins) into their biologically active structures. The binding of

ATP to the N-terminal nucleotide-binding domain of Hsp90

promotes dimerization of the N-termini and clamping around the

bound client protein. Subsequent nucleotide hydrolysis by the

chaperone’s intrinsic ATPase activity provides the energy neces-

sary for conformational changes that facilitate folding and

maturation of the client (Hartl et al., 2011). N-terminal Hsp90

inhibitors function by blocking ATP-mediated dimerization, which

destabilizes the complex and results in client protein degradation

via the ubiquitin–proteasome pathway, producing toxicity.

However, induction of client protein degradation and cytotoxicity

can occur at drug concentrations that also activate an

1 To whom correspondence should be addressed (email dobrowsky@ku.edu).
Abbreviations: CHIP, C-terminus Hsp70-interacting protein; CMT1, Charcot–Marie–Tooth disease type 1; DAPI, 4,6-diamidino-2-phenylindole; DMEM, Dulbecco’s modified
Eagle’s medium; DPN, diabetic peripheral neuropathy; DRG, dorsal root ganglia; FCS, fetal calf serum; HRP, horseradish peroxidise; HS, heat shock; Hsc70, heat-shock cognate
70 stress protein; HSF1, heat shock factor 1; Hsp, heat shock protein; HSR, heat shock response; JNK, c-Jun N-terminal kinase; KO, knockout; KU-32, N-(7-((2R,3R,4S,5R)-
3,4-dihydroxy-5-methoxy-6,6-dimethyl-tetrahydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)acetamide; mAb, monoclonal antibody; MAPK, mitogen-activated
protein kinase; MBP, myelin basic protein; NRG1, neuregulin-1 Type 1; pAb, polyclonal antibody; PBST, phosphate-buffered saline containing 0.1% Tween 20; PGP9.5, protein
gene product 9.5; phospho-c-Jun, phosphorylated c-Jun; PMP22, peripheral myelin protein 22; SC, Schwann cell; WT, wild-type.
E 2012 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://
creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is
properly cited.

RESEARCH ARTICLE
ASN NEURO 4(7):art:e00102.doi:10.1042/20120047

asnneuro.org / Volume 4 (7) / art:e00102 425

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213404927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


antagonistic aspect of Hsp90 biology, induction of the

cytoprotective HSR (heat shock response).

Chaperones are also essential for the refolding of aggre-

gated, damaged and denatured proteins. Under normal

conditions, Hsp90 binds HSF1 (heat shock factor 1) and this

complex renders HSF1 inactive. However, upon exposure to

stress, the Hsp90–HSF1 complex can disassemble and release

HSF1 (Neef et al., 2011). Phosphorylation of monomeric HSF1

stimulates its trimerization and the transcriptional up-

regulation of the HSR, characterized in part by increased

expression of Hsp27, Hsp40, Hsp70, Hsp90 and antioxidant

genes. Similar to disruption of the Hsp90–HSF1 complex by

cellular stress, small molecule inhibitors of Hsp90 can mimic

this dissociation and also induce a HSR (Blagg and Kerr, 2006).

The ability of Hsp90 inhibitors to promote Hsp70 expression

and decrease protein aggregation has been proposed as a

potential approach to treat neurodegenerative diseases assoc-

iated with protein mis-folding. In this regard, N-terminal Hsp90

inhibitors can decrease protein aggregation in Alzheimer’s (Dou

et al., 2003; Dickey et al., 2007a), Parkinson’s (Shen et al., 2005)

and Huntington’s disease models (Fujikake et al., 2008), as well

as improve motor function in spinal and bulbar muscular atro-

phy (Waza et al., 2005). Similarly, an N-terminal Hsp90 inhibitor

increased Hsp70 expression, improved the processing of aggre-

gated peripheral myelin protein 22 and increased myelination of

DRG (dorsal root ganglia) explants prepared from a mouse

model of CMT1 (Charcot–Marie–Tooth disease type 1), a preva-

lent demyelinating neuropathy (Rangaraju et al., 2008).

Unfortunately, a limitation of many N-terminal Hsp90 inhibitors

is their narrow therapeutic window that dissociates the cytotoxic

effects of client protein degradation from the cytoprotec-

tive effects of chaperone induction (Rangaraju et al., 2008).

Hsp90 also contains a C-terminal nucleotide-binding domain

that can be weakly inhibited with novobiocin. Similar to N-

terminal inhibitors, structural modification of novobiocin has

resulted in a class of inhibitors that also promote cytotoxicity

(Donnelly and Blagg, 2008; Samadi et al., 2011). However, we

have developed a novel class of novobiocin-based C-terminal

Hsp90 inhibitors (novologues) which circumvent this issue and

exhibit robust neuroprotection of primary neurons in the absence

of cytotoxicity (Ansar et al., 2007; Kusuma et al., 2012). KU-32 [N-

(7-((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyl-tetra-

hydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)

acetamide] is a second generation novologue that also shows

efficacy in ameliorating neurodegeneration associated with DPN

(diabetic peripheral neuropathy) (Urban et al., 2010, 2012).

Mechanistically, this protection is linked to induction of Hsp70

since KU-32 was ineffective in reversing clinically relevant indices

of DPN in mice lacking the inducible forms of Hsp70 (Hsp70.1 and

Hsp70.3). Thus, modulating molecular chaperones such as Hsp90

and Hsp70 offers a powerful approach to ameliorate neurode-

generative disease, even if its onset, i.e., DPN, is not causally linked

to any one specific mis-folded or aggregated protein.

DPN affects both non-myelinated and myelinated sensory

nerves (Farmer et al., 2012) and modulating Hsp90 with KU-32

reversed the loss and improved the innervation of unmyelinated

intra-epidermal nerve fibres in diabetic mice (Urban et al., 2012).

KU-32 also protected unmyelinated, embryonic sensory neurons

from glucose-induced death (Urban et al., 2010; Kusuma et al.,

2012). Moreover, modulating chaperone expression seems

sufficient to aid myelinated fibres since KU-32 improved motor

nerve conduction velocity and prevented neuregulin-induced

demyelination (Urban et al., 2010).

NRG1 (neuregulin-1 Type 1) forms a family of EGF (epidermal

growth factor)-like ligands that signal through Erb B receptors

(Esper et al., 2006), which localize primarily to SCs (Schwann cells)

in peripheral nerve (Grinspan et al., 1996). NRG1 isoforms have

complex effects on SC biology and are critical for promoting

peripheral nerve myelination (Taveggia et al., 2005; Nave and

Salzer, 2006). However, the pro-myelinating effects of neuregu-

lins are influenced by their concentration and neuregulins may

also contribute to demyelination if their expression becomes

enhanced under pathological conditions (Zanazzi et al., 2001;

Syed et al., 2010). Indeed, pathological activation of Erb B2 can

increase demyelination (Guertin et al., 2005; Tapinos et al., 2006)

and inhibiting Erb B2 can improve some features of DPN modelled

in diabetic mice (McGuire et al., 2009). Additionally, hypergly-

caemia can increase the extent of NRG1-induced demyelination

(Yu et al., 2008). Although it remains unclear if increased Erb B2

activation contributes to demyelination in human DPN and other

neuropathies, compounds which interfere with common down-

stream components that contribute to demyelination may be of

potential benefit in treating diseases that degrade the integrity of

the myelin sheath in peripheral nerve.

Our previous work demonstrated that KU-32 decreased

NRG1-induced demyelination in an Hsp70-dependent man-

ner (Urban et al., 2010). However, it remained unclear how

Hsp70 induction may be mechanistically linked to preventing

demyelination. The activation of p42/p44 MAPK (mitogen-

activated protein kinase) (Harrisingh et al., 2004; Ogata et al.,

2004; Syed et al., 2010; Napoli et al., 2012) and induction of

the transcription factor c-Jun (Parkinson et al., 2008) function

as negative regulators of myelination (Jessen and Mirsky, 2008).

The data herein provide evidence that the induction of Hsp70 by

KU-32 is necessary to prevent NRG1-induced demyelination

by blocking c-Jun expression and phosphorylation. Re-expression

of Hsp70 on the null background was sufficient to block the

induction of c-Jun following NRG1 treatment and inhibiting

the proteasome negated the protective effect of KU-32 on

preventing c-Jun induction. Given the role of altered signalling

through the NRG1–Erb B2 ligand/receptor pair in promoting

demyelination, these data suggest that molecular chaperones

may antagonize negative regulators of myelination and be of

potential benefit in treating demyelinating neuropathies.

MATERIALS AND METHODS

DMEM (Dulbecco’s modified Eagle’s medium) was obtained

from Mediatech. MG132 was purchased from Tocris. Ascorbic
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acid and collagen were obtained from Sigma–Aldrich. KU-32

was synthesized and structural purity verified (.95%) as

described (Burlison et al., 2006; Donnelly and Blagg, 2008).

Mouse mAbs (monoclonal antibodies) against Hsp70, Hsc70

(heat-shock cognate 70 stress protein), Hsp90 as well as

rabbit pAb (polyclonal antibody) for Hsp40 were purchased

from Stressgen (Enzo Life Sciences). Hsp27 goat pAb, c-Jun

rabbit pAb, JNK (c-Jun N-terminal kinase) mouse pAb,

phospho-JNK mouse mAb and all HRP (horseradish perox-

idase)-conjugated secondary antibodies were obtained from

Santa Cruz Biotechnology. Phospho-c-Jun (phosphorylated c-

Jun) rabbit mAb was from Cell Signaling Technology. b-actin

mouse mAb was from MP Biologicals. S100b rabbit pAb was

purchased from Dako Cytomation. Mouse mAb against MBP

(myelin basic protein) (SMI-94R) was from Covance and

rabbit pAb detecting PGP9.5 (protein gene product 9.5) was

purchased from Chemicon. Alexa FluorH-conjugated second-

ary antibodies were all obtained from Molecular Probes.

Preparation of neonatal sensory neuron/SC
cultures
Breeding colonies of WT (wild-type) C57Bl/6 and Hsp70.1/

70.3 double KO (knockout; Hsp70 KO) mice on a C57Bl/6

background (Hunt et al., 2004) were maintained using mice

initially purchased from Harlan Laboratories and the Mutant

Mouse Resource Center respectively. Absence of Hsp70.1

and 70.3 was confirmed by genotyping of genomic DNA and

corroborated by lack of inducible Hsp70 protein expression as

determined by immunoblot analysis. Hsp70 primers (forward:

GTACACTTTAAACTCCCTCC; reverse: CTGCTTCTCTTGTCTTCG)

amplified a 450 bp band while primers against the neo

cassette (forward: ATGGGATCGGCC-ATTGAACAAG; reverse:

ACTCGTCAAGAAGGCGATAGAAGG) amplified a 650 bp band.

The PCR conditions were (94 C̊ for 5 min; 35 cycles of 94 C̊

for 40 s; 65 C̊ for 1 min; 72 C̊ for 40 s; 72 C̊ for 5 min) using

KlenTaq polymerase (DNA Polymerase Technology) and 200–

300 ng of genomic DNA template.

DRG were dissected from neonatal (P0–P1) C57Bl/6 or

Hsp70 KO pups and placed into L15 medium (Yu et al., 2008).

Following dissociation of tissues using 0.25% trypsin and 0.5%

collagenase at 37 C̊ for 30 min, cells were collected by centri-

fugation for 5 min at 1000 g and resuspended in DMEM

containing 25 mM glucose, 10% FCS (fetal calf serum; Atlas

Biologicals). The cells were triturated with a fire polished glass

pipette and 6–76104 cells were seeded on to collagen-coated

glass coverslips or dishes. The cultures were maintained in

DMEM maintenance medium containing 25 mM glucose, 10%

FCS, 100 units/ml penicillin, 100 mg/ml streptomycin, 50 mM

gentamycin (MP Biologicals) and 50 ng/ml nerve growth factor

(Harlan Biosciences). Fibroblasts were removed by treating the

cells with 10 mM cytosine b-D-arabinoside for 2 days and the

cultures then maintained in maintenance medium for 1 week

to allow SC proliferation and association with axons.

Myelination was initiated by adding freshly prepared

ascorbic acid (50 mg/ml in maintenance medium) to induce

basal lamina formation. Myelination progressed for 18–21

days with the medium being changed every 2–3 days and

fresh ascorbate added. Demyelination was induced by the

addition of 150–200 ng/ml neuregulin-1-b1 epidermal

growth factor domain (amino acids 176–246) (NRG1, R&D

Systems) for 48–72 h. To examine the effect of KU-32 on

preventing demyelination, the cells were incubated for 16 h

with 0.05% DMSO (vehicle) or 1 mM KU-32 prior to ad-

ding NRG1; demyelination was assessed 48–72 h after adding

NRG1.

HS (heat shock) treatment and immunoblot
analyses
For HS treatment, cell culture plates were sealed and placed

into a 43–44 C̊ water bath for 30 min. Depending on the

treatment paradigm, cells were either immediately collected

or returned to a 37 C̊ incubator to recover before cell lysis.

Cells were scraped into lysis buffer containing 50 mM Tris/

HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P40, 1%

deoxycholate, 0.1% SDS, 0.5 mM sodium orthovandate,

40 mM NaF, 10 mM b-glycerophosphate and 16Complete

Protease Inhibitors (Roche Diagnostics) and homogenized by

sonication. The crude cell lysates were centrifuged at 10000 g
for 10 min at 4 C̊ and the total protein concentration of the

supernatant was determined using a Bio-Rad protein assay

and BSA as the standard. Approximately 30–35 mg of protein

was separated by SDS/PAGE and transferred to nitrocellulose

for immunoblot analyses.

The membranes were incubated with 5% non-fat dry milk

in PBST (phosphate-buffered saline containing 0.1% Tween

20) for 1–2 h at room temperature (25 C̊) and probed with

primary antibodies recognizing Hsp70, Hsc70, Hsp90, Hsp40,

Hsp27, c-Jun, JNK or b-actin at 4 C̊ overnight. For detection

of the phosphorylated proteins, 5% non-fat dry milk was

substituted with 5% BSA. After primary antibody incubation,

membranes were washed with PBST and incubated with HRP-

conjugated anti-mouse, anti-rabbit, anti-chicken or anti-goat

secondary antibodies. Immunoreactivity for each protein was

visualized using an enhanced chemiluminescence detection

kit (GE Healthcare Life Sciences). The films were digitally

scanned and densitometrically analysed using Image J

(National Institutes of Health) software.

Immunofluorescence analysis
Myelinated DRG explants grown on glass coverslips were

rinsed with PBS and fixed with fresh 4% (w/v) paraformalde-

hyde for 20 min at room temperature. The cells were

permeabilized by incubating with 220 C̊ methanol for

15 min, then blocked with 10% normal goat serum

(Invitrogen) containing 0.3% Triton X-100 for 15 min at

room temperature. Primary antibodies against MBP (SMI-94R,

1:500), PGP9.5 (1:500), Hsp70 (1:80) and S100b (1:1000) were

diluted in blocking buffer (10% goat serum in PBS) and

incubated with the cells overnight at 4 C̊ in an humidified
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chamber. The cells were washed with PBS and incubated with

Alexa FluorH 568, Alexa FluorH 488 or Alexa FluorH 647-

conjugated secondary antibodies. Coverslips were counter-

stained with DAPI (4,6-diamidino-2-phenylindole) to visualize

nuclei and mounted on slides using the Prolong Antifade kit.

Slides were imaged on an Olympus/3I Spinning Disk Confocal/

TIRF Inverted Microscope and 6–8 random fields per coverslip

were captured using the imaging software, SlideBook 5.0

(Intelligent Imaging Innovations Inc.).

The extent of demyelination was quantified as previously

described (Urban et al. 2010). MBP-positive segments were

counted as internodes and the percentage of broken versus

total internodes was calculated and expressed as a percent of

degenerated segments for each picture frame. Changes in

internode length were quantified utilizing an open source

imaging software-CellProfiler (http://www.cellprofiler.org).

Individual myelin internodes with a length within 20–

200 mm were identified through Otsu’s method (Otsu, 1979)

for thresholding and segmentation. Throughout image

processing, visual inspection and manual editing were

performed during segment identification in the case of errors

or regions where segments intersected or touched the border.

Major axis lengths for each identified segment were then

computed to give the length of the internodes. For

immunofluorescent quantification of Hsp70 expression in

premyelinating cultures, intensity was set as the threshold

factor instead of length. Hsp70 protein expression was

computed as area6intensity in fluorescence units. Co-

localization of fluorescent channels was achieved using

Image J.

Preparation of Hsp70 adenovirus and Hsp70-
promoter-luciferase reporter
The cDNA sequence of human Hsp70 (HSPA1A) was amplified

by PCR with a forward primer containing a BamHI site

(AGCTTGGATCCGAATTCACCAT-GGCCAAAGCCGCGGCG), and a

reverse primer containing a SalI site (AAGTCGACATCTACC-

TCCTCAATGGTGGGGCCTG). The PCR product was subse-

quently digested and cloned into the p-Shuttle-IRES-hrGFP-

1 vector (Agilent Technologies) between the BglII and SalI site

to add an in-frame C-terminal FLAG tag. The integrity of the

sequence was verified by DNA sequencing and recombinant

adenovirus was generated using the pAdEasy kit as per the

manufacturer’s directions. To infect myelinated neuronal

cultures, concentrated viral particles were diluted in main-

tenance medium and 16 h after infection, the medium was

replaced by fresh non-viral medium prior to further

treatment. Recombinant expression of Hsp70 was confirmed

by antibodies against Hsp70 or the C-terminal FLAG epitope

tag.

To prepare the luciferase reporter, a 1.5 kb region

upstream of the start codon of the human HSPA1A gene

and containing 59 KpnI and 39 SacI sites to direct cloning into

a pGL3 basic luciferase reporter plasmid was synthesized by

GeneArt (Life Technologies). The integrity of the promoter

sequence and the presence of two HS elements were verified

by DNA sequencing. 50B11 cells (Chen et al., 2007) were

grown in 10 cm dishes in DMEM containing 25 mM glucose,

10% FCS and 5 mg/ml blasticidin. The cells were transfected

using LipofectamineTM and after 24 h, were re-seeded into 24

well plates at a density of 26105 cells per well. After 6 h,

the cells were treated with the indicated concentrations of

KU-32 for 16 h, luciferase activity was assessed and normal-

ized to the total protein concentration of each well. Results

shown are from triplicate wells obtained in three separate

experiments.

Statistical analysis
Datasets are presented as means¡S.E.M. Equality of

variances was verified and a one-way ANOVA or Kruskal–

Wallis non-parametric test was performed. Differences

among treatment groups were determined using Tukey’s or

Dunn’s post-hoc tests.

RESULTS

KU-32 induces Hsp70 expression in DRG explant
cultures
We have previously shown that KU-32 inhibited NRG1-

induced demyelination in an Hsp70-dependent manner but it

remained unclear if neuroprotection may also be associated

with the induction of other chaperones. Immunoblot analysis

of unmyelinated DRG explant cultures treated with 1 mM KU-

32 for 4–24 h indicated that Hsp70 was the primary

chaperone up-regulated by KU-32 (Figures 1A and 1B).

Although Hsp90 and Hsp40 can be induced in response to

HS, KU-32 did not significantly increase their expression.

Similarly, the drug did not alter the level of the constitutively

expressed Hsp70 paralog, Hsc70 (see below), and had no

effect on the resident chaperones of the endoplasmic

reticulum, Grp78 and Grp94 (data not shown). Although

KU-32 did tend to increase the expression of Hsp27, a small

Hsp that may be involved in transiently stabilizing mis-folded

or damaged proteins until their interaction with Hsp70/Hsp40

(Muchowski and Wacker, 2005), this did not quite reach

significance. Consistent with the induction of Hsp70 protein,

KU-32 also dose-dependently increased the expression of a

luciferase reporter that was driven by the human Hsp70

promoter (Figure 1C). Since primary sensory neurons trans-

fect poorly, an immortalized sensory neuron cell line (50B11

cells) was used for the transfection (Chen et al., 2007).

Importantly, 50B11 cells have a very low basal level of Hsp70

expression, similar to primary sensory neurons. However, KU-

32 is a weak activator since it was not as effective as

geldanamycin, a prototypical Hsp90 N-terminal inhibitor that
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robustly activates the HS elements within the Hsp70

promoter (Calamini et al., 2012).

Although these data indicate that Hsp70 expression is

modulated by KU-32, immunoblot analysis of the unmyelinated

DRG explants did not allow us to assess whether induction of

Hsp70 was occurring within sensory neurons and/or SCs.

Unmyelinated DRG explants from C57Bl/6 mice were treated

with either vehicle or KU-32 for 24 h and processed for

immunostaining. A 30-min HS followed by 1 h recovery was

applied to a parallel set of cultures and served as a positive

control. To characterize Hsp70 expression in the mixed culture,

cells were double immunostained with antibodies against Hsp70

and neuronal (PGP9.5) or SC (S100b) markers. As shown in

Figure 2(A), a basal level of Hsp70 fluorescence co-localized

with PGP9.5 that was limited to the cell body and was not

observed within axons. Short-term HS increased Hsp70

expression in neurons as well as PGP9.5-negative cells (arrows).

Similarly, the increase in the Hsp70 signal after KU-32 treatment

was also evident in both PGP9.5-positive and PGP9.5-negative

cells. These data suggest that KU-32 may increase Hsp70 within

SCs and co-staining of Hsp70 and S100b in the explants verified

a prominent expression of Hsp70 in cells co-labelled with S100b,

a SC marker (Figure 2B). Thus, KU-32 can induce expression of

Hsp70 in neuronal cell bodies and SCs.

Hsp70 is necessary for drug efficacy and
sufficient to prevent NRG1-induced
demyelination
To gain insight into the mechanism by which Hsp70 induction

contributes to preventing demyelination, myelinated DRG

explants were prepared from neonatal WT C57Bl/6 and Hsp70

KO mice. Deletion of the Hsp70 gene was verified by

genotyping and the lack of Hsp70 induction by KU-32 and HS

(Figure 3A). However, no difference existed in the expression

of Hsc70 between WT and Hsp70 KOs and Hsc70 levels were

not altered by KU-32 or HS (Figure 3B).

Treating myelinated WT explants with 200 ng/ml NRG for

72 h led to a marked degeneration of the myelinated

internodes as indicated by the fragmented, vesicular

appearance of the MBP staining (Figure 4A). Importantly,

this degeneration was not a consequence of impaired axonal

integrity as no decrease or irregularity in PGP9.5 staining was

seen, as we have previously reported (Urban et al., 2010). The

extent of myelin degeneration was quantified by imaging

random fields from each treatment group and calculating the

percentage of damaged versus total myelin segments. While

there was approximately 8% basal demyelination in control

cultures, the number of degenerated myelin internodes in

WT cultures treated with 200 ng/ml NRG1 was ,7-fold

greater (Figure 4B). However, incubation with 1 mM KU-32

prior to NRG1 treatment prevented this increase since the

number of damaged segments remained close to the control

level. KU-32 had no effect on the number of damaged myelin

segments in the absence of NRG1 treatment. As we have

shown previously (Urban et al., 2010), NRG1 treatment also

decreased the expression of myelin protein zero as deter-

mined by immunoblot analysis and this effect was attenuated

by pretreating the co-cultures with KU-32 (Figure 4C).

Myelinated cultures prepared from the Hsp70 KO mice

showed a similar basal level (,6%) of damaged segments as

was seen in the WT cultures. However, NRG1 stimulated

approximately a 6-fold increase in degenerated segments

(Figure 4D). The reason for this slight resistance to NRG1 is

Figure 1 KU-32 induces Hsp70 in mouse DRG explants
(A) Primary DRG explants from C57Bl/6 mice were isolated and grown in
culture for 1 week. Cells were treated with vehicle (0.05% DMSO, 24 h) or
1 mM KU-32 for 4, 8 or 24 h. Cell lysates were collected and immunoblotted
for Hsp90, Hsp70, Hsp40 and Hsp27. (B) Hsp levels were normalized to b-
actin for each time point and changes were expressed as the fold control
(n53–6 at each time point) **P,0.01 versus control. (C) 50B11 cells were
transfected with a luciferase reporter driven by the human Hsp70 promoter
and treated with vehicle or the indicated concentrations of KU-32 for 16 h.
Cell lysates were prepared and luciferase activity was assessed. Results are
expressed as a percent of the vehicle treated cells and are from three
experiments performed in triplicate. Geldanamycin (250 nM) was used as a
positive control and it activated the reporter by 4.5¡0.29-fold compared
with the untreated control. ***P,0.001 versus control; fP,0.001 versus
10 nM; ˆP,0.01 versus 100 nM.
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not known, but might be due to a generally higher basal level of

myelination in Hsp70 KO cultures. Since Hsp70 has not been

characterized as having an inhibitory role in myelination, the

reason for the increased number of myelinated segments that is

reproducibly observed in explant cultures from the Hsp70 KO

mice is unknown. However, this may be related to the slightly

lower basal expression of c-Jun that was observed in the

myelinated cultures from the Hsp70 KO mice (see below and

Figures 6 and 7). Nevertheless, pretreatment with KU-32 failed to

significantly reduce the percentage of damaged myelin inter-

nodes in these cultures (Figure 4E). These findings are consistent

with our previous in vivo observation that Hsp70 is central for the

neuroprotective efficacy of KU-32 (Urban et al., 2010).

While the above results support that Hsp70 is necessary for

the efficacy of KU-32 in preventing NRG1-induced demye-

lination, it remains unclear whether the neuroprotection

arises from a direct effect of Hsp70. To determine whether

induction of Hsp70 was sufficient to protect against NRG1-

induced demyelination, a recombinant adenovirus expressing

Hsp70 with a C-terminal FLAG-tag (Hsp70-FLAG) was

generated to genetically overexpress Hsp70. Fully myelinated

DRG explants from WT and Hsp70 KO mice were infected with

a blank or Hsp70-FLAG adenovirus for 16 h, the cells were

treated with NRG1 for 72 h and the cultures stained for MBP.

In order to maintain myelin damage at a comparable level

between WT and Hsp70 KO cultures, WT cells were treated

with 150 ng/ml NRG1, while the Hsp70 KO cultures were

treated with 200 ng/ml NRG1. In uninfected cultures, this

approach resulted in approximately 45% of the total segments

being degenerated in the WT cultures whereas approximately

50% of the total segments showed degeneration in the Hsp70

KO cultures (Figures 5A and 5B). In myelinated WT and

Hsp70 KO cultures, infection with blank virus did not decrease

the magnitude of NRG1-induced demyelination. In contrast,

infection of either the WT or Hsp70 KO cultures with the

Hsp70-FLAG adenovirus led to a significant decrease in

the extent of damaged myelin segments induced by NRG1

treatment. This decrease correlated with the ectopic expression

of the epitope-tagged Hsp70 which was similar in both WT and

Hsp70 KO cultures (see Figure 7).

Figure 3 Hsp70 is necessary for protecting against NRG1-induced
demyelination by KU-32
(A) One-week-old mouse DRG explants from WT or Hsp70 KO mice were
treated with vehicle or 1 mM KU-32 for 24 h in the absence or presence of
HS (30 min at 42 C̊). Heat shocked cultures were then switched to 37 C̊ for
0–4 h of recovery time. Cell lysates were prepared and the expression of
Hsp70 was determined by immunoblot analysis. (B) DRG explants from WT
or Hsp70 KO mice were treated with vehicle or 1 mM KU-32 for 24 h in the
absence or presence of HS (30 min at 42 C̊ and 4 h recovery at 37 C̊).
The level of Hsc70 was determined by immunoblot.

Figure 2 Hsp70 is induced in neurons and SCs
DRG explant cultures were treated with vehicle, 1 mM KU-32 for 24 h, or subjected to 30 min HS plus a 1 h recovery (HS+R).
Localization of Hsp70 expression (red) in neurons or SCs were examined using double-fluorescence-labelling with antibodies against
PGP9.5 (A) (green) or S100b (blue) (B), respectively. Confocal images were taken and co-localization of Hsp70 with either PGP9.5 or
S100b was performed using Image J. Arrows indicate increased Hsp70 in SCs. Scale bar, 15 mm.
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Since the percentage of damaged myelin segments only

takes into account the gross number of ‘broken’ segments,

it does not reflect the severity of the ongoing degeneration

of the myelinated internodes. To further characterize the

integrity of the myelin internodes, average internode length

from each treatment was also assessed using CellProfiler.

Briefly, linear segments of continuous MBP immunoreacti-

vity that fell into the range of 20–200 mm were identified

by the program and major axis length was computed for

each segment. The results were expressed as fold of the

untreated control and this analysis indicated that NRG1

decreased the average length of myelinated internodes by

approximately 50% in either the uninfected or blank virus

infected WT cultures (Figure 5C). However, overexpression

of Hsp70 significantly attenuated the decrease in internode

length. In the Hsp70 KO cultures, NRG1 decreased the

internode length cultures by approximately 35% and

expression of Hsp70-FLAG led to a similar extent of

recovery that was observed in the WT cultures. These

results support that Hsp70 induction is sufficient to

improve myelination and recapitulate the neuroprotection

seen with KU-32.

Figure 4 KU-32 requires Hsp70 to block NRG1-induced demyelination
DRG explants were established from C57Bl/6 (A, B) or Hsp70 KO (D, E) mice and myelinated in vitro for 3 weeks. The cultures were
treated with vehicle or 1 mM KU-32 for 16 h prior to inducing demyelination with 200 ng/ml NRG1 for 3 days. Myelin internodes
were labelled via MBP staining and nuclei visualized with a DAPI stain. Five to eight images were taken for each individual culture
and the number of total and degraded myelin segments was counted per frame. Data shown are means¡S.E.M. from three
preparations per genotype. ***P,0.001 versus control; ˆP,0.01 versus NRG1 minus KU-32. (C) Explant cultures from WT mice were
treated as above and lysates were prepared for immunoblot analysis of myelin protein zero (P0).
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KU-32 blocks c-Jun induction in an Hsp70-
dependent manner
c-Jun is an established negative regulator of myelination and

has been proposed to mediate NRG1-induced demyelination

(Parkinson et al., 2008; Syed et al., 2010). In addition, whereas

c-Jun is minimally expressed in healthy nerves, it is

significantly up-regulated in DPN and a number of human

demyelinating neuropathies (Hur et al., 2011; Hutton et al.,

2011). Similarly, we observed a low level of c-Jun expression

in myelinated explant cultures from WT mice and the addition

of NRG1 led to a strong induction of c-Jun (Figure 6A),

largely in SCs as previously noted (Parkinson et al., 2008). We

therefore evaluated whether the efficacy of myelin protec-

tion by KU-32 correlated with inhibition of c-Jun. Myelinated

DRG explants from WT or Hsp70 KO mice were incubated

with 1 mM KU-32 overnight prior to treating with NRG1 for

16 h, which was identified in preliminary experiments as a

time point for essentially maximal c-Jun induction under our

culture conditions. Cell lysates were prepared and the levels

of phospho-c-Jun and total c-Jun (Figure 6B) were deter-

mined by immunoblot analysis. NRG1 induced a 2–2.5-fold

increase in c-Jun and phospho-c-Jun expression in WT and a

similar induction was observed in myelinated Hsp70 KO

cultures treated with NRG1 (Figures 6C and 6D). Thus, Hsp70

is not necessary for the induction of c-Jun by NRG1. Notably,

pretreatment with KU-32 abolished NRG1-induced c-Jun

expression and phosphorylation in the WT cultures which

correlates with the protection of myelin integrity. In contrast,

KU-32 was unable to prevent the induction and phosphor-

ylation of c-Jun in the Hsp70 KO neurons.

To determine if expression of Hsp70 was sufficient to

decrease the induction of c-Jun, WT (Figure 7A) and Hsp70

KO (Figure 7B) cultures were infected with the Hsp70-FLAG

adenovirus. Consistent with the ability of Hsp70 to protect

against NRG1-induced demyelination (Figure 4), ectopic

expression of Hsp70 in the WT cultures recapitulated the

effect of KU-32 in preventing the increase in phosphorylated

and total c-Jun after NRG1 treatment (Figures 7C and 7D).

Figure 5 Hsp70 induction is sufficient to block NRG1-induced demyelination
Fully myelinated WT or Hsp70 KO DRG explants were either uninfected or transduced with blank or Hsp70-FLAG adenoviruses for
16 h. The cultures were treated with vehicle or 200 ng/ml NRG for 3 days, stained for MBP and DAPI (A). The percentage of
degenerated segments (B) and segment internode length (C) was quantified. Data shown are means¡S.E.M. from three experiments
per genotype. *P,0.05, **P,0.01, ***P,0.001 versus respective control; ˆP,0.05 versus blank+NRG1. Scale bar, 100 mm.
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Similarly, re-expression of Hsp70-FLAG in the Hsp70 KO

cultures was sufficient to block the NRG1-induced increase in

c-Jun expression and phosphorylation (Figures 7C and 7D).

Collectively, the data in Figures 4–6 strongly support that

induction of Hsp70 is sufficient to prevent c-Jun induction

and phosphorylation and that the efficacy of KU-32 in

preventing NRG1-induced demyelination is linked to a

necessary intersection between Hsp70 and c-Jun signalling.

KU-32 does not alter JNK or p42/p44 MAPK
activation
It is well recognized that JNK serves as an upstream regulator

of c-Jun by phosphorylating the protein at its N-terminus.

However, neither NRG1 nor KU-32 had any effect on increa-

sing JNK expression. Similarly, neither treatment increased JNK

activation, as determined by a lack of change in the expression

of phospho-JNK (Figure 8A). Alternatively, the activation of

p42/p44 MAPK by NRG1 is a critical upstream signal for

promoting demyelination (Harrisingh et al., 2004; Ogata et al.,

2004; Napoli et al., 2012) and inhibiting the activation of p42/

p44 MAPK blocked c-Jun induction by NRG1 (Syed et al.,

2010). Although the level of phosphorylated MAPK was clearly

increased in myelinated DRG explants stimulated with NRG1

for 45 min, pretreatment with KU-32 also had no effect on

NRG1-induced MAPK activation (Figure 8B).

Reduction of c-Jun expression by KU-32 is
proteasome-dependent
As NRG1-induced myelin degeneration is not associated with

the accumulation of a particular mis-folded protein or

protein aggregate, Hsp70-mediated assistance in protein

refolding is an unlikely mechanism of myelin protection by

KU-32. However, Hsp70 may intersect with cellular signal

transduction through proteasome-mediated degradation of

Figure 6 KU-32 inhibited NRG1-induced expression of c-Jun in WT but not Hsp70 deficient co-cultures
(A) NRG1 treatment induces c-Jun in SCs. Fully myelinated WT DRG explants were treated with 100 ng/ml NRG1 for 16 h and
stained for MBP and c-Jun levels. DAPI staining was used to visualize nuclei, scale bar, 10 mM. (B) Fully myelinated DRG explants
from WT or Hsp70 KO mice were treated with vehicle or 1 mM KU-32 overnight then stimulated with 200 ng/ml NRG for 16 h. Cell
lysates were prepared and the level of phospho-c-Jun and c-Jun were determined by immunoblot. The level of phospho-c-Jun (C) and
c-Jun (D) were quantified using Image J and the data shown are means¡S.E.M. from five experiments. **P,0.01 versus control in
each genotype; ˆP,0.05 versus NRG1 in WT mice only.
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signalling proteins. For example, the anti-apoptotic effect

of Hsp70 and its co-chaperone, CHIP (C-terminus Hsp70-

interacting protein), have been linked to their facilitating

ubiquitination and proteasomal disposal of ASK1, an upstream

JNK kinase (Hwang et al., 2005). To determine whether KU-32

eliminates c-Jun through protein degradation, myelinated DRG

explant cultures were pre-treated overnight with KU-32.

Subsequently, the proteasome inhibitor MG132 was added

coincident with NRG1 and c-Jun expression was examined by

immunoblot analysis 16 h after this treatment (Figures 9A and

9B). As in earlier experiments, NRG1 increased c-Jun/phospho-

c-Jun (upper band) expression and KU-32 significantly blocked

this induction. However, addition of 2 mM MG132 abrogated

the block to c-Jun induction that was observed in cultures

treated with KU-32 and NRG1. As expected, MG132 modestly

increased the level of c-Jun and phospho-c-Jun in cultures

treated with only NRG1 due to inhibition of the proteasome.

Collectively, these data support that KU-32 reduces the

expression of c-Jun and phospho-c-Jun by enhancing their

proteasomal clearance in an Hsp70-dependent manner.

DISCUSSION

Hsp70 is a cytosolic chaperone that has demonstrated

prominent neuroprotection in models of cerebral ischaemia

and a variety of neurodegenerative disorders associated with

aberrant protein aggregates (Li and Dobrowsky, 2012). For

example, transgenic overexpression of PMP22 (peripheral

myelin protein 22) results in formation of PMP22 aggregates

and is a model of CMT1A (Robertson et al., 2002). N-terminal

Hsp90 inhibitors that promoted a robust induction of Hsp70

decreased the formation of PMP22 aggregates (Fortun et al.,

2007) and increased myelination using in vitro cultures

prepared from the C22 mouse model of CMT1A (Rangaraju

et al., 2008). Although KU-32 can reverse DPN and prevent

NRG1-induced demyelination in an Hsp70-dependent man-

ner, neither model has an aetiology related to the production

of protein aggregates (Urban et al., 2010). Thus, Hsp70 may

also decrease neurodegeneration through mechanisms inde-

pendent of its role as a chaperone that can aid protein

refolding (Koren et al., 2009).

c-Jun is a basic leucine zipper transcription factor of the

AP-1 (activator protein 1) family and is well recognized for its

role in promoting apoptosis of sympathetic neurons following

growth factor withdrawal (Palmada et al., 2002). This pro-

apoptotic effect of c-Jun was attenuated by genetic

overexpression of Hsp70 in sympathetic neurons, which

suppressed c-Jun induction and phosphorylation upon NGF

(nerve growth factor) withdrawal (Bienemann et al., 2008).

Previous evidence indicates that c-Jun also functions as a

negative regulator of myelination and drives dedifferentia-

tion of myelinated fibres upon pathologic expression

(Parkinson et al., 2008). Our data support the premise that

Figure 7 Ectopic expression of Hsp70 is sufficient to block NRG1-induced demyelination in WT and Hsp70 KO neurons
Fully myelinated WT (A) or Hsp70 KO (B) DRG explants were either uninfected or transduced with blank or Hsp70-FLAG adenoviruses for
16 h. The cultures were treated with vehicle or 150–200 ng/ml NRG for 3 days and phospho-c-Jun and c-Jun were detected by
immunoblot analysis. The levels of phospho-c-Jun (C) and c-Jun (D) were quantified using Image J and the data shown are mean and the
range from two experiments.
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an intersection between Hsp70 and c-Jun signalling is critical

to preventing demyelination since KU-32 is ineffective at

attenuating NRG1-induced demyelination and c-Jun induc-

tion in explant cultures from Hsp70 KO mice. Further, that

protection against demyelination was recapitulated following

re-expression of Hsp70 in cultures prepared from the Hsp70

KO mice also supports this conclusion. However, one

shortcoming of our study is that we cannot conclude that

the induction of Hsp70 specifically in SCs is solely responsible

for the protection. This may be most clearly demonstrated in

a tissue-specific Hsp70 KO mouse and additional work will

examine the cell autonomous roles of chaperone signalling in

neurons versus peripheral glia in contributing to drug

efficacy.

Mechanistically, Hsp70 is known to inhibit JNK (Gabai et al.,

1998) and inactivation of JNK/c-Jun signalling by Hsp70 has

been suggested to prevent neuronal apoptosis (Salehi et al.,

2006). However, KU-32 treatment did not decrease JNK

expression or phosphorylation in a time course that preceded

the significant reduction in c-Jun levels. A possible

explanation is that the level of Hsp70 induction by KU-32

may be too transient or of insufficient magnitude to

markedly impact JNK activity. Alternatively, the necessity of

JNK in affecting downstream biologies related to c-Jun

induction may be context dependent. Indeed, JNK phosphor-

ylation of c-Jun is not required for dedifferentiation of

myelinated SCs (Parkinson et al., 2008). Thus, it is unlikely

that an interaction between Hsp70 and JNK contributed to

the efficacy of KU-32 in preventing demyelination. In

contrast, recent work has shown that activation of p42/p44

MAPK by NRG1 is necessary for c-Jun induction and

demyelination (Syed et al., 2010; Napoli et al., 2012).

Although NRG1 increased MAPK activation, KU-32 pretreat-

ment did not decrease MAPK phosphorylation following

stimulation of the co-cultures with NRG1. These results

support that the ability of KU-32 to prevent c-Jun induction

is also not due to a block in Erb B2 activation and an

inhibition of early signalling events.

The ability of KU-32 to decrease c-Jun levels appears as-

sociated with its proteasomal degradation since incubating

the cultures with the proteasome inhibitor MG132 ne-

gated the effect of KU-32 on blunting c-Jun induction.

Although c-Jun is not recognized as forming protein

aggregates, these results are consistent with the proteasomal

clearance of aggregated tau by Hsp70 and other chaperones

(Dickey et al., 2007a; Koren et al., 2009). Since the clearance

of aggregated protein by Hsp70 often enlists CHIP (a CHIP

that also binds to the 26S proteasome) to promote

ubiquitination and degradation (Dickey et al., 2007b), it will

be important to determine if CHIP is also involved in c-Jun

degradation by KU-32 treatment.

One caveat to our approach is that the proteasomal

inhibitor MG132 can increase JNK activation and apoptosis

(Meriin et al., 1998; Nakayama et al., 2001). Although we did

not observe substantial cell death at the MG132 concentra-

tion used in the present study, we observed a small increase

in c-Jun levels by MG132 in cells treated with NRG1. This

result would suggest that MG132 may increase the extent of

NRG1-induced demyelination. However, inhibiting the pro-

teasome with MG132 blocked SC dedifferentiation during

Wallerian degeneration of sciatic nerve explants (Lee et al.,

2009). Although our work and the study of Lee et al. used

different models, these data suggest that any block to SC

degeneration by MG132 must be downstream of c-Jun

Figure 8 KU-32 does not inhibit JNK or p42/p44 MAPK
Myelinated WT cultures were treated with vehicle or 1 mM KU-32 and stimulated
with 200 ng/ml NRG. Cell lysates were prepared and the levels of phospho JNK
and total JNK (A) or phospho p42/p44 MAPK and total MAPK (B) were determined
by immunoblot analysis. Cells were stimulated with NRG1 for 16 h or 45 min
prior to preparing cell lysates to determine JNK and MAPK levels respectively. Gels
shown are representative of results obtained in five experiments.

Figure 9 KU-32 promotes proteasomal degradation of c-Jun
Fully myelinated DRG explants from WT mice were treated with 1 mM KU-32
for 16 h and then treated with 200 ng/ml NRG1 in the absence or presence
of 2 mM MG132 for an additional 16 h. Cell lysates were prepared the level of
c-Jun was determined by immunoblot analysis (A) and quantified (B) using
Image J. Results are means¡S.E.M. from five independent experiments.
*P,0.05 versus control; ˆP,0.05 versus NRG1 only; #P,0.002 versus
NRG1+KU-32.
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induction since MG132 enhanced the level of c-Jun induced

by NRG1. Alternatively, inhibiting the proteasome with

MG132 can actually stimulate HSF1 and increase chaperone

expression (Neef et al., 2011), which may account for the

observed effect in delaying Wallerian degeneration (Lee et al.,

2009).

The neuroprotection elicited by Hsp70 in the context of a

degenerative signal suggests that induction of c-Jun by NRG1

may be akin to a form of transient proteotoxic stress, similar

to demyelination promoted by the maladaptive activation of

the unfolded protein response in transgenic mice expressing a

deletion of Ser63 in myelin protein zero (Pennuto et al., 2008;

Gow and Wrabetz, 2009). Notably, the induction of c-Jun

may play a fundamental role in the onset of human

demyelinating neuropathies (Hutton et al., 2011) and at first

sight, the ability of Hsp70 to attenuate c-Jun expression and

prevent demyelination would seem primarily beneficial in

the context of treating demyelinating disorders. However, the

expression of c-Jun in SCs is also necessary for the expression

of glial-derived neurotrophic factor and artemin, which are

critical paracrine factors that activate axonal Ret receptors to

promote regeneration following nerve damage (Fontana et al.,

2012). Given the essential role of nerve regeneration in

recovery of sensation in neuropathies such as DPN (Zochodne,

2012), it is conceivable that prolonged inhibition of c-Jun

levels in SCs may impinge on the regenerative capacity of

myelinated axons.

In summary, these proof-of-principle studies suggest it

will be important to determine if the in vitro efficacy of KU-

32 in decreasing demyelination can be recapitulated in

models of chemical-induced demyelinating neuropathy or a

rodent model of DPN that superimposes diabetes on genetically

hypertensive rats to enhance myelin thinning (Gregory et al.,

2012). As degenerative changes in myelinated SCs is a

substantial feature in human DPN, understanding how

molecular chaperones modulate signalling events underlying

peripheral nerve demyelination may open new translational

avenues for clinical management of DPN and/or other human

neuropathies.
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