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OBJECTIVE—Evaluate if Erb B2 activation and the loss of
caveolin-1 (Cav1) contribute to the pathophysiological progres-
sion of diabetic peripheral neuropathy (DPN).

RESEARCH DESIGN AND METHODS—Cav1 knockout and
wild-type C57BL/6 mice were rendered diabetic with streptozo-
tocin, and changes in motor nerve conduction velocity (MNCV),
mechanical and thermal hypoalgesia, Erb B2 phosphorylation
(pErb B2), and epidermal nerve fiber density were assessed. The
contribution of Erb B2 to DPN was assessed using the Erb B2
inhibitors PKI 166 and erlotinib and a conditional bitransgenic
mouse that expressed a constitutively active form of Erb B2 in
myelinated Schwann cells (SCs).

RESULTS—Diabetic mice exhibited decreased MNCV and me-
chanical and thermal sensitivity, but the extent of these deficits
was more severe in diabetic Cav1 knockout mice. Diabetes
increased pErb B2 levels in both genotypes, but the absence of
Cav1 correlated with a greater increase in pErb B2. Erb B2
activation contributed to the mechanical hypoalgesia and MNCV
deficits in both diabetic genotypes because treatment with erlo-
tinib or PKI 166 improved these indexes of DPN. Similarly,
induction of a constitutively active Erb B2 in myelinated SCs was
sufficient to decrease MNCV and induce a mechanical hypoalge-
sia in the absence of diabetes.

CONCLUSIONS—Increased Erb B2 activity contributes to spe-
cific indexes of DPN, and Cav1 may be an endogenous regulator
of Erb B2 signaling. Altered Erb B2 signaling is a novel mecha-
nism that contributes to SC dysfunction in diabetes, and inhibit-
ing Erb B2 may ameliorate deficits of tactile sensitivity in DPN.
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D
iabetic peripheral neuropathy (DPN) is a com-
mon complication of diabetes (1). Although
hyperglycemia is the definitive cause of DPN
(2), the vascular, glial, and neuronal damage

that underlies the progressive axonopathy in DPN has a
complex biochemical etiology involving oxidative stress
(3,4), protein glycation (5), protein kinase C activation (6),
polyol synthesis (7), and the hexosamine pathway (8).
Altered neurotrophic support also contributes to sensory
neuron dysfunction in DPN (9), but whether diabetes may
alter growth factor signaling in Schwann cells (SCs),

which also undergo substantial degeneration in diabetes,
is poorly defined.

Neuregulins are growth factors that control SC growth,
survival, and differentiation via their interaction with Erb
B receptors (10). Although Erb B2 signaling promotes
developmental myelination and is clearly trophic for SCs,
pharmacological evidence supports that pathologic activa-
tion of Erb B2 after axotomy (11) or infection with leprosy
bacilli (12) is sufficient to induce SC dedifferentiation and
demyelination. Additionally, genetic evidence supports
that Erb B2 can promote the development of sensory
neuropathies independent of diabetes because expression
of a dominant-negative Erb B4 in nonmyelinating (13) or
myelinating (14) SCs induced a temperature or mechanical
sensory neuropathy, respectively. Given the contribution
of Erb B2 to the degeneration of SCs, endogenous proteins
that regulate Erb B2 activity may influence the develop-
ment of certain aspects of sensory neuropathies.

The interaction of Erb B2 with the protein caveolin-1
(Cav1) inhibits the intrinsic tyrosine kinase activity of the
receptor (15). Cav1 is highly expressed in mature, myelin-
ated SCs (16), and we have shown that prolonged hyper-
glycemia promoted the downregulation of Cav1 in SCs of
sciatic nerve (17). Cav1 may regulate Erb B2 signaling in
SCs because its forced downregulation was sufficient to
enhance neuregulin-induced demyelination of SC–dorsal
root ganglion (DRG) neuron cocultures (18). However, it is
unknown whether an increase in Erb B2 activity may
contribute to the pathophysiological development of DPN
and if changes in Cav1 expression may alter Erb B2
activation in diabetic nerve.

In the current study, we demonstrate that diabetic Cav1
knockout mice showed an increased activation of Erb B2
and developed greater motor nerve conduction velocity
(MNCV) deficits relative to their wild-type counterparts.
Inhibition of Erb B2 with two structurally diverse inhibi-
tors corrected the MNCV deficits and mechanical hypoal-
gesia evident after 6 or 15 weeks of diabetes. Also,
induction of a constitutively active Erb B2 in myelinated
SCs of adult mice was sufficient to recapitulate the MNCV
and mechanical sensitivity deficits observed in the diabetic
mice. These studies provide the first evidence that activa-
tion of Erb B2 contributes to deficits associated with
myelinated fiber function in diabetic nerve and suggest
that Cav1 may serve as an endogenous regulator of Erb B2.

RESEARCH DESIGN AND METHODS

Streptozotocin (STZ) was obtained from Sigma-Aldrich (St. Louis, MO).
4-(R)-phenethylamino-6-(hydroxyl) phenyl-7H-pyrrolo[2.3-day]-pyrimidine (PKI
166) and N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine (erlo-
tinib) were provided by Novartis Institutes for Biomedical Research (Basel,
Switzerland) and OSI Pharmaceuticals (Melville, NY), respectively. The anti-
bodies used and their sources were: Cav1 2234 (Transduction Labs, Lexington,
KY); Erb B2 (Millipore, Billerica, MA); phospho-Tyr 1248 Erb B2 (pErb B2),
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�-actin, neurofilament H, and horseradish peroxidase–conjugated secondary
antibodies (Santa Cruz Biotechnology, Santa Cruz, CA); and AlexaFluor 488
rabbit anti-mouse and AlexaFluor 568 goat anti-rabbit antibodies (Molecular
Probes, Eugene, OR).
Animals and genotype analysis. Wild-type C57Bl/6 and Cav1 knockout mice
were obtained from Harlan Laboratories (Indianapolis, IN) and Jackson Labs
(Bar Harbor, ME), respectively. The absence of Cav1 was confirmed by
genotyping (19) and immunoblot analysis of lung and sciatic nerve (see
supplemental Fig. 1, available in an online appendix at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-0594/DC1). A conditional bitrans-
genic mouse based upon the tetracycline binary transgene system (20) was
generated as described in the supplemental RESEARCH DESIGN AND METHODS.
Briefly, transgenic mice that broadly express a constitutively active Erb B2
(caErb B2, V664-E664 mutation) under control of a minimal cytomegalovirus
promoter and tetracycline response element (TRE) (21) were crossed with a
separate transgenic line that expresses the reverse tetracycline transactivator
(rtTA) gene under the control of the rat protein zero (P0) promoter. This
strategy minimizes expression of the transgene in nonmyelinating SCs be-
cause P0 is a compact myelin protein (22). The caErb B2 transgene was
induced by permitting ad libitum access to standard rat chow containing 2
g/kg doxycycline (Bio-Serv, Frenchtown, NJ).
Induction of diabetes. Eight-week-old wild-type and Cav1 knockout mice
were rendered diabetic with three daily (75, 60, and 45 mg/kg), 0.2 ml i.p.
injections of freshly prepared STZ (23). Three days after the last injection,
mice with a fasting blood glucose (FBG) � 290 mg/dl (16 mmol/l) were
deemed diabetic. All animals were maintained on a 12-h light/dark cycle with
ad libitum access to water and Purina diet 5001 rodent chow. FBG levels were
determined again immediately before euthanizing the animals. To inhibit Erb
B2, biweekly intraperitoneal injections of 25 mg/kg PKI 166 in 10% DMSO or
erlotinib in 6% Captisol were given. All animal procedures were performed in
accordance with protocols approved by the Institutional Animal Care and Use
Committee and in compliance with standards and regulations for care and use
of laboratory rodents set by the National Institutes of Health.
Measure of mechanical and thermal sensitivity. Mechanical sensitivity
was assessed using a Dynamic Plantar Aesthesiometer (Stoelting, Wood Dale,
IL) fitted with a stiff, 0.5-mm diameter monofilament that was delivered at an
upward force of 8 g at a ramp speed of 2 s. The force (in grams) eliciting paw
withdrawal was automatically recorded, and three to four responses taken on
alternate feet were averaged.

Response to thermal stimuli was assessed using a Hargreaves Analgesiom-
eter (24). Activation of the heat source projected a ramping focal radiant heat
at the rate of about 0.3°C/s. Withdrawal latencies (in seconds) are the average
of three to four trials taken from alternating feet with 5-min periods between
testing.
Assessment of nerve conduction velocity. Mice were anesthetized, and
body temperature was monitored with a rectal probe and maintained at 37°C
using a heating pad connected to a Physitemp TCAT-2DF Controller (Physi-
temp Instruments, Clifton, NJ). Limb temperature was monitored with a
subcutaneous sensor and maintained at 36–37°C with the aid of a heat lamp.
The sciatic nerve was stimulated proximally at the sciatic notch and distally at
the ankle via bipolar electrodes with a supramaximal stimulus (9.9 mA) of 0.05
ms duration with low and high filter settings of 3 and 10 kHz. MNCV (in
meters/second) was calculated by measuring the latencies from the stimulus

artifact to the onset of the negative M-wave deflection of the compound
muscle action potentials recorded from the first interosseous muscle and
dividing by the distance (in millimeters) between the electrodes. For hindlimb
sensory nerve conduction velocity (SNCV), the digital nerve to the second toe
was stimulated with a square-wave pulse of 0.05-ms duration using the
smallest intensity current that resulted in a maximal amplitude response,
typically 2.4–3.0 mA. The sensory nerve action potential was recorded behind
the medial malleolus, and the maximal SNCV was calculated by measuring the
latency to the onset/peak of the initial negative deflection divided by the
distance between stimulating and recording electrodes.
Immunoblot and immunofluorescence analysis. Nerves were homoge-
nized in 0.2-ml lysis buffer (50 mmol/l Tris-HCl, pH 7.5, 1 mmol/l EDTA,1%
Nonidet P-40, 0.5% deoxycholate, 0.1% SDS, 150 mmol/l Na3VO4, 0.5 mmol/l
sodium molybdate, 40 mmol/l NaF, 10 mmol/l �-glycerophosphate, and 1X
Complete Protease inhibitors) (Roche Diagnostics) with the aid of a Polytron
fitted with a micro tissue tearor. Cell debris was sedimented at 10,000g for 5
min, and protein concentration of the supernatant was determined. Proteins
were separated by SDS-PAGE and transferred onto nitrocellulose for immu-
noblot analyses. Immunoblots were quantified by densitometry with the aid of
ImageJ software and Erb B2 and pErb B2 levels were normalized to �-actin.
Diabetes-induced changes in Erb B2 or pErb B2 were expressed as a percent
of the control values. Immunofluorescence of sciatic nerve cross sections was
performed as described (17).
Statistical analyses. Data are presented as means � SE. After verifying
equality of variance, differences between treatments and genotypes were
determined using a one-way or two-way ANOVA. Differences between group
means were ascertained using Tukey test.

RESULTS

Absence of Cav1 enhances some of the phenotypic
aspects of DPN. Diabetes resulted in a three- to fourfold
increase in FBG in both wild-type and Cav1 knockout mice
(Table 1). Although both genotypes lost weight with the
onset of diabetes, the differences became significant only
after 6 weeks of diabetes.

Decreased nerve conduction velocity is a physiologic
parameter indicative of nerve dysfunction consistent with
the development of DPN (25). A gradual slowing of MNCV
was evident after 2 weeks of diabetes in wild-type mice
and was significantly different from control at most sub-
sequent weeks (Fig. 1). Although the diabetic Cav1 knock-
out mice showed a significant MNCV slowing after 1 week,
the temporal decline in MNCV was comparable between
genotypes. However, the magnitude of the decrease in
MNCV was significantly greater in the diabetic Cav1
knockout mice (20–25% decline) compared with their
wild-type counterparts (12–15% decline). On the other
hand, diabetes had little effect on SNCV in the wild-type

TABLE 1
FBG and weights of wild-type and Cav1 knockout mice

Week FBG (mg/dl) Weight (g) n FBG (mg/dl) Weight (g) n

Wild-type control Wild-type STZ
1 141 � 17 21.1 � 2.0 6 435 � 71* 20.4 � 1.6 7
2 154 � 20 23.1 � 2.0 9 563 � 51* 20.5 � 2.1 10
3 139 � 23 22.1 � 2.2 9 531 � 83* 21.2 � 1.8 8
4 142 � 26 22.5 � 1.68 10 508 � 74* 21.5 � 1.6 10
6 175 � 26 27.5 � 2.3 10 471 � 81* 21.7 � 2.7* 12
12 141 � 21 25.8 � 3.5 6 512 � 113* 23.6 � 2.18 7

Cav1 knockout control Cav1 knockout STZ
1 108 � 18 22.5 � 2.9 8 495 � 94* 19.6 � 1.7 8
2 140 � 23 21.8 � 2.8 8 521 � 92* 18.8 � 2.2 10
3 123 � 26 22.5 � 2.4 9 552 � 60* 18.7 � 3.2 11
4 112 � 20 23.2 � 3.0 8 564 � 71* 22.4 � 3.7 12
6 127 � 13 25.5 � 2.4 9 519 � 106* 19.3 � 3.3* 9
12 179 � 31 32.2 � 1.1 6 594 � 11* 21.2 � 3.1* 4

*P � 0.05 vs. time-matched genotype control.
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mice but showed a significant slowing after 12 weeks of
diabetes in the Cav1 knockout mice. Importantly, the
enhanced MNCV deficit in the Cav1 knockout mice was
not because of a developmental neuropathy because no
difference existed in MNCV between nondiabetic wild-type
and Cav1 knockout mice.

Consistent with the decrease in MNCV, diabetic wild-
type mice showed a gradual onset of a mechanical hypoal-
gesia that was maximal within 6 weeks of diabetes (Fig.
1B). The temporal onset of the mechanical hypoalgesia in
the Cav1 knockout mice was more rapid and significantly
different from the diabetic wild-type mice at 1–2 weeks,
but the extent of the mechanical hypoalgesia between the
genotypes converged as diabetes progressed. Surprisingly,
Cav1 knockout mice developed a thermal hypoalgesia that
was significantly greater than that observed in the diabetic
wild-type mice at most time points (Fig. 1C). This effect
was not related to a greater decrease in intraepidermal
nerve fiber density (iENFD) after 2 or 6 weeks of diabetes
(supplemental Fig. 2).
Erb B2 activity is increased in diabetic nerve of
wild-type and Cav1 knockout mice. After 2 weeks of
diabetes, immunoblot analysis of pErb B2 indicated little
change in the diabetic wild-type mice (Fig. 2A and B). In
contrast, the absence of Cav1 correlated with a 3.4-fold
increase in the level of pErb B2 that was not because of an
increase in total Erb B2 levels. After 6 weeks of diabetes,
pErb B2 levels increased about threefold in wild-type mice
but remained significantly more elevated in the Cav1
knockout mice compared with its genotype control and
diabetic wild-type mice (Fig. 2C and D). After 12 weeks of
diabetes, pErb B2 was still more elevated in Cav1 knock-
out mice relative to the wild-type cohort, consistent with
the conclusion that diabetes induces a prolonged activa-
tion of Erb B2 in the Cav1 knockout mice (Fig. 2E and F).
Immunofluorescence analysis of sciatic nerve supported
an SC localization for the increased pErb B2 immunore-
activity, since it surrounded the axonal marker neurofila-
ment H (Fig. 2G).
Inhibition of Erb B2 activity reverses decreased
MNCV in diabetic mice. To address whether Erb B2
activation contributed to the indexes of nerve function,
mice were treated with two structurally diverse inhibitors
of epidermal growth factor receptor (EGFR) family mem-
bers. PKI 166 is an antagonist of EGFR family members
that has been used to demonstrate the contribution of Erb
B2 activation to demyelination (11,12). Similarly, erolitinib
is a clinically approved inhibitor of the EGFR that also can
inhibit Erb B2 receptors (26). Therefore, identical out-
comes with the use of these inhibitors would support the
conclusion that Erb B2 could contribute to DPN.

Wild-type and Cav1 knockout mice were rendered dia-
betic for 3 weeks, and subgroups were treated with 25
mg/kg of PKI 166 or vehicle biweekly for 3 weeks. This
dose of PKI 166 was chosen based upon its prior efficacy
in inhibiting Erb B2-mediated demyelination in mice (11).
Six weeks of diabetes resulted in a decrease in MNCV in
both wild-type and Cav1 knockout mice, and administer-
ing PKI 166 for the final 3 weeks improved this deficit in
both diabetic genotypes (Fig. 3A). However, the magni-
tude of this reversal was greater in the diabetic Cav1
knockout mice given their significantly more impaired
MNCV. Importantly, PKI 166 alone did not alter MNCV in
either genotype, indicating that basal levels of Erb B2
activity do not affect MNCV.

Given the multiple metabolic pathways that contribute
to nerve dysfunction in diabetes, it was surprising that PKI
166 was so efficacious in reversing the MNCV deficit after
6 weeks of diabetes. This outcome suggests that altered
Erb B2 activity may be an important contributor to early
metabolic changes that decrease MNCV. Therefore, we
next determined if inhibiting Erb B2 with erlotinib was as
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FIG. 1. Lack of Cav1 correlates with an increased severity in electro-
physiologic and psychophysical measures of DPN. A: Time course of
changes in MNCV and SNCV from wild-type and Cav1 knockout mice
treated with vehicle or STZ. *P < 0.05 compared with time-matched
genotype control; ^P < 0.05 compared with time-matched diabetic
wild-type mice. Time course of changes in mechanical (B) or thermal
(C) sensitivity in wild-type and Cav1 knockout mice treated with
vehicle or STZ. *P < 0.05 compared with time-matched genotype
control; ^P < 0.05 compared with time-matched diabetic wild-type
mice. Animal numbers per treatment and genotype are listed in Table
1. KO, knockout; WT, wild type.
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effective in reversing MNCV deficits and sensory dysfunc-
tion in longer-term diabetic mice. Wild-type and Cav1
knockout mice were rendered diabetic, and at 12 weeks
postinduction of diabetes, subgroups of the diabetic mice
were treated biweekly with vehicle or 25 mg/kg erlotinib
for 3 weeks. Cav1 knockout mice again developed a
substantial mechanical (Fig. 3B) and thermal hypoalgesia
(Fig. 3C) that was accompanied by a 20% decrease in
MNCV (Fig. 3D). After 15 weeks of diabetes, Cav1 knock-
out mice that received the drug vehicle still showed
substantial sensory deficits. However, erlotinib partially
reversed the decrease in MNCV and improved the mechan-
ical hypoalgesia without affecting thermal sensitivity. Al-
though wild-type mice showed only modest activation of
Erb B2 after 12 weeks of diabetes, erlotinib partially

corrected the MNCV deficit (Fig. 3E) and had an identical
effect on improving the mechanical but not thermal hy-
poalgesia (data not shown). Together, the above data
suggest that activation of Erb B2 contributes to the decline
of myelinated fiber function in DPN.
Erb B2 activation is sufficient to mimic aspects of
diabetic neuropathy. Although PKI 166 and erlotinib
attenuated some of the sensory deficits, they may inhibit
other EGFR family members and do not specifically target
Erb B2 receptors localized to SCs. Because diabetes alters
many aspects of nerve physiology, we conditionally ex-
pressed a constitutively active Erb B2 (caErb B2) in
myelinated SCs to determine if Erb B2 was sufficient to
contribute to a sensory neuropathy in the absence of
diabetes.
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of 6-week-diabetic wild-type mouse. NF-H, neurofilament heavy chain. KO, knockout; WT, wild type. (A high-quality color digital representation
of this figure is available in the online issue.)
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The conditional transgenics were generated by placing
the rtTA transgene under the control of the rat P0 pro-
moter (22). Enrichment of rtTA transcripts in sciatic nerve
was verified by reverse transcriptase PCR analysis of RNA
isolated from various tissues of the progeny from one
founder line (Fig. 4A). This mouse was bred with a second
transgenic line that broadly expresses the caErb B2 (21),
and PCR analysis of genomic DNA was used to identify
bitransgenic progeny (Fig. 4B and C). Mice hemizygous for
both transgenes showed an increase in pErb B2 and total
Erb B2 in sciatic nerve after addition of doxycycline
(DOX) to the diet (Fig. 5A). Transgene induction was
readily reversed upon removal of the DOX diet (Fig. 5B),
and no gross phenotypic differences or changes in weight
gain were observed between the groups receiving standard
rat chow or the DOX diet (supplemental Fig. 3A).

Induction of the caErb B2 by the DOX diet led to the
development of a significant mechanical hypoalgesia (Fig.
6A) and decrease in MNCV (Fig. 6B). Compared to either
the baseline response measured at week 0 or the time-
matched controls maintained on standard rat chow, the
severity of the mechanical hypoalgesia progressively in-
creased over 9 weeks but was reversed by removing the
DOX diet. Similarly, the MNCV deficit was not a nonspe-
cific effect of DOX because wild-type mice placed on the

DOX diet did not show a change in MNCV (supplemental
Fig. 3B). Indeed, the MNCV deficit was clearly related to
transgene induction because it was reversed by removing
the DOX diet or by treating the mice with 25 mg/kg PKI 166
(Fig. 6C). Importantly, any leaky expression of the caErb
B2 was not sufficient to induce a developmental neuropa-
thy since bitransgenic mice on standard rat chow showed
a very consistent response to mechanical stimulation over
the entire time course (Fig. 6A). Additionally, transgene
induction had no effect on SNCV (Fig. 6B) or thermal
sensitivity (supplemental Fig. 3C).

DISCUSSION

A number of elegant pharmacologic and genetic studies
have defined the necessity of the neuregulin/Erb B ligand/
receptor pair in providing a complex array of signals that
support survival, growth, and differentiation of SCs (27–
29). However, neuregulins may also promote demyelina-
tion (30,31), and pathological activation of neuregulin/Erb
B2 signaling may be physiologically relevant in the gener-
ation of sensory neuropathies independent of the diabetic
phenotype (13,32). Our study extends these observations
and provides the initial identification that activation of Erb
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B2 in diabetic nerve contributes to the progression of
DPN.
Erb B2 and the diabetic nerve. Erb B2 activation
correlated with a decrease in MNCV and the development
of a mechanical and thermal hypoalgesia in diabetic
wild-type and Cav1 knockout mice. Because pharmacolog-

ical inhibition of Erb B2 reversed the MNCV deficit and
mechanical hypoalgesia, Erb B2 activation contributes
primarily to these particular indexes of DPN. This reversal
is unlikely to be because of inhibition of either the EGFR
or Erb B4 as previous studies have shown these receptors
are poorly expressed or absent in adult SCs (33,34).
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6 weeks as described in the text (n � 5–7 per group per genotype). *P < 0.01 compared with genotype control; #P < 0.001 compared with diabetic
wild-type mice; ^P < 0.001 compared with diabetic Cav1 knockout. B–E: Wild-type and Cav1 knockout animals were rendered diabetic for 12
weeks then treated with 25 mg/kg of erlotinib (n � 7) or the drug vehicle (n � 7) biweekly for 3 weeks (arrow). Eroltinib reversed the mechanical
(B) but not the thermal (C) hypoalgesia observed after 15 weeks of diabetes in the Cav1 knockout mice. *P < 0.001 compared with control; #P <
0.05 compared with 12-week diabetic. Cav1 knockout (D) and wild-type (E) (n � 14) were rendered diabetic for 12 weeks, and MNCV was
assessed (n � 4) in each genotype. Subgroups (n � 5) received vehicle (V) or erlotinib (E) biweekly for 3 weeks, and MNCV was assessed. *P <
0.001 compared with vehicle. **P < 0.001 compared with V�V control. #P < 0.05 compared with STZ�V. ^P < 0.05 compared with V�E. KO,
knockout; WT, wild type.
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However, Erb B2 has been reported in lumbar DRG
neurons (35), and we cannot rule out that inhibition of this
population of receptors contributes to changes in MNCV in
diabetes. Nonetheless, activation of Erb B2 in SCs is at
least sufficient to induce a mechanical hypoalgesia and
decrease MNCV because induction of a constitutively
active Erb B2 in myelinated SCs recapitulated this aspect
of DPN while sparing any effects on SNCV and sensitivity
to thermal stimulation of the planta pedis. Because detec-
tion of mechanical stimuli is mediated primarily by my-
elinated axons associated with A� fibers (36,37), the above
results are consistent with the enhanced expression of the
caErb B2 in myelinated axons. Although A� fibers may
mediate sensitivity to thermal stimuli, these fibers primar-

ily contribute to foot withdrawal in response to a higher
heating rate then was used in our study (38). Additionally,
it is also noteworthy that early treatment with PKI 166
totally reversed the MNCV deficit observed at 6 weeks in
both diabetic wild-type and Cav1 knockout mice. Given
the multiple pathways that have been implicated in con-
tributing to the development of MNCV deficits in diabetic
nerve, it is surprising that inhibiting Erb B2 would be
capable of such a prophylactic effect. Although we ob-
served a significant change in mechanical sensitivity at 6
weeks, this early nerve conduction deficit may be related
to acute glucotoxicity rather then bonafide DPN (39).
More in line with our expectation, after 15 weeks of
diabetes, addition of erlotinib for the final 3 weeks only
partially reversed the MNCV deficit and improved mechan-
ical sensitivity, suggesting contributions from other path-
ways. Although erlotinib did not improve the thermal
hypoalgesia, we cannot exclude that the drug may alter
SNCV and iENFD because these parameters were not
substantially altered in the diabetic mice.

An intriguing aspect of our findings relates to the role of
the pathologic activation of Erb B2 in promoting demyeli-
nation (11,12,32). Although myelin thinning can be ob-
served in sural nerve of long-term (9 months) diabetic
mice (23), we observed no major changes in expression of
P0 in sciatic nerve at the earlier time points used in our
study (supplemental Fig. 4). The contribution of Erb B2
activation to rapid demyelination after axotomy (11) or
infection with leprosy bacilli (12) may result from prefer-
ential activation of the p42/p44 mitogen-activated protein
kinase (MAPK) that has been implicated in promoting
demyelination (12,31). Although activation of p42/p44
MAPKs has been observed in DRG from 8- to 12-week
diabetic rats (40,41), p42/p44 MAPKs did not increase in
activity in sural nerve (41). It is possible that rapid

FIG. 4. Verification of the tissue specificity of the rtTA transgene and
generation of P0-rtTA � caErb B2 bitransgenics. A: mRNA was isolated
from various tissues obtained from a progeny of one founder line, and
cDNA was prepared. The rtTA transcript was amplified by PCR using 2
and 4 �g of total cDNA. The �-actin transcript was amplified by PCR
using 2 �g of total cDNA. The rtTA transcript was enriched in samples
from sciatic nerve despite a low level of �-actin. Br, brain; H, heart; K,
kidney; Li, liver; Lu, lung; M, muscle; SN, sciatic nerve; Sp, spleen. B:
Schematic of PCR strategy for identifying P0-rtTa and TRE-caErb B2
transgenes. C: Identification of several bitransgenic (biTg) and one
nonbiTg progeny from cross of P0-rtTa and TRE-caErb B2 parents.
Bottom panel shows the presence of transgenes in the parents but their
absence in a wild-type (WT) mouse. Amplicons identify the TRE-caErb
B2 (lane a) and P0-rtTA (lane b) transgenes. Lane c is positive control
for the presence of the endogenous P0 promoter.
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FIG. 5. Induction of caErb B2 in sciatic nerve of bitransgenic mice. A:
Bitransgenic mice were placed on standard rat chow (�) or the DOX
diet (�) for 9 weeks. Sciatic nerves were harvested, and immunoblot
analysis was performed for pErb B2, Erb B2, and �-actin. B: Bitrans-
genic mice were placed on standard rat chow (�) or the DOX diet (�)
for 9 weeks, and the DOX diet was replaced (�) with standard rat chow
for 3 weeks. Sciatic nerves were harvested, and immunoblot analysis
was performed for pErb B2 and Erb B2.
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activation of Erb B2, such as occurs after axotomy (11),
may preferentially couple to pathways promoting demyeli-
nation or that reparative mechanisms do not have suffi-
cient time to counteract/attenuate the degenerative
signals. Because our evidence clearly supports that Erb B2
activation is sufficient to contribute to the neurophysiolog-
ical deficits associated with a more chronic and prolonged
stress induced by diabetes, less robust degenerative sig-
nals may be generated and/or the dynamic repair of nerve
dysfunction in early stage DPN may help avoid overt
demyelination. However, longer-term pharmacologic stud-
ies are needed to determine if Erb B2 may contribute to
myelin thinning and decreased axonal caliber. Although
the mechanism by which Erb B2 may alter MNCV is
unclear, recent data suggests that Erb B2 can increase p38
MAPK activity and upregulate matrix metalloproteinase
nine (42). Because inhibition of p38 MAPK improves nerve
conduction velocity deficits (43), it is tempting to specu-
late that Erb B2 may provide an upstream signal that
contributes to p38 MAPK activation.
A role for Cav1 in regulating SC signaling by neu-
regulins. Cav1 is upregulated during myelination (44), but
its role in SC function remains poorly defined. Although
Cav1 may help organize components of the myelin mem-
brane because of its ability to serve as a scaffolding protein
(45), this function is not necessary for myelination be-
cause peripheral nerves from adult Cav1 knockouts show
little morphologic difference compared with wild-type
nerve. However, Cav1 is also known to regulate cell
signaling cascades in glial cells (45), and its downregula-
tion enhanced neuregulin-induced demyelination of SC/
DRG neuron cocultures (18). Although Cav1 expression is
downregulated in both diabetic kidney (46) and nerve (17),
it remained unclear whether it may affect the physiological
progression of DPN and if this may be related to altered
Erb B2 activity. Our data suggest that Cav1 does play a
modulatory role in the development of specific aspects of
DPN because the Cav1 knockout mice developed a more
severe deficit in MNCV that correlated with an increase in
Erb B2 activation. Erb B2 activation contributed to both
the MNCV deficits and mechanical hypoalgesia because
they were reversed by PKI 166 or erlotinib. Although these
data suggest that Cav1 may serve as an endogenous
regulator of the pathologic activation of Erb B2, its expres-
sion does not affect the basal activity of Erb B2 because no
differences were noted in MNCV or mechanical sensitivity
between nondiabetic knockout and wild-type mice. This
discrepancy raises the possibility that changes in Erb B2
localization may be necessary for producing degenerative
signals and that the absence of Cav1 in this compartment
may directly or indirectly affect receptor activation.

It is surprising that the diabetic Cav1 knockout mice
showed an enhanced magnitude of thermal hypoalgesia
compared with the diabetic wild-type animals. Altered Erb
B2 activity could not account for this difference because
erlotinib was unable to promote recovery of the thermal
hypoalgesia. Similarly, Erb B2 induction did not alter
thermal sensitivity in the bitransgenic mice. At the heating
rate and maximum temperature threshold (�42°C) used in
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FIG. 6. Induction of caErb B2 induces a mechanical hypoalgesia and
decreased MNCV. A: Bitransgenic mice (n � 12) were assessed for
baseline mechanical sensitivity at week 0. Animals were placed on
standard rat chow (n � 5) or the DOX diet (n � 7), and mechanical
sensitivity was measured weekly. *P < 0.05 compared with time-
matched control; †P < 0.05 compared with week 0. The mechanical
hypoalgesia improved upon withdrawal of the DOX diet after 9 weeks
(arrow). ^P < 0.01 compared with response at 9 weeks on DOX diet. B:
Bitransgenic mice were maintained on the DOX diet (n � 5–7) or
standard rat chow (n � 5–7) for the indicated time, and MNCV and
SNCV were assessed. After 12 weeks, the DOX diet was replaced with

standard rat chow for 3 weeks (n � 5). *P < 0.05 compared with
time-matched control minus DOX diet; ^P < 0.01 compared with plus
DOX at 12 weeks. C: Bitransgenic mice were given standard rat chow
(n � 7) or the DOX diet for 4 weeks. DOX-treated animals received
either vehicle (n � 5) or 25 mg/kg PKI 166 (n � 5) biweekly for 3
weeks, and MNCV was measured. *P < 0.05 compared with minus DOX
diet. ^P < 0.01 compared with plus DOX and drug vehicle.
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our study, unmyelinated C fibers should primarily be
activated (36). Because thinly myelinated type II A� fibers
can have some overlapping thermal sensitivity with C
fibers (36), it is possible that loss of Cav1 may affect
thermal nociceptors in these afferents. However, to the
best of our knowledge, Cav1 is not expressed in the
terminals of small- to medium-diameter sensory neurons
and is not known to affect vanilloid receptors. Although
loss of iENFD can contribute to thermal hypoalgesia, no
fiber loss was observed in the 6-week-diabetic wild-type or
Cav1 knockout mice. Thus, the enhanced thermal hypoal-
gesia is possibly related to metabolic differences between
the genotypes.

In summary, considerable evidence supports that an
altered neurotrophism contributes to sensory neuron de-
generation in DPN (9). We provide genetic and pharmaco-
logical evidence that pathological activation of Erb B2
receptors in SCs also contributes to the pathophysiologi-
cal progression of DPN. Given the critical role of
neuregulins in SC biology, we propose that an altered
neuregulinism may contribute to axo-glial dysfunction and
affect responses mediated by small, myelinated afferents.
Further, as diminished tactile sensitivity is a feature of
DPN, it will be important to determine if changes in Erb B2
signaling may also impact larger A� fibers innervating
Meissner or Pacinian corpuscles (47). Targeting Erb B2
signaling may provide a novel therapeutic approach to-
ward ameliorating some of the symptoms associated with
DPN in humans.
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