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ABSTRACT
Objective Adverse drug reaction (ADR) is one of the
major causes of failure in drug development. Severe
ADRs that go undetected until the post-marketing phase
of a drug often lead to patient morbidity. Accurate
prediction of potential ADRs is required in the entire life
cycle of a drug, including early stages of drug design,
different phases of clinical trials, and post-marketing
surveillance.
Methods Many studies have utilized either chemical
structures or molecular pathways of the drugs to predict
ADRs. Here, the authors propose a machine-learning-
based approach for ADR prediction by integrating the
phenotypic characteristics of a drug, including indications
and other known ADRs, with the drug’s chemical
structures and biological properties, including protein
targets and pathway information. A large-scale study
was conducted to predict 1385 known ADRs of 832
approved drugs, and five machine-learning algorithms for
this task were compared.
Results This evaluation, based on a fivefold cross-
validation, showed that the support vector machine
algorithm outperformed the others. Of the three types of
information, phenotypic data were the most informative
for ADR prediction. When biological and phenotypic
features were added to the baseline chemical
information, the ADR prediction model achieved
significant improvements in area under the curve (from
0.9054 to 0.9524), precision (from 43.37% to 66.17%),
and recall (from 49.25% to 63.06%). Most importantly,
the proposed model successfully predicted the ADRs
associated with withdrawal of rofecoxib and cerivastatin.
Conclusion The results suggest that phenotypic
information on drugs is valuable for ADR prediction.
Moreover, they demonstrate that different models that
combine chemical, biological, or phenotypic information
can be built from approved drugs, and they have the
potential to detect clinically important ADRs in both
preclinical and post-marketing phases.

INTRODUCTION
The US public spends billions of dollars on
prescription drugs every year, resulting in a signifi-
cant healthcare burden from adverse drug reactions
(ADRs). ADRs are defined as those unintended and
undesired responses to drugs beyond their antici-
pated therapeutic effects during clinical use at
normal doses.1 It is estimated that 6e7% of
hospitalized patients experience severe ADRs each
year with a potential of 100 000 deaths, which
makes it the fourth largest cause of death in the

USA.2 Within the past 10 years, both reported
ADRs and related deaths have increasedw2.6 times
and led to a number of drug withdrawals, with
rofecoxib (Vioxx) and cerivastatin (Baycol) among
the most prominent examples.3 4 Therefore, it is
extremely important to predict and monitor
a drug’s ADRs throughout its life cycle, from
preclinical screening phase to post-market
surveillance.
The fundamental method for predicting or

assessing potential ADRs early in the drug devel-
opment pipeline is the application of preclinical in
vitro safety profiling by testing compounds with
biochemical and cellular assays.5 However, experi-
mental detection of ADRs using extensive in vitro
safety pharmacology profiling remains challenging
in terms of cost and efficiency.5 For post-market
surveillance, it often relies on public databases
containing ADR reports voluntarily submitted by
physicians,6e15 which take time to accumulate
before a signal can be detected. Recently, a large
amount of effort has been devoted to developing in
silico approaches to predict ADRs using available
large public datasets of drugs, at both preclinical16

and post-market17 stages. Most of these methods
have used either chemical structure or protein
target information on drugs to build the prediction
models, and some have shown promising
results.18e27

In this study, we proposed a new drug surveil-
lance framework by investigating three types of
information for ADR prediction: (1) chemical
properties such as compound fingerprints or
substructures; (2) biological properties including
protein targets and pathways; and (3) phenotypic
properties including indications and other known
ADRs if available. Our evaluation showed that the
phenotypic information (when available) largely
improved the performance of ADR prediction
models. The framework suggests an efficient way
to optimize ADR prediction by combining different
types of information at the different stages of
drug surveillance (eg, ‘chemical + biological’ for
preclinical drug screening and ‘chemical + biolog-
ical + phenotypic’ for post-market surveillance).

Background
A number of computational methods have been
developed to predict potential ADRs from
preclinical characteristics of the compounds or
screening data and post-marketing evidence.
Existing efforts to predict ADRs from preclinical
data can be categorized into protein-target-based

< An additional table is
published online only. To view
this file please visit the journal
online (www.jamia.bmj.com/
content/19/e1.toc).
1Department of Biomedical
Informatics, Vanderbilt
University, School of Medicine,
Nashville, Tennessee, USA
2Bioinformatics and
Computational Life Sciences
Laboratory, Information and
Telecommunication Technology
Center, University of Kansas,
Lawrence, Kansas, USA
3Department of Electrical
Engineering and Computer
Science, University of Kansas,
Lawrence, Kansas, USA
4Department of Biostatistics,
Vanderbilt University, School of
Medicine, Nashville, Tennessee,
USA
5Division of General Internal
Medicine, Vanderbilt University,
School of Medicine, Nashville,
Tennessee, USA
6Geriatric Research Education
and Clinical Care, Veterans
Health Administration, Nashville,
Tennessee, USA

Correspondence to
Dr Hua Xu, Department of
Biomedical Informatics,
Vanderbilt University, School of
Medicine, 2209 Garland Ave,
EBL 412, Nashville, TN 37232,
USA; hua.xu@vanderbilt.edu

ML and YW contributed equally
to this study.

Received 14 November 2011
Accepted 30 March 2012

This paper is freely available
online under the BMJ Journals
unlocked scheme, see http://
jamia.bmj.com/site/about/
unlocked.xhtml

e28 J Am Med Inform Assoc 2012;19:e28ee35. doi:10.1136/amiajnl-2011-000699

Research and applications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213404800?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and chemical-structure-based approaches. The underlying prin-
ciple of the protein-target-based approach is that drugs with
similar in vitro protein-binding profiles tend to exhibit similar
side effects.18 Scheiber et al20 demonstrated the concept by
comparing pathways affected by toxic compounds versus those
affected by non-toxic compounds. Fukuzaki et al21 proposed
a method to predict ADRs using sub-pathways that share
correlated modifications of gene-expression profiles in the pres-
ence of the drug of interest. However, their work depends on the
availability of gene-expression data observed under chemical
perturbations by the drug. Xie et al22 developed a chemical
systems biology approach to identify off-targets of a drug by
docking the drug into binding pockets of proteins that are
similar to its primary target. Then the drugeprotein interaction
pair with the best docking score was mapped to known bio-
logical pathways to identify potential off-target binding
networks of the drug. However, scalability of the method is
hindered by its requirement for protein three-dimensional
structures and known biological pathways.

Alternatively, the chemical-structure-based approach
attempts to link ADRs to their chemical structures. As a proof-
of-concept, Bender et al23 explored the chemical space of drugs
and established its correlation for ADR prediction. Scheiber
et al24 presented a global analysis that identified chemical
substructures associated with ADRs, but the method was not
designed to predict ADRs for any specific drug molecule.
Yamanishi et al25 proposed a method that predicted pharmaco-
logical effects from chemical structures and then used the effect
similarity to infer drugetarget interactions. Hammann et al26

employed decision tree modeling to determine the chemical,
physical, and structural properties of compounds that predis-
pose them to causing ADRs. Notably, ADR-predictive models
developed on preclinical characteristics could provide additional
evidence to support potential signals from post-marketing
surveillance. For example, a recent study by Pouliot et al17

utilized screening data from the PubChem BioAssay28 database
to determine the correlation of post-marketing ADRs with drug
bioactivity across vast BioAssay screens. However, most of these
methods were not designed to predict high-dimensional side-
effect profiles for drugs. In order to accomplish this goal, Pauwels
et al27 developed a sparse canonical correlation analysis method
to predict high-dimensional side-effect profiles of drug molecules
based on their chemical structures.

Despite the success of using chemical and biological infor-
mation of drugs for ADR prediction, few studies have investi-
gated the use of phenotypic information (eg, indication and
other known ADRs). Existing resources, such as the SIDER29

(Side Effect Resource) database, contain comprehensive drug
phenotypic information such as indications and known ADRs.
Such phenotypic information has been demonstrated to be
useful for other drug-related studies. For example, Campillos
et al19 identified new drug targets by comparing the similarity of
side effects of drugs. Here, we propose to investigate the use of
phenotypic information on drugs, together with chemical and
biological properties, to predict ADRs. Similarly to the work by
Pauwels et al,27 we conducted a large-scale study to develop and
validate the ADR prediction model using 1385 known ADRs for
832 FDA (US Food and Drug Administration)-approved drugs in
SIDER29 using various machine learning (ML) algorithms. In
addition, we comprehensively evaluated different combinations
of features to see how each feature set contributes to prediction
accuracy. Our experimental results show that integration of
chemical, biological, and phenotypic properties outperformed
the chemical-structured-based method and has the potential

to detect clinically important ADRs at both preclinical and
post-market phases for drug surveillance.

METHODS
Data description
To build and evaluate the proposed ADR-prediction model, we
used data from SIDER.29 SIDER presents an aggregate of
dispersed public information on drug side effects and indica-
tions. SIDER extracted information on marketed medicines and
their recorded ADRs from public documents and package inserts,
which resulted in a collection of 888 drugs and 1385 side-effect
keywords. There are a total of 61 102 associations between drugs
and side-effect terms in SIDER, and each drug has an average of
68.8 side effects.
The chemical structures of drugs were collected from

PubChem,30 31 biological properties were obtained from the
DrugBank32e34 and KEGG,35e37 and phenotypic data were from
SIDER.29 To link these databases, we mapped drugs in SIDER to
DrugBank.32e34 Fifty-six drug names from SIDER could not be
mapped to their respective DrugBank IDs, resulting in a final
dataset of 832 drugs, each of which has a ‘Yes’ or ‘No’ label for
each of the 1385 side effects, indicating whether a drug has
a specific side effect or not.
The PubChem, DrugBank, and KEGG databases comprise data

that are available during chemical and animal trials, and are
available before or during phase I clinical trials. However, the
phenotypic data from SIDER are collected from phase I all the
way through phase IV post-marketing surveillance. As such, this
work describes a surveillance framework that allows pre-human
association detection all the way through pre-marketing clinical
trial phases to post-marketing surveillance. Figure 1 provides
a visualization of the proposed ADR-prediction framework at
different phases of drug surveillance.

Features
Each drug is associated with a 1385 dimensional binary side-
effect profile, y, whose elements correspond to the presence or
absence of each of the side-effect concepts with 1 or 0, respec-
tively. Each drug is also associated with three types of feature:
chemical, biological, and phenotypic properties. Table 1 shows
the subgroups of each feature type, its source, and dimension. To
encode the drug’s chemical structure, we used fingerprints
corresponding to 881 chemical substructures defined in
PubChem.30 31 The biological properties consisted of drug

Figure 1 Overview of the proposed framework for drug surveillance.
Different combinations of features can be used for different phases of
drug surveillance. Chemical structures and relevant proteins of drugs can
be combined to predict potential adverse drug reactions (ADRs) in the
early phase of drug development. As drug indication and other ADRs
become available, they can be integrated with chemical and biological
information for post-market surveillance.
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protein targets, transporters (for drug transportation), enzymes
(for drug metabolism), and derived pathway information from
the protein targets. Information on the protein targets, trans-
porters, and enzymes of a given drug was directly obtained from
DrugBank.32e34 Each drug target was then mapped to the
corresponding KEGG pathway35e37 through its protein-coding
gene symbol. The phenotypic information included indications
and other known ADRs of drugs. Both sets of data were
obtained directly from SIDER. Therefore, for a particular ADR yi,
each drug is represented by its chemical, biological, and pheno-
typic properties as a 4276 (881+1142+2253) dimensional vector
in which each element is either 1 or 0, respectively, for the
presence or absence of each PubChem substructure, drug target,
transporter, enzyme, KEGG pathway, indication, and remaining
known ADRs.

Experimental design
In this study, we treat the ADR-prediction task as a classic
binary classification problem where each drug either causes or
does not cause a particular ADR. For each ADR, we built
a classifier and evaluated its performance using 832 drugs as
samples. We then repeated the process for each of the 1385
ADRs and summarized performance across all ADRs.

Evaluation was designed from different angles. First, we
assessed the contributions of each feature type and their
combinations to ADR prediction, using a fixed algorithm,
support vector machine (SVM). Next, we compared the
performance of five ML algorithms in predicting ADRs using an
optimized feature set. Owing to the abundant variance of ADRs,
we suspected that common ADRs (with more positive samples)
might behave differently. Therefore we defined a subset of
common ADRs, which were ADRs associated with more than
50 of the 832 drugs (denoted as ‘ADR_50+’). We evaluated the
performance of these ADRs separately and compared it with the
performance of all ADRs.

ML algorithms
Five ML algorithmsdlogistic regression (LR), naïve Bayes (NB),
K-nearest neighbor (KNN), random forest (RF), and SVMdwere
investigated for the prediction task. To build the LR model,
we used the L2-regularized logistic regression solver in
LIBLINEAR.38 An object-oriented Matlab(R) ML package called
CLOP39 was used to implement the NB classifier. The popular
ML software, WEKA,40 was used for the KNN and RF modeling.
Lastly, LIBSVM41 was applied as the SVM learner for prediction.

Evaluation
Model evaluation
For each ADR, a classifier was built and evaluated using a five-
fold cross-validation on 832 drugs. As a consequence, n classifiers
will be constructed for n side effects where n is 1385. Perfor-
mance of the proposed method was assessed by a receiver
operating characteristic (ROC) curve, which is a graphical plot

of sensitivity or true positive rate against false positive rate (1 �
specificity). Sensitivity is defined as the proportion of actual
positives that are correctly identified as such (ie, SN ¼ TP/(TP
+FN)), and specificity measures the proportion of actual nega-
tives that are correctly predicted as such (ie, SP ¼ TN/(TN
+FP)), where FN is false negative, FP is false positive, SN is
sensitivity, SP is specificity, TP is true positive, and TN is true
negative. The ROC curve can be plotted by varying threshold
values for prediction scores above which the output is predicted
as positive and negative otherwise.
Area under the ROC curve (AUC), accuracy, precision, and

recall were calculated as well. AUC provides a single measure-
ment of the performance of a ROC curve. Accuracy (ACC) is the
proportion of true results obtained (ie, ACC ¼ (TP + TN)/(TP +
FP + FN + TN)). Precision (P) is defined as the proportion of
true positives against all predicted positive results (ie, P ¼ TP/
(TP+FP)). Recall is also known as the true positive rate or
sensitivity, which is defined above.
To summarize the global performance across 1385 ADRs,

there are two possible approaches. One can compute an evalu-
ation measure for each ADR and then average the measures over
all ADRs to obtain an overall score, which is called macro-
averaging. Another approach is to merge the prediction scores
for all drugs over all ADRs, and then compute the overall
measure, which is referred to as micro-averaging. The study by
Pauwels et al27 reported a global AUC across all ADRs by
merging the prediction scores for all ADRs into one big matrix
and drawing a global ROC curve from the matrix, which is
a similar approach to micro-averaging. Here, we followed their
approach to generate the global AUC and accuracy. In addition,
we reported micro-averaging precision and recall. The reported
accuracy, precision, and recall were obtained from the best cut-
off points or operating points of the global ROC curve, so that
it gives the best tradeoff between false positives and false
negatives.

Statistical significance test
In order to assess whether the improvement in performance by
adding feature spaces to the baseline chemical space is signifi-
cant, the two-sample KolmogoroveSmirnov test (KS test)42 43

was computed. The two-sample KS test is a general non-para-
metric method for comparing two samples to test whether the
two underlying probability distributions differ. We calculated
the KS test over the AUC scores generated by different feature
sets for each ADR. For example, in the case of comparing the
baseline chemical space ‘chem’ with the combined set ‘chem
+bio’, a set of AUC scores is generated for predicting each of the
1385 ADRs using each feature set, and then the KS test assesses
if the AUC scores generated by ‘chem+bio’ are stochastically
larger than the scores generated by ‘chem’. Finally, since we
were making multiple comparisons for different feature pairs,
the p values from the KS test were corrected by Bonferroni
correction.44

Clinical validation
To demonstrate the clinical significance of the proposed model,
we evaluated the model’s ability to predict post-market ADRs
that caused the withdrawals of cerivastatin (Baycol) and rofe-
coxib (Vioxx). Cerivastatin is a statin used to lower cholesterol
and prevent cardiovascular disease and was voluntarily with-
drawn from the market in 2001 because of reports of fatal
rhabdomyolysis. Rofecoxib is a non-steroidal anti-inflammatory
drug used to treat osteoarthritis, acute pain conditions, and
dysmenorrhea, and was withdrawn in 2004 over safety concerns

Table 1 Data features integrated in this study

Feature type Specific feature Source Dimension

Chemical Substructures PubChem 881

Biological Targets DrugBank 786

Transporters DrugBank 72

Enzymes DrugBank 111

Pathways KEGG 173

Phenotypic Treatment indications SIDER 869

Other side effects SIDER 1384
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about increased risk of heart attack. A physician manually
reviewed both drugs’ ADRs in SIDER and identified seven ADRs
related to rhabdomyolysis for Baycol and four ADRs related to
heart attack for Vioxx (see table 4). For each of the 11 ADRs, we
built a prediction model based on the remaining drugs and
applied it to either Baycol or Vioxx. To compare the effect of
different feature sets, we reported the prediction results for
‘chem’, ‘chem+bio’, and ‘chem+bio+pheno’. As these seven
ADRs related to rhabdomyolysis correlated highly and the use of
the other six ADRs as features to predict the remaining ADR
may make the task easier, we created a higher-level ADR for
rhabdomyolysis by grouping all seven ADRs into one (the
same applies for heart attack). We then built the prediction
models and reported the performance of the grouped ADRs for
rhabdomyolysis as well as for heart attack.

RESULTS
Feature assessment
First, we assessed the abilities of different feature combinations to
predict known side effects using SVM through a fivefold cross-
validation with chemical structures as the baseline feature. To
conduct a fair and accurate comparison across different feature
sets, the same experimental conditions were maintained by using
the same training drugs and test drugs for each fold. SVM
parameters were empirically optimized using the AUC as an
objective function. The best results for SVM were obtained by
a Radial Basis Function (RBF) kernel with kernel parameter g ¼
0.008 and penalty parameter C¼ 2. When chemical structure alone
was adopted, the best resulting AUC was 0.9054, which is similar
to the finding (AUC ¼ 0.8930) of Pauwels et al.27 Figure 2 shows
the ROC curves for different feature sets based on cross-validation
experiments, and table 2 summarizes the evaluation results.

When the feature spaces were compared independently (table 2),
the phenotypic features appeared to be the most informative
(highest AUC of 0.9542), and ‘chem’ and ‘bio’ achieved similar
AUC. Adding biological features on top of chemical structures
improved AUC slightly (from 0.9054 to 0.9098), whereas the
increase obtained by adding phenotypic features was dramatic
(from 0.9054 to 0.9526). When all three levels of features were
combined (‘chem+bio+pheno’), the performance was almost
the same as the ‘chem+pheno’ or ‘pheno’ alone. For example,
the ROC curves of ‘chem+pheno’ and ‘chem+bio+pheno’ in
figure 2 almost overlap. On the other hand, if we focus on
precision and recall, the improvement by adding biological
features was more obvious (w3% in precision and w1% in
recall). Adding the phenotypic features yielded much larger
increases, with w21% in precision and w15% in recall. Statis-
tical analysis using the KS test42 43 showed that the improve-
ment in AUC was significant for the addition of biological

features to the chemical features (p ¼ 1.45E-07), as well as for
the addition of biological and phenotypic features to the
chemical features (p ¼ 1.10E-15). Compared with ‘pheno’ alone,
the addition of ‘chem’ and ‘bio’ produced a reduction in the
global AUC; however, the reduction was not statistically
significant according to the KS test (p¼0.177).
The resulting ROC curves of the common ADRs (ie, ADR_50+)

are shown in figure 3, and corresponding results are summarized
in table 2. When compared with the results of all ADRs, a decrease
in AUC and accuracy was observed as expected because rare
ADRs that may distort the measures were excluded from the
calculation. Thus in figure 3, there are larger separations between
the ROC curves. For instance, when all ADRs were used in the
calculation, the biological properties only increased the AUC by
0.004, but when we only considered the common ADRs, the
increment was 0.02.

Method comparison
We compared the abilities of five ML algorithmsdLR, NB, KNN,
SVM, and RFdto predict known side effects of drugs by a five-
fold cross-validation using all chemical, biological, and pheno-
typic properties as the feature set. Parameters for all classifiers
presented here were empirically optimized using the AUC score.
The best result for LR was obtained with parameters C ¼ 10 and
epsilon ¼ 1, and for KNN the optimized number of neighbors is
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Figure 2 Receiver operating characteristic curves in fivefold cross-
validation for various feature sets using support vector machine: (1)
chemical structures, ‘chem’; (2) biological properties, ‘bio’; (3)
phenotypic properties, ‘pheno’; (4) chemical and biological properties,
‘chem+bio’; (5) chemical and phenotypic properties, ‘chem+pheno’; (6)
chemical, biological, and phenotypic properties, ‘chem+bio+pheno’.

Table 2 Feature comparisondperformance of SVM over all versus common ADRs

Feature set

ADR_All ADR_50+

AUC ACC Precision Recall AUC ACC Precision Recall

Chem 0.9054 0.9538 0.4337 0.4925 0.7659 0.8268 0.4539 0.5569

Bio 0.9069 0.9543 0.4324 0.5043 0.7729 0.8287 0.4666 0.5521

Pheno 0.9542 0.9678 0.6607 0.6460 0.9175 0.8891 0.6933 0.7142

Chem+bio 0.9098 0.9551 0.4623 0.5008 0.7849 0.8327 0.4776 0.5728

Chem+pheno 0.9526 0.9669 0.6488 0.6443 0.9141 0.8857 0.6757 0.7215

Chem+bio+pheno 0.9524 0.9669 0.6617 0.6306 0.9138 0.8856 0.6750 0.7227

ADR_All considers all ADRs and ADR_50+ are the common ADRs caused by at least 50 drugs. All AUC, ACC, Precision, and Recall are micro-averages across ADRs in the corresponding
dataset.
ACC, accuracy; ADR, adverse drug reaction; AUC, area under the receiver operating characteristic curve; Bio, biological property; Chem, chemical structure; Pheno, phenotypic property; SVM,
support vector machine.
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k ¼ 55. For RF, we grew 100 decision trees in each ensemble.
ROC curves of the five methods are shown in figure 4. AUC
and accuracy over all ADRs versus the common ADRs are
summarized in table 3.

As shown in figure 4, SVM performed the best followed by RF,
KNN, NB, and LR. For LR, NB, and KNN, the AUC score is
almost the same when calculated across all ADRs, but diverges
greatly when calculated across the common ADRs. Neverthe-
less, all measures of RF and SVM outperform others by a large
margin. Although over all ADRs, AUC scores of SVM and RF are
almost the same, SVM produced a higher precision of 66.17%
and recall of 63.06% compared with RF (63.10% for precision
and 62.50% for recall).

Clinical validation examples
Table 4 shows the prediction results on ADRs related to rhab-
domyolysis for Baycol and heart attack for Vioxx. Prediction

performance was in the order ‘chem’ < ‘chem+bio’ < ‘chem
+bio+pheno’. The classifiers based on ‘chem’ detected only one
ADR related to rhabdomyolysis and none for heart attack. The
classifiers based on ‘chem+bio’ detected five of seven rhabdo-
myolysis-related ADRs, but none for heart attack. For the clas-
sifiers using all features, five of seven rhabdomyolysis-related
ADRs and two of four heart attack-related ADRs were predicted
successfully. For the two grouped ADRs for rhabdomyolysis and
heart attack, all classifiers predicted them successfully, which
was probably due to increased sample sizes after grouping.

DISCUSSION
In this study, we conducted a large-scale ADR prediction of FDA-
approved drugs and investigated three types of feature: (1)
chemical structures; (2) biological propertiesdprotein targets,
transporters, enzymes, and pathways; (3) phenotypic charac-
teristicsdindication and other known ADRs. Our evaluation
showed that drug phenotypic information (when available) is
informative for ADR prediction, indicating its potential use for
early detection of post-market ADR signals. In addition, our
study demonstrated that the combination of chemical and bio-
logical features improved the AUC as well as precision (w3%
increase) and recall (w1%), suggesting that such a data fusion
approach is promising for preclinical screening of potential
ADRs. The combination of all three types of information (‘chem
+bio+pheno’) had lower global AUC than the ‘pheno’-only
classifier (but this was not statistically significant), indicating
that the simple feature combination method may not work well
in this case. We then compared the true positive predictions by
classifiers that used individual feature sets (‘chem’, ‘bio’, or
‘pheno’) and measured the overlap between each pair of classi-
fiers. As shown in figure 5, 5072 ADRs were detected by ‘chem’

or ‘bio’ but not by ‘pheno’, and 10 581 ADRs were detected by
‘pheno’ but not by ‘chem’ or ‘bio’, indicating that ADRs
predicted by each feature type are complementary, and higher
performance could be achieved through development of more
advanced methods for feature integration. We further analyzed
the significance of associations between each of the 4276 features
and each of the 1385 ADRs using c2 statistics in which a feature
is regarded as informative if the p<0.05. Distribution of the
informative features is shown in online supplementary table S1.
During revision of this paper, Cami et al45 published a similar

study, where they proposed an integrative approach for
predicting new ADRs by utilizing structure attributes of the
network formed by known drugeADR relationships from drug
safety data, as well as specific drug information including
Anatomical Therapeutic Chemical taxonomy, molecular
descriptors, and Medical Dictionary for Regulatory Activities
(MedDRA) taxonomy of adverse events. Thus we believe that
the models built on large-scale approved drugs have the poten-
tial to detect clinically important ADRs at both preclinical and
post-market phases for new drugs.
In a further analysis, we found that the contribution of

phenotypic features was mostly due to other known ADRs
rather than indications. A major reason that existing ADRs
contributed significantly to performance could be the existence
of high correlations between ADRs. For instance, nausea and
headache co-occurred with 596 of the total 832 drugs, and 49
pairs of ADRs co-occurred with more than 400 drugs. As SIDER
represents ADRs as unified medical language system (UMLS)46

concept unique identifiers (CUIs), one side effect may be
represented by a group of CUIs (see table 4 for seven concepts
related to rhabdomyolysis). To predict one ADR CUI by using
other ADR CUIs in the same group may introduce biases and
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validation on various feature sets for common adverse drug reactions
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overestimate the performance of the model. Therefore, an
appropriate grouping schema for ADRs will be investigated in
the future. The drug indication information only improved the
AUC slightly from 0.9054 (ie, chemical structures only) to
0.9110 (ie, chemical structures + indications). One possible way
to improve this is to build a better representation of the indi-
cation data. Currently, similar diseases with different CUIs were
observed for drug indications in SIDER, for example, C0019693
for ‘HIV infection’ and C0019699 for ‘HIV positive’. Thus, for
future work, it may be useful to group the indications.

The improvement produced by biological features was not as
much as we initially expected, which may be the result of a few
issues. First, the body’s response to a drug is a complex process.
When a drug enters the body and interacts with its intended
targets, favorable effects are expected. However, at the same
time, a drug often binds to other protein pockets with varying
affinities (off-target interactions), leading to observed side
effects. Furthermore, the biological features (ie, protein targets,
transporters, enzymes, and pathway) used in this study are
relatively simple and probably do not provide the details of
molecular processes associated with the drugs.

One problem with the proposed ADR prediction model is
imbalanced samples. Of the 1385 ADRs in our dataset, 554 were
observed to be associated with fewer than five drugs. Therefore,
for these ADR predictions, the dataset has an approximate 1:166
positive to negative ratio, which causes a serious problem for
classification algorithms. In the case of an imbalanced classifi-
cation problem such as this, the large preponderance class will
dominate the decision process, which produces classification bias

toward the majority class (negative class in this case). As
a result, the precision for these ADR predictions would be close
to 0%, but accuracy would be near 100%. To compare with
results reported in Pauwels et al,27 we followed their approach to
report global AUC values. However, owing to the imbalance
problem, the global AUC could be very high (over 0.9 in this
task), but the actual ability to detect and predict positive
samples (the ADRs) could be low. Therefore we reported preci-
sion and recall in addition to the AUC. As expected, although
‘chem’ features achieved over 0.9 AUC, precision and recall were
<0.5 (table 2). Furthermore, when the global AUC and accuracy
is used, any improvements in the prediction accuracy of the
common ADRs might be diluted by the 554 rare ADRs; thus the
contribution of the feature addition could be severely under-
estimated. For example, after the inclusion of biological prop-
erties, the AUC remained relatively similar, but the precision
actually improved from 43.37% to 46.23%, with relatively
similar recall of 50%. We also analyzed different feature sets by
only focusing on ADRs associated with at least 50 drugs so that
we have sufficient positive samples. As expected, the results
showed more significant contributions by each feature addition
in terms of AUC, accuracy, precision and recall because rare
ADRs that may distort the measures were excluded. For
example, in the case of biological properties, its improvement in
AUC was 0.02 for common ADRs as opposed to 0.004 for all
ADRs.
Different methods have been proposed to address the imbal-

anced classification problem.47e49 As a further analysis, we
tested a simple method for addressing the sample imbalance

Table 3 Algorithm comparison using the full feature set over all versus common ADRs

Method

ADR_All ADR_50+

AUC ACC Precision Recall AUC ACC Precision Recall

LR 0.9102 0.9486 0.4152 0.5671 0.7648 0.8023 0.5321 0.6908

NB 0.9116 0.9527 0.3537 0.6302 0.8627 0.8431 0.3929 0.7214

KNN 0.9161 0.9595 0.5300 0.5787 0.8508 0.8530 0.5633 0.6401

RF 0.9491 0.9653 0.6310 0.6250 0.9052 0.8784 0.6522 0.7057

SVM 0.9524 0.9669 0.6617 0.6306 0.9141 0.8857 0.6750 0.7227

The full feature set here refers to chemical + biological + phenotypic properties. ADR_All considers all ADRs, and ADR_50+ are the common ADRs caused by at least 50 drugs. All AUC, ACC,
Precision, and Recall are micro-averages across ADRs in the corresponding dataset.
ACC, accuracy; ADR, adverse drug reaction; AUC, area under the receiver operating characteristic curve; KNN, K-nearest neighbor; LR, logistic regression; NB, naı̈ve Bayes; RF, random forest;
SVM, support vector machine.

Table 4 Clinical validation examples of cerivastatin and rofecoxib

UMLS CUI
Known ADRs
in SIDER Chem Chem+bio

Chem+
bio+pheno

Cerivastatin (Baycol)

C0035410 Rhabdomyolysis No Yes Yes

C0026848 Myopathy No Yes Yes

C0027121 Myositis No Yes Yes

C0231528 Myalgia Yes Yes Yes

C0026821 Muscle cramps No Yes Yes

C0011633 Dermatomyositis No No No

C0027080 Myoglobinuria No No No

Group above ADRs Yes Yes Yes

Rofecoxib (Vioxx)

C0027051 Myocardial infarction No No Yes

C0008031 Chest pain No No Yes

C0004238 Atrial fibrillation No No No

C0018802 Congestive heart failure No No No

Group above ADRs Yes Yes Yes

ADR, adverse drug reaction; Bio, biological property; Chem, chemical structure; CUI,
concept unique identifier; Pheno, phenotypic property; UMLS, unified medical language
system.

Figure 5 Overlap of the true positive predictions using CHEM
(chemical structure), BIO (biological properties), or PHENO (phenotypic
properties) features.
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problem by adjusting the class weights of the RF and SVM
classifiers (ie, weight ¼ 1 � (class samples/total samples)) and
observed improvement in AUC only for RF (increased from
0.9491 to 0.9524). SVM did not improve with class weight
adjustment because it is very sensitive to parameters; thus
parameters must be reoptimized when weights are adjusted.
In the future, we plan to explore other techniques such as
feature selection and resampling algorithms as suggested
previously.47e49

Furthermore, the clinical validation examples of Baycol and
Vioxx support the utility by detecting post-market adverse drug
events using information from other medications in the database.
For Baycol, the model based on ‘chem’ detected only one ADR
related to rhabdomyolysis, while the use of ‘chem+bio’ was able
to detect five of seven related ADRs, and the addition of ‘pheno’
did not result in more predictions. For Vioxx, ‘chem+bio+pheno’
was required to detect two of four ADRs related to heart attack.
This highlights the utility of chemical and biological data for
detecting and predicting likely adverse events, as well as the need
for incorporating human adverse event data (phenotypic) as in
SIDER to allow detection of other signals. These results suggest
that our model has the potential to make clinically important
ADR predictions early rather than waiting for sufficient post-
market population response data to accumulate.

The study has several limitations, and there is scope for much
future work to be carried out. For one, we would like to inves-
tigate algorithms that have better interpretability, which can
return important features associated with ADRs. Moreover, in
this study, representation for phenotypic features was relatively
simple. More sophisticated methods (eg, categorizing drug
indications via ontologies) could be further examined. Further-
more, a drug acts by inducing perturbations to biological
systems, which involve various molecular interactions such as
proteineprotein interactions, signaling pathways, and pathways
of drug action and metabolism.50 Therefore, in future work, we
also plan to incorporate more detailed features such as interac-
tion networks and drug bioactivities into the integrative
framework for identification of ADRs.

CONCLUSION
This study proposed a new drug surveillance framework for
ADR prediction by integrating chemical (ie, compound signa-
tures), biological (ie, protein targets, transporters, enzymes, and
pathways), and phenotypic (ie, indications and other known
side effects) properties. Using a set of 1385 side effects for 832
drugs from the SIDER database, we developed ML models to
integrate the different sources of information for prediction. Five
ML algorithmsdLR, NB, KNN, RF, and SVMdwere systemat-
ically compared through fivefold cross-validations, and SVMwas
found to outperform the others. The AUC score for SVM was
increased from 0.9054 when only chemical structures were used
to 0.9524 when all three types of information were integrated.
The precision increased from 43.37% to 66.17%, and recall
increased from 49.25% to 63.06%. Most importantly, with
rofecoxib and cerivastatin used as case studies, the proposed
model was able to predict clinically important ADRs. These
results suggest that such data fusion approaches are promising
for large-scale ADR prediction.
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