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Abstract

Four experiments were conducted to test between Decision-Bound, Prototype, and Distribution

theories for the categorization of sounds. Sounds varying in either resonance frequency or

duration were used as stimuli. Different experimental conditions were created by varying the

variance and overlap of two stimulus distributions used in a training phase and varying the size

of the stimulus continuum used in the subsequent test phase. When resonance frequency was

the stimulus dimension, the pattern of categorization-function slopes was in accordance with

the Decision-Bound theory. When duration was the stimulus dimension, however, the slope

pattern gave partial support for the Decision-Bound and Distribution theories. A new

categorization model combining aspects of Decision-Bound and Distribution theories is

introduced which gives a superior account of the slope patterns across the two stimulus

dimensions.
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The categorization of sounds plays an important role in everyday life. On a daily basis we

categorize sounds in our environment as belonging to such basic events as a telephone ringing,

a baby crying or the doors of a train slamming shut. The correct categorization of sounds may

even be of vital importance, such as the hooting of an approaching car. Finally, the recognition

of the sounds and words of spoken language is a form of auditory categorization which

occupies a significant portion of most people’s waking hours.

Despite its importance, auditory categorization has received relatively little attention in

the psychological literature. An overwhelming majority of studies on perceptual categorization

has been devoted to the categorization of simple visual stimuli, such as line segments of

variable lengths and orientations. Three distinct theories of visual categorization have featured

most prominently in the recent literature. Prototype theory (Rosch, 1973; Smith & Minda,

2000) assumes that stimuli are categorized based on their similarity to category prototypes

stored in memory. A category prototype is generally defined as the average, or most typical,

member of a category. Exemplar theory (Nosofsky, 1986), on the other hand, denies the

explicit use of category prototypes. In its extreme formulation, Exemplar theory assumes that

categorization is based on a comparison of the stimulus to all previously categorized exemplars

of all categories. Finally, Decision-Bound theory (Ashby & Perrin, 1988) assumes that

categorization is based on the comparison of the perceptual effect of a stimulus to category

boundaries stored in memory.

Explicit connections between the fields of speech perception and visual categorization

have been sparse. Nevertheless, the hypotheses for the categorization of phonemes that have

been proposed over the years are similar to those for visual categorization, albeit more

qualitative and mathematically less well developed.

One of the most popular research methodologies in speech perception is the phoneme

categorization experiment. In phoneme categorization experiments listeners are presented with
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naturally produced or synthetic speech sounds and are asked to assign the sounds to phonetic

categories. In the most widely employed version of the phoneme categorization experiment,

synthetic stimuli are used in which one or more acoustical parameters of interest, such as

formant frequencies or silence durations, are systematically varied in a number of discrete

steps of equal size to form a stimulus continuum.

Researchers from Haskins laboratories pioneered the use of stimulus continua for

investigating speech perception, showing among other things that the perceived phoneme is

generally influenced by many acoustic parameters distributed over a wide temporal window.

Since these landmark studies, stimulus continua have been employed to investigate many basic

aspects of speech perception, such as the unit of recognition (Nearey, 1997), dependencies in

the categorization of successive phonemes (Massaro & Cohen, 1983; Smits, 2001), the

influence of speaking rate on phonetic categorization (Volaitis & Miller, 1992), and the relative

weights of various acoustic cues to particular phonetic distinctions (Ainsworth, 1968).

Despite the popularity of the phoneme categorization paradigm, we still do not fully

understand how phonetic categories are represented and what listeners actually do in phoneme

categorization experiments. How do we categorize speech sounds? The present study takes a

first step in answering this question, focusing on the categorization of synthetic non-speech

sounds.

In the past, several hypotheses concerning the representation and categorization of

speech sounds have been proposed. Fueled by the ”categorical perception” controversy, early

speech perception experiments were mainly analyzed and discussed in terms of the boundaries

between phonetic categories (e.g., Liberman, Harris, Hoffman & Griffith, 1957). The

suggestion was made that what listeners do in phonetic categorization experiments is evaluate

on which side of the relevant phonetic boundary the perceptual effect of the incoming stimulus

is located. This hypothesis can be viewed as a phonetic implementation of Decision-Bound
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theory mentioned earlier.

It has also been hypothesized that phoneme categories may be represented by prototypes

(e.g., Oden & Massaro, 1978; Kuhl, 1991). In the context of speech perception, Prototype

theory assumes that listeners in phonetic categorization experiments compute the similarity of

an incoming stimulus to each of the relevant category prototypes and categorize the stimulus

on the basis of these similarities.

More recently, Nearey and Miller and colleagues support a more elaborate view of

phonetic category representation which contains more information than just that found for

prototypes. Miller (1994) claims that representations of phonetic categories are essentially

graded. This claim is based on the finding that category members vary in their perceived

category goodness. Miller’s position must be interpreted as mainly contrasting with the

classical categorical perception concept, where members of the same category are thought to

be perceptually entirely equivalent. In principle, graded category structure may derive from a

basic prototype representation, as Miller (1984) acknowledges, where members close to the

prototype are judged better exemplars than members further away from the prototype. Miller

does suggest however, that phonetic categories actually incorporate distributional information.

Nearey and colleagues (Nearey & Assman, 1986; Assman, Nearey & Hogan, 1982; Andruski

& Nearey, 1992; Hillenbrand & Nearey, 1999) take a more quantitative stance. Using the

Normal A-Posteriori Probability (NAPP) model, they modeled listeners’ representations of

vowel categories as multidimensional Gaussian distributions and showed that a-posteriori

vowel probabilities based on their model gave very good predictions of listeners’

categorization for a given set of vowel stimuli. Henceforth, we will indicate the class of

theories which assume that phonetic categories are represented as distributions (of some form)

as the Distribution theory.

Finally, a contemporary hypothesis concerning phonetic categorization simply denies the
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existence or involvement of a sublexical layer in human speech recognition, instead assuming

that words are represented by many, possibly all, previously encountered exemplars of the

word (Johnson, 1997a, b; Goldinger, 1997). Henceforth this categorization theory will be

indicated as the Exemplar theory. From this perspective, phonemes are not explicitly

represented at all and what listeners exactly do in phonetic categorization tasks is not of central

importance in understanding how human speech recognition works. Although it is logically

possible to formulate an exemplar theory of speech perception with a sublexical layer

containing phoneme exemplars, such a theory has, to our knowledge, not been proposed.

Despite twenty years of experimenting, the issue of the basic mechanisms underlying

perceptual categorization has not been resolved. In speech perception research, the number of

experiments addressing the basic mechanisms in phonetic categorization is small as compared

to to research on visual categorization (see, e.g., Maddox & Ashby, 1998; Nosofsky, 1998).

While there is currently no consensus, neither in the fields of speech perception nor of general

perceptual categorization, theories of general perceptual categorization have the advantage that

they are mathematically fully developed and the subject of intense experimental evaluation.

The present research therefore attempts to apply some of the methods and models of the visual

categorization literature to the problem of phonetic categorization.

A major problem hindering a direct transfer of the methods to the speech domain is that

we as experimenters do not have any control over the ”training corpus” that participants have

been exposed to. Throughout their lives, while hearing other people speak, adult listeners have

heard large numbers of instances of the phonemes in their language. Both the basic

categorization mechanism employed by listeners, as well as a number of system ”parameters”

(boundary locations, prototype locations, or distribution covariance matrices) may be based on

this - unknown - training corpus. This poses two problems. First, the training corpus will differ

among listeners, and second, we cannot freely manipulate the training corpus to test certain
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theoretical predictions.

One methodological approach capable of overcoming the difficulties stemming from the

lack of control over the training corpus is to study the categorization of non-speech sounds.

The present study employs this methodology.

Our experimental approach employs the method of Externally Distributed Stimuli

(EDS). We built on the idea of Lee & Zentall (1966) that variation of the training distributions

should cause different categorization theories to predict different patterns of categorization

function slopes. At the same time, however, we wanted to create an experimental situation

which is similar to that of the phonetic categorization experiment. This led us to adopt a

methodology with quite distinct training and test phases. In the experiments reported below,

the EDS method was used for training the participants, who received feedback after every trial.

In the test phase, on the other hand, a stimulus continuum was used and no feedback was

given, thus mimicking the standard phonetic categorization task.

The stimuli used in the present study differ in a number of regards from natural speech

sounds. First, they are non-speech sounds that resemble speech sounds in certain crucial

aspects. We believe that the use of non-speech is warranted because it is the best way to

control for differences in participants’ previous exposure to speech. Second, our stimuli differ

in only a single dimension while natural speech varies along many dimensions (including

frequency, duration, and amplitude). While we acknowledge these differences, we adopt the

present strategy of studying simple auditory stimuli because, relative to visual categorization,

phonemic categorization is as yet not well understood. Only when an account of the

categorization of relatively simple auditory stimuli has been developed can research begin to

address the categorization of more complex signals that will increasingly resemble speech

sounds. The current study should therefore be considered a first step towards understanding

the process of phonetic categorization.
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The remainder of the paper is organized as follows. First, we present the general

methodology for all four reported experiments. Next, the categorization theories are defined

mathematically and their predictions of listeners’ categorization functions are derived.

Subsequently, four experiments are presented which test the theories. Quantitative

model-based analyses are then described including a new categorization model. Finally, the

results are discussed and interpreted within the context of speech perception.

General method

In all experiments reported below we trained listeners on a categorization problem involving

two categories, A and B. Categories A and B were defined by overlapping one-dimensional

Gaussian probability-density functions pdfA and pdfB, characterized by meansµA andµB and

standard deviationsσA andσB. On a given trial in the training phase, a stimulus was randomly

drawn from pdfA or pdfB and played to the listener. He or she had to label the stimulus as

either A or B, after which visual feedback was given on the correct response. After completing

the training phase, listeners entered the test phase. Here they performed the same task, but this

time without getting feedback.

As indicated in the introduction, the methodology that we used for distinguishing

between the four models of categorization had two essential features. First, using the EDS

technique of Lee and Zentall (1966), four different training conditions were used. These were

created by orthogonally combining two levels of variance and two levels of overlap of pdfA

and pdfB. The left-most column of Figure 1 gives a graphical representation of the four

training conditions. Within conditions,σA andσB were always equal. In conditions 1, 2, 3,

and 4, the distance∆µ between meansµA andµB was set to 5, 10, 10, and 20 just-noticeable

differences (jnds), respectively, on the associated psychological dimension. Standard

deviationsσA andσB were 3.704 jnds in conditions 1 and 2, and 7.407 jnds in conditions 3 and
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4. As a result, the overlap of pdfA and pdfB was large in conditions 1 and 3 and small in

conditions 2 and 4, with theoretically optimal classification rates (using a noise-free

boundary-based classification rule) of 75.5% in conditions 1 and 3, and 91.8% in conditions 2

and 4. Table 1 summarizes the numerical parameters of the four training conditions.

Probability-density functions pdfA and pdfB were represented by 110 stimuli each.

Analogous to Lee and Zentall (1966), parameter values were sampled in such a way that the

interval between any pair of consecutive parameter values corresponds to a constant probability

interval on the cumulative distribution function associated with the pdf of the category.

The second feature of our method was that in the test phase we used a stimulus

continuum to scan subjects’ categorization across a relevant section of the psychological

dimensionψ under study. The test phase was therefore similar to the common phonetic

categorization experiment employing a phonetic continuum. In the test phase, the same

stimulus continuum was used across all four training conditions. Thus, any differences in the

resulting categorization functions in the four conditions would be due to differences in training

only. The test continua consisted of 11 stimuli with equidistant parameter values, whose

lowest and highest values coincided with meansµA andµB in condition 4.

The combination of the four distribution-based training conditions and the subsequent

fixed test continuum allowed us to experimentally distinguish between the categorization

theories. As shown below, the theories predict different patterns of categorization function

slopes across the four conditions.

Theoretical predictions

Prototype theory

According to the Prototype theory, the only information about the categories that is

stored is the location of the category prototypes. Assuming Gaussian similarity functions (e.g.,
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Nosofsky, 1986), the probabilityp(A|Si) of assigning stimulusSi, defined by parameter value

ψi, to categoryA is a logistic function (for mathematical derivations, see Appendix A). The

slopes of this logistic function is proportional to the distance between the means of the pdfs

used in the training phase. Therefore the Prototype theory predicts that the slopes of the

categorization functions in conditions 2 and 3 are twice the slope in condition 1, while the

slope in condition 4 is four times bigger than the slope in condition 1, i.e.

s4 = 2s3 = 2s2 = 4s1. This is graphically represented in the second column of Figure 1. The

top panel, associated with condition 1, has the shallowest categorization curves, while the

bottom panel (condition 4) has the steepest. Condition 2 and 3 have equal slopes of

intermediate values.

Distribution theory

The Distribution theory assumes that subjects’ category representations not only include

category means but also measures of spread. When the category distributions are

approximately normal, subjects are assumed to model the categories by normal distributions,

estimating for each category a mean and a standard deviation (for the unidimensional case). As

was the case for the Prototype theory,p(A|Si) is a logistic function ofψi (see Appendix A).

The categorization function’s slopes is proportional to the distance between the means of the

training pdfs divided by their variance. As a result, condition 3 is predicted to have the

shallowest categorization functions, while condition 2 will have the steepest, with a slope that

is four times that for condition 3. The categorization functions for conditions 1 and 4 are

predicted to be identical, with slopes that are two times bigger than the slope in condition 3. In

short,s2 = 2s1 = 2s4 = 4s3.

Exemplar theory
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The Exemplar theory claims that categories are represented by the complete set of

training items, while in the Distribution theory the categories are parametric abstractions of the

training items. Both theories assume a response selection mechanism based on a relative

goodness rule, although some recent versions of exemplar models used a deterministic

response rule (Nosofski & Zaki, 2002).

Irrespective of the values of sensitivity parameterk and Minkowski metric (the power

used in the distance function, see e.g., Ashby & Maddox, 1993) in the Exemplar theory, the

predicted qualitative pattern of slopes across the four conditions for the Exemplar theory is

expected to be identical to the pattern predicted by the Distribution theory: smallest slope in

condition 3, largest in condition 2, and intermediate in conditions 1 and 4. Consequently, the

predicted response patterns for the Distribution and Exemplar theories are expected to be so

similar that they cannot be distinguished experimentally in the present set of experiments.

Henceforth, we will therefore pool the Distribution and Exemplar theories under the heading

Distribution theory. It should be noted, however, that over the years the exemplar model has

been implemented in a variety of ways. Some of these implementations might lead to behavior

that is different from that of the distribution models used in this paper.

Decision-Bound theory

Finally, the predictions for the Decision-Bound theory are straightforward. During

training, subjects are assumed to learn the position of the optimal boundary between categories

A and B. This boundary is subsequently used in the categorization of the test stimuli. If the

psychological effect of a stimulus falls to the left of the boundary, the stimulus is labeled A,

otherwise it is labeled B.

Under the Decision-Bound theory, the slopes of the categorization functions are

determined by perceptual noise only. As the test phase is identical for the four conditions, the
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perceptual noise is also identical, which leads to the prediction that the slopes of the

categorization functions are equal across the four conditions.

Note that the Decision-Bound theory predicts cumulative normal (probit) categorization

functions, rather than the logistic ones predicted by Prototype and Distribution theories. The

two are, however, very similar and difficult to distinguish experimentally. The right-most

column of Figure 1 gives the predicted categorization functions for the four conditions

assuming that the standard deviation of the pdf associated with the perceptual noise equals

3.704 jnds in all four conditions.

Stimulus considerations

The experimental paradigm defined above was applied to two auditory dimensions that

are known to be of major importance in the categorization of speech sounds: frequency of a

spectral prominence or ”formant” and duration. For example, in the categorization of the

English vowels /ε/ and /ae/, as in the words ”bed” and ”bad”, respectively, both vowel duration

and frequency of the first formantF1 are known to play a role with /ε/ having shorter duration

and lowerF1 than /ae/ (e.g., Mermelstein, 1978; Whalen, 1989).

Although we expressly used speech-like dimensions in our stimuli, at the same time we

endeavored to prevent the subjects from explicitly using speech sounds as reference categories.

The reason for this is that the experimental paradigm for distinguishing between the various

theories was based on the systematic variation of the training distributions. If subjects would

nevertheless adopt categorization strategies involving speech categories (”respond A if it

sounds like /ε/ and B if it sounds like /ae/”), our experiments would not measure what they

were intended to measure.

We solved this problem by using a synthetic inharmonic tone complex as the base signal

from which the experimental stimuli were derived. The inharmonic base signal sounded very
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different from speech, whose source is a mixture of a harmonic signal and noise. After taking

the experiment, subjects typically described the sounds as computer sounds, organs, or horns.

The experimental stimuli were created by filtering the base signal, thus creating the

spectral prominence, and truncating the filtered signal to a desired duration. In Experiments 1

and 2 the frequency of the spectral prominence was varied, with all stimuli having the same

duration. In Experiments 3 and 4 the duration of the stimuli was varied, keeping the formant

frequency constant.

Experiment 1

Method

Participants.Sixty-seven students at Nijmegen University were recruited as participants

for Experiment 1. All reported normal hearing and had Dutch as their native language.

Stimuli.As mentioned earlier, all stimuli were derived from a single “base signal”. This

base signal was constructed by adding sinusoids with exponentially spaced frequencies. The

base signalB(t) is defined by

B(t) = A
N∑

n=0

sin(2πf0F
nt) (1)

whereA is a constant amplitude factor,f0 = 500 Hz is the frequency of the lowest partial,

F = 1.15 is the frequency ratio of two successive partials,t represents time, andN = 17 is the

number of partials. The 17 partials constituting the base signal spanned a frequency range of

500 Hz to 4679 Hz.

Next, the base signal was filtered by a single resonance or formant, implemented as a

second order Infinite Impulse Response (IIR) filter. The bandwidth of the filter was .2 times

the filter’s resonance frequency. Finally, the stimulus was truncated to the desired duration,
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applying linear 5 ms ramps at onset and offset to avoid clicks.

In Experiment 1, the frequency of the formant was varied, while stimulus duration was

kept constant at 150 ms. Perceptual representation of frequencies, be it pure tone frequencies

or formant frequencies, is often modeled by the Equivalent Rectangular Bandwidth scale

(ERB, Glasberg & Moore, 1990). The ERB scale, obtained through detailed psychoacoustic

experiments, is designed such that pure tones differing a fixed number of ERBs produce

excitation patterns whose maxmima have a fixed distance along the basilar membrane. We

accordingly applied the earlier defined training-testing scheme (Figure 1) to the formant

frequency expressed in ERBs. We chose to vary the formant frequency roughly within the

natural region of the second formant in speech.

On the basis of formant-frequency discrimination data for isolated stationary vowels,

Kewley-Port and Watson (1994) estimated the Weber fraction for discrimination of formant

frequencies at .015 in the frequency region of the second formant. From this, it follows that at

1500 Hz 1 jnd corresponds to 23 Hz, or .12 ERB. Using the jnd of .12 ERB for formant

frequency and the earlier defined pdf means and standard deviations expressed in jnds (see

Table 1), we defined pdfA and pdfB for the four training conditions along the ERB axis, with

midpoint 1
2
(µA + µB) at 18.7 ERB, which corresponds to 1500 Hz. Table 2 lists the resulting

means and standard deviations, expressed in ERB and Hz, for pdfA and pdfB in conditions 1 to

4.

The stimulus continuum for the test phase contained 11 stimuli. The formant frequencies

of these stimuli were obtained by equidistant sampling of the ERB scale across the interval

[µA4, µB4] (means of pdfA and pdfB in training condition 4), resulting in the following formant

frequencies: 1288, 1329, 1370, 1412, 1455, 1500, 1546, 1593, 1641, 1690, 1741 Hz. The same

test continuum was used in all four experimental conditions.

In order to estimate the discriminability of the stimuli in the test continuum, we carried
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out an AX (same different) discrimination experiment. This experiment is described in the

Appendix. The results showed that the average discriminability of two consecutive stimuli

corresponded to ad′ of 1.0. This value was constant across the stimulus continuum, except for

the pair 7-9, which had a higherd′ than the other pairs.

Procedure.All participants first completed a training phase, after which they entered the

test phase. In the training phase, two blocks of stimuli were presented, each containing all 220

training stimuli in a different randomized order. Different randomizations were used for

different participants. Participants were seated in a soundproof booth in front of a computer

screen. They were asked to assign sounds to either of two categories. On a given trial a

stimulus was presented binaurally through Sennheiser headphones, after which the participant

categorized the stimulus by pressing either of two response buttons labeled A and B. After the

button press the correct response was shown on the screen for 800 ms. The next stimulus was

presented 700 ms after offset of the visual feedback. Before the start of training, participants

were told that it would be impossible to score 100% correct, even towards the end of the

training phase. Training was preceded by five familiarization trails involving stimuli drawn

randomly from the 220 training stimuli. The task for the participant was the same.

The training phase was followed by a short break, after which participants entered the

test phase. Here subjects were presented with 5 blocks of stimuli, each containing a different

randomized ordering of 4 repetitions of each of the 11 test stimuli. Participants were asked to

respond as quickly as possible without sacrificing accuracy. 1.5 s after a button press the next

stimulus was played. No feedback was given on the correct response. After completing the

experiment, participants filled out a short questionnaire asking them (1) to describe their

categorization strategy, (2) whether the sounds were similar to any sound they know, and (3)

whether they thought the stimuli sounded at all like speech sounds. The entire experiment

(training and test phase) took approximately 40 minutes.
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Results

Training. Pilot experiments indicated that a fraction of listeners had not grasped the task

after completion of the training phase. We defined the following objective criterion for

eliminating the data of such participants from the data set: A participant’s data was only used

for further analysis if he or she got at least 34 out of the last 55 training stimuli correct

(corresponding to performing above chance level at thep = .05 level). Nineteen out of 67

participants did not pass the training criterion, and their results were discarded. This left 12

participants per condition who did pass the criterion. For each participant the training data

were divided into eight consecutive blocks of 55 trials and performance (percent correct) was

calculated for each block. Average performance for blocks 1 to 8 in each of the four training

conditions is plotted in Figure 2.

Figure 2 shows evidence of learning over the course of training. The average

improvement from the first to the last training blocks was 15.3 percentage points. An analysis

of variance (ANOVA;MSE = 178) on the difference in performance for blocks 8 and 1 with

independent variable Condition showed that this improvement was significant

(F (1, 44) = 63.6, p < .0005, η2 = .59). There was no significant effect of condition

(F (3, 44) = 1.7, n.s.), so the improvement was equal across the four conditions.

Participants picked up on the task reasonably quickly. Average performance during the

first training block was already 10.6 percentage points above chance level (50%). An ANOVA

(MSE = 193) on the difference in performance in block 1 and chance level, with independent

variable Condition, showed this difference to be significant,F (1, 44) = 28.2, p < .0005,

η2 = .39. Condition did not have an effect on this measure (F (3, 44) = 2.0, n.s.).

Finally, participants performed significantly below theoretically optimal performance

(TOP, 75.5% in conditions 1 and 3, 91.8% in conditions 2 and 4) during the final training
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block. This was shown by an ANOVA (MSE = 28.6) on the difference between TOP and

block 8 performance,F (1, 44) = 97.3, p < .0005, η2 = .69, Condition having a significant

effect (F (3, 44) = 4.2, p = .01, η2 = .22). A posthoc Student-Newman-Keuls test showed that

performance was further removed from TOP in condition four compared to conditions one and

three. However, the average deviation from optimal performance was only 7.6%, and was

probably mainly due to noise in the categorization process rather than premature termination

of training.

Testing.The four panels in Figure 3 present categorization functions of all twelve

individual participants for the test continuum in each of the four experimental conditions of

Experiment 1.

Figure 3 leaves no doubt that all participants had learned how to do the task. Stimuli

with low formant frequencies (low stimulus numbers) were given predominantly A responses,

while B responses were preferred for stimuli with high formant frequencies (high stimulus

numbers). Figure 3 also suggests that all participants behaved very similarly, both within and

across conditions.

To test for differences in categorization function slopes between conditions, we carried

out the following analyses. First, logistic regression (LR, e.g., Agresti, 1990) analyses were

performed on the data of each individual subject. In these analyses the following model was

fitted to the data of each participant.

ln
p(A|ψi)

p(B|ψi)
= s(ψi −M) (2)

wherep(A|ψi) is the probability of responding A to stimulusSi characterized by valueψi of

the perceptual representation (in this case ERB rate) of the relevant stimulus parameter

(formant frequency).s andM represent the slope and midpoint of the categorization function,
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respectively. Model (2) was fitted to the data of each participant minimizing the devianceG2

(Agresti, 1990).

The LR analyses produced a slopes and a midpointM for each participant. To test for

differences in mean categorization function slopes in the four conditions, a one-way ANOVA

was carried out on dependent variable slope with independent variable Condition.

The ANOVA (MSE = .095) showed that the mean categorization slopes in conditions

one through four were not significantly different (F (3, 44) = 1.7, n.s.,η2 = .11). Because the

Prototype theory predicted a slope ratio of 4 between conditions 4 and 1, we carried out an

Anova directly comparing the slopes of these two conditions. No significant difference was

found (F (1, 22) = 1.3, n.s.,MSE = .14, η2 = .054). The ratio of the mean slopes of

conditions 4 and 1 was .85, deviating strongly from the ratio of 4 predicted by the Prototype

theory. Distribution theory predicted a ratio of 4 between the slopes in conditions 2 and 3. An

Anova (MSE = .051) comparing the slopes of conditions 2 and 3 yielded a marginally

significant result (F (1, 22) = 3.8, p = .065, η2=.15). The ratio of the mean slopes for

conditions 2 and 3 was 1.2.

These results do not provide conclusive support for any theory. The non-significance of

the differences between the mean slopes of all four conditions is in agreement with

Decision-Bound theory, but this is a null-result. The marginal significance of the difference

between the mean slopes of condition 2 and 3 gives partial support for the Distribution theory,

but the experimental slope ratio of 1.2 strongly deviates from the expected ratio of 4. The only

firm conclusion we can make based on these results is that they are in disagreement with

Prototype theory.

Questionnaire.Out of the 48 participants who passed the training criterion, 46 described

their categorization strategy essentially as “choose A if the sound is low/dull, choose B if it is

high/sharp.” The remaining two participants both described their strategy as choose “A if it
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sounds like ‘oh’, choose B if it sounds like ‘eh”’. We compared the results of this subject

during the test phase to those of other participants in the same condition, and they were very

similar.

In response to question two, more than half of the participants said that the sounds did

not remind them of any sound they know. Typical answers of the other participants were

“computer sounds,” “organ,” and “horn.” Apart from the two subjects mentioned above,

nobody mentioned speech sounds, phonemes, vowels or anything similar in their answers to

questions 1 or 2.

When, finally, participants were explicitly asked if they thought the sounds were

speech-like (question 3), 34 out of 48 responded no. One of the remaining 14 said all sounds

were like ‘aa’, one said all were like ‘ee’, the other twelve mentioned that category A sounded

like ‘oh’ or a similar vowel and B like ‘ih’ or a similar vowel, but added that this similarity had

not occurred to them until they were explicitly asked in question three (except for the two

subjects who had already reported the similarity to speech in question one). Based on these

results we concluded that we had generally been successful in preventing participants from

using speech sounds as reference categories in Experiment 1.

Discussion

The results of Experiment 1 fully contradicted Prototype theory and gave partial support

for Decision-Bound theory and Distribution theory. Although the support for Decision-Bound

theory seems strongest, it is based on essentially a null-result. In pursuit of positive effects in

support of the Decision-Bound theory, we ran a second experiment in which the training was

identical to that of Experiment 1, but in which the test continua were changed.

Experiment 2
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The rationale of Experiment 2 is based on Durlach and Braida’s (1969) theory of

perceptual noise in Decision-Bound theory. Durlach and Braida hypothesized that the total

variance of pereceptual noise has three components: sensory variance associated with

irreducible sensory (neural) noise, trace variance associated with comparisons of two

consecutive sounds (as in discrimination tasks), and context variance associated with the noisy

comparison of a stimulus to ‘perceptual anchors’, e.g., the edges of the continuum used in a

categorization experiment. In identification and categorization tasks, trace variance is assumed

to be zero, in which case the total perceptual varianceσ2 is the sum of sensory and context

variance:

σ2 = β2 + H2W 2 (3)

whereβ2 is the sensory variance,H is a constant, andW is the width of the test continuum

expressed in psychophysical units. Eq. (3) predicts that ifW is small, i.e., in the order of

magnitude of a few jnd, context noise is small and therefore perceptual noise is dominated by

sensory noise. If, on the other hand,W is large, i.e., the continuum spans many jnds, context

noise dominates.

In our experiments we aim to ‘sample’ a one-dimensional psychophysical space using a

test continuum. As long as context noise is negligible, the variance of the perceptual noise is

not influenced by the width of the test continuum. Consequently, if we would make the width

of the continuum progressively smaller, the resulting categorization function would become

more and more shallow. For example, if a given widthW1 would produce a categorization

function which runs from 25% to 75%, a test continuum widthW2 = 0.5W1 would produce a

shallower function running from, roughly, 37% to 63%. In conclusion, as long asW is small,

the categorization functionP (A|Si) (the probability of choosingA as a function of stimulus

numberi) depends on the value ofW , with a smallerW leading to a shallower function.
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In the other extreme case, whenW is large, perceptual noise is dominated by context

noise and sensory noise is negligible. In this case, halving the width of the test continuum will

also halve the standard deviation of the perceptual noise. Paradoxically, the halved test

continuum will sample an area with ‘halved’ noise and the categorization functionP (A|Si)

will be unaltered. Thus, as long asW is large,P (A|Si) does not depend on the value ofW .

Imagine that, over the course of many experimental sessions, we would sample the same

one-dimensional perceptual space using a set of test continua with widths ranging from close

to zero to many jnds. For the very small width the resulting categorization function would be

basically flat and with increasingW the categorization function would become steeper.

However, rather than becoming ’infinitely’ steep for very largeW , the slope would approach a

certain asymptotic value, which cannot be transgressed by further increasingW .

In the context of the present experiments it is unclear where exactly on the scale of

dominant sensory noise to dominant context noise we are. However, as long as sensory noise

plays a significant role we can use a manipulation of the width of the test continuum to

produce a positive effect of experimental condition on the slope ofP (A|Si).

Figure 4 presents theoretical categorization functionsP (A|Si) for Experiment 2 as

predicted by the three categorizations theories. The two conditions of experiment 2 were new

versions of conditions 2 and 3 in the previous experiment, and are indicated as conditions 5

and 6. The test continuum in condition 5 was half as wide as it was in condition 2, whereas in

condition 6 it was twice as wide as it was in condition 3, as indicated by the horizontal bars in

the left-most panels of Figure 4.

Given our choice of test continuum widths in the new experiment, Prototype theory

(second column in Figure 4) predicts categorization function slopes in conditions 5 and 6 to be

identical to those in the old conditions 1 and 4, respectively:s4 = s6 = 4s5 = 4s1. As

mentioned earlier, Distribution theory (third column) predicts equal categorization slopes in
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conditions 1, 5, 6, and 4. For Decision-Bound theory we can only make a qualitative prediction

at this point because the value of constantH is unknown. The prediction iss5 < s1 = s4 < s6.

For the purpose of Figure 4 (fourth column), it was arbitrarily assumed that sensory noise had

a variance equal to varianceσ2 of the stimulus distributions in condition 1, while context

variance was assumed to equalσ2 in conditions 1 and 4,1
4
σ2 in condition 5, and4σ2 in

condition 6.

Method

Experiment 2 consisted of two conditions, indicated as conditions 5 and 6. Condition 5

and 6 employed the same training as conditions 2 and 3 of Experiment 1, respectively. The

width of the test continuum in condition 5 was half the original width, covering the interval

[µA2,µB2]. In condition 6 the test continuum was twice as wide as the original one, covering

the interval[11
2
µA4 − 1

2
µB4,11

2
µB4 − 1

2
µA4]. In all cases the number of stimuli in the test

continuum was 11, as before.

Participants.Thirty-two students at Nijmegen University were recruited as participants

for Experiment 2. All reported normal hearing and had Dutch as their native language.

Stimuli.The training stimuli of conditions 5 and 6 were identical to those of conditions 2

and 3 of Experiment 1, respectively. The test continua of conditions 5 and 6 both contained 11

stimuli. The formant frequencies of the stimuli for condition 5 were obtained by equidistant

sampling of the ERB scale across the interval[µA2, µB2], resulting in the following formant

frequencies: 1391, 1412, 1434, 1455, 1478, 1500, 1523, 1546, 1569, 1593, 1617 Hz. For

condition 6, the equidistant sampling was done on the interval[11
2
µA4 − 1

2
µB4,11

2
µB4 − 1

2
µA4],

resulting in the following formant frequencies: 1103, 1174, 1249, 1329, 1412, 1500, 1593,

1690, 1793, 1902, 2016 Hz.

Procedure.The procedure of Experiment 2 was identical to that of Experiment 1, except
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that no questionnaires were taken, because the questionnaires of Experiment 1 had convinced

us that speech-based strategies were extremely rare.

Results

Training. Eight participants did not pass the training criterion. Their results were

discarded. This left twelve subjects in each of the two conditions of Experiment 2.

Figure 5 presents average performance for blocks 1 to 8 in conditions 5 and 6.

Unsurprisingly, the learning curves of Figure 5 are similar to those of Figure 2. The average

improvement from the first to the last training blocks in conditions 5 and 6 is 12.1%. An

ANOVA (MSE = 47.3) on the difference in performance for blocks 8 and 1 with independent

variable Condition showed that this improvement was significant (F (1, 22) = 74.5, p < .0005,

η2 = .77). There was no significant effect of Condition (F (1, 22) = .013, n.s.), so the

improvement was equal for the two conditions.

Again learning started quickly. Average performance during the first training block was

13.5 percentage points above chance level. An ANOVA (MSE = 49.9) on the difference in

performance in block 1 and chance level, with independent variable Condition, showed this

difference to be significant,F (1, 22) = 87.4, p < .0005, η2 = .80. Condition had a significant

effect on this measure (F (1, 22) = 13.6, p = .001, η2 = .38). Unsurprisingly, block 1

performance was better for condition 5 than condition 6.

Finally, participants again performed significantly below TOP (91.8% in condition 5 and

75.5% in condition 6,) during the final training block, as shown by an ANOVA (MSE = 44.9)

on the difference between TOP and block 8 performance (F (1, 22) = 34.2, p < .0005,

η2 = .61), Condition having a significant effect (F (1, 22) = 5.0, p = .04, η2 = .18).

Performance in the final block was closer to TOP in condition 6 than in condition 5. However,

average performance in the final block was only 8.0%, below TOP.
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Testing.The two panels in Figure 6 present categorization functionsP (A|Si) of all

twelve individual participants for the test continuum in conditions 5 and 6 of Experiment 2.

Comparison of Figure 6 to Figure 4 reveals that listener performance is more variable in

conditions 5 and 6 than in conditions 1 to 4. The heightened variability in condition 5 is not

surprising, given the smaller test continuum width. For the variability in condition 6, on the

other hand, we have no explanation. We do note, however, that most of the variability is caused

by two participants (the plus sign and the right-pointing triangle in Figure 6B) who for

unknown reasons deviate somewhat from the rest. We did not have any objective criterion to

remove these participants.

A one-way Anova (MSE = .080) shows that on average the categorization functions are

significantly steeper in condition 6 than in condition 5 (F (1, 22) = 4.3, p = .050, η2 = .16).

This pattern of categorization-function slopes is compatible with the Decision-Bound theory.

An ANOVA (MSE = .090) including all six conditions (1 to 4 for Experiment 1 and 5

and 6 for Experiment 2) shows a significant effect of condition on categorization-function

slope (F (5, 66) = 6.35, p < .0005, η2 = .33). A Student-Newman-Keuls post-hoc test reveals

that categorization functions in condition 5 are on average significantly shallower than

conditions 1 through 4, and condition 6 is shallower than condition 1. This general pattern is in

reasonable, though not perfect, agreement with the Decision-Bound theory.

Discussion.

In Experiments 1 and 2, six conditions were run investigating the categorization of

sounds varying in formant frequency. The pattern of categorization-function slopes was in

reasonable agreement with the Decision-Bound theory of categorization. First of all, we found

no difference in the slopes across the four conditions of Experiment 1, as predicted by the

Decision-Bound theory. Second, as also predicted by this theory, the slope in condition 5 was
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significantly shallower than those in conditions 1 through 4. Condition 6 proved somewhat

problematic. Whereas Decision-Bound theory predicts the steepest slope in condition 6, it was

in fact not significantly different from that of any other condition except condition 1, compared

to which it was shallower.

Theoretically, the expected increase in slope for condition 6 is smaller than the expected

decrease in slope for condition 5 because, with increasing stimulus range, the slope increases

progressively less than would be expected if performance were limited by sensory noise alone.

It is therefore expected that a difference between condition 5 and conditions 1 to 4 will reach

significance earlier than the difference between condition 6 and conditions 1 to 4. Therefore,

we consider the ”asymmetry” in the slope pattern not to be in disagreement with the

Decision-Bound theory. The shallower slope of condition 6 compared to condition 1 remains

in disagreement with the Decision-Bound theory, however. Nevertheless, the Decision-Bound

theory explains the data better than the rival Prototype and Distribution theories, although the

latter received weak support from the marginally significant difference between the slopes of

conditions 2 and 3.

By varying the frequency of a resonance or formant, we have varied an acoustic

parameter which is generally viewed as very important for speech perception. Another such

parameter is duration. To be able to draw general conclusions about the categorization

mechanisms underlying speech perception, we thought it necessary to test whether the

Decision-Bound mechanism that we found for formant-frequency categorization would apply

to the categorization of duration. We therefore decided to run the same set of experiments

again, using similar stimuli, but this time varying stimulus duration, while keeping formant

frequency constant.

Experiment 3
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Method

The methodology of Experiment 3 was identical to that of Experiment 1, except for the stimuli.

Participants.Fifty-three students at Nijmegen University were recruited as participants

for Experiment 3. All reported normal hearing and had Dutch as their native language.

Stimuli. In Experiment 3, stimulus duration was varied, while the frequency of the

formant was kept constant at 1500 Hz, which was the midpoint between the meansµA andµB

in Experiment 1.

The perceptual representation of duration has received much less attention in the

psychophysical literature than that of frequency. Abel (1972) investigated duration

discriminability of pure tones and noise bursts as a function of duration. The study showed that

for durations from 40 ms to 640 ms discrimination closely followed Weber’s law, with a Weber

fraction of approximately .1. We carried out a pilot duration categorization experiment using

this Weber fraction. The results showed that the stimuli in the duration continuum were much

easier to discriminate than those in the formant frequency continuum. Further pilot

experiments indicated that assuming a Weber fraction of .05 for duration discrimination

resulted in comparable discriminability of the formant frequency and duration stimuli. Based

on these results, we defined psychological durationD, expressed in unit [d], as

D = 10 log T (4)

whereT is physical duration, expressed in ms. One jnd for duration corresponds to .5 d. Using

Eq. (4), we defined pdfA and pdfB for the four training conditions along theD axis, with

midpoint 1
2
(µA + µB) at 50.11 d, which corresponds to 150 ms. Table 3 lists the resulting

means and standard deviations expressed in d and ms for pdfA and pdfB in conditions 1 to 4.

As in Experiment 1, the stimulus continuum for the test phase contained 11 stimuli. The
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durations of these stimuli were obtained by equidistant sampling of theD scale across the

interval[µA4, µB4], resulting in the following durations: 91.0, 100.5, 111.1, 122.8, 135.7,

150.0, 165.8, 183.2, 202.5, 223.8, 247.3 ms. The same test continuum was used in all four

experimental conditions.

The discriminability of the duration stimuli was tested in the same discrimination

experiment as the formant frequency stimuli (see the Appendix). The average discriminability

of two consecutive stimuli on the duration continuum corresponded to ad′ of .8, which was not

significantly different from thed′ for formant frequency discrimination (1.0). Again

discriminability was constant across the test continuum.

Procedure.The procedure of Experiment 3 was identical to that of Experiment 1.

Results

Training. Four out of 53 participants did not pass the training criterion, and one subject

responded randomly during the test phase, having misunderstood the instructions. Their results

were discarded. This left 12 participants per condition. Figure 7 presents average performance

across the eight training blocks.

Learning was so quick that subjects were already performing close to ceiling during the

first block of training. The average improvement from the first to the last training blocks was

only 5.5 percentage points. An ANOVA (MSE = 78.4) on the performance difference for

blocks 8 and 1 with independent variable Condition showed that this improvement was

significant (F (1, 44) = 18.7, p < .0005, η2 = .30). There was no effect of condition

(F (3, 44) = .9, n.s.).

Participants’ learning was extremely fast. The average performance during the first

training block was already 23 percentage points above chance level (50%). An ANOVA

(MSE = 63.1) on the difference in performance in block 1 and chance level, with independent
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variable Condition, showed this difference to be significant (F (1, 44) = 386, p < .0005,

η2 = .90). Condition proved to have a significant effect on this measure (F (3, 44) = 15.6,

p < .0005, η2 = .52), and a posthoc Student-Newman-Keuls test showed, not surprisingly, that

block 1 performance was higher in conditions 2 and 4 than in the other two conditions.

Finally, participants performed significantly below TOP (75.5% in conditions 1 and 3,

91.8% in conditions 2 and 4) during the final training block. This was shown by an ANOVA

(MSE = 26.8) on the difference between TOP and block 8 performance (F (1, 44) = 56.3,

p < .0005, η2 = .56), Condition having no significant effect (F (3, 44) = .98, n.s.). The

average deviation from optimal performance was only 5.6%.

Testing.The four panels in Figure 8 present categorization functions of all twelve

individual participants for the test continuum in each of the four experimental conditions of

Experiment 3.

Figure 8, like the results for formant-frequency categorization (Figure 3), shows

relatively little variability between subjects within conditions. A and B responses were

preferred for short stimuli (low stimulus numbers) and long stimuli (high stimulus numbers),

respectively.

As for Experiment 1, we calculated slope and midpoint for each categorization curve by

means of logistic regression, and subjected the slope values to a one-way ANOVA with

independent variable Condition. The analysis (MSE = .14) showed a significant effect of

Condition,F (3, 44) = 4.6, p = .007, η2 = .24. A post-hoc Student-Newman-Keuls test

revealed that the mean categorization function slope was significantly smaller in condition 3

than in condition 2, as predicted by the Distribution theory. The ratio of mean slopes for

conditions 2 and 3 was 1.7, which is smaller than the predicted ratio of 4.

Questionnaire.All participants spontaneously described categories A and B as short

versus long, respectively. When asked what sounds the stimuli reminded them of, none of the
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participants mentioned speech sounds. As in Experiment 1, typical answers were computer

sound, organ, and horn. When participants were explicitly asked whether the stimuli sounded

at all like speech, five mentioned a single vowel, while four participants mentioned a vowel

pair. From these responses we concluded that none of the subjects explicitly used a

categorization strategy involving speech sounds.

Experiment 4

Analogous to Experiment 2, we also decided to test categorization of duration by means

of two continua that varied in width.

Method

The methodology of Experiment 4 was identical to that of Experiment 2, except for the

stimuli.

Participants.Twenty-five students at Nijmegen University were recruited as participants

for Experiment 4. All reported normal hearing and had Dutch as their native language.

Stimuli.The training stimuli used in conditions 5 and 6 of Experiment 4 were identical

to those of conditions 2 and 3 of Experiment 3. The eleven-member test continuum of

condition 5 had a range that was half that of the test continuum of Experiment 3. The stimulus

durations were 116.8, 122.8, 129.1, 135.7, 142.7, 150.0, 157.7, 165.8, 174.3, 183.2, 192.6 ms.

The eleven-member test continuum of condition 6 had twice the range of the test continuum of

Experiment 3, with stimulus durations of 55.2, 67.4, 82.3, 100.5, 122.8, 150.0, 183.2, 223.8,

273.3, 333.8, 407.7 ms.

Procedure.The procedure of Experiment 4 was identical to that of the previous

experiments, except that no questionnaires were taken.

Results
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Training. One of the 25 participants did not pass the training criterion. Her results were

discarded, leaving 12 participants per condition. Figure 9 presents average performance across

the eight training blocks.

As expected, Figure 9 closely resembles Figure 7 in all respects. The average

improvement from the first to the last training blocks was only 6.5 percentage points, which

proved significant (MSE = 118, F (1, 22) = 8.7, p = .008, η2 = .28). There was no effect of

Condition on this improvement (F (1, 22) = 1.2, n.s.). Average performance during the first

training block was 20 percentage points above chance level (50%). As in Experiment 3, the

difference in performance in block 1 and chance level was significant (MSE = 85.1,

F (1, 22) = 115, p < .0005, η2 = .84). This difference was significantly larger in condition 6

than in condition 5 (F (1, 22) = 24.4, p < .0005, η2 = .53). Also like in Experiment 2,

participants performed slightly (6.9 percentage points) but significantly below TOP during the

final training block (MSE = 32.5, F (1, 22) = 35.1, p < .0005, η2 = .62). There was no

effect of Condition on this difference, however (F (1, 22) = 1.2, n.s.).

Testing.Figure 10 presents individual categorization functions in conditions 5 and 6 of

Experiment 4.

Like before, the slopes of each of the individual categorization functions of conditions 5

and 6 were subjected to a one-way ANOVA (MSE = .12) with independent variable

Condition. The analysis showed that the categorization functions in condition 6 were

significantly steeper than those in condition 5 (F (1, 22) = 5.7, p = .03, η2 = .21). This result

is in agreement with the Decision-Bound theory.

A combined analysis of the data of Experiments 3 and 4 (conditions 1 through 6;

MSE = .13) confirmed that mean slopes were different across conditions,F (5, 66) = 5.5,

p < .0005, η2 = .29. A post-hoc Student-Newman-Keuls test revealed that the average

categorization-function slope in condition 5 was significantly shallower than the slopes in
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conditions 1, 2 and 4. In addition, the slope of condition 2 was significantly steeper than that

of condition 3. The overall pattern found for the combined analysis lies between the patterns

expected for the Distribution and the Decision-Bound theories.

Discussion

Experiments 3 and 4 tested the basic mechanism underlying the categorization of sounds

varying in duration. The results showed evidence for two theories of categorization. In

Experiment 3 we found that categorization-function slopes were larger in condition 2 than in

condition 3, while the slopes for conditions 1 and 4 were in between. This pattern of slopes is

in agreement with the Distribution theory. In Experiment 4, however, the slope was steeper in

condition 6 than in condition 5, which is in agreement with the Decision-Bound theory. Thus,

the combined results give partial support for two theories. The only theory that remains

unsupported is the Prototype theory.

The combined results of the four experiments raise two important questions. First of all,

how can the partial support for two theories be interpreted? A possibility is that aspects of the

Distribution and Decision-Bound theories should be combined. Second, why do we find

different results for duration and formant frequency? The results for stimuli varying in formant

frequency supported the Decision-Bound theory, whereas the results for duration are in partial

agreement with the Decision-Bound and Distribution theories. Both questions are addressed in

the next sections.

Model analyses

The data analyses presented above concentrated on the qualitative patterns of categorization

slopes across conditions. The Prototype, Distribution, and Decision-Bound models are,

however, mathematically fully developed and allow for quantitative testing. Apart from a small
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number of free parameters, each of the models can predict quantitative data for each of the six

experimental conditions used in the experiments. In particular, such quantitative analyses may

shed some light on the interesting but unsatisfactory finding that the duration stimuli seem to

have been categorized by a mixture of Decision-Bound and distribution strategies.

Method

The model analyses were performed on individual data only. The reason for this choice

is that the slope of pooled categorization curves is very sensitive to variation in the curve

midpoint in the individual data. That is, summing two steep categorization curves with widely

separated midpoints yields a shallow categorization curve. As the categorization function slope

is the dependent parameter in our experiments, we thought such harmful effects of data

pooling should be avoided.

To get optimal fits, we used the individual midpoints of the categorization functions

estimated by the individual logistic regressions in our model analyses. Before calculating the

goodness of fit for each individual subject, the predicted categorization function was shifted to

coincide with that subject’s midpoint.

The absence of sensory noise in Prototype or Distribution models can be viewed as either

a basic assumption or an approximation for super-threshold categorization problems. Because

we designed our stimuli such that test continuum neighbors were moderately confusable, the

approximation may not apply, and we have to allow for the possibility that perceptual noise

played a role even if the listeners in our experiments used a Prototype or Distribution-based

categorization mechanism. We therefore fitted “expanded” versions of the Prototype and

Distribution models which incorporated perceptual noise. In the case of the Prototype model,

we only added context noise, because the addition of sensory noise was mathematically

equivalent to a decrease in the decay of similarity, i.e., a lower value of parameterk.
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For each class of model, a series of fits was made with increasing numbers of free

parameters associated with (depending on the model class) the two kinds of perceptual noise

and the decay of similarity. Using a overdispersion-based technique (e.g., McCullagh &

Nelder, 1989), we determined for each model class which extra free parameters significantly

improved the fit. The comparison of models of different classes was less straightforward,

however. When models are not hierarchically related, i.e., none of the models is a special case

of any other model, formal statistical testing is impossible. Recent studies comparing

non-hierarchical models have used the AIC (Akaike, 1974) as a measure of goodness-of-fit

(e.g., Ashby, Maddox & Bohil, 2002). For repeated measures data such as in our experiments,

however, the AIC is generally found to ‘underpunish’ the addition of free parameters. In

addition, any measure of goodness of fit is noisy, so if the difference in model performance is

small, one should be cautious in selecting the ’winning’ model. We therefore based the

between model class comparisons not only on goodness-of-fit and number of free parameters,

but also on the extent to which each of the models were able to replicate global trends in de

data.

All models were fitted to experimental data using a general-purpose nonlinear

minimization technique. Parameter values were found which minimized the devianceG2.

Separate model fits were made for the formant frequency data (Experiments 1 and 2) and the

duration data (Experiments 3 and 4). Given a stimulus dimension (frequency or duration), we

we used the simplifying assumption that a single set of parameters applied to all participants.

Alternatively, one may assume that participants’ parameter values were sampled from a

distribution, whose mean and spread is constant across conditions. Even if one would know

the appropriate distribution (which we don’t) this assumption would make the model fitting

procedure much more complex and it would probably lead to the same conclusions. Therefore,

a single fit was made of each model to all data for each stimulus dimension, i.e., the data of all
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72 participants in all 6 conditions.

Results

Addition of perceptual noise to the Prototype model did not significantly improve the fit

for either stimulus dimension. The fit for the Distribution model, on the other hand, improved

with the addition of both sensory and context noise for formant frequency as well as duration.

Removing either sensory or context noise from the Decision-Bound model always significantly

worsened the fit.

Table 4 presents the details of the analysis results. We included the results of the

Distribution theory without perceptual noise in the Table to allow for comparison of the three

standard models. The last row labeled ’NENA’ refers to a new model defined in the next

section. First of all, the results confirm that of the three models we tested, the Prototype theory

provides the worst account of the data. Both for the formant frequency and the duration

continua, the Prototype model gives the worst fit, withG2 values that are much larger than

those for the other two models.

Compared to the standard version of the Distribution model, the Decision-Bound model

gives the best fit for both stimulus dimensions. This result is interesting because the

experimental results of Experiment 3 suggested that listeners used a Distribution-based

categorization method for the duration dimension. The present model analyses show that,

although the duration data show a significant qualitative pattern in accordance with the

Distribution theory, the Decision-Bound theory still provides the best quantitative account of

the results (although the difference is small and possibly not meaningful). However, when the

Distribution model is augmented to allow for perceptual noise, its fit improves significantly for

both stimulus dimensions. For the formant data,G2 is reduced by 11%. Despite this reduction,

the augmented Distribution model still does worse than the Decision-Bound model. For the
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duration data, on the other hand,G2 is reduced by 13%, and the resulting fit is better than that

of the Decision-Bound model.

Recall that Eq. 3 expressed the decomposition of the total variance of the perceptual

noise into two components: sensory variance (β2) and context variance (H2W 2). The fourth

row of Table 4 gives the values ofβ in the Decision-Bound models for the two stimulus

dimensions, expressed in psychophysical units (ERB and d, respectively). If we convert these

into number of stimulus steps (on the continua of conditions one through four), we find that the

β for the formant-frequency and duration dimensions are 1.2 and 1.1 stimulus steps,

respectively. The similarity of the two values shows that the step sizes we used for the continua

on the two stimulus dimensions were well-chosen, because the discriminabilities of successive

steps on the two continua are comparable.

For the manipulation of experiment 2 to yield a positive prediction for the

decision-bound models, sensory variance needed to be non-negligible. Using the estimated

parameter values we can check whether the test continuum widths were chosen appropriately.

The values of the coefficientH for formant frequency and duration are .21 and .19,

respectively. From these values and the values forβ we estimate the ratio of the standard

deviations of context and sensory noise at 1.8 for the formant-frequency dimension and 1.7 for

the duration dimension. On the one hand, these values show that sensory variance and context

variance were in the same order of magnitude for both stimulus dimensions and it was

reasonable to expect a measurable difference in categorization-function slopes for conditions 5

and 6. On the other hand, because the contribution of context noise is bigger than that of

sensory noise, the slope difference would not expected to be very large.

We now turn to the parameter estimates for the augmented Distribution models. For both

stimulus dimensions the power parameterk equals roughly 2. This would indicate that

similarity does not decay proportionally to the category likelihood, but faster, namely
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proportionally to the squared likelihood. If we compare the parameters coding the perceptual

noise in the Distribution models and the Decision-Bound models, we find that the sensory

noise (parameterβ) is roughly equal in the two models, whereas the context noise (H) is

smaller in the Distribution models than in the Decision-Bound models (ratio of 0.5 for formant

frequency and 0.3 for duration).

These parameter values can be interpreted as follows. A power parameterk of 1 is

compatible with a similarity function proportional to the category likelihood, followed by a

response selection process governed by Luce choice rule (Luce, 1963). On the other hand, ifk

would approach infinity, the simple Distribution model would become a noise-free

Decision-Bound model, because the ratio of the similarities to the two categories would be

either zero or infinity (e.g., Ashby & Maddox, 1993). Analogously, the augmented

Distribution model with infinitek would become a standard (i.e., noisy) Decision-Bound

model, and would be governed by perceptual noise and deterministic response selection.

(Note, however, that a very large value ofk leads to similarity values close to zero for all

categories. Although such values are of course mathematically possible, they are conceptually

incompatible with one of the core assumptions of the Distribution model, which is the

similarity calculation.) The parameter values show that, at least for the duration data, the truth

lies somewhere in the middle. Sensory noise is roughly equal in the Decision-Bound models

and the augmented Distribution models.k in the augmented Distribution models is larger than

1, so the models approach the Decision-Bound models somewhat. Thus, our model analyses

suggest that the categorization mechanism employed by our listeners has aspects of both

Distribution and Decision-Bound theories.

Figure 11 presents the mean slopes of the observed and modeled categorization functions

across all six conditions of both stimulus dimensions. The solid lines give the slopes of the

categorization functions derived from the experimental data. The vertical line segments
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indicate plus or minus one standard error. The dashed and dotted lines represent the slopes

expected by the Decision-Bound and augmented Distribution models and a third model to be

discussed later. (Note that the models were optimized to fit the raw data, not the slope values.)

Figure 11 first of all reconfirms that the observed mean categorization-function slopes

for the two stimulus dimensions are of the same order of magnitude. This tallies with our

earlier finding that the best-fitting perceptual-noise variance was of similar size for the two

stimulus dimensions.

Second, the figure provides us with extra means of evaluating the goodness of fit of the

theories to the data, this time not the raw data but the slopes. We first focus on the

formant-frequency data (panel A). There are two ways in which we can judge the fit: first we

can simply examine how close the expected slopes are to the experimental ones. If we judge a

model fit to be satisfactory when it falls within plus or minus two standard errors of the data,

we find that neither theory on its own gives a satisfactory account of the data for either

stimulus dimension. The Decision-Bound theory, which provided the best fit to the raw data,

only matches the observed slopes for conditions 5 and 6. The augmented Distribution theory

matches the observed slopes in conditions 2, 4, 5, and 6, but deviates very strongly in

conditions 1 and 3. Second, we can judge how well each of the models replicates the overall

slope patterns. For formant frequency, the overall pattern is that slopes are equal across all

conditions except condition 5 for which the slope is smaller. This pattern is replicated more

closely by the Decision-Bound theory than by the augmented Distribution theory.

For duration, the Decision-Bound theory matches the observed slopes in conditions 1, 3,

5, and 6, whereas the augmented Distribution theory matches the observed slopes in conditions

2, 4, 5 and 6. Here, however, the replication of the overall slope pattern plays a decisive role in

the evaluation. The Decision-Bound model does not, and cannot replicate the overal slope

pattern, where the slope in condition 2 is steeper than in condition 3. The augmented
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Distribution theory does replicate the overall pattern, although the variation in the

experimental slopes is stronger than in the actual data.

NENA: A new model of categorization

Figure 11 shows that neither model fits the overall slope patterns. Even the augmented

Distribution theory, which includes a power parameter for flexibility in the decay of similarity

and incorporates both types of noise of the Decision-Bound theory, does not provide a

satisfactory account of the categorization-function slopes across the two stimulus dimensions.

Below, we propose a new model of categorization that may explain the present results more

fully. First, however, we reexamine our results in terms of the necessary components of any

categorization theory, i.e., stimulus encoding, category representation and response selection.

Concerning stimulus encoding, i.e., the manner in which the stimulus is mapped on to a

point in perceptual space, our model analyses give strong support for an important role of

perceptual noise. The decision-bound theory, in which perceptual noise plays a pivotal role,

gave a superior account of the frequency data. Furthermore, the fits of the Distribution model

improved considerably for both stimulus dimensions when perceptual noise was added to the

model. Note that, in the context of exemplar models, noisy stimulus encoding has been

proposed for confusable one-dimensional stimuli (e.g., Ennis, 1988).

Concerning category representation the results speak equally clearly. As both the

distribution and the decision-bound theories support category representation in the form of

distributions, our results give strong support for the distribution representation. Listeners do

not just store the mean or best representative of a set of category members, they also include

information on the spread of the category in their representation. We reiterate that the present

research cannot decide on whether this distribution is parametric (e.g., Gaussian) or

nonparametric (e.g., fully exemplar-based).
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Concerning the decision process, our data are less clear. There is evidence of both a

deterministic and a stochastic decision process. A potential approache to modeling such a

mixture of processes is criterial noise. Ashby and Maddox (1993) discuss how criterial noise,

i.e., noise in the location of the decision bound, may be incorporated into decision-bound

models. We assumed that, if a decision-bound model with criterial noise would apply, listeners

would search during training for a boundary position which optimizes their percent-correct

rate. If the percent-correct rate (which is determined by the likelihood ratio of the two training

distributions) changes rapidly with the boundary estimate, listeners will quickly approach an

accurate boundary location, whereas if the percent-correct rate would be relatively insensitive

to the boundary estimate, it would take listeners long to find an accurate boundary location.

We therefore thought it reasonable to assume that the standard deviationσB of the criterial

noise would be inversely proportional to the change of the percent correct ratePc during

training with changing boundary locationB:

σB ∼ dB

dPc

(5)

The proportions ofdPc

dB
for conditions one through four were 4:2:2:1, respectively. This means

that the proportions of the standard deviations of the criterial noise would be 1:2:2:4,

respectively. Thus, if listeners used a decision-bound mechanism in which criterial noise

played a significant role, the pattern of categorization-function slopes would be

steep-intermediate-intermediate-shallow for conditions 1 through 4, respectively, i.e., the

opposite of the prototype pattern. This prediction only makes the decision-bound model move

away from the observed slope pattern. Therefore, the addition of criterial noise to the

decision-bound model cannot explain the observed results either.

On the basis of the above considerations we constructed a new hybrid model with the
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following properties. Concerning category represntation, we assume that categories are

represented by distributions. These distributions are learned through previous exposure, as in

the training phase of our experiments. The distributions are either parametric or

non-parametric. For the purpose of the present study we assume they are parametric and have

the form of normal distributions characterized by a mean and variance. Concerning the

processing issue, we assume that the stimulus encoding is stochastic, i.e., there is perceptual

noise. As in the Decision-Bound theory this noise is normal with zero mean and a variance

with two components: trace variance and context variance. After stimulus encoding, the

stimulus is represented as a pointψ̃ on a psychological axis, where the ’tilde’ sign indicates

that a noise component is present. Next, the stimulus is mapped onto category similarity (or

“activation”) values for each of the two categories in a manner similar to the Distribution

model. In contrast to the Distribution model, however, this calculation is assumed to be

stochastic. Mathematically, first the value of the distribution at the stimulus location is

calculated. We can indicate this value asA(ψ̃), whereA represents the category distribution or

’activation function’ of the category. Next the logarithmlog A(ψ̃) is taken, to which normal

noise with mean zero is added, resulting in a valuẽlog A(ψ̃). Next, the exponent is calculated,

resulting in the noisy activation valueexp ˜log A(ψ̃), or, more compactly,̃A(ψ̃). We chose to

add normal noise to the logarithm of the activation instead of to the ’raw’ activation for two

reasons. First of all, adding normal noise tolog A leads to Luce choice rule, whereas adding it

to A does not (Albert and Chib, 1993). Second, conceptually, adding normal noise to an

activation value (or similarity) is incorrect, because it can lead to values below zero. As a final

step, the category is selected which has the largest activation value. The latter choice process is

deterministic. We call the hybrid model NENA, short for Noisy Encoding Noisy Activation,

reflecting the essential components of the model.

The NENA model is a true hybrid. On the one hand, it contains perceptual noise and
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deterministic choice, like the decision-bound model. On the other hand, an essential step in the

model is a category-activation calculation, comparing the incoming stimulus to the distribution

of training stimuli, as in the distribution model. As such, the decision bound does not play an

explicit role in the categorization process. If the noise in the activation calculation (henceforth

“activation noise”) is zero, the model is a standard decision-bound model. If the perceptual

noise is zero, and the shape of the activation noise is such that it leads to a response behavior

which is mathematically equivalent to Luce choice rule, the model is equivalent to the

distribution model. By varying the amounts of perceptual and activation noise, it should be

possible to obtain satisfactory fits to the data for both dimensions using a single model.

The NENA model has three free parameters:β andH coding sensory and context noise,

respectively, andα representing the standard deviation of the activation noise, i.e., the

Gaussian noise added to the logarithm of the category similarities. Unfortunately, analytical

solutions linking stimulus values to response probabilities do not exist, so we had to resort to

Monte Carlo techniques to fit the hybrid model to our data. To obtain reliable model

estimations, we generated 300,000 random values for each stimulus in each of the 6 conditions

and then used a minimization procedure to find the parameter values that produced the lowest

value ofG2.

For formant frequency the best-fitting model had aG2 equal to 1630. This value is very

close to that of the Decision-Bound Theory (1631) obtained earlier. Apparently, ”adding” a

Distribution Theory component to the model has not resulted in an improvement in goodness

of fit. The similarity of the two models is further corroborated by the fact that the best-fitting

values ofβ andH of the hybrid model are identical to those for the Decision-Bound Theory

(1.2 stimulus steps and 0.21, respectively, see Table 4). The value ofα is 0.010, i.e., almost

zero. Thus, the hybrid model does not account for the slight Distribution Theory-like trend in

the slope data discussed earlier.
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The best-fitting NENA model for duration hasG2 = 1431. The fit is therefore somewhat

worse than that of is the augmented Distribution model (1373), but better than that of the

Decision-Bound model. The best-fitting values of the model parameters areβ = 1.1,

H = 0.13, andα = 0.62. If we compare these to the values for the Decision-Bound model

(β = 1.1, H = 0.19), we see that the context noise parameter has decreased. Effectively, the

NENA model assigns a significant portion of the total noise in the process to the similarity

calculation, leaving less for the perceptual encoding. This tallies with the finding thatα is

larger for duration than for formant frequency (0.62 versus 0.01, respectively). Finally, we

note that the summedG2 for the two dimensions is smaller for the NENA model (3060) than

for both the Decision-Bound Theory (3167) and the augmented Distribution theory (3257),

although the advantage is small.

The dash-dotted line in Figure 11 gives the categorization function slopes of the NENA

model. For formant frequency, the slope values predicted by the NENA model are not

noticeably different from those predicted by the Decision-Bound Theory. For duration, on the

other hand, the NENA model predicts slope values which truly combine aspects of the

Distribution Theory and Decision-Bound Theory. The pattern of slope values exhibits both the

(weakened) Distribution Theory-like pattern for conditions 1 to 4, and the context-noise effects

for conditions 5 and 6.

In sum, we have formulated a hybrid model of categorization which gives a reasonable

account of our experimental results for both the formant-frequency and the duration

dimensions through a combination of aspects of the decision-bound and distribution theories

of categorization. We do note, however, that some discrepancies between data and model

predictions remain.

General discussion
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The present study addressed the question how listeners categorize sounds. In four

experiments we trained listeners to categorize synthetic sounds from two overlapping

distributions. Subsequently, listeners categorized stimuli from a test continuum without

receiving feedback. The crucial manipulations in the experiments were variation of the

variance and overlap of the two distributions as well as the width of the test continuum.

Prototype, Distribution and Decision-Bound theories of categorization made different

predictions about the slopes of the categorization functions in the various conditions.

When we applied the methodology to the formant frequency dimension, we found a

pattern of slopes that was in reasonable agreement with the Decision-Bound theory. When we

subsequently applied the exact same methodology to a duration dimension, however, the

results were in partial correspondence with both the Decision-Bound and Distribution theories.

Subsequent model-based analyses confirmed the discrepancy between the two dimensions: for

the formant-frequency dimension the Decision-Bound model gave the best quantitative

account of the data, whereas the Distribution model fitted the duration data best. NENA, a

new, hybrid model of categorization, was formulated which combines stochastic stimulus

encoding with stochastic category activation. The new model gave a better combined account

of the data across the two stimulus dimensions than any of the other models, although some

discrepancies between model and data persisted.

In our discussion of the experimental data we asked the question why different

categorization mechanisms seem to operate for the two stimulus dimensions. At present we

cannot provide an explanation for this difference. There is, however, a theoretical perspective

which may guide future research into this matter. S. S. Stevens and colleagues introduced the

concepts ofprotheticandmetatheticscales (e.g., Stevens & Galanter, 1957). A prothetic scale

is a psychological scale to which, at a physiological level, an ”additive” mechanism applies,

i.e., increasing a value on a prothetic scale is equivalent to adding more of the same. Examples
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of prothetic scales are brightness, loudness and, in the present study, duration. A longer sound

simply has ”more duration” than a shorter sound, and is presumably encoded at a physiological

level by a stronger or longer firing of basically the same neurons. In contrast, a ”substitutive”

mechanism applies for metathetic scales such as (visual) position and pitch, and presumably

timbre-like magnitudes like formant frequency. A pure tone with a higher pitch does not

simply have ”more frequency” than one of a lower pitch. Instead, it essentially stimulates

different fibers in the auditory nerve. Empirically, the difference between the two scales is

evidenced by the fact that for metathetic scales the jnd measured in subjective units is constant

across the scale (e.g., the jnd for pitch expressed in mels is the same for low and high tones),

whereas the same does not hold for prothetic scales (the jnd for loudness expressed in sones is

smaller at the low end of the scale than at the high end).

We hypothesize that either the storage of category representations, or the comparison of

a stimulus to a category is noisier for prothetic categories such as duration than for metathetic

categories such as formant frequency. According to this hypothesis, other prothetic auditory

dimensions, such as loudness, should pattern with duration on a similar categorization task,

whereas metathetic dimensions, such as pitch or dynamic timbre (formant transitions), should

pattern with formant frequency. This is a topic for future research.

Finally, we return to the ultimate purpose of this research, which is to learn about the

representations and processes underlying speech perception. As mentioned in the introduction,

four theories of phonetic categorization can be distinguished: Decision-Bound, Prototype,

Distribution, and Exemplar theories. Although they make fundamentally different claims about

various aspects of categorization, it has proved extremely difficult to experimentally

distinguish between the four alternatives. We know of only two studies which explicitly

attempt to do so within the context of phonetic perception. Samuel (1982) contrasted the

Decision-Bound and Prototype accounts of phonetic categorization using selective adaptation
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in a /ga/-/ka/ categorization task. The experimental results showed that more adaptation was

obtained using adaptors near the /ga/ prototype than for adaptors nearer to or further away

from the /ga/-/ka/ boundary. Samuel (1982) interpreted this as evidence in support of a

Prototype theory of phonetic categorization. The study was not conclusive, however. First, the

evidence is not only in agreement with a Prototype theory, but also with Distribution and

Exemplar theories, which, being less topical at the time, were not explicitly tested.

Furthermore, because the adaptation paradigm itself is not well understood and subject of

dispute (see Remez, 1987), the evidence should be considered as relatively indirect.

A second study which explicitly contrasted theories of phonetic categorization was

published by Nearey & Hogan (1986), who reanalyzed a set of production and perception data

for the three-way voicing contrast in Thai stop consonants collected by Lisker & Abramson

(1970). Lisker & Abramson measured Voice-Onset Time (VOT) on a set of naturally produced

instances of the three voicing categories. Next, they constructed a synthetic stimulus

continuum varying in VOT and asked listeners to categorize the stimuli according to voicing.

Lisker and Ambramson noted the striking similarity of the cross-over points in the production

and perception data. Hoping to be able to use the data to distinguish between competing

categorization theories, Nearey & Hogan (1986) fitted two formal categorization models to the

data. The first was a Decision-Bound model which assumed noisy stimulus encoding and

boundary locations which were (near) optimal given the production data. The second was a

Distribution-based model which assumed that the incoming stimulus was compared to the

categories represented by the probability-density functions (pdfs) of the production data,

followed by a choice based on Luce choice rule (Luce, 1963). Both models fit the data well,

and the difference in goodness-of-fit was too small to warrant selection of one over the other.

At present, it remains undecided which of the four categorization theories applies to phonetic

categorization.
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Although our study is intended as a first step towards solving this issue, we have to be

cautious about generalizing our results to phonetic categorization. Many differences between

our stimuli and those in phoneme categorization can be identified. Specifically, our stimuli

consisted of non-speech signals designed to resemble speech in crucial regards (duration and

formant frequency). Recent research inspired by the current study sheds some light on these

issues. Using training and testing protocols very similar to those in our study, Goudbeek,

Smits, Swingley, & Cutler (accepted) directly compared the acquisition of auditory and

phonetic categories by adults. In the non-speech condition, Dutch listeners categorized stimuli

that simultaneously varied in duration and resonant frequency. In the speech condition,

American listeners categorized stimuli that consisted of variants around the midpoints of three

Dutch high front vowels that do not occur in English, and that differ in duration and/or

frequency of the first formant. In terms of the speed of learning and the proportion of subjects

that eventually learned to do the task, the results for the non-speech and speech stimuli were

highly similar, indicating that findings based on non-speech stimuli generalize to speech, at

least within the experimental context used in these studies. This is of interest given the

ongoing debate in the phonetic literature about the extent to which the perception of speech

engages general auditory mechanisms or mechanisms that specifically evolved for the

processing of speech (e.g., Liberman & Mattingley, 1985; Remez et al., 1994). The finding

that the current methodology obtains the same results for speech and non-speech justifies its

use as a valid means of studying phonemic categorization.

A final consideration when using multidimensional stimuli involves the acoustic

variability that is a hallmark of natural speech. When using stimuli that more closely mimic

the degree of variability found in speech (for example, variation in speaker, phonetic context,

and speaking rate), the variability itself may affect the categorization mechanisms employed.

Recently, a number of exemplar models of speech perception have been proposed (Goldinger,
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1997; Johnson, 1997a, b). Rather than conceptualizing speech perception as a process wherein

a more abstract representation is created from the myriad of highly variable and idiosyncratic

tokens, some contemporary theories have emphasized the retention of detailed voice

information in episodic representations. Goldinger and colleagues (Goldinger, 1997, 1998;

Goldinger and Azura, 2004; Goldinger, Azura, Kleider, and Holmes, 2003) provide evidence

for the existence of detailed episodic memory traces of spoken words in lexical access

processes. An examination of speakers’ recognition accuracy and listeners’ imitation

judgments show sensitivity to previously encountered instances. Indexical aspects of speech

are stored in memory and can be used later in perception and production. In a similar vein,

Johnson (1997) presents an exemplar-based model for vowel identification, taking into account

aspects of talker variability that affect human vowel perception performance. Five acoustic

parameters (F0, F1-F3, and vowel duration) were used as input to the model. The model’s

overall correct vowel identification was 80human listeners’ ability to identify vowels (Ryalls

and Lieberman, 1982). Variability in speech that distinguishes speakers is retained in the set of

exemplars. Both sets of data suggest that categorization takes place by reference to detailed

auditory exemplars that preserve speaker-specific information, data most compatible with

exemplar or distribution theories.

It is at this point difficult to predict to what extent the results of the present study will

generalize to the categorization of multi-dimensional speech sounds. This constitutes an topic

for future research. We will therefore merely use our results to formulate a number of

hypotheses about phoneme categorization that may be tested in future experiments employing

different stimuli and tasks.

Concerning the representation issue, the present results lead us to hypothesize that

speech sounds are represented neither by prototypes nor by boundaries (rules) separating the

speech sounds, but instead by distributions. These distributions capture the natural variation of
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speech sounds, as encountered by the listener. Of course, speech sounds being acoustically

multidimensional, these distributions will be multidimensional too, in contrast to the

unidimensional distributions of our experiments. On the basis of our results we cannot decide

whether the distributions are parametric, i.e., economical summary descriptions, perhaps in the

form of Gaussian probability-density functions, or non-parametric, perhaps in the form of

multiple exemplars of previously heard sounds.

Concerning the processing issue, our results led us to propose a new model combining

aspects of the Decision-Bound and Distribution models. In this model, the stimulus encoding

is stochastic, as in the Decision-Bound model. Next a similarity calculation is made, as in the

Distribution model, albeit stochastic. Finally, a deterministic choice is made, as in the

Decision-Bound model. However, as the choice was based on a comparison of (noisy)

activation levels, a Decision-Bound as such did not play an explicit role in the choice process.

We hypothesize that the phoneme categorization process has these same three components.

Although the deterministic decision process is particular to the phoneme-categorization task

and need not operate in the process of recognizing words or larger units, we hypothesize that

the other two components are also active in the everyday recognition of running speech.
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Appendix A

Derivation of predictions of basic models

Prototype theory

Assuming Gaussian similarity functions (e.g., Nosofsky, 1986), the probabilityp(A|Si)

of assigning stimulusSi, defined by parameter valueψi, to categoryA is given by

p(A|Si) =
ηA(ψi)

ηA(ψi) + ηB(ψi)
(6)

=
exp−k(ψi − µA)2

exp−k(ψi − µA)2 + exp−k(ψi − µB)2
(7)

=
1

1 + exp−2k(µA − µB)[ψi − 1
2
(µA + µB)]

(8)

whereηA(ψi) is the similarity ofψi to categoryA, andk is a sensitivity parameter (e.g., Ashby

& Maddox, 1993). Of course,p(B|Si) = 1− p(A|Si). p(A|Si) is a logistic function ofψi. The

function’s inflection point, which corresponds to the value ofψi wherep(A|Si) = 1
2
, is located

atψi = 1
2
(µA + µB), i.e. halfway between the two means. The slopes of the logistic function,

defined as the absolute value of the coefficient ofψi in the exponent of Eq. (8), equals

2k(µA − µB). Thus the slope of the categorization function is proportional to the distance

between the means of the pdfs used in the training phase. For the purpose of Figure 1k was set

to 0.25; this value was chosen such that the categorization functions were comparable to those

for the other theories.

Distribution theory

The similarityηA(ψi) of a given stimulusSi to categoryA is assumed to be equal to the

“unnormalized” likelihoodp(ψi|A) that the stimulus was produced by the particular category:

ηA(ψi) = p(ψ|A) · σ
√

2π (9)
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= exp− k

2σ2
(ψi − µA)2 (10)

wherek is a sensitivity parameter. The term “unnormalized” refers to the assumption that

self-similarity equals unity, i.e.,ηA(µA) = 1, which has the effect that the similarity function is

generally not a probability density function because its integral differs from one.

Finally it is assumed that response probabilities are calculated from similarity functions

via Luce’s choice rule. This leads to the following expression forp(A|Si):

p(A|Si) =
ηA(ψi)

ηA(ψi) + ηB(ψi)
(11)

=
exp− k

2σ2 (ψi − µA)2

exp− k
2σ2 (ψi − µA)2 + exp− k

2σ2 (ψi − µB)2
(12)

=
1

1 + exp−k(µA−µB)
σ2 [ψi − 1

2
(µA + µB)]

(13)

As was the case for the Prototype theory,p(A|Si) is a logistic function ofψi with inflection

point at 1
2
(µA + µB). The categorization function’s slopes is now equal tok

σ2 (µA − µB), i.e., it

is proportional to the distance between the means of the training pdfs divided by their variance.

For the purpose of Figure 1 the value ofk was set to 1.
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Appendix B

Discrimination of test continua

Method

Participants.Eight students at Nijmegen University were recruited as participants. All

reported normal hearing and had Dutch as their native language. None participated in the

categorization experiments reported in the main article.

Stimuli.Stimulus numbers 1, 3, 5, 7, 9 and 11 of the formant frequency and duration

continua were used. We did not use all stimuli to limit the size of the experiment.

Procedure.We adopted a same-different (AX) paradigm. On a given trial two stimuli

were played after each other with a inter-stimulus interval of 300 ms. The two stimuli were

either the same, or different, in which case they were two steps apart on the stimulus

continuum (e.g., stimulus 3 and 5). Participants were seated in a soundproof booth in front of a

computer screen. Stimuli were presented binaurally through Sennheiser headphones. After

hearing a pair of stimuli, participants were required to indicate whether they thought the

stimuli were the same or different by pressing one of two appropriately labeled buttons. After

the button press, the correct answer was displayed briefly on the screen, and a new trial was

initiated.

The experiment consisted of two parts: a subexperiment testing formant-frequency

discrimination and one testing duration discrimination. Half the subjects started with

formant-frequency discrimination, the other half with duration discrimination. After twenty

practice trials subjects were presented with five blocks of 40 trials each. Every ‘different’ pair

was presented four times in each block, twice in ascending order (e.g., 3-5) and twice in

descending order (5-3). The ‘same’ pairs (e.g., 3-3) were each presented four times per block,

except for the pairs 1-1 and 11-11, which were presented twice per block. Thus, the

probabilities of being presented with a same or different pair were equal. Within blocks,
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stimuli were pseudo-randomized, with different randomizations for different participants.

After the five experimental blocks, participants had a short break, in which it was explained to

them that they were to do the experiment again, but this time the sounds would differ from

each other in another way. They then started on the second subexperiment in which the stimuli

varied along the other stimulus dimension. The procedure of the second subexperiment was

identical to that of the first, including the practice trials.

Results

For unknown reasons, one of the participants performed below chance level on the

duration stimuli and above chance, but still worse than the other seven participants for the

formant frequency stimuli. This participant’s data were removed. Using Table A5.4

(differencing model) of Macmillan and Creelman (1991),d′ values were calculated for each

stimulus pair for each participant. Figure A.1 presents means and standard deviations ofd′ for

the two stimulus continua.

The results of the discrimination experiment tell us, first of all, that the stimuli of both

continua were moderately confusable. Averaged′s for a two-step distance along the

formant-frequency and duration continua were 1.9 and 1.5, respectively. Assuming thatd′s are

additive along a one-dimensional continuum, averaged′ for the discrimination of two

consecutive stimuli are 1.0 and 0.8 for the formant frequency and duration continua,

respectively, i.e., two consecutive stimuli are on the border of being discriminable. Averaged′s

for the discrimination of the endpoint stimuli were 9.7 and 7.7, respectively, i.e., endpoint

stimuli were highly discriminable.

We ran an Anova with dependent variabled′, pair number and stimulus dimension as

fixed factors, and subject as random factor. Stimulus dimension did not prove significant

(F (1, 6) = 3.3, n.s.,MSE = .841), which means that averaged′s were the same for the
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formant frequency and duration continua. Pair number also did not reach

significance(F (4, 24) = 1.9, n.s.,MSE = .621), meaning thatd′ was constant across pairs. Of

the possible interaction terms, only pair number by stimulus dimension reached significance

(F (4, 24) = 3.2, p < .05, MSE = .461, η2 = .35). Individual T-tests for the difference in

discriminability between formant frequency and duration for each of the stimulus pairs showed

that the interaction was due to stimulus pair 7-9, which was the only pair for whichd′ was

significantly different for the two dimensions (t(6) = −3.6, p < .02).

In addition to the Anova, we ran separate linear regressions for the formant-frequency

and duration data withd′ as the dependent variable and pair number as the independent

variable. For neither dimension did the factor pair number reach significance. This shows that

there is no linear trend ind′, giving further support for the constancy of discriminability of

both continua.

From the discrimination experiments we draw the following conclusions. First, the two

stimulus continua we used in our categorization experiments were of equal discriminability.

Both cover the same number of just-noticeable differences. Second, consecutive stimuli are

confusable, whereas continuum endpoints are highly discriminable. Finally, discriminability is

almost constant across both continua, which means that stimuli on both continua are almost

equidistant in the perceptual sense. The only exception to this rule is stimulus pair 7-9 in the

formant-frequency series, which is slightly more discriminable than the other pairs.
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Table 1: Training distributions of Experiment 1. Columns 2 and 3 give the distances∆µ be-

tween the means of the two training pdfs and their standard deviationsσ expressed in the number

of jnds. Column 4 gives the theoretically maximum classification rates (“max rate”) of an opti-

mal, noise-free classifier, for training conditions 1 to 4. Columns 5, 6, and 7 give the predicted

ratios of the categorization function slopes in the four conditions for the Prototype, Distribution,

and Decision-Bound-based categorization theories.

Condition ∆µ σ max rate slope ratios

(jnds) (jnds) (%) Prototype Distribution decision bound

1 5 3.704 75.45 1 2 1

2 10 3.704 91.82 2 4 1

3 10 7.407 75.45 2 1 1

4 20 7.407 91.82 4 2 1
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Table 2: Means and standard deviations of pdfA and pdfB in the four training conditions of

Experiment 1 (formant frequency categorization). Columns 2, 3 and 4 give means and stan-

dard deviations expressed in ERB (standard deviations in column 4 hold for both pdfs), while

columns 5 to 8 give means and standard deviations expressed in Hz.

Condition µA(ERB) µB(ERB) σ(ERB) µA(Hz) µB(Hz) σA(Hz) σB(Hz)

1 18.49 19.10 .44 1446 1559 78 84

2 18.19 19.40 .44 1393 1619 76 87

3 18.19 19.40 .87 1398 1625 153 174

4 17.58 20.01 .87 1295 1750 143 186
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Table 3: Means and standard deviations of pdfA and pdfB in the four training conditions of

Experiment 3 (duration categorization). Columns 2, 3 and 4 give means and standard deviations

expressed in d (standard deviations in column 4 hold for both pdfs), while columns 5 to 8 give

means and standard deviations expressed in ms.

Condition µA(d) µB(d) σ(d) µA(ms) µB(ms) σA(ms) σB(ms)

1 48.86 51.36 1.79 134.5 172.7 24.2 31.1

2 47.61 52.61 1.79 118.7 195.7 21.4 35.2

3 47.61 52.61 3.58 124.5 205.2 45.5 74.9

4 45.11 55.11 3.58 96.9 263.5 35.4 96.2
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Table 4: Results of model analyses. Parametersk, β, andH model the similarity gradient,

the standard deviation of the sensory noise, and the coefficient of the stimulus range in the

context variance, respectively. SN and CN are abbreviations of sensory noise and context noise,

respectively.

formant frequency duration

Model parameter values G2 parameter values G2

Prototype k = 1.1 2402 k = .076 2029

Distribution k = .91 2124 k = 1.1 1577

Distrib., PN k = 2.0, β = .36 ERB,H = .10 1884 k = 1.9, β = 1.3 d, H = .059 1372

Dec.-Bound β = .29 ERB,H = .21 1631 β = 1.1 d, H = .19 1536

NENA β = .29 ERB,H = .21, α = .010 1630 β = 1.1 d, H = .13, α = .62 1431
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Figure captions

Figure 1. Training probability-density functions and predicted categorization functions for the

four experimental conditions of Experiments 1 and 3. The four panels in the left-most column

represent probability density (pd) on psychological dimensionψ in conditions 1 to 4.µCi

indicates the mean of the pdf for categoryC in conditioni. The small horizontal lines above

the panels represent the width of the test continua. The panels in columns 2, 3, and 4 indicate

categorization functions on testing, as predicted by the Prototype, Distribution, and

Decision-Bound theories of categorization.pA,B is short forp(A|Si) andP (B|Si).

Figure 2. Average training performance in Experiment 1 (formant frequency categorization) as

a function of training block. Different symbols and line types refer to different experimental

conditions (1-4, see text). The isolated symbols to the right of block 8 indicate theoretically

optimal performance.

Figure 3. Categorization functions of individual subjects in the four experimental conditions of

Experiment 1 (formant frequency categorization).

Figure 4. Training probability-density functions and predicted categorization functions

p(A|Si) andP (B|Si) for conditions 5 and 6 of Experiments 2 and 4. Otherwise as Figure 1.

Figure 5. Average training performance in conditions 5 and 6 of Experiment 2 (formant

frequency) as a function of training block. Different symbols and line types refer to different

experimental conditions (see legend). The isolated symbols to the right of block 8 indicate

theoretically optimal performance.
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Figure 6. Categorization functions of individual subjects in conditions 5 and 6 of Experiment 2

(formant frequency).

Figure 7. Average training performance in conditions 1 to 4 of Experiment 3 (duration) as a

function of training block. Different symbols and line types refer to different experimental

conditions (see legend). The isolated symbols to the right of block 8 indicate theoretically

optimal performance.

Figure 8. Categorization functions of individual subjects in the four experimental conditions of

Experiment 3 (duration).

Figure 9. Average training performance in conditions 5 and 6 of Experiment 4 (duration) as a

function of training block. Different symbols and line types refer to different experimental

conditions (see legend). The isolated symbols to the right of block 8 indicate theoretically

optimal performance.

Figure 10. Categorization functions of individual subjects in conditions 5 and 6 of Experiment

4 (duration).

Figure 11. Predicted and observed mean categorization-function slopes in conditions 1 to 6 for

formant frequency (panel A) and duration (panel B). Solid lines give observed slopes, with

vertical bars representing±1 standard error. Dashed, dotted, and dash-dotted lines give

theoretical slopes as predicted by the Decision-Bound theory (DBT), Distribution theory (DT),

and the NENA model, respectively.
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Figure A.1.Discriminability, expressed asd′, as a function of stimulus pair for the formant

frequency and duration continua.
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