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    Organisms show remarkable variation in phenotypic form 
and function, both of which are fundamental to biological di-
versifi cation. A major focus of evolutionary developmental bi-
ology or  “ evo-devo ”  is to determine how and to what extent this 
phenotypic variation is refl ected at the level of underlying de-
velopmental genetic pathways. Over recent years, tremendous 
advances in molecular phylogenetics have greatly facilitated 
evo-devo studies by allowing more precise reconstruction of 
character evolution, thus fostering identifi cation of similar traits 
that are either derived from a common ancestor (homologs) or 
have evolved multiple times independently (analogs). For ex-
ample, fl oral bilateral symmetry, an ecologically important trait 
related to plant pollination syndromes, evolved once and was 
lost multiple times within the plantain family (Plantaginaceae) 
( Reeves and Olmstead, 1998 ), whereas dehiscing fruits and 
branched trichomes evolved several times independently within 
the mustard family (Brassicaceae) ( Beilstein et al., 2006 ). These 
different patterns of evolutionary lability likely refl ect differ-
ences in selection and genetic constraint (reviewed in  Langlade 
et al., 2005 ;  Brakefi eld, 2006 ). In this review, we explore the 
basis of angiosperm (fl owering plant) biodiversity in terms of 
the evolution of broadly conserved developmental genes, and 
attempt to discern whether phenotypic diversity is mirrored at 
the genetic level. Although we will focus on a few important 
angiosperm evo-devo studies, similar research is being done 

in metazoan animals and nonfl owering plants (e.g.,  Rensing 
et al., 2008 ;  Sakakibara et al., 2008 ; reviewed in  Ca ñ estro 
et al., 2007 ). 

 The developmental genetic toolkit   —      Ever since pioneering 
work in the 1990s on angiosperm MADS-box genes, it has been 
clear that distantly related organisms share a common set of 
conserved genes — often referred to as the developmental genetic 
toolkit — which have been repeatedly modifi ed over evolution-
ary time to affect trait diversifi cation (e.g.,  McGinnis et al., 
1984 ;  Scott and Weiner, 1984 ;  Utset et al., 1987 ;  Duboule and 
Doll é , 1989 ;  Coen and Meyerowitz, 1991 ;  Purugganan et al., 
1995 ; reviewed in  Carroll et al., 2005 ;  Degnan et al., 2009 ). 
Indeed, despite evidence for extensive gene/genome duplica-
tions in different lineages that can expand the genetic toolkit 
(e.g.,  Tang et al., 2008 ,  2010 ), recent comparative genomic 
studies suggest that the generation of completely novel genes is 
rare ( AGI, 2000 ;  IRGSP, 2005 ;  Paterson et al., 2009 ). Thus, the 
evolution of form predominantly occurs through the modifi ca-
tion or co-option of existing genetic pathways to different or 
additional features, rather than to the de novo synthesis of genes 
and genetic pathways. 

 Modifi cation of genetic pathways can occur through muta-
tions within the protein-coding or  cis -regulatory sequences 
(e.g., promoters) of genes, resulting in biochemical or develop-
mental function diversifi cation. For example, during Arabidop-
sis [ Arabidopsis thaliana  (L.) Heynh., Brassicaceae] and tomato 
( Solanum lycopersicon  L., Solanaceae) development, the par-
alogous genes (i.e., derived from a duplication event),  TERMI-
NAL FLOWER1/SELF PRUNING  ( TFL1/SP ) and  FLOWERING 
LOCUS T/SINGLE FLOWER TRUSS  ( FT/SFT ), are expressed 
concurrently in the same tissues but have antagonistic func-
tions. Whereas  TFL1 / SP  stimulates growth and development of 
apical meristems and leaf primordia,  FT/SFT  retards growth in 
these tissues, demonstrating that functional differences between 
these paralogs are due to differences in their amino acid sequences 
( Shannon and Meeks-Wagner, 1991 ;  Ruiz-Garc í a et al., 1997 ; 
 Samach et al., 2000 ;  Wigge et al., 2005 ;  Shalit et al., 2009 ). By 
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specifi cation, partially through the downregulation of infl ores-
cence meristem identity genes (e.g.,  AGAMOUS-LIKE 24  
[ AGL24 ] and  SHORT VEGETATIVE PHASE  [ SVP ]) and 
concomitant upregulation of the fl oral organ identity gene  SE-
PALLATA3  ( SEP3 ), the latter of which has been hypothesized 
to heterodimerize with AP1 in sepals and petals ( Gregis et al., 
2008 ,  2009 ;  Liu et al., 2009 ;  Kaufmann et al., 2010 ;  Xu et al., 
2010 ). Finally, following fl ower maturation,  FUL  is re-utilized 
in fruit production during which it controls elongation and dif-
ferentiation of the carpel valve ( Gu et al., 1998 ). 

 In addition to mediating fl owering time, evidence suggests 
that  FUL  contributes to the annual herbaceous habit of  Arabi-
dopsis . Indeed, double  soc1:ful  mutants are very late fl owering 
under long-day conditions and have characteristics of perennial 
plants, including secondary growth, infl orescence meristems 
that revert to vegetative meristems, and longer life cycles 
( Melzer et al., 2008 ). Because the perennial woody habit is 
likely ancestral to angiosperms, independent modifi cations in 

contrast, expression of  APETALA3 -like ( AP3 -like) and  PISTIL-
LATA -like ( PI -like) MADS-box genes in the second whorl of 
 Arabidopsis  fl owers compared to the fi rst and second whorls of 
tulip fl owers ( Tulipa gesneriana  L., Liliaceae), likely underlies 
interspecifi c differences in fi rst whorl morphology — sepals in 
 Arabidopsis  compared to petaloid tepals in tulip ( Jack et al., 
1992 ;  Kanno et al., 2003 ). Since these genes are likely to func-
tion similarly to specify petal identity in the second whorl of 
both species, morphological differences in the fi rst whorl are 
due to changes in the regulation of these orthologous genes 
(i.e., derived from speciation events), rather than to differences 
in their protein-coding regions. 

 The above examples highlight how fl ower developmental ge-
netic pathways diversify through changes in gene regulation 
and protein function and the potential importance of gene dupli-
cation for developmental evolution. These mechanisms appear 
to underlie much of organismal diversifi cation, but interestingly 
there does not seem to be an ever-expanding developmental ge-
netic toolkit specifying novel and convergent phenotypes. Instead, 
growing evidence suggests extensive conservation through the 
 reduction, reutilization , and  recycling  of developmental genetic 
programs. The following sections explore evidence for the re-
utilization of existing genetic pathways in different develop-
mental modules (e.g., leaves and fl owers) both within and 
between individuals, and the importance of independent coop-
tion of the same genes or genetic pathways in the repeated evo-
lution of similar traits. 

 Pleiotropy in infl orescence and fl ower development   —      One 
way to reduce the number of genetic programs required for phe-
notypic diversifi cation is to reuse specifi c gene products in differ-
ent protein complexes, thus altering their developmental functions 
in time and space within an individual. One of the best exam-
ples of this type of developmental pleiotropy is provided by the 
MADS-box transcription factors, including members of the 
well-studied  APETALA1/FRUITFULL  ( AP1/FUL ) subfamily 
that are restricted to the angiosperms ( Litt and Irish, 2003 ). 

 Functional analyses across monocots and eudicots imply an 
ancestral function for  AP1/FUL  genes in meristem identity 
specifi cation. However, the number and types of meristems in 
which these genes function have been altered following both 
duplication and speciation.  Arabidopsis  has three functionally 
characterized  AP1/FUL  genes —  AP1, FUL  and  CAULI-
FLOWER  ( CAL ) — derived from an ancient duplication event at 
the base of core eudicots and a more recent duplication event 
within Brassicaceae ( Litt and Irish, 2003 ). In  Arabidopsis , com-
plexity of the developmental genetic toolkit is minimized 
through the recycling of  AP1  and  FUL  to specify different de-
velopmental trajectories ( Fig. 1 ). During fl oral induction  FUL  
is positively regulated in the shoot apical meristem (SAM), 
where its protein interacts with SUPPRESSOR OF OVEREX-
PRESSION OF CONSTANS1 (SOC1) to initiate the transition 
to infl orescence development ( Hempel et al., 1997 ;  Ferr á ndiz et 
al., 2000 ;  Melzer et al., 2008 ). After the production of an infl o-
rescence meristem,  AP1  and  CAL  are upregulated in emerging 
lateral meristems to specify fl oral identity ( Irish and Sussex, 
1990 ;  Bowman et al., 1993 ;  Kempin et al., 1995 ). This upregu-
lation is achieved through the negative regulation of both  FUL  
and another MADS-box gene  AGAMOUS  ( AG ), which is in-
volved in fl oral organ production ( Mandel and Yanofsky, 1995 ; 
 Sridhar et al., 2006 ). The next phase of fl ower development is 
the production of fl oral organ primordia. At this stage  AP1  
switches function from fl oral meristem to sepal/petal identity 

 Fig. 1.   Expression patterns of  Arabidopsis thaliana  (Brassicaceae) 
 APETALA1/FRUITFULL  ( AP1/FUL ) genes illustrating developmental 
pleiotropy and functional diversifi cation following gene duplication.  FUL  
(red) is expressed in the shoot apical meristem, where its protein product 
interacts with SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 
(SOC1) to induce infl orescence development, and later in carpel valves to 
promote fruit elongation and differentiation.  AP1  (green) is expressed 
alongside its close paralog  CAULIFLOWER  ( CAL ) in fl oral meristems, 
where both genes specify fl oral meristem identity and later in sepals and 
petals to promote fl oral organ identity.   
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suggests that  CYC  and  DICH  were recruited for specifying 
dorsal identity in snapdragon fl owers through temporal shifts in 
their expression, rather than modifi cations to their biochemical 
function ( Cubas et al., 2001 ). 

 In addition to snapdragon, recruitment of  CYC -like genes to 
establish dorsal identity in lineages with independently derived 
bilaterally symmetrical fl owers has been functionally demon-
strated for candytuft ( Fig. 2D ,  Iberis amara  L., Brassicaceae), 
and in the legumes pea and lotus ( Fig. 2E ,  Pisum sativum  L. and 
 Lotus japonicus  L., Leguminoseae) ( Feng et al., 2006 ;  Busch 
and Zachgo, 2007 ;  Wang et al., 2008 ). Importantly, phylogenetic 
analyses support the independent evolution of fl oral bilateral 
symmetry in the Plantaginaceae, Brassicaceae, and Legumino-
seae. As predicted, mutations in  CYC -like genes of these spe-
cies result in radially symmetrical fl owers due to the loss of 
dorsal identity. Interestingly, whereas  CYC -like genes promote 
increased petal size in snapdragon and legumes, orthologs in 
candytuft function to reduce petal size ( Luo et al., 1996 ;  Busch 
and Zachgo, 2007 ;  Wang et al., 2008 ). In addition to functional 
studies, a general role for  CYC -like genes in establishing inde-
pendently derived fl oral bilateral symmetry is supported by 
asymmetric patterns of  CYC -like gene expression in late stage 
bilaterally, but not radially, symmetrical fl owers within Mal-
pighiaceae ( Zhang et al., 2010 ). 

 Independently derived patterns of stamen abortion   —      Intra- 
and interfl oral variation in stamen number and length is common 
within the angiosperms ( Fig. 3 ), and is thought to increase indi-
vidual fi tness by partitioning function between stamens (e.g., 
feeding stamens vs. pollinating stamens), maximizing pollen 
placement (e.g., dorsal staminodes vs. ventral stamens), and en-
suring reproduction through a mixed mating strategy (e.g., didy-
namous stamens or dicliny) ( Endress, 1999 ;  Escaravage et al., 
2001 ;  Kalisz et al., 2006 ;  Friedman and Barrett, 2009 ). In snap-
dragon, the dorsal stamen arrests early in development to leave a 
residual staminode, whereas the two lateral stamens develop to be 
shorter than the two ventral stamens. Similar to petals, the resulting 
bilateral symmetry in the stamen whorl is controlled by the action 
of  CYC , which inhibits cell division along the dorsilateral axis 
( Luo et al., 1996 ,  1999 ; reviewed in  Kalisz et al., 2006 ). 

 Recent evo-devo studies are starting to reveal a role for  CYC -
like gene expression evolution in interspecifi c patterns of sta-
men number variation (reviewed in  Hileman and Cubas, 2009 ). 
First, in the close relative of snapdragon, desert ghostfl ower 
[ Mohavea confertifl ora  (Benth.) A. Heller, Plantaginaceae], 
which has staminodes in both the dorsal and lateral positions, 

the expression or function of  FUL -like genes may be associated 
with repeated evolution of annual herbaceous taxa in different 
lineages ( Melzer et al., 2008 ). Although this hypothesis awaits 
rigorous testing, these data suggest that the re-utilization of 
 FUL -like genes plays a role in the independent evolution of the 
annual habit and that these genes are recycled during angio-
sperm ontogeny, both of which reduce the requirement of novel 
genes and genetic pathways. 

 Repeated evolution of fl oral bilateral symmetry   —      Within 
the angiosperms, bilaterally symmetrical (monosymmetric) 
fl owers have evolved multiple times from radially symmetrical 
(polysymmetric) ancestors ( Fig. 2 ), and these shifts in symme-
try are strongly correlated with increased pollinator specializa-
tion and higher speciation rates ( Donoghue et al., 1998 ;  Ree 
and Donoghue, 1999 ;  Endress, 2001 ;  Sargent, 2004 ;  Knapp, 
2010 ). Recent studies in multiple fl owering plant lineages have 
greatly advanced our understanding of how independent evolu-
tionary transitions to bilateral fl ower symmetry is established at 
the developmental genetic level. Strikingly, these studies 
strongly support a common genetic basis for bilaterally sym-
metrical fl owers, through parallel evolutionary shifts in class II 
TCP  CYCLOIDEA  ( CYC )-like gene expression (reviewed in 
 Preston and Hileman, 2009 ;  Hileman and Cubas, 2009 ;  Rosin 
and Kramer, 2009 ). In other words, fl owering plants appear to 
reuse the same elements of the developmental genetic toolkit to 
establish independent transitions to bilateral fl ower symmetry. 

 The importance of  CYC -like genes for specifying a dorsiven-
tral fl oral axis was fi rst identifi ed in the model organism snap-
dragon ( Fig. 2C ,  Antirrhinum majus  L., Plantaginaceae). In 
snapdragon, fl oral bilateral symmetry is established through the 
differentiation of the dorsal, lateral, and ventral petals and sta-
mens and is partly mediated by the action of two recently dupli-
cated dorsal identity genes,  CYC  and  DICHOTOMA  ( DICH ) 
( Luo et al., 1996 ,  1999 ). Both genes are expressed in the dorsal 
region of the fl ower during early to late stages of development, 
with double  cyc:dich  mutant fl owers being fully radially sym-
metrical due to the loss of dorsal identity ( Luo et al., 1996 , 
 1999 ). By contrast, in radially symmetrical fl owers of the dis-
tantly related model species  Arabidopsis , the  CYC/DICH  or-
tholog  TCP1  is expressed dorsally only in very early stages of 
fl ower development ( Cubas et al., 2001 ). Thus, since class II 
TCP genes generally function as regulators of cell proliferation 
and expansion ( Doebley et al., 1997 ;  Crawford et al., 2004 ; 
reviewed in  Preston and Hileman, 2009 ;  Mart í n-Trillo and 
Cubas, 2010 ), the early dorsal expression of  TCP1  in  Arabidopsis  

 Fig. 2.   Independent recruitment of  CYC -like genes in the evolution of fl ower bilateral symmetry across core eudicots. (A) Example of a radially symmetri-
cal rosid fl ower from sulphur cinquefoil ( Potentilla recta  L., Rosaceae) with multiple lines of symmetry (dashed lines). (B) Illustration of a typical core eudicot 
fl ower with strong bilateral symmetry along the dorsiventral axis due partly to the action of CYC protein function in the dorsal region (zigzag). (C – E) Func-
tional studies have shown that  CYC  was recruited multiple times in the independent origin of (C) snapdragon ( Antirrhinum majus  L.; Plantaginaceae; asterid 
I), (D) candytuft ( Iberis amara  L.; Brassicaceae; rosid II), and (E) pea ( Pisum sativum  L.; Leguminoseae; rosid I) fl ower bilateral symmetry.   
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more, constitutive expression of  KN1  causes ectopic shoot 
formation in simple leaves of tobacco ( Nicotiana tabacum  L., 
Solanaceae) and  Arabidopsis . These data from maize, to-
bacco, and  Arabidopsis  suggest that expression of  KN1  
homologs during the development of leaves may contribute to 
compound leaf development. This expression evolution may 
be due to changes in the  cis -regulatory elements of  KN1  genes 
and/or to variation in their upstream regulators (e.g.,  CUC1  
and  CUC2 ). 

 Comparative studies have revealed a role for differential 
regulation of  KN1  orthologs in the independent origins of sim-
ple and compound leaves across angiosperms, some Legumino-
seae being notable exceptions ( Champagne et al., 2007 ;  Chen 
et al., 2010 ). In the simple leaf primordia of  Amborella  Baill. 
(Amborellaceae, basal dicot), grasses (Poaceae, monocot), and 
 Arabidopsis  (rosid),  KN1 -like gene expression is repressed 
throughout leaf development, whereas in the complex leaf pri-
mordia of  Lepidium perfoliatum  L. (Brassicaceae, rosid) and 
tomato (asterid)  KN1 -like transcripts are abundantly expressed 
( Bharathan et al., 2002 ). The picture emerging from studies fo-
cusing on the role of  KN1 -like genes in diverse angiosperms is 
that multiple shifts in  KN1 -like expression likely underlie par-
allel evolution of compound leaves. It is important to note that 
simple leaves can develop from complex primordia and vice 
versa and that  KN1 -like gene expression strongly correlates with 
young, but not necessarily adult, leaf morphology ( Bharathan 
et al., 2002 ). This correlation between  KN1 -like gene expres-
sion and young leaf morphology highlights the importance of 
careful morphological work in evo-devo studies. 

there has been an expansion of  CYC -like gene expression into 
the lateral region of the stamen whorl ( Hileman et al., 2003 ). 
Second, in  Opithandra  B. L. Burtt (Gesnericaceae) and  Schi-
zanthus  Ruiz  &  Pav. (Solanaceae) ( Fig. 3C – E ),  CYC -like gene 
expression has expanded into the ventral region, correlating 
with derived patterns of stamen abortion in both the dorsal and 
ventral regions ( Song et al., 2009 ). Third, the maize ( Zea mays  
L., Poaceae)  CYC -like homolog  TEOSINTE BRANCHED1  
( TB1 ) is strongly expressed in the stamen whorl of female, but 
not male, fl orets correlating with patterns of stamen abortion 
( Hubbard et al., 2002 ). Although there are noteworthy excep-
tions to this correlation — including the lack of  CYC -like ex-
pression in ventral staminodes of  Gratiola  L. and  Veronica  L. 
(Plantaginaceae) ( Preston et al., 2009 ) ( Fig. 3B ) — these results 
suggest an important role for recurrent evolutionary shifts in 
 CYC -like gene expression for the independent patterning of sta-
men development across angiosperms. 

 Parallel recruitment of     KNOXI   genes in leaf shape evolu-
tion   —      Angiosperm leaves show a great diversity in shape, 
largely resulting from differences in the number, arrangement, 
and shape of blades or blade units (leafl ets) on the main leaf 
axis. Simple leaves (e.g.,  Arabidopsis , snapdragon and maize, 
 Fig. 4A, B ) are borne in one piece, can be either entire or ser-
rated along the leaf margin, and are thought to be the ancestral 
angiosperm leaf type. By contrast, compound (complex or dis-
sected) leaves (e.g., tomato and giant starfruit [ Averrhoa car-
ambola  L., Oxalidaceae],  Fig. 4C ) are derived from several 
leafl ets that dissect the leaf at the main axis. Across angio-
sperms, compound leaves have evolved independently multiple 
times ( Bharathan et al., 2002 ; reviewed in  Blein et al., 2010 ). 
Regardless of form — simple or compound — leaf initials emerge 
similarly from groups of differentiated cells that subtend a zone 
of uncommitted (indeterminate) cells within the SAM. Indeter-
minancy in the central zone of the SAM is maintained primarily 
by a group of related genes within the KNOX1 family of ho-
meobox genes and their upstream regulators  CUP-SHAPED 
COTYLEDON  ( CUC ) and  CUC2  ( Aida et al., 1999 ;  Takada 
et al., 2001 ;  Long et al., 1996 ;  Williams, 1998 ;  Hibara et al., 
2003 ; reviewed in  Langdale, 1994 ). 

 One of the best-characterized KNOX1 genes,  KNOTTED 1  
( KN1 ), is expressed in both vegetative and fl oral meristematic 
cells of maize, but  KN1  transcripts are undetectable in regions 
of lateral organ formation ( Smith et al., 1992 ;  Jackson et al., 
1994 ). Ectopic expression of  KN1  in simple maize leaves 
causes cell proliferation around the lateral leaf veins. Further-

 Fig. 3.   Patterns of stamen abortion and  CYCLOIDEA  ( CYC ) expression in exemplary asterids. (A) Scanning electron micrograph (SEM) showing typi-
cal Plantaginaceae fl ower morphology in  Collinsia heterophylla  Buist ex Graham, with two ventral and two lateral stamens (*), and a single dorsal stamin-
ode (X). (B) SEM showing the divergent fl ower morphology of  Gratiola offi cinalis  L. (Plantaginaceae), with two lateral stamens and two ventral and one 
dorsal staminode. (C)  Schizanthus  Ruiz  &  Pav. fl ower showing strong dorsiventral bilateral symmetry. (D, E) Transverse section through a  Schizanthus  
fl ower showing  CYC  expression in the (D) dorsal and (E) ventral staminodes.   

 Fig. 4.   Variation in angiosperm leaf complexity can largely be ex-
plained by evolution of  KN1  expression. (A) Simple snapdragon  (Antir-
rhinum majus  L., Plantaginaceae) leaf. (B) Simple dissected maple ( Acer  
L., Sapindaceae) leaf. (C) Compound leaf of the giant starfruit ( Averrhoa 
carambola  L.; Oxalidaceae).   
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eudicots, this function appears to have been recycled multiple 
times in developmentally distinct tissues. For example, petunia 
[ Petunia hybrida  (Hook.) Vilm., Solanaceae] nectaries are as-
sociated with the base of the ovary wall, and are therefore only 
serially homologous to nectaries of  Arabidopsis . Regardless, 
the petunia  CRC  ortholog is strongly expressed in growing 
nectary tissue, and gene silencing causes loss of nectary devel-
opment ( Lee et al., 2005b ). By contrast,  CRC -like genes have 
not been demonstrated to function in nectary development in 
monocots. Instead, evidence from lily ( Lilium longifl orum  
Thunb., Liliaceae) and rice ( Oryza sativa  L., Poaceae) suggests 
neo-functionalization of  CRC  in monocot leaf midrib develop-
ment and carpel identity ( Ishikawa et al., 2009 ;  Wang et al., 
2009 ) ( Fig. 5 ). Thus, data suggest that  CRC -like genes have 
been reutilized and neo-functionalized multiple times, indepen-
dent of gene duplication, within the angiosperms. 

 Concluding remarks   —      The examples outlined above illus-
trate the frugal use of genes and genetic pathways in different 
developmental modules during the ontogeny of individual 
plants and during the evolutionary diversifi cation of form and 
function — both of which are critical components of biodiver-
sity. In the case of angiosperm  AP1/FUL  genes, recycling of 
gene function during ontogeny has occurred partly through 
gene duplication, allowing expansion of the genetic toolkit 
without the de novo synthesis of genes ( Rosin and Kramer, 
2009 ). Therefore, to reuse developmental genetic programs 
within ontogeny and over evolutionary diversifi cation is not al-
ways to reduce total gene number. By contrast, developmental 
pleiotropy in  AP1/FUL  and  CRC  genes has fostered reduction 
in the genetic toolkit through the reuse of specifi c genes within 
different modules of an individual. Similarly, repeated diversi-
fi cation of  CYC ,  CRC ,  KN1 , and  AP1/FUL  genes has resulted in 
the independent evolution of fl ower bilateral symmetry, necta-
ries, compound leaves, and possibly the annual habit, across the 
angiosperms, respectively. These examples highlight the ability 
of evolutionary forces to reduce the number of tools within the 
genetic toolkit while simultaneously increasing biodiversity, 
and together resolve the apparent mismatch between diversity 
at the phenotypic and genetic levels. 
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through mutant screens of  Arabidopsis  plants that showed 
defects in carpel development ( Alvarez and Smyth, 1999 ; 
 Bowman and Smyth, 1999 ). Mutants occasionally develop su-
pernumerary carpels that are shorter and wider than normal and 
that are unfused at the apex. These mutant phenotypes suggest 
a role for  CRC  both in establishing fl oral determinancy and in 
carpel patterning ( Alvarez and Smyth, 1999 ;  Eshed et al., 1999 ). 
A second role of  Arabidopsis   CRC  is in the development of 
fl oral nectaries that develop at the base of the stamens; nectaries 
are entirely absent in  crc  mutants ( Bowman and Smyth, 1999 ). 
Simultaneous expression of  CRC  in nectaries and carpels is 
partly regulated by fl oral homeotic protein complexes that bind 
to the MADS-box binding site in the  CRC  promoter ( Lee et al., 
2005a ). However, the fact that gynoecium- and nectary-specifi c 
 CRC  expression is regulated by different  cis -regulatory ele-
ments suggests that these distinct functions may have evolved 
independently ( Lee et al., 2005a ). 

 Comparative expression and functional analyses in mono-
cots, early-diverging dicots, and eudicots, support an ancestral 
role for  CRC -like genes in fl oral meristem determinancy and 
carpel polarity differentiation of angiosperms ( Fourquin et al., 
2005 ,  2007 ;  Nakayama et al., 2010 ) ( Fig. 5 ). However, although 
CRC function in nectary development is likely ancestral to core 

 Fig. 5.   Major hypotheses of  CRABS CLAW  ( CRC ) functional evolu-
tion across the angiosperms based on gene expression, interspecifi c genetic 
complementation tests, and mutant analyses (for references, see section 
 Reuse of CRABS CLAW (CRC) during angiosperm diversifi cation ). Dotted 
line at the basal node represents uncertainty due to lack of functional anal-
yses in  Amborella  Baill. and other basal dicots.   
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