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Abstract

Background: Buruli ulcer (BU), caused by Mycobacterium ulcerans (M. ulcerans), is a necrotizing skin disease found in more
than 30 countries worldwide. BU incidence is highest in West Africa; however, cases have substantially increased in coastal
regions of southern Australia over the past 30 years. Although the mode of transmission remains uncertain, the spatial
pattern of BU emergence in recent years seems to suggest that there is an environmental niche for M. ulcerans and BU
prevalence.

Methodology/Principal Findings: Network analysis was applied to BU cases in Victoria, Australia, from 1981–2008. Results
revealed a non-random spatio-temporal pattern at the regional scale as well as a stable and efficient BU disease network,
indicating that deterministic factors influence the occurrence of this disease. Monthly BU incidence reported by locality was
analyzed with landscape and climate data using a multilevel Poisson regression approach. The results suggest the highest
BU risk areas occur at low elevations with forested land cover, similar to previous studies of BU risk in West Africa.
Additionally, climate conditions as far as 1.5 years in advance appear to impact disease incidence. Warmer and wetter
conditions 18–19 months prior to case emergence, followed by a dry period approximately 5 months prior to case
emergence seem to favor the occurrence of BU.

Conclusions/Significance: The BU network structure in Victoria, Australia, suggests external environmental factors favor M.
ulcerans transmission and, therefore, BU incidence. A unique combination of environmental conditions, including land cover
type, temperature and a wet-dry sequence, may produce habitat characteristics that support M. ulcerans transmission and
BU prevalence. These findings imply that future BU research efforts on transmission mechanisms should focus on potential
vectors/reservoirs found in those environmental niches. Further, this study is the first to quantitatively estimate
environmental lag times associated with BU outbreaks, providing insights for future transmission investigations.
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Introduction

Buruli Ulcer Disease
Buruli ulcer disease (BU), reported within the top three most

frequent human mycobacterial diseases [1], is a rapidly emerging

yet neglected tropical disease. BU is endemic in at least 32 tropical

and subtropical countries around the world, but most severely

impacts areas of sub-Saharan Africa [1,2]. The disease is caused

by infection with the environmental pathogen Mycobacterium ulcerans

(M. ulcerans) and primarily affects the skin, often progressing

without pain or fever to the patient [3]. Symptoms can range from

a painless, mobile nodule underneath the skin to, if left untreated,

large skin ulcerations and sometimes osteomyelitis, a severe bone

infection [3]. Treatment with antibiotics can be effective in the

pre-ulcerative stage of the disease; however, extensive ulcerations

often require surgical removal including amputation of ulcerated

limbs [4]. Additional clinical information and comprehensive

reviews of BU are available (e.g., [1]).

BU is not transmitted from person-to-person, but rather from

direct or indirect contact with M. ulcerans in the environment.
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Studies have frequently linked M. ulcerans with aquatic environ-

ments (e.g., [5–8]); however, very little is known about the ecology

of the pathogen and its environmental distribution [1,9]. To add

further difficulties, the human incubation period for BU is

unknown, and lag-times between symptom presentation and

health-seeking behavior vary on an individual basis, causing the

mode(s) of disease transmission to remain unclear.

Previous BU Studies in Australia
The highest BU disease incidence rate outside of Africa occurs

in Australia, where interestingly, environmental and socio-

economic conditions associated with BU patients differ substan-

tially from those in West Africa. The first reported BU case in

Australia occurred in 1939 in the Bairnsdale region of Victoria

[10–13]. Since then, cases have been identified in coastal areas of

most Australian states and territories, but about 84% (517 cases

through 2008) occurred in Victoria (Figure 1). Unlike the

widespread case distribution in some West African countries,

outbreaks in Victoria are typically found along the highly

populated coast [12,13]. In both regions; however, BU incidence

has increased substantially over the past 20 to 30 years [5,14,15].

The most recent and severe Australian BU outbreak to-date

occurred in Point Lonsdale, a small coastal town in Victoria,

where nearly 70 cases emerged during 2004–2006 (data used in

this study).

Several hypotheses on BU transmission in Victoria have

emerged in recent years as cases continued to occur and M.

ulcerans DNA was detected in the environment. Numerous aquatic

sources tested positive for M. ulcerans DNA including a swamp and

an irrigated golf course, the latter of which prompted speculation

of pathogen exposure via aerosolization [16], but this was never

confirmed. M. ulcerans was also detected in aquatic plant biofilm,

sediment, and soils [17,18] leading researchers to focus on possible

water contamination sources of M. ulcerans, such as landscape

disturbance, as part of the BU transmission cycle [2,10,13,16,19].

Early anecdotal accounts in Victoria lead to the suspicion that

flooding may be a precursor to disease outbreaks [10], which has

also been speculated in West Africa [20,21]. Prior to the current

study, however, quantitative relationships between climate condi-

tions and BU emergence and/or M. ulcerans had yet to be

explored.

In recent years, transmission research in Victoria has focused on

potential M. ulcerans reservoirs and/or BU vectors, in both

vertebrate and invertebrate species. A novel study investigating

the role of marsupials in the life cycle of M. ulcerans in Victoria

found evidence to support possums as environmental reservoirs for

the pathogen [18]. However, the most widely supported trans-

mission hypothesis in Victoria in recent years is that mosquitoes

act as biological or mechanical vectors. Researchers have

suggested that mosquito habitats may become contaminated with

M. ulcerans causing mosquitoes to carry the pathogen internally or

externally, thus forming a transmission pathway to humans

[12,22–25]. Correlations have been found between BU occurrence

and other known mosquito vector-borne diseases in Victoria [22]

causing further speculation. In addition, recent studies have: 1)

detected M. ulcerans DNA in a common species of mosquitoes in

Victoria [12], 2) demonstrated that larvae can ingest and maintain

the bacteria during early stages of development [3,24], 3) found

pathogen DNA in adult mosquitoes that were infected during the

larval stage [25], and 4) demonstrated the successful transfer of the

bacteria through three trophic levels with mosquito larvae acting

as primary consumers [25]. However, no vector competency

studies have been published to date, a necessary criterion for

identifying and describing a possible vector [1,26,27]. Therefore, it

is still unclear whether or not mosquitoes are M. ulcerans vectors

and if they are, whether the pathogen is carried by the mosquito

internally or externally [12].

Buruli ulcer Research Challenges
Regional climate conditions may play a vital role in BU disease

transmission, whether or not M. ulcerans is vector-borne, due to the

ability of climate events to shift or expand pathogen, reservoir or

vector habitats [28]. Annual and seasonal climate change

(specifically temperature and precipitation changes), in conjunc-

tion with landscape dynamics, may create optimal environmental

conditions for disease pathogens and/or vectors to flourish [28–

30]. Unfortunately, research on climate associations with BU

emergence has been lacking due to data availability, quality, and

accessibility. Subsequently, this is the first study to investigate both

Figure 1. Buruli ulcer incidence in Australia from 1939–2008. The value for each state represents the percentage of total reported Buruli ulcer
cases for Australia during this time period.
doi:10.1371/journal.pone.0051074.g001
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landscape and climate associations that are potentially important

to BU ecology, transmission, and risk factors.

In spite of the substantial efforts dedicated to BU research, a

number of challenges impose limitations for understanding M.

ulcerans ecology and BU transmission. For example, most studies

have been limited in spatial and/or temporal extent, presenting

difficulties in understanding the epidemiology of this disease both

regionally and globally. If the occurrence of BU throughout

Victoria is entirely random, then localized case studies might be

the optimal method for BU research in this region. However, the

existence of a large-scale spatio-temporal BU pattern would

indicate the presence of external forces driving disease incidence,

warranting a regional analysis of potential environmental risk

factors for M. ulcerans and BU, which until now had not been

performed in Victoria.

Research Questions
The primary purpose of this study was to answer three crucial

research questions concerning BU incidence in Victoria:

1) Is there a statistically significant spatial structure to BU cases indicating

the existence of external, regional factors that influence disease emergence?

2) Which environmental, i.e., climate and landscape, variables are

associated with BU incidence in Victoria at a regional scale?

3) Are any of the climate and/or landscape variables linked to BU

occurrence consistent with optimal niches of any hypothesized vectors or

reservoirs?

Materials and Methods

Study Area
The study area was confined to the southern portion of Victoria,

where the majority of Australian BU cases occurred. Although the

area is predominantly coastal, the inland extent consists of urban

and residential regions surrounded by primarily agricultural land

with intermingled forested areas. The region is characterized by a

temperate climate with typical maximum summertime (Dec, Jan,

Feb) temperatures in the range of 24uC to 27uC and maximum

wintertime (Jun, Jul, Aug) temperatures from 12uC to 15uC [31].

The annual rainfall varies substantially with some regions

experiencing as little as 500 mm and others as much as

1200 mm [31].

BU Case Data
Monthly BU incidence data were obtained for Victoria from

1939–2008 from the Department of Health Services, Victoria [10–

13]. While more than 430 cases were provided in the data set,

many had incomplete information (e.g., missing month, year, or

location) and thus were removed from this analysis, leaving a total

of 318 BU cases. Nearly all of these cases occurred after 1980

(,95%); therefore, the analysis was limited to data from 1981 to

2008. A total of 302 cases were reported from 90 localities during

this time period.

Data quality and terminology issues were encountered through-

out the study and should be noted. The BU research community

in Victoria limits the areas considered to be ‘‘endemic’’ to east

Gippsland, the Mornington Peninsula, and the Bellarine Peninsula

based on conversations with patients in the clinical setting. Despite

this, we found that several BU cases (,10% of the original data)

were reported from localities outside of these strictly defined

endemic areas (Figure 2). This may be the result of inaccurate

patient reporting or insufficient follow-up to determine the likely

site of exposure. However, given the uncertainty in the informa-

tion provided by patients and lack of additional scientific evidence

to verify its accuracy, all reported localities were retained for

analysis. The resulting errors were assumed to be random, thus

having minimum effect on the analysis. In this study, we refer to

the localities where BU cases were reported as endemic localities.

Human population data for each endemic locality were

obtained from the Australian Bureau of Statistics for the census

years of 1981, 1986, 1991, 1996, 2001, and 2006. Because the

population density differed among these endemic localities BU

cases were standardized to cases per 1000 people for subsequent

analyses. The raw number of BU cases from each endemic locality

ranged from 1 to 97, while standardized cases ranged from ,1 to

,333.

Landscape Covariates
To examine potential environmental relationships with BU

incidence over a relatively large spatial and temporal scale,

Figure 2. ‘‘Endemic’’ localities in Victoria from 1981–2008. The lighter gray endemic localities may be considered ‘‘questionable’’ as they
generally fall outside of the three most frequently identified endemic areas of Bellarine Peninsula, Mornington Peninsula, and East Gippsland.
doi:10.1371/journal.pone.0051074.g002
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commonly used landscape covariates, topography and land use/

land cover (LULC), were derived from remotely sensed satellite

images. The assumption is that BU outbreaks may be associated

with variability in weather patterns, landscape heterogeneity, and

land cover types of the local environment.

Topography. Topographic characteristics of each locality,

including elevation and wetness index, were calculated from a

30 m resolution digital elevation model (DEM) derived from

Advanced Spaceborne Thermal Emission and Reflection Radi-

ometer (ASTER) imagery. The wetness index (WI) elucidates the

areas of a landscape that are likely to accumulate water when

precipitation is present [32]. Zonal statistics, including maximum,

minimum, mean and standard deviation, of both elevation and WI

were calculated within the boundaries of each endemic locality.

Land Use/Land Cover. To analyze the general LULC

composition across the study area, Landsat 7 ETM+ satellite

imagery (28.5 m spatial resolution) acquired in, or close to, the

year 2000 was classified using a hybrid image classification

approach first [33] and then further filtered to remove randomly

misclassified pixels [34]. The final LULC map contained five

unique land cover types, including water, wetland, forest,

agriculture, and urban. Due to a lack of ground truth data from

the time period the satellite imagery was acquired, land cover

types were aggregated into broad, mutually exclusive categories

[35] that were more easily confirmed from the Landsat imagery.

An accuracy assessment was performed by choosing 50 random

‘‘reference’’ points per cover type [35] and revisiting the original

Landsat imagery to determine which type the reference points

should belong. An error matrix, generated using the reference

points, yielded a kappa statistic [36] of 0.95, indicating that the

pixels were 95% more likely to be assigned to the broad class the

authors deemed most appropriate than if they had been assigned

randomly. From the classified LULC maps, land cover compo-

sition (i.e., percentage of each land cover class) within the locality

boundaries was derived and used in the subsequent analyses.

Climate Covariates
Meteorological data were obtained for Victoria from the

Australian Bureau of Meteorology (BOM). The data included

daily precipitation and maximum and minimum temperatures for

the years 1940–2008. Data were removed if they had not been

quality checked by the BOM or were indicated as erroneous or

suspect. Daily data were converted to monthly averages to match

the temporal resolution of the BU case data.

Monthly total and standard deviation of precipitation, as well as

averaged maximum and minimum temperatures, were calculated

from 1981–2008. Monthly variables were spatially interpolated to

climate grids using an Inverse Distance Weighted (IDW) approach

[37,38]. The mean value of pixels that fell within the boundaries of

each endemic locality was retained, resulting in a monthly time

series of climate observations for all endemic localities. For each

locality, the climate data 4 to 24 months prior to the reported BU

case date were also included in the statistical analysis to account

for unknown lag-times regarding disease transmission, including

the time needed for: M. ulcerans population increases/decreases in

the environment, human exposure to the pathogen (or potential

vector), and recognizable symptoms to develop leading patients to

engage in health seeking behavior. Because of these factors,

combined with minimum reported disease incubation periods of

5–8 weeks [1], climate observations 1 to 3 months prior to

reported cases were excluded in this analysis.

Network Analysis
To address the first objective of this study, the BU disease

‘‘network’’ in Victoria was analyzed to determine whether an

underlying spatio-temporal (i.e., structural) pattern of disease

incidence occurred at a regional scale. A network consists of two

primary components: nodes and links [39–41]. Network nodes are

defined as the interacting agents, which can be anything. For

example, in epidemiological studies of communicable diseases,

network nodes typically consist of infected and/or non-infected

individuals and are connected (i.e., linked) by contact with one

another [42–44]. Although network analysis has been fairly limited

in disease epidemiology, it is useful for identifying and testing

patterns of disease emergence across spatio-temporal scales.

There are three basic types of networks: regular, classical

random, and small-world. Regular (i.e., ordered) networks contain

a fixed number of nodes, each node having the same number of

links connecting it in a specific way to a number of neighboring

nodes (Figure 3A). A large number of links per node indicates a

high local clustering coefficient, C. Higher C values in regular

networks allow for the removal of nodes without breaking the

network into non-communicating parts, i.e., a stable network.

Classical random networks, on the other hand, consist of nodes

that are randomly connected (Figure 3B) and have very small

clustering coefficients. As a result, the removal of nodes at random

may fracture the network to non-communicating parts, i.e., an

unstable network. However, far away nodes can be connected as

easily as nearby nodes, allowing information (e.g., diseases,

pathogens, reservoirs, or vectors) to be transported across the

network much more efficiently than in ordered networks. Most

networks in nature are not completely regular or random; rather

they tend to be simultaneously stable and efficient in processing

information. One such network is the ‘‘small-world’’ network [40],

which exhibits a high degree of local clustering, but a small

number of long-range connections, making it as efficient in

transferring information as random networks (Figure 3C). Another

type is the scale-free network (not shown) characterized by the

presence of supernodes, where a few nodes are connected to many

other nodes and many nodes are connected to only a few nodes,

(e.g., an airline route map with a few hubs connected to many

locations). Scale-free networks are small-world, thus, are also

stable and efficient in transferring information [39].

For BU in Victoria, the disease network was constructed as

follows. The nodes consisted of the centroids of BU endemic

localities, resulting in N = 90 nodes. The node corresponding to

the earliest BU case in the study period (1981–2008) was

connected to the node where the second BU case occurred. This

case was then connected to the next, and so on. However, nodes

were not linked to themselves, i.e., if two successive cases in the

record occurred at the same location, this link was ignored. This

process, which does not affect our results and conclusions, resulted

in 216 links (i.e., 216 cases out of the original 302). With this

network structure, the localities where BU cases occurred most

frequently constitute what are referred to as ‘‘supernodes’’ in the

network. ‘‘Random’’ BU networks were constructed as references

to assess the characteristics of the actual BU network. First the BU

cases from 1981–2008 were chronologically sorted, as with the

observed network. Then, each case was assigned a random

number between 0.0 and 1.0 and re-sorted based on the value of

the random number (from low to high) to obtain a randomized

‘‘chronological’’ sequence. With this dataset, the procedure was

repeated 100 times to generate 100 random, or surrogate, BU

networks. This approach to constructing random networks

preserved the supernodes, but not the links between them and

the remaining nodes in the network. When a locality had a high

Environmental Associations with Buruli Ulcer
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incidence of BU, links would always run through that locality from

different nodes (i.e., localities), even when randomizing the

chronological order. If the links in the actual network are due to

some deterministic force, then these dynamics are destroyed in the

random network.

The clustering coefficients for the Victoria BU network and the

random networks were calculated using the procedure illustrated

in Figure 4, where first, the clustering coefficient for each node, Ci,

is derived. The average Ci over all nodes provides the clustering

coefficient of the full network C, which can range from 0.0 to 1.0.

For a fully connected network, C = 1.0.

Multilevel Regression Modeling
Modeling Theory and Approach. To address the second

objective a statistical modeling approach was used to find any

significant relationships between BU incidence and various climate

and landscape conditions across the region and to identify any

associated environmental lag-times between habitat conditions

and BU occurrence. To accomplish this objective a hierarchical

modeling approach was utilized to account for the nested structure

of the BU data, as multiple observations of BU cases over time

were nested within each endemic locality. Specifically, multilevel

Poisson regression models with random effects for endemic

localities were developed. The random effect for each locality

was introduced to account for autocorrelation in the data from the

same locality.

A simple multilevel model can be constructed with Equations 1

and 2 below [45]. The level 1 model (Equation 1) expresses each

monthly incidence rate as a function of a locality-specific intercept

plus the effects of one time-varying predictor associated with that

locality, while the level 2 model in (Equation 2) explains the

variation in the locality-specific intercepts as a function of an

average intercept across all localities plus the effect of one time-

invariant, locality-specific characteristic:

Level 1 : log(Yij)~b0jzb1X1ij ð1Þ

Level 2 : b0j~c00zc01Wjzu0j ð2Þ

log(Yij)~c00zb1X1ijzc01Wjzu0j ð3Þ

In equation 1 above, Yij is the monthly incidence rate of BU

during month i at location j, b0j is the random intercept for each

location j (i.e., endemic locality), b1 is the fixed effect slope for the

time-varying predictor X1ij. Equation 2 illustrates the components

of b0j where c00 is the grand mean intercept (average of the

random intercepts for the different locations), c01 is the slope for

the fixed effect of a time-invariant, location-level predictor called

Wj, and u0j is the estimate of the random effect for each location

(i.e., a location-level residual). Equation 3 substitutes the terms

from Equation 2 into Equation 1 in place of the b0j term; it

therefore represents the combined equation for the multilevel

Poisson model.

To develop the models, a data set was constructed such that

every month from 1981–2008 had a corresponding number of BU

observations for each locality, whether a case was reported or not

(months with no cases were assigned a zero). This resulted in a

total of 30,240 possible observations (90 localities * 28 years * 12

months). Months with any missing covariates were removed via

listwise deletion [46], leaving 27,864 valid observations for model

development. The time-varying (i.e., level 1) predictors were the

monthly climate covariates, while the time-invariant (i.e., level 2)

predictors included elevation, WI, and LULC (Table 1). The

models were run in R version 2.10.1 [47] using the glmer function

from the lme4 package [48,49].

Prior to each modeling step, candidate predictor variables were

tested for colinearity to ensure that no variables entering a model

were correlated with one another. Model performance was

evaluated using likelihood ratio tests for nested models [50] and

Akaike’s Information Criterion (AIC) for non-nested models [51].

The likelihood ratio tests determined whether the addition of new

variables to an existing model resulted in a statistically significant

improvement (i.e., p#0.05). For non-nested models, AIC values

Figure 3. Illustrations of three basic types of networks. Figure (A) shows a regular network, (B) a random network, and (C) a small-world
network [40].
doi:10.1371/journal.pone.0051074.g003

Figure 4. Calculation of the clustering coefficient (C). The links
between node i and other nodes in the network defines the
neighborhood of node i (A). Node i has 8 links, or ‘‘neighbors’’,
denoted as ki. To calculate the clustering coefficient for node i (Ci), we
find the number of possible unique connections between the
neighbors (ki) using the formula [ki(ki21)/2], or in this case (8*7)/
2 = 28. We then find the number of actual connections (Di) between
neighbors, in this case 5 (B). Ci is simply defined as the actual links (Di)
divided by the possible links [ki(ki21)/2] in the neighborhood of node i.
Therefore, Ci = 2Di/(ki21)ki = 0.178 [40].
doi:10.1371/journal.pone.0051074.g004
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represent a goodness of fit measure [52] with a lower AIC value

indicating a better-fitting model.

Model Application. Models were developed in a multi-step

process (Figure 5), without a priori assumptions regarding the

relationships of the environmental variables and BU prevalence.

First, the landscape variables that exhibited the highest correlation

with total BU incidence per locality (r.|0.4|) were selected to

create a base model (Table 1). Multiple candidate base models

were constructed by testing all non-correlated variable combina-

tions. The optimal model was selected by comparing their AIC

values. Next, each climate variable was added to the base model

and tested separately, resulting in a total of 84 model runs, which

were further reduced to eight models by testing model improve-

ment using both likelihood ratio tests and AIC values (Table 2).

Different combinations of climate variables from the remaining

eight models were added to the base model and examined for the

overall best fit.

Results and Discussion

Spatial and Temporal Patterns of BU
The Victoria BU network (Figure 6) contains several super-

nodes, the most notable being the node corresponding to Point

Lonsdale. The clustering coefficient of the Victoria network was

C = 0.32. The same calculation was performed on each of the 100

surrogate networks resulting in a mean Cr of 0.23. Therefore, the

null hypothesis ‘Ho = the actual BU network is random’ was

rejected at a significance level of 99% (only one random case had a

clustering coefficient greater than 0.32). These findings indicate

that the BU network structure was not random, i.e., stable, and

due to the presence of supernodes, the network was efficient for

disease transfer. From an epidemiological perspective, the efficient

and stable properties of the BU network in Victoria indicate that

BU incidence will not likely diminish on its own and is readily

transmitted throughout the region. Additionally, the overall

network structure has a greater influence on individual nodes

than characteristics or interactions of the nodes themselves [42],

suggesting the need to look beyond the local scale aspects of

previous BU research. However, the existence of supernodes

provides valuable information for developing strategies to control

the disease by concentrating treatment and remediation efforts

within these localities.

Environmental Factors Affecting BU Prevalence
The multilevel regression analysis resulted in an overall best-

fitting environmental model consisting of a specific combination of

optimal land cover, elevation, precipitation, and minimum

temperature conditions that are most associated with BU

incidence (Table 3). The parameter estimates of this model

indicate that localities with a greater proportion of forest cover and

lower mean elevations were associated with higher disease

incidence. Additionally, climate conditions as early as 19 months

in advance may be linked to BU occurrence as results show the

total number of cases is positively correlated with precipitation 19

months earlier and with minimum temperature 18 months prior to

BU emergence. Both of these variables were highly significant

predictors of BU (p,0.0001). Interestingly, lower rainfall variabil-

ity slightly more than a year after these warm, wet conditions (i.e.,

5 months prior to case emergence) also appears to be associated

with higher BU risk. However, low rainfall variability could result

from very little precipitation throughout the month or, conversely,

constant rainfall, which could have very different implications. To

clarify this ambiguity, total precipitation five months prior to case

emergence was substituted for the standard deviation in the model,

which revealed a negative relationship between BU emergence

and total rainfall. This suggests that generally dry, rather than wet,

conditions may be a more immediate precursor for BU.

Interestingly, the optimal environmental conditions for disease

emergence did not include water and wetland variables. However,

these results support a recent study in West Africa which found

that neither the proportion of water surrounding a village or the

proximity to the nearest river were important risk factors for BU

[53]. In addition, the significance of forested land cover as a BU

risk factor in Victoria is consistent with another West African study

showing that villages in Benin surrounded by forested land cover

within a 20 km radius tended to have higher BU rates [54]. In

addition, living within close proximity to wooded areas and cocoa

plantations were identified as risk factors for BU in Cameroon

[55]. Further, the importance of topography in high-risk BU

habitats in Victoria is also consistent with findings from Benin that

showed an increased BU risk in areas with generally lower

elevations [54].

Environmental Niche Implications
The results of this study, particularly the relationships of

environmental characteristics with BU incidence, may provide

some clues regarding potential vectors or reservoirs for M. ulcerans

transmission. These environmental conditions may be in favor of

certain species, defining an environmental niche that one can use

to narrow down certain species as potential vectors. For example,

small mammals, especially those that prefer forested habitats, may

play a role in BU transmission by acting as a reservoir for M.

ulcerans, as we found that BU incidence is highly associated with

forest cover. This is consistent with the recent discovery of high

concentrations of M. ulcerans DNA in feces of the common ringtail

(Pseudocheirus peregrines) and common brushtail (Trichosurus

Table 1. Candidate predictor variables for model
development.

Predictor Variable Predictor Level R

Minimum Elevation 2 20.54

Maximum Elevation 2 20.27

Mean Elevation 2 20.45

Std. Dev. of Elevation 2 20.16

Minimum Wetness Index 2 0.05

Maximum Wetness Index 2 0.19

Mean Wetness Index 2 0.27

Std. Dev. of Wetness Index 2 0.26

Proportion of Surface Water 2 0.23

Proportion of Wetland 2 0.24

Proportion of Forest 2 0.65

Proportion of Agriculture 2 0.2

Proportion of Urban Area 2 20.6

Total Monthly Precipitation 1 N/A

Std. Dev. of Monthly Precipitation 1 N/A

Monthly Maximum Temperature 1 N/A

Monthly Minimum Temperature 1 N/A

Std. Dev. = Standard Deviation.
A predictor level of 1 means the variable is time-variant and 2 means the
variable is time-invariant. The correlation coefficient (R) between total cases per
locality and the level 2 predictor variables is shown in the last column.
doi:10.1371/journal.pone.0051074.t001
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vulpecula) possum [18], implicating them as potential M. ulcerans

reservoirs. Ringtail possums forage among tree canopies consum-

ing plant leaves, flowers and fruits, but also include highly nutritive

feces as part of their diets (i.e., caecotrophy), while brushtail

possums forage on the ground as well as in trees [56,57]. The

semi-arboreal nature of brushtail possums may facilitate their

exposure to M. ulcerans in the environment. However, the initial

source of pathogen exposure for ringtail possums is unclear, even

Figure 5. Statistical modeling flowchart. The flowchart shows the multiple stages of model development and variable selection. Variable
definitions: ‘‘For’’ = Proportion of Forest, ‘‘Urb’’ = Proportion of Urban, ‘‘Min E’’ = Minimum Elevation, ‘‘Mean E’’ = Mean Elevation, ‘‘TP’’ = Total
Precipitation, ‘‘SDP’’ = Standard Deviation of Precipitation, ‘‘Mx’’ = Maximum Temperatures, and ‘‘Mn’’ = Minimum Temperatures. For the climate
variables, the notation ‘‘T – [number]’’ refers to the given variable at the specified number of months prior to BU case incidence.
doi:10.1371/journal.pone.0051074.g005
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though the persistence of M. ulcerans in their intestines may be

related to their caecotrophic behavior [18].

It has been speculated that BU transmission is unlikely limited

to aquatic ecosystems and may involve several factors, including

vegetation, vertebrate hosts and invertebrate vectors in terrestrial

habitats as well, suggesting the importance of environmental niche

characteristics [18]. In the context of the environmental niche

implications, increased rainfall and temperatures could result in an

immediate increase in mosquito habitat or population abundance,

linking BU cases in the region to flood events in the past. Dry

conditions occurring many months after major flood events may

result in higher pathogen concentrations in the environment either

through the absence of potentially diluting rainfall or by causing

potential vectors and/or reservoirs to concentrate within limited

areas near accessible water sources. Using possums as an example,

this could increase the concentration of potentially contaminated

fecal matter within a smaller region, resulting in high enough

pathogen levels for disease transmission. There may also be

aquatic protozoan or microbial reservoirs that are dependent on

initial high precipitation and flooding conditions followed by a dry

season [58,59]. Alternatively, dry conditions could render poten-

tial vector or reservoir habitats unsuitable, causing them to migrate

to new, potentially non-endemic areas, which could facilitate M.

ulcerans transmission to traditionally non-endemic regions. Re-

gardless of the potential vectors or reservoirs, the results of this

study suggest that BU occurrence is linked to climate variables.

With so much still unknown about BU ecology in West Africa,

these findings may point future West Africa BU research in this

critical, yet previously unexplored direction.

The potential for BU to be a vector-borne disease in Victoria

has serious implications for future disease distribution as climate

Table 2. The AIC values of models consisting of the base
landscape model plus individual climate variables.

Predictor Variable AIC

Total Monthly Precipitation @ T – 5 581150

Total Monthly Precipitation @ T – 19 586619

Std. Dev. of Monthly Precipitation @ T – 5 565235

Std. Dev. of Monthly Precipitation @ T – 19 622169

Monthly Maximum Temperature @ T – 5 606872

Monthly Maximum Temperature @ T - 12 611374

Monthly Minimum Temperature @ T – 12 622066

Monthly Minimum Temperature @ T – 18 594909

AIC = Akaike’s Information Criterion.
Std. Dev. = Standard Deviation.
The base landscape model consisted of Proportion of Forest and Mean
Elevation.
The notation ‘‘Predictor variable @ T – [number]’’ refers to the given variable at
the specified number of months prior to BU case incidence.
doi:10.1371/journal.pone.0051074.t002

Figure 6. The ‘‘actual’’ Victoria BU disease network from 1981–2008. The centroids of each locality represent the nodes of the network (the
black triangles) and the links between consecutive BU cases are represented by lines connecting the nodes.
doi:10.1371/journal.pone.0051074.g006
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and land use/cover continue to change. Human population in the

region grew at an average annual rate of approximately 2.0% from

2005 to 2010 [60], and will likely continue for the foreseeable

future. This will likely result in an expansion of anthropogenically

disturbed landscapes which may cause ecosystems to shift in favor

of M. ulcerans and potential vectors/reservoirs. Human modifica-

tion of landscapes can result in habitat fragmentation and

modified hydroperiod conditions [61,62], which may alter

potential vector or reservoir abundance and spatial distribution

[2,54]. These combined affects could create hot-spots for M.

ulcerans population growth and proliferation, which could then be

dispersed throughout non-endemic environments through vector/

reservoir behaviors or climatic conditions.

Conclusions

Despite continued efforts to address data and methodology

challenges in BU research, some practical issues remain. The

epidemiological data provided by Victoria’s Department of Health

Services is likely the most spatially and temporally complete BU

case data set available; however, many cases were provided

without age, sex, and socio-behavioral information. Subsequently,

human attributes had to be excluded in this study. Further, the

overall number of BU cases was relatively low compared to the

range of potential predictor variables. Subsequently, all quality

controlled cases within the study period were used for model

development, leaving no available case data for validation.

However, the overall objective of this research was not to develop

a predictive model, but to identify regional environmental risk

factors for BU. In addition, the statistical modeling approach

accounted for intra-locality autocorrelation, however, additional

undiagnosed spatial or spatio-temporal aspects may be present the

data, which should be accounted for in future, more in-depth

analyses. Finally, epidemiological uncertainties regarding the time

elapsed from symptom emergence to medical treatment, which

may vary substantially on an individual basis, pose additional

challenges in BU research. However, this issue is essentially

unavoidable, leaving researchers little choice but to utilize

available case data ‘‘as-is’’. Another major challenge was the lack

of environmental data at optimal spatial and/or temporal scales,

especially the absence of long-term, systematic M. ulcerans sampling

within the BU endemic localities. Lack of knowledge regarding

environmental pathogen distribution during case emergence

promoted speculation on where the bacteria may reside and on

human exposure routes, contributing to a level of uncertainty in

the modeling results.

This study is among a few that have utilized disease network

analysis under circumstances where the vector and/or route of

transmission are unknown, demonstrating a novel approach to

analyzing BU incidence. The findings from this research

confirmed the non-random nature of BU emergence in Victoria

at a regional scale, despite local variation, indicating the existence

of larger-scale external drivers of disease incidence. Although

numerous studies have examined localized behavioral and

environmental BU risk factors, this investigation is the first of its

kind to identify key landscape and climate features associated with

BU incidence in Victoria across a broad scale. These results offer

support for the potential interaction of an environmental reservoir

for M. ulcerans with an invertebrate vector as a conceivable

component in the BU transmission cycle. Climate-driven alter-

ations of the spatial distribution of reservoir and/or vector habitats

could eventually lead to hot-spots of M. ulcerans populations or

potentially spread M. ulcerans into non-endemic regions, thus

representing the efficiency of pathogen transfer offered by the

‘‘small-world’’ BU disease network that was identified. Either

circumstance would likely put nearby human populations at risk

for M. ulcerans exposure. These findings suggest that the BU disease

system is likely highly complex, and that this complexity will make

it continually difficult to understand and identify key transmission

routes due to interacting environmental and ecological compo-

nents within the extensive climate lag times identified in our

models.
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