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Abstract

Primary cells are often used to study viral replication and host-virus interactions as their antiviral pathways have not been
altered or inactivated; however, their use is restricted by their short lifespan. Conventional methods to extend the life of
primary cultures typically utilize viral oncogenes. Many of these oncogenes, however, perturb or inactivate cellular antiviral
pathways, including the interferon (IFN) response. It has been previously shown that expression of the telomerase reverse
transcriptase (TERT) gene extends the life of certain cell types. The effect that TERT expression has on the innate antiviral
response to RNA- and DNA-containing viruses has not been examined. In the current study, we introduced the human TERT
(hTERT) gene into a primary human embryonic lung (HEL-299) cell strain, which is known to respond to the type I IFN, IFN-b.
We show that the resulting HEL-TERT cell line is capable of replicating beyond 100 population doublings without exhibiting
signs of senescence. Treatment with IFN-b resulted in the upregulation of four model IFN stimulated genes (ISGs) in HEL-299
and HEL-TERT cells. Both cell lines supported the replication of herpes simplex virus type 1 (HSV-1) and vesicular stomatitis
virus (VSV) and impaired the replication of both viruses upon IFN-b pretreatment. Introduction of the viral oncoprotein,
simian virus 40 (SV40) large T-antigen, which is frequently used to immortalize cells, largely negated this effect. Taken
together, our data indicate that expression of hTERT does not alter type 1 IFN signaling and/or the growth of two viruses,
making this cell line a useful reagent for studying viral replication and virus-cell interactions.
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Introduction

In performing studies that examine cellular immune responses

to viral infections, it is often necessary to work with primary cells,

as the efficacy of intrinsic and innate immune pathways are

frequently diminished in immortalized cells [1–4]. One disadvan-

tage of using primary cells is their limited proliferative capacity in

cell culture, which is due in part, to the progressive shortening of

telomeres [5].

Telomeres are repetitive nucleoprotein structures that serve to

cap the ends of chromosomes, facilitating their replication, and

prevent their ends from appearing as DNA breaks [6]. Telomeres

are maintained by a complex known as telomerase, whose essential

core consists of the catalytic subunit telomerase reverse transcrip-

tase (TERT) and the telomerase RNA template component

(TERC) [7,8]. Along with a number of other factors, TERT is

loaded onto the 39 overhang of existing telomeric DNA and

utilizes TERC as a template to add repeats of a guanine-rich

sequence, 59TTAGGG39, in all vertebrates; concordantly, DNA

primase and DNA polymerase are recruited to the new telomeric

repeats, subsequently synthesizing the complementary 59 strand

[6]. In the absence of active telomerase, erosion of the telomeres

occurs with each successive round of replication, resulting in the

loss of telomeric (,100 bps) sequence [9,10]. Once telomeres are

reduced from their normal 15 kb length to ,4 kb, DNA damage

sensors trigger p53- and pRb-dependent mechanisms that result in

cellular senescence, inducing a G1 cell cycle arrest [11].

Replicative senescence is thought to be a mechanism of cellular

lifespan regulation, preventing diseases such as cancer, and is

intrinsic to the health of an organism [12–15]. However, for

technical reasons it can be desirable to extend the proliferative

capacity and prevent the senescence of a primary cell culture or

strain. One way to avoid or reverse replicative senescence is

transformation with viral oncogenes, such as the simian virus 40

(SV40) large T antigen (TAg) or the human papillomavirus (HPV)

E6 and E7 proteins [16–18]. In both cases, these viral proteins

reverse senescence through the inactivation of p53 and/or pRb.

While this allows cells to resume progression through the cell cycle

and replicate, these cells still undergo telomeric erosion and

ultimately undergo a phenomenon termed crisis [16], where

massive cell death occurs due to gross genomic rearrangements

and instability in the absence of telomeres. While the estimated 1

in 107 cells (for human cells) that survive crisis exit immortalized

[19,20], this transformation results in the dysregulation of several

cellular pathways, including the antiviral type I interferon (IFN)

response [1].
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The IFN response is an innate antiviral pathway that, upon

detection of viral molecular patterns, results in the production and

release of the cytokine and type 1 IFN, IFN-b [21–23]. IFN-b
binds to its cognate receptor in both an autocrine and paracrine

manner, activating a signal transduction cascade that ultimately

upregulates numerous interferon-stimulated genes (ISGs), which

function to limit viral replication. The IFN response serves as a

major restriction point for many viruses as evidenced by the

increased pathogenesis of these viruses in animal models in which

either the type I IFN receptor, IFNAR, or a key signaling

molecule, STAT1, are deleted [24–30]. One example is herpes

simplex virus type-1 (HSV-1), a large double-stranded DNA-

containing virus that is estimated to infect 70–90% of adults [31].

Notably, HSV-1 encodes for viral proteins that inactivate or delay

this IFN response [32,33]. Studies examining how HSV-1

counteracts the IFN response are often performed in primary

cultures or cell strains, such as human embryonic lung (HEL) cells,

because these cells possess a robust IFN response and phenotypes

that are apparent in HEL cells are often greatly diminished in

transformed lines [1,34]. A potential drawback with using HEL

cells is their rapid progression into senescence.

As part of their differentiation program, human cells cease

expressing hTERT, while continuing to produce other essential

telomerase subunits such as TERC [35]. It has been shown by a

number of labs that the lifespan of fibroblasts is efficiently

extended by the reintroduction of hTERT into these cells [36,37].

Exogenous expression of hTERT presumably allows terminally

differentiated fibroblasts to resume the extension of their

telomeres, delaying or avoiding the production of signals that

trigger replicative senescence and in turn prevents the chromo-

somal damage encountered by replication through crisis [38].

Unlike transformation with viral oncogenes, fibroblasts that

exogenously express hTERT do not, for the most part, exhibit

an oncogenic phenotype [39]. Notably, the effect that life-

extension by exogenous expression of hTERT on innate antiviral

pathways, and in particular the IFN response, has not been

examined.

Here we report the creation of a life-extended HEL cell line via

transduction of a human diploid primary-like cell strain, HEL-299,

with a retrovirus encoding hTERT. HEL-299s were chosen as a

parental cell line since they are both capable of supporting high

levels of HSV-1 and VSV replication and retain a strong innate

immune restriction of viral replication [40,41]. Our results show

that the derivative cell line, HEL-TERT, unlike the parental cells,

replicated to at least 100 population doublings, exhibited

telomerase activity, and failed to undergo either replicative

senescence or crisis. Morphologically, HEL-TERT cells appeared

indistinguishable from HEL-299 cells. HEL-TERTs responded to

IFN-b by upregulating representative ISGs and supported the

replication of HSV-1 and VSV to similar levels as HEL-299 cells.

Additionally, the introduction of the SV40 large TAg counteracted

the IFN-b-directed restriction of HSV-1 and VSV replication. In

summary, our data indicate that hTERT extends the replicative

potential of human fibroblasts while not perturbing the type 1 IFN

response, making these cells a valuable tool in virological and

virus-cell interaction studies.

Materials and Methods

Cells and Viruses
HEL-299 cells from the American Type Culture Collection

(CCL-137), HEL telomerase life-extended (HEL-TERT), and

HEL-TERT SV40 large TAg transformed (HEL-TERT-T) cells

(the latter two of which were created as part of this work, as

detailed below) were maintained in Minimum Essential Medium

Eagle Alpha Modification (aMEM) containing 10% fetal bovine

serum (FBS), 2 mM L-glutamine, 10 U/mL penicillin, and 10 U/

mL streptomycin. In addition, HEL-TERT cells were kept under

drug selection using hygromycin-B (Sigma) at 50 mg/mL while

HEL-TERT-T cells were maintained under selection with

hygromycin-B at 50 mg/mL and phleomycin at 10 mg/mL. HeLa,

GP2-293, Vero, and L7 (Vero cells that contain the ICP0 gene

[42]) cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) containing 5% FBS, 2 mM L-glutamine, 10

U/mL penicillin, and 10 U/mL streptomycin.

HEL-299 (passage 4) cells were transduced with the retroviral

vector, pMX-hTERT-hygro vector. pMX-hTERT-hygro was

created by subcloning the hTERT (catalytic subunit of human

telomerase) and hygromycin resistance genes from the vector,

pBABE-hygro-hTERT [43] (Addgene plasmid 1773), into the

retroviral vector, pMX-GFP [44]. A control vector, pMX-

dTERT-hygro, was created by excising a BamHII fragment,

which removes the N-terminal 849 residues of hTERT (Uniprot:

O14746) [45] (including the TERC-interaction and most of the

reverse-transcriptase domains), from pMX-hTERT-hygro. Retro-

viral stocks were generated using the Pantropic Retroviral

Expression System (Clontech) as recommended by the manufac-

turer. HEL-299 cells were transduced with filtered retroviral stocks

and two days later placed under selection with hygromycin B at

100 mg/mL, which was lowered to 50 mg/mL 7 days later for

subsequent culturing. HEL-TERT SV40 large TAg-expressing

cells were created by transduction with the vector, pLVX-LgT-

zeo. pLVX-LgT-zeo was created by subcloning the CMV

promoter, SV40 TAg ORF, SV40 early promoter, and zeomycin

resistance genes from pBABE-zeo largeTcDNA [46] (Addgene

plasmid 1779) into the lentiviral vector, pLVX-AcGFP-N1

(Clontech), replacing the region containing the CMV promoter,

AcGFP ORF, phosphoglycerate kinase promoter, and puromycin

resistance genes. Lentiviral stocks were prepared essentially as

described above for pMX-hTERT-hygro with the inclusion of the

lentiviral packaging vector, psPAX2 (Addgene plasmid 12260)

during lentiviral stock preparation. HEL-TERT cells were

transduced with filtered lentiviral stocks and two days later placed

under selection with phleomycin (Invivogen) at 20 mg/mL for 42

days, which was lowered to 10 mg/mL for long term culturing.

KOS was the wild type strain of HSV-1 used in our viral

experiments [47]. 7134 is an ICP0-null mutant HSV-1 strain in

which the E. coli lacZ gene has replaced the ICP0 open reading

frame [48]. KOS and 7134 were grown on Vero cells and titered

on Vero or L7 cells, respectively [49,50]. The vesicular stomatitis

virus recombinant, VSV-eGFP, contains the enhanced green

fluorescent protein gene between the G and L genes [51] and was

a gift from Dr. Asit Pattnaik. VSV-eGFP stocks were grown and

titered on Vero cells. Sendai virus (SeV, Cantrell strain) was

purchased from Charles River Labratories.

b-galactosidase Staining
To detect senescence, HEL-299, and moderate and high

passage HEL-TERT cells were plated at 16105 cells per well in

12 well plates and grown to confluence. The cells were fixed in

3.7% formaldehyde, washed twice with 16 phosphate buffered

saline (PBS), and stained for b-galactosidase activity as previously

described [52]. Cells were viewed with a Nikon Eclipse TE2000-U

microscope and photographed with a digital camera (Canon).

Life-Extension Characterization
Low passage HEL-299 and HEL-TERT cells were plated in 60

mm dishes at 1–26105 cells per dish. Prior to reaching confluence,
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the cells were trypsinized, counted with a hemocytometer, and

replated at the above-mentioned amount. This was repeated until

cells reached senescence and died. Using cell counts and days in

culture, the population doublings were determined for each cell

line.

Telomeric Repeat Amplification Protocol (TRAP) Assay
TRAP assays were performed essentially as described [53].

26105 HEL-299, HEL-TERT, and HeLa cells were collected,

pelleted, and frozen at 280uC. The cell pellets were resuspended

in 200 mL of CHAPS lysis buffer (0.5% CHAPS, 10 mM Tris-HCl

pH 7.5, 1 mM MgCl2, 1 mM EGTA, 3.5% 2-mercaptoethanol,

10% glycerol, 1 mM phenylmethylsulfonyl fluoride, 1 mg/mL

aprotinin, and 1 mg/mL leupeptin) and incubated on ice for 30

minutes before cell pellets were collected by centrifugation.

Telomeric repeats were amplified in a solution of 10 ng of cell

extract, 16Taq buffer (NEB), 0.2 mM dNTPs, 0.04 mg/mL of T4

Gene 32 Protein (NEB), and 2 U of the Taq polymerase (NEB)

containing 0.5 ng/mL of the primers: TS (59-AATCCGTCGAG-

CAGAGTT-39) and ACX (59-GCGCGG(CTTACC)3CTAACC-

39) by polymerase chain reaction (PCR) in an MJ Mini Personal

Thermal Cycler (Bio-Rad). Final PCR products were gel

electrophoresed on 20% polyacrylamide gel, visualized with

ethidium bromide staining, and photographed with a VisiDoc-It

Imaging System (UVP).

Quantitative Reverse Transcriptase Real Time PCR
HEL-299, HEL-TERT, and HEL-TERT-T cells were plated at

16105 cells per well. Twenty-four hours post-plating, cells were

mock treated or treated with human IFN-b at 1000 U/mL (AbD

Serotec). At 9 h post treatment, cells were washed twice with PBS

and harvested in Trizol (Invitrogen) to isolate total RNA. RNA

was converted into cDNA using iScript cDNA synthesis kit (Bio-

Rad) according to manufacturers recommendations. For each

sample, real time PCR was performed using FastStart SYBR green

master (Rox) (Roche) in a StepOnePlus Real-Time PCR System

(Applied Biosystems). Transcripts were amplified using the

following primer sets: hTBP (59-TGCACAGGAGCCAAGAGT-

GAA-39 and 59-CACATCACAGCTCCCCACCA-39), ISG15 (59-

GGTGGACAAATGCGACGAAC-39 and 59-ATGCTGGTG-

GAGGCCCTTAG-39), IFIT1 (59-TAGCCAACATGTCCTCA-

CAGAC-39 and 59-GTGCCTTGTAGCAAAGCCCTAT-39),

IFIT2 (59-ACGCATTTGAGGTCATCAGGGTG-39 and 59-

CCAGTCGAGGTTATTTGGATTTGGTT-39) [54], and Mx1

(59-AGAAGGAGCTGGAAGAAG-39 and 59-CTGGAGCAT-

GAAGAACTG-39) [55]. All transcript levels were normalized to

hTBP.

Western Blot
HEL-299, HEL-TERT, and HEL-TERT-T cells were plated at

1.56105 of cells per well in a 12-well plate. 24 h later, cells were

either mock treated or treated with IFN-b at 1000 U/mL for 16

hours before being washed with PBS and then lysed into Red

Loading Buffer (62.5 mM Tris-HCl (pH 6.8), 2% SDS, 10%

glycerol, 0.01% phenol red, 42 mM DTT) plus with protease

inhibitors (1 mg/mL aprotinin, 1 mg/mL leupeptin, 1 mM

phenylmethylsulfonyl fluoride). Samples were resolved on a 4–

12% Bis-Tris gradient polyacrylamide gel, transferred to nitrocel-

lulose, blocked with 5% BSA in Tris-buffered saline with 0.1%

Tween-20 (TBS-T) for 1 h at room temperature. Membranes were

probed with an antibody against IFIT1 (PA3-848, Thermo

Scientific) diluted in 5% BSA/TBS-T overnight at 4uC. Mem-

branes were washed three times with TBS-T, probed with HRP-

conjugated goat-anti-rabbit IgG diluted in 5% BSA/TBS-T for 1

h at room temperature, washed three times with TBS-T,

developed with chemiluminescent substrate (Femto ECL, Pierce

Laboratories), and detected using an Image Station 4000R

(Kodak) and Carestream Molecular Imaging software. The

membranes were then striped and probed with b-actin ((I-19)-R,

Santa Cruz Biotechnology) as previously described [40]. Images

were assembled using Adobe Photoshop and Adobe Illustrator

(Adobe Systems).

Plaque Reduction Assays
Plaque assays for KOS and 7134 on HEL-299, HEL-TERT,

and HEL-TERT-T cells (2/+ IFN-b) were carried out as

previously described [40]. Images of viral plaques were captured

by scanning the immunohistochemically stained plates with a

flatbed scanner (Canon).

HSV-1 Viral Yield Assays
To examine HSV-1 productive infection, HEL-299, HEL-

TERT, and HEL-TERT-T cells were plated at 16105 cells per

well in 12 well plates. One day post-plating, cells were mock-

treated or treated with 1000 U/mL of human IFN-b. Sixteen

hours post-treatment, cells were infected with either KOS or 7134

at 5 plaque forming units (PFU)/cell, washed with PBS (2/+ IFN-

b) after 1 hour to remove unabsorbed virus, and placed back in

growth medium (2/+ IFN-b). At 24 hours post-infection, cells

were harvested and frozen at 280uC. Virally infected samples

were thawed and sonicated, and standard plaque assays were

performed on either Vero cells (for KOS) or L7 cells (for 7134) to

determine viral titers.

VSV Viral Yield Assays
To measure VSV replication, HEL-299, HEL-TERT, and

HEL-TERT-T cells were plated, mock-treated or treated with

IFN, and infected as for the HSV-1 yield assays except that cells

were infected with VSV-eGFP at 0.1 PFU/cell. At 24 hours post-

infection, cells were harvested and frozen at 280uC. Virally

infected samples were thawed and sonicated, and standard plaque

assays were performed on Vero cells to determine viral titers.

Antiviral Cytokine-Production Assay
To assess the ability of various cell lines to produce antiviral

cytokines, HEL-299, HEL-TERT, or HEL-TERT-T cells were

plated at 16105 in 12-well plates. The next day, the cells were

either mock infected with serum-free aMEM or infected with SeV

at 100 hemagglutination units (HAU) per 106 cells in serum-free

medium for 1 hour, after which the virus was removed from the

cells and fresh aMEM containing 10% FCS was added to the cells.

Twenty-four hours post infection, SeV-infected HEL cells were

irradiated with ultraviolet light to inactive the virus. To test for the

production of antiviral cytokines secreted from these cells,

duplicate Vero cell monolayers (26105 cells per well in 12-well

plates) were exposed to HEL supernanes. In addition, one set of

Vero cells were treated with either fresh aMEM or aMEM

containing IFN-b at 1, 10, 100, or 1000 U/mL as positive

controls. Six hours later, untreated and treated Vero cells were

infected with VSV-eGFP at ,200 PFU/well. At 1 hour post

infection, the Vero cells were overlaid with aMEM containing

10% FCS and 1% methylcellulose. Twenty-four hours post-VSV

infection, the methylcellulose was removed, Vero cells were

washed with PBS and fixed with 3.7% formaldehyde, and

fluorescent plaques were counted.

hTERT Does Not Affect Interferon Signaling
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Results

HEL-TERT Cells Exhibit an Expanded Proliferative Capacity
HEL-299 cells are a primary strain that have been used to study

viral replication and the type 1 IFN response [40,56,57]. This cell

strain, nonetheless, can only be passaged in culture a limited

number of times before undergoing senescence [58]. We wanted to

determine whether ectopic expression of hTERT in HEL-299 cells

would allow for a longer period of culturing. HEL-299s were

transduced with a retrovirus encoding both hTERT and

hygromycin resistance. The resulting antibiotic resistant mass

population, hereafter called HEL-TERT, were then used in

subsequent experiments. To first examine whether hTERT

conferred an extended ability to replicate, HEL-299 and HEL-

TERT cells were maintained in culture for an extended period of

time, comparing the number of population doublings to days in

culture. As expected, HEL-299s proliferated just under 60 days in

culture and underwent a total of 23.5 population doublings (from

two experiments); at which point the cells ceased to divide and

underwent widespread cell death two weeks later (Figure 1). It

should be noted that in a couple of instances, HEL-299 cells were

able to undergo approximately 35 population doublings (data not

shown). In contrast, the HEL-TERT cells were maintained in

culture for 185 days and went through 114 population doublings

(Figure 1), at which point the experiment was terminated.

Transduction of HEL-299 cells with a retroviral vector that either

expresses the green fluorescent protein or contains a deletion in

hTERT failed to extend the life span of the HEL-299s (data not

shown). These results demonstrate that expression of hTERT

significantly extends the life span of HEL-299 cells.

HEL-TERT Cells Contain Active Telomerase
To establish that transduced hTERT resulted in telomerase

activity in HEL-TERT cells, we performed TRAP assays. In this

assay, telomerase activity is monitored by examining the laddering

or amplification of 6 base-pair 59TTAGGG39 telomeric repeats

[59]. HeLa cells, which express hTERT [60], exhibited the

characteristic 6 bp laddering, while the non-immortalized HEL-

299 failed to do so (Figure 2). Unlike the parental cell line, the

HEL-TERT cells showed a clear laddering effect, indicating that

exogenous hTERT is active and capable of extending telomeres.

As a control, we determined that our samples did not contain a

PCR inhibitor by amplifying the cellular promyelocytic leukemia

(PML) gene (data not shown). Thus, HEL-TERT cells contain

active telomerase, suggesting that the extended proliferative

capacity of this cell line can be attributed to the maintenance of

telomeres.

Prolonged Culture of HEL-TERTs does not Result in
Senescence

As fibroblasts reach senescence, they exhibit characteristic

changes in cellular morphology, such as an increase in area, due to

dysregulation of cytoskeleton elements [5,61]. Additionally,

senescent cells can be detected by their upregulation of a

lysosomal b-galactosidase [62]. When we compared low (6

population doublings) and high (20 population doublings) passage

HEL-299 cells, we noted that many of the higher passage cells

exhibited a clear enlargement of the cytoplasm, with a change

from their typical narrow, drawn-out morphology to one that was

shortened and/or broader (Figure 3A). When we compared the

HEL-TERT cells to low passage HEL-299 cells, we were able to

Figure 1. HEL-TERT cells are life-extended compared to HEL-299 cells. HEL-TERT and HEL-299 cells were plated as duplicate cultures in 60
mm dishes at 16105 and 26105 cells per plate, respectively. For each passaging, cells were counted and re-plated. Population doublings were
determined by using cell counts and days in culture.
doi:10.1371/journal.pone.0058233.g001
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detect little if any morphological changes either shortly after

transduction with hTERT or at 100 population doublings later

(Figure 3A). As part of these studies, we also examined another

HEL-TERT derivative cell line that expresses SV40 large Tag

(hereafter named HEL-TERT-T). SV40 large Tag is known to

alter the IFN-response [63]. From this experiment, HEL-TERT-T

cells appeared to have an altered cellular morphology, with the

cells decreasing in length and broadening in width. When we

examined all the cell types for senescence-associated b-galactosi-

dase activity, b-galactosidase activity was clearly detected in older

HEL-299 cells, whereas we failed to detect b-galactosidase activity

in either low passage HEL-299 or low or high passage HEL-

TERT, or high passage HEL-TERT-T cells (Figure 3B). These

results indicate that not only do HEL-TERT cells retain their

ability to proliferate but also fail to exhibit signs of senescence.

Treatment of HEL-TERT Cells with Human IFN-b Induces
Strong ISG Expression

Because the IFN response has been reported to be altered in

immortalized cells [2–4], we decided to examine the effect that

exogenous hTERT had on ISG levels. HEL-299, HEL-TERT,

and HEL-TERT-T cells were stimulated with IFN-b for 9 h and

the transcript levels of four prototypic ISGs (ISG15, IFIT1, IFIT2,

and Mx1) were monitored by qRT-PCR. Both HEL-299 and

HEL-TERT cells showed robust upregulation in the transcript

levels of all four genes after the addition of IFN-b (Figure 4). Three

of the ISGs induced to similar levels between the two cell lines

while ISG15 was induced to slightly higher levels in the HEL-

TERTs. On the other hand, the overall upregulation of these

genes upon IFN-b treatment was greatly diminished in HEL-

TERT-T cells. When we examined IFIT1 protein levels, we found

that, as expected [64], unstimulated HEL-299 and HEL-TERT

cells contained little to no detectable IFIT1; however, IFIT1 was

readily detected 9 hours after IFN-b treatment (Figure 5). Notably,

IFN-treated HEL-299 and HEL-TERT cells showed comparable

levels of IFIT1 protein. HEL-TERT-T cells, on the other hand,

showed persistent production of IFIT1 and a greatly reduced

difference between the unstimulated and IFN-treated states (as

compared to that found in the other two cell lines), in agreement

with a previous report [65]. Thus, the ectopic expression of

hTERT in HEL-299 cells via retroviral transduction does not

largely affect the ability of HEL cells to induce the expression of

these four ISGs by IFN-b nor does it lead to a dysregulation of

ISG protein production (i.e., IFIT1) as does expression of TAg.

HSV-1 and VSV Replicate to Comparable Levels, +/2 IFN-
b, in HEL-299 and HEL-TERT Cells

As another measure to assess whether the IFN response is active

and functional in HEL-TERT cells, we examined the replication

of three viruses in the presence of IFN-b. For these studies, we

chose HSV-1, which is largely resistant to type I IFNs, as well as

both an ICP0-null mutant of HSV-1 and VSV, as these latter two

viruses are sensitive to type I IFNs [66–68]. Initially, we examined

the ability of wildtype (WT) and ICP0-null HSV-1 to form plaques

on untreated and IFN-b-treated HEL-299, HEL-TERT, and

HEL-TERT-T cells. Both viruses had visually comparable plaque

sizes on both HEL-299 and HEL-TERT cell types (Figure 6), even

on higher passage HEL-TERT cells (data not shown). Plaques

appeared to be slightly smaller on HEL-TERT-T cells, which is

most likely due a decrease in the size of the cells that occurred

upon transduction of TAg (Figure 3A). When the cells were

pretreated with IFN-b, there was a large decrease in plaque size

for both WT HSV-1 and the ICP0-null mutant on HEL-299 and

HEL-TERT cells, while plaque size on the HEL-TERT-T cells

remained largely the same. The ability of WT virus to form

plaques was similar on the three cell lines in untreated cells

(Figure 7A), though the ICP0-null virus showed slight increases of

2-fold and 4.5-fold on HEL-TERT and HEL-TERT-T cells,

respectively. Upon the addition of IFN-b, the plaquing efficiencies

of the WT and ICP0-null viruses were decreased ,10 fold and

,50-100-fold, respectively, on both HEL-299 and HEL-TERT

cells (Figure 7C). In contrast to the introduction of hTERT into

HEL-299 cells, expression of large TAg greatly diminished the

ability of IFN-b to restrict the plaquing of either WT or the ICP0-

null virus (3-fold for either) (Figure 7C), resulting in a nearly 80-

fold increase in the plating efficiency of the ICP0-null virus on

IFN-treated HEL-TERT-T cells as compared to IFN-treated

HEL-299 cells (Figure 7B). To further examine the effect of

hTERT on HSV-1 replication, we also performed viral yield

assays in the three cell types. (Figure 7D). WT HSV-1 replicated to

comparable levels in all three cell lines, with IFN-pretreatment

producing a slight reduction in yields from both HEL-299 and

HEL-TERT but not from HEL-TERT-T cells. Like WT HSV-1,

the ICP0-null mutant replicated nearly as well among the three

cell types in untreated cells; however, IFN-pretreatment resulted in

a 100-fold decrease of viral yields in HEL-299 and HEL-TERT

cells while producing little to no effect in HEL-TERT-T cells.

To monitor reductions in VSV production, we again performed

viral yield assays in the presence and absence of IFN-b. Just as for

HSV-1, VSV grew equally well among the three cell lines in

untreated cells. In IFN-b-treated cells, however, VSV growth in

both HEL-299 and HEL-TERT cells was reduced by .106-fold

while it was reduced by only 200-fold in pretreated HEL-TERT-T

cells (Figure 8). Thus, HEL-TERT cells are similar to HEL-299s in

their ability to support the replication of two genetically distinct

Figure 2. Telomerase activity is detectable in HEL-TERT and
HeLa cells but not HEL-299 cells. HEL-299 (3 population doublings),
HEL-TERT (3 population doublings), and HeLa cells were examined for
telomerase activity using the TRAP assay. HeLa cells were used as a
positive control for telomerase activity. The numbers at the left side of
the figure are DNA size markers (bp: base pair).
doi:10.1371/journal.pone.0058233.g002
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viruses, and they retain an IFN response that is as functional as the

parental cell line. Overall, ectopically expressed hTERT does not

appear to adversely affect viral replication or the type I IFN

response in a human lung fibroblast cell strain.

Effect of hTERT on Antiviral Cytokine Production
In addition to determining its effect on ISG upregulation and on

the efficacy of an IFN-induced antiviral state, we decided to assess

whether ectopic hTERT expression altered the ability of cells to

produce IFN and other antiviral cytokines in response to infection.

Figure 3. HEL-299, HEL-TERT, and HEL-TERT-T cell morphology and senescence. A. Transduction of HEL-299 cells with hTERT does not
alter morphology. Light microscopy of live HEL-299 cells at 3 (left panel) and 22 population doublings (left middle panel), HEL-TERT cells after 6
(middle panel) and 100 (right middle panel), and HEL-TERT-T (far right panel) after approximately 30 population doublings. B. HEL-TERT cells fail to
exhibit at least one sign of senescence. HEL-299 cells at 6 (left panel) and 33 (left middle panel), HEL-TERT cells after 42 (right middle panel), and HEL-
TERT-T cells at approximately 70 (right panel) population doublings were stained for b-galactosidase activity.
doi:10.1371/journal.pone.0058233.g003

Figure 4. HEL-TERT but not HEL-TERT-T cells show ISG induction at levels similar to HEL-299 cells after IFN stimulation. HEL-299 and
HEL-TERT cells were treated or mock treated with 1000 U/mL of human IFN-b. At 9 hours post treatment, total RNA was isolated from cells and
reversed transcribed into cDNA for qRT-PCR analysis to monitor IFIT1, IFIT2, ISG15, and Mx1 transcript levels. Data represents the means of 6 samples;
error bars represent the standard errors of the means. *p,0.05, one-way ANOVA, Bonferroni’s multiple comparison post-test, compared to HEL-299
levels.
doi:10.1371/journal.pone.0058233.g004
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We used infection by SeV, which is known to be a strong inducer

of IFNs and other antiviral cytokines in human cells [69]. For this

assay, media from uninfected and infected HEL cells are placed

onto naı̈ve Vero cells, which respond to but cannot produce IFN,

and restrictions on VSV plaquing are monitored [70,71]. Media

from mock-infected HEL cells had no effect on the ability of VSV

to plaque on Vero cells while IFN-b pretreatment, at the highest

level tested (1000 U/mL), was able to reduce the number of

plaques formed by approximately 35-fold (Table 1). When we

tested the ability of media from SeV-infected HEL cells, we found

that media from all three cell types were capable of lowering the

number of plaques that formed by 5–7 fold. These reductions were

similar to the antiviral activity of 100 U/mL of IFN-b. Although

we are unable to distinguish between IFN-b or among the IFN-a
subtypes with this assay, the protective effect produced by media

from HEL-299 and HEL-TERT cells was identical and suggests

that hTERT does not affect the activation of IFN-production in

response to viral infection.

Discussion

Due to their unperturbed DNA damage, senescence, and

antiviral pathways, primary cells are considered biologically

relevant cells when studying how these cellular processes affect

viral replication. However, their limited ability to proliferate

makes their use in examining these pathways technically

challenging. For example, the establishment of a cell line depleted

for a particular cellular protein is generally difficult to generate

because of the rapid and inevitable onset of senescence. Thus, in

studying cell-virus interactions, there is a need for life-extended

cell lines that retain many of the characteristics of a primary cell

(e.g., antiviral responses) while allowing for the analysis of specific

cellular genes or proteins (e.g., depletion, gene knockout). It is

possible to immortalize primary cells with viral and cellular

oncoproteins, but immortalization can result in alterations of

cellular processes and inhibit antiviral pathways, affecting the

replication of wild-type and mutant viruses [72–75]. Another

approach is to use the TERT gene, which has been reported to

extend the life of human fibroblasts [36], and avoids many of the

problems associated with cellular or viral oncogene immortaliza-

tion or transformation [39]. Prior to this study, the effect of

hTERT expression on the IFN response had not, to the best of our

knowledge, been examined.

The traditional approach used to immortalize primary cells has

been the introduction of cellular or viral oncogenes. The most

commonly used of these include E1A and E1B from adenovirus

[76], E6 and E7 from human papillomavirus [17], and large TAg

from SV40 [20,77]. In general, these proteins bypass senescence

by the inactivation of one or both of the tumor suppressor

proteins, p53 and pRb [78–80]. Unfortunately, in addition to

perturbing the cell cycle, many of these viral proteins also serve to

antagonize or inactivate antiviral pathways in order to promote

viral replication. E1A, E6, E7, and large TAg are capable of

disrupting the activity of, among others, cellular histone

deacetylases [81] and CBP/p300 [82–84] resulting in widespread

transcriptional and epigenetic changes [85–89]. In the case of

Figure 5. IFIT1 protein production is induced to similar levels by IFN-b in HEL-299 and HEL-TERT cells. HEL-299, HEL-TERT, and HEL-
TERT-T cells were mock treated or treated with 1000 U/mL of IFN-b and harvested 9 hours later. Cell lysates were analyzed for IFIT1 or b-actin protein
production by western blot.
doi:10.1371/journal.pone.0058233.g005

Figure 6. HSV-1 shows similar plaque size and morphology on HEL-299 and HEL-TERT cells. HEL-299, HEL-TERT, and HEL-TERT-T cells
were mock or pretreated with IFN-b for 16 h and then infected with WT HSV-1 or an ICP0-null mutant, and plaques for both viruses were visualized by
immunohistochemistry three days post-infection. Bar = 1 mm.
doi:10.1371/journal.pone.0058233.g006
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E1A, this interaction prevents the major type I IFN transcription

factor, STAT1, from binding to CBP/p300 and upregulating ISGs

[90]. Likewise, E6 is capable of preventing activation of the IFN

response by blocking the transcriptional activity of IRF3 [91]. E1B

proteins inhibit apoptosis and are capable of inactivating the

cellular DNA damage response [92–94]. Large TAg, on the other

hand, has recently been reported to activate STAT1 and induce

ISGs upregulation in the absence of IFN-exposure [65]. In

agreement with this, we saw persistent production of IFIT1

protein in TAg-transduced cells. However, the expression of large

TAg, independent of SV40 infection, has also been shown to

decrease the phosphorylation of the cellular translation factor

eIF2a by an IFN effector, double-stranded RNA protein kinase

(PKR) [95]. This decrease in phosphorylation increases the

translation capability of viral mRNAs. Similarly, our results show

that while large TAg may lead to high levels of ISG protein

production, it functionally inactivates the IFN response. Further-

more, immortalization by mechanisms not involving viral onco-

genes may inactivate antiviral pathways, as observed with the loss

of induction of ISGs in immortalized cells derived from Li-

Fraumeni patients [1].

Our approach in this study was to extend the life of human

fibroblasts with hTERT. Cells transformed with hTERT arrest in

response to serum starvation, maintain anchorage dependence,

double at a rate similar to untransformed cells, and do not exhibit

genomic instability [39]. While it has been reported that

expression of hTERT can alter the expression of a limited

number of genes, none of these have an apparent role in antiviral

pathways [96]. We found that hTERT expression does not

interfere with the upregulation of four representative ISGs (ISG15,

IFIT1, IFIT2, and Mx1), does not lead to aberrant ISG protein

production, nor does its expression affect the replication of two

genetically distinct viruses, HSV-1 and VSV. This is in agreement

with previous work demonstrating that exogenous expression of

hTERT in fibroblasts does not affect the replication of human

cytomegalovirus [97,98] nor does it affect the upregulation of the

IFN-induced senescence mediator, IFI16, upon IFN-stimulation

[99]. Furthermore, unlike SV40 large TAg, exogenous hTERT

Figure 7. Replication of HSV-1 is diminished by IFN-b in HEL-299 and HEL-TERT but not HEL-TERT-T cells. A and B. HEL-299, HEL-TERT,
and HEL-TERT-T cells were mock (A) or pre-treated with IFN-b (1000 U/mL) (B) and were infected 16 h post treatment with 10-fold serially diluted
stocks of WT HSV-1 or an ICP0-null mutant. Plaques were visualized by immunohistochemistry 3 days post-infection. An average of three experiments
is shown. Data is presented as the ratio of plaques formed on the indicated cell line to that on HEL-299 cells. C. Data generated for A and B, but
presented as a ratio of the number of plaques formed on mock-treated cells compared to that on IFN-treated cells. D. HEL-299, HEL-TERT, and HEL-
TERT-T cells were mock or pre-treated with IFN-b (1000 U/mL) and were infected (16 h post treatment) with either WT HSV-1 or the ICP0-null mutant
at an MOI of 5 PFU/cell. Samples were harvested 24 h post-infection. Viral titers were determined by plaque assays. An average of three experiments
is shown. In all cases, error bars represent the standard errors of the means.
doi:10.1371/journal.pone.0058233.g007
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did not impair the ability of IFN to restrict the replication of VSV

or an ICP0-null mutant of HSV-1, both viruses being quite

sensitive to the effects of IFN-b, nor did it hinder the ability of

HEL cells to produce antiviral cytokines in response to viral

infection. While we did observe slight differences in the levels of

induction for the four ISGs between HEL-299 and HEL-TERT

cells, these differences failed to translate into an appreciable effect

on the ability of IFN-b to suppress replication of VSV or the ICP0-

null HSV-1 mutant. hTERT overexpression has been reported to

enhance the formation of apoptotic markers during HSV-1

infection in HeLa cells, which express the human papillomavirus

E6 and E7 oncoproteins, and sensitizes them to apoptosis [100].

Our results, however, suggest that exogenous expression of hTERT

in a primary cell strain has little impact on viral replication.

In conclusion, HEL-TERTs are permissive for HSV-1 and

VSV growth, have a robust antiviral response, and a significantly

enhanced lifespan. They recapitulate the phenotype of an HSV-1

ICP0-mutant, which is known to be complemented by the loss of

proteins involved in the DNA damage response [101], antiviral

pathways [102], or overexpression of certain cyclins [103],

suggesting that these pathways are unperturbed. Because the

phenotypes of certain HSV-1 mutants are only apparent in

primary cells, we believe the HEL-TERT cell line to be an ideal

choice due to their longevity and robust antiviral response.

Additionally, they will allow for the establishment of derivative cell

lines that are depleted or overexpress targets of interest, facilitating

a better understanding of cellular pathways (including the IFN

response) and the viruses that alter these pathways.
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