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The ability to improve protein thermostability via protein engineering is of great scientific interest and also has significant
practical value. In this report we present PROTS-RF, a robust model based on the Random Forest algorithm capable of
predicting thermostability changes induced by not only single-, but also double- or multiple-point mutations. The model is
built using 41 features including evolutionary information, secondary structure, solvent accessibility and a set of fragment-
based features. It achieves accuracies of 0.799,0.782, 0.787, and areas under receiver operating characteristic (ROC) curves of
0.873, 0.868 and 0.862 for single-, double- and multiple- point mutation datasets, respectively. Contrary to previous
suggestions, our results clearly demonstrate that a robust predictive model trained for predicting single point mutation
induced thermostability changes can be capable of predicting double and multiple point mutations. It also shows high
levels of robustness in the tests using hypothetical reverse mutations. We demonstrate that testing datasets created based
on physical principles can be highly useful for testing the robustness of predictive models.
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Introduction

The ability to improve protein thermostability via protein
engineering is of great scientific interest and has significant
practical value because many native proteins are only marginally
stable under normal physiological and storage conditions [1-8].
For example, protein-based pharmaceuticals are often vulnerable
to degradation that may affect their potency and even safety [9]. In
addition, stable proteins are highly desirable in many biotechno-
logical applications including biopharmaceuticals, biomaterials,
and biofuel, etc. [7,8]. Enzymes with enhanced stability allow
catalyzed reactions to be performed at higher temperatures, which
often lead to more efficient industrial processes.

Computational methods for designing proteins with enhanced
thermostability can be advantageous over conventional approach-
es because of their potential low cost and time-saving properties
[10]. Existing computational approaches use either force-fields
[2,11-16] or data mining technologies [17-25]. The former
require high- resolution 3D structures and are often highly
computer-intensive. Consequently, in recent years, data mining
technologies employing various machine learning algorithms have
increasingly attracted attention. The general procedure of
machine learning approaches is to train predictive models based
on available experimental data using features (properties) such as
substitution types, secondary structures, solvent accessibility, and
the amino acid composition of neighboring residues. Many
algorithms including support vector machines [17-20], neuronal
networks [21], and multiple regression and classification tech-
niques [22,23], have been used for predicting protein stability
changes induced by mutations. The machine learning approaches
hold great promises because they may be used to discover subtle
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patterns governing mutation induced stability changes and protein
stability in general. However, recently we discovered that some of
these types of methods may suffer from the over-fitting problem
when hypothetical reverse mutations were used to test the
robustness of these methods [26].

Usually protein stability changes upon mutations are experi-
mentally measured through changes in the melting temperature
(ATm) or alterations of folding free energies (AAG) between wild
type proteins and their mutants. Existing protein stability
predictors use one or the other as the metric for stability changes.
Because both metrics are thermodynamic parameters and thus
also state functions [27], the AAG (or ATm) of a mutation from a
wild type protein to its mutant (WT—>MT) equals the negated
AAG(or ATm)of a hypothetical reverse mutation (MT—>WT),

ie.,

AAGwT_ M1 =-AAGMT_ > WT 1)

ATmyr_ smr=-ATmyr—>wr (2)

Our tests revealed that the tested methods lost predictive ability
considerably when hypothetical reverse mutations were used to
evaluate the robustness of these methods [26]. Our findings are
consistent to the comprehensive analysis conducted by Khan and
Vihinen recently. They evaluated and compared 11 online
stability predictors and found that “at best, the predictions were
only moderately accurate (~60%)” [28]. Thus, effective and
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with at least 3 sequentially continuous residues, only 2 continuous residues and

four non-neighboring residues, respectively.

92x107"3

—0.0365
—0.0100

0.00271

0.0134

—0.0287

0.00140
0

FBDTD2*
FBDTD1*

1.6x1077

0.000680
—0.00271

The propensity difference of Delaunay four-residue fragments with at least 3

1.4x1073

0.00300

—0.00345

FBDTDD43*

sequentially continuous residues, only 2 continuous residues and four non-

neighboring residues, respectively.

0.00650 0.00736 0.00742 0.16

—0.00805

FBDTDD2*

0.067

—0.00746

0.00550

0

FBDTDD1*

The p-values are calculated using the Kolmogorov-Smirnov test (K-S test). Boxplots of these features are available in Figure S1.

*Structure-based features. SM: stabilizing mutations; DM: destabilizing mutations.

doi:10.1371/journal.pone.0047247.t001
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robust computational algorithms for predicting mutation induced
protein stability change are still in critical demand.

In addition, most existing algorithms were developed for
predicting thermostability changes of single-point mutations,
despite the fact that the ability to predict protein stability changes
upon multiple point mutations is also important because
stabilization induced by single mutation may not be sufficient for
practical applications of a protein. Only in recent years a few
studies have been focused on multiple-mutation induced thermo-
stability changes. For example, Huang and Gromiha proposed a
predictive model named WET, a weighted decision table method
for predicting protein thermostability change upon double
mutation from amino acid sequences [23]. The model was built
and tested on a set of 180 double point mutations. The correlation
coefficient of the predicted and experimental AAG reached 0.75
and the overall accuracy was 82.2% in the 10-fold cross validation
test [23]. However, the accuracy drops to 0.57 when it is tested on
the hypothetical reverse mutations (see details in the results).

In this work, we attempt to develop a robust algorithm that can
treat free energy as a thermodynamic parameter for predicting not
only single-, but also multiple- point mutation induced thermo-
stability change. A prerequisite for such a model is a set of suitable
features relevant to the protein stability. We use several types of
features for this study. The first type of features is the evolutionary
information extracted from the target proteins since the “survival
of the fittest” principle may be also applicable to protein
thermostability. In fact, a concept of evolutionary pseudo free
energy upon mutations was introduced and was found to have
statistically significant correlations with protein thermostability
changes [29]. Other features include secondary structures and
solvent accessibility, either assigned based on structures or
predicted by PSIPRED [30], depending on the availability of
structures. In addition, we include features that we previously
developed in ThermoRank [31], and a set of fragment-based
thermostability terms [26].

In the following sections, we firstly describe the mutation
datasets and the features used in the study, and the Random Forest
algorithm for constructing the predictive model, PROTS-RF
(PROtein Thermostability Random Forest model). We then
present the results from cross validation on a single-point mutation
dataset and benchmark tests on a set of double-point mutations
and a set of multiple point mutations. We test the robustness of the
predictive model using hypothetical reverse mutations. We also
present a comparison of PROTS-RF to several other relevant
potentials or algorithms. In all cases, PROTS-RF delivers better
performance than other algorithms. Conclusions and prospects
will be presented in the end of the report.

Materials and Methodology

Mutation datasets

Three mutation datasets are used in this work. The first dataset
was originally collected by Potapov et al. [32]. It contains 2,156
single point mutations (D2156) with experimentally determined
changes of folding free energies (AAG). These mutants are
derivatives from 84 wild-type proteins. We cluster these proteins
using Blastclust [33] with 30% sequence identity and then group
these clusters into 5 portions with each having a similar number of
mutations. Therefore, proteins from different portions share 30%
or less sequence identity. These five groups are then used in a
standard five-fold cross validation (CV). The second dataset
includes 180 double point mutations (D180) from 27 wild-type
proteins with AAG values, was collected by Huang and Gromiha
[23]. The final dataset contains 141 multiple point mutations
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Figure 1. The importance of each feature contributed to the regression predictive models in cross validation. The error bars denote

the variation in five-fold cross validation.
doi:10.1371/journal.pone.0047247.g001

(D141) from 19 different wild type proteins which were collected
from ProTherm database [34].

For each mutation in the all three datasets, a corresponding
hypothetical reverse mutation (i.e. WI'—=>MT) is created by
swapping the wild-type protein and its mutant involved in the
mutation. The free energy change during a hypothetical reverse
mutation has the same value but opposite sign to that of the
experimental forward mutation (Eq. 1). The hypothetical reverse
mutations are grouped in the same fold as their corresponding
mutations in the cross validation test. Therefore another benefit of
using hypothetical reverse mutations is that the dataset is now
perfectly balanced.

Table 2. Comparison of prediction performance in cross-
validation test.

Methods WT->MT MT—>WT

AUC ACC R  AUC ACC R
MUpro 0687 0813 0483 0564 0273 0.167
I-Mutant2.0 0694 0775 0540 0557 0683 0.069
LSE 0577 0614 0.55 0577 0614 0155
FoldX® 0738 0714 0497 - - -
EGAD® 0745 0732 0595 - - -
PROTS (Structure based) 0819 0788 0402 0819 0788 0.402
PROTS (Sequence based) 0815 0788 0387 0815 0788 0.387

PROTS_RF (Structure based)
PROTS_RF (Sequence based)

0.873 0.799 0.628 0.863 0.795 0.622
0.869 0.794 0.620 0.858 0.796 0.616

“Prediction values were provided by Potapov et al. [32].
AUC: area under ROC curve; ACC: accuracy; R: Pearson Correlation Coefficient.
doi:10.1371/journal.pone.0047247 1002
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Features

We assemble a set of 41 sequential and structural features.
These features are carefully selected so that the free energy can be
treated as thermodynamic parameters. The name and description
of each feature is available in Table 1. These features can be
classified into the following four groups:

1. Evolutionary information (10 features). PSIBLAST is
used to search the wild type proteins against the NCBI non-
redundant (NR) protein database pre-filtered by sequence identity
of 90% [33]. We consider the log-odds and weighted scores of the
wild type residues and mutant residues, as well as the conservation
of wild-type residues and neighboring residues in a window
centered in the mutation site. We use three different window sizes:
5, 9 or 15. The log-odds and the weighted scores are directly
extracted from the position specific scoring matrices (PSSMs) for
single point mutations. For multiple point mutations, the averages
of these values are used instead. Overall, ten parameters are
generated to record the evolutionary information for each single-
or multiple- point mutation.

2. Secondary structure and solvent accessibility (5
features). We assign secondary structure and solvent exposure
status of each residue based on the wild-type proteins. If the
structure of a wild-type protein is available, we use DSSP [35] to
assign the secondary structures of all residues to three states: helix
(H), extend (E) and coil (C); and solvent accessibility to exposed (e)
or buried (b) using 25% relative accessible surface area as the
threshold. We assume that the mutations do not significantly
change the conformation of the protein and therefore the
secondary structure and the solvent accessibility of wild-type and
mutant remain the same.

3. Relative difference (6 features). We also utilize six
relative differences of compositions and properties between the
wild-type and the mutant sequences including the change of
positive charged residues, charged residues, small residues, tiny

October 2012 | Volume 7 | Issue 10 | e47247
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Figure 2. Linear regression and classification of the 180 double point mutations.

doi:10.1371/journal.pone.0047247.g002

residues, maximum area of solvent accessibility (ASA) and the iso-
electric point (pla). These features were identified and used to
build a model for discriminating thermophilic proteins from their
mesophilic homologs [31].

4. PROTS terms (20 for structure-based model or 13 for
sequence-based model). PROTS is a protein stability poten-
tial derived from a comparative study between a large set of
thermophilic and mesophilic proteins and a set of point mutations
with measurements of mutation induced the change of melting
temperature [26]. There are 20 features in this category, including
13 sequential features and 7 Delaunay Tetrahedron (DT) based
spatial features if the protein structure is available. The sequential
features are used for all models but the Delaunay Tetrahedron
based features are only used for structure-based models.

Random Forest algorithm (RF)

Predictive models are built using the Random Forest algorithm
(RF) [36], an ensemble technique utilizing hundreds or thousands
of independent decision trees to perform classification or
regression. Fach of the member trees is built on a bootstrap
sample from the training data using a random subset of available
variables. The algorithm is a state-of-the-art machine learning
method and has been successfully used to build many predictive
models [37—41]. Unlike many other competitive machine learning
algorithms such as support vector machine, RF does not require
fine-tuning parameters because using the default values of the
parameters often results in near-optimal performance. Moreover,
the predicting time for a RF model is often a small fraction of that
for a corresponding support vector machine (SVM) model [39].
Another advantage of RF is that it provides several variable
importance measures [40,41]. It is particularly suitable for mining
high-dimensional and noisy data. In this study, we use an R
implementation of the Random Forest algorithm to construct the
predictive model in regression manner [42]. The predicted free
energy changes are then used to calculate the accuracy of the
predictions using zero change as the threshold for classification.

Algorithms used for comparison

We compare PROTS-RF to a variety of methods including
several top-ranked ones in a recent comprehensive evaluation of
protein stability predictors [28]. LSE is a local structure entropy
derived from representative protein structures and has shown a

PLOS ONE | www.plosone.org

strong correlation with protein thermostability [12]. MUpro is a
support vector machine (SVM) based predictor at sequence level
for the variation of folding free energy (AAG) upon point
mutations [18]. I-Mutant2.0 is a SVM based predictor using
structure and sequence information for AAG prediction [17]. Both
EGAD [13] and FoldX [11] are force fields parameterized on a
large set of point mutations with experimentally determined
stability changes.

Evaluation parameters

We use several metrics to measure the performance of the
predictive models. The first is accuracy, which is defined as the
ratio of the number of correctly predicted mutations in stabilizing
or destabilizing of wild type proteins against the total number of
predicted mutations. The second is the area under receiver
operating characteristic curve (ROC), known as AUC. It should be
pointed out that AUC can be a misleading parameter in some
situations and therefore the AUC results should be interpreted
with caution [43,44]. We provide AUC for comparison purposes

Table 3. The performance of 44G prediction by PROTS-RF for
mutations and hypothetical reversed mutations in the D180
dataset, and compare with the WET model.
Dataset D180
Mutation directions WT—->MT MT—->WT
Structure-based predictions AUC 0.868 0.863

ACC 0.782 0.780

R 0.775 0.774
Sequence-based predictions AUC 0.869 0.868

ACC 0.798 0.797

R 0.755 0.757
WET AUC 0.961 0.518

ACC 0.85 0.572

R 0.930 0.110
AUC: area under ROC curve; ACC: accuracy; R: Pearson Correlation Coefficient.
doi:10.1371/journal.pone.0047247.t003
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because it is widely used in similar studies. The third is the Pearson
correlation coefficient of predicted and experimental AAG values.

Results

Statistical analysis of the single mutation dataset

We analyze the statistical distributions of features used in the
study. We use the Kolmogorov-Smirnov test for normality find
that none but one of the features are normally distributed. We
calculate the medium, the mean, and the p-value of the
Kolmogorov-Smirnov test for each feature’s distributions in
stabilizing vs. destabilizing mutations (Table 1). We also generate
boxplots to illustrate the distributions of features of stabilizing and
destabilization mutations (Figure S1). The results presented in
Table 1 clearly show that the distributions of a number of features
are significantly different in stabilizing and destabilizing mutations.
For example, mutations occurring in sheets are more likely to be
destabilizing (p-value: 2.5x107%. Mutations on buried residues
are more likely destabilization than stabilization (p-value:
6.0x107"), which can be explained by the fact that the protein
cores are tightly packed and thus it is difficult to further optimize
the interactions within the cores [45].

Cross validation and model training

We use an R implementation of the Random Forest algorithm
to build models. Each model in the five-fold cross validation
comprises 2,000 decision trees. The importance of a feature is
estimated using the sum of the impurity increase over all trees
induced by the feature in the model [36]. The average and
standard error of the importance of the 41 features in structure-
based prediction and the 34 features in sequence-based prediction
are shown in Figure 1. The results clearly show that the PROTS
features and the evolutionary information are strongly correlated
with protein stability.

The results from all five test datasets in the cross validation are
combined. The data from actual experimental and hypothetical
mutation are separated and fitted to the experimental data,
discretely (Table 2). For the experimental mutations, the Pearson
correlation coeflicients (R) are 0.628 for the structure-based
predictions and 0.620 for the sequence-based predictions (Table 2).
We then use various AAG values as cutofl thresholds to classify

PLOS ONE | www.plosone.org

False Positive Ratio

point mutations.

mutations as stabilizing and destabilizing and calculate the areas
under receiver operating characteristic (ROC) curves. We find the
areas under ROC (AUC) reach 0.873 and 0.869 for structure and
sequence-based predictions, respectively. Very similar R and AUC
are obtained for the hypothetical reverse mutations (Table 2). This
result demonstrates that the predictive model is quite robust.

The model constructed in this work yields comparatively more
reliable predictions than other tested models (Table 2). Machine
learning based algorithms MUPro and I-mutant2.0 perform
poorly for the hypothetical reverse mutations because the AUCs
are only slightly higher than 0.5, the level of random selection.
The models based on force-fields or potentials such as LSE, FoldX
and EGAD can treat temperature and free energy as thermody-
namic parameters. The performance of these tested algorithms in
the study, nevertheless, are not as good as the PROTS-RF.
Besides, PROTS-RF performs better than PROTS, a fragment-
based protein thermostability potential we recently developed
[26].

We then build the final structure- and sequence- based models
using all the 2,156 point mutations and test these models using
double- and multiple- point mutations.

Table 4. The performance of 44G prediction by PROTS-RF for
mutations and hypothetical reversed mutations in the D141
dataset.

Dataset D141

Mutation directions WT—->MT MT->WT

Structure-based predictions AUC 0.862 0.858
ACC 0.787 0.789
R 0.663 0.659
Sequence-based predictions AUC 0.855 0.844
ACC 0.779 0.746
R 0.637 0.629

AUC: area under ROC curve; ACC: accuracy; R: Pearson Correlation Coefficient.
doi:10.1371/journal.pone.0047247 1004
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Figure 4. Structure and sequence based prediction of mutations of staphylococcal nuclease. Empty symbols are prediction for mutations
with experimental data, and the corresponding crossed-symbols are the prediction for hypothetical reverse mutations. The structural figure is based

on the PDB entry 1STN.
doi:10.1371/journal.pone.0047247.9004

Blind test on double point mutation dataset D180

In the blind test on the 180 double-point mutations, the
regression of prediction against experimentally measured AAG
values results in correlation coefficients of 0.775 and 0.755 for
structure and sequence-based predictions respectively, and the
classification achieves AUCs of 0.868 and 0.869 (Table 3 and
Figure 2). The predictions on the experimental data are similar to
a previous reported model WET [23], in which the authors
achieved correlation coefficients up to 0.75 and the AUC up to
0.87 in 10-fold cross validation tests using a weighted decision
table method. However, PROTS-RF achieves very similar results
for the hypothetical reverse mutations (0.863 and 0.868 respec-
tively), while the WET model provided by Huang et al. [23]
delivers an AUC of 0.518 and R of 0.110, a strong indication for
the existence of an over-fitting problem with the model.

Huang et al suggested that the methods developed for
predicting protein stability change upon single point mutations
may not be suitable for predicting the stability change upon double
point mutations because the thermostability changes are not
always additive [23]. Our results, nevertheless, have clearly
indicated that a predictive model trained from single point
mutations may still be capable of predicting double point
mutations induced by protein stability changes. Some features
used in our models, especially PROTS terms, reflect the
surrounding environment of the mutation sites. The changes of
these features are additive for remote mutations but not additive
for mutations close to each other. This approach is consistent with
the observations that in general non-additive mutations involve
mutations close to each other while additive mutations involve
mutations far apart (There are exceptions, however, to this rule
because of long range interactions).

Blind test on multiple point mutations D141

The thermostability changes upon multiple point mutations are
more complicated than single- and double- point mutations and
therefore it is expected to be more difficult to be correctly
predicted. Nevertheless, the correlation coefficients of predictions
of the 141 multiple point mutations and experimentally measured
AAG values reach 0.663 and 0.637 for structure and sequence-
based predictions, and the classification results in AUCs of 0.862
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and 0.855, respectively (Figure 3 and Table 4). This result suggests
that our predictive model is also capable of predicting stability
changes upon multiple point mutations with high accuracy.

Prediction thermostability of Staphylococcal Nuclease

mutants

Staphylococcal Nuclease (SNase) has been used as a model
protein for studying protein stability and therefore there is a
significant amount of experimental data for free energy changes
upon mutations of this enzyme [46]. We use PROTS-RF predict
free energy changes upon mutations and then plot them against
the experimental values in Fig. 4. The predicted and experimental
AAG values narrowly distribute along a line passing through the
Origin. Both structure-based and sequence-based predictions are
highly correlated with the experimental data (Rpearson = 0.855 and
0.843, respectively), and the predictions for mutations and the
corresponding hypothetical reverse mutations are strongly sym-
metric with respect to the Origin. A Trp residue at position 140 is
critical to SNase structure, stability and function [47]. PROTS-RF
correctly predicts W140 related mutations and their hypothetical
reverse mutations qualitatively but not quantitatively (Fig. 4),
suggesting further improvement remains desirable.

Discussion

The model developed in the study is robust as demonstrated in
the cross validation and blind tests. We believe that the high
robustness of this model can be attributed to the Random Forest
algorithm and the features used in the models. The Random
Forest algorithm is well known for its high robustness and is
particularly suitable for mining high-dimensional and noisy data.
We utilize diverse features ranging from evolutionary information,
protein structure profile, and protein properties to the thermosta-
bility terms learned from a large amount of native proteins
[26,31]. These features are less dependent on the proteins in
training datasets and the over-fitting problem is less pronounced in
the model. Consequently, they are robust and capable of
predicting not only single-point mutations, but also double- or
multiple- point mutations. The tests using the hypothetical reverse
mutations in this study have shown that the tested machine
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learning models for predicting mutation induced protein stability
change may suffer from the over-fitting problem. The results are
surprising because all these models have undergone cross
validation, a common practice widely considered as a rigorous
validation approach. We suggest that testing datasets created
based on physical principles can be highly useful for testing the
robustness of predictive models.

In the present study, it is observed that the structure-based and
sequence-based predictors result in very similar performance,
suggesting the structural features used in the study do not make
significant contribution to the performance of the models. This is
consistent to their relatively low importance as shown in Figure 1.
The most important structural feature (FBDTD43) is the seventh
overall most important feature. Its ability to deliver good
predictions without structural information is advantageous over
other methods requiring structural information because vast
majority of proteins do not have solved structures. It is possible
that the information encoded in these structural features is also
captured in the sequential features used in the study. In addition,
the number of structural features is relatively small (7 structural vs.
34 sequential features) and they may not interact well with
sequential features. Nevertheless, we think it is possible to further
improve model performance if the structural class of proteins and
more structure-based features are considered. Recently, we were
made aware that alpha/beta class proteins normally have higher
residue contact density (i.e., number of contacts per residue) than
other proteins [48]. Proteins with higher contact density tend to
bear more mutations without significantly change its thermosta-
bility [49] and thermophiles tend to have higher contact density
than mesophiles [50]. Moreover, a recently report concluded that
the accessible surface area of beta proteins increases more rapidly
with the size of proteins in comparison with that of the alpha
proteins [51]. It was also reported that the aggregation propensity
of a protein is highly correlated with its structural classification
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Conclusion

We have presented PROTS-RF, a predictive model based on
the Random Forest algorithm for predicting mutation induced
protein stability change. This model is constructed based on a
large set of features in proteins and trained by the Random Forest
algorithm. In the cross validation test and the blind tests using
double- and multiple- mutation datasets, this model is compara-
tively more reliable in the prediction of protein thermostability
changes over other existing methods. It also shows high levels of
robustness in the tests using hypothetical reverse mutations. We
demonstrate that the hypothetical reverse mutations based on
physical principles are highly useful for testing the robustness of
algorithms for predicting mutation induced protein stability
change.
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