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Abstract

The ability to improve protein thermostability via protein engineering is of great scientific interest and also has significant
practical value. In this report we present PROTS-RF, a robust model based on the Random Forest algorithm capable of
predicting thermostability changes induced by not only single-, but also double- or multiple-point mutations. The model is
built using 41 features including evolutionary information, secondary structure, solvent accessibility and a set of fragment-
based features. It achieves accuracies of 0.799,0.782, 0.787, and areas under receiver operating characteristic (ROC) curves of
0.873, 0.868 and 0.862 for single-, double- and multiple- point mutation datasets, respectively. Contrary to previous
suggestions, our results clearly demonstrate that a robust predictive model trained for predicting single point mutation
induced thermostability changes can be capable of predicting double and multiple point mutations. It also shows high
levels of robustness in the tests using hypothetical reverse mutations. We demonstrate that testing datasets created based
on physical principles can be highly useful for testing the robustness of predictive models.
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Introduction

The ability to improve protein thermostability via protein

engineering is of great scientific interest and has significant

practical value because many native proteins are only marginally

stable under normal physiological and storage conditions [1–8].

For example, protein-based pharmaceuticals are often vulnerable

to degradation that may affect their potency and even safety [9]. In

addition, stable proteins are highly desirable in many biotechno-

logical applications including biopharmaceuticals, biomaterials,

and biofuel, etc. [7,8]. Enzymes with enhanced stability allow

catalyzed reactions to be performed at higher temperatures, which

often lead to more efficient industrial processes.

Computational methods for designing proteins with enhanced

thermostability can be advantageous over conventional approach-

es because of their potential low cost and time-saving properties

[10]. Existing computational approaches use either force-fields

[2,11–16] or data mining technologies [17–25]. The former

require high- resolution 3D structures and are often highly

computer-intensive. Consequently, in recent years, data mining

technologies employing various machine learning algorithms have

increasingly attracted attention. The general procedure of

machine learning approaches is to train predictive models based

on available experimental data using features (properties) such as

substitution types, secondary structures, solvent accessibility, and

the amino acid composition of neighboring residues. Many

algorithms including support vector machines [17–20], neuronal

networks [21], and multiple regression and classification tech-

niques [22,23], have been used for predicting protein stability

changes induced by mutations. The machine learning approaches

hold great promises because they may be used to discover subtle

patterns governing mutation induced stability changes and protein

stability in general. However, recently we discovered that some of

these types of methods may suffer from the over-fitting problem

when hypothetical reverse mutations were used to test the

robustness of these methods [26].

Usually protein stability changes upon mutations are experi-

mentally measured through changes in the melting temperature

(DTm) or alterations of folding free energies (DDG) between wild

type proteins and their mutants. Existing protein stability

predictors use one or the other as the metric for stability changes.

Because both metrics are thermodynamic parameters and thus

also state functions [27], the DDG (or DTm) of a mutation from a

wild type protein to its mutant (WT2.MT) equals the negated

DDG(or DTm)of a hypothetical reverse mutation (MT2.WT),

i.e.,

DDGWT{wMT:-DDGMT{wWT ð1Þ

DTmWT{wMT:-DTmMT{wWT ð2Þ

Our tests revealed that the tested methods lost predictive ability

considerably when hypothetical reverse mutations were used to

evaluate the robustness of these methods [26]. Our findings are

consistent to the comprehensive analysis conducted by Khan and

Vihinen recently. They evaluated and compared 11 online

stability predictors and found that ‘‘at best, the predictions were

only moderately accurate (,60%)’’ [28]. Thus, effective and
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robust computational algorithms for predicting mutation induced

protein stability change are still in critical demand.

In addition, most existing algorithms were developed for

predicting thermostability changes of single-point mutations,

despite the fact that the ability to predict protein stability changes

upon multiple point mutations is also important because

stabilization induced by single mutation may not be sufficient for

practical applications of a protein. Only in recent years a few

studies have been focused on multiple-mutation induced thermo-

stability changes. For example, Huang and Gromiha proposed a

predictive model named WET, a weighted decision table method

for predicting protein thermostability change upon double

mutation from amino acid sequences [23]. The model was built

and tested on a set of 180 double point mutations. The correlation

coefficient of the predicted and experimental DDG reached 0.75

and the overall accuracy was 82.2% in the 10-fold cross validation

test [23]. However, the accuracy drops to 0.57 when it is tested on

the hypothetical reverse mutations (see details in the results).

In this work, we attempt to develop a robust algorithm that can

treat free energy as a thermodynamic parameter for predicting not

only single-, but also multiple- point mutation induced thermo-

stability change. A prerequisite for such a model is a set of suitable

features relevant to the protein stability. We use several types of

features for this study. The first type of features is the evolutionary

information extracted from the target proteins since the ‘‘survival

of the fittest’’ principle may be also applicable to protein

thermostability. In fact, a concept of evolutionary pseudo free

energy upon mutations was introduced and was found to have

statistically significant correlations with protein thermostability

changes [29]. Other features include secondary structures and

solvent accessibility, either assigned based on structures or

predicted by PSIPRED [30], depending on the availability of

structures. In addition, we include features that we previously

developed in ThermoRank [31], and a set of fragment-based

thermostability terms [26].

In the following sections, we firstly describe the mutation

datasets and the features used in the study, and the Random Forest

algorithm for constructing the predictive model, PROTS-RF

(PROtein Thermostability Random Forest model). We then

present the results from cross validation on a single-point mutation

dataset and benchmark tests on a set of double-point mutations

and a set of multiple point mutations. We test the robustness of the

predictive model using hypothetical reverse mutations. We also

present a comparison of PROTS-RF to several other relevant

potentials or algorithms. In all cases, PROTS-RF delivers better

performance than other algorithms. Conclusions and prospects

will be presented in the end of the report.

Materials and Methodology

Mutation datasets
Three mutation datasets are used in this work. The first dataset

was originally collected by Potapov et al. [32]. It contains 2,156

single point mutations (D2156) with experimentally determined

changes of folding free energies (DDG). These mutants are

derivatives from 84 wild-type proteins. We cluster these proteins

using Blastclust [33] with 30% sequence identity and then group

these clusters into 5 portions with each having a similar number of

mutations. Therefore, proteins from different portions share 30%

or less sequence identity. These five groups are then used in a

standard five-fold cross validation (CV). The second dataset

includes 180 double point mutations (D180) from 27 wild-type

proteins with DDG values, was collected by Huang and Gromiha

[23]. The final dataset contains 141 multiple point mutations
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(D141) from 19 different wild type proteins which were collected

from ProTherm database [34].

For each mutation in the all three datasets, a corresponding

hypothetical reverse mutation (i.e. WT2.MT) is created by

swapping the wild-type protein and its mutant involved in the

mutation. The free energy change during a hypothetical reverse

mutation has the same value but opposite sign to that of the

experimental forward mutation (Eq. 1). The hypothetical reverse

mutations are grouped in the same fold as their corresponding

mutations in the cross validation test. Therefore another benefit of

using hypothetical reverse mutations is that the dataset is now

perfectly balanced.

Features
We assemble a set of 41 sequential and structural features.

These features are carefully selected so that the free energy can be

treated as thermodynamic parameters. The name and description

of each feature is available in Table 1. These features can be

classified into the following four groups:

1. Evolutionary information (10 features). PSIBLAST is

used to search the wild type proteins against the NCBI non-

redundant (NR) protein database pre-filtered by sequence identity

of 90% [33]. We consider the log-odds and weighted scores of the

wild type residues and mutant residues, as well as the conservation

of wild-type residues and neighboring residues in a window

centered in the mutation site. We use three different window sizes:

5, 9 or 15. The log-odds and the weighted scores are directly

extracted from the position specific scoring matrices (PSSMs) for

single point mutations. For multiple point mutations, the averages

of these values are used instead. Overall, ten parameters are

generated to record the evolutionary information for each single-

or multiple- point mutation.

2. Secondary structure and solvent accessibility (5

features). We assign secondary structure and solvent exposure

status of each residue based on the wild-type proteins. If the

structure of a wild-type protein is available, we use DSSP [35] to

assign the secondary structures of all residues to three states: helix

(H), extend (E) and coil (C); and solvent accessibility to exposed (e)

or buried (b) using 25% relative accessible surface area as the

threshold. We assume that the mutations do not significantly

change the conformation of the protein and therefore the

secondary structure and the solvent accessibility of wild-type and

mutant remain the same.

3. Relative difference (6 features). We also utilize six

relative differences of compositions and properties between the

wild-type and the mutant sequences including the change of

positive charged residues, charged residues, small residues, tiny

Figure 1. The importance of each feature contributed to the regression predictive models in cross validation. The error bars denote
the variation in five-fold cross validation.
doi:10.1371/journal.pone.0047247.g001

Table 2. Comparison of prediction performance in cross-
validation test.

Methods WT2.MT MT2.WT

AUC ACC R AUC ACC R

MUpro 0.687 0.813 0.483 0.564 0.273 0.167

I-Mutant2.0 0.694 0.775 0.540 0.557 0.683 0.069

LSE 0.577 0.614 0.155 0.577 0.614 0.155

FoldXa 0.738 0.714 0.497 - - -

EGADa 0.745 0.732 0.595 - - -

PROTS (Structure based) 0.819 0.788 0.402 0.819 0.788 0.402

PROTS (Sequence based) 0.815 0.788 0.387 0.815 0.788 0.387

PROTS_RF (Structure based) 0.873 0.799 0.628 0.863 0.795 0.622

PROTS_RF (Sequence based) 0.869 0.794 0.620 0.858 0.796 0.616

aPrediction values were provided by Potapov et al. [32].
AUC: area under ROC curve; ACC: accuracy; R: Pearson Correlation Coefficient.
doi:10.1371/journal.pone.0047247.t002
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residues, maximum area of solvent accessibility (ASA) and the iso-

electric point (pIa). These features were identified and used to

build a model for discriminating thermophilic proteins from their

mesophilic homologs [31].

4. PROTS terms (20 for structure-based model or 13 for

sequence-based model). PROTS is a protein stability poten-

tial derived from a comparative study between a large set of

thermophilic and mesophilic proteins and a set of point mutations

with measurements of mutation induced the change of melting

temperature [26]. There are 20 features in this category, including

13 sequential features and 7 Delaunay Tetrahedron (DT) based

spatial features if the protein structure is available. The sequential

features are used for all models but the Delaunay Tetrahedron

based features are only used for structure-based models.

Random Forest algorithm (RF)
Predictive models are built using the Random Forest algorithm

(RF) [36], an ensemble technique utilizing hundreds or thousands

of independent decision trees to perform classification or

regression. Each of the member trees is built on a bootstrap

sample from the training data using a random subset of available

variables. The algorithm is a state-of-the-art machine learning

method and has been successfully used to build many predictive

models [37–41]. Unlike many other competitive machine learning

algorithms such as support vector machine, RF does not require

fine-tuning parameters because using the default values of the

parameters often results in near-optimal performance. Moreover,

the predicting time for a RF model is often a small fraction of that

for a corresponding support vector machine (SVM) model [39].

Another advantage of RF is that it provides several variable

importance measures [40,41]. It is particularly suitable for mining

high-dimensional and noisy data. In this study, we use an R

implementation of the Random Forest algorithm to construct the

predictive model in regression manner [42]. The predicted free

energy changes are then used to calculate the accuracy of the

predictions using zero change as the threshold for classification.

Algorithms used for comparison
We compare PROTS-RF to a variety of methods including

several top-ranked ones in a recent comprehensive evaluation of

protein stability predictors [28]. LSE is a local structure entropy

derived from representative protein structures and has shown a

strong correlation with protein thermostability [12]. MUpro is a

support vector machine (SVM) based predictor at sequence level

for the variation of folding free energy (DDG) upon point

mutations [18]. I-Mutant2.0 is a SVM based predictor using

structure and sequence information for DDG prediction [17]. Both

EGAD [13] and FoldX [11] are force fields parameterized on a

large set of point mutations with experimentally determined

stability changes.

Evaluation parameters
We use several metrics to measure the performance of the

predictive models. The first is accuracy, which is defined as the

ratio of the number of correctly predicted mutations in stabilizing

or destabilizing of wild type proteins against the total number of

predicted mutations. The second is the area under receiver

operating characteristic curve (ROC), known as AUC. It should be

pointed out that AUC can be a misleading parameter in some

situations and therefore the AUC results should be interpreted

with caution [43,44]. We provide AUC for comparison purposes

Figure 2. Linear regression and classification of the 180 double point mutations.
doi:10.1371/journal.pone.0047247.g002

Table 3. The performance of DDG prediction by PROTS-RF for
mutations and hypothetical reversed mutations in the D180
dataset, and compare with the WET model.

Dataset D180

Mutation directions WT2.MT MT2.WT

Structure-based predictions AUC 0.868 0.863

ACC 0.782 0.780

R 0.775 0.774

Sequence-based predictions AUC 0.869 0.868

ACC 0.798 0.797

R 0.755 0.757

WET AUC 0.961 0.518

ACC 0.85 0.572

R 0.930 0.110

AUC: area under ROC curve; ACC: accuracy; R: Pearson Correlation Coefficient.
doi:10.1371/journal.pone.0047247.t003
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because it is widely used in similar studies. The third is the Pearson

correlation coefficient of predicted and experimental DDG values.

Results

Statistical analysis of the single mutation dataset
We analyze the statistical distributions of features used in the

study. We use the Kolmogorov-Smirnov test for normality find

that none but one of the features are normally distributed. We

calculate the medium, the mean, and the p-value of the

Kolmogorov-Smirnov test for each feature’s distributions in

stabilizing vs. destabilizing mutations (Table 1). We also generate

boxplots to illustrate the distributions of features of stabilizing and

destabilization mutations (Figure S1). The results presented in

Table 1 clearly show that the distributions of a number of features

are significantly different in stabilizing and destabilizing mutations.

For example, mutations occurring in sheets are more likely to be

destabilizing (p-value: 2.561024). Mutations on buried residues

are more likely destabilization than stabilization (p-value:

6.0610215), which can be explained by the fact that the protein

cores are tightly packed and thus it is difficult to further optimize

the interactions within the cores [45].

Cross validation and model training
We use an R implementation of the Random Forest algorithm

to build models. Each model in the five-fold cross validation

comprises 2,000 decision trees. The importance of a feature is

estimated using the sum of the impurity increase over all trees

induced by the feature in the model [36]. The average and

standard error of the importance of the 41 features in structure-

based prediction and the 34 features in sequence-based prediction

are shown in Figure 1. The results clearly show that the PROTS

features and the evolutionary information are strongly correlated

with protein stability.

The results from all five test datasets in the cross validation are

combined. The data from actual experimental and hypothetical

mutation are separated and fitted to the experimental data,

discretely (Table 2). For the experimental mutations, the Pearson

correlation coefficients (R) are 0.628 for the structure-based

predictions and 0.620 for the sequence-based predictions (Table 2).

We then use various DDG values as cutoff thresholds to classify

mutations as stabilizing and destabilizing and calculate the areas

under receiver operating characteristic (ROC) curves. We find the

areas under ROC (AUC) reach 0.873 and 0.869 for structure and

sequence-based predictions, respectively. Very similar R and AUC

are obtained for the hypothetical reverse mutations (Table 2). This

result demonstrates that the predictive model is quite robust.

The model constructed in this work yields comparatively more

reliable predictions than other tested models (Table 2). Machine

learning based algorithms MUPro and I-mutant2.0 perform

poorly for the hypothetical reverse mutations because the AUCs

are only slightly higher than 0.5, the level of random selection.

The models based on force-fields or potentials such as LSE, FoldX

and EGAD can treat temperature and free energy as thermody-

namic parameters. The performance of these tested algorithms in

the study, nevertheless, are not as good as the PROTS-RF.

Besides, PROTS-RF performs better than PROTS, a fragment-

based protein thermostability potential we recently developed

[26].

We then build the final structure- and sequence- based models

using all the 2,156 point mutations and test these models using

double- and multiple- point mutations.

Figure 3. Linear regression and classification of the 141 multiple point mutations.
doi:10.1371/journal.pone.0047247.g003

Table 4. The performance of DDG prediction by PROTS-RF for
mutations and hypothetical reversed mutations in the D141
dataset.

Dataset D141

Mutation directions WT2.MT MT2.WT

Structure-based predictions AUC 0.862 0.858

ACC 0.787 0.789

R 0.663 0.659

Sequence-based predictions AUC 0.855 0.844

ACC 0.779 0.746

R 0.637 0.629

AUC: area under ROC curve; ACC: accuracy; R: Pearson Correlation Coefficient.
doi:10.1371/journal.pone.0047247.t004
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Blind test on double point mutation dataset D180
In the blind test on the 180 double-point mutations, the

regression of prediction against experimentally measured DDG

values results in correlation coefficients of 0.775 and 0.755 for

structure and sequence-based predictions respectively, and the

classification achieves AUCs of 0.868 and 0.869 (Table 3 and

Figure 2). The predictions on the experimental data are similar to

a previous reported model WET [23], in which the authors

achieved correlation coefficients up to 0.75 and the AUC up to

0.87 in 10-fold cross validation tests using a weighted decision

table method. However, PROTS-RF achieves very similar results

for the hypothetical reverse mutations (0.863 and 0.868 respec-

tively), while the WET model provided by Huang et al. [23]

delivers an AUC of 0.518 and R of 0.110, a strong indication for

the existence of an over-fitting problem with the model.

Huang et al suggested that the methods developed for

predicting protein stability change upon single point mutations

may not be suitable for predicting the stability change upon double

point mutations because the thermostability changes are not

always additive [23]. Our results, nevertheless, have clearly

indicated that a predictive model trained from single point

mutations may still be capable of predicting double point

mutations induced by protein stability changes. Some features

used in our models, especially PROTS terms, reflect the

surrounding environment of the mutation sites. The changes of

these features are additive for remote mutations but not additive

for mutations close to each other. This approach is consistent with

the observations that in general non-additive mutations involve

mutations close to each other while additive mutations involve

mutations far apart (There are exceptions, however, to this rule

because of long range interactions).

Blind test on multiple point mutations D141
The thermostability changes upon multiple point mutations are

more complicated than single- and double- point mutations and

therefore it is expected to be more difficult to be correctly

predicted. Nevertheless, the correlation coefficients of predictions

of the 141 multiple point mutations and experimentally measured

DDG values reach 0.663 and 0.637 for structure and sequence-

based predictions, and the classification results in AUCs of 0.862

and 0.855, respectively (Figure 3 and Table 4). This result suggests

that our predictive model is also capable of predicting stability

changes upon multiple point mutations with high accuracy.

Prediction thermostability of Staphylococcal Nuclease
mutants

Staphylococcal Nuclease (SNase) has been used as a model

protein for studying protein stability and therefore there is a

significant amount of experimental data for free energy changes

upon mutations of this enzyme [46]. We use PROTS-RF predict

free energy changes upon mutations and then plot them against

the experimental values in Fig. 4. The predicted and experimental

DDG values narrowly distribute along a line passing through the

Origin. Both structure-based and sequence-based predictions are

highly correlated with the experimental data (RPearson = 0.855 and

0.843, respectively), and the predictions for mutations and the

corresponding hypothetical reverse mutations are strongly sym-

metric with respect to the Origin. A Trp residue at position 140 is

critical to SNase structure, stability and function [47]. PROTS-RF

correctly predicts W140 related mutations and their hypothetical

reverse mutations qualitatively but not quantitatively (Fig. 4),

suggesting further improvement remains desirable.

Discussion

The model developed in the study is robust as demonstrated in

the cross validation and blind tests. We believe that the high

robustness of this model can be attributed to the Random Forest

algorithm and the features used in the models. The Random

Forest algorithm is well known for its high robustness and is

particularly suitable for mining high-dimensional and noisy data.

We utilize diverse features ranging from evolutionary information,

protein structure profile, and protein properties to the thermosta-

bility terms learned from a large amount of native proteins

[26,31]. These features are less dependent on the proteins in

training datasets and the over-fitting problem is less pronounced in

the model. Consequently, they are robust and capable of

predicting not only single-point mutations, but also double- or

multiple- point mutations. The tests using the hypothetical reverse

mutations in this study have shown that the tested machine

Figure 4. Structure and sequence based prediction of mutations of staphylococcal nuclease. Empty symbols are prediction for mutations
with experimental data, and the corresponding crossed-symbols are the prediction for hypothetical reverse mutations. The structural figure is based
on the PDB entry 1STN.
doi:10.1371/journal.pone.0047247.g004
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learning models for predicting mutation induced protein stability

change may suffer from the over-fitting problem. The results are

surprising because all these models have undergone cross

validation, a common practice widely considered as a rigorous

validation approach. We suggest that testing datasets created

based on physical principles can be highly useful for testing the

robustness of predictive models.

In the present study, it is observed that the structure-based and

sequence-based predictors result in very similar performance,

suggesting the structural features used in the study do not make

significant contribution to the performance of the models. This is

consistent to their relatively low importance as shown in Figure 1.

The most important structural feature (FBDTD43) is the seventh

overall most important feature. Its ability to deliver good

predictions without structural information is advantageous over

other methods requiring structural information because vast

majority of proteins do not have solved structures. It is possible

that the information encoded in these structural features is also

captured in the sequential features used in the study. In addition,

the number of structural features is relatively small (7 structural vs.

34 sequential features) and they may not interact well with

sequential features. Nevertheless, we think it is possible to further

improve model performance if the structural class of proteins and

more structure-based features are considered. Recently, we were

made aware that alpha/beta class proteins normally have higher

residue contact density (i.e., number of contacts per residue) than

other proteins [48]. Proteins with higher contact density tend to

bear more mutations without significantly change its thermosta-

bility [49] and thermophiles tend to have higher contact density

than mesophiles [50]. Moreover, a recently report concluded that

the accessible surface area of beta proteins increases more rapidly

with the size of proteins in comparison with that of the alpha

proteins [51]. It was also reported that the aggregation propensity

of a protein is highly correlated with its structural classification

[52]. Currently we are investigating different classes of proteins

and will report the results in future.

Conclusion

We have presented PROTS-RF, a predictive model based on

the Random Forest algorithm for predicting mutation induced

protein stability change. This model is constructed based on a

large set of features in proteins and trained by the Random Forest

algorithm. In the cross validation test and the blind tests using

double- and multiple- mutation datasets, this model is compara-

tively more reliable in the prediction of protein thermostability

changes over other existing methods. It also shows high levels of

robustness in the tests using hypothetical reverse mutations. We

demonstrate that the hypothetical reverse mutations based on

physical principles are highly useful for testing the robustness of

algorithms for predicting mutation induced protein stability

change.

Supporting Information

Figure S1 The distributions of features of stabilizing
and destabilization mutations.
(TIF)
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