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Abstract

Tracing the evolution of ancient diseases depends on the availability and accessibility of suitable biomarkers in
archaeological specimens. DNA is potentially information-rich but it depends on a favourable environment for preservation.
In the case of the major mycobacterial pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, robust lipid
biomarkers are established as alternatives or complements to DNA analyses. A DNA report, a decade ago, suggested that a
17,000-year-old skeleton of extinct Bison antiquus, from Natural Trap Cave, Wyoming, was the oldest known case of
tuberculosis. In the current study, key mycobacterial lipid virulence factor biomarkers were detected in the same two
samples from this bison. Fluorescence high-performance liquid chromatography (HPLC) indicated the presence of mycolic
acids of the mycobacterial type, but they were degraded and could not be precisely correlated with tuberculosis. However,
pristine profiles of C29, C30 and C32 mycocerosates and C27 mycolipenates, typical of the Mycobacterium tuberculosis
complex, were recorded by negative ion chemical ionization gas chromatography mass spectrometry of pentafluorobenzyl
ester derivatives. These findings were supported by the detection of C34 and C36 phthiocerols, which are usually esterified to
the mycocerosates. The existence of Pleistocene tuberculosis in the Americas is confirmed and there are many even older
animal bones with well-characterised tuberculous lesions similar to those on the analysed sample. In the absence of any
evidence of tuberculosis in human skeletons older than 9,000 years BP, the hypothesis that this disease evolved as a
zoonosis, before transfer to humans, is given detailed consideration and discussion.
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Introduction

Tuberculosis was present from an early date in North America,

but clear evidence for its distribution and origins is by no means

complete [1,2]. An intriguing aspect of ancient North American

tuberculosis is its apparent prevalence in ice-age bovids and

mastodons who may have nurtured the disease without being

rapidly killed [3,4]. Bone pathology of skeletons, collected in

Natural Trap Cave (Wyoming), indicates the presence of such an

ancient animal tuberculosis reservoir [5,6]. Lesions suggestive of

tuberculosis were seen in skeletons of bighorn sheep, musk ox and

Bison antiquus [6]. In this bison, dated to 17,8706230 BP, it was

possible to demonstrate ancient DNA characteristic of the

Mycobacterium tuberculosis complex, confirming the oldest proven

case of tuberculosis [7].

The use of DNA can be complemented by other biomarkers, as

reviewed recently [8,9]. Mycolic acids (MAs) (Figure 1A) and

phthiocerol dimycocerosate (PDIM) waxes (Figure 1B, C) are

characteristic major components of the cell envelopes of M.

tuberculosis [10,11]. Using a combination of DNA and MA analysis,

the oldest case of human tuberculosis infection was established in

skeletons of a woman and adjacent child from Atlit-Yam (Israel)

[12]. Analysis of the mycocerosate components (Figure 1B) of

PDIM waxes was established in the investigation of a skeletal

collection from Coimbra (Portugal) [13]. In the same study [13],

another lipid biomarker, C27 mycolipenic acid (Figure 1B), was

encountered in a minority of samples.

The present study investigated the same bone samples used

previously [7], and recorded a weak mycolic acid profile.

However, a clear profile of mycocerosic acids was obtained,

supported by the identification of phthiocerol components. In

addition, a strong presence of mycolipenic acids was recorded.

These findings independently document the presence of tuber-

culosis in this ancient extinct bison skeleton and demonstrate the

long-term stability of these lipid virulence factors. The confir-
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Figure 1. Lipid biomarkers for M. tuberculosis. A. Generalized structures of the a-, methoxy- and ketomycolates; the main components are in
brackets. B. Structures of mycolipenate and mycocerosates, showing ions used for selected ion monitoring on NI-CI GC-MS analysis. C. Structures of
members of the phthiocerol family.
doi:10.1371/journal.pone.0041923.g001
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mation of tuberculosis in an animal bone much older than any

positive human skeletons raises the possibility that the ancient

evolution of the disease was as a zoonosis.

Results and Discussion

Bone Samples and Extraction of Lipids
The two bone samples analysed were from an extinct bison

(Bison antiquus) buried in sediments, dated to 17,8706230 years BP,

in Natural Trap Cave (Wyoming) [7]. The first sample (‘‘Bison 1’’)

originated from the undermined articular surface of a metacarpal

but the second sample (‘‘Bison 2’’) was from a site on the same

bone remote from this lesion [7]. The material was exactly the

same as that used for the previous ancient tuberculosis DNA

analyses [7].

Bone samples were hydrolysed by a protocol designed to release

all the long-chain lipid components [9,12,13] and the acidic

components were converted to pentafluorobenzyl (PFB) esters

[12,13]. The extract was fractionated into three distinct lipid

Figure 2. Fluorescence HPLC of pyrenebutyric acid derivatives
of pentafluorobenzyl esters of total mycolic acids. The
derivatives analysed were from Bison 1 and Bison 2 bones and standard
M. tuberculosis. A. Reverse phase HPLC of total mycolates. B. Normal
phase HPLC of total mycolates collected from reverse phase
separations.
doi:10.1371/journal.pone.0041923.g002

Figure 3. Reverse phase fluorescence HPLC of pyrenebutyric
acid derivatives of pentafluorobenzyl esters of mycolic acid
classes. The derivatives analysed were from Bison 1 and Bison 2 bones
and standard M. tuberculosis. The analyzed fractions were collected
from the normal phase separation (Figure 2B). A. a-Mycolates. B.
Methoxymycolates. C. Ketomycolates.
doi:10.1371/journal.pone.0041923.g003
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classes, containing non-hydroxylated fatty acid PFB esters, mycolic

acid PFB esters and underivatised phthiocerols [12,13]. The latter

two classes were allowed to react with pyrenebutyric acid (PBA) to

produce PBA-PFB mycolates and di-PBA derivatives of the

phthiocerol family (Figure 1). These fluorescent derivatives were

analysed by sequential combinations of reverse and normal phase

high performance liquid chromatography (HPLC) [12]. The non-

hydroxylated fatty acid PFB esters were fractionated further to

produce material enriched in PFB esters of mycocerosic and

mycolipenic acids, which were analysed by negative ion chemical

ionization gas chromatography mass spectrometry (NICI-GCMS)

and selected ion monitoring (SIM) [13].

Detection of Mycolic Acids
Reverse phase HPLC of the PBA-PFB mycolate fractions

indicated the presence of long-chain mycolates in sample Bison 1,

but the profile for Bison 2 was very weak (Figure 2A). The total

components in the region corresponding to mycolates, from the

reverse phase HPLC of Bison 1 and 2 extracts, were collected and

analysed by normal phase HPLC (Figure 2B). A recognizable profile

was recorded for Bison 1, with the a-mycolates being the most

abundant. However, the signal was not clean, with minor additional

peaks eluting before and after the main component (Figure 2B).

Methoxymycolates were apparently present in low amounts, but

there was only a weak indication for ketomycolates. In the normal

phase HPLC profile of the total mycolates from Bison 2 no clear

peaks could be discerned. The fractions, corresponding to the

positions of a-mycolates, methoxymycolates and ketomycolates

(Figure 2B), were collected and re-analyzed by reverse phase HPLC

(Figure 3). An informative profile was obtained for the a-mycolates

from Bison 1 but nothing was observed for Bison 2 (Figure 3A). Weak

indications of methoxymycolates and ketomycolates were only

discernible in Bison 1 (Figure 3B, C).

Detection of Mycocerosic and Mycolipenic Acids
Positive profiles of C29, C30 and C32 mycocerosates were

recorded by SIM NICI-GCMS for both Bison 1 and 2 (Figure 4).

Additionally, lesser proportions of C27 mycocerosates were

distinguishable, but no significant proportions of C33 and C34

mycocerosates were encountered (Figure S1). The mycocerosates

were observed as characteristic double peaks, due to partial

racemization during the alkaline hydrolysis [13]. Positive recog-

nition of the M. tuberculosis complex mycocerosate pattern was

confirmed by the GC retention time values, particularly the

overlapping of the C29 and C30 components (Figure 4). This highly

diagnostic chromatographic behaviour is a result of the tetra-

methyl-branched C30 mycocerosate being relatively more volatile

in comparison with the trimethyl-branched C29 ester [9,13]. In

both Bison 1 and 2, a substantial proportion of C27 mycolipenate

was observed (Figure 4) as a single peak, racemization not being

possible [9,13]. The identification of C27 mycolipenate was also

confirmed by comparison of the GC retention time with an

authentic standard (Figure 4) and correlation with a previous

detailed study [13]. The full range of positive and negative NICI-

Figure 4. Selected ion monitoring NI-CI GC-MS of mycolipenic
and mycocerosic acid pentafluorobenzyl fractions. A. Bison 1. B.
Bison 2. C. Standard M. tuberculosis. The m/z 407 (mycolipenate), 409,

437, 451 and 479 (mycocerosates) ions correspond to the components
shown in Figure 1B. The intensities of the mycocerosate and
mycolipenate peaks, in square brackets, are normalized to that [100]
of the major C32 mycocerosate. It was not possible to record all three
profiles on the same occasion, so the retention times for the standard
M. tuberculosis extract do not correspond exactly. In profiles A and B,
the C27 m/z 409 peaks at 21.81 and 21.80, respectively, correspond to
straight-chain heptacosanoate.
doi:10.1371/journal.pone.0041923.g004
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GCMS mycocerosate and mycolipenate profiles is shown in

Figure S1.

Detection of Phthiocerol Family
Reverse phase HPLC of the PBA phthiocerol fraction from

Bison 1 and 2 both showed components corresponding to C34 and

C36 phthiocerol A and C35 phthiodiolone (Figure 5A). The

collected total PBA phthiocerol family fractions were analyzed by

normal phase HPLC (Figure 5B), providing profiles with

components corresponding to phthiocerols A and B and

phthiodiolone. The separated fractions from the normal phase

analysis (Figure 5B) were subjected to reverse phase HPLC, but

there was insufficient material for profiles to be registered.

Significance of the Presence of Lipid Biomarkers
The presence of mycolic acids, having an overall size similar to

those found in M. tuberculosis (Figure 2A), is highly significant,

providing confirmation of the previous recovery of DNA

characteristic of the M. tuberculosis complex [7]. In that study [7],

spoligotyping indicated that the infection was not due to M. bovis,

but M. tuberculosis or M. africanum were possibilities. Not

surprisingly, the bone sample taken from near the observed lesion

(Bison 1) gave the best profile, but there was a very faint response

for Bison 2 (Figure 2A). The normal phase HPLC examination of

the collected mycolates (Figure 2B) gave confirmatory evidence for

a-mycolates in Bison 1, with one good sharp peak accompanied by

some possibly degraded components (Figure 2B). The Bison 1

extract also had a broad peak, possibly representing methoxymy-

colates, and a slight elevation of the baseline might be interpreted

as a suggestion of ketomycolates (Figure 2B). If diagenetic

modification of mycolates takes place, it is probable that the more

hydrophilic and chemically reactive ketomycolates are more

susceptible, followed by the intermediate methoxymycolates and

the relatively hydrophobic a-mycolates. For Bison 2, the normal

phase HPLC analysis of total mycolates was negative (Figure 2B).

On subjecting total a-mycolates, collected from the normal phase

HPLC analyses (Figure 2B), to reverse phase HPLC an acceptable

profile was recorded for Bison 1 (Figure 3A). This profile

(Figure 3A) corresponds to the standard, but the peaks are

broadened by possible degradation. It is also encouraging that a

very weak series of peaks can be discerned for methoxymycolates

and ketomycolates in Bison 1 (Figure 3B, C). The above evidence

points to the presence of mycobacterial mycolic acids, but a clear

diagnosis of M. tuberculosis complex infection cannot be made solely

on these data.

Of greater significance is the discovery of pristine C29, C30 and

C32 mycocerosates and C27 mycolipenate (Figure 4) and the C34

and C36 phthiocerols A (Figure 5). This combination of

mycocerosates is typical of M. tuberculosis sensu stricto [11,13], as is

the presence of comparable amounts of the C34 and C36

phthiocerols. A limited study [14] indicated that M. bovis usually

has an enhanced proportion of C27 mycocerosate and a

preponderance of C34 over C36 phthiocerols, when compared

with M. tuberculosis sensu stricto. It is interesting that the proportion

of phthiodiolone in Bison 1 is comparable to that of phthiocerol A.

For Bison 2, however, phthiodiolone is reduced in proportion; this

indicates that this ‘‘keto’’ component may have experienced some

selective degradation as for ketomycolates (Figure 2B). The normal

phase HPLC peaks (Figure 5B) for phthiocerol A appeared to be

doublets, suggesting some diagenetic racemization. The presence

of both mycocerosates and phthiocerols in the same extract

suggests that intact PDIM waxes were present in these ancient

bones. These PDIM waxes are particularly robust, surviving acid

methanolysis and aqueous alkaline hydrolysis [14,15]. It is not

surprising, therefore, that they are apparently recovered intact

from such an ancient source, when mycolic acids are diminished in

abundance (Figures 2, 3, 4, 5). If PDIMs can survive intact for

,17,000 years, it appears possible that, in favourable circum-

stances, they might be found in archaeological material way back

into antiquity.

It is more surprising, however, that clear evidence for

mycolipenic acid was observed in both samples. Mycolipenic acid

[11,13] is a constituent of characteristic glycolipids [16], the penta-

acyl trehaloses (PATs) [16,17]. Mycolipenates appear to be limited

in distribution to virulent strains of members of the M. tuberculosis

complex, such as M. tuberculosis, M. bovis and M. africanum [17]. It

might be expected that the trehalose unit would render PATs

susceptible to degradation compared to the non-polar PDIM

Figure 5. Fluorescence HPLC of di-pyrenebutyric acid deriva-
tives of members of the phthiocerol family. The derivatives
analysed were from Bison 1 and Bison 2 bones and standard M.
tuberculosis. A. Reverse phase HPLC of total phthiocerol family fraction.
B. Normal phase HPLC of phthiocerol family derivatives collected from
reverse phase separations. Abbreviations: PA, phthiocerol A; PB,
phthiocerol B; PO, phthiodiolone.
doi:10.1371/journal.pone.0041923.g005
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waxes. However, the PATs are also relatively non-polar [16] and

hydrophobic, due to the presence of long-chain fatty acid

substituents on five out of the eight trehalose sites [17].

Mycolipenates may survive in this protected hydrophobic envi-

ronment, although there is currently no evidence for the survival of

intact PAT glycolipids. Another possibility is that the conjugated

ab-unsaturated unit in the mycolipenate [Figure 1B] confers

additional resistance to diagenesis.

M. tuberculosis produces a class of relatively polar diacylated

trehalose (DAT) glycolipids, with mycolipanolic and mycosanoic

(2,4-dimethyldocosanoic) acid components [11,16,18]. Mycolipa-

nolate was not investigated, but no evidence was obtained by

NICI-GCMS for an ion at m/z 367, corresponding to C24

mycosanoate (Figure S1). It appears, therefore, that mycolipenic

acid (Figure 1B) is an informative biomarker for ancient

tuberculosis. Mycolipenate was found in low abundance in only

9 out of 37 mycocerosate-positive skeletons from the more-recent

Coimbra collection [13]. Mycolipenates also have value in

distinguishing ancient tuberculosis and leprosy, as they are not

synthesized by Mycobacterium leprae [11].

The previous aDNA results [7] indicated that the infection did

not correlate with bovine tuberculosis, but could be due to M.

tuberculosis or M. africanum. The present lipid results do not

contradict this conclusion. In particular, the mycocerosate profiles

are indicative of M. tuberculosis, as only small proportions of C27-

mycocerosate were recorded (Figure 4). In previous studies, it was

shown that extracts of M. bovis had relatively enhanced amounts of

this component [14]. The profiles for members of the phthiocerol

family (Figure 4) also resemble those for M. tuberculosis more closely

than those for M. bovis, with a predominance of C36 phthiocerol A

over the C34 component [14]. The degraded mycolate profiles

(Figs. 2 and 3) are not particularly informative, but the size of the

a-mycolates is compatible with those from members of the M.

tuberculosis complex. The presence of C27-mycolipenate is not

diagnostic, as this component is found in various virulent members

of the M. tuberculosis complex [17]. The overall conclusion is that

the infection was by a member of the M. tuberculosis complex, with

M. bovis being an unlikely candidate.

Looking beyond the obvious paleopathological significance of

the present results, it should be noted that, to our knowledge, these

MAs and PDIMs are the oldest recognizable virulence factors ever

recorded for tuberculosis, or perhaps any other infectious disease.

The importance in virulence of these two lipid classes can be

attributed to at least two features of these compounds. Firstly, both

the MAs and PDIMs are considered to be integral components of

the cell envelope architecture of M. tuberculosis [10,11]. In M.

tuberculosis, the intense hydrophobicity of the outer membrane may

contribute to the defences of the pathogen in resisting attack by

infected host cells. A wide range of biological activities have been

associated with the lipids identified in this study and these have

been comprehensively reviewed [19–21]. In particular, there is

evidence that both MAs and PDIMs are actively exported with a

direct influence in generating foamy macrophages and granulo-

mas, contributing to the disease process [22–25]. These exported

lipids may accumulate in bone matrices, thereby enhancing their

preservation and eventual detection. Although the virulence factor

activity of these lipids has been demonstrated for modern human

tuberculosis, it is likely that the lipids would have a similar role in

ancient animal disease.

Implications for the Evolution of Tuberculosis
Great strides are being made in the paleogenomics of

tuberculosis [26–36], particularly in unravelling the complexities

of the interrelationships between relatively modern variants

responsible for current disease [30,31]. However, the early

evolutionary pathways, defining exactly from where and how

tuberculosis originated, remain indistinct. The challenge is to chart

a pathway from ancestral environmental freely-circulating myco-

bacterial species to M. tuberculosis sensu stricto, which is an obligate

pathogen with no environmental niche. Currently favoured

hypotheses all point to an evolutionary bottle-neck, estimated to

have been around 35,000 BP [27,28,35,37]. Subsequent to this

time period, the evolution of a range of particular clades follows an

almost linear clonar evolutionary pattern, with key deletions

leading to the well-defined modern M. tuberculosis complex causing

tuberculosis in humans and various animals [26–36,38].

There is increasing evidence that, before reaching the disconti-

nuity of the bottle-neck, extensive horizontal gene transfer (HGT)

was taking place in ancestral tuberculosis strains [27,38–41]. These

pre-bottle-neck ancestral strains, sometimes termed ‘‘M. prototuber-

culosis’’ [28,42], have been associated with the ‘‘smooth’’ colony-

forming Canetti variants of M. tuberculosis [28], but ‘‘Mycobacterium

canettii’’ isolates are not necessarily considered to be living

representatives of the progenitor of the M. tuberculosis complex

[32,42,43]. ‘‘M. canettii’’ strains can be regarded as a heterogeneous

‘‘out-group’’ whose evolution is distinct from other members of the

M. tuberculosis complex [30,31,33]. ‘‘M. canettii’’ smooth strains

continue to be encountered in isolated cases of tuberculosis, but they

are usually confined to certain locations in the Horn of Africa

[43,44]. Inter human transfer is not known, but children and

expatriates are more susceptible to infection, suggesting that the

indigenous population has acquired significant immunity [44]. The

geographical restriction, genetic diversity and specialised nutritional

requirements of ‘‘M. canettii’’ isolates strongly favour an environ-

mental reservoir [44]. It is not known if these bacteria can also be

part of an animal reservoir in the Horn of Africa.

The positive identification of tuberculosis in this ancient bison

skeleton establishes a clear beacon point in the historical record

around which to explore an evolutionary scenario for tuberculosis

in North America and elsewhere. Clearly recognisable human

tuberculosis has not been recorded before 9,000 BP in Eurasia/

North Africa [12,34] and 2,100–1,900 BP in the Americas

[1,2,45]. In an interesting, but isolated, report, tuberculosis was

suggested to be a cause of possible endocranial paleopathology in a

fossilized Homo erectus skeleton, dated 500,000 BP [46]; however,

alternative interpretations have been suggested [47]. Apart from

this single unconfirmed case [46], any clear indications for the

presence of tuberculosis in very ancient human remains have not

been reported. However, in the animal kingdom there are

indications of widespread tuberculosis. In addition to the bison

metacarpal, analysed in this study, 19% of 1,002 bovid specimens

[3] and 52% of 113 mastodon bones [4] had similar lesions

indicative of tuberculosis. The age range for the bovids is 125,000

to 8,000 BP [3] and the mastodon skeletons cover a range from

38,000 to 10,000 BP [4]. Bone lesions cannot be considered as

complete proof of tuberculosis diagnosis, but the dearth of human

bones with comparable lesions over the same time period of at

least 100,000 years is very striking. This could be a consequence of

the hunter-gatherer human population being thinly spread,

whereas it may be easier to locate bones from large animal herds.

A solution of this conundrum could simply be that M. tuberculosis

was principally an animal disease during its early evolution, with

transmission to humans occurring later. It has been noted

previously [34,35,42] that such a scenario should not be dismissed.

Conclusions
The highly sensitive analytical protocols employed have

detected key tuberculosis lipid biomarkers in two samples from

Lipid Biomarkers for Pleistocene Tuberculosis
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an extinct bison, lending solid support to previous aDNA

conclusions [7]. Mycolic acids (Figure 1A) were indicated (Figs. 2

and 3), but the profiles demonstrated degradation and a positive

diagnosis of tuberculosis could not be given. This contrasts with

the very strong profiles (Figure 4) recorded for the mycocerosic

acid components (Figure 1B) of the phthiocerol dimycocerosate

(PDIM) waxes and, remarkably, for the mycolipenic acid

(Figure 1B) component of pentaacyl trehaloses (PATs). Profiles

(Figure 5) for components of the phthiocerol family (Figure 1C)

suggested that intact PDIMs may have been present.

Conclusive evidence has been provided for the presence of

tuberculosis in this ancient bison by detection of these lipid

virulence factors. It has also been confirmed that tuberculosis may

be identified in absence of macroscopically recognizable bone

lesions and defects. Analysis of ancient DNA provides the most

informative way to trace the evolution of tuberculosis, but the

developing portfolio of diagnostic lipids, illustrated here, offers

alternative routes to chart these evolutionary processes. The

confirmation of tuberculosis in this exceptionally old 17,000 BP

extinct bison and the current absence of any proven human

tuberculosis older than 9,000 BP demands exploration of a

hypothesis that tuberculosis may have originated and become

established as a widespread zoonosis. Many, many more samples

of potentially tuberculosis infected human and animal bones are

urgently needed for analysis to support or disprove this or any

other viable hypothesis.

Materials and Methods

Samples
The material, as used for the previous ancient tuberculosis DNA

analyses [7], was from an extinct bison (Bison antiquus) buried in

sediments, dated to 17,8706230 years BP, in Natural Trap Cave

(Wyoming). The first sample (‘‘Bison 1’’; 13.5 mg) originated from

the undermined articular surface of a metacarpal but the second

sample (‘‘Bison 2’’; 13.0 mg) was from a site on the same bone

remote from this lesion [7]. The metacarpal bone was stored in a

dry sterile environment to avoid any possibility of external

contamination. In the prevailing conditions of Natural Trap

Cave, the possibility of external post mortem infection with M.

tuberculosis is most unlikely. M. tuberculosis H37Rv was used to

prepare standard profiles. Stringent precautions were taken

against sample carry-over during the analyses. Essentially, this

amounted to using new disposables for every analysis and running

blanks between samples.

Lipid Extraction
Samples were hydrolysed by heating with 30% potassium

hydroxide in methanol (2 ml) and toluene (1 ml) at 100uC
overnight [12,13,48,49]. Long-chain compounds were extracted

by a modification of a published method [13], substituting

dichloromethane with toluene [48,49] to ensure efficient extrac-

tion of the phthiocerols. The extract was treated with pentafluor-

obenzyl bromide, under phase-transfer conditions [12,13,48,49],

to convert acidic components into pentafluorobenzyl (PFB) esters.

Subsequent fractionation on an Alltech 209250 (500 mg) normal

phase silica gel cartridge [12,13,48,49] gave fractions containing

non-hydroxylated PFB esters, MA PFB esters and underivatized

phthiocerols.

Mycolic Acid Analysis
The MA PFB esters were reacted with pyrenebutyric acid

(PBA) to produce PBA-PFB MA derivatives, which were

purified on an Alltech 205250 (500 mg) C18 reverse phase

cartridge [12,48,49]. The PBA-PFB mycolates were analysed by

sequential reverse and normal phase HPLC, as described

previously [12,48,49].

Mycocerosic and Mycolipenic Acid Analysis
In a simplification of a previous protocol, which involved

normal phase HPLC pre-purification [13], the non-hydroxylated

PFB ester fraction was fractionated on an Alltech 205250

(500 mg) reverse phase silica gel cartridge, using a water-

methanol/methanol/methanol-toluene elution sequence (Figure
S2). A fraction enriched in mycocerosic acid and other longer

chain (.C20) PFB esters was eluted by 100% methanol with the

more usual C12 to C20 esters eluting in the earlier water/

methanol fractions. The fraction containing possible mycocer-

osates and mycolipenates, was analysed by negative ion

chemical ionization gas chromatography mass spectrometry

(NICI-GCMS), as previously described [13] (Figure S1). PFB

esters, on NICI-GCMS, fragment to produce negative carbox-

ylate [M – H]- ions, which can be detected at high sensitivity.

Selected ion monitoring (SIM) was used to search for

mycocerosate carboxylate ions at m/z 367.6311 (C24),

395.6844 (C26), 409.7111 (C27), 437.7645 (C29), 451.7911

(C30), 479.8445 (C32), 493.8712 (C33) and 507.8978 (C34).

Additionally, m/z 407.6952 was monitored for the presence of

the C27 mycolipenate carboxylate ion. Partial racemisation of

mycocerosates during the alkaline hydrolysis leads to the

formation of diasteroisomers, which resolve on gas chromatog-

raphy to give characteristic doublets; in contrast, mycolipenates

are singlets as they cannot racemise [13].

Phthiocerol Family Analysis
In a new procedure, the phthiocerol fraction was converted to

PBA esters by reaction with pyrenebutyric acid, under the same

conditions used to derivatize MA PFB esters [12,48,49]. The crude

phthiocerol di-PBA esters were purified by an Alltech 205250

(500 mg) C18 reverse phase cartridge, utilizing combinations of

water, acetonitrile and dichloromethane; the PBA phthiocerols

eluted in 100% acetonitrile and acetonitrile/dichloromethane 54:6

and 48:12 fractions (Figure S3). Reverse phase HPLC was

performed on an Alltech 81412 Alltima C18 column (3 m,

4.6 mm650 mm) column in a VWR Hitachi Elite LaChrom

HPLC linked to an L-2480 fluorescence detector, utilizing a

gradient of acetonitrile/tetrahydrofuran, from 85:15 to 60:40 in

30 min (Figure S4). The fraction, corresponding to derivatives of

members of the phthiocerol family, was collected and analyzed by

HPLC on normal phase columns (Alltech 81414 Alltima Silica,

3 mm 5064.6 mm). Eluting with heptane/ethyl acetate 99:1 for

1 min, was followed by gradient of heptane/ethyl acetate 99:1 to

91:9 over 30 mins (Figure S4).

Supporting Information

Figure S1 Complete results of selected ion monitoring
(SIM) negative ion-chemical ionisation gas chromatog-
raphy-mass spectrometry (NICI-GCMS) analysis of
pentafluorobenzyl (PFB) ester fractions, corresponding
to mycocerosates and mycolipenates.

(DOC)

Figure S2 Solvent system for the purification of penta-
fluorobenzyl (PFB) mycocerosates on C18 reverse phase
cartridges.

(DOC)
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Figure S3 Solvent system for the purification of pyr-
enebutyric acid (PBA) derivatives of members of the
phthiocerol family on C18 reverse phase cartridges.

(DOC)

Figure S4 HPLC conditions for analysis of pyrenebu-
tyric acid (PBA) derivatives of members of the phthio-
cerol family.

(DOC)
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