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Abstract

Despite intense interest and considerable effort via high-throughput screening, there are few examples of small molecules
that directly inhibit protein-protein interactions. This suggests that many protein interaction surfaces may not be
intrinsically ‘‘druggable’’ by small molecules, and elevates in importance the few successful examples as model systems for
improving our fundamental understanding of druggability. Here we describe an approach for exploring protein fluctuations
enriched in conformations containing surface pockets suitable for small molecule binding. Starting from a set of seven
unbound protein structures, we find that the presence of low-energy pocket-containing conformations is indeed a
signature of druggable protein interaction sites and that analogous surface pockets are not formed elsewhere on the
protein. We further find that ensembles of conformations generated with this biased approach structurally resemble known
inhibitor-bound structures more closely than equivalent ensembles of unbiased conformations. Collectively these results
suggest that ‘‘druggability’’ is a property encoded on a protein surface through its propensity to form pockets, and inspire a
model in which the crude features of the predisposed pocket(s) restrict the range of complementary ligands; additional
smaller conformational changes then respond to details of a particular ligand. We anticipate that the insights described here
will prove useful in selecting protein targets for therapeutic intervention.
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Introduction

Manipulating the interactions between proteins represents a

promising avenue for therapeutic intervention in a variety of

settings. Given the ubiquitous nature of protein interactions,

selectively manipulating such interactions could serve as a means

to treat conditions including viral and bacterial infections, cancer,

and autoimmune disorders [1–7]. In spite of recent ongoing efforts

that have provided cause for optimism, protein interactions

continue to be viewed as a challenging class of therapeutic target

[8–12]. While high-throughput screening efforts that fail to yield

extensive hits are typically not reported in the literature, hit rates

as low as 0.01% in a large pharmaceutical library have been

described [13].

This dearth of successful representatives to study has given

increased importance to the several cases in which a protein

structure has been solved in complex with a biological protein

partner and also in complex with a small molecule inhibitor. Wells

and McClendon [8] compared six such cases and observed that

binding was not associated with a large conformational change in

any of these examples; and yet, the concave pocket on the protein

surface at which the small molecule binds was typically smaller or

not present in the unbound protein structure. In order for inhibitor

binding to occur, the surface of the unbound structure therefore

had to undergo local rearrangement to reveal a small molecule

binding site that would not necessarily be evident from the

unbound structure [8].

Given the limited success in identifying modulators of protein-

protein interactions, it has proven helpful at an early stage to

validate a protein surface site by evaluating its ‘‘druggability’’. As

such, fragment-based methods have been developed to experi-

mentally assess the druggability of a protein interaction site by

determining which members of a small molecule probe set bind to

a target protein, and where on the protein surface these bind. This

experiment can be conducted using ‘‘SAR by NMR’’ [14], which

tracks chemical shift differences to identify binding sites on the

protein surface, or by the ‘‘multiple solvent crystal structures’’

method [15], in which independent structures of the target protein

are solved after soaking with a collection of organic solvents. Both

of these approaches aim to probe the regions of a protein surface

that can accommodate small-molecule binding, with a preference

for sites that are not uniquely disposed to bind a particular pre-

selected ligand. In either technique, specific regions of the protein

surface that interact with a variety of probe molecules – albeit

weakly – are inferred to be a putative site for more potent binding

by some yet unidentified compound.

Inspired by these methods, we hypothesize that the ability to

form a binding pocket may be the limiting factor for druggability
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of a protein surface site. We further propose that compounds

identified in biochemical screens as inhibitors of protein interac-

tions result from natural shape complementarity to specific surface

pockets that form with little energetic cost to the protein. Together

these hypotheses imply that druggable sites differ from the rest of

the protein surface, in that fluctuations under physiological

conditions at druggable sites include a special subset of ‘‘pocket-

containing’’ conformations.

To test these hypotheses, we have developed computational

methodology to explore protein fluctuations in a biased way, by

providing a driving force towards conformations in which a

surface pocket is present. Several other studies have generated

ensembles of protein conformations reflecting fluctuations around

the native state and used these either to assess druggability [16] or

as a starting point for docking studies [17–24]. Because these

ensembles are generated in an unbiased manner, however, a large

fraction of the resulting ensembles correspond to protein

conformations that are dissimilar to the corresponding bound

structure in both pocket size and hydrophobicity [18]. One of

these studies found that carrying out simulations in methanol led

to formation of surface pockets which could accommodate small

molecules [25], but the use of this non-biological solvent may lead

to unphysical artifacts in the resulting models. Molecular dynamics

has also been used in a computational analog of ‘‘SAR by NMR’’

in which simulations are carried out using an explicit mixed

solvent, allowing druggable sites to be identified by locating

accumulation of probe molecules [17,20,26]. Though these

methods proved effective for binding sites, the unbiased nature

of the underlying simulations make these approaches very

computationally intensive. Recently Kozakov et al. have devel-

oped a computational analog of the multiple solvent crystal

structures method, by using docking to identify ‘‘consensus’’ sites

at which several probe molecules cluster [27]. They confirmed that

these molecular probes indeed cluster at established druggable sites

and that known inhibitors often occupy these consensus sites. Such

an approach, however, cannot efficiently explore surface pockets

that form via concerted motions involving the protein backbone

due to the computational expense associated with repeatedly

docking multiple small molecule probes. The biasing potential we

describe here avoids this limitation by not needing to dock probe

molecules, and therefore can be used in the course of a simulation

that samples a broader range of conformational fluctuations.

Results

Quantitative analysis of surface pockets
Because a wide, shallow pocket that is unsuitable for small

molecule binding can have the same volume as a deep pocket that

is more suitable for small molecule binding, we introduce the

concept of ‘‘deep’’ volume of a pocket: the volume of the pocket

that is well-sequestered away from solvent. To quantitatively

identify small molecule binding pockets and measure their ‘‘deep’’

volume, we implemented a modified version of the LIGSITEcs

algorithm [28]. This approach starts by creating a grid around a

protein and marking each grid point as occupied by protein,

surface, or solvent. Next, the algorithm performs linear searches

on the grid to find ‘‘Surface-Solvent-Surface’’ events: lines drawn

between two surface points that pass through only solvent (Figure
S1), indicating a concave region on the protein surface. To

distinguish between total pocket volume and deep volume, pocket

points that fall within 2.5 Å of solvent are marked as ‘‘surface

pocket’’ points and are excluded from the ‘‘deep volume’’

calculation. Finally, the remaining contiguous points involved in

these events are clustered into ‘‘deep pockets’’. As expected, the

deep pocket volumes we use here are correlated to, but smaller

than, pocket volumes found by other pocket detection methods,

such as Q-SiteFinder [19] (Figure S2). Our implementation

differs from the original LIGSITEcs algorithm [28] in that our

search is restricted to the region around a specific ‘‘target’’ residue

on the protein surface, allowing us to rapidly test for pockets at a

specific surface site. Additional minor differences are described in

Text S1.

A demonstration of this method is shown in Figure 1A. Bcl-XL

is an anti-apoptotic protein in the Bcl-2 family whose over-

expression has been implicated in the survival of cancer cells. A

series of acyl-sulfonamide-based ligands have been shown to

inhibit Bcl-XL activity by competing for its peptide-binding

groove. Here, we have removed one such inhibitor from a co-

crystal structure and applied our modified implementation of the

LIGSITEcs algorithm at this surface site. The resulting pocket has

intuitive shape complementarity to the ligand even though it was

generated from the protein structure without the ligand present.

This is unsurprising, given that the ligand occupying this pocket is

complementary in shape to the protein surface.

We compiled a test set of all seven proteins for which structures

have been solved both alone and in complex with a small-molecule

inhibitor bound to a protein interaction site (Bcl-XL, IL-2,

FKBP12, HPV E2, ZipA, MDM2, and the BIR3 domain of

Figure 1. Identifying surface binding pockets. (A) Bcl-XL (grey
surface) is shown in complex with an inhibitor (blue sticks). The protein
surface features a large pocket (red spheres) complementary in shape to
the inhibitor. (B) Deep pocket volumes of surface pockets at protein
interaction sites harboring a bound inhibitor (red line) are larger than
those found elsewhere on the protein surface (black line). Data are
collected from a test set of seven proteins, each of which has been
solved in complex with a small-molecule inhibitor (Bcl-XL, IL-2, FKBP12,
HPV E2, ZipA, MDM2, and the BIR3 domain of XIAP).
doi:10.1371/journal.pcbi.1002951.g001

Author Summary

Identifying small-molecule inhibitors of protein interac-
tions has traditionally presented a challenge for modern
screening methods, despite interest stemming from the
fact that such interactions comprise the underlying
mechanisms for cell proliferation, differentiation, and
survival. This suggests that many protein interaction
surfaces may not be intrinsically ‘‘druggable’’ by small
molecules, and elevates in importance the few successful
examples as model systems for improving our under-
standing of factors contributing to druggability. Here we
describe a new approach for exploring protein fluctuations
leading to surface pockets suitable for small molecule
binding. We find that the presence of such pockets is
indeed a signature of druggable protein interaction sites,
suggesting that ‘‘druggability’’ is a property encoded on a
protein surface through its propensity to form pockets. We
anticipate that the insights described here will prove
useful in selecting protein targets for therapeutic inter-
vention.

Druggability of Protein Interaction Sites
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XIAP) (Table 1). We compared the deep pocket volume at

randomly selected regions of the protein surface (see Text S1) to

the deep volume of the inhibitor-bound pocket. Since the pocket

definition can depend somewhat on the particular ‘‘target’’ residue

used, the deep volume of the inhibitor-bound pocket was

measured several times using different target residues. As shown

in Figure 1B, across all seven proteins, most pockets identified by

this algorithm at randomly selected sites (black line) on the protein

surface have a deep volume smaller than 25 Å3, and all are smaller

than 75 Å3. In contrast, the distribution of inhibitor-bound pocket

volumes (red line) is significantly shifted, with about half of the

inhibitor-bound deep pocket volumes larger than 75 Å3. This

observation is consistent with results generated using other pocket

detection methods [29–33], although those other studies were not

focused on inhibitors of protein-protein interactions.

Druggability of protein surface sites
The results presented above demonstrate that inhibitor binding

occurs at surface sites containing a pocket, and that these sites are

distinct from the remainder of the protein surface. We therefore

formulated the hypothesis that the ability of the protein surface to

form such pockets may be the limiting determinant of the inherent

druggability at this site.

Unlike previous standalone methods for pocket detection, we

instead implemented our algorithm as a term in the Rosetta [34]

energy function alongside the canonical energetic determinants of

protein structure such as packing, hydrogen bonding, and

solvation (see Methods section). By including this biasing term in

the energy function, we may use any of the standard functionalities

provided in Rosetta; inclusion of this term, meanwhile, will lead to

simultaneous optimization of both ‘‘pocket score’’ and the

traditional energy terms. In essence, the contribution from the

‘‘pocket’’ term serves as a proxy for the energy associated with

binding of some (unspecified) small molecule partner.

To test the hypothesis that pocket formation may be the limiting

determinant of druggability, we performed biased and unbiased

simulations on the unbound conformations of Bcl-XL, targeting

residues at the protein interaction site as well as at equivalent

randomly selected residues elsewhere on the protein surface.

Surface sites included in the random set were matched to those at

the protein interaction site on the basis of their secondary

structure, and further that a contacting pocket of equivalent size to

that of the protein interaction site (evaluated by Q-SiteFinder [19])

was present in the unbound conformation (see Text S1 and

Figure S3); further, the random sites were each at least 12 Å from

one another. Both backbone and sidechain degrees of freedom

were allowed to move during simulations (see Methods section).

The deep pocket volumes from each of 1,000 conformations

generated via each method are shown as cumulative histograms in

Figure 2A. Pockets at the protein interaction site (solid red lines)

form more often and are significantly larger than those formed

elsewhere on the protein surface (dashed black lines). The largest

pockets in the biased simulations are sampled with much higher

frequency than in the corresponding unbiased simulations

(Figure 2A), demonstrating that the biasing potential drives

sampling towards these conformations. These observations further

hold for each of the other six additional proteins comprising our

test set (Figures 2B–G), and also after inclusion of additional

random sites (Figure S4) or starting from the protein-bound

conformation (Figure S5).

To examine the physiological relevance of the conformations

generated in biased simulations, we compared their energies to

those obtained in equivalent unbiased simulations. For Bcl-XL, we

used Rosetta to evaluate the (unbiased) energy for each of 1000
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conformations generated from an unbiased simulation, a simula-

tion with the biasing term applied to either the protein interaction

site or a random surface residue, and equivalent simulations in

which the weight of the biasing term was increased tenfold. In all

cases we evaluated energies without contribution from the biasing

term; a histogram of these energies is shown in Figure 3A.

Conformations from the unbiased simulation (green solid line) have a

very similar distribution of energies as conformations from a

simulation in which the biasing potential was applied to a

randomly selected target residue (black dashed line); this is

unsurprising given that few of these conformations contain

pockets, implying that a similar ensemble of conformations are

sampled. Applying a stronger weight to the biasing potential using

the same randomly selected target residue (solid black line) leads to

conformations that are far less energetically favorable, indicating

that pocket opening to satisfy the biasing potential could not be

achieved without extensive energetic cost to the protein. In

contrast, applying the biasing potential to a residue at the protein

interaction site led to conformations that were only slightly higher

in energy (and with overlapping distributions) than those

conformations sampled in the unbiased simulation, for either

weight of the biasing potential (red lines). A scatterplot showing the

deep pocket volume for each of these conformations highlights the

fact that conformations containing large pockets are sampled with

the moderate biasing potential only if it is applied at the protein

interaction site (Figure 3B, cyan vs. red points). Application of the

stronger biasing potential to random (carefully matched) surface

sites leads to generations of low-energy conformations without

large pockets, and also pocket-containing conformations with

much higher energy (Figure 3B, blue points).

The same observations also hold for each of the other six

proteins comprising our test set (Figure S6, Table 1). Collec-

tively, these results demonstrate that pocket opening at the

druggable site can occur with little energetic cost to the protein,

while pocket opening elsewhere on the protein surface requires

that the protein adopt a highly unfavorable conformation.

It is notable that in each of these seven examples surface pockets

were identified at the protein interaction site. It is equally notable,

however, that similar surface pockets were not observed elsewhere

on the protein surface (Figure 2). This comparison highlights the

qualitative difference between the protein interaction site – already

demonstrated to be druggable in a practical sense for each of these

examples – and the remainder of the protein surface, at which

high-affinity interactions with small molecules have not been

observed.

Pocket shapes are encoded on the protein surface
The results presented above demonstrate that there is a natural

predisposition towards pocket formation in certain druggable

regions on the protein surface. We next asked whether these

preferred pocket-containing conformations dictate the range of

potential small-molecule inhibitors suitable for binding at this site.

Should this be the case, protein conformations generated using a

biasing potential to induce pocket formation should resemble

inhibitor-bound conformations more than conformations gener-

ated using an equivalent unbiased protocol.

Turning first to Bcl-XL, we aligned the lowest-energy confor-

mation produced from the biased simulations described earlier

Figure 2. Surface pockets emerge only at druggable sites.
Volumes of surface pockets are shown from conformations generated
with no biasing potential (left) and upon inclusion of a ‘‘pocket

opening’’ biasing potential (right) for each of the seven proteins that
comprise our test set. Surface pockets occur at druggable protein
interaction sites (solid red lines) more frequently than elsewhere on the
protein surface (dashed black lines). (A) Bcl-XL. (B) IL-2. (C) FKBP12. (D)
HPV E2. (E) ZipA. (F) MDM2. (G) BIR3 domain of XIAP.
doi:10.1371/journal.pcbi.1002951.g002

Druggability of Protein Interaction Sites
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(which were started from the unbound protein structure) to both

unbound and inhibitor-bound crystal structures (Figure 4A).

Direct superposition of the inhibitor from the bound structure

onto the unbound crystal structure reveals extensive steric clashes

(Figure 4B), highlighting the local protein conformational

changes that must take place in order for inhibitor binding to

occur. Remarkably, examination of the conformation from the

biased simulation shows that part of the protein surface has

adopted a shape highly complementary to the inhibitor

(Figure 4C, right side) – even though no information about

the identity of the inhibitor was included in the simulation that

produced this conformation. Further, this conformational change

occurred without direct involvement of the ‘‘target’’ residue at

which the biasing term was applied.

On the other hand, the conformation from the biased

simulation did not recapitulate the bound conformation exactly:

the latter contains an extension to the surface pocket (left side in

the orientation shown) to accommodate the ‘‘tail’’ of the

inhibitor (Figure 4D). Comparison of the protein backbone in

all three structures (Figure 4A) reveals the protein structural

reorganization required to accommodate this ‘‘tail’’: the helix

below the inhibitor (Figure 4A, foreground) unwinds on the

left side, and tightens on the right side (in the orientation shown).

Because the deep pocket volume is larger in the inhibitor-bound

crystal structure than in the conformation from the biased

simulation, we anticipate that sampling in these simulations was

insufficient to fully recapitulate this highly concerted conforma-

tional change.

The diversity of conformational changes associated with

inhibitor binding in different proteins is highlighted in Figure
S7. In IL-2, slight rearrangement of a helix (at top of the

orientation shown) allows a sidechain rotamer change that both

reveals the binding pocket and creates new interactions with

inhibitor shown (Figure S7A). In contrast FKBP12, HPV E2 and

ZipA each contain a pre-formed pocket on the unbound protein

surface that strongly complements the inhibitor, indicating that

inhibitor binding occurs primarily via a ‘‘lock-and-key’’ mecha-

nism in these cases (Figure S7B–D). Expansion of the ZipA

pocket observed in the biased simulations (Figure 2E) resulted

from sidechain rearrangement on the surface to the left side of the

binding site (in the orientation shown), without disrupting the pre-

ordered portions of the binding site. Nutlin binding to MDM2, on

the other hand, requires splaying apart of two surface helices to

create the binding pocket: this conformational change is dramat-

ically recapitulated in the lowest-energy individual conformation

from the biased simulations (Figure S7E). Finally, unlike these

previous examples showing modest conformational changes,

binding of a Smac-mimetic to the BIR3 domain of XIAP is

Figure 3. Energetic analysis of Bcl-XL pocket opening. (A)
Conformations generated without the use of a biasing potential (solid
green line) show a similar distribution of energies to those generated
with the biasing potential at a randomly selected target residue (dashed
black line); increasing the strength of the biasing potential here leads to
conformations with higher energies (solid black line). In contrast,
application of the biasing potential at the protein interaction site (red
lines) leads to conformations with a distribution of energies that
strongly overlaps with those energies of conformations sampled in the
unbiased simulations, suggesting that these conformations represent
low-energy states accessible to the unbound protein. (B) A scatterplot
showing the deep pocket volume for conformations generated with the
biasing potential applied to one of the random sites (moderate bias in
cyan, strong bias in blue) or to the protein interaction site (moderate bias
in red, strong bias in orange). Low-energy conformations containing
large pockets are sampled only if the biasing potential it is applied at
the protein interaction site; while large pockets are sampled using the
strong bias at random sites, these conformations have considerably
higher energy. All energies shown here were evaluated in the absence
of the biasing potential, for fair comparison.
doi:10.1371/journal.pcbi.1002951.g003

Figure 4. Representative conformations of Bcl-XL. An unbound
crystal structure (pink), an inhibitor-bound crystal structure (green, with
inhibitor shown in sticks), and a low-energy conformation generated
from the unbound crystal structure using the biasing potential (cyan,
with target residue in red) are shown. (A) The overall protein architecture
is preserved amongst all three; movement of the helix in the
foreground upon binding is not recapitulated in the pocket-opened
conformation. (B–D) The pocket revealed in this low-energy confor-
mation nonetheless strongly resembles the surface pocket in the bound
crystal structure, and even bears shape-complementarity to the
inhibitor. The identity of the inhibitor was not used in generating this
conformation, but was added retrospectively for visual comparison.
doi:10.1371/journal.pcbi.1002951.g004

Druggability of Protein Interaction Sites
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associated with extensive rearrangement of long surface loops

(Figure S7F).

To assess whether the protein conformations generated using

the biasing potential resemble inhibitor-bound conformations

more closely than conformations generated using an equivalent

unbiased protocol, we quantitatively compared the ensembles of

conformations produced by each method. We note that neither

method uses any knowledge of any particular inhibitor when

generating an ensemble of conformations. Therefore, rather than

report the protein RMSD in reference to one pre-selected bound

conformation we instead individually computed the interface

RMSD (iRMSD) relative to every available inhibitor-bound

crystal structure (see Text S1), and took the lowest of this set of

iRMSD values to reflect the suitability of this conformation for

binding some (known) unspecified inhibitor.

For each of the seven proteins in our test set described earlier,

we show the iRMSD for each member of the biased and unbiased

ensembles to its closest inhibitor-bound crystal structure

(Figure 5). We note that the iRMSD values of conformations

sampled vary across these seven different proteins; this stems from

the fact discussed earlier that in some cases the unbound starting

structure strongly resembles the inhibitor-bound structure

(FKBP12, HPV E2, ZipA), while in other cases a more extensive

conformational change accompanies binding (MDM2, XIAP)

(Figure S7). For reference, we also indicate the iRMSD of the

unbound starting structure relative to the closest and most distant

inhibitor-bound structures (Figure 5, dashed brown lines) and the

protein-bound structure relative to the closest and most distal

inhibitor-bound structures (Figure 5, dashed green lines).

Though there is overlap between the resulting distributions, for

every one of the seven proteins we examined the conformations

sampled in the biased simulations are closer to an inhibitor-bound

conformation than the conformations sampled in the correspond-

ing unbiased simulations. This observation applies not just to the

iRMSD of atoms directly involved in binding (Figure 5), but to

the backbone atoms of the corresponding residues as well (Figure
S8). Further, in five of the seven cases (Bcl-XL, IL-2, FKBP12,

ZipA, and XIAP) the conformations generated from the biased

simulations are closer than the starting unbound conformation to

an inhibitor-bound structure (Figure 5). Conformations sampled

in simulations of HPV E2 and MDM2 that moved further than the

unbound conformation from the inhibitor-bound structures may

be due to slight inaccuracies in the Rosetta energy function, or

alternatively may be sampling novel truly ‘‘druggable’’ conforma-

tions for which complementary inhibitors have not yet been

identified.

To further characterize the pockets generated using the biasing

potential, we evaluated the percentage of solvent accessible surface

area that is hydrophobic (hSASA) for each pocket (Figure S9).

While the hydrophobicity of the inhibitor-bound pockets vary

amongst the different protein test cases, in each case the pockets

generated using the biasing potential exhibit similar hydrophobic-

ity to the corresponding inhibitor-bound conformation. Like the

shape of these pockets, then, their hydrophobicity appears to be an

intrinsic property resulting from details of the surface geometry

and composition.

Collectively these results demonstrate that biasing simulations

towards conformations in which a surface pocket is present drives

the resulting ensemble towards the conformations observed in

inhibitor-bound crystal structures. Because no information about

the identity of any particular inhibitory compound was included in

the biasing potential, this suggests that the general shape (and

hydrophobicity) of surface pockets available to a potential inhibitor

is an inherent property of the druggable interface itself.

Druggability of survivin
The examples comprising our test set in the studies above were

selected on the basis of a known compound directly inhibiting a

protein interaction. For each of these cases, then, the druggable

site is coincident with the protein functional site. We next turned

to survivin, an example of a protein in which the two sites are non-

overlapping.

Survivin is among the most strongly tumor-specific proteins

known [35], is a notable signature of unfavorable disease outcome

[36], and has been well-validated as a therapeutic target using an

antisense oligonucleotide [37] and a transcriptional repressor

[38,39]. Despite this intense interest, however, no direct inhibitors

of survivin function have been identified. Survivin carries dual

functions which together explain its important role in cancer: it

serves as an inhibitor of apoptosis and is also required for cell

division [40]. The anti-apoptotic activity of survivin derives from

binding the Smac/DIABLO peptide via a BIR domain. While

small-molecule inhibitors of other Smac-binding BIR domains

have been identified [41–44] (we included the XIAP BIR domain

in the test set described in previous sections), efforts in this vein

using survivin have not yet proven fruitful [40,45]. Consistent with

a hypothesis that the peptide-binding surface of survivin may be

intrinsically undruggable, an SAR by NMR approach used by

Hajduk et al. found only a single probe that interacted with this

site (of 9,370 probes tested) – a full order of magnitude fewer than

the number of interacting probes found using proteins for which

potent inhibitors have been identified [14]. Intriguingly, this study

revealed a separate distal site (Figure 6A) at which 33 probe

Figure 5. Opening pockets shifts the conformational ensemble towards inhibitor-bound structures. Distributions of RMSD over
interface atoms (iRMSD) to the closest inhibitor-bound crystal structure for conformations generated with (red lines) or without (black lines) the
biasing potential. The iRMSDs from the unbound structure to the most and least similar inhibitor-bound crystal structures are also indicated (dashed
brown vertical lines). For all seven proteins comprising the test set, the biased simulations produced conformations closer to an inhibitor-bound
crystal structure than the unbiased simulations.
doi:10.1371/journal.pcbi.1002951.g005
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compounds bound, well within the frequency observed for

druggable sites on other proteins but not useful as a starting point

for modulating survivin function.

We carried out a series of biased simulations as described

earlier, using the unbound crystal structure of survivin as a starting

point. In agreement with results from SAR by NMR [14], we find

that pockets at the ‘‘undruggable’’ peptide-binding site of the BIR

domain do not form with any higher propensity than at randomly

selected equivalent surface sites (Figure 6B). This result is

particularly notable as it stands in contrast to our observations

from the XIAP BIR domain, in which surface pockets are formed

at the peptide-binding site (Figure 2G). Though beyond the scope

of the current work, we anticipate that further detailed studies may

reveal the precise origin of the differing propensity for binding

small-molecules exhibited by the peptide-binding groove of these

two highly similar BIR domains.

Though large surface pockets do not form at the peptide-

binding site of survivin, they do form readily at a specific alternate

site: the same distal surface identified by Hajduk et al. [14]

(Figure 6B, blue lines). Taken together, these studies of survivin

suggest that low-energy fluctuations that induce pocket formation

on the protein surface are indeed a primary determinant of

druggability at protein interaction sites rather than a signature of

the evolved protein-binding function of these sites.

Discussion

The results presented above support the hypothesis that the

conformational transitions that open pockets at a druggable site

occur with little energetic cost to the protein. This has two

important consequences.

First, pocket formation within the ensemble of physiological

protein fluctuations occurs only at a limited subset of surface sites.

Because pocket-containing conformations are rare, it is primarily

the lack of a suitable surface pocket – and not chemical

composition – that renders most protein surface sites undruggable.

The highly restricted druggability of protein surfaces supported by

both NMR [14] and crystallographic [15] observations that probe

molecules interact with a very limited subset of the protein surface.

Sites at which the unbound protein crystal structure includes a pre-

formed pocket (HPV E2, FKPB12, ZipA) typically exhibit only

minor conformational changes that change the size or shape of this

pocket, and are driven primarily by sidechain reorganization. In

contrast, for the examples in which the unbound protein crystal

structure does not have a pre-formed pocket or has only a small

surface pocket (XIAP, MDM2, Bcl-XL, IL-2) concerted motions

are needed that couple backbone conformational changes to the

sidechain reorganization that reveals the binding pocket. In both

cases, the biasing potential we describe here serves as a proxy for

the binding energy associated with some (unspecified) comple-

mentary compound, and thus drives sampling towards these

conformations.

Second, these results suggest that a small number of low-

resolution, low energy inhibitor shapes are encoded on the protein

surface through intrinsic structural and dynamic features of the

protein. We propose that low-energy fluctuations produce protein

conformations displaying one of these preferred shapes, at which

point a complementary small-molecule ligand may be accommo-

dated. The protein then responds to the particular steric and

chemical details of the ligand via subsequent smaller conforma-

tional changes, without changing the gross features of the pocket.

This model implies that exploring the pocket shapes may give

clues at low-resolution to the shapes of complementary ligands,

and may form the basis for a computational screening approach

that matches pocket shapes to potential inhibitory ligands.

As pointed out by Cheng and colleagues [46], pocket formation

is necessary but may not be sufficient for a protein surface to be

druggable: the curvature and hydrophobicity of the pocket are also

important. By applying their methodology to the pocket confor-

mations generated using the biasing potential described here, it

may be possible to filter for the most druggable conformations

from among these pocket-containing ensembles. These conforma-

tions may not necessarily correspond to the protein-bound

conformation, which has been used in some cases as a starting

point for mimicry by small-molecules [47]. Generating an

ensemble of druggable conformations for a given protein target

may prove valuable in identifying new inhibitory compounds, even

in cases where one or more inhibitors are already known. Rather

than aiming to identify additional inhibitors by analogy to these

known compounds, or even using the protein structure solved in

complex with one of these known compounds (or the natural

protein partner), matching directly against an ensemble of pocket-

containing conformations removes bias towards this parent

compound (or protein partner). We anticipate that the surface

pockets to which the protein is most predisposed, as revealed by

this approach and therefore identified without artifacts of

conformational changes in response to any particular binding

partner, may serve as an optimal starting point for computational

screening and may facilitate identification of chemotypes unrelated

to those of known inhibitors (‘‘scaffold hopping’’ [3,48]). These

new scaffolds may in turn yield potent novel small molecule

inhibitors through subsequent chemical elaboration.

In principle, fragment-based approaches allow multiple probe

molecules to be subsequently linked together to create a single

compound presenting these probe moieties in the appropriate

orientation [49]. Computational solvent mapping [27], while

suitable for assessing druggability in certain cases, may prove

limiting for early drug discovery because of its inability to explore

the concerted backbone motions necessary for thoroughly

sampling the ‘‘pocket ensemble’’. While FKBP sidechain motions

within 6 Å of the binding site are sufficient for recognizing small

probe molecules [49], the further necessity of backbone reorga-

nization in other cases described here (XIAP, MDM2, Bcl-XL, IL-

2) underscores the importance of backbone motions for confor-

mational fluctuations that reveal surface pockets. Exploring these

alternate conformations may further prove useful in guiding efforts

Figure 6. Distinguishing druggable from functional sites on
survivin. (A) The crystal structure of survivin, showing the protein
interaction site (red) and the distal druggable site identified by NMR
(blue) [14]. (B) Volumes of surface pockets are compared for
conformations generated with the biasing potential applied at random
surface residues (dashed black lines), applied at the protein interaction
site (dashed red lines), and applied at the distal druggable site (solid blue
lines). Pockets emerge at the druggable site but not elsewhere on the
protein surface.
doi:10.1371/journal.pcbi.1002951.g006
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to improve potency of known inhibitors, by identifying sites at

which substituents can make additional strong contacts with the

protein surface.

Finally, we note that the generality of our approach is conducive

to its large-scale application for comparing druggability across

many protein interaction sites. In the future, we expect this

approach may be used to address the outstanding question of

whether these few successful examples of small-molecules disrupt-

ing protein interaction sites are outliers, or whether they instead

represent the first step towards an important class of new tools for

therapeutic intervention.

Methods

Identifying pockets on protein surfaces
We implemented our modified version of the LIGSITEcs [28]

algorithm in the Rosetta software suite [34]. Briefly, a grid is

centered at the residue of interest on the protein surface and grid

points are marked as occupied by either protein (P) or solvent (S).

The algorithm performs linear searches in the X, Y and Z

directions as well as in each diagonal for ‘‘P-nS-P’’ events: cases

where a line no longer than 12 Å can be drawn between two

points on the protein surface that pass through only solvent,

establishing this solvent region as part of a surface pocket.

Subsequent additional criteria were used to eliminate spurious

definition of pockets and reduce the effect of grid-based artifacts

(described in Text S1). Adjoining grid points defined as ‘‘pocket’’

were clustered to determine the deep pocket volume of the largest

contiguous single pocket in contact with the target residue.

Simulation protocol
Simulations were carried out using the ‘‘relax’’ protocol [50] in

Rosetta, which incorporates both backbone and sidechain degrees

of freedom in a Monte Carlo search. To bias the simulations

towards pocket-containing conformations we added to the

standard energy function an additional energy term corresponding

to the current deep pocket volume multiplied by a proportionality

constant of 20.25 Rosetta energy units per Å3 (‘‘moderate’’ bias).

Simulations carried out with the ‘‘strong’’ bias used a proportion-

ality constant of 20.25 Rosetta energy units per Å3. Data for each

histogram was collected from 1,000 independent simulations. The

simulation protocol is described in complete detail in Text S1.

Supporting Information

Figure S1 Identifying pockets on protein surfaces
(complements Figure 1). A grid is centered at the residue of

interest on the protein surface (only partial grid is shown here).

Grid points are classified as either ‘‘protein’’ (grey background) or

‘‘solvent’’ (white background). Linear searches (red lines) are used to

identify and mark ‘‘protein-surface-protein’’ events (green gridpoints).

These are further classified based on degree of buried (light vs. dark

green) and adjoining grid points are clustered to yield discrete

‘‘pockets’’. Only a surface pocket in contact with the surface of the

‘‘target’’ residue (orange) contributes to the biasing potential.

(EPS)

Figure S2 Deep pocket volumes compared to Q-Site-
Finder pocket volumes (complements Figure 1). Deep

pocket volumes of surface pockets at protein interaction sites

harboring a bound inhibitor (red circles) and pockets found

elsewhere on the protein surface (black x’s) are plotted against the

corresponding pocket volumes identified by Q-SiteFinder, for each

of the sites used in Figure 1B. While the two are correlated, Q-

SiteFinder volumes are typically larger than the corresponding

deep pocket volumes.

(EPS)

Figure S3 Matching of random surface sites to protein
interaction sites (complements Figure 2). The distribution

of pocket volumes identified by Q-SiteFinder for the complete set

of random surface sites matched to the protein interaction sites on

the basis of burial and secondary structure is shown (black); the

corresponding pocket volumes for the protein interaction sites are

also shown (red arrows). In order to create a matched set, only

random sites with Q-SiteFinder pocket volumes greater than

100 Å3 were considered for Figures 2 and 3.

(EPS)

Figure S4 Surface pockets emerge only at druggable
sites, upon inclusion of additional random surface sites
(complements Figure 2). Pocket opening is not observed at

random surface sites upon inclusion of additional sites that were

previously excluded on the basis of Q-SiteFinder pocket volumes

less than 100 Å3 (dashed black lines). Symbols are as defined in

Figure 2. (A) Bcl-XL. (B) IL-2. (C) FKBP12. (D) HPV E2. (E)

ZipA. (F) MDM2. (G) BIR3 domain of XIAP.

(EPS)

Figure S5 Surface pockets emerge at druggable sites,
when starting from protein-bound conformations (com-
plements Figure 2). Simulations were carried out only applying

the biasing potential to the protein interaction site (red). With the

exception of XIAP, results are in agreement with simulations

started from the unbound protein structures (Figure 2). (A) Bcl-

XL. (B) IL-2. (C) FKBP12. (D) HPV E2. (E) ZipA. (F) MDM2. (G)

BIR3 domain of XIAP.

(EPS)

Figure S6 Energetic analysis of pocket opening for the
other members of our test set (complements Figure 3).
(A) Conformations generated using the biasing potential typically

have a distribution of energies that overlaps those generated with

the biasing potential, suggesting that these conformations

represent low-energy states accessible to the unbound protein.

(B) As with Bcl-xL, low-energy conformations containing large

pockets are not observed for the other members of our test set

unless the biasing potential is applied to the protein interaction

site. Symbols are as defined in Figure 3.

(TIF)

Figure S7 Representative conformations generated us-
ing the biasing potential (complements Figure 4). An

unbound crystal structure (pink), an inhibitor-bound crystal

structure (green, with inhibitor shown in sticks), and a low-energy

conformation generated from the unbound crystal structure using

the biasing potential (cyan, with target residue in red) are shown for

each of the proteins comprising our test set (except Bcl-XL, shown

in Figure 4). (A) IL-2. (B) FKBP12. (C) HPV E2. (D) ZipA. (E)

MDM2. (F) BIR3 domain of XIAP.

(TIF)

Figure S8 Opening pockets shifts the protein backbone
towards inhibitor-bound structures (complements
Figure 5). Distributions of backbone RMSD over interface

residues to the closest inhibitor-bound crystal structure for

conformations generated with (red lines) or without (black lines) the

biasing potential. The backbone RMSD over interface residues

from the unbound structure to the most and least similar inhibitor-

bound crystal structures are also indicated (dashed brown vertical lines).

(EPS)
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Figure S9 Hydrophobicity of pockets generated using
the biasing potential are similar to the corresponding
inhibitor-bound pockets (complements Figure 5). Distri-

butions of percentage hydrophobic solvent accessible surface area

(%hSASA) over interface atoms for conformations generated with

the biasing potential (red lines). The lowest and highest %hSASAs

from amongst all available inhibitor-bound crystal structures are

indicated (dashed green vertical lines). (A) Bcl-XL. (B) IL-2. (C)

FKBP12. (D) HPV E2. (E) ZipA. (F) MDM2. (G) BIR3 domain of

XIAP.

(EPS)

Text S1 Supplementary methods. This supporting text

contains a complete description of methodology used, including

PDB structures used in calculations. A description of pocket-

opened conformations for each protein in our test set is also

included in this text.

(DOC)
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