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Abstract

Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of
rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus
variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in
the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the
ecology of rabies transmission in Chile. Analyzing records from 1985–2011 at the Instituto de Salud Pública de Chile (ISP)
and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics
in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of
all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions
of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even
across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable
circumstances.
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Introduction

Rabies was known to humans as a disease as of about ,4000

years ago [1]. Although important advances have been made in

immunization and diagnosis, rabies is still considered a neglected

disease [2]. Rabies is a zoonosis: indeed, although all mammals

studied to date are susceptible to infection, major reservoirs that

maintain and transmit the virus in the long term are limited to

Carnivora and Chiroptera [2]. Rabies virus (RABV) is a

neurotropic RNA virus (family Rhabdoviridae, genus Lyssavirus),

including at least 14 species [3]. In the Americas, with generally

good control of rabid canines, bats are the main reservoirs of

RABV [4]. Rabies transmission from non-hematophagous bats

(mainly insectivores) to humans is considered an increasing risk in

urban and economically developed areas of Latin America [5],

while dog rabies has decreased dramatically in frequency, now

occurring only in specific areas of Latin America [6,7].

Viral ‘‘strains’’ are defined as virus populations maintained by a

particular reservoir host in a defined geographic region that can be

distinguished from other strains based on molecular and antigenic

characteristics [8]. RABV lineages generally show specificity to

particular bat hosts [9–11]. Antigenic typing depends on use of

monoclonal antibodies; their power depends on numbers of

monoclonal antibodies that bind consistently to antigenic sites that

are conserved in a viral strain [8,12]. Antigenic characterization is

used widely in rabies surveillance in Latin America [9], showing

differences among viruses in different host species and geographic

locations [13]. Tadarida brasiliensis, an important reservoir of rabies

in urban areas, maintains antigenic variant AgV9 in North

America, but AgV4 in South America [14]. Lasiurus cinereus differs,

carrying AgV6 across its entire geographic distribution [15]. Viral

specificity to these two host species has been confirmed with

molecular analyses [9,10,13]. These bat species presently consti-

tute the principal rabies reservoirs in Chile [16,17], but little is

known about roles of different hosts in their ecology and

distribution. T. brasiliensis inhabits sites with other species, roosting

in colonies over long periods; owing to anthropogenic perturba-

tion, this species is that which has seen greatest negative

population effects in Chile [18]. In contrast, L. cinereus avoids

urban areas, roost solitarily, and shows seasonal migrations [19].

Both species have broad geographic distributions across the

Americas.

Previous such geographic and environmental analyses of rabies

lineages have focused on RABV in terrestrial mammal hosts in

North America, and documented that rabies in raccoons (Procyon

lotor) is associated with low wetlands coverage, low elevation, low-

intensity residential land use, and absence of major roads, and that

rivers act as natural barriers [20,21].Several studies have explored

features of host-virus relationships of bat-borne rabies, based on

molecular genetic analyses [22–25]. However, in these key studies,

inferences about geographic pattern were made based on points

on an empty map, without reference to environmental drives.
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Hence, landscape- and niche-based approaches could offer a

valuable complement to conclusions generated in molecular

genetic studies, evaluating effects of environment and landscape

on rabies host and virus distributions, but such methods must be

explored and validated first.

To test these approaches, we address a series of questions

regarding rabies transmission ecology in Chile. (i) Do rabies

lineages have coarse-grained ecological ‘‘signatures’’ (i.e., Grin-

nellian niches) that can be characterized robustly? (ii) Do macro-

ecological and macro-geographic linkages exist among viruses and

hosts? Finally, (iii) do different bat-borne rabies lineages have

distinct ecological signatures? Answering these questions will help

to illuminate details of virus-host dynamics in bat rabies

transmission cycles in South America.

Methods

In recent years, several innovations have converged in making

possible improved understanding of environmental conditions

Author Summary

The situation of rabies in America has been changing:
rabies in dogs has decreased considerably, but bats are
increasingly documented as natural reservoirs of other
rabies variants. A significant gap exists in understanding of
bat-borne rabies in Latin America. We identified bat
species known to be connected with enzootic rabies with
different antigenic variants in Chile, and compiled large-
scale data sets by which to test for ecological niche
differences among virus lineages and bat hosts. Our results
begin to characterize important ecological factors affect-
ing rabies distribution; modeling rabies in Chile allows
comparisons across different latitudes and diverse land-
scapes. We found that rabies virus strains are found in
similar environments, regardless of the bat host involved.
This research improves understanding of bat-borne rabies
dynamics, and important step towards preventing and
controlling this and other emergent diseases linked to
bats.

Figure 1. Occurrences in study area. Rabies occurrences across the study area in central Chile: AgV4 (red stars) in Tadarida brasiliensis, and AgV6
(blue squares) in Lasiurus spp.
doi:10.1371/journal.pntd.0002577.g001
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Figure 2. Bats submitted by municipality since 1985 to 2011. Sampling intensity of Tadarida brasiliensis bats by municipality, used as the
sampling bias grid in Maxent analyses.
doi:10.1371/journal.pntd.0002577.g002
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required by organisms to maintain populations, including rich data

streams by which to characterize environments, powerful inferential

tools, and increasingly comprehensive conceptual frameworks [26].

These developments allow researchers to characterize relationships

between species’ occurrences and environmental variables, as an

approach to estimating dimensions of species’ ecological niches and,

by extrapolation, their geographic distributional potential [26]. Via

such ‘‘ecological niche modeling’’ approaches, various pathogens,

vectors, and reservoirs have been analyzed to understand how

environmental conditions relate to disease transmission [27]. Niches

seem generally to show relatively slow evolutionary change [28],

another element in making these analyses feasible. Hence, in this

study, we use ecological niche modeling to assess the degree to which

distribution of host and virus lineages are associated consistently and

predictably with particular sets of environmental conditions—i.e.,

that they respond to a consistent and predictable ecological niche.

Study area
Delimitation of the geographic area of analysis is a crucial issue

in generating robust niche models, with significant effects on

model results [29]. The study area must be established a priori

based on (1) the dispersal potential of the species involved, (2) the

sampling available by which to characterize distributions, and (3)

the objectives of the study [29]. We delimited our study area to the

area between 228.0u and 243.5us latitude in Chile, correspond-

ing both to the enzootic area in recent decades [16] and to the

area sampled by the Chilean Ministerio de Salud (Ministry of

Health; Fig. 1).

Input data
Another crucial aspect in niche model development is the set of

environmental variables used to characterize the environmental

space in which the species is distributed [30]. We used

Figure 3. Partial ROC results in model evaluations. Evaluation of niche models for AgV4 rabies in central Chile, using different calibration areas
(quintiles and latitude subsetting), and comparing models developed with (Bias) and without (No bias) consideration of sampling bias.
doi:10.1371/journal.pntd.0002577.g003
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information on land-surface reflectance from remote sensing, in

light of its high information content, fine spatial resolution, and

minimal need for interpolation and inference [31]. Environmen-

tal variation can be summarized using multiple seasonal values of

the Normalized Difference Vegetation Index (NDVI), which has

values correlating strongly with photosynthetic mass and primary

productivity [31,32]. Numerous previous studies have shown the

importance of such vegetation indices as indicators of ecological

and geographic dimensions [31], including in development of

robust ecological niche models [33,34]. We used NDVI images

available as monthly maximum raster data layers for 1992, 1993,

and 1995, which correspond to the middle years of the study

period, at a spatial resolution of 0.01u60.01u; to standardize these

variables and reduce dimensionality, we generated principal

components across all of the monthly data sets using ArcGIS 9.3

(ESRI, Redlands, CA, USA). Principal components analysis used

the original NDVI layers to generate 27 new, uncorrelated

components: we used the first 10 components in model

development (i.e., the initial 10 axes that best characterized the

major dimensions of the cloud of points), as they explained

99.99% of overall variance.

To characterize spatial patterns of bat-rabies occurrence across

Chile, we only digitized bat surveillance data from the Instituto de

Salud Pública de Chile (ISP), for 1985–2011, corresponding to the

major enzootic period for bat rabies in Chile (Fig. 1). Host

mammal occurrences were obtained from both active and passive

surveillance programs, with hosts tested for rabies and identified at

ISP. Coordinates of bat occurrences (both species, regardless of

rabies status) were derived from geographic centroids of munic-

ipalities, as they were submitted by municipal agencies for testing.

Further occurrences were obtained through data mediated by the

Global Biodiversity Information Facility (GBIF; see Acknowledg-

ments for full list of institutions), with georeferencing derived from

original data records.

Virus occurrences were obtained in the form more precise

georeferences derived from postal addresses of sites of origin of

rabies-positive bats of both species, although the vast majority

(78%) came from Tadarida. These cases were diagnosed by ISP

Figure 4. Distribution map of rabies and its hosts. Maps of potential distribution of hosts (blue), rabies strains (red), and overlap of host-rabies
distribution (purple).
doi:10.1371/journal.pntd.0002577.g004
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using direct inmunofluorescence (IFD), to confirm virus presence,

and monoclonal antibodies to identify virus variants [35].

Model calibration
To calibrate niche models, we used a maximum entropy

algorithm, considering its predictive power and broad acceptance

in the scientific community [36]. The algorithm uses the

information theory concept of maximum entropy to optimize

estimates of suitability across complex environmental spaces. The

maximum entropy approach seeks to estimate the probability of

suitability through finding the probability distribution closest to

uniform, subject to certain restrictions; in our case, the restrictions

are environmental conditions associated with known occurrences

of the species in question [37].

In Chile active surveillance is initiated after a positive bat is

reported from passive surveillance. ISP samples originated from

passive surveillance [16,17] associated with human settlements,

without anything close to uniform geographic coverage. We

incorporated sampling bias across the study area in model

calibration because spatial and environmental biases in data

collection can cause biases in model results [38]. Maxent can use a

sampling bias distribution (s in Phillips et al., 2009) to establish

areas from which to focus extraction of background data with

which to calibrate models [38]. We thus developed a sampling bias

surface for T. brasiliensis based on all of the passive surveillance

data, using overall numbers of samples submitted to ISP per

municipality (municipalities with no samples set to no data, and

thus excluded from background sampling), regardless of rabies-

positive status, on the final raster, we added 1 to all pixels to avoid

zero values, according to Maxent requirements. This surface

appropriately characterized the sampling that underlies the virus-

positive records that drove calibration of the niche models. We

calibrated models with and without this bias file to assess the

degree to which sampling effort affects results.

We calibrated models using Maxent version 3.3.3.k. Specific

options were a bootstrap subsampling with 1000 replicates,

random seed, and the median of replicates as output. We

converted raw Maxent output to binary maps considering an

error rate of E = 10% among occurrence points, and thus used the

highest threshold that included 90% of training presence points

Figure 5. Histogram of D similarity values among random replicates in testing niche identity between rabies AgV4 and AgV6. Note
that the observed value is well above the critical value in testing our null hypothesis of niche identity.
doi:10.1371/journal.pntd.0002577.g005

Table 1. Results of niche identity tests assessing similarity between occurrences of Tadarida brasiliensis and Lasiurus cinereus and
rabies strains AgV4 and AgV6.

I D

Obs 5% 95% P value Obs 5% 95% P value

V6/V4 0.862 0.588 0.909 P$0.05 0.747 0.346 0.831 P$0.05

Lc/V6 0.891 0.815 0.934 P$0.05 0.834 0.669 0.908 P$0.05

Tb/V4 0.892 0.839 0.974 P$0.05 0.888 0.707 0.967 P$0.05

Tb/Lc 0.836 0.827 0.938 P$0.05 0.757 0.709 0.925 P$0.05

doi:10.1371/journal.pntd.0002577.t001
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[26], a modification of the least training presence threshold idea

[39]. The error rate (E) is the proportion of the occurrence data

expected to place the species erroneously under inappropriate

conditions, as a consequence of incorrect species identifications,

errors in georeferencing, and errors in environmental data, among

other factors, and is estimated via exploration and error-checking

of the occurrence data [40]. We visualized ecological niche models

in environmental spaces based on plots of NDVI values in winter

and summer from across the study area, comparing this

environmental ‘background’ with corresponding values associated

with known occurrences of bat species and rabies variant.

Model evaluation
Niche models must be evaluated to validate their predictive

power, before any use or interpretation [26]. We evaluated the

predictive ability of models for T. brasiliensis; however, sample sizes

for L. cinereus were too small and too clumped spatially to permit

detailed evaluations. Two different spatial subsetting schemes were

explored, taking advantage of the roughly linear shape of Chile.

First, we subset data latitudinally by quintiles of frequency,

dividing occurrences into five subsets, and using subsets 1, 3, and 5

for model calibration and subsets 2 and 4 for evaluation [26].

Second, we divided the study area into five equal-width latitudinal

bands, again using subsets 1, 3, and 5 for model calibration and 2

and 4 for evaluation. In the first scheme, subsets had equal sample

sizes, whereas in the second scheme, subsets had similar areal

dimensions (Fig. S1 for supporting information).

For evaluating models, we avoided traditional receiver operat-

ing characteristic (ROC) area under the curve (AUC) approaches,

considering that AUC tests require presence and absence data for

proper implementation [41], and in light of recent critiques

[40,41]. Rather, models were first evaluated using areas and points

predicted as suitable and unsuitable after thresholding (based on

E = 10%) using a cumulative binomial probability distribution

[26]. Second, models (without thresholding) were evaluated using

partial ROC approaches [42,43], evaluating the predictive ability

of niche models considering only omission errors and proportional

areas predicted as suitable, and only over a range of omission

errors deemed acceptable in light of error characteristics of the

input data (here again we used E = 10%, and thus allowed up to

10% omission in our partial ROC calculations). In partial ROC,

the area under the observed line of model performance is related

to the area under the line of random expectations, and a ratio is

calculated. Bootstrap manipulations (1000 total), in which 50% of

evaluation data are resampled with replacement and AUC ratios

recalculated, are used to test the hypothesis that model perfor-

mance is better than random expectations. When $95% of

bootstrap-replicate AUC ratios were .1, we rejected the null

hypothesis of performance no better than random expectations

[42]. Partial ROC software is available for free download in

http://kuscholarworks.ku.edu/dspace/handle/1808/10059

Niche model comparisons
Finally, to compare niche models between virus strains and bat

species, we used niche identity tests to determine whether two

niche models are indistinguishable from one other [44]. Identity

tests have the advantage of restricting comparisons to the same set

of points, a feature that is particularly relevant for our occurrence

data, which did not come randomly from across the entire

landscape. We calculated observed Hellinger’s modified (I) and

Schoener’s (D) distances between niche models (thresholded using

minimum training presence approaches), and compared them to a

null distribution of comparable distances derived from 1000

replicate random subdivisions of the overall pool of occurrence

data between the two species, maintaining observed sample sizes.

We used ENMTools (version 1.3; http://enmtools.com) for these

comparisons [45]. We evaluated whether niche characteristics

were identical between rabies lineages (AgV6 versus AgV4),

between the host species and associated viruses, and between the

two host species. In all comparisons, our critical value was the 5th

percentile of similarity (i.e., low end), as we were seeking evidence

of niche differentiation [45].

Results

Ecological signatures
In all, 26,323 bat samples from active and passive surveillance

were submitted to ISP during 1985–2011, a data set that was

captured digitally as part of this study. However, many records

corresponded to the same county centroids, such that sample sizes

were nowhere near the number of samples: in all, to model hosts,

we found 70 unique occurrences for L. cinereus (9% from GBIF;

91% from ISP) and 238 for T. brasiliensis (3% from GBIF and 97%

from ISP). For rabies samples, we obtained 910 unique

Figure 6. Host and virus distributions in environmental spaces. Distribution of hosts (unfilled points) and corresponding rabies variants
(black points) across the environments available in our study area (background; gray points), for Tadarida brasiliensis (left) and Lasiurus cinereus
(right). Environmental variation was visualized as bivariate comparison of NDVI values for January (summer) and July (winter) in the southern
hemisphere.
doi:10.1371/journal.pntd.0002577.g006
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coordinates for rabies AgV4 (bat rabies-positive associated with

T. brasiliensis) and 52 for rabies AgV6 (associated with Lasiurus spp.;

Fig. 1); sample sizes are larger in this case because georeferencing

was to street addresses, rather than just to county centroid.

Sampling intensity for T. brasiliensis varied 0–1178 samples

submitted per municipality (Fig. 2), while that for L. cinereus varied

0–164; with only 64 of the 301 counties in the study area

submitting L. cinereus samples. Niche models, whether considering

sampling bias or not, all performed significantly better than

random expectations, with partial ROC AUC ratios associated

with our niche models were .1 (Fig. 3). However, considering that

models controlling for sampling bias generated predictions with

smaller suitable areas, we prefer to use these models in further

steps. For example, quintile subsetting considering sampling bias

had less area predicted (35.2% of the study area) than comparable

models without considering sampling bias (38.0% of the study

area). Bias control also resulted in lower variance in AUC ratios in

the partial ROC analyses (Fig. 3). With this general confirmation

of predictive power, we proceeded to build ecological niche

models for each species (Fig. 4) for interpretation.

Ecological linkages and differences between viruses and
hosts

None of the six identity tests comparing niches between the two

host species, between each host species and its associated virus

linage, and between the two virus lineages, was able to reject the

null hypothesis of niche ‘‘identity’’ (Table 1). Figure 5 shows the

latter comparison graphically: observed similarity fell well above

the critical value in all comparisons. In sum, at least across central

Chile, the two bat species and their associated viruses share very

similar ecological niches, at least in the coarse-grained environ-

mental dimensions explored in this study.

The two bat species had broad distributions in environmental

space (Fig. 6). Rabies infections were found across the great bulk of

the environmental distribution of each of the hosts. However, both

hosts appear to avoid areas presenting extremely low NDVI values

in summer and winter, corresponding to the high Andes regions.

Discussion

In Chile, rabies has been reported as far back as 1879 [46]. All

data have been centralized in the Sección de Rabia, Instituto de

Salud Pública, since 1929 [17]. Via effective monitoring, mass dog

vaccination, elimination of biting stray dogs, improvement of

diagnosis quality, and post-exposure vaccination in humans, urban

canine rabies was eradicated as of about 1990 [47,48]. However,

over the same period, the zoonotic cycle, wherein the main

reservoirs are bats, has been increasing in importance [16]. Hence,

in Chile, reports suggest rabies in a process of re-emergence in the

wildlife cycle [16,17,49].

Our large-scale data set, broad latitudinal gradient, and

dramatic diversity of landscapes and biomes across the study area

allowed a robust test and validation in the use of niche modeling in

understanding the spatial epidemiology of bat-related rabies, as

required when modeling diseases [50]. Answering our first

question, it was possible to characterize ecological niches of rabies

viruses and their hosts consistently and with good predictive

power. In the broadest sense, niche models for the two bat species

confirmed the obvious: the high Andes Mountains in the east and

the Pacific Ocean in the west are natural barriers [18], while the

Atacama Desert to the north and cold regions in the south

delimitated our study region naturally [29]. With this definition of

relevant areas, we derived clear predictions of the geographic

distribution of both bat species (Fig. 4), wherein T. brasiliensis may

be somewhat more limited in its use of cold and high zones in the

Andes and the northern deserts than L. cinereus (Fig. 4). The broad

suitable areas for both species corroborate the ecological plasticity

known in bats [51] and migratory behavior reported in the

northern hemisphere for both T. brasiliensis and L. cinereus.

Niche models provided a first view of rabies distributions in

geographic and environmental spaces [27]. Our ecological niche

models for rabies lineages using fine-resolution satellite imagery

identified putative potential areas of rabies distribution, albeit

under stable characterizations of environments averaged across

several years of conditions; clearly, more dynamic characteriza-

tions of rabies distributions merit future evaluation. Although we

assembled large data sets that are reasonably comprehensive for

Chile, we hasten to point out potential gaps and failings in our

data and analysis. A first such caution is that of the uneven spatial

and environmental distribution of rabies in Chile: although

samples were submitted from across the county, rabies locations

were mainly from passive surveillance, producing three clusters of

rabies cases in the main cities of central Chile (Santiago,

Valparaiso, Concepción; Fig. 1), biases that we took into account

in our analyses. Using the bias file helped to reduce variance in

model performance, allowing clearer discrimination of perfor-

mance between models (Fig. 3). We used sampling bias summaries

for T. brasiliensis to consider the availability, quantity, and quality

of data available for this species; for Lasiurus, parallel data were not

available in sufficient quantity, reflecting the relative rarity of

sample submissions for that species. Incorporating information on

sampling intensity in niche modeling for public health applications

is an issue that merits further exploration, particularly considering

that the more biased the data are, the more benefit that derives

from use of sampling bias surfaces. Our improvements in model

performance with bias surfaces were analogous to previous results

in biodiversity studies [38]. As result, our models provide at least a

preliminary assessment of risk in several areas that currently

represent gaps in surveillance [52].

Ecological niche models have seen detailed performance testing

in challenges centered on estimating niches and predicting species’

distributions, showing impressive success even in spite of spatial

sampling biases (e.g., sampling along roads) [53,54]. Problems

arise when sampling is biased with respect to environments,

however, since models based on such sampling will be effectively

blinded to potential for occurrence in unsampled environments

[53,55]. An additional source of potential problems is the precision

of georeferencing that was possible for these data, considering that

reports of disease occurrence may simply provide the patient’s

address, but not necessarily the site of infection, which is more

relevant in spatial epidemiology [56]. In this study, such problems

introduce a basement level of spatial accuracy in model

predictions, such that finest-resolution phenomena may not be

‘‘visible’’ in results.

In relation to our second question, it is important to note that,

although viruses and hosts share ecological niche characteristics,

the virus does not necessarily occupy the full host distribution

(Fig. 4); the geographic bias, however, at least within our study

area, appears to be without consistent environmental correlates.

Our methodology corroborates the rabies-bat relationship that has

heretofore gone untested at landscape scales, and our results

suggest that niche modeling offers a useful tool for mapping

disease occurrences and potential for occurrence in public health

[27]. With respect to our third question, niche identity tests

between hosts and viral variants indicated that niches of all actors

in the Chilean bat-rabies system are similar in environmental

requirements; that is, we were unable to reject the null hypothesis

that niche models of host species are not different from niches of

Ecology and Geography of Bat Rabies in Chile
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associated virus strains, and indeed that the two host species and

the two virus strains do not differ from one another either.

Currently, little is known about the ecology and transmission of

rabies virus among bats, but phylogenetic evidence gives strong

indications of host specificity [9,13]. In this sense, not only do

rabies virus variants appear to track the ecology of their respective

hosts, but also the pairs of viruses and hosts do not differ from one

another. A recent report offers some corroboration of this

assumption via molecular analysis: a rabies strain specific to

Lasiurus spp. bats was found in T. brasiliensis in Chile [13], which

indicates cross-species spillover transmission of virus lineages in

taxonomically distant bat species under natural conditions. These

results support the idea that rabies viruses may infect hosts without

environmental bias (see [44], for parallel results).

Restating, the bat species and rabies lineages evaluated appear

to share very similar portions of environmental space, even if this

result is not manifested as complete overlap in geographic space

(Fig. 4), perhaps because different geographic distributions do not

necessarily reflect niche differences [28]. This result allows a view

into how rabies host ecology influences virus biology, and suggests

that taxonomic differences in hosts or viruses do not necessarily

translate into ecological differences. Our results and those of

similar studies [51,57] may help to clarify the ecology of bat rabies

lineages in other hosts and geographic regions. Potential distribu-

tion maps of hosts and their viruses can be an important tool by

which to understand potential transmission areas for rabies,

although these approaches remain little explored [51]. Bat-borne

rabies has seen some events of cross-species transmission in

zoonotic cycles in Chile, with AgV 4 (related to T. brasiliensis) found

in Lasiurus spp. and AgV 6 (related to Lasiurus spp.) found in T.

brasiliensis [10,13]. Accidental hosts have also been reported in

recent years: for instance, mortality of dogs, cats, farm animals,

and a human caused by rabies related to T. brasiliensis [10,13]. Via

this scenario, control of stray dogs and feral cats as well as

vaccination campaigns must be implemented with priority in those

areas where host and virus distribution match (Fig. 4).

In conclusion, one should take care to avoid the logical, scale-

related error that can be termed the ‘‘Beale fallacy.’’ Beale et al.

[58], analyzed distributions of European birds with respect to

climate, and concluded that their distributions were not limited by

climate. While this conclusion was, to some degree true, it was

completely dependent on the particular context of Western

Europe and relatively broadly-distributed bird species; a parallel

analysis in a different context found abundant climatic determi-

nation of ranges [59]. In this sense, our conclusion about no niche

difference among our bat species and rabies lineages must be

considered as context-dependent [59]: analyses over broader

regions may well detect clear and significant differences. Our

results show two viral lineages as sharing similar environmental

signatures with two bat host species, regardless of antigenic

characteristics, known associations, and phylogenetic position.

Recent years have seen important advances in molecular

dimensions of studies of rabies, but few have explored how

regional landscapes affect (or not) distributions and dynamics of

rabies in zoonotic cycles [20,21]. In light of the results reported

herein, the spatial epidemiology and ecology of zoonotic bat rabies

should see further exploration.

Supporting Information

Figure S1 Distributions of calibration and evaluation areas,

based on latitude (left), and based on quintiles of frequency for

model evaluation.
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