Newly Developed Piperidinyl Sulfamides as Tyrosyl-DNA Phosphodiesterase 1 (Tdp 1) Inhibitors, and Study of Anticancer Activity of Piperidinyl Sulfamides Derivatives and Seven-Membered Cyclic Sulfamide Analogs Using the National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screen

Jung Ho Jun

Submitted to the Department of Chemistry and the Faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements of the degree of Doctor of Philosophy

Paul R. Hanson, Chair

Sanjay V. Malhotra, co-advisor

Richard S. Givens
\longrightarrow Jon Tunge

Thomas E. Prisinzano

Minae Mure

10/31/2013
Date Defended

Thesis Committee for Jung Ho Jun certifies that this is the approved version of the following thesis:

Newly Developed Piperidinyl Sulfamides as Tyrosyl-DNA Phosphodiesterase 1 (Tdp 1) Inhibitors, and Study of Anticancer Activity of Piperidinyl Sulfamides Derivatives and Seven-Membered Cyclic Sulfamide Analogs Using the National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screen

Paul R. Hanson, Chair

Sanjay V. Malhotra, co-advisor

Richard S. Givens

Jon Tunge

Thomas E. Prisinzano

Minae Mure

10/31/2013
Date Defended

Abstract
Jung Ho Jun, Ph. D
Department of Chemistry, October 2013
University of Kansas

Sulfur containing compounds have become increasingly important in the development of biological agents for pharmaceutical and industrial use. Cyclic sulfamides, in particular, have been found to be useful as cancer, HIV protease inhibitors and other therapeutic treatments. As the need for new and improved inhibitors is warranted by the serious cancer disease, the search for new synthetic pathways to access novel sulfamides is ongoing. To this end, the work discussed herein focuses on the synthesis of newly developed sulfamides utilizing the reductive amination and Mitsunobu reaction to generate novel chiral amino ester containing sulfamide compounds. These compounds are being screened for their biological activities as Tyrosyl-DNA phosphodiesterase 1 (Tdp 1) inhibitors and anti-cancer drugs. Initially, reductive amination, CSI coupling, and Mitsunobu reaction were employed to generate piperidinyl sulfamides, and these compounds were screened for Tdp1 inhibition. These compounds were submitted to Dr. Pomier’s group at NIH to carry out the gel study to select active compounds. We also checked the binding effect through the protein docking study. In addition, these sulfamide compounds were screened from NCI 60-cancer cell lines to check the bioactivity and in vitro cytotoxicity evaluation. To understand anti-cancer activity of cyclic sulfamides, symmetric and unsymmetric seven-membered sulfamides compounds were tested in 60 cancer cell line from the National Cancer Institute. These compounds were made when I studied for the Master degree at the University of Kansas. RCM was employed to generate symmetric seven-membered cyclic sulfamides similar in structure to known active HIV protease inhibitor DMP 323.

Functionalization of these compounds employing "robust S-linchpins" in conjunction with RCM yields an array of new S-heterocycles. Further work in sulfamides employed a combination of RCM with different coupling routes to generate unsymmetric seven-membered cyclic sulfamides with varied substitution in their P1/P1' and P2/P2' periphery in attempts to broaden the scope of this chemistry and to generate new biologically active compounds.

To my friend and wife To my love

JungRim Moon

My soul mate and intimate prayer

To my family with love

My father and mother
My daughter, Talia Jun
My sister's family

Acknowledgements

First of all, I would like to thank the Lord for guiding my way, and my eternal friend, lovely wife and soul mate, Jungrim Moon. As I always mentioned, you are a precious gift from God. You always give me lots of ideas of how to endure torrential life and go straight toward our promised future with God. You have shown your love and support to me every single day and every moment. I sincerely appreciate your prayer that you always hope my life goes well. I love you and will love you forever.

My daughter, Talia. You are the greatest gift and an angel for me and your mom from the Lord. I still remember the first day when your mom gave birth to you. I enjoyed holding you in my arm as my first and only daughter. You were so cute and pretty!!! When you held my finger with your hand for the first time, I cried with joy and grace. The very first day of your walking, your mommy and daddy were so excited and proud of you. Now you are already the first grade student. Talia, I pray to God that you always enjoy your life and journey, and be in his graceful guidance.

My family, father, mother, my younger sister's family, and my father-in-law family. All of you are the Lord's greatest gift to me. I am entirely blessed to have you always praying on my behalf. Dad, you are my hero and master of my adventurous sailing. Whenever I needed your wisdom and experience, you always constantly encouraged and supported me. Dad, I will never forget memories of us climbing the mountains together every New Year’s Day. Mom, thank you for always supporting my efforts and for being my best friend. You have been a major part of my life for so long. I will pray for your health and pleasure. My younger sister, Jungrim Jun, you are my lovely friend and I hope you are always happy with your son, Jinho. Without your thoughtful consideration of my life, it would have been impossible to achieve this goal. Jinho, you will be remembered always as my cute nephew and I want you to grow like Joseph with BIG DREAM! My mother-in-law and father-inlaw, thank you for your continuous prayer for my family. My wife's sister family, Misuk and Jaesung. I won't forget all of the memories that we had last summer. It was really great time with you.

Paul, it is a great honor to have been a member of your group at KU. It is really hard to say how much I appreciate your endless support for everything. I have enjoyed the past four years at KU very much and five years as an out-of state student. Well, it is hard to count how many years I have been studied as your student. I still remember that you always give us small gifts such as balloons, screwdrivers, stirring bars, etc. that bring joy to us every time. You are a great chemist and you advised me with all stimulating knowledge of chemistry. You always suggest thinking on the lighter side that I really appreciate. I thank you for every little but important thing you have done for me. You are a truly selfless, gifted advisor who cares of his group members like they are his own kids.

Yumi nuna ("nuna" means older sister in Korean)! I thank you all of your support and advise. Without your help, I couldn't even start my American life in the very beginning of study. I am very curious why I feel this way, but as I call you "nuna", I feel sometimes Paul is my brother-in-law or BIG Brother! Thank you so much for being a group MOM!! We really appreciate your endless support and love to all group members. Paul and Yumi nuna!! I will pray for you and your family.

To the rest of my committee: I would like to thank Dr. Richard Givens, Dr. Jon Tunge, Dr. Minae Mure, and Dr. Thomas Prisinzano for your guidance in my career, and your lesson in Wednesday Night Problem Sets. Professor Givens, I really enjoyed to read your warm and sincere e-mails.

Sanjay (a.k.a. S. V. Malhotra), you are my co-advisor and manager. I enjoyed many events and projects with you as your group member at SAIC-Frederick. Thank you for discussing with me many times about my Ph.D. project and I learned a lot about managing and networking skills from you. I also appreciate your investment in my career.

Many thanks to all of the other professors who have contributed to my intellectual and personal development: Dr. Robert Carlson, Dr. Helena, Malinakova, Dr. David Benson, Dr. Jeffrey Aube, Dr. Andrew Borovik, and Dr. Brian Blagg. I thank you all.

I want to thank all of Hanson group members who are in my memory. Don, Matt, Joel, Joe, Andy, Poon, Rusty, Shubashish, Mianji, Punitha, Alan, Steve, Maria, Josh, Thiwanka, and so on. I really miss the fun we had and lots of memories with you guys!! I do not think I will ever have an experience as enjoyable as I had working with you guys. I hope to see you all at Paul's $60^{\text {th }}$ Birthday Party!!!! (It will come very soon).

Vineet, my previous colleague at SAIC-Frederick. I enjoyed every moment last five years with you as LSC group member. I have many memories with you from setting our lab to the renovation and more. I hope we keep in touch and I will be watching your career from afar. You are my good friend!

Many current Hanson group members. Even if we never work together in a lab, I feel like we've been worked altogether for a long time. Naeem, Pradip, Qin, Saqib, Joanna, Jana, Soma, Rambabu, Salim, Kyu Ok, Susanthi, Moon Young, and more. Thank you for listening my Skype- presentation at group meeting and reading my thesis. Kyu Ok, I will continuously watch your next steps as a young chemist. Naeem, I appreciate your time and effort to set up seminar schedules for me. Moon Young, I appreciate your technical support for each time. Guys! Remember this. One day you will move on leaving DOOMSDAY behind forever and ever. The day will come, the sun will rise, and we'll be fine!

Finally, I would like to thank Dr. Changkiu Lee and Dr. Insook Han-Lee, my former advisors and organic chemistry professors at the Kangwon National University in Korea. Your enthusiasm for organic chemistry encouraged many students including me to step up to higher field and to study abroad to explore new and advanced academic area. You introduced me a new life view to plan and help to educate next generation. I am forever grateful for your commitment to me. I hope you continue to harvest a greater research result every year.

Table of Contents

Title Page i
Acceptance page ii
Abstract iii
Dedication v
Acknowledgments vii
Table of Contents X
Thesis Explanation xiii
Abbreviations xiv
Chapter 1 Biologically Active Sulfamides and Synthetic Approaches to Sulfamides 1
1.1. Introduction 2
1.2. Methods for generation of acyclic sulfamides 6
1.3. Methods to generate cyclic sulfamide 17
1.4. Sulfamide catalysts 30
1.4.1. Hydroaminoalkylation and hydroamination 31
1.4.2. Aldol reaction 32
1.4.3. Conjugate addition 33
1.4.4. Michael addition 35
1.4.5. Mitsunobu-like coupling 37
1.4.6. Utilization of cyclic sulfamide as chiral auxiliaries 39
1.5. Conclusion 41
1.6. Reference 43
Chapter 2 Newly Developed Piperidinyl Sulfamides as Tyrosyl-DNA phosphodiesterase 1 (Tdp 1) Inhibitors 57
2.1. Abstract 58
2.2. Introduction 58
2.3. Topoisomerase I (Top1) and Tyrosyl-DNA phosphodiesterase 1 (Tdp1) 59
2.4. Chemistry 64
2.4.1. Initial Gel Study 67
2.4.2. Protein docking Study 68
2.4.3. Synthesis of Piperidinyl Sulfamides 70
2.5. Biology 74
2.5.1. Expression and Purification of Tdp1 74
2.5.2. Tdp1 Gel-Based Assay 75
2.6. Molecular Modeling of Piperidinyl Sulfamide Derivatives 76
2.6.1. Preparation of ligand structures 76
2.6.2. Molecular Docking 77
2.7. Conclusion 77
2.8. Reference 78
Chapter $3 \quad$ Study of Anticancer Activity of Piperidinyl Sulfamides Derivatives Using the USA National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screening 84
3.1. Introduction 85
3.2. NCI 60 Cell Line Screening 86
3.2.1. In vitro anticancer activity 89
3.2.2. Five dose assay 94
3.3. Conclusion 107
3.4. References 107
Chapter $4 \quad$ Study of Anticancer Activity of Seven-membered Cyclic Sulfamide Analogs Using the USA National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screening 109
4.1. Introduction 110
4.2. Summary of the synthesis of cyclic sulfamide compounds 113
4.3. Anticancer drug discovery 60 cell line screening at the National Cancer Institute (NCI) 122
4.3.1. One dose assay 122
4.3.2. Five dose assay 131
4.4. Conclusion 145
4.5. References 146
Chapter 5 Experimental Data 153
5.1. General Methods 154
5.2. Experimental Procedure and data: Chapter 2 155
5.3. Appendix A: Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR's 203
5.4. Appendix B: One and five dose experimental data from 60 cell line - Tdp1 related compounds 239
5.5. Appendix C: One and five dose experimental data from 60 cell line - Cyclic sulfamide compounds 262
5.6. References 307

Thesis Explanation:

This thesis is separated into three major parts and is set up to be easily perused by the interested reader.

Chapter 1 consists of an introduction of biologically active sulfamides and synthetic approaches to sulfamides.

Chapter 2 contains the synthesis of newly developed piperidinyl sulfamides as Tyrosyl-DNA phosphodiesterase 1 (Tdp 1) Inhibitors.

Chapter 3 is the study of anticancer activity of piperidinyl sulfamides derivatives using the National Cancer Institute 60 human cancer cell line (NCI 60) screening.

Chapter 4 is discussion about the anticancer activity of seven-membered cyclic sulfamide analogs using the Nnational Cancer Institute 60 human cancer cell line (NCI 60) Screening.

Chapter 5 is the experimental section consisting of an explanation of all synthetic methods and selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds that have been synthesized. In spectral data for pertinent new compounds is reported. This section also contains the results of one and five dose experimental data from NCI 60 cell line.

For the purpose of simplicity, Grubbs $1^{\text {st }}$ generation catalyst and $2^{\text {nd }}$ generation catalyst have been designated I and II, and refer to the structures listed below:

Abbreviations:

AIDS	Acquired Immune Deficiency Syndrome
Ala	Alanine
Bn	Benzyl
Boc	tert-butoxy carbonyl
$n-\mathrm{BuLi}$	n-butyl lithium
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	methylene chloride
DCM	methylene chloride
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	cesium carbonate
CSI	chlorosulfonyl isocyanate
Cat-I	phenyl methylene bis(tricyclohexylphosphine) ruthenium dichloride
Cat-II	tricyclohexylphosphine [1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazole-2-ylidene][benzylidine]ruthenium(IV) dichloride
DEAD	diethylazodicarboxylate
DIAD	diisopropylazodicarboxylate
DMSO	dimethyl sulfoxide
DMF	dimethyl formamide
EDC	N-(3-dimethylaminopropyl)- N '-ethylcarbodiimide
FAB-MS	Fast Atom Bombardment-Mass Spectrometry
HIV	Human Immunodeficiency Virus
HRMS	High Resolution Mass Spectrometry
Hz	Hertz
$\mathrm{K}_{2} \mathrm{CO}_{3}$	potassium carbonate
LAH	lithium aluminum hydride
LiAlH_{4}	lithium aluminum hydride
m-CPBA	meta-chloro perbenzoic acid
MeCN	acetonitrile

$\mathbf{M H z}$	Megahertz
NOE	nuclear overhauser enhancement
NMO	4-methylmorpholine N-oxide
NMR	Nuclear Magnetic Resonance
$\mathbf{P h C H}_{3}$	toluene
$\mathbf{P h C l}$	chlorobenzene
$\mathbf{P h H}$	benzene
ppm	parts per million
PR	protease
RCM	ring-closing metathesis
${ }^{t}$-Bu	tert-butyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	Thin layer chromatography
TMSI	1-(trimethylsily)imidazole

CHAPTER 1

Introduction:

Biologically Active Sulfamides and Synthetic Approaches to Sulfamides

1.1. Introduction

Over the past decade, the sulfamide $\left(\mathrm{R}_{2} \mathrm{NSO}_{2} \mathrm{NR}_{2}\right)$ functionality has found extensive use in medicinal chemistry for the development of novel small molecule therapeutic agents and high affinity protein ligands. ${ }^{1,2}$ The synthesis of the first sulfamide was reported in 1892 by Traube, who prepared it from sulfuryl chloride and gaseous ammonia. ${ }^{3}$

The utility of sulfamides can be attributed to the ability to variably substitute with up to four different substituents, which are distributed on the two nitrogen atoms, thus offering diversity. Moreover, the sulfamide functional group can also act as a useful biosteric replacement for sulfonamide, sulfamate, urea, carbamate, ketoamide, ester, and amide functionalities when incorporated into putative pharmaceutical agents, as it has the potential to construct several electrostatic interactions with protein and other targets. ${ }^{4}$

Notably, numerous compounds have been reported as marketed and investigational drugs in which the free or substituted sulfamide moiety plays a key role in dictating potent biological activity (Figure 1.1). Doripenem (1.1), structurally related to penicillin, is an ultra-broad spectrum injectable antibiotic that was recently approved by the Food and Drug Administration (FDA) for the treatment of complicated intra-abdominal infections and complicated urinary tract infections. ${ }^{5}$ It is currently on market by Johnson \& Johnson and is a beta-lactam that belongs to the subgroup of carbapenems. Initially, it was launched in 2005 by the Shionogi Company of Japan under the brand name Finibax. Quinagolide (Norprolac, 1.2), is a selective, dopamine receptor agonist that is used for the treatment of elevated levels of peptide hormone prolactin. ${ }^{6}$ JNJ-26990990 (1.3), a primary sulfamide used for the treatment of epileptic seizures is reported to have entered phase II clinical trials as a broad-spectrum anticonvulsant drug. ${ }^{7}$ Macitentan (1.4), has currently entered phase III human clinical trials for pulmonary arterial hypertension. Famotidine (1.5), is a histamine-2 (H2) blocker, which is now on the market for the treatment of ulcers in the stomach.

JNJ-26990990 (1.3)
(Johnson \& Johnson)
Quinagolide (1.2)
(Ferring Pharmaceuticals/Novartis)

entan (1.4)
Famotidine (1.5)
(Actelion)
(Johnson \& Johnson)

Figure 1.1. Examples of sulfamide-containing drugs.
Interestingly, sulfamides have also seen widespread utilization in early, and late-stage, drug discovery efforts in several therapeutic areas, such as glaucoma, cancer, obesity, epilepsy and other neurological disorders. ${ }^{8}$ In particular, the search for therapeutics for the treatment of cancer remains an ongoing endeavor with a World Health Organization (WHO) ${ }^{9}$ survey revealing that approximately 7.6 million people worldwide died (around 13% of all deaths) from cancer in 2008.

In this regard, several acyclic sulfamides have emerged as potential cancer drugs and are shown in Figure 1.2. Compound $\mathbf{1 . 8}$ has undergone clinical investigation at Merck as an orally dosed c-Met (Mesenchymal epithelial transition factor, tyrosine kinase receptor) inhibitor which inhibits the expression of hepatocyte growth factor (HGF, scatter factor). ${ }^{10,1 \mathrm{la}}$ Aberrant activation of c-Met can increase the tumorigenicity and metastatic potential of tumor cells, so it is hypothesized that the inhibition of c-Met could suppress tumor aggressiveness and decrease the lethal disruptions to embryogenesis. ${ }^{11}$ Recently, kinesin spindle protein (KSP) has been the focus of intense interest as a novel biological target for anticancer therapy by GlaxoSmithKline. ${ }^{12}$ Further, biphenyl sulfamide 1.9 was found to exhibit potent inhibitory activity against kinesin spindle protein (KSP) with in vitro anti-proliferative activity against
human cells with mutant KSP (HCT116 D130V). ${ }^{11}$ Sulfamide compound $\mathbf{1 . 1 0}$ was rationally designed and tested for the steroid inhibition of glucose 6-phosphate dehydrogenase (G6PD) in HEK293T cells, with good activity, and was retained with this sulfamide compound. ${ }^{13}$ Moreover, a series of sulfamidocyclopropanecarboxylates $\mathbf{1 . 1 1}$ were discovered as potent, highly selective and orally bioavailable aggrecanase inhibitors in 2011. ${ }^{14}$ Aggrecanases are considered as possible drug targets for the treatment of osteoarthritis, a degenerative joint disease. While other potent MMP compounds bear a hydroxamate zinc-binding group that tend to lack metabolic stability, ${ }^{15}$ and inhibit other MMPs such as MMP-3, MMP-9, and MMP-13 in broad range selectivity panel, $\mathbf{1 . 1 1}$ has a carboxylate zinc-binding group which has good oral bioavailability and was identified as highly selective aggrecanase-2 inhibitor. It is widely admitted that a diversity of unacceptable hostile events, such as musculoskeletal disorder, that have been

1.6, Carbonic anhydrase-II (CA II) Inhibitor $\mathrm{Ki}=25-650 \mathrm{mM}$
(Johnson \& Johnson)

1.9, Kinesin spindle protein (KSP) inhibitor HCT116D130V IC $50=5.4 \mathrm{nM}$ (GlaxoSmithKline)

1.7, g-Secretase inhibitor $\mathrm{IC}_{50}=0.15 \pm 0.07 \mathrm{nM}$ (Merck)
1.8, MK-2461, c-Met inhibitor $\mathrm{c}-$ Met $\mathrm{IC}_{50}=2 \mathrm{nM}$ (Merck)

1.10, Glucose 6-Phosphate Dehydrogenase HEK293T $\mathrm{IC}_{50}=9.2 \mathrm{mM}$
(University of Manchester)

1.11, Aggrecanase Inhibitor

Agg2 $\mathrm{IC}_{50}=8.4 \mathrm{nM}$ (Japan Tobacco Inc)

Figure 1.2. Biologically active acyclic sulfamide compounds in early- and late-stage drugdiscovery.
clinically perceived with the use of broad spectrum MMP inhibitors arose from a lack of selectivity, and hence the identification of highly selective MMP inhibitors is greatly desired.

Cyclic sulfamides are an important class of compounds and can be found in a number of pharmaceutically useful compounds. Notably, cyclic sulfamides have been reported to be general templates suitable for the design of inhibitors against a variety of biological targets including HIV, serine proteases, γ-secretase as shown in Figure 1.3. Cyclic sulfamide compound 1.11 was developed by Merck as a γ-secretase inhibitor ${ }^{16}$ as alternative motifs to the acyclic sulfonamide derivatives reported in 2005 for inhibiting γ-secretase. ${ }^{17}$ Compound $\mathbf{1 . 1 2}$ is a potent and orally-bioavailable Factor Xa inhibitor. ${ }^{18}$ Factor Xa (FXa) is a serine protease that plays a critical role in the sequence of blood coagulation cascade by catalyzing the proteolytic conversion of prothrombin to active thrombin. Compound $\mathbf{1 . 1 3}$ was discovered as a potent inhibitor of Norwalk virus for viral gastroenteritis, and displayed enhanced binding, increased aqueous solubility, and better bioavailability. ${ }^{19}$ Fused cyclic sulfamide compound $\mathbf{1 . 1 4}$

1.11, γ-Secretase inhibitor $\mathrm{IC}_{50}=0.4 \mathrm{nM}$ (Merck)

1.13, Norwalk virus inhibitor $\mathrm{EC}_{50}=4 \mu \mathrm{M}$ (Wichita State University)

1.14, γ-Secretase inhibitor $\mathrm{C}_{50}=0.04(\pm 0.01) \mathrm{nM}$ (Merck)

1.12, Factor Xa inhibitor
$\mathrm{IC}_{50}=0.4 \mathrm{nM}$
(Yamanouchi Pharmaceutical Co., Ltd)

1.15, Escherichia coli TEM
$\mathrm{IC}_{50}=0.01 \mu \mathrm{~g} / \mathrm{mL}$
(Korea Institute of Science and Technology)

Figure 1.3. Representative examples of cyclic sulfamide compounds in clinical discovery.
represents yet another example of γ-secretase inhibitors containing the sulfamide moiety and was developed by Merck for the treatment of Alzheimer's disease (AD). ${ }^{20}$ The Korean Institute of Science and Technology (KIST) has reported the development of carbapenem compounds
comprising a pendant cyclic sulfamide such as in 1.15, which was found to exhibit potent antibacterial activity. ${ }^{21}$

1.2. Methods for generation of acyclic sulfamides

The significance of the sulfamide functional group is increasingly growing in bioactive small molecule, medicinal and supramolecular chemistry, yet surprisingly few selective synthetic methods are available for its elaboration. ${ }^{22,23}$ In this section, several selected general as well as efficient procedures are introduced for the generation of acyclic symmetric and asymmetric sulfamides.

Leschinsky and co-workers have reported the construction of acyclic, non-symmetric substituted sulfamides as shown in Scheme 1.1. Thus, sequential treatment of primary or secondary amines with chlorosulfonic acid and PCl_{5} provides the substituted chlorosulfonamides 1.16. ${ }^{24}$ Treatment of the chlorosulfonamide with a second amine furnishes the desired di-, tri- or tetra-substituted sulfamides $1.17 .{ }^{25}$

Scheme 1.1.

Application of DABCO-bis(sulfur dioxide) [DABSO] as a convenient source of sulfur dioxide was reported for the preparation of sulfonamides and sulfamides (Scheme 1.2). ${ }^{26}$ DABSO was conveniently prepared from the direct combination of DABCO and SO_{2} in quantitative yield, and was reported to be a bench-stable solid reagent. Treatment of two equivalents of DABSO with anilines and iodine allowed for the preparation of N, N^{\prime} ' diarylsulfamide derivatives, in moderate yields. ${ }^{27}$

Scheme 1.2. Preparation of symmetric sulfamide using DABSO.

Nonhazardous sulfamide derivatives such as 1.19 have also been reported for the synthesis of non-symmetric sulfamide $\mathbf{1 . 2 0}$ (Scheme 1.3). ${ }^{28}$ Chlorosulfonylisocyanate (CSI) was treated with 2-bromo or 2-chloroethanol to furnish the N-sulfamoyloxazolidinoes 1.18. Addition of primary amine to the in situ generated chlorosulfonyloxazolidinone 1.18, in the presence of $\mathrm{Et}_{3} \mathrm{~N}$, afforded asymmetric intermediate $\mathbf{1 . 1 9}$ via the intermolecular $\mathrm{S}_{\mathrm{N}} 2$ displacement of the halide. A second addition of primary amine to the oxazolidinone 1.19 , with base in $\mathrm{CH}_{3} \mathrm{CN}$, afforded a variety of sulfamides $\mathbf{1 . 2 0}$ in good yields as listed in the Table within Scheme 1.3. It is noteworthy that the first amine addition has to be a primary amine, vide infra.

entry	R_{1}	R_{2}	R_{3}	R4	Yield (\%)
1	p-MePh	H	$i-\mathrm{Pr}$	H	74
2	$p-\mathrm{MeSO}_{2} \mathrm{Ph}$	H	$i-\mathrm{Pr}$	H	85
3	p-MeSPh	H	$i-\mathrm{Pr}$	H	62
4	p - ClPh	H	$i-\mathrm{Pr}$	H	84
5	Ph	H	$i-\mathrm{Pr}$	H	87
6	$p-\mathrm{MeSO}_{2} \mathrm{Ph}$	H	p-MePh	H	68
7	$i-\mathrm{Pr}$	H	t-amyl	H	73

Scheme 1.3. Preparation of ozaxolidinone and non-symmetric sulfamide.

The postulated intermediate for the trans-sulfamoylation reaction is likely to involve the N-sulfamoylamine species 1.19d (Scheme 1.4). This intermediate is formed via the deprotonation of the N-sulfamoyloxazolidinones 1.19 to generate species 1.19a, which is stabilized through either mesomeric forms 1.19b or 1.19c depending on the substituents present. Presumably, only the form $\mathbf{1 . 1 9 b}$ will lead to the formation of the sulfamide species via 1.19d.

Scheme 1.4. Resonance effect involved in the formation of 1.19d.

In 2003, Burns and coworkers studied "primary amine effects" of the aforementioned trans-sulfamoylation reaction ${ }^{29}$ and reported that when a secondary cyclic amine such as 1,2,3,4tetrahydroisoquinalone was attached to a sulfamide, the oxazolidin-2-one group was not displaced by a primary amine, but rather resulted in ring-opening of the oxazolidinone ring to furnish sulfamide 1.22 (Scheme 1.5).

Scheme 1.5.

Burns and coworkers further investigated alternatives to the oxazolidin-2-one moiety for the preparation of non-symmetric sulfamides. ${ }^{29}$ Immidazolium salts are known to be a superior leaving groups for the synthesis of sulfamides. ${ }^{30}$ In this regard, N, N '-sulfuryldiimidazole 1.23 was prepared by reacting an excess of imidazole with sulfuryl chloride. ${ }^{31}$ The N, N^{\prime} sulfuryldiimidazoles were then allowed to undergo sequential and selective monoalkylation, followed by subsequent displacement for the preparation of a variety of sulfonylureas, including both sterically-crowded and electronically-deactivated amines. Thus, alkylation of $\mathbf{1 . 2 3}$ was carried out utilizing MeOTf in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulting in salt 1.24. Precipitation and filtration of the imidazolium group of salt 1.24 , and treatment with an amine generated the corresponding imidazoylsulfonylurea 1.25. A second addition of MeOTf in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ generated salt 1.26, which was heated to $80^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of a primary or secondary amine, to convert the triflate salt 1.26 to the desired sulfamide product 1.27 in moderate to good yield (Scheme 1.6).

Scheme 1.6. Immidazolium salts for the synthesis of a non-symmetric sulfamides.

In 2001, Montero and coworkers reported the introduction of a new method for the synthesis of non-symmetric sulfamides utilizing Burgess-type reagents (Scheme 1.7). ${ }^{32}$ Treatment of chlorosulfonyl isocyanate (CSI) with tert- BuOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded N -(tert-butoxycarbonyl)- N-[4-(dimethylazaniumylidene)-1,4-dihydropyridin-1-ylsulfonyl]-azanide 1.28 as a colorless crystal, which was non-moisture sensitive and stable at ambient temperature in good yield and which exists in the zwitterionic form similar to the Burgess reagent. ${ }^{33}$

Scheme 1.7. Sulfamoylating agent: N-(tert-Butoxycarbonyl)-N-[4-(dimethylazaniumylidene)-1,4-dihydropyridin-1-ylsulfonyl] azanide.

Similarly, K. C. Nicolaou and coworkers explored the synthesis of non-symmetric, linear sulfamides from primary and secondary amines (Scheme 1.8). ${ }^{34}$ A Burgess reagent could be generated appropriately by the treatment of chlorosulfonyl isocyanate with an alcohol of interest and exposing to $\mathrm{Et}_{3} \mathrm{~N}$ at $0{ }^{\circ} \mathrm{C}$. Reactions of the Burgess reagent with starting amines furnished several linear sulfamides in high yields. This Burgess reagent provides a mild alternative, avoiding direct use of toxic and corrosive agents which contain traces of acid, such as HCl , making them incapable of associating with acid-sensitive functionality (Entry 3). ${ }^{35}$

Scheme 1.8. Synthesis of linear sulfamides.

Entry

Catechol-derived cyclic sulfates $\mathbf{1 . 2 9}$ have been established as a useful intermediate in the synthesis of sulfamide compounds. ${ }^{36}$ Until the mid-1990s, the procedures for the preparation of catechol sulfates suffered from low yield and lack of general applicability. ${ }^{37}$ In 1994, the Tickner group reported a high yielding and efficient synthesis of catechol cyclic sulfate (Scheme $1.9),{ }^{38}$ which is readily prepared by reacting the catechol component with $1,1^{\prime}$-sulfurylimidazole in the presence of KF in DMF at $85-90^{\circ} \mathrm{C}$. There are several advantages to this method. Firstly, the use of 1,1 '-sulfurylimidazole avoids the competing ring chlorination which often occurs when sulfuryl chloride is employed. Secondly, since this reaction is carried out under neutral conditions the potential oxidation of the starting catechol is circumvented. Potassium fluoride serves as an effective non-nucleophilic base which is tolerated by most functionalities.

Scheme 1.9. Synthesis of catechol sulfate and asymmetric linear sulfamides.

Fettes and co-workers have reported the preparation of 4-nitrophenyl chlorosulfates for the preparation of non-symmetric sulfamides (Scheme 1.10). ${ }^{39}$ Addition of sulfuryl chloride to a solution of 4-nitrophenol $\mathbf{1 . 3 0}$ and pyridine in $\mathrm{Et}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$ for 4 h afforded 4-nitrophenyl chlorosulfate $\mathbf{1 . 3 1}$ in 83% overall yield as a stable crystalline solid. $\mathbf{1 . 3 1}$ was then reacted with amine 1.32 at room temperature or $-78{ }^{\circ} \mathrm{C}$ to afford the symmetrical sulfamide $\mathbf{1 . 3 3}$ as the major product and 4-nitrophenyl sulfamate $\mathbf{1 . 3 5}$ as a minor product, with none of the sulfamoyl chloride 1.34 being isolated. The mechanism of nucleophilic substitution reaction of $\mathbf{1 . 3 1}$ includes nucleophilic attack at sulfur with either S-Cl or S-OAr bond scission with the S-OAr bond cleavage being the major reaction pathway. ${ }^{40}$ The authors note that if the major pathway is the S-OAr bond cleavage, the more active sulfamoyl chloride $\mathbf{1 . 3 4}$ is generated in situ and reacts with the amine 1.32 to give the unwanted dimerized compound $\mathbf{1 . 3 3}$. Thus the less active 4-nitrophenyl sulfamate $\mathbf{1 . 3 5}$ is probably derived via the $\mathrm{S}-\mathrm{Cl}$ bond cleavage reaction pathway. To avoid the generation of unwanted symmetrical dimer 1.33, an excess of 4-nitrophenol and $\mathrm{Et}_{3} \mathrm{~N}$ were added and 4-nitrophenyl sulfamoyl chloride 1.34 could be prepared in 68% yield. 4-nitrophenyl sulfamide 1.35 was then treated with secondary amine 1.36 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford asymmetric sulfamide 1.37 in 83% yield.

Scheme 1.10.

Recently, the Lubell group has reported an effective method to generate N-aminosulfamide using p-nitrophenylsulfamidate esters (Scheme 1.11). ${ }^{41}$ This method entailed the reaction of 4-nitrophenol 1.38, sulfuryl chloride, and pyridine in $\mathrm{Et}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}^{39,42}$ to afford the desired product as a crystalline and relatively stable solid that can be stored for several month under an inert gas. It must be noted that in order to prepare sulfamate $\mathbf{1 . 4 0}, 2$ equiv. of 4-nitrophenol was required to avoid the formation of symmetric sulfamide as mentioned before. It is also noteworthy that microwave irradiation improved the formation of N -aminosulfamides 1.41 to more than 80% yield as compared to 36% yield with conventional heating at reflux for 24 h.

Scheme 1.11. Synthesis of p-nitrophenylsulfamidate esters and N-aminosulfamides.

The Bolli group reported a new method to generate a sulfamide compound ACT-064992, (macitentan, 1.50) as an orally active, potent dual endothelin receptor antagonist for regulating blood pressure (Scheme 1.12). ${ }^{43}$ The procedure starts by reacting chlorosulfonyl isocyanate (CSI) with t - BuOH to provide the Boc-protected amino-sulfonyl chloride 1.42 , which was subsequently added to n-propylamine to furnish 1.43 . Boc-deprotection using HCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution afforded 1.44. Generation of potassium salt 1.45 and addition of pyrimidine $\mathbf{1 . 4 6}$ allowed the preparation of the desired sulfamide 1.47 via a nucleophilic aromatic substitution $\left(\mathrm{S}_{\mathrm{N}} \mathrm{Ar}\right)$. Introduction of an ethylene glycol side-chain via a second $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction furnished the corresponding alcohol 1.48. Attachment of 2-chloropyrimidine $\mathbf{1 . 4 9}$ afforded the final product $\mathbf{1 . 5 0}$ in 88% yield.

Scheme 1.12. Synthesis of sulfamide potassium salt and general route for the preparation of ACT-064992 (1.50).

In 2001, Montero reported an efficient N-alkylation method for the generation of unsymmetric sulfamide using an alkyl bromide and a Mitsunobu betaine (Scheme 1.13). ${ }^{44}$ In this reaction, the Mitsunobu betaine intermediate 1.51 is produced in situ from PPh_{3} and an azodicarboxylate, which performs the role of a base to deprotonate the sulfamoyl carbamate NH . This reaction was employed in alkylation as well as glycosylation reactions utilizing two redox couples; (a) triphenylphosphine (TPP) and diisopropylazodicarboxylate (DIAD) and (b) tri- n butylphosphine (TBP) and 1,1'-(azodicarbonyl)-dipiperidine (ADDP), and the results are highlighted in Table 1.1.

Scheme 1.13. N-alkylation method reported by Montero. ${ }^{44}$

Table 1.1. Reaction of $\mathbf{1 . 5 2}$ with alkyl bromide under Mitsunobu conditions using two different redox couples.

entry	$\mathrm{R}-\mathrm{Br}$	TPP/DIAD	TBP/ADDP
1		37\%	86\%
2	$\sim^{B r}$	41\%	88\%
3		37\%	60\%
4		20\%	45\%
5	$\mathrm{NC} \sim \mathrm{Br}$	32\%	56\%
6		$\begin{gathered} 35 \% \\ \beta \text {-anomer } \end{gathered}$	$\begin{gathered} 60 \% \\ \beta \text {-anomer } \end{gathered}$
7		$\begin{gathered} 23 \% \\ \beta \text {-anomer } \end{gathered}$	$\begin{gathered} 44 \% \\ \beta \text {-anomer } \end{gathered}$
8		$\begin{gathered} 10 \% \\ \beta \text {-anomer } \end{gathered}$	$\begin{gathered} 45 \% \\ \beta \text {-anomer } \end{gathered}$
9		21\% β-anomer	$\begin{gathered} 42 \% \\ \beta \text {-anomer } \end{gathered}$
10		$\begin{gathered} 20 \% \\ \beta \text {-anomer } \end{gathered}$	40% β-anomer

The Vidal group reported the generation of mono- and di-substituted acyclic sulfamides using solid-support resins and sulfamoylating agent 1.28 (Scheme 1.14). ${ }^{45}$ Montero and coworkers have described the preparation of a sulfamoylating agent 1.28 and its reactivity with various amines (vide infra). ${ }^{32}$ Vidal and coworkers employed the Burgess Type reagent 1.28
with polystyrene (PS)-supported benzylamine amine $\mathbf{1 . 5 5}$ to prepare Boc-substituted sulfamide 1.56 by the reaction of excess of sulfamoylating agent 1.28 (3 equiv.) and PS-benzyl amine $\mathbf{1 . 5 5}$ in DMF- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. Utilization of TFA allowed simultaneous deprotection and cleavage from the resin to provide sulfamide 1.57. On the other hand, Mitsunobu alkylation of $\mathbf{1 . 5 6}$ and subsequent cleavage in TFA- $\mathrm{CHCl}_{3}-\mathrm{H}_{2} \mathrm{O}$ (50:50:1) afforded the non-symmetric sulfamide 1.59.

Scheme 1.14. Synthesis of acyclic sulfamides using solid-support resins and 1.28.

1.3 Methods to generate cyclic sulfamide

Exploratory studies related to the design and synthesis of functionalized cyclic sulfamides have been achieved for the invention of pharmaceutical compounds such as HIV protease inhibitors, virus inhibitor, and diabetes treatment. ${ }^{46}$ In this section, various methods for the generation of cyclic sulfamides are summarized.

In 2000, Hanson and coworkers reported new methods employing ring-closing metathesis (RCM) to generate C_{2}-symmetric sulfamides $\mathbf{1 . 6 0}$ and $\mathbf{1 . 6 1}$ and the asymmetric cyclic sulfamide
1.62 starting from from sulfuryl chloride $\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right)$ and chlorosulfonyl isocyanate $\left(\mathrm{OCNSO}_{2} \mathrm{Cl}\right)$
(Scheme 1.15). ${ }^{47}$

Scheme 1.15.

The synthetic route to the amino acid-derived C_{2}-symmetric sulfamides is outlined in Scheme 1.16. Condensation of amino ester with sulfuryl chloride generates sulfamide $\mathbf{1 . 6 3}$ in $70-85 \%$ yield. Diallylation to the sulfamide, and RCM using the first-generation Grubbs catalyst (G-I), ${ }^{48}$ subsequently afforded the C_{2}-symmetric cyclic sulfamide $\mathbf{1 . 6 0}$ in excellent yields.

Scheme 1.16. Synthesis of C_{2}-symmetric cyclic sulfamide.
Next a route to afford the substituted, C_{2}-symmetric sulfamide $\mathbf{1 . 6 1}$ is described in Scheme 1.17. In this method, amine $\mathbf{1 . 6 4}$ obtained from amino ester via Swern oxidation and Wittig reaction, was coupled with sulfuryl chloride to furnish sulfamide $\mathbf{1 . 6 5}$ in $\mathbf{7 1 \%}$ yield.

Subsequent RCM using $15 \mathrm{~mol} \%$ of the G-I catalyst generated the desired sulfamide $\mathbf{1 . 6 1}$ in 69% yield.

Scheme 1.17. Synthesis of C_{2}-symmetric cyclic sulfamide.

The Hanson group also developed a strategy to the unsymmetric cyclic sulfamide utilizing CSI chemistry as outlined in Scheme 1.18. Starting substrate $\mathbf{1 . 6 6}$ was obtained by reacting chlorosulfonyl isocyanate (CSI), $t-\mathrm{BuOH}$ and an amino ester, and was subsequently utilized in a regioselective Mitsunobu reaction and deprotection to afford unsymmetric intermediate 1.68. Subsequent diallylation and RCM produced the unsymmetric cyclic sulfamide $\mathbf{1 . 6 2}$ in excellent yield.

Scheme 1.18. Synthesis of unsymmetric cyclic sulfamide.

In 2003, Hanson and coworkers reported the synthesis of tri- and tetra-substituted nonsymmetric cyclic sulfamide compounds (Scheme 1.19). ${ }^{49}$ In this strategy they employed the Mitsunobu reaction to install a stereogenic center using the chiral, non-racemic secondary allyl alcohol 1.69 to produce sulfamide $\mathbf{1 . 7 0}$ in good yield. Allylation followed by RCM using the
second-generation Grubbs catalyst (G-II), ${ }^{48}$ and Boc-deprotection produced cyclic sulfamide 1.72. Benzylation afforded the desired trisubstituted cyclic sulfamide $\mathbf{1 . 7 3}$ in excellent yield.

Scheme 1.19. Synthesis of tri- and tetra-substituted non-symmetric cyclic sulfamide compounds.
In 2009 , Oh and co-workers reported the preparation of substituted cyclic sulfamides $\mathbf{1 . 7 5}$ via the condensation of the corresponding diamines 1.74 with sulfamide in refluxing pyridine (Scheme 1.20). ${ }^{21,50}$ Their method was then employed for the preparation of 1β methylcarbapenems 1.78 which possess excellent in vitro antibacterial activity.

Scheme 1.20. Synthesis of a substituted cyclic sulfamide.

Ahn and co-workers have described a component coupling reaction for the synthesis cyclic sulfamide 1.81 as shown in Scheme $1.21 .^{46 \mathrm{~b}}$ Intermediate $\mathbf{1 . 7 9}$ was synthesized via sequential addition of t - BuOH and the corresponding mustards to chlorosulfonyl isocyanate (CSI) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The N-Boc cyclic sulfamide $\mathbf{1 . 8 0}$ was then obtained simply by the treatment of the intermediate 1.79 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMSO.

Scheme 1.21. Synthesis of cyclic sulfamide from chlorosulfonyl isocyanate (CSI).

In 2005, Chemler and coworkers reported $\mathrm{Cu}(\mathrm{OAc})_{2}$ as an excellent promoter for the intramolecular diamination of inactivated olefins which have the sulfamide moiety (Scheme 1.22). ${ }^{51}$ Acyclic sulfamide $\mathbf{1 . 8 2}$ was treated with $\mathrm{Cu}(\mathrm{OAc})_{2}(1.2 \mathrm{eq})$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base at high temperature $\left(90^{\circ} \mathrm{C}\right)$ to provide the desired cyclic sulfamide $\mathbf{1 . 8 3}$ in up to 92%. Free diamine 1.84 can be furnished by the reduction of the sulfamide 1.83 with LiAlH_{4} in THF under refluxing conditions in 93\% yield.

Scheme 1.22. Intramolecular diamination of olefins.
Table 1.2.
entry
Selectivity=1,2:1)

The proposed mechanism suggests that intramolecular diamination is likely initiated by the engagement of $\mathrm{Cu}(\mathrm{OAc})_{2}$ to sulfamide nitrogen to deliver intermediate 1.82a (Scheme 1.23). Migratory insertion allows formation of the new $\mathrm{sp}^{3} \mathrm{~N}-\mathrm{C}$ bond to furnish the intermediate $\mathbf{1 . 8 2 b}$. The organocopper species $\mathbf{1 . 8 2 b}$ is then suggested to undergo ligand exchange with the remaining nitrogen, followed by reductive elimination to afford cyclic sulfamide 1.83.

Scheme 1.23. Mechanism of diamination

In 2007, the Chemler group expanded the intramolecular diamination using copper (II) carboxylate for the synthesis of cyclic sulfamides (Scheme 1.24). ${ }^{52}$ The organic soluble copper (II) neodecanoate $\left[\mathrm{Cu}(\mathrm{ND})_{2}\right]$ allowed for shorter reaction times $\left(90^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ alongside more general organic solvents (DCE, toluene) under the refluxing conditions. A notable development
in this regard was the use of microwave heating $\left(120^{\circ} \mathrm{C}\right.$ for 20 min$)$ to further reduce reaction times.

Scheme 1.24. Intramolecular diamination

The reaction mechanism for the copper (II) carboxylate-promoted intramolecular diamination is proposed in Scheme 1.25. Ligand exchange of $\mathbf{1 . 8 4}$ with $\mathrm{Cu}(\mathrm{ND})_{2}$ generates the $\mathrm{N}-\mathrm{Cu}$ bond, followed by syn-aminocupration via transition state $\mathbf{1 . 8 6}$, to stereoselectively generate cis-pyrrolidine 1.87. The organocopper (II) intermediate 1.87 generates primary radical 1.88 via C-N bond homolysis. Since it is necessary to lose another electron from the substrate, copper needs to be involved in the second $\mathrm{C}-\mathrm{N}$ bond forming process. The resulting intermediate $\mathbf{1 . 8 9}$ then undergoes ligand exchange and reductive elimination or $\mathrm{S}_{\mathrm{N}} 2$ to afford the cyclized unsymmetric sulfamide compound $\mathbf{1 . 9 0}$.

Scheme 1.25. Proposed diamination mechanism.

In 2004, the Groutas group explored the synthesis of cyclic sulfamides for the generation of potential inhibitors of human leukocyte elastase (HLE) (Scheme 1.26). ${ }^{53}$ Primary alcohol 1.91 was formed via the reduction of the corresponding amino ester and subsequently utilized in an intramolecular Mitsunobu reaction to furnish a cyclized sulfamide 1.93.

Scheme 1.26. Synthesis of the clinical potential HLE inhibitor 1.93.
In 2003, the Montero group reported a two-step protocol starting from N-benzyl- N '-tertbuthoxycarbonylsulfamide $\mathbf{1 . 9 4}$ to generate cyclic sulfamides $\mathbf{1 . 9 6}$ (Scheme 1.27). ${ }^{54}$ Thus, regioselective N-alkylation of $\mathbf{1 . 9 4}$ was carried out using dibromoalkanes in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone to obtain 1.95 in moderate to good yield for $\mathrm{n}>3$. Alternatively, bromoalcohols were utilized in a Mitsunobu alkylation reaction for the preparation of 1.95. Subjection of $\mathbf{1 . 9 5}$ to basic conditions under reflux furnished a variety of cyclic sulfamides $\mathbf{1 . 9 6}$. Bocdeprotection and the coupling with $t-\mathrm{BuOH}$ bromoacetate in the presence of DBU gave 1.97. Hydrogenation and peptidic coupling using BOP with N-Boc-protected valine, generated sulfamide 1.98 in good yield.

Scheme 1.27. General synthesis of n-membered cyclic sulfamide.

A new heterocyclic class of cyclic sulfamides, 1,4,3,5-oxathiadiazepane-4,4-dioxanes were reported in 2012 as potential analogs of anti-HIV compounds (Scheme 1.28). ${ }^{55}$ The key reaction for the preparation of the cyclic sulfamide $\mathbf{1 . 1 0 3}$ was the condensation of hydroxysulfamide $\mathbf{1 . 1 0 2}$ with aldehydes. ${ }^{56}$ Sulfamoylation of amino acid methyl ester generated compound 1.99 which was then allowed to undergo a Mitsunobu alkylation with benzyl alcohol to afford 1.100. Subsequent deprotection of the Boc group using TFA, followed by reduction of the ester using NaBH_{4}, furnished 1.102. Hydroxysulfamide 1.102 was subjected to a cyclodehydration reaction by the treatment of a variety of substituted aromatic aldehydes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford cyclic sulfamide $\mathbf{1 . 1 0 3}$.

Scheme 1.28. Synthesis of substituted amino alcohol sulfamides.
In 2010, Stahl and co-workers reported the utilization of Pd-catalyzed hydroamination of allylic sulfamides $\mathbf{1 . 1 0 4}$ for the synthesis of cyclic sulfamides $\mathbf{1 . 1 0 5}$ as shown in Scheme 1.29. ${ }^{57}$ Treatment of the allyl sulfamide with $\operatorname{Pd}(\mathrm{TFA})_{2}$ in the presence of sodium benzoate, catalytic DMSO and molecular oxygen allowed for an oxidative cyclization of allylic sulfamide to generate the desired cyclic sulfamide.

Scheme 1.29. Aerobic oxidative cyclization of sulfamide.

There are two different possible mechanisms to explain this oxidative cyclization reaction (Scheme 1.30): (1) aminopalladation of the alkene followed by the β-hydride elimination or (2) formation of a π-allyl-palladium (II) intermediate via allylic C-H activation followed by the $\mathrm{C}-\mathrm{N}$ coupling.

Scheme 1.30. Possible mechanism for the palladium-catalyzed oxidative cyclization reaction.
Ligand $\mathbf{1 . 1 0 6}$ and $\mathbf{1 . 1 0 7}$ which are known to facilitate allylic C-H activation were tested but only low yields of sulfamide products were observed (Figure 1.4). A further study to distinguish these two mechanisms was carried out, whereby the homoallyl amine derivative 1.108 was synthesized. Cyclization of this substrate would provide evidence in favor of an allylic $\mathrm{C}-\mathrm{H}$ activation pathway. However, treating this substrate $\mathbf{1 . 1 0 8}$ under the optimized cyclization reaction conditions resulted in complete recovery of starting material after 24 hrs . Thus, it can be concluded that cyclization via allylic $\mathrm{C}-\mathrm{H}$ activation does not occur.

Figure 1.4. Ligands and homoallyl amine derivative.
Employment of the optimized reaction conditions with a variety of sulfamides afforded an array of cyclic sulfamides in good to excellent yields (Table 1.3). Substrates bearing both
aliphatic or aryl N -substituents were found to undergo cyclization efficiently (Table 1.3, 1.1091.114). Quaternary $\mathrm{C}-\mathrm{N}$ bond formation (1.115) stemming from the use of a tri-substituted alkene was found to occur in quantitative yield while employment of a silyloxy allyl amine furnished the corresponding silyloxy vinyl ether 1.116. Allylic substituents larger than a methyl group delivered diastereomeric product in good to high yield (1.118-1.120, diastereomeric ratios $>29: 1)$.

Table 1.3. Aerobic oxidative cyclization of sulfamide.

In 2007, the Girón group reported a new carboxamide series of 1,1-dioxo-1,2-dihydro$1^{\lambda 6}-1,2,6$-thiadiazine derivatives that have a cannabinoid (psychotropic constituent)-like molecular structure (Scheme 1.31). ${ }^{58}$ The general synthetic route for the formation of substituted 1,2,6-thiadiazine 5-carboxamides employs a cyclocondensation with mono-substituted sulfamide and 2,4-dioxocarboxylic acid ethyl ester under the acidic conditions to furnish 1.121, and subsequent amination with an exogenous amine to afford $\mathbf{1 . 1 2 2}$ in high yield.

Scheme 1.31. Synthesis of 1,1-dioxo-1,2,6-thiadiazine compounds.
In 2003, Hanson and coworkers reported a result of the synthesis of a variety of amino acid derived unsymmetric cyclic sulfamide compounds utilizing ring-opening metathesis (ROM) polymerization-derived oligomers as soluble supports (Scheme 1.32). ${ }^{59}$ In this method, norbornenyl-tagged sulfonamide $\mathbf{1 . 1 2 3}{ }^{60}$ was allowed to undergo sequential reactions with chlorosulfonyl isocyanate and amino acid methyl esters to afford the norbornenyl-tagged sulfamoyl carbamate $\mathbf{1 . 1 2 4}$, which was polymerized with $5 \mathrm{~mol} \%$ of the G-II catalyst to generate the soluble oligomer. Dissolving the oligomer in DMF, followed by bis-allylation (allyl bromide, $\mathrm{NaI}, \mathrm{K}_{2} \mathrm{CO}_{3}$) furnished diene 1.125. Upon precipitation with water, oligomer $\mathbf{1 . 1 2 5}$ was treated with $10 \mathrm{~mol} \%$ of the G-I catalyst to afford the cyclized compound 1.126. Cleavage by the TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) furnished unsymmetric cyclic sulfamide 1.127. Overall, this method represents a chromatography-free method for the preparation of cyclic sulfamides using a soluble support.

Scheme 1.32. Synthesis of cyclic sulfamide using ring opening metathesis (ROM) oligomers

In 2002, K. C. Nicolaou and coworkers explored the synthesis of nonsymmetric cyclic sulfamides from amino alcohols (Table 1.4). ${ }^{34}$ In this regard, a Burgess reagent-facilitated cyclic sulfamide synthesis was reported employing primary and secondary amino alcohols under optimized condition. Initially, the reaction mixtures (1.0 equiv. of amino alcohol and 2.5 equiv. of the Burgess reagent) were heated for specified hours in THF to yield cyclic sulfamides

Table 1.4. Synthesis of non-symmetric cyclic sulfamides from amino alcohols.
Entry
[a] THF, reflux, 2 h ; [b] THF, reflux, 21 h ; [c] THF, reflux, 8 h ; [d] $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $25^{\circ} \mathrm{C}, 5 \mathrm{~h}$
(entries 1, 2, and 3). Non-benzylic alcohols were employed to explore a series of six-, seven-, and eight-membered ring analogues (entries 4, 5, and 6) under optimized reaction condition (THF, refluxing 2 h). Utilizing primary aliphatic amines, in conjunction with secondary benzylic alcohols, the reaction mixture was commenced at $0{ }^{\circ} \mathrm{C}$ and allowed to warm to $25^{\circ} \mathrm{C}$ for 5 h to produce compounds in high yields (entries 7 and 8).

The proposed mechanistic conversion of amino alcohols into non-symmetric cyclic sulfamides using a Burgess-type reagent is shown in Scheme 1.33. Thus, treatment of excess amounts of the Burgess reagent with an amino alcohol leads to a mono-protected, nonsymmetric cyclic sulfamide \mathbf{B} through the $\mathrm{S}_{\mathrm{N}} 2$ reaction of the proposed intermediate A. Potentially, deprotection of the carbamate \mathbf{B} and substitution provides an array of pharmaceutically useful sulfamides such as high-affinity protein ligands ${ }^{61}$ and inhibitors of enzymes including HIV proteases. ${ }^{62}$

Scheme 1.33. Proposed conversion of amino alcohols into cyclic sulfamides.

1.4. Sulfamide catalysts

Recently, asymmetric organocatalysis has emerged as a "third pillar" of enantioselective catalysts, together with biocatalysis and metal catalysis. ${ }^{63,64}$ Although the potential of prolinecatalyzed asymmetric intramolecular aldol reactions have been shown by Hajos and Wiechert in the 1970s, ${ }^{65}$ the pioneering discovery of L-proline-catalyzed direct intermolecular asymmetric
aldol reactions by Barbas et al. opened a new gate of asymmetric organocatalysis. ${ }^{66,67}$ Since this seminal discovery, organocatalysis has accumulated the attention of the synthetic community. In this section, various roles of sulfamide catalysts for several types of reactions are highlighted.

1.4.1. Hydroaminoalkylation and hydroamination

In 2012, Doyle group reported hydroaminoalkylation and hydroamination reactions using titanium complexes with sulfamide ligands as precatalysts (Scheme 1.34). ${ }^{68}$ Diphenylsulfamide 1.129 was prepared from $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and aniline in the presence of pyridine. Subsequently, sulfamide $\mathbf{1 . 1 2 9}$ was reacted with two equivalents of $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}$ at room temperature to furnish the dinuclear titanium complex $\mathbf{1 . 1 3 0}$ in 65% yield. This sulfamide-titanium complex was used for catalyzing the hydroamination of olefins. Thus, hydroaminoalkylation of 1-octene, allylbenzene and styrene with N-methylaniline was carried out in the presence of $5 \mathrm{~mol} \%$ of complex $\mathbf{1 . 1 3 0}$ at $120^{\circ} \mathrm{C}$ for 48 hours in n-hexane to afford the desired product in moderate to good yield. Catalyst $\mathbf{1 . 1 3 0}$ was also found to be useful for the intramolecular hydroamination of several aminoalkenes $\mathbf{1 . 1 3 4}$ and $\mathbf{1 . 1 3 6}$ under mild conditions employing $2.5 \mathrm{~mol} \%$ of catalyst loading to produce cyclized amines $\mathbf{1 . 1 3 5}$ and $\mathbf{1 . 1 3 7}$. To date, mechanisms for these reactions are yet to be reported.

Scheme 1.34. Hydroaminoalkylation and hydroamination reactions using titanium complexes.

1.4.2. Aldol reaction

A Ti-enolate-derived diastereoselective aldol reaction using a cyclic sulfamide chiral auxiliary for the preparation of syn-aldol products was reported in 1992 by Ahn and coworkers. ${ }^{69}$ Chiral sulfamide auxiliary $\mathbf{1 . 1 4 0}$ was synthesized through the coupling reaction of propionyl chloride and cyclic sulfamide $\mathbf{1 . 1 3 9}$ which was obtained from the reaction of $(1 S, 2 S)$ -diphenyl-1,2-diaminoethane (1.138) and sulfamide. The titanium enolate of $\mathbf{1 . 1 4 0}$ was generated by the treatment of $\mathbf{1 . 1 4 0}$ with TiCl_{4} in the presence of DIEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$. This enolate was treated with aldehyde at $-78^{\circ} \mathrm{C}$ for 5 minutes to afford the syn-aldol product in high yield (89-93\%) (Table 1.5).

Scheme 1.35. Synthesis of chiral sulfamide auxiliary 1.140 and aldol reaction.
Table 1.5. Asymmetric aldol reactions of titanium enolate of 1.140.

Entry	R in RCHO	Stereoselectivity	Yield (\%)
1	Ph	$>96: 4$	91
2	Me	$>97: 3$	90
3	$i-\mathrm{Pr}$	$>97: 3$	93
4	(trans) $-\mathrm{MeCH}=\mathrm{CH}$	$>95: 5$	89

Each of the absolute stereochemistries of the syn products were identified by comparing the optical rotation of $\mathbf{1 . 1 4 2}$ with reported data. ${ }^{70}$ The conversion of dialdol $\mathbf{1 . 1 4 1}$ into $\mathbf{1 . 1 4 2}$ and recovery of the sulfamide chiral auxiliary $\mathbf{1 . 1 3 9}$ are described in Scheme 1.36. Treatment of 1.141 with NaOMe generated aldol product $\mathbf{1 . 1 4 2}$ and sulfamide $\mathbf{1 . 1 4 3}$ in quantitative yield. Sulfamide $\mathbf{1 . 1 4 3}$ was, however, found to resist a second cleavage. In order to circumvent this issue, Boc-protection of 1.143 and treatment with NaOMe produced 1.145 and $\mathbf{1 . 1 4 6}$. Subsequent treatment of reaction mixture with TFA furnished 1.147 and sulfamide chiral auxiliary $\mathbf{1 . 1 3 9 .}$

Scheme 1.36.

1.4.3. Conjugate addition

Asymmetric conjugate addition of ketone or aldehyde to nitro-olefins is a very useful reaction to prepare chiral γ-amino acids. In 2009, Chan and coworkers reported that chiral bifunctional sulfamides were highly efficient organocatalysts in the conjugate addition of aldehydes to trans- β-aryl-nitroethenes in the presence of base additives (Scheme 1.37). ${ }^{71}$ In this regard, the chiral cyclohexanediamine unit exerted high enantiofacial selectivity in this reaction. Sulfamide catalyst $\mathbf{1 . 1 4 0}$ was prepared via stepwise reaction of the corresponding amines and $(1 R, 2 R)$-cyclohexane-1,2-diamine with catechol sulfate. ${ }^{72}$

Scheme 1.37. Conjugate addition of aldehydes to β-aryl-nitroethenes catalyzed by chiral bifunctional sulfamide.

Entry	R_{1}	R_{2}	R_{3}	$\mathrm{~T}(\mathrm{~h})$	Yield (\%)	ee (\%)
1	Ph	CH_{3}	CH_{3}	3	83	99
2	4-MeO-Ph	CH_{3}	CH_{3}	2	79	99
3	4-Cl-Ph	CH_{3}	CH_{3}	3	79	98
4	4- $\mathrm{NO}_{2}-\mathrm{Ph}$	CH_{3}	CH_{3}	3	74	99
5	$\mathrm{PhCH}=\mathrm{CH}$	CH_{3}	CH_{3}	24	53	98
6	2-furanyl	CH_{3}	CH_{3}	6	94	98
7	2-thiophenyl	CH_{3}	CH_{3}	24	99	99
8	Ph	$\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}$	23	41	91	
9	Ph	H	CH_{3}	23	$96(2 / 1)$	$78 / 70$
10	Ph	H	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	24	$72(2 / 1)$	$91 / 93$
11	Ph	H	Ph	21	$90(2 / 1)$	$82 / 80$

Table for Scheme 1.37. Conjugate addition of aldehydes to β-aryl-nitroethenes catalyzed by chiral bifunctional sulfamide.

A catalytic mechanism of conjugate addition of aldehyde to nitro ethene using a chiral sulfamide catalyst is proposed in Scheme 1.38. Initially, the catalyst and isobutyraldehyde generate the imine intermediate \mathbf{A}. Tautomerization of \mathbf{A} is promoted by the base additive (DMAP or imidazole) and generates enamine B. As is shown in Scheme 1.37, two hydrogen bonds are postulated to form between the nitro group of nitrostyrene and the sulfamide (intermediate \mathbf{C}) to attenuate the electrophilic nature of nitrostyrene. Attack of the enamine to the re-face of the nitrostyrene double bond provides intermediate D. Consequent proton transfer and hydrolysis affords the desired chiral aldehyde product and regenerates the chiral sulfamide catalyst for an ensuing cycle.

Scheme 1.38. Proposed catalytic mechanism.

1.4.4. Michael addition

In 2011, the Nugent group reported a Michael addition using a sulfamide as a catalyst/hydrogen bond donor to generate enantioenriched quaternary carbon containing compounds (Table 1.6). ${ }^{73}$ In this regard, reaction of isobutyraldehyde, cyclopentanecarboxaldehyde, and cyclohexanecarboxaldehyde with 2-substituted-nitroethanes in the presence of $\mathrm{O}^{t} \mathrm{Bu}$-L-threonine, DMAP and sulfamide as an H -bond donor afforded 1.141-1.144 in high yield and high ee. Addition of aldehyde with nonequivalent α, α^{6}-substituents to β-nitrostyrene provided the Michael products $\mathbf{1 . 1 4 5 - 1 . 1 4 7}$ containing a stereogenic quaternary carbons in good yield and excellent ee, albeit with moderate diastereomeric ratios.

Table 1.6. Various aldehyde additions to 2-substituted-nitroethenes.

			${ }^{\prime} \mathrm{Bu}$ ($5 \mathrm{~mol} \%$) reonine mol\%) (5 mol\%)		
Entry	Product	T (h)	Yield (\%)	$d r$	$e e(\%)$
1		7	97	-	98
2	 (S)-1.142	24	98	-	96
3		7	89	-	97
4		48	88	-	91
5		12	84	70:30	97
6		12	71	78:28	91
7		12	70	77:23	98

In 2009, Shea and coworkers reported a new type of H-bond catalysis using a sulfamide catalyst (Scheme 1.39). ${ }^{74}$ The sulfamide catalyst $\mathbf{1 . 1 4 9}$ can be readily synthesized from the
reaction of aniline $\mathbf{1 . 1 4 8}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 35% yield. The Friedel-Craft reaction between β-nitrostyrene 1.150 and N-methyl indole 1.151 was carried out with $10 \mathrm{~mol} \%$ of sulfamide $\mathbf{1 . 1 4 9}$ to provide 3-alkylated indole compound $\mathbf{1 . 1 5 2}$ in 20% yield. The BaylisHillman reaction was performed between methyl acrylate $\mathbf{1 . 1 5 3}$ and benzaldehyde $\mathbf{1 . 1 5 4}$ in the presence of the sulfamide catalyst $\mathbf{1 . 1 4 9}$ and DABCO as a co-catalyst to furnish the vinyl ketone 1.155 in 73% of yield.

Scheme 1.39. Fridel-Crafts reaction and Baylis-Hillman reaction using sulfamide catalysis.

1.4.5. Mitsunobu-like coupling

Sulfamides have been reported for the preparation of a Mitsunobu-type betaine for coupling between alcohols and carboxylic acids and imides (Figure 1.5). ${ }^{75}$ In 1994, Castro and coworkers isolated an unprecedented adduct 1.165 between triphenylphosphine and 3,3-dimethyl-1,2,5-thiadiazolidine 1,1-dioxide 1.159, which was synthesized from diamine $\mathbf{1 . 1 6 1}$ and sulfamide $\left(\mathrm{SO}_{2}\left(\mathrm{NH}_{2}\right)_{2}\right.$. Interestingly, the initial study involved the preparation of $\mathbf{1 . 1 6 0}$ using $\mathbf{1 . 1 5 6}$ or $\mathbf{1 . 1 5 7}$ with $\mathbf{1 . 1 5 8}$ or $\mathbf{1 . 1 5 9}$ for the identification of molecules for the treatment of migraine headaches (Figure 1.5). ${ }^{76}$

1.156, $n=1$ 1.157, $n=2$

1.158, $R^{1}=R^{2}=H, R^{3}=M e$
1.159, $R^{1}=R^{2}=M e, R^{3}=H$

1.160

Figure 1.5.

Under the standard Mitsunobu conditions, alcohol $\mathbf{1 . 1 5 6}$ and $\mathbf{1 . 1 5 7}$ failed to furnish the expected alkylated product when reacted with $1.159\left(R^{1}=R^{2}=M e, R^{3}=H\right)$, but afforded a white solid was identified as the betaine $\mathbf{1 . 1 6 5}$ (Figure 1.6). It is important to note that when only one proton on the cyclic sulfamide $\left(R^{1}=R^{2}=H, R^{3}=M e\right)$ is available, the betaine cannot be generated. On the other hand, using acidic component HX with a lower pKa than that of betaine $\mathbf{1 . 1 6 5}$ allows for the generation of ion pair 1.166. Reaction with alcohol would then furnish the oxyphosphonium salt 1.167 and cyclic sulfamide 1.159 . Subsequent $\mathrm{S}_{\mathrm{N}} 2$ displacement with the nucleophilic component afforded the corresponding product $\mathbf{1 . 1 6 8}$ with inversion of chiral center. Summary of the reactions with various alcohols and carboxylic acids and imides are given in Table 1.7.

Figure 1.6. Mechanism of coupling reaction through a Mitsunobu-like process.

Table 1.7. Utilization of betaine 1.165 in a Mitsunobu-like process.
entry

1.4.6. Utilization of cyclic sulfamide as chiral auxiliaries

Cyclic sulfamides have been employed as chiral auxiliaries for the production of chiral, non-racemic molecules. In 2010, Dewynter and coworkers reported the application of an acyclic sulfamide as a chiral auxiliary for facilitating asymmetric aldol and alkylation reactions. ${ }^{77}$ Thus, N-propionyl sulfamide $\mathbf{1 . 1 7 4}$ was efficiently synthesized in five steps and shown in Scheme 1.40.

Scheme 1.40. Preparation of cyclosulfamide 1.173 as a chiral auxiliary.
With this sulfamide in hand, the authors were able to accomplish a number of diasteroselective aldol reactions using chiral auxiliary $\mathbf{1 . 1 7 4}$ as represented in Scheme 1.41. Reaction with 1.2 equiv. of TiCl_{4} and $\mathbf{1 . 1 7 4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ for 30 min followed by the addition of N-diisopropyl ethylamine generated the titanium enolate of $\mathbf{1 . 1 7 4}$. The enolate was then reacted with aldehyde at the same temperature for 4 hours, warmed to $0{ }^{\circ} \mathrm{C}$, and stirred overnight to afford the aldol product as a single diastereoisomeric, syn-aldol product $\mathbf{1 . 1 7 5}(\mathrm{dr}>99: 1)$. In this regard, a variety of aldehydes were used and the results are summarized in Table 1.7. The aldol products were subsequently hydrolyzed with 3 equiv. of LiOH monohydrate in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ at $0^{\circ} \mathrm{C}$ to afford the corresponding carboxylic acids $\mathbf{1 . 1 7 6}$, as well as the chiral auxiliary $\mathbf{1 . 1 7 3}$, without any loss of the stereochemical integrity (Table 1.8).

Scheme 1.41. Diastereoselective aldol reactions.
Table 1.8.

Entry	aldehyde	dr	\% Yield	Product	Yield of recovery $\mathbf{1 . 1 7 3}$	\% Yield	Product
1	i Pr-CHO	$>99: 1$	93%	$\mathbf{1 . 1 7 5 a}$	96%	95%	$\mathbf{1 . 1 7 6 a}$
2	Ph-CHO	$>99: 1$	88%	$\mathbf{1 . 1 7 5 b}$	98%	96%	$\mathbf{1 . 1 7 6}$
3	n Pr-CHO	$>99: 1$	92%	$\mathbf{1 . 1 7 5 c}$	95%	94%	$\mathbf{1 . 1 7 6 c}$
4	c Hex-CHO	$>99: 1$	87%	$\mathbf{1 . 1 7 5 d}$	93%	93%	$\mathbf{1 . 1 7 6 d}$

Chiral sulfamide $\mathbf{1 . 1 7 4}$ was also reported in asymmetric alkylation reactions. Treatment of $\mathbf{1 . 1 7 4}$ with NaHMDS or LiHMDS and addition of benzyl bromide or allyl bromide allows for
generation of $\mathbf{1 . 1 7 7}$ and $\mathbf{1 . 1 7 8}$ (Scheme 1.42 and Table 1.9). Removal of the chiral auxiliary
1.173 using lithium hydroxide afford only one diastereomer in each case.

Scheme 1.42. Stereocontrolled alkylation.
Table 1.9.

Entry	R-X	Base	dr	Yield	Product	Yield of recovery 1.173	Yield	Product
1	$\mathrm{Bn}-\mathrm{Br}$	NaHMDS	$>99: 1$	30%	$\mathbf{1 . 1 7 7}$	96%	95%	$\mathbf{1 . 1 7 9}$
2	$\mathrm{Bn}-\mathrm{Br}$	LiHMDS	$>99: 1$	58%	$\mathbf{1 . 1 7 7}$	97%	91%	$\mathbf{1 . 1 7 9}$
3	Allyl-Br	NaHMDS	$>99: 1$	48%	$\mathbf{1 . 1 7 8}$	98%	94%	$\mathbf{1 . 1 8 0}$
4	Allyl-Br	LiHMDS	$>99: 1$	60%	$\mathbf{1 . 1 7 8}$	97%	92%	$\mathbf{1 . 1 8 0}$
5	Allyl-I	LiHMDS	$>99: 1$	78%	$\mathbf{1 . 1 7 8}$	98%	96%	$\mathbf{1 . 1 8 0}$

1.5. Conclusions

In conclusion, sulfamide compounds have been reported possessing a variety of biological activities for the treatment of life threating illnesses such as AIDS and cancers. Despite the indisputable utility of sulfamide compounds, existing routes for their construction were lacking in the literature. With this essential need, synthetic approaches for acyclic and cyclic sulfamide compounds were summarized in this chapter. Many methods from typical procedures to advanced innovative approaches for the synthesis of sulfamides have been developed by scientists featuring symmetric and non-symmetric sulfamides to serve as high affinity protein ligands and pharmaceutically useful agents. There are several investigational and commercially available drugs containing sulfamide moiety in order to treat different types of
diseases. In this regard, generation of new molecular structures and chemical methodologies to discover new pharmacophores are important to survey more pharmaceutically active sulfamidecontaining compounds. Several technological advances will undoubtedly enable the formation of new, structurally unique sulfamides exhibiting biological potential. Furthermore, advances in sulfamide organocatalysts will expand a pathway to develop and produce a powerful arsenal for both drug and reagent development.

1.6. References

1. For selected examples from recent literature see: (a) Avalle, P.; Foley, J. R.; Mullens, P.; Wang, Y.; Yehl, P. Preparation of $N-\left[(2 \mathrm{R})\right.$-1,4-dioxan-2-ylmethyl]- N-methyl- N^{\prime}-[3-(1-methyl-1H-pyrazol-4-yl)-5-oxo-5H-benzo[4,5]cyclohepta[1,2-b]pyridin-7-yl]sulfamide salts as tyrosine kinase inhibitors. Chem. Abstr. 2009, 151, 173453; US-2009182002, 2009. (b) Harrison, R. J.; Major, J.; Middlesmiss, D.; Ramsden, N.; Kruse, U.; Drewes, G. Preparation of pyrimidinylaminophenyl sulfamide derivatives as ZAP-70 inhibitors. Chem. Abstr. 2009, 151, 10194; WO-2009080638, 2009. (c) Shibata, T.; Iwataru, H.; Kiga, M.; Shimazaki, N.; Echigo, Y.; Fujiwara, K.; Tanzawa, F. Preparation of sulfamide derivatives as mitogenactivated protein kinase (MEK) inhibitors for the treatment of cancer. Chem. Abstr. 2006, 144, 331427; JP-2006083133, 2006. (d) Zhong, J. Y.; Gan, X. D.; Alliston, K. R.; Groutas, W. C., Design, synthesis, and in vitro evaluation of inhibitors of human leukocyte elastase based on a functionalized cyclic sulfamide scaffold. Bioorg. Med. Chem. 2004, 12, 589-593. (e) Collins, I. J.; Cooper, L. C. Preparation of oxadiazole derivatives as γ-secretase inhibitors for treatment of Alzheimer's disease. Chem. Abstr. 2003, 139, 381492; WO2003093264, 2003. (f) Kadow, J. F.; Regueiro-Ren, A.; Xue, Q. M. Preparation of indolyl-, azaindolyl-, and related heterocyclic sulfonylureidopiperazines for treatment of HIV and AIDS. Chem. Abstr. 2003, 140, 59662; WO-2004000210, 2003. (g) Cherney, R. J.; King, B.W. Preparation of cyclic sulfones as inhibitors of metalloproteases. Chem. Abstr. 2002, 136, 309923; WO-2002028846, 2002. (h) Schaal, W.; Karlsson, A.; Ahlse'n, G.; Lindberg, J.; Andersson, H. O.; Danielson, U. H.; Classon, B.; Unge, T.; Samuelsson, B.; Hulte'n, J.; Hallberg, A.; Karle'n, A. Synthesis and Comparative Molecular Field Analysis (CoMFA) of Symmetric and Nonsymmetric Cyclic Sulfamide HIV-1 Protease Inhibitors. J. Med. Chem. 2001, 44, 155-169. (i) Groutas, W. C.; He, S.; Kuang, R.; Ruan, S.; Tu, J.; Chan, H.-K. Inhibition of serine proteases by functionalized sulfonamides coupled to the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold. Bioorg. Med. Chem. 2001, 9, 1543-1548.
2. Bolli, M.; Boss, C.; Fischli, W.; Clozel, M.; Weller, T. Preparation of novel pyrimidinesulfamides as endothelin receptor antagonists. Chem. Abstr. 2002, 137, 93766; WO2002053557, 2002.
3. Traube, W. Zur Kenntniss des Amids und Imide der Schwefelsäure. Ber. 1892, 25, 24722475.
4. (a) On Medicinal Chemistry, 1sr ed.; Stocks, M., Alcaraz, L., Griffen, E., Eds.; Sci.Ink: Oxford, UK, 2007. (b) The Practice of Medicinal Chemistry, 2nd ed.; Wermuth, C. G., Ed.; Academic Press: London, UK, 2003. (c) Albright, J. D.; DeVries, V. G.; Du, M. T.; Largis, E. E.; Miner, T. G.; Reich, M. F.; Shepherd, R. G. Potential antiatherosclerotic agents. 3. Substituted benzoic and nonbenzoic acid analogs of cetaben. J. Med. Chem. 1983, 26, 1393-1411.
5. (a) Nickie D. Greer D. N., Doripenem (Doribax): the newest addition to the carbapenems. Proc (Bayl Univ Med Cent) 2008, 21, 337-341 (PMCID: PMC2446428). (b) Chahine, E. B.; Ferrill, M. J.; Poulakos, M. N., Doripenem: A new carbapenem antibiotic. American Journal of Health-System Pharmacy 2010, 67, 2015-2024. (c) Guo, C. X.; Dong, L. M.; Kephart, S.; Hou, X. J., An efficient synthesis of sulfamides. Tetrahedron Lett. 2010, 51, 2909-2913.
6. Barlier A.; Jaquet P., Quinagolide - A valuable treatment option for hyperprolactinaemia. Eur. J. Endocrinol 2006, 154, 187-195.
7. Parker, M. H.; Smith-Swintosky, V. L.; McComsey, D. F.; Huang, Y. F.; Brenneman, D.; Klein, B.; Malatynska, E.; White, H. S.; Milewski, M. E.; Herb, M.; Finley, M. F. A.; Liu, Y.; Lubin, M. L.; Qin, N.; Iannucci, R.; Leclercq, L.; Cuyckens, F.; Reitz, A. B.; Maryanoff, B. E., Novel, Broad-Spectrum Anticonvulsants Containing a Sulfamide Group: Advancement of N -((Benzo[b]thien-3-yl)methyl)sulfamide (JNJ-26990990) into Human Clinical Studies. J. Med. Chem. 2009, 52, 7528-7536.
8. (a) Temperini, C.; Winum, J.-Y.; Montero, J.-L.; Scozzafava, A.; Supurana, C. T., Carbonic anhydrase inhibitors: The X-ray crystal structure of the adduct of N -hydroxysulfamide with isozyme II explains why this new zinc binding function is effective in the design of potent inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 2795-2801. (b) Scozzafava, A.; Mastrolorenzo, A.; Supuran. C. T., Carbonic anhydrase inhibitors and activators and their use in therapy. Expert Opin. Ther. Pat. 2006, 16, 1627. (c) Supuran, C. T.; Scozzafava, A.; Casini, A., Carbonic anhydrase inhibitors. Med. Res. Rev. 2003, 23, 146. (d) Winum, J.Y.; Scozzafava, A.; Montero, J.-L.; Supuran, C. T., New zinc binding motifs in the design of selective carbonic anhydrase inhibitors. Mini. Rev. Med. Chem. 2006, 6, 921-936. (e) Supuran, C. T.; Scozzafava, A.; Conway, J. In Carbonic Anhydrase-Its Inhibitors and Activators; CRC Press: Boca Raton, New York, London, 2004; pp 1-363. (f) Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C. T. J. Enzyme Inhib. Med. Chem. 2004, 19, 199. (g)

Boriack, P. A.; Christianson, D. W.; Kingery-Wood, J.; Whitesides, G. M. Secondary Interactions Significantly Removed from the Sulfonamide Binding Pocket of Carbonic Anhydrase II Influence Inhibitor Binding Constants. J. Med. Chem. 1995, 38, 2286-2291. (h) Kim, C. Y.; Chang, J. S.; Doyon, J. B.; Baird, T. T.; Fierke, C. A.; Jain, A.; Christianson, D. W. Contribution of Fluorine to Protein-Ligand Affinity in the Binding of Fluoroaromatic Inhibitors to Carbonic Anhydrase II. J. Am. Chem. Soc. 2000, 122, 12125-12134. (i) Vidgren, J.; Svensson, A.; Liljas, A. Refined structure of the aminobenzolamide complex of human carbonic anhydrase II at 1.9Åand sulphonamide modelling of bovine carbonic anhydrase III. Int. J. Biol. Macromol. 1993, 15, 97-100. (j) Gruneberg, S.; Stubbs, M. T.; Klebe, G. Successful virtual screening for novel inhibitors of human carbonic anhydrase: strategy and experimental confirmation. J. Med. Chem. 2002, 45, 3588-3602. (k) Abbate, F.; Supuran, C. T.; Scozzafava, A.; Orioli, P.; Stubbs, M.; Klebe, G. Nonaromatic Sulfonamide Group as an Ideal Anchor for Potent Human Carbonic Anhydrase Inhibitors: Role of Hydrogen-Bonding Networks in Ligand Binding and Drug Design. J. Med. Chem. 2002, 45, 3583-3578. (1) Nishimori, I.; Vullo, D.; Innocenti, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Carbonic anhydrase inhibitors. The mitochondrial isozyme VB as a new target for sulfonamide and sulfamate inhibitors. J. Med. Chem. 2005, 48, 7860-7866. (m) Vullo, D.; Franchi, M.; Gallori, E.; Pastorek, J.; Scozzafava, A.; Pastorekova, S.; Supuran, C. T. Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with aromatic and heterocyclic sulfonamides. Bioorg. Med. Chem. Lett. 2003, 13, 1005.
9. http://www.who.int/mediacentre/factsheets/fs297/en/
10. (a) Stewart, G. W.; Brands, K. M. J.; Brewer, S. E.; Cowden, C. J.; Davies, A. J.; Edwards, J. S.; Gibson, A. W.; Hamilton, S. E.; Katz, J. D.; Keen, S. P.; Mullens, P. R.; Scott, J. P.; Wallace, D. J.; Wise, C. S., Process development and large-scale synthesis of a c-Met kinase inhibitor. Org. Proc. Res. Dev. 2010, 14, 849-858. (b) Pan, B. S.; Chan, G. K. Y.; Chenard, M.; Chi, A.; Davis, L. J.; Deshmukh, S. V.; Gibbs, J. B.; Gil, S.; Hang, G. Z.; Hatch, H.; Jewell, J. P.; Kariv, I.; Katz, J. D.; Kunii, K.; Lu, W.; Lutterbach, B. A.; Paweletz, C. P.; Qu, X. L.; Reilly, J. F.; Szewczak, A. A.; Zeng, Q. W.; Kohl, N. E.; Dinsmore, C. J., MK-2461, a Novel Multitargeted Kinase Inhibitor, Preferentially Inhibits the Activated c-Met Receptor. Cancer Research 2010, 70, 1524-1533. (c) Katz, J. D.; Jewell, J. P.; Guerin, D. J.; Lim, J.; Dinsmore, C. J.; Deshmukh, S. V.; Pan, B. S.; Marshall, C. G.; Lu, W.; Altman, M. D.;

Dahlberg, W. K.; Davis, L.; Falcone, D.; Gabarda, A. E.; Hang, G. Z.; Hatch, H.; Holmes, R.; Kunii, K.; Lumb, K. J.; Lutterbach, B.; Mathvink, R.; Nazef, N.; Patel, S. B.; Qu, X. L.; Reilly, J. F.; Rickert, K. W.; Rosenstein, C.; Soisson, S. M.; Spencer, K. B.; Szewczak, A. A.; Walker, D.; Wang, W. X.; Young, J.; Zeng, Q. W., Discovery of a 5H-Benzo 4,5 cyclohepta 1,2-b pyridin-5-one (MK-2461) Inhibitor of c-Met Kinase for the Treatment of Cancer. J. Med. Chem. 2011, 54, 4092-4108.
11. (a) Jeffers, M.; Rong, S.; Vande Woude, G. F. Enhanced tumorigenicity and invasionmetastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol. Cell. Biol. 1996, 16, 1115-1125. (b) Matsumoto, K.; Date, K; Shimura, H.; Nakamura, T., Acquisition of Invasive Phenotype in Gallbladder Cancer Cells via Mutual Interaction of Stromal Fibroblasts and Cancer Cells as Mediated by Hepatocyte Growth Factor. Jpn. J. Cancer Res. 1996, 87, 702-710. (c) Vuononvirta, R.; Sebire, N. J.; Messahel, B.; Perusinghe, N.; Reisfilho, J. S.; Pritchard-Jones, K.; Vujanic, G. M.; Jones, C., Expression of HGF and its receptor Met in Wilms tumours and nephrogenic rests reflects their roles in kidney development, Clin. Cancer Res. 2009, 15, 2723-2730.
12. Parrish, C. A.; Adams, N. D.; Auger, K. R.; Burgess, J. L.; Carson, J. D.; Chaudhari, A. M.; Copeland, R. A.; Diamond, M. A.; Donatelli, C. A.; Duffy, K. J.; Faucette, L. F.; Finer, J. T.; Huffman, W. F.; Hugger, E. D.; Jackson, J. R.; Knight, S. D.; Luo, L.; Moore, M. L.; Newlander, K. A.; Ridgers, L. H.; Sakowicz, R.; Shaw, A. N.; Sung, C. M. M.; Sutton, D.; Wood, K. W.; Zhang, S. Y.; Zimmerman, M. N.; Dhanak, D., Novel ATP-competitive kinesin spindle protein inhibitors. J. Med. Chem. 2007, 50, 4939-4952.
13. Hamilton, N. M.; Dawson, M.; Fairweather, E. E.; Hamilton, N. S.; Hitchin, J. R.; James, D. I.; Jones, S. D.; Jordan, A. M.; Lyons, A. J.; Small, H. F.; Thomson, G. J.; Waddell, I. D.; Ogilvie, D. J., Novel Steroid Inhibitors of Glucose 6-Phosphate Dehydrogenase. J. Med. Chem. 2012, 55, 4431-4445.
14. Shiozaki, M.; Maeda, K.; Miura, T.; Kotoku, M.; Yamasaki, T.; Matsuda, I.; Aoki, K.; Yasue, K.; Imai, H.; Ubukata, M.; Suma, A.; Yokota, M.; Hotta, T.; Tanaka, M.; Hase, Y.; Haas, J.; Fryer, A. M.; Laird, E. R.; Littmann, N. M.; Andrews, S. W.; Josey, J. A.; Mimura, T.; Shinozaki, Y.; Yoshiuchi, H.; Inaba. T. Discovery of (1S,2R,3R)-2,3-Dimethyl-2-phenyl-

1-sulfamidocyclopropanecarboxylates: Novel and Highly Selective Aggrecanase Inhibitors. J. Med. Chem. 2011, 54, 2839-2863.
15. (a) Tortorella, M. D.; Tomasselli, A. G.; Mathis, K. J.; Schnute, M. E.; Woodard, S. S.; Munie, G.; Williams, J. M.; Caspers, N.; Wittwer, A. J.; Malfait, A.-M.; Shieh, H.-S. Structural and inhibition analysis reveals the mechanism of selectivity of a series of aggrecanase inhibitors. J. Biol. Chem. 2009, 284, 24185-24191. (b) Noe, M. C.; Natarajan, V.; Snow, S. L.; Mitchell, P. G.; Lopresti-Morrow, L.; Reeves, L. M.; Yocum, S. A.; Carty, T. J.; Barberia, J. A.; Sweeney, F. J.; Liras, J. L.; Vaughn, M.; Hardink, J. R.; Hawkins, J. M.; Tokar, C. Discovery of 3,3-dimethyl-5-hydroxypipecolic hydroxamate-based inhibitors of aggrecanase and MMP-13. Bioorg. Med. Chem. Lett. 2005, 15, 2808-2811.
16. Sparey, T.; Beher, D.; Best, J.; Biba, M.; Castro, J. L.; Clarke, E.; Hannam, J.; Harrison, T.; Lewis, H.; Madin, A.; Shearman, M.; Sohal, B.; Tsou, N.; Welch, C.; Wrigley, J., Cyclic sulfamide γ-secretase inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 4212-4216.
17. Lewis, S. J.; Smith, A. L.; Neduvelil, J. G.; Stevenson, G. I.; Lindon, M. J.; Jones, A. B.; Shearman, M. S.; Beher, D.; Clarke, E.; Best, J. D.; Peachey, J. E.; Harrison, T.; Castro, J. L., A novel series of potent γ-secretase inhibitors based on a benzobicyclo 4.2.1 nonane core. Bioorg. Med. Chem. Lett. 2005, 15, 373-378.
18. (a) Hirayama, F.; Koshio, H.; Ishihara, T.; Watanuki, S.; Hachiya, S.; Kaizawa, H.; Kuramochi, T.; Katayama, N.; Kurihara, H.; Taniuchi, Y.; Sato, K.; Sakai-Moritani, Y.; Kaku, S.; Kawasaki, T.; Matsumoto, Y.; Sakamoto, S.; Tsukamoto, S., Design, synthesis and biological activity of YM-60828 derivatives: Potent and orally-bioavailable factor Xa inhibitors based on naphthoanilide and naphthalensulfonanilide templates. Bioorg. Med. Chem. Lett. 2002, 10, 2597-2610. (b) Hirayama, F.; Koshio, H.; Katayama, N.; Ishihara, T.; Kaizawa, H.; Taniuchi, Y.; Sato, K.; Sakai-Moritani, Y.; Kaku, S.; Kurihara, H.; Kawasaki, T.; Matsumoto, Y.; Sakamoto, S.; Tsukamoto, S., Design, synthesis and biological activity of YM-60828 derivatives. Part 2: Potent and orally-bioavailable factor Xa inhibitors based on benzothiadiazine-4-one template. Bioorg. Med. Chem. Lett. 2003, 11, 367-381.
19. Dou, D. F.; Tiew, K. C.; He, G. J.; Mandadapu, S. R.; Aravapalli, S.; Alliston, K. R.; Kim, Y.; Chang, K. O.; Groutas, W. C., Potent inhibition of Norwalk virus by cyclic sulfamide derivatives. Bioorg. Med. Chem. Lett. 2011, 19, 5975-5983.
20. Shaw, D.; Best, J.; Dinnell, K.; Nadin, A.; Shearman, M.; Pattison, C.; Peachey, J.; Reilly, M.; Williams, B.; Wrigley, J.; Harrison, T., 3,4-Fused cyclohexyl sulfiones as gammasecretase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 3073-3077.
21. Kim, S. J.; Park, H. B.; Lee, J. S.; Jo, N. J.; Yoo, K. H.; Baek, D.; Kang, B.-W.; Cho, J.-H.; Oh, C.-H., Novel 1β-methylcarbapenems having cyclic sulfonamide moieties: Synthesis and evaluation of in vitro antibacterial activity. Eur. J. Med. Chem. 2007, 42, 1176-1183.
22. Castro, J. L.; Baker, R.; Guiblin, A. R.; Hobbs, S. C.; Jenkins, M. R.; Russell, M. G. N.; Beer, M. S.; Stanton, J. A.; Scholey, K.; Hargreaves, R. J.; Graham, M. I.; Matassa, V. G., Synthesis and biological activity of 3-[2-(dimethylamino)ethyl]-5-[(1,1-dioxo-5-methyl-1,2,5-thiadiazolidin-2-yl)methyl]-1H-indole and analogs: antagonists for the 5-HT1D receptor. J. Med. Chem. 1994, 37, 3023-3032.
23. Gong, B.; Zheng, C.; Skrzypczak-Jankun, E.; Yan, Y. F.; Zhang, J. H., A robust twodimensional hydrogen-bonded network: The sulfamide moiety as a new building block for the design of molecular solids. J. Am. Chem. Soc. 1998, 120, 11194-11195.
24. Kloek, J. A.; Leschinsky, K. L., An improved synthesis of sulfamoyl chlorides. J. Org. Chem. 1976, 41, 4028-4029.
25. Cano, C.; Pavon, J.; Serrano, A.; Goya, P.; Paez, J. A.; de Fonseca, F. R.; Macias-Gonzalez, M., Novel sulfamide analogs of oleoylethanolamide showing in vivo satiety inducing actions and PPAR alpha activation. J. Med. Chem. 2007, 50, 389-393.
26. Woolven, H.; Gonzalez-Rodriguez, C.; Marco, I.; Thompson, A. L.; Willis, M. C., DABCOBis(sulfur dioxide), DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation. Org. Lett. 2011, 13, 48764878.
27. Santos, P. S.; Mello, M. T. S., The raman-spectra of some molecular-complexes of 1azabicyclo [2.2.2]-octane and 1,4-diazabicyclo [2.2.2]-octane. J. Mol. Struc. 1988, 178, 121-133.
28. (a) Montero, J. L.; Dewynter, G.; Agoh, B.; Delaunay, B.; Imbach, J. L., Selective synthesis of sulfonylureas and carboxysulfamides: a novel route to oxazolidinones. Tetrahedron Lett. 1983, 24, 3091-3094. (b) Borghese, A.; Antoine, L.; Van Hoeck, J. P.; Mockel, A.;

Merschaert, A., Mild and safer preparative method for nonsymmetrical sulfamides via Nsulfamoyloxazolidinone derivatives: Electronic effects affect the transsulfamoylation reactivity. Org. Proc. Res. Dev. 2006, 10, 770-775.
29. Beaudoin, S.; Kinsey, K. E.; Burns, J. F., Preparation of unsymmetrical sulfonylureas from N, N^{\prime}-sulfuryldiimidazoles. J. Org. Chem. 2003, 68, 115-119.
30. (a) Saha, A. K.; Schultz, P.; Rapoport, H., 1,1'-Carbonylbis(3-methylimidazolium) triflate: an efficient reagent for aminoacylations. J. Am. Chem. Soc. 1989, 111, 4856-4859. (b) Watkins, B. E.; Kiely, J. S.; Rapoport, H., Synthesis of oligodeoxyribonucleotides using N-(benzyloxycarbonyl)-blocked nucleosides. J. Am. Chem. Soc. 1982, 104, 5702-5708.
31. Staab, H. A. New Methods of Preparative Organic Chmistry IV. Syntheses Using Heterocyclic Amides (Azolides). Angew. Chem., Int. Ed. Engl. 1962, 1, 351-367.
32. Winum, J. Y.; Toupet, L.; Barragan, V.; Dewynter, G.; Montero, J. L., N-(tert-butoxycarbonyl)- N - 4-(dimethylazaniumylidene)-1,4-dihydropyridin -1-ylsulfonyl azanide: A new sulfamoylating agent. Structure and reactivity toward amines. Org. Lett. 2001, 3, 2241-2243.
33. Burgess, E. M.; Penton, H. R.; Taylor, E. A., Thermal reactions of alkyl Ncarbomethoxysulfamate esters. J. Org. Chem. 1973, 38, 26-31 and references therein.
34. (a)Nicolaou, K. C.; Snyder, S. A.; Longbottom, D. A.; Nalbandian, A. Z.; Huang, X. H., New uses for the Burgess reagent in chemical synthesis: Methods for the facile and stereoselective formation of sulfamidates, glycosylamines, and sulfamides. Chem. Eur. J. 2004, 10, 5581-5606. (b) Nicolaou, K. C.; Longbottom, D. A.; Snyder, S. A.; Nalbanadian, A. Z.; Huang, X. H., A new method for the synthesis of nonsymmetrical sulfamides using Burgess-type reagents. Angew. Chem., Int. Ed. Engl. 2002, 41, 3866-3870.
35. For an alternative synthesis of linear sulfamide, see: Davis, F. A.; Giangiordano, M. A.; Starner, W. E., A new synthesis of primary amines from diarylidenesulfamides. Tetrahedron Lett. 1986, 27, 3957-3960.
36. (a) Dubois, G. E., Amination of aryl sulfamate esters - a convenient general synthesis of aliphatic sulfamides. J. Org. Chem. 1980, 45, 5373-5375. (b) Gavernet, L.; Elvira, J. E.; Samaja, G. A.; Pastore, V.; Cravero, M. S.; Enrique, A.; Estiu, G.; Bruno-Blanch, L. E.,

Synthesis and anticonvulsant activity of amino acid-derived sulfamides. J. Med. Chem. 2009, 52, 1592-1601. (c) Zhang, X. J.; Liu, S. P.; Li, X. M.; Yan, M.; Chan, A. S. C., Highly enantioselective conjugate addition of aldehydes to nitroolefins catalyzed by chiral bifunctional sulfamides. Chem. Commun. 2009, 833-835. (d) Wang, J. J.; Lao, J. H.; Du, Q. S.; Nie, S. Z.; Hu, Z. P.; Yan, M., Enantioselective conjugate addition of ketones to nitroalkenes catalyzed by pyrrolidine-sulfamides. Chirality 2012, 24, 232-238. (e) Chen, J. R.; Fu, L.; Zou, Y. Q.; Chang, N. J.; Rong, J.; Xiao, W. J., Pyrrolidinyl-sulfamide derivatives as a new class of bifunctional organocatalysts for direct asymmetric Michael addition of cyclohexanone to nitroalkenes. Org. Biomol. Chem. 2011, 9, 5280-5287.
37. (a) Kaiser, E. T.; Katz, I. R.; Wulfers, T. F., Alkaline hydrolysis of catechol cyclic sulfate. An extraordinary rate acceleration. J. Am. Chem. Soc. 1965, 87, 3781-3782. (b) Tintel, C.; Terheijden, J.; Lugtenburg, J.; Cornelisse, J., Photoreduction and photoaddition reactions of pyrenediones. Tetrahedron Lett. 1987, 28, 2057-2060. (c) Dubois, G. E.; Stephenson, R. A., Sulfonylamine-mediated sulfamation of amines - A mild, high-yield synthesis of sulfamic acid salts. J. Org. Chem. 1980, 45, 5371-5373.
38. Tickner, A. M.; Liu, C.; Hild, E.; Mendelson, W., An efficient synthesis of catechol cyclic sulfates. Syn. Comm. 1994, 24, 1631-1637.
39. Fettes, K. J.; Howard, N.; Hickman, D. T.; Adah, S.; Player, M. R.; Torrence, P. F.; Micklefield, J., Synthesis and nucleic-acid-binding properties of sulfamide- and 3 '-N-sulfamate-modified DNA. J. Chem. Soc.-Perk. Trans. 1 2002, 485-495.
40. Buncel, E.; Raoult, A.; Lancaste.La, Bond scission in sulfur-compounds. VIII. Reaction of aryl chlorosulfates with anionic nucleophiles. J. Am. Chem. Soc. 1973, 95, 5964-5967.
41. Turcotte, S.; Bouayad-Gervais, S. H.; Lubell, W. D., N-Aminosulfamide Peptide Mimic Synthesis by Alkylation of Aza-sulfuryllglycinyl Peptides. Org. Lett. 2012, 14, 1318-1321.
42. Charalambous, J.; Frazer, M. J.; Gerrard, W., Solubility of hydrogen chloride in sulphones, sulphonates, and sulphonyl chlorides. J. Chem. Soc. 1964, 1520-1521.
43. Bolli, M. H.; Boss, C.; Binkert, C.; Buchmann, S.; Bur, D.; Hess, P.; Iglarz, M.; Meyer, S.; Rein, J.; Rey, M.; Treiber, A.; Clozel, M.; Fischli, W.; Weller, T., The discovery of N-5-(4-bromophenyl)-6-2-(5-bromo-2-pyrimidinyl)oxy ethoxy-4-pyrimidinyl- N^{\prime} propylsulfamide
(Macitentan), an orally active, potent dual endothelin receptor antagonist. J. Med. Chem. 2012, 55, 7849-7861.
44. Winum, J. Y.; Barragan, V.; Montero, J. L., A convenient method for the alkylation of sulfamides using alkyl bromides and Mitsunobu betaine. Tetrahedron Lett. 2001, 42, 601603.
45. Esteve, C.; Vidal, B., Solid-phase synthesis of sulfamides. Tetrahedron Lett. 2002, 43, 1019-1021.
46. (a) Jadhav, P. K.; Woerner, F. J., Synthesis of 8-membered cyclic sulfamides: novel HIV-1 protease inhibitors. Tetrahedron Lett. 1995, 36, 6383-6386. (b) Kim, S. H.; Bok, J. H.; Lee, J. H.; Kim, I. H.; Kwon, S. W.; Lee, G. B.; Kang, S. K.; Park, J. S.; Jung, W. H.; Kim, H. Y.; Rhee, S. D.; Ahn, S. H.; Bae, M. A.; Ha, D. C.; Kim, K. Y.; Ahn, J. H., Synthesis and biological evaluation of cyclic sulfamide derivatives as 11β-hydroxysteroid dehydrogenase 1 inhibitors. ACS. Med. Chem. Lett. 2012, 3, 88-93.
47. Dougherty, J. M.; Probst, D. A.; Robinson, R. E.; Moore, J. D.; Klein, T. A.; Snelgrove, K. A.; Hanson, P. R., Ring-closing metathesis strategies to cyclic sulfamide peptidomimetics. Tetrahedron 2000, 56, 9781-9790.
48. For the first-generation Grubbs catalyst: (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H., A Series of well-defined metathesis catalysts-synthesis of $\left[\mathrm{RuCl}_{2}\left(=\mathrm{CHR}^{\prime}\right)\left(\mathrm{PR}_{3}\right)_{2}\right]$ and its reactions. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039. (b) Wu, Z.; Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. Reactions of ruthenium carbenes of the type $\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{X})_{2} \mathrm{Ru}: \mathrm{CH}-$ $\mathrm{CH}: \mathrm{CPh}_{2}\left(\mathrm{X}=\mathrm{Cl}\right.$ and $\left.\mathrm{CF}_{3} \mathrm{COO}\right)$ with strained acyclic olefins and functionalized olefins. J. Am. Chem. Soc. 1995, 117, 5503. (c) Schwab, P.; Grubbs, R. H.; Ziller, J. W. Synthesis and applications of $\mathrm{RuCl}_{2}\left(=\mathrm{CHR}^{\prime}\right)\left(\mathrm{PR}_{3}\right)_{2}$: The influence of the alkylidene moiety on metathesis activity. J. Am. Chem. Soc. 1996, 118, 100. For the second-generation Grubbs catalyst, see: Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1999, 1, 953.
49. (a) Jun, J. H.; Dougherty, J. M.; Jimenez, M. D.; Hanson, P. R., New strategies to symmetric and unsymmetric cyclic sulfamide analogs of DMP 323: a 'sulfur linchpin'/RCM approach. Tetrahedron 2003, 59, 8901-8912. (b) McReynolds, M. D.; Dougherty, J. M.; Hanson, P.
R., Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. Chem. Rev. 2004, 104, 2239-2258.
50. Kim, S. J.; Cho, J. H.; Oh, C. H., Novel 1β-methylcarbapenems having cyclic sulfonamide moieties: Synthesis and evaluation of in vitro antibacterial activity - Part II. Archiv Der Pharmazie 2009, 342, 528-532.
51. Zabawa, T. P.; Kasi, D.; Chemler, S. R., Copper(II) acetate promoted intramolecular diamination of unactivated olefins. J. Am. Chem. Soc. 2005, 127, 11250-11251.
52. Zabawa, T. P.; Chemler, S. R., Copper(II) carboxylate promoted intramolecular diamination of terminal alkenes: Improved reaction conditions and expanded substrate scope. Org. Lett. 2007, 9, 2035-2038.
53. Zhong, J. Y.; Gan, X. D.; Alliston, K. R.; Groutas, W. C., Design, synthesis, and in vitro evaluation of inhibitors of human leukocyte elastase based on a functionalized cyclic sulfamide scaffold. Bioorg. Med. Chem. 2004, 12, 589-593.
54. Regainia, Z.; Winum, J. Y.; Smaine, F. Z.; Toupet, L.; Aouf, N. E.; Montero, J. L., General synthesis of n-membered cyclic sulfamides. Tetrahedron 2003, 59, 6051-6056.
55. Bendjeddou, A.; Abbaz, T.; Regainia, Z.; Aouf, N.-E., A New Class of Heterocycles: 1,4,3,5-Oxathiadiazepane 4,4-dioxides. Molecules 2012, 17, 1890-1899.
56. (a) Kumar, G. B.; Patel, H. V.; Shah, A. C.; Trenkle, M.; Cardin, C. J., Diastereoselective formation of 2-aryl-3-arenesulfonyl 4-ethyl-1,3-oxazolidines: An x-ray crystallographic and H-1 NMR study. Tetrahedron-Asymm. 1996, 7, 3391-3396. (b) Wilken, J.; Wallbaum, S.; Saak, W.; Haase, D.; Pohl, S.; Patkar, L. N.; Dixit, A. N.; Chittari, P.; Rajappa, S.; Martens, J., Utilization of industrial waste materials, 6. Utilization of derivatives of the bicyclic proline analog (all-R)-octahydrocyclopenta[b]pyrrol-2-carboxylic acid in the stereoselective synthesis. Liebigs Ann. 1996, 927-934. (c) Heydenreich, M.; Koch, A.; Lazar, L.; Szatmari, I.; Sillanpaa, R.; Kleinpeter, E.; Fulop, F. Synthesis and stereochemical studies of 1- and 2-phenyl-substituted 1,3-oxazino[4,3-a] isoquinoline derivatives, Tetrahedron 2003, 59, 19511959.
57. McDonald, R. I.; Stahl, S. S., Modular synthesis of 1,2-diamine derivatives by palladiumcatalyzed aerobic oxidative cyclization of allylic sulfamides. Angew. Chem., Int. Ed. Engl. 2010, 49, 5529-5532.
58. Cano, C.; Goya, P.; Paez, J. A.; Giron, R.; Sanchez, E.; Martin, M. I., Discovery of 1,1-dioxo-1,2,6-thiadiazine-5-carboxamide derivatives as cannabinoid-like molecules with agonist and antagonist activity. Bioorg. Med. Chem. 2007, 15, 7480-7493.
59. Harned, A. M.; Mukherjee, S.; Flynn, D. L.; Hanson, P. R., Ring-opening metathesis phasetrafficking (ROMpt) synthesis: Multistep synthesis on soluble ROM supports. Org. Lett. 2003, 5, 15-18.
60. (a) Dougherty, J. M.; Probst, D. A.; Robinson, R. E.; Moore, J. D.; Klein, T. A.; Snelgrove, K. A.; Hanson, P. R., Ring-closing metathesis strategies to cyclic sulfamide peptidomimetics. Tetrahedron 2000, 56, 9781-9790. (b) Dougherty, J. M.; Probst, D. A.; Hanson, P. R., Ring-closing metathesis strategies to cyclic sulfamides. Abst. of Papers of the Am. Chem. Soc. 2000, 220, U107-U107.
61. (a) Cherney, R. J.; King, B. W. Cyclic sulfonyl compounds as inhibitors of metalloproteases. Chem. Abstr. 2002. 136. 309923; WO-2002028846, 2002. (b) Shih, N. -Y.; Shue, H. -J. Reichard, G. A.; Paliwal, S.; Blythin, D. J.; Piwinski, J. J.; Xiao, D.; Chen, X. Selective neurokinin antagonists. Chem. Abstr. 2001. 135. 61331; WO-2001044200, 2001.
62. (a) Schaal, W.; Karlsson, A.; Ahlsen, G.; Lindberg, J.; Andersson, H. O.; Danielson, U. H.; Classon, B.; Unge, T.; Samuelsson, B.; Hulten, J.; Hallberg, A.; Karlen, A. Synthesis and comparative molecular field analysis (CoMFA) of symmetric and nonsymmetric cyclic sulfamide HIV-1 protease inhibitors. J. Med. Chem. 2001, 44, 155-169. (b) Spaltenstein, A.; Almond, M. R.; Bock, W. J.; Cleary, D. G.; Furfine, E. S.; Hazen, R. J.; Kazmierski, W. M.; Salituro, F. G.; Tung, R. D.; Wright, L. L. Novel inhibitors of HIV protease: design, synthesis and biological evaluation of picomolar inhibitors containing cyclic P1/P2 scaffolds. Bioorg. Med. Chem. Lett. 2000, 10, 1159-1162. (c) Backbro, K.; Lowgren, S.; Osterlund, K.; Atepo, J.; Unge, T.; Hulten, J.; Bonham, N. M.; Schaal, W.; Karlen, A.; Hallberg, A. Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor. J. Med. Chem. 1997, 40, 898-902. (d) Hulten, J.; Bonham, N. M.; Nillroth, U.; Hansson, T.; Zuccarello, G.; Bouzide, A.; Aqvist, J.; Classon, B.; Danielson, U. H.; Karlen, A.; Kvarnstrom, I.;

Samuelsson, B.; Hallberg, A. Cyclic HIV-1 protease inhibitors derived from mannitol: synthesis, inhibitory potencies, and computational predictions of binding affinities. J. Med. Chem. 1997, 40, 885-897.
63. Moyano, A.; Rios, R., Asymmetric Organocatalytic cyclization and cycloaddition reactions. Chem. Rev. 2011, 111, 4703-4832.
64. For reviews on the organocatalytic synthesis of drugs and of bioactive natural products, see: (a) de Figueiredo, R. M.; Christmann, M., Organocatalytic synthesis of drugs and bioactive natural products. Eur. J. Org. Chem. 2007, 2575-2600. (b) Grondal, C.; Jeanty, M.; Enders, D., Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chem. 2010, 2, 167-178. (c) Marques-Lopez, E.; Herrera, R. P.; Christmann, M., Asymmetric organocatalysis in total synthesis - a trial by fire. Nat. Prod. Rep. 2010, 27, 1138-1167.
65. (a) Wieland, P.; Miescher, K., Über die Herstellung mehrkerniger Ketone. Helv. Chim. Acta, 1950, 33, 2215 (b) Wendler, N. L.; Slates, H. L.; Tishler, M., Δ^{4}-9-Methyloctalin-3,8-dione. J. Am. Chem. Soc. 1951, 73, 3816-3818. (c) Eder, U.; Sauer, G.; Weichert, R., New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures Angew. Chem., Int. Ed. Engl. 1971, 10, 496-497. (d) Z. G. Hajos and D. R. Parrish, Ger. Offen., 1971, CODEN: GWXXBX DE 2102623 19710729, CAN 76:59072 (in German: pp. 42). (e) S. Ramachandran and M. S. Newman, Org. Synth. Coll., 1973, V, 486. (f) Hajos, Z. G.; Parrish, D. R., Synthesis and conversion of 2-methyl-2-(3-oxobutyl)-1,3-cyclopentanedione to the isomeric racemic ketols of the [3.2.1]bicyclooctane and of the perhydroindane series. J. Org. Chem. 1974, 39, 1612-1615. (g) Hajos, Z. G.; Parrish, D. R., Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem. 1974, 39, 1615-1621. (h) Bui, T.; Barbas, C. F., A proline-catalyzed asymmetric Robinson annulation reaction. Tetrahedron Lett. 2000, 41, 6951-6954.
66. (a) List, B.; Lerner, R. A.; Barbas, C. F., Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 2000, 122, 2395-2396. (b) Notz, W.; List, B., Catalytic asymmetric synthesis of anti-1,2-diols. J. Am. Chem. Soc. 2000, 122, 7386-7387. (c) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., Amino acid catalyzed direct asymmetric aldol reactions: A bioorganic approach to catalytic asymmetric carbon-carbon bond-forming reactions. J. Am. Chem. Soc. 2001, 123, 5260-5267.
67. For two complementary views on the origins and development of organocatalysis: (a) Barbas, C. F., III, Organocatalysis - Organocatalysis lost: Modern chemistry, ancient chemistry, and an unseen biosynthetic apparatus. Angew. Chem., Int. Ed. Engl. 2008, 47, 42-47. (b) List, B., Emil Knoevenagel and the roots of aminocatalysis. Angew. Chem., Int. Ed. Engl. 2010, 49, 1730-1734.
68. Jaspers, D.; Saak, W.; Doye, S., Dinuclear Titanium Complexes with Sulfamide Ligands as Precatalysts for Hydroaminoalkylation and Hydroamination Reactions. Synlett 2012, 20982102.
69. Ahn, K. H.; Yoo, D. J.; Kim, J. S., Asymmetric aldol reactions employing a cyclic sulfamide chiral auxiliary. Tetrahedron Lett. 1992, 33, 6661-6664.
70. (a) Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E., Bornanesultam-directed asymmetric synthesis of crystalline, enantiomerically pure syn aldols. J. Am. Chem. Soc. 1990, 112, 2767-2772. (b) Evans, D. A.; Bartroli, J.; Shih, T. L., Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates. J. Am. Chem. Soc. 1981, 103, 2127-2129.
71. Zhang, X. J.; Liu, S. P.; Li, X. M.; Yan, M.; Chan, A. S. C., Highly enantioselective conjugate addition of aldehydes to nitroolefins catalyzed by chiral bifunctional sulfamides. Chem. Commun. 2009, 833-835.
72. (a) Dubois, G. E.; Stephenson, R. A., Sulfonylamine-mediated sulfamation of amines. A mild, high-yield synthesis of sulfamic acid salts. J. Org. Chem. 1980, 45, 5371-5373. (b) Dubois, G. E., Amination of aryl sulfamate esters. A convenient general synthesis of aliphatic sulfamides. J. Org. Chem. 1980, 45, 5373-5375.
73. Nugent, T. C.; Shoaib, M.; Shoaib, A., Practical access to highly enantioenriched quaternary carbon Michael adducts using simple organocatalysts. Org. Biomol. Chem. 2011, 9, 52-56.
74. Rodriguez, A. A.; Yoo, H.; Ziller, J. W.; Shea, K. J., New architectures in hydrogen bond catalysis. Tetrahedron Lett. 2009, 50, 6830-6833.
75. Castro, J. L.; Matassa, V. G.; Ball, R. G., Mitsunobu-like processes with a novel triphenylphosphine-cycle sulfamide betaine. J. Org. Chem. 1994, 59, 2289-2291.
76. Castro, J. L.; Matassa, V. G., Methiodide approach to the synthesis of 3-[2-(dimethylamino)ethyl]-5-[(1,l-dioxo-S-methyl-1,2,5-thiadiazolidin-2-yl)methyl]-1H-indole and analogues. Tetrahedron Lett. 1993, 34, 4705-4708.
77. Fecourt, F.; Lopez, G.; Van Der Lee, A.; Martinez, J.; Dewynter, G., Cyclosulfamide as a chiral auxiliary: application to efficient asymmetric synthesis (alkylation/aldolization). Tetrahedron-Asymm. 2010, 21, 2361-2366.

CHAPTER 2

Newly Developed Piperidinyl Sulfamides as Tyrosyl-DNA phosphodiesterase 1 (Tdp 1) Inhibitors

2.1. Abstract

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds. ${ }^{1}$ Such linkages form in vivo following the DNA processing activity of topoisomerase I (Top1). For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes, which can be generated by either exogenous or endogenous factors. Tdp1 has been regarded as a potential therapeutic co-target of Top1 in that it seemingly counteracts the effects of Top1 inhibitors, such as camptothecin and indenoisoquinolines and its clinically used derivatives. Thus, by reducing the repair of Top1-DNA lesions, Tdp1 inhibitors have the potential to augment the anticancer activity of Top1 inhibitors. There are no known specific pharmacological inhibitors of Tdp1. In our attempts to design new chemical scaffolds for anti-cancer activity against various protein targets, we have recently synthesized a host of piperidinyl-based sulfamides. Some of these compounds have shown activity in screening for Tdp 1 inhibition activity in biochemical assays against recombinant Tdp1. Using molecular modeling and homology studies, a small library of compounds has been synthesized and tested further.

2.2. Introduction

Most people and living organisms on planet earth are exposed to substances that are known to damage DNA, which is caused by UV light, radiation (including x-rays and gamma rays), plastics, cigarette smoke, pesticides, micronutrient deficiency, hydrolysis or thermal disruption, etc. While rare, mistakes also occur during DNA replication, namely, when a cell copies its DNA in preparation for cell division. Ultimately, damaged DNA can be prompted to a tumor cell by proliferating through continuous cell division. Many anticancer drugs used for
chemotherapy generate their anti-cancer activity by damaging DNA in rapidly replicating tumor cells, and this poses a significant risk of generating a new cancer, such as leukemia. Therefore, there is a high demand to develop new inhibitors that may help to repair DNA or oppose the unwanted action of these anticancer agents. Topoisomerase I (Top1) inhibitors, such as Camptothecins, ${ }^{2}$ are chemotherapeutic agents which prevent the replication of single strand DNA molecules, ultimately leading to cell death (Figure 2.1). The natural product camptothecin (2.1) was first isolated from the bark of the Chinese tree, Camptotheca acuminata, by the National Cancer Institute (NCI). ${ }^{3}$ The water-soluble derivatives of Camptothecin-Topotecan (2.2) and Irinotecan (2.3) were developed successfully and approved by the US Food and Drug Administration (FDA): Topotecan for ovarian and lung cancers and Irinotecan for colorectal cancer. ${ }^{4}$

Camptothecin (2.1)

Topotecan (2.2) HO O

Figure 2.1. Structures of Top1 inhibitors.

2.3. Topoisomerase I (Top1) and Tyrosyl-DNA phosphodiesterase 1 (Tdp1)

Nuclear DNA (nDNA) is approximately a 2 meter-long polymer that is located in a cell nuclear volume of $10^{-17} \mathrm{~m}^{3}$. Because it is highly compacted, cellular DNA must have many curved DNA domains/loops and points of contact between these domains (Figure 2.2). ${ }^{5}$

Furthermore, DNA metabolism needs the two strands of the double helix to be separated to serve as templates for transcription, replication, recombination and repair and this fundamental processes commences during the cell cycle to maintain its own integrity and generate genetic diversity. Due to the size and mass of replication and transcription complexes, the rigid complexes do not rotate easily around the DNA helix. This limitation of free rotation of the flanking DNA domain generates supercoiled DNA, which needs to be relaxed by topoisomerases. TOP1 relieves DNA torsional stress and relaxes supercoiled DNA by nicking the DNA and rotating the broken strand around the TOP1-bound DNA strand. The yellow circle in Figure 2.2 A shows the covalently linked catalytic tyrosine of TOP1. Figure $2.2 \mathbf{B}$ is an expanded version of DNA-relaxation by a TOP1 cleavage complex (TOP1cc). The first step is a transesterification reaction catalyzed by the TOP1 whereby the catalytic tyrosine (Y) is linked to the 3'-DNA end (nicking step) (Figure $2.2 \mathbf{B}$, left). A nucleophilic attack by the tyrosine residue of TOP1 on the phosphate moiety of the substrate releases tyrosine and forms a new covalent enzyme-DNA complex, TOP1cc (Figure 2.3). ${ }^{6}$ In the second step, the torsion strain from DNA supercoiling allows the controlled rotation of the 5^{\prime} end of the nicked DNA strand around the intact strand (Figure 2.2 B , middle). Once the DNA is relaxed, the nucleophilic attack of the tyrosyl-DNA-phosphodiester bond by the free 5'-hydroxyl end of the nicked DNA is required to religate (bind back) with the corresponding 3^{\prime} end of DNA, which is called the closing step of the nicking-closing reaction (DNA religation, Figure 2.2 B, right and Figure 2.3). TOP1ccs are generally ephemeral that they are not detectable because the closing step is much faster than the nicking step. It is crucial that any misalignment of the 5^{\prime}-hydroxyl-DNA end with the scissile tyrosyl-DNA-phosphodiester bond leads to an accumulation of TOP1cc, and it will end up as DNA modification ${ }^{7}$ or result in apoptosis. ${ }^{8}$

Figure 2.2. Relaxation of DNA supercoiling by TOP1-mediated DNAcleavage complexes. ${ }^{5}$ (This figure was copied from 'Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nature Reviews Cancer 2006, 6, 789-802)

Figure 2.3. Trans-esterification catalyzed by Top1.

Camptothecin, a Top1 inhibitor, targets Top1 and novel Top1 inhibitors are in development as anticancer agents that prevent the religation of DNA after cleavage during replication (Figure 2.4). ${ }^{9}$ Mechanistically and undesirably, Top1 inhibitors selectively bind to the TOP1-DNA interface and damage DNA by trapping covalent complexes between the Top1 catalytic tyrosine and the 3^{\prime}-end of the broken DNA. ${ }^{10}$

Figure 2.4. Mechanism for each of Topl and inhibitor with DNA (This figure was copied from "Pommier, Y. et al., Progress in Nucleic Acid Research and Molecular Biology, Vol 81, Moldave, K., Ed. 2006; pp 179-229.")

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a recently discovered DNA repair enzyme that catalyzes the cleavage (hydrolysis) of phosphodiester bond between the Topl catalytic tyrosine residue and a DNA 3'-phosphate as shown Figure 2.5. ${ }^{1,11,12,13}$ When the 5'-hydroxyl end of the broken DNA is too far to carry out the nucleophilic addition resulting in DNA religation, then Tdp1 hydrolyzes the intermediate tyrosyl-phosphodiester bond using a water molecule. ${ }^{7 c, 14}$ Tdp1 repairs topoisomerase I (Top1)-DNA covalent complexes by this mechanism and Tdp1 has the potential to enhance the negative activity of Top 1 inhibitors in cancer cell as mentioned before. ${ }^{15}$ The PNKP (Polynucleotide kinase 3'-phosphatase) enzyme
can then hydrolyze the damaged DNA by either removing 3'-phosphates from, or by phosphorylating 5'-hydroxyl groups on the broken DNA backbone. This is now a substrate for DNA polymerase, which is an enzyme that assists in DNA replication, by adding free nucleotides to the 3 ' end of a newly forming strand, and ligase which helps the combining of DNA strands together by catalyzing the formation of a phosphodiester bond. As discussed above, Tdp1 counteracts the action of Top1 inhibitors and possibly decrease their effectiveness in reducing cancer cells. Tdp1 repairs DNA lesions and chemotherapeutic-mediated DNA damage, such as the DNA breaks prompted by topl inhibitors. Thus, Tdp1 is a potentially rational anticancer target whose inhibition should improve the activity of cancer chemotherapeutics.

(a)
(b)
(c)

Figure 2.5. Action of Tdp1 and PNKP.

Tdp1 inhibitors have become a major area of drug research for anti-cancer treatment. ${ }^{5,16}$ A recent study on a steroid-linked benzenesulfonate (NSC 88915) and other derivatives reported that both the steroid and phenylsulfonyl ester moieties of NSC 88915 are required for Tdp1 inhibition (Figure 2.6). ${ }^{17}$ In particular, the p-Br-substituted benzenesulfonate NSC 88915 showed the best result among the derivatives, its IC_{50} value was $7.7 \pm 0.8 \mu \mathrm{M}$.

Figure 2.6. Structure of NSC88915 and other derivatives.

Since only a limited number of weak Tdp1 inhibitors have been reported, ${ }^{18}$ we commenced the investigation by designing and developing new desired compounds from a sulfamide moiety. The structural features considered for initial scaffold design were based on various literature reports on compounds tested as inhibitor of Aggrecanase-1, ${ }^{19}$ TACE ${ }^{20}$ or KSP (Kinesin Spindle Protein). ${ }^{21}$ Herein, we report the study of a small library of sulfamide compounds, designed, synthesized and tested for Tdp1 inhibitory activity

2.4. Chemistry

The initial study was the synthesis of the sulfonamide compound 2.7 , which has a p bromo phenyl ring similar to NSC88915 (Scheme 2.1). The synthesis route for the sulfonamide 2.7 was started from the reaction of p-bromo benzenesulfonyl chloride with m-fluoroaniline
under basic conditions. After the generation of sulfonamide intermediate 2.4, a Mitsunobu reaction was carried out to generate the piperidine-containing secondary amine 2.5. Reductive amination after deprotection of Boc group, using HCl , was successfully accomplished to generate sulfonamide compound 2.7.

Scheme 2.1. Preparation of sulfonamide 2.7.

In order to observe the effect of an amino ester moiety on DNA binding or H -bonding, we changed the phenyl ring to an amino ester. The new scaffold design is composed of three fragments as outlined in Figure 2.7, namely, a western subunit (hydrophilic amino ester), central subunit (sulfamide with phenyl ring), and eastern subunit (benzyl piperidine). Modification of the structure of the inhibitor was mainly focused on these three fragments.

Figure 2.7. Scaffold design for Tdp 1 analogues.

Piperidinyl sulfamides derivatives $\mathbf{2 . 2 1 - 2 . 2 5}$ were prepared starting from the reductive amination reaction of p-fluoroaniline $\mathbf{2 . 1 0}$ or n-butylamine 2.11 and N-Boc-4-piperidinone 2.12 to give 2.13 and 2.14 (Scheme 2.2). ${ }^{22}$ The secondary amines 2.13 and 2.14 were coupled with chlorosulfonyl isocyanate (CSI) and $t-\mathrm{BuOH}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ as a base to the corresponding Boc-protected sulfamide moieties 2.15 and 2.16. ${ }^{23}$ The subsequent Mitsunobu reaction was carried out with the α-hydroxyl amino ester 2.9 to generate the amino ester-linked sulfamides 2.17 and 2.18. ${ }^{24}$ In this regard, L-valine was converted to the α-hydroxyl carboxylic acid 2.8 using the Van Slyke ${ }^{25}$ reaction which maintains the chiral integrity using $\mathrm{H}_{2} \mathrm{SO}_{4}$ and NaNO_{2} in water at $0{ }^{\circ} \mathrm{C}$ overnight with vigorous generation of nitrogen gas being observed. ${ }^{26}$ Amino ester 2.9 was obtained from amino acid 2.8 via esterification using $\mathrm{MeOH} /$ acid. ${ }^{27,28}$ Deprotection of the Boc group furnished the secondary amines $\mathbf{2 . 1 9}$ and 2.20, and reductive amination afforded the piperidinyl sulfamides 2.21-2.25. ${ }^{29}$

Scheme 2.2. Preparation of compounds 2.21-2.25.

2.4.1. Initial Gel Study

Results of the initial gel study of sulfamide compounds 2.21, 2.25, and other intermediates are shown in Figure 2.8. Key points of Figure 2.8, include: (A) Sulfamide intermediates and final sulfamide compounds; (B) Tdp1 biochemical assays. Single-stranded 14 Y (14-mer strand) was used as substrates and ${ }^{32} \mathrm{P}$-Radiolabeling $\left({ }^{*}\right)$ was at the 5 ' terminus of the strand. Tdp1 catalyzes the hydrolysis of the 3 '-phosphotyrosine bond using water molecule and converts 14 Y to an oligonucleotide with 3'-phosphate 14P; (C) Gel illustrates Tdp1 inhibition by sulfamides with single strand 14Y. 3'-Phosphate oligonucleotide product (14P) was developed faster than the corresponding tyrosyl oligonucleotide substrate (14Y). Reactions were performed with sulfamides in concentration $0.01,0.1,1.0,10$, and $100 \mu \mathrm{M}$, and (D) Cleavage inhibition analysis of the gel shown in panel \mathbf{C} was calculated as percentage. Gel study for compounds LSC-JHJ-I-55-1 and LSC-JHJ-I-64-1 was carried out together but they are intermediates for other projects. Compound 2.21 showed the best result among the tested compounds with a measured IC_{50} value of $23.7 \mu \mathrm{M}$.
A

2.15 (LSC-JHJ-I-40-1)
$2.21 \mathrm{IC}_{50}=23.7 \mu \mathrm{M}$ (LSC-JHJ-I-44-1)

LSC-JHJ-I-64-1

2.25 (LSC-JHJ-I-73-1)
B

$\begin{array}{cc}\mid \text { Tdp1 } \\ \text { 14P } & \text { 5'-G*ATCTAAAAGACTT }\end{array}$

Figure 2.8. Inhibition of Tdp1 activity by sulfamides and intermediates (Initial Gel Study).

2.4.2. Protein Docking Study

Dr. Iwona Weidlich carried out molecular modeling of piperidinyl sulfamide derivatives (Figure 2.9). The arrow indicates the direction to the Tdp1 active site. Hydrophobic and hydrophilic surface areas of the protein are colored in grey and orange, respectively. The coloring of atoms is as follows: carbon - yellow (A), green (B); nitrogen - blue; oxygen - red; sulfur - orange. Ligands are displayed in stick representations, while all hydrogen atoms have been shown. Hydrogen bonds are represented by green dotted lines. Both inhibitors bind in the
same binding pocket and form hydrogen bond with Serine 400. In newly synthesized compound 2.21, the benzyl piperidine moiety is oriented towards Tdp1 active site and the hydrophobic amino ester moiety forms a hydrogen bond with Tyrosine 204.

Piperidinyl sulfamide derivative (2.21)
Phenyl sulfonyl ester derivative (NSC 88915)
Figure 2.9. Comparison of the best docking poses of active Compound 2.21 (JHJ-I-44-1, A) and reported earlier phenyl sulfonyl ester derivative (NSC 88915, B) ${ }^{30}$ docked into the active site of Tdp1 (H263, K265, H493, and K495).

2.4.3. Synthesis of Piperidinyl Sulfamides

Since we obtained the promising results of the gel study and protein docking study, we continued to make an analogue of the piperidinyl sulfamide. The same synthetic route was utilized for the synthesis of sulfamide compound $\mathbf{2 . 3 0}$ where L-leucine was used as the starting substrate as outlined in Scheme 2.3. After the conversion of L-leucine to α-hydroxy ester $\mathbf{2 . 2 7}$ through 2.26 via esterification, it was used for the Mitsunobu reaction with 2.15 to furnish intermediate 2.28. In an analogous manner to the aforementioned L-valine-derived analogues 2.21-2.25, de-protection and reductive amination with p-substituted benzaldehyde generated compound 2.30.

Scheme 2.3. Preparation of compound 2.30.

An alternative route to obtain piperidinyl sulfamides is described below (Scheme 2.4). Sulfuryl chloride was coupled with L- or D-valine methyl ester hydrochlorides to generate
sulfamoyl chlorides 2.32 and 2.33 at a low temperature. ${ }^{31}$ The sulfamoyl chloride 2.32 and 2.33 then reacted with p-F-phenyl piperidinyl amine 2.31 to furnish sulfamides 2.34 and 2.35 . The secondary piperidinyl amine 2.36 and 2.37 were prepared using HCl (4 N in 1,4-dioxane), and reductive amination afforded sulfamides 2.38, 2.39, 2.40 and 2.41. Acylation also proceeded from compound 2.36 and 2.37 to generate compound 2.42 , ${ }^{32}$ and compound 2.43 was synthesized from D-valine.

Scheme 2.4. Synthetic route for the preparation of compounds 2.38-2.43.

Synthesis of 2.47 was accomplished through the route described below (Scheme 2.5).
N-Boc-1-piperidone was deprotected using HCl (4 N in 1,4-dioxane) to generate free-base 2.44 ,
which was reacted with benzaldehyde under reductive amination conditions to afford compound 2.45 in 80% yield. Reductive amination reaction with m-fluoroaniline at $0{ }^{\circ} \mathrm{C}$ to room temperature, generated amine 2.46 which was coupled with 2.32 under basic condition to complete the synthesis of sulfamide compound 2.47 in 51%.

Scheme 2.5. Synthesis of sulfamide compound 2.47 derived from L-valine.

Secondary amine 2.48 was prepared by the reductive amination of 3,5-bis-trifluoromethyl aniline and N-Boc-4-piperidinone (Scheme 2.6). The secondary amine 2.48 was coupled with chlorosulfonyl isocyanate (CSI) and $t-\mathrm{BuOH}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ as a base to generate the corresponding Boc-protected sulfamide moiety 2.49. To diversify the amino ester moiety of the compound, methyl $(S)-(+)$-3-hydroxy-2-methyl propionate 2.50 was used for the Mitsunobu reaction with intermediate 2.49 to afford the corresponding compound 2.51. Compound 2.51, when treated with 4 N HCl solution in 1,4-dioxane at $0{ }^{\circ} \mathrm{C}$, yielded 2.52. Intermediate 2.52 was reacted with p-fluorobenzaldehyde to furnish compound 2.53 through reductive amination, which was carried out at $0^{\circ} \mathrm{C}$ and warmed to room temperature.

Scheme 2.6. Preparation of compound 2.53.

An alternative route to the modified amino ester part is through the use of chlorosulfonyl isocyanate (CSI) chemistry (Scheme 2.7). A solution of CSI and α-hydroxyl ester 2.9, generated from L-valine via diazotization and esterification, was cannulated to a solution of secondary amine 2.31 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ to obtain a carbamate compound 2.54 in moderate yield. Generation of secondary amine 2.55 via Boc-deprotection of 2.54 and reductive amination with benzaldehyde, afforded the sulfur-containing carbamate compound 2.56. The coupling reaction with 2.55 and p-fluorobenzoyl chloride generated compound 2.57 containing a carbonyl group.

Scheme 2.7. Preparation of compound 2.56 and 2.57 .

2.5. Biology

2.5.1. Expression and Purification of Tdp1.

Wild-type and mutant (H493R) human Tdp1 enzymes were expressed in E. coli BL21 (DE3) cells and purified as described earlier, ${ }^{33}$ following the described method in reference (Nucleic Acids Res. 2007, 35, 4474-4484). Human Tdp1 expressing plasmid pHN1910 (a gift from Dr. Howard Nash, Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health) was constructed using vector pET-15b (Novagen, Madison, WI, USA) with full-length human Tdp1 and an additional His-tag sequence of MGSSHHHHHHSSGLVPRGSHMLEDP in its N terminus. The His-tagged human Tdp1 was purified from Novagen BL21 cells using chelating sepharose ${ }^{\mathrm{TM}}$ fast flow column (Amersham Biosciences, Piscataway, NJ, USA) according to the company's protocol. The collected
fractions were assayed immediately for Tdp1 activity. Fractions that showed Tdp1 activity were pooled and dialyzed in 20% glycerol, 50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \beta$ mercaptoethanol and 2 mM EDTA. Dialyzed samples were aliquoted and stored at $-80^{\circ} \mathrm{C}$. Tdp1 concentration was determined using the Bradford protein assay (Bio-Rad Laboratories, Hercules, CA, USA). Tdp1 purity was determined as a single $\sim 70 \mathrm{kDa}$ band representing over 95% of the detectable proteins stained by Coomassie after SDS-polyacrylamide gel electrophoresis (SDSPAGE).

2.5.2. Tdp1 Gel-Based Assay

A $1 \mathrm{nM} 5,{ }^{32}$ P-labeled DNA substrate was incubated with 0.1 nM recombinant Tdp1 in the absence or presence of inhibitor for 20 min at $25^{\circ} \mathrm{C}$ in a reaction buffer containing $50 \mu \mathrm{M}$ Tris- $\mathrm{HCl}(\mathrm{pH} 7.5), 80 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM}$ EDTA, and $40 \mu \mathrm{~g} / \mathrm{mL}$ bovine serum albumin (BSA). Reactions were terminated by the addition of two volumes of gel loading buffer (96\% (v/v) formamide, $10 \mu \mathrm{M}$ EDTA, $1 \%(\mathrm{w} / \mathrm{v})$ xylene cyanol, and $1 \%(\mathrm{w} / \mathrm{v})$ bromphenol blue). The samples were subsequently heated to $95{ }^{\circ} \mathrm{C}$ for 5 min and subjected to 18% sequencing gel electrophoresis. A concentration of 100 nM was used when employing the SCAN1 mutant H493R. In addition, H493R reactions were divided in half. One-half of the reaction was run on a sequencing gel, while the other half was analyzed by $4-20 \%$ SDS-PAGE electrophoresis. Imaging and quantification were performed using the Typhoon 8600 and ImageQuant software (Molecular Dynamics), respectively.

The results of the final gel study with 17 compounds including compound $\mathbf{2 . 2 1}$ are shown in Figure 2.10. While the compound 2.21 is showing Tdp1 inhibition identical to our previous observations, the compound 2.47 is inactive against Tdp1. This experiment is showing very
interesting result. Compound 2.21 has (R)-configuration on the amino ester moiety, whereas compound 2.47 has (S)-configuration. From this observation, it could be concluded that the chirality of the compound contributes to the affinity of inhibitor for the active site of the Tdp1 enzyme.

Figure 2.10. Gel study with final compounds.

2.6. Molecular Modeling of Piperidinyl Sulfamide Derivatives

2.6.1. Preparation of ligand structures

The piperidinyl sulfamide derivatives described in this paper were drawn in the program ChemBioDraw Ultra 12.0. ${ }^{34}$ Additional molecular construction and modeling of the derivatives were performed using the building tools available in MACROMODEL 2011 (Schrödinger

Inc.). ${ }^{35}$ The ligands were minimized using the OPLS-2005 force field. The preparation procedure in GLIDE requires the preparation of the structures in the appropriate ionization state. We used 2D to 3D conversion program LigPrep ${ }^{36}$ to generate accurate energy minimized molecular structures, expands tautomeric and ionization states, ring conformations, and stereoisomers to produce broad chemical and structural diversity of ligand libraries for further computational analyses.

2.6.2. Molecular Docking

To investigate the binding mode of the piperidinyl sulfamide derivatives to Tdp1 at the molecular level, we performed docking analysis using the high-resolution structure of Tdp1, cocrystallized with a peptide-vanadate-DNA substrate mimic (PDB accession code 1NOP). After construction of a molecular model from 1NOP (published earlier) ${ }^{30}$ the prepared ligands were docked into the substrate binding pocket of Tdp1 using the program GLIDE (Schrödinger) ${ }^{37}$ with the Extra Precision mode. A set of Grid files was generated with residues H263, K265, H493 and K495 at the center of the binding box defining the space through which the center of the docked ligand is allowed to move. The size of the cube box was set to $16 \AA$ edge in length in order to explore a large region of the protein. To conduct a more precise analysis of docked poses of the ligands, we mapped the output docking poses to the pharmacophores of the lead compounds ${ }^{30}$ using absolute positioning in program MOE. ${ }^{38}$

2.7. Conclusion

Overall, the routes described in this chapter are applicable to the synthesis of sulfamides related to a promising Tdp1 inhibitor. We identified piperidinyl sulfamide derivative 2.21,
which has exhibited inhibitory activity against $\mathrm{Tdp1}$ at low $\mu \mathrm{M}$ concentrations. The inhibitory activity was confirmed using a gel-based assay. Through the analysis of concentration versus percentage inhibition curves, we estimated the IC_{50} value for 2.21 as $23.7 \mu \mathrm{M}$ (Figure 2.7). To investigate the binding mode of piperidinyl sulfamide derivatives to Tdp1 at the molecular level, we studied docking analysis. From a stereoview representation of $\mathbf{2 . 2 1}$ (Figure 2.10), we found that the benzyl piperidine moiety is oriented towards the Tdpl active site and hydrophobic amino ester moiety forms a hydrogen bond with Tyrosine 204. We are currently investigating more compounds with varying pharmacophores that might be active against Tdp1.

2.8. References

1. Pouliot, J. J.; Yao, K. C.; Robertson, C. A.; Nash, H. A., Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 1999, 286, 552-555.
2. Wani, M. C.; Wall, M. E., Plant antitumor agents. II. Structure of two new alkaloids from Camptotheca acuminata. J. Org. Chem. 1969, 34, 1364-1367.
3. Wall, M. E.; Wani, M. C., Camptothecin and taxol- Discovery to clinic $-13^{\text {th }}$ Bruce F. Cain Memorial Award Lecture. Cancer Research 1995, 55, 753-760.
4. Hsiang, Y. H.; Hertzberg, R.; Hecht, S.; Liu, L. F., Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase-I. J. Biol. Chem. 1985, 260, 4873-4878.
5. Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nature Reviews Cancer 2006, 6, 789-802.
6. (a) Interthal, H.; Pouliot, J. J.; Champoux, J. J. The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 12009-12014. (b) Davies, D. R.; Interthal, H.; Champoux, J. J.; Hol, W. G. J. Explorations
of Peptide and Oligonucleotide Binding Sites of Tyrosyl-DNA Phosphodiesterase Using Vanadate Complexes. J. Med. Chem. 2004, 47, 829-837.
7. (a) Pommier, Y.; Barcelo, J. A.; Rao, V. A.; Sordet, O.; Jobson, A. G.; Thibaut, L.; Miao, Z. H.; Seiler, J. A.; Zhang, H.; Marchand, C.; Agama, K.; Nitiss, J. L.; Redon, C., Repair of topoisomerase I - Mediated DNA damage. In Progress in Nucleic Acid Research and Molecular Biology, Vol 81, Moldave, K., Ed. 2006; Vol. 81, pp 179-229. (b) Pourquier, P.; Pommier, Y., Topoisomerase I-mediated DNA damage. Advances in Cancer Research, Vol 80 2001, 80, 189-216. (c) Pommier, Y.; Redon, C.; Rao, V. A.; Seiler, J. A.; Sordet, O.; Takemura, H.; Antony, S.; Meng, L. H.; Liao, Z. Y.; Kohlhagen, G.; Zhang, H. L.; Kohn, K. W., Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 2003, 532, 173-203.
8. (a) Sordet, O.; Khan, Q. A.; Plo, I.; Pourquier, P.; Urasaki, Y.; Yoshido, A.; Antony, S.; Kohlhagen, G.; Solary, E.; Saparbaev, M.; Laval, J.; Pommier, Y., Apoptotic topoisomerase I-DNA complexes induced by staurosporine-mediated oxygen radicals. J. Biol. Chem. 2004, 279, 50499-50504. (b) Sordet, O.; Khan, Q. A.; Pommier, Y., Apoptotic topoisomerase IDNA complexes induced by oxygen radicals and mitochondrial dysfunction. Cell Cycle 2004, 3, 1095-1097. (c) Sordet, O.; Liao, Z. Y.; Liu, H.; Antony, S.; Stevens, E. V.; Kohlhagen, G.; Fu, H. Q.; Pommier, Y., Topoisomerase I-DNA complexes contribute to arsenic trioxide-induced apoptosis. J. Biol. Chem. 2004, 279, 33968-33975.
9. Pommier, Y.; Barcelo, J. A.; Rao, V. A.; Sordet, O.; Jobson, A. G.; Thibaut, L.; Miao, Z.-H.; Seiler, J. A.; Zhang, H.; Marchand, C.; Agama, K.; Nitiss, J. L.; Redon, C., Repair of topoisomerase I - Mediated DNA damage. In Progress in Nucleic Acid Research and Molecular Biology, Vol 81, Moldave, K., Ed. 2006; Vol. 81, pp 179-229.
10. Marchand, C.; Antony, S.; Kohn, K. W.; Cushman, M.; Ioanoviciu, A.; Staker, B. L.; Burgin, A. B.; Stewart, L.; Pommier, Y., A novel norindenoisoquinoline structure reveals a common interfacial inhibitor paradigm for ternary trapping of the topoisomerase I-DNA covalent complex. Mol. Cancer Ther. 2006, 5, 287-295.
11. Wang, J. C. DNA Topoisomerases. Annu. Rev. Biochem. 1996, 65, 635-692.
12. Yang, S. W.; Burgin, A. B. Jr; Huizenga, B. N.; Robertson, C. A.; Yao, K. C.; Nash, H. A. A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc. Natl. Acad. Sci. U. S.A. 1996, 93, 11534-11539.
13. Pouliot, J. J.; Yao, K. C.; Robertson, C. A.; Nash, H. A. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 1999, 286, 552-555.
14. Davies, D. R.; Interthal, H.; Champoux, J. J.; Hol, W. G. J. Insights into Substrate Binding and Catalytic Mechanism of Human Tyrosyl-DNA Phosphodiesterase (Tdp1) from Vanadate and Tungstate-inhibited Structures. J. Mol. Biol. 2002, 324, 917-932.
15. Pommier, Y. DNA Topoisomerase I Inhibitors: Chemistry, Biology, and Interfacial Inhibition. Chem. Rev. 2009, 109, 2894-2902.
16. Pommier Y, Leo E, Zhang H, et al. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. May 28; 2010 17(5): 421-433.
17. Dexheimer, T. S.; Gediya, L. K.; Stephen, A. G.; Weidlich, I.; Antony, S.; Marchand, C.; Interthal, H.; Nicklaus, M.; Fisher, R. J.; Njar, V. C.; Pommier, Y. 4-Pregnen-21-ol-3,20-dione-21-(4-bromobenzenesufonate) (NSC 88915) and Related Novel Steroid Derivatives as Tyrosyl-DNA Phosphodiesterase (Tdp1) Inhibitors. J. Med. Chem. 2009, 52, 7122-7131.
18. (a) Antony, S.; Marchand, C.; Stephen, A. G.; Thibaut, L.; Agama, K. K.; Fisher, R. J.; Pommier, Y. Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1. Nucleic Acids Research 2007, 35, 4474-4484. (b) Liao Z.; Thibaut, L.; Jobson, A.; Pommier, Y. Inhibition of Human Tyrosyl-DNA Phosphodiesterase by Aminoglycoside Antibiotics and Ribosome Inhibitors. Mol. Pharmacol 2006, 70, 366-372.
19. Xiang, J. S.; Hu, Y.; Rush, T. S.; Thomason, J. R.; Ipek, M.; Sum, P.-E.; Abrous, L.; Sabatini, J. J.; Georgiadis, K.; Reifenberg, E.; Majumdar, M.; Morris, E. A.; Tam, S.

Synthesis and biological evaluation of biphenylsulfonamide carboxylate aggrecanase-1 inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 311-316.
20. Lombart, H.-G.; Feyfant, E.; Joseph-McCarthy, D.; Huang, A.; Lovering, F.; Sun L.-H.; Zhu, Y.; Zeng, C.; Zhang, Y.; Levinb J. Design and synthesis of 3,3-piperidine hydroxamate analogs as selective TACE inhibitors. Bioorg. Med. Chem. Lett. 2007 17, 4333-4337.
21. Parrish, C. A.; Adams, N. D.; Auger, K. R.; Burgess, J. L.; Carson, J. D.; Chaudhari, A. M.; Copeland, R. A.; Diamond, M. A.; Donatelli, C. A.; Duffy, K. J.; Faucette, L. F.; Finer, J. T.; Huffman, W. F.; Hugger, E. D.; Jackson, J. R.; Knight, S. D.; Luo, L.; Moore, M. L.; Newlander, K. A.; Ridgers, L. H.; Sakowicz, R.; Shaw, A. N.; Sung, C.-M. M.; Sutton, D.; Wood, K. W.; Zhang, S.-Y.; Zimmerman, M. N.; Dhanak, D. Novel ATP-Competitive Kinesin Spindle Protein Inhibitors. J. Med. Chem. 2007, 50, 4939-4952.
22. (a) Miller, N. R.; Daniels, R. N.; Bridges, T. M.; Brady, A. E.; Conn, P. J.; Lindsley, C. W. Synthesis and SAR of analogs of the M1 allosteric agonist TBPB. Part II: Amides, sulfonamides and ureas-The effect of capping the distal basic piperidine nitrogen. Bioorg. Med. Chem. Lett. 2008, 18, 5443-5447. (b) Kazmierski, Wieslaw M.; Aquino, Christopher; Chauder, Brian A.; Deanda, Felix; Ferris, Robert; Jones-Hertzog, Deborah K.; Kenakin, Terrence; Koble, Cecilia S.; Watson, Christian; Wheelan, Pat; Yang, Hanbiao; Youngman, Michael. Discovery of Bioavailable 4,4-Disubstituted Piperidines as Potent Ligands of the Chemokine Receptor 5 and Inhibitors of the Human Immunodeficiency Virus-1. J. Med. Chem. 2008, 51, 6538-6546. (c) Mattson, R. J.; Pham, K. M.; Leuck, D. J.; Cowen, K. A. An Improved Method for Reductive Alkylation of Amines Using Titanium (1V) Isopropoxide and Sodium Cyanoborohydride. J. Org. Chem. 1990, 55, 2552-2554.
23. Jun, J. H.; Dougherty, J. M.; Jimenez, M. S; Hanson, P. R. New strategies to symmetric and unsymmetric cyclic sulfamide analogs of DMP 323: a sulfur linchpin/RCM approach. Tetrahedron 2003, 59, 8901-8912.
24. (a) Jiménez-Hopkins, M.; Hanson, P. R. An RCM Strategy to Stereodiverse δ-Sultam Scaffolds. Org. Lett. 2008, 10, 2223-2226. (b) Harned, A. M.; He, H. S.; Toy, P. H.; Flynn,
D. L.; Hanson, P. R. Multipolymer Solution-Phase Reactions: Application to the Mitsunobu Reaction. J. Am. Chem. Soc. 2005, 127, 52-53. (c) Mukherjee, S.; Poon, K. W. C.; Flynn, D. L.; Hanson, P. R. Capture-ROMP-release: application to the synthesis of amines and alkyl hydrazines. Tetrahedron Lett. 2003, 44, 7187-7190.
25. Moumne, R.; Lavielle, S.; Karoyan, P., Efficient synthesis of β^{2}-amino acid by homologation of α-amino acids involving the Reformatsky reaction and Mannich-type imminium electrophile. J. Org. Chem. 2006, 71, 3332-3334.
26. Romanelli, M. N.; Bartolini, A.; Bertucci, C.; Dei, S.; Ghelardini, C.; Giovannini, M. G.; Gualtieri, F.; Pepeu, G.; Scapecchi, S.; Teodori, E., Chiral synthesis and pharmacological evaluation of the enantiomers of SM_{32}, a new analgesic and cognition-enhancing agent. Chirality 1996, 8, 579-584.
27. Zubia, A.; Mendoza, L.; Vivanco, S.; Aldaba, E.; Carrascal, T.; Lecea, B.; Arrieta, A.; Zimmerman, T.l; Vidal-Vana-clocha, F.; Cossio, F. P. Application of stereocontrolled stepwise [3+2] cycloadditions to the preparation of inhibitors of $\alpha 4 \beta 1$-integrin-mediated hepatic melanoma metastasis. Angew. Chem. Int. Edit. 2005, 44, 2903-2907.
28. Anand, R. C.; Selvapalam, N. A convenient and mild procedure for the preparation of hydroxy esters from lactones and hydroxy acids. Syn. Comm. 1994, 24, 2743-2747.
29. Duan, M. S.; Kazmierski, W. M.; Tallant, M.; Jun, J. H.; Edelstein, M.; Ferris, R.; Todd, D.; Wheelan, P.; Xiong, Z. P. Discovery of a novel series of cyclic urea as potent CCR5 antagonists. Bioorg. Med. Chem. Lett. 2011, 21, 6381-6385.
30. Weidlich, I. E.; Pommier, Y.; Dexheimer, T. S.; Marchand, C.; Nicklaus, M. C. Virtual screening using ligand-based pharmacophores for inhibitors of human tyrosyl-DNA phosphodiesterase (hTdp1). Biorg. Med. Chem. 2010, 18, 2347-2355.
31. Hanewacker, G. A.; Mester, Z.; Unterhalt, B. New 2,4,4-trisubstituted 3-oxo-1,2,5thiadiazolidine 1,1-dioxides. Archiv der Pharmazie 1993, 326, 497-505.
32. Sato, T.; Okamoto, K.; Nakano, Y.; Uenishi, J.; Ikeda, M. Regioselective synthesis of bridged azabicyclic compounds using radical translocation/cyclization reactions of 4-alkynyl-1-(o-iodobenzoyl)piperidines. Heterocycles 2001, 54, 747-755.
33. Antony, S.; Marchand, C.; Stephen, A. G.; Thibaut, L.; Agama, K. K.; Fisher, R. J.; Pommier, Y. Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1. Nucleic Acids Res. 2007, 35, 4474-4484.
34. ChemBioDraw Ultra 12.0 Suite, PerkinElmer Inc. 2011.
35. MACROMODEL 2011, Schrodinger: LLC, New York, NY, 2011.
36. LIGPREP, Schrödinger LLC, New York, NY, 2011.
37. MACROMODEL 2011, Schrodinger: LLC, New York, NY, 2011.
38. Chemical Computing Group's Molecular Operating Environment (MOE), version 2011.

CHAPTER 3

Study of Anticancer Activity of Piperidinyl Sulfamides Derivatives
Using the USA National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screen

3.1. Introduction

Cancer is not one disease, but rather many diseases in which abnormal cells divide without control and are able to occupy other tissues. Cancer cells can spread to other parts of the human body through the blood and lymph systems. ${ }^{1}$ Damaged or mutated DNA affects normal cell growth and division, while the immortal cells become a mass of tissue called tumor. In spite of enormous developments in the field of medical research area, which have resulted in higher cure rates for a number of malignancies, cancer is the second ranked leading cause of death after heart disorders in developing, as well as, advanced countries. ${ }^{2}$ Although major advances have been made in the chemotherapeutic treatment of some patients, high obligation to the demanding task of discovering new anti-cancer drugs remains crucially important. As a major pioneering cancer research center, the US National Cancer Institute (NCI) has played a significant role in leading the discovery and development of cancer treatment. Since 1955, NCI has provided screening support to cancer researchers globally. In the late 1980s, 60 anticancer drug screens were developed with the aim of changing the emphasis of drug discovery from murine neoplasms (household rats and mice tumors) to human solid tumors as an in vitro drug-discovery tool. ${ }^{3}$ Since then, it was available to identify the clinical activity of the compounds for the human adult tumor, such as lung, colon, breast, and prostate cancers.

The compounds shown in Figure 3.1 are examples identified by the NCI 60 cell line screen. The first boronic acid compound (NSC 681239, Bortezomib, 3.1) is the first therapeutic proteasome inhibitor, which was synthesized in 1995 at Myogenics Topotecan (NSC 609699, 3.2), ${ }^{4}$ and is a TOP 1 inhibitor to treat ovarian cancer and lung cancer, as well as other types of
cancers. ${ }^{5}$ Doxoruicin (NSC 123127, 3.3) is microbial product for breast cancer, bladder cancer, and stomach cancer. ${ }^{6}$

NSC 681239 (Bortezomib, 3.1)

NSC 609699 (Topotecan, 3.2)

NSC 123127 (Doxorubicin, 3.3)

Figure 3.1. Examples of compounds identified by NCI 60 cell line.

The discovery and development of potential anticancer drugs by NCI are based on a series of sequential screening and detailed testing steps to identify new, effective lead compounds and to eliminate inactive and/or highly toxic materials from further consideration. With this concern, Tdp1 related compounds were submitted and screened against the NCI-60 cell line, and the results will be discussed.

3.2. NCI 60 Cell Line Screening

Pharmacological evaluation of anticancer activity was carried out on selected compounds by the developmental therapeutic program of Frederick National Laboratory for Cancer Research, Frederick, Maryland. All selected compounds for in vitro cancer screening have been given a unique NSC (National Service Center) number. Compounds in Table 3.1 were submitted to the NCI-60 cell line screen and evaluated for their in vitro anticancer activity at a single dose $\left(1 \times 10^{-5} \mathrm{M}\right.$ or $\left.10 \mu \mathrm{M}\right)$ against the full NCI-60 cell line panels (Table 3.1). Some sulfamide intermediates were also submitted to compare the NCI-60 cell line results with final compound
results. Details of the methodologies for the NCI-60 cell line screening are described at http://dtp.nci.nih.gov/branches/btb/ivclsp.html. ${ }^{3,7}$ Briefly, the panel is organized into nine subpanels representing diverse histologies: leukemia, melanoma, and cancers of lung, colon, kidney, ovary, breast, prostate, and central nervous system. The human tumor cells are grown in supplemented RPMI 1640 medium containing 5% fetal bovine serum and 2 mL glutamine for 24 h. The cells are inoculated into 96 -well microtiter plates in $100 \mu \mathrm{~L}$ at plating densities ranging from 5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates are incubated at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}, 95 \%$ air and 100% relative humidity for 24 h prior to addition of experimental drugs. The submitted compounds 2.7-2.57 in Table 3.1 were dissolved in DMSO and incubated with cells at five concentrations with 10 -fold dilutions, the highest being $10^{-4} \mathrm{M}$ and the others being $10^{-5}, 10^{-6}, 10^{-7}$, and $10^{-8} \mathrm{M}$. The assay is terminated by the addition of cold trichloroacetic acid, and the cells are fixed and stained with sulforhodamine B. Bound stain is solubilized, and the absorbance is read on an automated plate reader. The cytostatic parameter that is 50% growth inhibition $\left(\mathrm{GI}_{50}\right.$, concentrations required to inhibit the growth by 50%) was calculated from time zero, control growth, and the five concentration level absorbance. The cytotoxic parameter that is inhibitory concentrations $\left(\mathrm{LC}_{50}\right.$, lethal concentration, standard measure of the toxicity of the medium that kills half of the sample population in a specified period, lower number means more toxic) represents the average of two independent experiments. In vitro screening is a two-stage process starting with the evaluation of all compounds against the NCI-60 human tumor cell lines with a single dose of $10.0 \mu \mathrm{M}$, which is done by following the same protocol as for five-dose screening. The output from the single dose screen was reported as a mean graph (given in the Supplementary data section with general interpretation) of the percentage growth of the treated
cells. Results of each test agents are reported as percentage growth of the treated cell when compared with untreated control cells. The value numbers from the single dose screen were analyzed by the COMPARE program with only the compounds that showed more than 60% of growth inhibition in at least 8 tumor cell lines selected for further testing, while the others were assumed as inactive.

Table 3.1. List of compounds screened for NCI 60 cell lines.
NSC
No.

749205
(2.30)

749201

750715
(2.38)

750713
(2.40)

750714
(2.42)

749204

764209
(2.47)

749202
(2.57)

749203

3.2.1. In vitro anticancer activity

The one-dose data for the aforementioned screen is reported as a mean graph of the percent growth of treated cells and will be similar in appearance to the mean graphs from the 5dose assay. The number reported for the one-dose assay is growth relative to the no-drug control, and relative to the time zero number of cells. This allows detection of both growth inhibition
(values between 0 and 100) and lethality (values less than 0). This is the same as for the 5 -dose assay, described on http://dtp.nci.nih.gov/branches/btb/ivclsp.html. For example, a value of 100 means no growth inhibition. A value of 40 would mean 60% growth inhibition. A value of 0 means no net growth over the course of the experiment. A value of -40 would mean 40% lethality. A value of -100 means all cells are dead. Information from the one-dose mean graph is available for COMPARE analysis (http://dtp.nci.nih.gov/docs/compare/compare.html). The primary, one-dose screening data showed that NSC 749204 (2.53) was active, while other compounds were determined as inactive. Table 3.2 is the summary of one-dose experiments for each compound. Even if it was not selectively considered using a 60% of growth inhibition as criterion, many compounds were moderately sensitive on the non-small cell lung cancer (HOP92) and leukemia (HL-60(TB) cell lines. Compound 2.7 (NSC 750772) showed 35.19% growth inhibition against the RPMI-8226 cell line (Leukemia), compound 2.15 (NSC 750710), 67.08\% against the HOP-92 cell line (Non-small cell lung cancer), compound 2.16 (NSC 750711), 78.38\% against the HL-60(TB) cell line (Leukemia), compound 2.21 (NSC 750706), 43.68\% against the HL-60(TB) cell line (Leukemia), compound 2.22 (NSC 747166), 12.34\% against the HOP-62 cell line (Non-small cell lung cancer), compound 2.23 (NSC 767523), 67.24\% against the UO-31 cell line (Renal cancer), compound 2.24 (NSC 767524), 33.30\% against the CCRF-CEM cell line (Leukemia), compound 2.25 (NSC 750707), 69.67\% against the UO-31 cell line (Renal cancer), compound 2.30 (NSC 749205), 39.58\% against the HOP-92 cell line (Non-small cell lung cancer), compound 2.34 (NSC 749201), 71.49\% against the HOP-92 cell line (Non-small cell lung cancer), compound 2.38 (NSC 750715), 76.86\% against the CCRF-CEM cell line (Leukemia), compound 2.40 (NSC 750713), 39.99\% against the HL-60(TB) cell line (Leukemia), compound 2.42 (NSC 750714), 43.07\% against the HL-60(TB) cell line (Leukemia), compound
2.43 (NSC 750712), 62.35% against the A498 cell line (Renal cancer), compound 2.47 (NSC 764209), 87.42\% against the SNB-75 cell line (CNS cancer), compound 2.53 (NSC 749204), 19.49\% against the HT29 cell line (Colon cancer), compound 2.56 (NSC 749203), 41.46\% against the MOLT-4 cell line (Leukemia), and compound 2.57 (NSC 749202), 83.92\% against the NCI-H322M cell line (Non-small cell lung cancer). A compound that reduced the growth of a cell line to 32% or less (negative number indicate kills), is considered in vitro active. ${ }^{8,9}$ The output from the NCI 60-cell lines single dose screen of NSC 749204 was reported as a mean graph (Figure 3.2).

Table 3.2. Anti-cancer screening data of compounds.

Comp. No. (NSC No.)	60 cell line assay in one dose at 10^{-5} concentration						
	Range of growth percentage	Most sensitive cell line	Growth \% of most sensitive cell line	Mean	Delta	range	activity ${ }^{\text {a }}$
$\begin{gathered} 2.7 \\ (750772) \end{gathered}$	35.19 to 112.96	Leukemia (RPMI-8226)	35.19	82.41	47.22	77.77	inactive
$\begin{gathered} 2.15 \\ (750710) \end{gathered}$	67.08 to 134.43	Non-small cell lung cancer (HOP-92)	67.08	100.62	33.54	67.35	inactive
$\begin{gathered} 2.16 \\ (750711) \end{gathered}$	78.38 to 132.86	Leukemia (HL-60(TB))	78.38	103.06	24.68	54.48	inactive
$\begin{gathered} 2.21 \\ (750706) \end{gathered}$	43.68 to 115.29	Leukemia (HL-60(TB))	43.68	81.90	38.22	71.61	inactive
$\begin{gathered} 2.22 \\ (747166) \end{gathered}$	12.34 to 208.78	Non-small cell lung cancer (HOP-62)	12.34	100.63	88.29	196.44	active
$\begin{gathered} 2.23 \\ (767523) \end{gathered}$	67.24 to 117.68	Renal Cancer (UO-31)	67.24	97.34	30.10	50.44	inactive
$\begin{gathered} 2.24 \\ (767524) \end{gathered}$	33.20 to 109.93	Leukemia (CCRF-CEM)	33.20	84.99	51.79	76.73	inactive
$\begin{gathered} 2.25 \\ (750707) \end{gathered}$	69.67 to 118.35	Renal cancer (UO-31)	69.67	98.62	28.95	48.68	inactive
$\begin{gathered} 2.30 \\ (749205) \end{gathered}$	39.58 to 107.51	Non-small cell lung cancer (HOP-92)	39.58	78.32	38.74	67.93	inactive
2.34	71.49 to 130.53	Non-small cell lung cancer	71.49	97.81	26.32	59.04	inactive
91							

(749201)		(HOP-92)					
$\begin{gathered} 2.38 \\ (750715) \end{gathered}$	76.86 to 124.74	Leukemia (CCRF-CEM)	76.86	98.79	21.93	47.88	inactive
$\begin{gathered} 2.40 \\ (750713) \end{gathered}$	39.99 to 131.35	Leukemia (HL-60(TB))	39.99	96.65	56.66	91.36	inactive
$\begin{gathered} 2.42 \\ (750714) \end{gathered}$	43.07 to 131.06	Leukemia (HL-60(TB))	43.07	99.49	56.42	87.99	inactive
$\begin{gathered} 2.43 \\ (750712) \end{gathered}$	62.35 to 131.82	Renal cancer (A498)	62.35	100.64	38.29	69.47	inactive
$\begin{gathered} 2.47 \\ (764209) \end{gathered}$	87.42 to 126.22	CNS (SNB-75)	87.42	105.30	17.88	38.80	inactive
$\begin{gathered} 2.53 \\ (749204) \end{gathered}$	19.49 to 92.88	Colon cancer (HT29)	19.49	56.65	121.91	158.14	active
$\begin{gathered} 2.56 \\ (749203) \end{gathered}$	41.46 to 116.72	Leukemia (MOLT-4)	41.46	98.11	56.65	84.64	inactive
$\begin{gathered} 2.57 \\ (749202) \\ \hline \end{gathered}$	83.92 to 127.35	Non-small cell lung cancer (NCI-H322M)	83.92	99.52	15.60	43.43	inactive

[^0]Figure 3.2. Selected NCI60-cell lines screening data for one dose study of 2.53 (NSC 749204).

3.2.2. Five-dose assay

When the result of growth inhibition is satisfied to more than 60% over 8 cell lines, the compound is selected for the five-dose assay. To explain the data, the activity of a one-test compound on three non-small-cell lung cancer cell lines is shown in Figure 3.3. ${ }^{3}$ The response parameters GI_{50} (50\% growth inhibition) and LC_{50} (50% lethal concentration) are extracted from concentration-response curves by linear interpolation. TGI (total growth inhibition, concentration at which the total growth inhibition is 100%) is indicated as the x -axis intercept. Five-dose assays are carried out with 10 -fold dilutions at five different concentrations ($0.01,0.1$, $1,10$ and $100 \mu \mathrm{M})$. Thus, for EKVX cell line, $\mathrm{GI}_{50}=0.12$, the $\mathrm{TGI}=0.84$ and the LC_{50} of effect is not reached.

Figure 3.3. Activity of a one-test compound on three non-small-cell lung cancer cell lines. This graph was depicted with a hypothetical number to explain $G I_{50}, T G I$, and $L C_{50}$ value. (This Figure was copied from 'Shoemaker, R. H., The NCI60 human tumor cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813-823').

The complete in-vitro anti-cancer data collected on the 60 subpanel cell lines for the most active compound, 2.53 (NSC 749204), is highlighted in Tables 3.3 and 3.4. Secondary screening was carried out on this active compound in order to determine its cytostatic and cytotoxic activities. Compound 2.53 (NSC 749204) satisfied 60% of growth inhibition as a criterion over 8 cell lines and was further selected for the NCI full panel five-dose assay at 10 -fold dilutions using five different concentrations ($0.01,0.1,1,10$ and $100 \mu \mathrm{M}$). The result of compound 2.53 for five-dose screening is given with three response parameters $\left(\mathrm{GI}_{50}, \mathrm{TGI}\right.$ and $\left.\mathrm{LC}_{50}\right)$ for each cell line from $\log _{10}$ of sample concentration (molar) vs. percentage growth inhibition curves of nine cancer diseases (Figures 3.4 and 3.5). NCI renamed the IC_{50} value, the concentration that causes 50% growth inhibition, the GI_{50} value (growth inhibitory activity) to emphasize the correction for the cell count at time zero. Namely, GI_{50} is the concentration of test compound where $100 \times\left(T-\mathrm{T}_{0}\right) /\left(\mathrm{C}-\mathrm{T}_{0}\right)=50 . \mathrm{T}$ is the optical density of the test well after a 48-h period of exposure to test drug, T_{0} is the optical density at time zero, and C is the controlled optical density. The GI_{50} value (growth inhibitory activity) corresponds to the concentration of the compound causing 50% decrease in net cell growth, namely it is the growth inhibitory power of the testing compound. The TGI value (cytostatic activity, the inhibition of cell growth and multiplication) is the concentration of the compound resulting in total growth inhibition. The LC_{50} value, signifies cytotoxic activity (the quality of being toxic to cells), and is the concentration of the compound causing a net 50% loss of initial cells at the end of the incubation period of 48 h . Furthermore, a mean graph midpoint (MID) is calculated giving an averaged activity parameter over all cell lines.

Compound 2.53 (NSC 749204) shows moderate to good anticancer activity against many tested cell lines responding nine different panels with GI_{50} values between 1.88 and $21.0 \mu \mathrm{M}$.

Regarding sensitivity against some individual cell lines, the compound showed good activity against colon cancer COLO 205 and $\mathrm{HCC}-2998$ cell lines with GI_{50} value 1.88 and $3.01 \mu \mathrm{M}$, respectively. Generally, obtained data shows a good sensitivity profile towards colon cancer (least for COLO 205 cell line, $\mathrm{GI}_{50}=1.88 \mu \mathrm{M}$ and maximum for $\mathrm{SW}-620$ cell line, $\mathrm{GI}_{50}=11.1$ $\mu \mathrm{M})$. The compound also shows the sensitivity toward leukemia (least for SR cell line, $\mathrm{GI}_{50}=$ $3.18 \mu \mathrm{M}$ and maximum for CCRF-CEM cell line, $\left.\mathrm{GI}_{50}=12.8 \mu \mathrm{M}\right)$ and the breast cancer subpanel (least for MDA-MB-468 cell line, $\mathrm{GI}_{50}=3.25 \mu \mathrm{M}$ and maximum for MDA-MB231/ATCC cell line, $\mathrm{GI}_{50}=12.7 \mu \mathrm{M}$). Compound 2.53 also exhibited sensitivity toward some of cell lines of the melanoma cancer cell panel such as LOX IMVI $\left(\mathrm{GI}_{50}=8.10 \mu \mathrm{M}\right)$, MALME-3M $\left(\mathrm{GI}_{50}=6.89 \mu \mathrm{M}\right)$, $\mathrm{M} 14\left(\mathrm{GI}_{50}=3.75 \mu \mathrm{M}\right)$, and SK-MEL-5 $\left(\mathrm{GI}_{50}=3.19 \mu \mathrm{M}\right)$. All remaining subpanel cell lines showed maximum sensitive toward tested compounds with not more than 21 $\mu \mathrm{M}$ of GI_{50} concentrations.

Figure 3.4. Nine panel dose response curves of compound 2.53 (NSC 749204).

Figure 3.5. Dose response (\% growth verses sample concentration at NCI fixed protocol, μM) obtained from the NCI's in vitro disease-oriented human tumor cells line of compound 2.53 (NSC 749204) on nine cancer panels.

Figure 3.5. Dose response (\% growth verses sample concentration at NCI fixed protocol, μM) obtained from the NCI's in vitro disease-oriented human tumor cells line of compound 2.53 (NSC 749204) on nine cancer panels. (Continued)

Table 3.3. Result of the five-dose assay for compound 2.53 (NSC 749204).

Table 3.4. Anti-tumor activity $\left(G I_{50} / \mu M\right)^{a}$, $T G I^{b}$ and toxicity $\left(L C_{50} / \mu M\right)^{c}$ data of 2.53 (NSC 749204) selected for 5 dose studies for the NCI60-cell lines screen.

NSC 749204							
Panel/cell line	GI_{50}	TGI	LC_{50}	Panel/cell line	GI_{50}	TGI	LC_{50}
Leukemia				Melanoma			
CCRF-CEM	12.8	30.7	73.6	LOX IMVI	8.10	25.0	68.4
HL-60(TB)	4.69	18.2	52.5	MALME-3M	6.89	22.3	59.0
K-562	4.63	16.0	47.8	M14	3.75	15.0	42.8
MOLT-4	11.5	27.4	65.4	MDA-MB-435	10.2	24.8	60.4
RPMI-8226	7.57	25.6	77.2	SK-MEL-2	21.0	41.0	79.8
SR	3.81	9.22	>100	SK-MEL-28	14.0	27.8	55.3
				SK-MEL-5	3.19	12.0	36.1
Non-small cell lung cancer				UACC-257	16.4	30.8	58.1
A549/ATCC	14.0	31.0	69.1	UACC-62	11.0	24.6	55.1
EKVX	12.2	28.9	68.4				
HOP-62	15.0	29.0	56.2	Ovarian cancer			
HOP-92	5.76	20.0	46.2	IGROV1	18.8	44.9	>100
NCI-H226	13.2	30.2	69.1	OVCAR-3	10.4	23.0	51.1
NCI-H23	12.2	25.9	55.3	OVCAR-4	11.9	24.7	51.0
NCI-H322M	13.9	29.4	62.1	OVCAR-5	15.8	29.7	55.8
NCI-H460	7.13	22.1	57.7	OVCAR-8	14.6	33.4	76.7
NCI-H522	14.9	37.0	91.8	NCI/ADR-RES	10.7	23.4	50.9
				SK-OV-3	15.5	29.0	54.3
Colon cancer							
COLO 205	1.88	3.59	6.85	Renal cancer			
HCC-2998	3.01	11.7	36.2	786-0	11.2	24.0	51.1
HCT-116	4.41	16.4	43.7	A498	12.9	26.2	53.4
НСТ-15	4.42	17.9	50.8	ACHN	14.0	30.0	64.5
HT29	3.78	14.6	42.5	CAKI-1	7.23	22.3	53.6
KM12	4.92	17.6	46.8	RXF 393	10.6	23.7	53.2
SW-620	11.1	24.9	55.8	SN12C	4.69	18.5	52.3
				TK-10	17.2	32.7	62.1
CNS cancer				UO-31	11.7	26.0	57.6
SF-268	11.5	26.3	60.2				

| SF-295 | 10.5 | 24.5 | 57.2 | Prostate cancer | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SF-539 | 13.2 | 26.4 | 52.9 | PC-3 | 7.61 | 20.8 | 47.5 |
| SNB-19 | 13.0 | 25.8 | 51.3 | DU-145 | 13.4 | 27.4 | 56.0 |
| SNB-75 | 6.24 | 20.4 | 45.8 | | | | |
| U251 | 11.1 | 27.9 | 76.5 | Breast cancer | | | |
| | | | | MCF7 | 6.91 | 21.9 | 56.2 |
| | | | MDA-MB- | | | | |
| | | | 231/ATCC | 12.7 | 29.3 | 67.7 | |
| | | | HS 578T | 11.3 | 27.1 | 65.1 | |
| | | | BT-549 | 8.34 | 22.9 | 56.7 | |
| | | | T-47D | 5.34 | 19.6 | 50.4 | |
| | | | MDA-MB-468 | 3.25 | 15.3 | 43.4 | |

${ }^{\mathrm{a}} \mathrm{GI}_{50}$: 50% growth inhibition, concentration of drug resulting in a 50% reduction in net protein increase compared with control cells.
${ }^{\mathrm{b}}$ TGI: total cell growth inhibition
${ }^{\mathrm{c}} \mathrm{LC}_{50}$: lethal concentration, concentration of drug lethal to 50% of cells.

The criterion for selectivity of a compound depends on the ratio obtained by dividing the full panel MID (the average sensitivity of all cell lines towards the test agent) by their individual subpanel MID (the average sensitivity of all cell lines of a particular subpanel towards the test agent). Ratios between 3 and 6 refer to moderate selectivity; ratios greater than 6 indicate high selectivity towards the corresponding cell line, while compounds not meeting either of these criteria were rated non-selective. ${ }^{10}$ Following this criterion, compound 2.53 (NSC 749204) was found to be mildly selective toward the colon cancer panel. In addition, compound 2.53 was also found to demonstrate mild to no-selectivity in both the leukemia and breast cancer subpanels.

Table 3.5. Calculated value of GI50 of the cell lines: full cell line panel, MG-MID and selectivity ratio of the compound 2.53 (NSC 749204).

Panel	Cell line	$\mathrm{GI}_{50}\left(10^{-6} \mathrm{M}\right)$			
		Concentration per cell line	Subpanel concentration	Subpanel MID	Selectivity ratio
Leukemia	CCRF-CEM	12.8	45	7.500	1.340
	HL-60(TB)	4.69			
	K-562	4.63			
	MOLT-4	11.5			
	RPMI-8226	7.57			
	SR	3.81			
Non-small cell	A549/ATCC	14.0	108.29	12.032	0.835
lung cancer	EKVX	12.2			
	HOP-62	15.0			
	HOP-92	5.76			
	NCI-H226	13.2			
	NCI-H23	12.2			
	NCI-H322M	13.9			
	NCI-H460	7.13			
	NCI-H522	14.9			
Colon cancer	COLO 205	1.88	33.52	4.789	2.098
	HCC-2998	3.01			
	HCT-116	4.41			
	HCT-15	4.42			
	HT29	3.78			
	KM12	4.92			
	SW-620	11.1			
CNS cancer	SF-268	11.5	65.54	10.923	0.920
	SF-295	10.5			
	SF-539	13.2			
	SNB-19	13.0			
	SNB-75	6.24			
	U251	11.1			
Melanoma	LOX IMVI	8.10			
	MALME-3M	6.89	94.53	10.503	0.957
	M14	3.75			

	MDA-MB-435	10.2			
	SK-MEL-2	21.0			
	SK-MEL-28	14.0			
	SK-MEL-5	3.19			
	UACC-257	16.4			
	UACC-62	11.0			
Ovarian cancer	IGROV1	18.8	97.7	13.957	0.720
	OVCAR-3	10.4			
	OVCAR-4	11.9			
	OVCAR-5	15.8			
	OVCAR-8	14.6			
	NCI/ADR-RES	10.7			
	SK-OV-3	15.5			
Renal cancer	786-0	11.2	89.52	11.190	0.898
	A498	12.9			
	ACHN	14.0			
	CAKI-1	7.23			
	RXF 393	10.6			
	SN12C	4.69			
	TK-10	17.2			
	UO-31	11.7			
Prostate cancer		7.61	21.01	10.505	0.957
	DU-145	13.4			
Breast cancer	MCF7	6.91		7.973	1.260
	$\begin{aligned} & \text { MDA-MB- } \\ & \text { 231/ATCC } \end{aligned}$	12.7	47.84		
	HS 578T	11.3			
	BT-549	8.34			
	T-47D	5.34			
	MDA-MB-468	3.25			

The \log molar concentration of the resulted screening of compound 2.53 (NSC 749204) shown for each of the parameters; for $\log \mathrm{GI}_{50}$ ranged from -5.73 to -4.68 , for \log TGI ranged from -5.45 to -4.39 , for $\log \mathrm{LC}_{50}$ ranged from -5.16 to -4.00 (Table 3.6). A mean graph midpoint
(MG-MID) calculated for each of the parameters; $\log \mathrm{GI}_{50}(-5.05), \log \mathrm{TGI}(-4.64)$, and $\log \mathrm{LC}_{50}$ (-4.26).

Table 3.6. Values of the \log molar concentration of response parameter $\left(\log _{10} G I_{50}, \log _{10} T G I\right.$ and $\log _{10} L C_{50}$) of the compound 2.53 (NSC 749204).

Cancer disease	Used cell lines	$\log _{10} \mathrm{GI}_{50}$	$\log _{10} \mathrm{TGI}$	$\log _{10} \mathrm{LC}_{50}$
Leukemia	CCRF-CEM	-4.89	-4.51	-4.13
	HL-60(TB)	-5.33	-4.74	-4.28
	K-562	-5.33	-4.80	-4.32
	MOLT-4	-4.94	-4.56	-4.18
	RPMI-8226	-5.12	-4.59	-4.11
	SR	-5.42	-5.04	-4.00
Non-small cell lung cancer	A549/ATCC	-4.86	-4.51	-4.16
	EKVX	-4.91	-4.54	-4.16
	HOP-62	-4.83	-4.54	-4.25
	HOP-92	-5.24	-4.70	-4.33
	NCI-H226	-4.88	-4.52	-4.16
	NCI-H23	-4.92	-4.59	-4.26
	NCI-H322M	-4.86	-4.53	-4.21
	NCI-H460	-5.15	-4.65	-4.24
	NCI-H522	-4.83	-4.43	-4.04
	COLO 205	-5.73	-5.45	-5.16
Colon cancer	HCC-2998	-5.52	-4.93	-4.44
	HCT-116	-5.36	-4.78	-4.36
	HCT-15	-5.35	-4.75	-4.29
CNS cancer	HT29	-5.42	-4.84	-4.37
	KM12	-5.31	-4.75	-4.33
	SW-620	-4.95	-4.60	-4.25
	SF-268	-4.94	-4.58	-4.22
	SF-295	-4.98	-4.61	-4.24
	SF-539	-4.88	-4.58	-4.28

	T-47D	-5.27	-4.71	-4.30
	MDA-MB-468	-5.49	-4.82	-4.36
MID		-5.05	-4.64	-4.26
Delta		0.68	0.81	0.9
Range	1.05	1.1	1.16	

3.3. Conclusion

Compounds synthesized for the study of Tdp1 inhibition were screened in the NCI-60 cancer cell line assay to identify their anti-cancer activity. Among the selected compounds for screening, compound 2.53 (NSC 749204) was selected for five-dose experiments and showed moderate-to-good anticancer activity against many tested cell lines responding nine different panels with GI_{50} values between 1.88 and $21.0 \mu \mathrm{M}$. Compound 2.53 (NSC 749204) was found to be mildly selective in the colon cancer panel, as well as mildly-to-non-selective in the leukemia and breast cancer subpanel.

3.4. References

1. http://www.cancer.gov/cancertopics/cancerlibrary/what-is-cancer
2. Eckhardt, S., Recent progress in the development of anticancer agents. Curr. Med. Chem. Anticancer Agents, 2002, 2, 419-439.
3. Shoemaker, R. H., The NCI60 human tumor cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813-823.
4. Adams, J.; Kauffman, M., Development of the proteasome inhibitor Veleade((TM)) (Bortezomib). Cancer Invest. 2004, 22, 304-311.
5. Dexheimer, T. S.; Gediya, L. K.; Stephen, A. G.; Weidlich, I.; Antony, S.; Marchand, C.; Interthal, H.; Nicklaus, M.; Fisher, R. J.; Njar, V. C.; Pommier, Y., 4-Pregnen-21-ol-3,20-dione-21-(4-bromobenzenesulfonate) (NSC 88915) and related novel steroid derivatives as Tyrosyl-DNA Phosphodiesterase (Tdp1) inhibitors. J. Med. Chem. 2009, 52, 7122-7131.
6. Cragg, G. M.; Boyd, M. R.; Khanna, R.; Kneller, R.; Mays, T. D.; Mazan, K. D.; Newman, D. J.; Sausville, E. A., International collaboration in drug discovery and development: the NCI experience. Pure Appl. Chem. 1999, 71, 1619-1633.
7. (a) Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R., Feasibility of drug screening with panels of human-tumor cell-lines using a microculure tetrazolium assay. Cancer Res. 1988, 48, 589-601. (b) Boyd, M. R.; Pauli, K. D., Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Develop. Res. 1995, 34, 91-109.
8. Kode, N.; Chen, L.; Murthy, D.; Adewumi, D.; Phadtare, S., New bis-N9(methylphenylmethyl)purine derivatives: Synthesis and antitumor activity. Eur. J. Med. Chem. 2007, 42, 327-333.
9. Corona, P.; Carta, A.; Loriga, M.; Vitale, G.; Paglietti, G., Synthesis and in vitro antitumor activity of new quinoxaline derivatives. Eur. J. Med. Chem. 2009, 44, 1579-1591.
10. Rostom, S. A. F., Synthesis and in vitro antitumor evaluation of some indeno 1,2-c pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Biorg. Med. Chem. 2006, 14, 6475-6485.

CHAPTER 4

Study of Anticancer Activity of Seven-membered Cyclic Sulfamide Analogs

Using the USA National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screen

4.1. Introduction

Among the various human diseases, cancer, human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS), and hepatitis C virus (HCV) are among the most devastating diseases in contemporary human history. Accordingly, development and discovery of novel potent, significantly selective, and less toxic antitumor, antiviral drugs is one of the main hurdles to overcome health problems. Manytimes, AIDS patients have accompany cancers and other lethal diseases because the immune system is so weakened by the HIV in a human body.

Drug repositioning (drug repurposing, reprofiling and indication switch) has gained attention from drug discovery. ${ }^{1}$ Development of a new pharmaceutical product requires at least 10 to 15 years and costs between $\$ 500$ million and $\$ 2$ billion. ${ }^{2}$ Thus, the identification and characterization of new pharmacological activities through screening from existing therapeutic drugs is an effective method to accelerate the translation of discoveries in short time and to save the development cost. It also opens new applications of the subsequent target identification and validation.

There are several examples of newly rescued drugs from old drugs $4.1-4.7$ shown in Table 4.1. ${ }^{3}$ These drugs are newly indicated for cancers that affect blood, bone marrow, and lymph nodes. With successful results from old drugs to new treatments, scientists are becoming more and more interested in drug repositioning. ${ }^{4}$

Table 4.1. Developed treatments for hematological malignancies from old drugs.

Flubendazole (4.6)

Morning sickness
Multiple myeloma
Clinical, FDA approved ${ }^{11}$
Thalidomide (4.7)

Recently, focused studies of the effective inhibitions of selective cancer cells by HIV protease inhibitors have surfaced in the literature (Figure 4.1). ${ }^{12}$ Nelfinavir (4.8) is an HIV protease inhibitor that is recently being evaluated in an oncology clinical trial as a potential candidate of cancer therapeutic treatment. ${ }^{13}$ Liu reported that Nelfinavir (4.8) selectively inhibits the growth of HER2-positive breast cancer cells in vitro. ${ }^{12 \mathrm{a}}$ Although breast cancer is one of the leading causes of cancer death, only few treatment options are available, and development of new drug targets is still in need. In 2012, Dennis and coworkers reported that Nelfinavir (4.8) and bortezomib (4.9) are able to induce endoplasmic reticulum (ER) stress, whereas the combination enhances ATF3 and CHOP expression to cause cell death. ${ }^{12 b}$ Betulinic acid (4.10) is a natural product possessing biological activities such as including anti-cancer, anti-malarial, anti-inflammatory and anti-HIV properties. ${ }^{12 \mathrm{c}, \mathrm{d}}$ Cobicistat (4.11), a potential inhibitor of cytochrome P450 3A enzymes, has been developed as a pharmacoenhancer (booster) for coformulation with HIV drugs. ${ }^{12 \mathrm{e}}$ Tenofovir alafenamide fumarate (TAF), or GS 7340, (4.12) is under development by Gilead Sciences for use in the treatment of HIV infection. Cobicistat (4.11) is a substrate of breast cancer resistance protein (BCRP), and experimental data shown that Cobicistat (4.11) has a competitive mode of inhibition with coadministrated agent 4.12 during intestinal absorption to inhibit breast cancer resistance protein (BCRP).

Nelfinavir (4.8)

Bortezomib (4.9)

Butulinic acid (4.10)

Cobicistat (4.11)

Figure 4.1. Active compounds possessing biological activity on cancer cell.

In this regard, we previously synthesized and reported an array of sulfur-based potential HIV-PR inhibitors (DMP 323 analogs in Jung Ho Jun Master Thesis) that we now have submitted to the NCI-60 cancer cell line screen and herein report the summarized results in order to discuss possible opportunities in an oncology study.

4.2. Summary of the synthesis of cyclic sulfamide compounds

Cyclic urea-based compounds have demonstrated antiviral activity and there are prominent examples of highly potent HIV protease inhibitors developed by pharmaceutical industry. ${ }^{14,15,16}$ Previous studies have elucidated the effect of substituents, absolute and relative stereochemistry, hydrophobicity etc., on the hydrogen bonding and catalytic aspartate interactions with enzyme, and thereby, overall inhibitor potency. ${ }^{17}$ It is well known that modification with sulfamide functional group provides an attractive and versatile opportunity for the selective and potent modulation of protein function. ${ }^{18}$ These observations inspired us to
explore the potential of cyclic sulfamide analogs of ureas, for anti-cancer activity. Since it is already published in my Master thesis and paper, ${ }^{19}$ the methodologies in synthesizing cyclic sulfamide compounds utilizing ring-closing metathesis (RCM) are only summarized in this section. Synthesis of cyclic sulfamide 4.15 , which has alkyl substituents at the $\mathrm{P} 1 / \mathrm{P} 1$ ' positions, was accomplished from 4.13 (Scheme 4.1). Alkylation of C_{2}-cymmetric sulfamide 4.13, followed by the conversion of the ester groups to terminal olefins, RCM, and subsequent dihydroxylation generated cyclic sulfamide 4.15.

Scheme 4.1. Symmetric Sulfamides from $\mathrm{SO}_{2} \mathrm{Cl}_{2}$: Ester as Latent Olefin.

The initial synthesis of amino ester derived C_{2}-symmetric sulfamides 4.22 and further synthesis is described in Scheme 4.2. Condensation of a slight excess of phenylalanine $\cdot \mathrm{HCl}$ with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ furnished sulfamides 4.17 in 93% yield. Benzylation using benzyl bromide and reduction by the addition of LiAlH_{4} cautiously into a reaction mixture in THF at low temperature $\left(0^{\circ} \mathrm{C}\right)$ allowed primary alcohol 4.18 in 91%. Swern oxidation and following Wittig reaction ${ }^{20}$ using n-butyl lithium provided terminal olefin 4.20 in moderate yield. Addition of the G-II catalyst in 3-6 $\mathrm{mol} \%$ in refluxing benzene was found to be highly efficient for the metathesis of these substrates to provide cyclic C_{2}-symmetric sulfamides 4.21 in quantitative yield. This pathway represents the first important example of a C_{2}-symmetric sulfamide that has functionality occupying the P1/P1' and P2/P2' positions. Each reaction of dihydroxylation and epoxidation from 4.21 yielded diol 4.22 and the 7-membered epoxy sulfamide 4.23.

Scheme 4.2

With the desire for a more effective route to C_{2}-symmetric sulfamides with bulky endocyclic substituents occupying the $\mathrm{P} 1 / \mathrm{P} 1^{\prime}$ positions, an improved synthetic pathway was explored. This route employed a two-directional chain synthesis ${ }^{21}$ on the leucine-derived, C_{2} symmetric sulfamide 4.24 (Scheme 4.3). Dialkylation of 4.24 with benzyl bromide under standard conditions $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 70{ }^{\circ} \mathrm{C}\right)$ and LiAlH_{4} reduction gave the corresponding bisbenzylated sulfamide 4.25 in 99% yield. Next, a two-step protocol was used to convert the diol moieties to sulfamide diene 4.26. Swern oxidation in 99% followed by bis-Wittig olefination $\left(\mathrm{PPh}_{3} \mathrm{CH}_{2} \mathrm{Br}, n\right.$ - $\left.\mathrm{BuLi}, \mathrm{THF}\right)$ yielded 4.26 in 89%. With use of $5 \mathrm{~mol} \%$ of the G-II catalyst, $C_{2}-$ symmetric sulfamide 4.27 was furnished in moderate yield. Dihydroxylation proceeded smoothly to produce sulfamide diol 4.28 in 99% yield. Alternatively, treatment with m-CPBA yielded epoxy sulfamide 4.29 in an un-optimized yield of 52%.

Scheme 4.3

Attempt at the installation of an α-hydroxyl amine at the $\mathrm{P} 2 / \mathrm{P} 2^{\prime}$ positions is shown in Scheme 4.4. Several efforts were studied to open the epoxide ring using sodium azide with various conditions (Table 4.2). ${ }^{22}$ The first reaction condition using sodium azide and epoxide 4.29 in DMF and $\mathrm{H}_{2} \mathrm{O}$ (7:1) did not afford the ring-opened product. The second reaction condition utilized cerium chloride and NaN_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}(9: 1)$, yet also failed to yield the desired products. Finally, the reaction condition using $\mathrm{NH}_{4} \mathrm{Cl}$ with NaN_{3} in DMF and $\mathrm{H}_{2} \mathrm{O}(7: 1)$ furnished desired product 4.30 and 4.31 in less than 30% yield (ratio 1.3:1) ${ }^{23}$. These two α hydroxyl azides, 4.30 and 4.31, could be distinguished by NOE analysis (Figure 4.2). The relationship between H 1 and H 3 of $\mathbf{4 . 3 0}$ is cis, since no NOE was seen between H 2 and either H1 or H3.

Investigations using the Staudinger reaction will be explored in the future. Under the simple reaction condition $\left(\mathrm{PPh}_{3}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$, sulfamides 4.30 and 4.31 should be able to be converted to α-hydroxyl amines 4.32 and 4.33. Since the α-hydroxyl amines have a higher
probability to engage in hydrogen bonds, the degree of coordination between these α-hydroxyl amines and aspartate residues present in the active site of HIV-PR could potentially be enhanced in comparison with the corresponding diol compound. These efforts will be reported in due course.

Scheme 4.4. Ring opening reaction using NaN_{3}.

Table 4.2. Result of ring opening reaction using various conditions.

Condition	Solvent	Yield
NaN_{3}	DMF:H2O $=7: 1$	None
$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaN}_{3}$	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=9: 1$	None
$\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NaN}_{3}$	DMF:H2O $=7: 1$	30%

Figure 4.2

An attractive route to diol 4.37 is outlined in Scheme 4.5 and utilizes the pinacol coupling reaction that converts internal or external aldehydes to cis or trans diols using various catalysts.

The first trial to generate a trans-diol using titanium cyclopentadiene catalyst was performed. ${ }^{24}$ The reaction of aldehyde $\mathbf{4 . 1 9 b}$, titanium catalyst $\mathbf{4 . 3 4}$, and TMSCl in the presence of catalytic amount of Zn powder in THF did not furnish the desired trans-diol, 4.35. Secondly, a widely known method to furnish cis-diol using SmI_{2} was applied to the pinacol coupling reaction, but the desired product cis-diol 4.38 was not generated. ${ }^{25}$ Fortunately, by using a protocol reported by Pederson and coworkers, ${ }^{26}$ pinacol coupling reaction of the aldehyde 4.19 b with a vanadium (II) reagent, $\left[\mathrm{V}_{2} \mathrm{Cl}_{3}(\mathrm{THF})_{6}\right]_{2}\left[\mathrm{Zn}_{2} \mathrm{Cl}_{6}\right]$ generated diol 4.37 as a single diastereomer in 56% yield. We next embarked upon studies to elucidate the stereochemistry of diol 4.37.

Scheme 4.5

There are three possible stereochemical outcomes of the pinacol coupling, namely two trans-diastereomers 4.37a, 4.37b, and the cis-diol 4.37c (Figure 4.3). ${ }^{1} \mathrm{H}$ NMR NOE studies allowed us to assign the product as the cis-diol 4.37c.

Figure 4.3

An approach to synthesize meso compound 4.44 utilizing CSI and chiral amino acid was developed (Scheme 4.6). Mitsunobu reaction of α-hydroxy ester 4.39, which was generated by the reaction of α-hydroxy amino acid and amberlyst- 15 ion exchange resin in MeOH , and the unsymmetric sulfamide 4.38 , ${ }^{27}$ provided the N-Boc protected sulfamide 4.40 in 72% yield. Benzylation and deprotection of Boc group furnished 4.41, and further benzylation and LiAlH_{4} reduction produced meso sulfamide 4.42. Swern oxidation followed by Wittig reaction generated terminal olefin 4.43 , and RCM using the G-II catalyst ($5 \mathrm{~mol} \%$) furnished cyclized meso sulfamide 4.44 in good yields.

Scheme 4.6

The newest route to unsymmetric sulfamides is represented in Scheme 4.6. This approach involves the use of the Mitsunobu reaction of sulfamoyl carbamates to apply a stereogenic center occupying the P1 position in a tri-differentiated sulfamide. ${ }^{19}$ Mitsunobu reaction of sulfamide 4.45 with readily prepared chiral nonracemic secondary allylic alcohol 4.46 provided sulfamide 4.47 in 67% yield. Allylation afforded sulfamide diene 4.48 in 92%. RCM (96%), Boc-deprotection (96%) and benzylation (89%) gave the desired cyclic sulfamide 4.50 in excellent yield. Finally, dihydroxylation gave sulfamide diol 4.51 in good yield (70\%) and with high diastereoselectivity ($d r=16: 1$).

Scheme 4.7

Another new approach to unsymmetric sulfamides is represented in Scheme 4.8. ${ }^{19}$ This strategy involves mono benzylation followed by p-methoxy benzylation on the nitrogen to generate diverse substituents occupying the P2 and P2' positions in a tri-differentiated sulfamide. Mono benzylation of sulfamide 4.24 with benzyl bromide allowed sulfamide 4.52 in 53% yield with dibenzylated sulfamide as a byproduct. p-Methoxy benzylation of 4.52 on the rest of nitrogen and reduction of ester gave diol 4.53. Dess-Martin oxidation of 4.53 in wet $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ organic solvent generated unstable dialdehyde 4.54. ${ }^{28}$ Wittig reaction using KHMDS to produce terminal olefin 4.55, and RCM in refluxing benzene generated desired cyclic sulfamide 4.56.

Scheme 4.8

The methods outlined below were exploited further in the synthesis of an unsymmetric sulfamide bearing tetra-differentiated $\mathrm{P} 1 / \mathrm{P} 1 / / \mathrm{P} 2 / \mathrm{P} 2$ ' regions (Scheme 4.9). ${ }^{19}$ Mitsunobu reaction of sulfamide $4.57{ }^{29}$ and L-ethyl lactate, and benzylation of sulfamoyl carbamate furnished unsymmetric sulfamide 4.58 in 94% yield. Boc-deprotection and protection of the remaining sulfamide nitrogen with p-methoxybenzyl chloride gave 77% of sulfamide 4.59. LiAlH_{4} reduction (38\%), Swern oxidation (99\%), and Wittig olefination (69\%) gave the metathesis precursor 4.60. Ring-closing metathesis with $5 \mathrm{~mol} \%$ of the G-II catalyst afforded 69% of
unsymmetric sulfamide 4.61. Conversion of the cyclic internal olefin to the corresponding diol via cis-dihydroxylation was the final step toward analogues of DMP 323. Dihydroxylation furnished the sulfamide diol 4.62 in 91% yield, albeit with modest diastereoselectivity ($d r=3.9: 1$).

Scheme 4.9

4.3. Anticancer drug discovery NCI-60 cell line screening at National Cancer Institute (NCI)

4.3.1. One-dose assay

Pharmacological evaluation of the anticancer activity was carried out on the selected compounds by developmental therapeutic program of the National Cancer Institute (NCI), Frederick, Maryland. All the selected 29 compounds for in vitro cancer screening have been given a unique NSC (National Service Center) number. The compounds 4.21-4.78 in Table 4.3 were submitted to NCI-60 cell line screening. Compounds $4.63-4.78$ were prepared by our group members and synthetic methods and supplemental data can be found in cited references. ${ }^{30,19 b}$ Cyclic sulfamide, urea, and phosphorus containing compounds 4.63-4.78 were
screened to obtain structure activity relationships (SAR). Details of the methodologies for NCI60 cell line screening are described at http://dtp.nci.nih.gov/branches/btb/ivclsp.html. ${ }^{31}$ Briefly, the panel is organized into nine subpanels representing diverse histologies: leukemia, melanoma, and cancers of lung, colon, kidney, ovary, breast, prostate, and central nervous system. The human tumor cells are grown in supplemented RPMI 1640 medium containing 5% fetal bovine serum and 2 mL glutamine for 24 h . The cells are inoculated into 96 -well microtiter plates in $100 \mu \mathrm{~L}$ at plating densities ranging from 5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the micro-titer plates are incubated at $37^{\circ} \mathrm{C}$, $5 \% \mathrm{CO}_{2}, 95 \%$ air and 100% relative humidity for 24 h prior to addition of experimental drugs. The selected compounds 4.21-4.78 were dissolved in DMSO and incubated with cells at five concentrations with 10 -fold dilutions, the highest being $10^{-4} \mathrm{M}$ and the others being $10^{-5}, 10^{-6}$, 10^{-7}, and $10^{-8} \mathrm{M}$. The assay is terminated by addition of cold trichloroacetic acid, and the cells are fixed and stained with sulforhodamine B. Bound stain was solubilized, and the absorbance read on an automated plate reader. The cytostatic parameter that is 50% growth inhibition $\left(\mathrm{GI}_{50}\right.$, concentrations required to inhibit growth by 50%) was calculated from time zero, control growth, and the five concentration level absorbance. The cytotoxic parameter that is, inhibitory concentrations $\left(\mathrm{LC}_{50}\right.$, lethal concentration, standard measure of the toxicity of the medium that kills half of the sample population in a specified period, lower number means more toxic) represent the average of two independent experiments. The in vitro screening is a two-stage process started with the evaluation of all the compounds against the NCI-60 human tumor cell lines with a single dose of $10.0 \mu \mathrm{M}$, which is done by following same protocol as for five-dose screening. The output from the single dose screen was reported as a mean graph (given in the Supplementary data with general interpretation). Only the compounds, which showed more than
60% of growth inhibition in at least 8 tumor cell lines, were selected for further testing and the others were assumed as inactive.

Table 4.3. List of compounds screened for NCI 60-cell lines.

Compd No. NSC No.	Structure	Activity	Compd No. NSC No.	Structure	Activity
$\begin{gathered} 4.21 \\ \text { NSC } 764190 \end{gathered}$		Active	$\begin{gathered} 4.22 \\ \text { NSC } 751486 \end{gathered}$		Active
$\begin{gathered} 4.23 \\ \text { NSC } 751478 \end{gathered}$		Active	$\begin{gathered} 4.27 \\ \text { NSC } 751468 \end{gathered}$		
$\begin{gathered} 4.28 \\ \text { NSC } 751469 \end{gathered}$			$\begin{gathered} 4.29 \\ \text { NSC } 751470 \end{gathered}$		
$\begin{gathered} \text { 4.37C } \\ \text { NSC } 764189 \end{gathered}$		Active	$\begin{gathered} 4.44 \\ \text { NSC } 751477 \end{gathered}$		
$\begin{gathered} \mathbf{4 . 5 6} \\ \text { NSC } 751472 \end{gathered}$			$\begin{gathered} 4.61 \\ \text { NSC } 751473 \end{gathered}$		
$\begin{gathered} \text { 4.62a } \\ \text { NSC } 751479 \end{gathered}$			$\begin{gathered} \text { 4.62b } \\ \text { NSC } 751483 \end{gathered}$		
$\begin{gathered} 4.63 \\ \text { NSC } 751467 \end{gathered}$			$\begin{gathered} 4.64 \\ \text { NSC } 764191 \end{gathered}$		

4.65

NSC 764192

4.67

NSC 764194
4.69

NSC 764196
4.71

NSC 767525
4.73

NSC 767527

4.75

NSC 767529

4.77

NSC 767531

4.66

NSC 764193

4.74

NSC 767528

4.72

NSC 767526

NSC 764197

4.78

NSC 767532

4.76 NSC 767530

The one-dose data is reported as a mean graph of the percent growth of treated cells and is similar in appearance to mean graphs from the 5-dose assay. The number reported for the onedose assay is growth relative to the no-drug control, and relative to the time zero number of cells.

This allows detection of both growth inhibition (values between 0 and 100) and lethality (values less than 0). This is the same as for the 5-dose assay, described on http://dtp.nci.nih.gov/branches/btb/ivclsp.html. For example, a value of 100 means no growth inhibition. A value of 40 would mean 60% growth inhibition. A value of 0 means no net growth over the course of the experiment. A value of -40 would mean 40% lethality. A value of -100 means all cells are dead. Information from the One-dose mean graph is available for COMPARE analysis (http://dtp.nci.nih.gov/docs/compare/compare.html). This primary one-dose screening showed that compounds (4.21, 4.22, 4.23, and 4.37c) were active, while other compounds are determined as inactive. Table 4.4 is the summary of one-dose experiment for each compound. Even if it was not selectively considered 60% of growth inhibition as criterion, many compounds are moderately sensitive on the breast cancer (MDA-MB-468), renal cancer (UO-31 and CAKI-1) and leukemia (MOLT-4 and SR).

Compound 4.21 (NSC 764190) showed 11.87% growth inhibition against the SR cell line (Leukemia), compound 4.22 (NSC 751486), 0\% against the UO-31 cell line (Renal cancer), compound 4.23 (NSC 751478), 6.52% against MDA-MB-468 the cell line (Breast cancer), compound 4.27 (NSC 751468), 39.65\% against MDA-MB-468 the cell line (Breast cancer), compound 4.28 (NSC 751469), 46.61\% against HCT-116 the cell line (Colon cancer), compound 4.29 (NSC 751470), 35.50% against MDA-MB-468 the cell line (Breast cancer), 4.37c (NSC 751489), 18.03\% against MDA-MB-468 the cell line (Breast cancer), compound 4.44 (NSC 751477), 41.68% against the MDA-MB-468 cell line (Breast cancer), compound 4.56 (NSC 751472), 44.15% against the MDA-MB-468 cell line (Breast cancer), compound 4.61 (NSC 751473), 81.62% against the HT29 cell line (Colon cancer), compound 4.62a (NSC 751479), 67.93\% against the SNB-75 cell line (CNS cancer), compound 4.62b (NSC 751483), 75.56\%
against the UO-31 cell line (Renal cancer), Compound 4.63 (NSC 751467), 69.49\% against the SNB-19 cell line (CNS cancer), compound 4.64 (NSC 751491), 71.87\% against the Leukemia MOLT-4 cell line (Leukemia), compound 4.65 (NSC 764192), 78.05\% against the SNB-75 cell line (CNS cancer), compound 4.66 (NSC 764193), 87.73\% against the UO-31 cell line (Renal cancer), compound 4.67 (NSC 764194), 43.31% against the CAKI-1 cell line (Renal cancer), compound 4.68 (NSC 764195), 57.52\% against the HCT-116 cell line (Colon cancer), compound 4.69 (NSC 764196), 73.57\% against the CAKI-1 cell line (Renal cancer), compound 4.70 (NSC 764197), 82.35% against the UO-31 cell line (Renal cancer), compound 4.71 (NSC 767525), 79.70% against the NCI-H522 cell line (Non-small cell lung cancer), compound 4.72 (NSC 767526), 34.17% against the MOLT-4 cell line (Leukemia), compound 4.73 (NSC 767527), 39.80\% against the MOLT-4 cell line (Leukemia), compound 4.74 (NSC 767528), 82.41\% against the SR cell line (Leukemia), compound 4.75 (NSC 767529), 76.18\% against the SNB-75 cell line (CNS cancer), compound 4.76 (NSC 767530), 80.47% against the SR cell line (Leukemia), compound 4.77 (NSC 767531), 64.25\% against the UO-31 cell line (Renal cancer), and compound 4.78 (NSC 767532), 64.80\% against the UO-31 cell line (Renal cancer) (Table 4.4). The compounds which reduced the growth of the cell lines to 32% or less (negative number indicate kills) are considered in vitro active. ${ }^{32,33}$ The output from the NCI-60 cell lines single dose screen of NSC 764190 was reported as a mean graph (Figure 4.4).

Table 4.4. Anti-cancer screening data of compounds.

NSC No.	60-cell line assay in one-dose at 10^{-5} concentration					
	Range of growth percentage	Most sensitive cell line	Growth \% of most sensitive cell line	Mean	Delta	range
751467	69.49 to 127.06	CNS cancer (SNB-19)	69.49	100.68	31.19	57.57
751468	39.65 to 140.80	Breast cancer (MDA-MB-468)	39.65	85.77	46.12	101.15
751469	46.61 to 113.74	Colon cancer (HCT-116)	46.61	81.18	34.57	67.13
751470	35.50 to 123.55	Breast cancer (MDA-MB-468)	35.50	79.44	43.94	88.05
751472	44.15 to 132.68	Breast cancer (MDA-MB-468)	44.15	81.64	37.49	88.53
751473	81.62 to 126.01	Colon cancer (HT29)	81.62	102.22	20.60	44.39
751477	41.68 to 110.24	Breast cancer (MDA-MB-468)	41.68	76.40	35.15	68.99
751478	6.52 to 114.43	Breast cancer (MDA-MB-468)	6.52	46.84	40.32	107.91
751479	67.93 to 150.32	CNS cancer (SNB-75)	67.93	100.64	32.71	82.39
751483	75.56 to 125.47	Renal cancer (UO-31)	75.56	99.69	24.13	49.91
751486	-45.75 to 60.35	Renal cancer (UO-31)	0	$-0.81{ }^{\text {a }}$	44.94	106.10
751489	18.03 to 102.81	Breast cancer (MDA-MB-468)	18.03	65.12	47.09	91.32
764190	11.87 to 99.65	Leukemia (SR)	11.87	55.00	43.13	87.78
764191	71.87 to 116.41	Leukemia (MOLT-4)	71.87	96.44	24.57	44.54
764192	78.05 to 120.37	CNS cancer (SNB-75)	78.05	103.32	25.27	42.32
764193	87.73 to 125.96	Renal cancer (UO-31)	87.73	104.45	16.72	38.23
764194	43.31 to 107.76	Renal cancer (CAKI-1)	43.31	82.97	39.66	64.45
764195	57.52 to 122.20	Colon cancer (HCT-116)	57.52	85.01	38.72	75.91
764196	73.57 to 127.74	Renal cancer (CAKI-1)	73.57	101.26	27.69	54.17
764197	82.35 to 129.96	Renal cancer (UO-31)	82.35	99.55	17.20	47.61
767525	79.70 to 119.76	Non-small cell lung cancer (NCIH522)	79.70	101.95	22.25	40.06
767526	34.17 to 115.22	Leukemia (MOLT-4)	34.17	80.46	46.29	81.05
767527	39.80 to 110.48	Leukemia (MOLT-4)	39.80	85.89	46.09	70.68
767528	82.41 to 119.28	Leukemia (SR)	82.41	102.75	20.34	36.87
767529	76.18 to 122.73	CNS cancer (SNB-75)	76.18	101.04	30.17	51.86
767530	80.47 to 187.29	Leukemia (SR)	80.47	104.72	24.25	106.82
767531	64.25 to 119.03	Renal cancer (UO-31)	64.25	100.51	36.26	55.75
767532	64.80 to 119.30	Renal cancer (UO-31)	64.80	99.27	34.47	54.50

[^1]Figure 4.4. Selected NCI60-cell lines screening data for one-dose study of 4.21 (NSC 764190).

Table 4.5 represents the growth percent inhibition (100-growth percent) of compounds that inhibited more than 50% of growth inhibition for one-dose studies from the NCI60-cell lines screen. Generally, compounds were selectively sensitive on the leukemia, colon cancer, prostate cancer and breast cancer cell. Especially, almost every compound in Table 4.5 showed strong inhibition of the breast cancer cell line (MDA-MB-468).

Table 4.5. Growth percent inhibition of compounds inhibited more than 50% for one-dose studies for the NCI 60-cell lines screen.

Panel/cell line	$\begin{gathered} \hline \text { NSC } \\ 751468 \end{gathered}$	$\begin{gathered} \hline \text { NSC } \\ 751470 \end{gathered}$	$\begin{gathered} \hline \text { NSC } \\ 751472 \end{gathered}$	$\begin{gathered} \hline \text { NSC } \\ 751477 \end{gathered}$	$\begin{gathered} \hline \text { NSC } \\ 751478 \end{gathered}$	$\begin{gathered} \hline \text { NSC } \\ 751486 \end{gathered}$	$\begin{gathered} \hline \text { NSC } \\ 764189 \end{gathered}$	$\begin{array}{c\|} \hline \text { NSC } \\ 764190 \end{array}$	$\begin{gathered} \text { NSC } \\ 767527 \end{gathered}$
Leukemia									
CCRF-CEM					70.51	92.67		51.40	
HL-60(TB)					54.91			64.27	
K-562					76.65	96.88	58.11	77.03	
MOLT-4					64.56	94.35	73.65	76.28	61.20
RPMI-8226					72.12		62.31	62.52	
SR					70.44	95.55	58.23	88.13	
Colon cancer									
HCT-116		51.37	50.59		82.98		68.99	73.22	
HCT-15					73.92	96.84		74.64	
HT29	55.97				53.32	93.05			
KM12					59.78			50.04	
SW-620						90.78			
Prostate cancer									
PC-3				52.03	57.96	95.11	60.25	59.13	
$\begin{gathered} \text { V66666DU- } \\ 145 \end{gathered}$					65.74				
Breast cancer									
MCF7							66.13	52.57	
MDA-MB-					75.79		58.41		
231/ATCC					75.79		58.41		
HS 578T						80.33			
BT-549						84.33			
T-47D					67.51	92.13		50.55	
$\begin{gathered} \text { MDA-MB- } \\ 468 \\ \hline \end{gathered}$	60.35	64.5	55.85	58.32	93.48		81.97	82.62	

4.3.2. Five-dose assay

The \log mean values for GI_{50} and LC_{50} in NCI- 60 cell lines for compounds 4.21, 4.22, 4.23, and 4.37 c are provided in Table 4.6 along with the \log delta value (the maximum sensitivity in excess of the mean) and the log range (the maximum difference between the least sensitive and the most sensitive cell lines). These parameters provided insights into selectivity and potency of anti-tumor agents. Large values of the delta and range indicate high selectivity for some histological cancers over others. The lower median $\log \mathrm{GI}_{50}$ values of compounds 4.22, 4.23 and 4.37 c show that these three compounds are active, followed by 4.21. The high median $\log \mathrm{LC}_{50}$ value of 4.21, along with the low delta and range value, indicates the complete absence of cytotoxicity against all cell lines.

Table 4.6. Cytostatic ($G I_{50}$) and cytotoxic ($L C_{50}$) parameters for 4.21 (NSC 764190), 4.22 (NSC 751486), 4.23 (NSC 751478), and 4.37c (NSC 764189).

Compound	GI_{50}					LC_{50}		
	Median	Delta	Range		Median	Delta	Range	
$\mathbf{4 . 2 1}$ (NSC 764190)	-4.94	1.63	2.57		-4.0	0	0.0	
$\mathbf{4 . 2 2}$ (NSC 751486)	-5.49	0.58	0.85		-4.8	0.18	0.28	
$\mathbf{4 . 2 3}$ (NSC 751478)	-5.31	1.25	1.44		-5.12	0	0.0	
4.37c (NSC 764189)	-5.30	0	0.0		-5.3	0	0.0	

The complete in-vitro anti-cancer data collected on NCI-60 subpanel cell lines for the four most active compounds informed are shown in Table 4.7. Secondary screening was carried out on these active compounds (4.21, 4.22, 4.23, and 4.37c) in order to determine their cytostatic and cytotoxic activities. Generally, cyclic sulfamides possessing benzyl group substituted at the 3- and 6-positions have antitumor activities in several cancer cells. Cyclic sulfamides 4.27, 4.28, 4.29, 4.44, 4.56, 4.61, 4.62a and 4.62b which have alkyl substituents at the 3-and 6-positions do not have noticeable sensitivities toward the 60 tumor cell screening line. To compare as in vitro SAR data, unsymmetric phosphorus-containing analogues of DMD 232 4.64-4.66, 4.69, cyclic
ureas $4.67,4.68,4.70$, and di- or tri-substituted unsymmetric cyclic sulfamides $4.71-4.78$ were submitted to 60 -cell lines additionally. One-dose experimental results show that these compounds did not possess enough biological availability to warrant additional five-dose screening. The result of compound 4.21 for five-dose screening is given by three response parameters $\left(\mathrm{GI}_{50}\right.$, TGI and LC_{50}) for each cell line from $\log _{10}$ of sample concentration (molar) vs percentage growth inhibition curves in nine cancer diseases (Figure 4.5).

Table 4.7. Anti-tumor activity $\left(G I_{50} / \mu M\right)^{a}, T G I^{b}$ and toxicity $\left(L C_{50} / \mu M\right)^{c}$ data of compounds selected for 5 dose studies for the NCI60-cell lines screen.

Panel/cell line	4.21 (NSC 764190)			4.22 (NSC 751486)			4.23 (NSC 751478)			4.37c (NSC 764189)		
	GI_{50}	TGI	LC_{50}									
Leukemia												
CCRF-CEM	3.85	>100	>100	5.96	>20	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HL-60(TB)	3.43	>100	>100	2.97	8.72	>20	4.75	>7.5	>7.5	>5.0	>5.0	>5.0
K-562	2.00	>100	>100	3.05	9.38	>20	3.34	>7.5	>7.5	>5.0	>5.0	>5.0
MOLT-4	2.15	>100	>100	2.86	1.02	>20	4.12	>7.5	>7.5	>5.0	>5.0	>5.0
RPMI-8226	0.859	>100	>100	4.49	>20	>20	4.92	>7.5	>7.5	>5.0	>5.0	>5.0
SR	1.66	>100	>100	nd								
Non-small cell lung cancer												
A549/ATCC	7.67	>100	>100	2.99	7.62	19.4	3.78	>7.5	>7.5	>5.0	>5.0	>5.0
EKVX	nd	>100	>100	3.43	9.86	>20	6.55	>7.5	>7.5	>5.0	>5.0	>5.0
HOP-62	>100	>100	>100	3.71	7.34	14.5	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HOP-92	4.40	>100	>100	3.15	6.68	14.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H226	4.35	>100	>100	3.04	6.17	12.5	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H23	1.66	>100	>100	3.11	6.71	14.5	3.47	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H322M	>100	>100	>100	4.48	11.8	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H460	2.75	>100	>100	3.41	7.91	18.3	2.53	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H522	5.46	>100	>100	0.847	4.79	14.5	1.83	>7.5	>7.5	>5.0	>5.0	>5.0
Colon cancer												
COLO 205	>100	>100	>100	4.26	10.5	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HCC-2998	>100	>100	>100	3.41	6.20	11.3	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HCT-116	0.535	>100	>100	2.43	5.05	10.5	0.844	>7.5	>7.5	>5.0	>5.0	>5.0
HCT-15	3.51	>100	>100	4.37	1.82	>20	3.92	>7.5	>7.5	>5.0	>5.0	>5.0
HT29	42.6	>100	>100	2.63	5.64	12.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
KM12	9.92	>100	>100	2.94	5.84	11.6	7.19	>7.5	>7.5	>5.0	>5.0	>5.0
SW-620	nd	>100	>100	3.18	7.12	15.9	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
CNS cancer												
SF-268	7.85	>100	>100	3.44	8.03	18.8	6.08	>7.5	>7.5	>5.0	>5.0	>5.0
SF-295	0.667	>100	>100	2.62	5.68	12.3	1.80	>7.5	>7.5	>5.0	>5.0	>5.0
SF-539	>100	>100	>100	3.37	6.76	13.6	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SNB-19	>100	>100	>100	4.69	>20	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SNB-75	>100	>100	>100	2.31	7.28	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0

U251	1.11	>100	>100	3.07	6.47	13.6	1.84	>7.5	>7.5	>5.0	>5.0	>5.0
Melanoma												
LOX IMVI	1.40	>100	>100	3.28	7.09	15.3	5.38	>7.5	>7.5	>5.0	>5.0	>5.0
MALME-3M	>100	>100	>100	2.75	6.37	14.7	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
M14	nd	>100	>100	3.04	6.07	12.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
MDA-MB-435	>100	>100	>100	3.33	7.10	15.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SK-MEL-2	>100	>100	>100	2.80	5.76	11.8	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SK-MEL-28	>100	>100	>100	3.35	6.90	14.2	1.79	>7.5	>7.5	>5.0	>5.0	>5.0
SK-MEL-5	1.14	>100	>100	3.05	5.80	11.1	2.89	>7.5	>7.5	>5.0	>5.0	>5.0
UACC-257	2.23	>100	>100	2.89	5.93	12.2	6.75	>7.5	>7.5	>5.0	>5.0	>5.0
UACC-62	2.66	>100	>100	2.86	6.40	14.3	nd	nd	nd	>5.0	>5.0	>5.0
Ovarian cancer												
IGROV1	>100	>100	>100	3.57	7.24	14.7	5.06	>7.5	>7.5	>5.0	>5.0	>5.0
OVCAR-3	2.34	>100	>100	2.90	6.07	12.7	4.03	>7.5	>7.5	>5.0	>5.0	>5.0
OVCAR-4	0.483	>100	>100	2.72	7.26	19.4	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
OVCAR-5	>100	>100	>100	3.57	9.10	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
OVCAR-8	>100	>100	>100	4.20	11.2	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
NCI/ADR-RES	7.03	>100	>100	3.40	8.58	>20	5.23	>7.5	>7.5	>5.0	>5.0	>5.0
SK-OV-3	>100	>100	>100	4.15	10.6	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
Renal cancer												
786-0	>100	>100	>100	3.24	6.86	14.5	5.12	>7.5	>7.5	>5.0	>5.0	>5.0
A498	1.77	>100	>100	2.45	5.18	10.9	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
ACHN	2.10	>100	>100	6.01	>20	>20	5.88	>7.5	>7.5	>5.0	>5.0	>5.0
CAKI-1	2.83	>100	>100	3.65	7.33	14.7	0.949	>7.5	>7.5	>5.0	>5.0	>5.0
RXF 393	28.0	>100	>100	2.60	5.24	10.5	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SN12C	9.42	>100	>100	3.26	7.68	18.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
TK-10	8.26	>100	>100	3.77	8.38	18.6	3.90	>7.5	>7.5	>5.0	>5.0	>5.0
UO-31	>100	>100	>100	2.73	5.96	13.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
Prostate cancer												
PC-3	0.580	>100	>100	3.48	10.4	>20	3.06	>7.5	>7.5	>5.0	>5.0	>5.0
DU-145	>100	>100	>100	3.21	7.55	17.8	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
Breast cancer												
MCF7	>100	>100	>100	4.77	13.6	>20	4.27	>7.5	>7.5	>5.0	>5.0	>5.0
MDA-MB-231/ATCC	>100	>100	>100	2.82	6.39	14.5	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HS 578T	>100	>100	>100	3.27	8.38	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
BT-549	>100	>100	>100	2.65	5.53	11.6	4.09	>7.5	>7.5	>5.0	>5.0	>5.0
T-47D	>100	>100	>100	3.95	10.2	>20	6.81	>7.5	>7.5	>5.0	>5.0	>5.0
MDA-MB-468	0.267	60.1	>100	2.98	7.17	17.3	0.274	>7.5	>7.5	>5.0	>5.0	>5.0

nd: not determined.
${ }^{a} \mathrm{GI}_{50}$: 50% growth inhibition, concentration of drug resulting in a 50% reduction in net protein increase compared with control cells.
${ }^{\mathrm{b}}$ TGI: total cell growth inhibition
${ }^{\mathrm{c}} \mathrm{LC}_{50}$: lethal concentration, concentration of drug lethal to 50% of cells.

Figure 4.5. Dose response curves (\% growth verses samples concentration at NCI fixed protocol, $\mu M)$ obtained from the NCI in vitro disease-oriented human cancer cell line of compounds 4.21 (NSC 764190) in nine cancer diseases.

Figure 4.5. Dose response curves (\% growth verses samples concentration at NCI fixed protocol, $\mu M)$ obtained from the NCI in vitro disease-oriented human cancer cell line of compounds 4.21 (NSC 764190) in nine cancer diseases (continued).

The criterion for selectivity of a compound depends on the ratio obtained by dividing the full panel MID (the average sensitivity of all cell lines towards the test agent) by their individual subpanel MID (the average sensitivity of all cell lines of a particular subpanel towards the test agent). The ratios between 3 and 6 refer to moderate selectivity; ratios greater than 6 indicate high selectivity towards the corresponding cell line, while compounds not meeting either of there criteria are rated non-selective. ${ }^{34}$ Since it is difficult for the calculation of GI_{50} in cases which have values of $>7.5 \mu \mathrm{M}$, they are excluded from the calculation. Following this criterion, compound 4.23 (NSC 751478) was found to be mildly selective toward every cancer panel.

Table 4.8. Calculated value of GI50 of the cell lines: full cell line panel, MG-MID and selectivity ratio of compound 4.23 (NSC 751478).

Panel	Cell line	$\mathrm{GI}_{50}\left(10^{-6} \mathrm{M}\right)$			
		Concentration per cell line	Subpanel concentration	Subpanel MID	Selectivity ratio
Leukemia	CCRF-CEM	>7.5	17.13	4.282	0.922
	HL-60(TB)	4.75			
	K-562	3.34			
	MOLT-4	4.12			
	RPMI-8226	4.92			
	SR	nd			
Non-small cell lung cancer	A549/ATCC	3.78	18.16	3.632	1.088
	EKVX	6.55			
	HOP-62	>7.5			
	HOP-92	>7.5			
	NCI-H226	>7.5			
	NCI-H23	3.47			
	NCI-H322M	>7.5			
	NCI-H460	2.53			
	NCI-H522	1.83			
Colon cancer	COLO 205	>7.5	11.954	3.984	0.991
	HCC-2998	>7.5			
	НСТ-116	0.844			
	НСТ-15	3.92			
	HT29	>7.5			
	KM12	7.19			
	SW-620	>7.5			
CNS cancer	SF-268	6.08	9.72	3.24	1.219
	SF-295	1.80			
	SF-539	>7.5			
	SNB-19	>7.5			
	SNB-75	>7.5			
	U251	1.84			
Melanoma	LOX IMVI	5.38	16.81	4.203	0.940
	MALME-3M	>7.5			
	M14	>7.5			
	MDA-MB-435	>7.5			
	SK-MEL-2	>7.5			
	SK-MEL-28	1.79			
	SK-MEL-5	2.89			
	UACC-257	6.75			
	UACC-62	nd			
Ovarian cancer	IGROV1	5.06	14.32	4.773	0.828
	OVCAR-3	4.03			
	OVCAR-4	>7.5			
	OVCAR-5	>7.5			
	OVCAR-8	>7.5			
	NCI/ADR-RES	5.23			
	SK-OV-3	>7.5			
Renal cancer	786-0	5.12	15.849	3.962	0.997
	A498	>7.5			
	ACHN	5.88			
	CAKI-1	0.949			
	RXF 393	>7.5			

	SN12C	>7.5		
	TK-10	3.90		
Prostate cancer	UO-31	>7.5	3.06	1.291
	PC-145	3.06		
	MCF7	4.5		
	MDA-MB-	>7.5		3.861

nd: not determined

Based on the discussion on the criterion of selectivity, compound 4.22 (NSC 751486) was found to be mild selective in the colon cancer panel. It was also found to be mildly selective in every cancer panel.

Table 4.9. Calculated value of GI50 of the cell lines: full cell line panel, MG-MID and selectivity ratio of compound 4.22 (NSC 751486).

Panel	Cell line	$\mathrm{GI}_{50}\left(10^{-6} \mathrm{M}\right)$			
		Concentration per cell line	Subpanel concentration	Subpanel MID	Selectivity ratio
Leukemia	CCRF-CEM	5.96	19.33	3.866	0.863
	HL-60(TB)	2.97			
	K-562	3.05			
	MOLT-4	2.86			
	RPMI-8226	4.49			
	SR	nd			
Non-small cell lung cancer	A549/ATCC	2.99	28.167	3.130	1.066
	EKVX	3.43			
	HOP-62	3.71			
	HOP-92	3.15			
	NCI-H226	3.04			
	NCI-H23	3.11			
	NCI-H322M	4.48			
	NCI-H460	3.41			
	NCI-H522	0.847			
Colon cancer	COLO 205	4.26	23.22	3.317	1.006
	HCC-2998	3.41			
	HCT-116	2.43			
	HCT-15	4.37			
	HT29	2.63			
	KM12	2.94			
	SW-620	3.18			
CNS cancer	SF-268	3.44	19.50	3.25	1.027
	SF-295	2.62			
			7		

	SF-539	3.37			
	SNB-19	4.69			
	SNB-75	2.31			
	U251	3.07			
Melanoma	LOX IMVI	3.28			
	MALME-3M	2.75			
	M14	3.04			
	MDA-MB-435	3.33			
	SK-MEL-2	2.80	27.35	3.039	1.098
	SK-MEL-28	3.35			
	SK-MEL-5	3.05			
	UACC-257	2.89			
	UACC-62	2.86			
Ovarian cancer	IGROV1	3.57			
	OVCAR-3	2.90			
	OVCAR-4	2.72			
	OVCAR-5	3.57	24.51	3.501	0.953
	OVCAR-8	4.20			
	NCI/ADR-RES	3.40			
	SK-OV-3	4.15			
Renal cancer	786-0	3.24			
	A498	2.45			
	ACHN	6.01			
	CAKI-1	3.65	27.71	3.464	0.964
	RXF 393	2.60			
	SN12C	3.26			
	TK-10	3.77			
	UO-31	2.73			
Prostate cancer	PC-3	3.48	6.69	3.345	0.998
	DU-145	3.21			
Breast cancer	MCF7	4.77			
	$\begin{aligned} & \text { MDA-MB- } \\ & \text { 231/ATCC } \end{aligned}$	2.82			
	HS 578T	3.27	20.44	3.407	0.980
	BT-549	2.65			
	T-47D	3.95			
	MDA-MB-468	2.98			

nd: not determined

The next table, Table 4.10, contains the calculated values of the selectivity ratio of compound 4.21 (NSC 764190). Cases with values over 100 of the GI_{50} value were excluded from the calculation. Following the selectivity criterion, compound 4.21 (NSC 764190) was found to be mildly selective toward the leukemia (selectivity ratio $=2.238$) and melanoma $($ selectivity ratio $=2.801)$ cancer panels. Even though it was chosen in only one cell line from each of the prostate cancer and breast cancer panels for the calculation of the selectivity ratio,
compound 4.21 (NSC 764190) was indicated to be highly selective toward these two cancer panels.

Table 4.10. Calculated value of GI50 of the cell lines: full cell line panel, MG-MID and selectivity ratio of the compound 4.21 (NSC 764190).

Panel	Cell line	$\mathrm{GI}_{50}\left(10^{-6} \mathrm{M}\right)$			
		Concentration per cell line	Subpanel concentration	Subpanel MID	Selectivity ratio
Leukemia	CCRF-CEM	3.85	13.949	2.325	2.238
	HL-60(TB)	3.43			
	K-562	2.00			
	MOLT-4	2.15			
	RPMI-8226	0.859			
	SR	1.66			
Non-small cell lung cancer	A549/ATCC	7.67	26.29	4.382	1.188
	EKVX	nd			
	HOP-62	>100			
	HOP-92	4.40			
	NCI-H226	4.35			
	NCI-H23	1.66			
	NCI-H322M	>100			
	NCI-H460	2.75			
	NCI-H522	5.46			
Colon cancer	COLO 205	>100	56.565	14.141	0.368
	HCC-2998	>100			
	НСТ-116	0.535			
	HCT-15	3.51			
	HT29	42.6			
	KM12	9.92			
	SW-620	nd			
CNS cancer	SF-268	7.85	9.627	3.209	1.622
	SF-295	0.667			
	SF-539	>100			
	SNB-19	>100			
	SNB-75	>100			
	U251	1.11			
Melanoma	LOX IMVI	1.40	7.43	1.858	2.801
	MALME-3M	>100			
	M14	nd			
	MDA-MB-435	>100			
	SK-MEL-2	>100			
	SK-MEL-28	>100			
	SK-MEL-5	1.14			
	UACC-257	2.23			
	UACC-62	2.66			
Ovarian cancer	IGROV1	>100	9.853	3.284	1.585
	OVCAR-3	2.34			
	OVCAR-4	0.483			
	OVCAR-5	>100			
	OVCAR-8	>100			

nd: not determined

The log molar concentration of the resulted screening of compound 4.23 (NSC 751478) shown for each of the parameters; for $\log \mathrm{GI}_{50}$ ranged from -6.56 to -5.12 , for \log TGI ranged -5.12 only, for $\log \mathrm{LC}_{50}$ ranged -5.12 only (Table 4.11). A mean graph midpoint (MG-MID) calculated for each of the parameters; $\log \mathrm{GI}_{50}(-5.31), \log \mathrm{TGI}(-5.12)$, and $\log \mathrm{LC}_{50}(-5.12)$.

Table 4.11. Values of the \log molar concentration of response parameter $\left(\log _{10} G I_{50}, \log _{10} T G I\right.$ and $\log _{10} L C_{50}$) of the 4.23 (NSC 751478).

Cancer disease	Used cell lines	$\log _{10} \mathrm{GI}_{50}$	$\log _{10}$ TGI	$\log _{10} \mathrm{LC}_{50}$
Leukemia	CCRF-CEM	>-5.12	>-5.12	>-5.12
	HL-60(TB)	-5.32	>-5.12	>-5.12
	K-562	-5.48	>-5.12	>-5.12
	MOLT-4	-5.38	>-5.12	>-5.12
Non-small cell lung cancer	RPMI-8226	-5.31	>-5.12	>-5.12
	A549/ATCC	-5.42	>-5.12	>-5.12
	EKVX	-5.18	>-5.12	>-5.12
	HOP-62	>-5.12	>-5.12	>-5.12
	HOP-92	>-5.12	>-5.12	>-5.12
	NCI-H226	>-5.12	>-5.12	>-5.12
	NCI-H23	-5.46	>-5.12	>-5.12
	NCI-H322M	>-5.12	>-5.12	>-5.12
	NCI-H460	-5.60	>-5.12	>-5.12
	NCI-H522	-5.74	>-5.12	>-5.12

Colon cancer	COLO 205	>-5.12	>-5.12	>-5.12
	HCC-2998	>-5.12	>-5.12	>-5.12
	HCT-116	-6.07	>-5.12	>-5.12
	HCT-15	-5.41	>-5.12	>-5.12
	HT29	>-5.12	>-5.12	>-5.12
	KM12	-5.14	>-5.12	>-5.12
	SW-620	>-5.12	>-5.12	>-5.12
CNS cancer	SF-268	-5.22	>-5.12	>-5.12
	SF-295	-5.75	>-5.12	>-5.12
	SF-539	>-5.12	>-5.12	>-5.12
	SNB-19	>-5.12	>-5.12	>-5.12
	SNB-75	>-5.12	>-5.12	>-5.12
	U251	-5.73	>-5.12	>-5.12
Melanoma	LOX IMVI	-5.27	>-5.12	>-5.12
	MALME-3M	>-5.12	>-5.12	>-5.12
	M14	>-5.12	>-5.12	>-5.12
	MDA-MB-435	>-5.12	>-5.12	>-5.12
	SK-MEL-2	>-5.12	>-5.12	>-5.12
	SK-MEL-28	>-5.12	>-5.12	>-5.12
	SK-MEL-5	-5.75	>-5.12	>-5.12
	UACC-257	-5.54	>-5.12	>-5.12
	UACC-62	-5.17	>-5.12	>-5.12
Ovarian cancer	IGROV1	-5.30	>-5.12	>-5.12
	OVCAR-3	-5.39	>-5.12	>-5.12
	OVCAR-4	>-5.12	>-5.12	>-5.12
	OVCAR-5	>-5.12	>-5.12	>-5.12
	OVCAR-8	>-5.12	>-5.12	>-5.12
	NCI/ADR-RES	-5.28	>-5.12	>-5.12
	SK-OV-3	>-5.12	>-5.12	>-5.12
Renal cancer	786-0	-5.29	>-5.12	>-5.12
	A498	>-5.12	>-5.12	>-5.12
	ACHN	-5.23	>-5.12	>-5.12
	CAKI-1	-6.02	>-5.12	>-5.12
	RXF 393	>-5.12	>-5.12	>-5.12
	SN12C	>-5.12	>-5.12	>-5.12
	TK-10	-5.41	>-5.12	>-5.12
	UO-31	>-5.12	>-5.12	>-5.12
Prostate cancer	PC-3	-5.51	>-5.12	>-5.12
	DU-145	> -5.12	>-5.12	>-5.12
Breast cancer	MCF7	-5.37	>-5.12	>-5.12
	MDA-MB-231/ATCC	>-5.12	>-5.12	>-5.12
	HS 578T	>-5.12	>-5.12	>-5.12
	BT-549	-5.39	>-5.12	>-5.12
	T-47D	-5.17	>-5.12	>-5.12
	MDA-MB-468	-6.56	>-5.12	>-5.12
MID		-5.31	-5.12	-5.12
Delta		1.25	0	0
Range		1.44	0	0

The \log molar concentration of the resulted screening of compound 4.22 (NSC 751486)
shown for each of the parameters; for $\log \mathrm{GI}_{50}$ ranged from -6.07 to -5.22 , for \log TGI ranged from -5.32 to -4.70 , for $\log \mathrm{LC}_{50}$ ranged from -4.98 to -4.70 (Table 4.12). A mean graph midpoint (MG-MID) calculated for each of the parameters; $\log \mathrm{GI}_{50}(-5.49), \log$ TGI (-5.10), and $\log \mathrm{LC}_{50}(-4.80)$.

Table 4.12. Values of the \log molar concentration of response parameter $\left(\log _{10} G I_{50}, \log _{10} T G I\right.$ and $\log _{10} L C_{50}$) of the 4.22 (NSC 751486).

Cancer disease	Used cell lines	$\log _{10} \mathrm{GI}_{50}$	$\log _{10} \mathrm{TGI}$	$\log _{10} \mathrm{LC}_{50}$
Leukemia	CCRF-CEM	-5.22	>-4.70	>-4.70
	HL-60(TB)	-5.53	-5.06	>-4.70
	K-562	-5.52	-5.03	>-4.70
	MOLT-4	-5.54	-4.99	>-4.70
	RPMI-8226	-5.35	> -4.70	>-4.70
Non-small cell lung cancer	A549/ATCC	-5.52	-5.12	-4.71
	EKVX	-5.47	-5.01	> -4.70
	HOP-62	-5.43	-5.13	-4.84
	HOP-92	-5.50	-5.18	-4.85
	NCI-H226	-5.52	-5.21	-4.90
	NCI-H23	-5.51	-5.17	-4.84
	NCI-H322M	-5.35	-4.93	>-4.70
	NCI-H460	-5.47	-5.10	-4.74
	NCI-H522	-6.07	-5.32	-4.84
Colon cancer	COLO 205	-5.37	-4.98	> -4.70
	HCC-2998	-5.47	-5.21	-4.95
	HCT-116	-5.61	-5.30	-4.98
	HCT-15	-5.36	-4.74	>-4.70
	HT29	-5.58	-5.25	-4.92
	KM12	-5.53	-5.23	-4.94
	SW-620	-5.50	-5.15	-4.80
CNS cancer	SF-268	-5.46	-5.10	-4.73
	SF-295	-5.58	-5.25	-4.91
	SF-539	-5.47	-5.17	-4.87
	SNB-19	-5.33	> -4.7	> -4.70
	SNB-75	-5.64	-5.14	>-4.70
	U251	-5.51	-5.19	-4.87
Melanoma	LOX IMVI	-5.48	-5.15	-4.81
	MALME-3M	-5.56	-5.20	-4.83
	M14	-5.52	-5.22	-4.92
	MDA-MB-435	-5.48	-5.15	-4.82
	SK-MEL-2	-5.55	-5.24	-4.93
	SK-MEL-28	-5.47	-5.16	-4.85
	SK-MEL-5	-5.52	-5.24	-4.96
	UACC-257	-5.54	-5.23	-4.91

	UACC-62	-5.54	-5.19	-4.84
Ovarian cancer	IGROV1	-5.45	-5.14	-4.83
	OVCAR-3	-5.54	-5.22	-4.90
	OVCAR-4	-5.57	-5.14	-4.71
	OVCAR-5	-5.45	-5.04	>-4.70
	OVCAR-8	-5.38	-4.95	>-4.70
	NCI/ADR-RES	-5.47	-5.07	>-4.70
	SK-OV-3	-5.38	-4.98	>-4.70
Renal cancer	786-0	-5.49	-5.16	-4.84
	A498	-5.61	-5.29	-4.96
	ACHN	-5.22	>-4.70	>-4.70
	CAKI-1	-5.44	-5.13	-4.83
	RXF 393	-5.58	-5.28	-4.98
	SN12C	-5.49	-5.11	-4.74
	TK-10	-5.42	-5.08	-4.73
	UO-31	-5.56	-5.22	-4.88
	PC-3	-5.46	-4.98	>-4.70
Prostate cancer	DU-145	-5.49	-5.12	-4.75
	MCF7	-5.32	-4.87	>-4.70
Breast cancer	MDA-MB-231/ATCC	-5.55	-5.19	-4.84
	HS 578T	-5.49	-5.08	>-4.70
	BT-549	-5.58	-5.26	-4.94
	T-47D	-5.40	-4.99	>-4.70
	MDA-MB-468	-5.53	-5.14	-4.76
		-5.49	-5.10	-4.80
MID		0.58	0.22	0.18
Delta	0.85	0.22	0.28	
Range				

The \log molar concentration of the resulted screening of compound 4.37c (NSC 764189) shown for each of the parameters; for $\log \mathrm{GI}_{50}$ ranged - 5.30 only, for \log TGI ranged - 5.30 only, for $\log \mathrm{LC}_{50}$ ranged - 5.30 only. A mean graph midpoint (MG-MID) calculated for each of the parameters; $\log \mathrm{GI}_{50}(-5.30), \log \mathrm{TGI}(-5.30)$, and $\log \mathrm{LC}_{50}(-5.30)$ (refer to the Supplementary data in chapter 5).

The \log molar concentration of the resulted screening of compound 4.21 (NSC 764190) shown for each of the parameters; for $\log \mathrm{GI}_{50}$ ranged from -6.57 to -4.00 , for \log TGI ranged from -4.22 to -4.00 , for $\log \mathrm{LC}_{50}$ ranged -4.00 only (Table 4.13). A mean graph midpoint (MGMID) calculated for each of the parameters; $\log \mathrm{GI}_{50}(-4.94), \log \mathrm{TGI}(-4.0)$, and $\log \mathrm{LC}_{50}(-4.0)$.

Table 4.13. Values of the \log molar concentration of response parameter $\left(\log _{10} G I_{50}, \log _{10} T G I\right.$ and $\log _{10} L C_{50}$) of the 4.21 (NSC 764190).

Cancer disease	Used cell lines	$\log _{10} \mathrm{GI}_{50}$	$\log _{10}$ TGI	$\log _{10} \mathrm{LC}_{50}$
Leukemia	CCRF-CEM	-5.41	>-4.00	> -4.00
	HL-60(TB)	-5.46	>-4.00	>-4.00
	K-562	-5.70	>-4.00	>-4.00
	MOLT-4	-5.67	>-4.00	>-4.00
	RPMI-8226	-6.07	>-4.00	>-4.00
	SR	-5.78	>-4.00	>-4.00
Non-small cell lung cancer	A549/ATCC	-5.12	>-4.00	>-4.00
	HOP-62	> -4.00	>-4.00	>-4.00
	HOP-92	-5.36	>-4.00	>-4.00
	NCI-H226	-5.36	>-4.00	>-4.00
	NCI-H23	-5.78	>-4.00	>-4.00
	NCI-H322M	> -4.00	>-4.00	>-4.00
	NCI-H460	-5.56	>-4.00	>-4.00
	NCI-H522	-5.26	>-4.00	>-4.00
Colon cancer	COLO 205	>-4.00	>-4.00	>-4.00
	HCC-2998	>-4.00	>-4.00	>-4.00
	HCT-116	-6.27	>-4.00	>-4.00
	HCT-15	-5.45	>-4.00	>-4.00
	HT29	-4.37	>-4.00	>-4.00
	KM12	-5.00	>-4.00	>-4.00
	SW-620	nd	>-4.00	>-4.00
CNS cancer	SF-268	-5.11	>-4.00	>-4.00
	SF-295	-6.18	> -4.00	>-4.00
	SF-539	> -4.00	>-4.00	>-4.00
	SNB-19	>-4.00	>-4.00	>-4.00
	SNB-75	>-4.00	>-4.00	>-4.00
	U251	-5.96	> -4.00	>-4.00
Melanoma	LOX IMVI	-5.85	>-4.00	>-4.00
	MALME-3M	> -4.00	>-4.00	>-4.00
	M14	nd	>-4.00	>-4.00
	MDA-MB-435	>-4.00	>-4.00	>-4.00
	SK-MEL-2	>-4.00	>-4.00	>-4.00
	SK-MEL-28	>-4.00	>-4.00	>-4.00
	SK-MEL-5	-5.94	>-4.00	>-4.00
	UACC-257	-5.65	>-4.00	>-4.00
	UACC-62	-5.57	>-4.00	>-4.00
Ovarian cancer	IGROV1	> -4.00	>-4.00	>-4.00
	OVCAR-3	-5.63	>-4.00	>-4.00
	OVCAR-4	-6.32	>-4.00	>-4.00
	OVCAR-5	> 4.00	>-4.00	>-4.00
	OVCAR-8	>-4.00	>-4.00	>-4.00
	NCI/ADR-RES	-5.15	>-4.00	>-4.00
	SK-OV-3	> -4.00	>-4.00	>-4.00
Renal cancer	786-0	>-4.00	>-4.00	>-4.00
	A498	-5.75	>-4.00	>-4.00
	ACHN	-5.68	>-4.00	>-4.00
	CAKI-1	-5.55	>-4.00	>-4.00

	RXF 393	-4.55	>-4.00	>-4.00
	SN12C	-5.03	>-4.00	>-4.00
	TK-10	-5.08	>-4.00	>-4.00
	UO-31	>-4.00	>-4.00	>-4.00
Prostate cancer	PC-3	-6.24	>-4.00	>-4.00
Breast cancer	DU-145	>-4.00	>-4.00	>-4.00
	MCF7	>-4.00	>-4.00	>-4.00
	MDA-MB-231/ATCC	>-4.00	>-4.00	>-4.00
	HS 578T	>-4.00	>-4.00	>-4.00
	BT-549	>-4.00	>-4.00	>-4.00
	T-47D	>-4.00	>-4.00	>-4.00
MID	MDA-MB-468	-6.57	>-4.22	>-4.00
Delta	-4.94	-4.0	-4.0	
Range		1.63	0.22	0
		2.57	0.22	0.0

4.4. Conclusion

In conclusion, an analog of DMP 323 from a variety of synthesized symmetric, and unsymmetric cyclic sulfamides and additional urea and phosphorus-containing compounds were screened in NCI 60 cancer cell line to identify biologically active compounds. With the concept of drug repositioning, we studied a new opportunity of application of these compounds which are known HIV protease inhibitors to potential agents for the treatment of cancer. The two-stage process of in vitro screening was carried out: wherein 29 compounds were selected for one-dose study and 4 compounds selected for a five-dose study for in vitro cytotoxicity evaluation. Generally, compounds were selectively sensitive on the leukemia, colon cancer, prostate cancer and breast cancer cell. Notably, almost every compound demonstrated strong inhibition against breast cancer (MDA-MB-468). The primary one-dose study revealed that compounds 4.21, 4.22, 4.23, and 4.37c possessed high activity against different cancer types. Four such compounds were further tested in the five-dose experiment. To understand the mechanism of the observed cytotoxicity, investigations with a representative compound are underway to learn about the effect for apoptosis, migration, anchorage independent growth and cellular senescence.

4.5. References

1. (a) Ashburn, T. T.; Thor, K. B., Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673-683. (b) Boguski, M. S.; Mandl, K. D.; Sukhatme, V. P., Repurposing with a difference. Science 2009, 324, 1394-1395. (c) Aube, J., Drug repurposing and the medicinal chemist. ACS Med. Chem. Lett. 2012, 3, 442-444.
2. DiMasi, J. A.; Hansen, R. W.; Grabowski, H. G., The price of innovation: new estimates of drug development costs. J. Health Econ. 2003, 22, 151-185.
3. Gan, F.; Cao, B.; Wu, D.; Chen, Z.; Hou, T.; Mao, X., Exploring old drugs for the treatment of hematological malignancies. Curr. Med. Chem. 2011, 18, 1509-1514.
4. (a) Aronson, J. K., Old drugs - new uses. Brit. J. Clin. Pharmaco. 2007, 64, 563-565. (b) Chong, C. R.; Sullivan, D. J., New uses for old drugs. Nature 2007, 448, 645-646. (c) McPhie, D. C., Old drugs, new uses: Solving a Hatch-Waxman patent predicament. Food Drug Law J. 2004, 59, 155-168. (d) Berger, S. P., Old laws stop drugs being used in valuable new ways. Nature 2007, 449, 972-972. (e) DiMasi, J. A.; Grabowski, H. G., Should the patent system for new medicines be abolished? Clin. Pharmacol. Ther. 2007, 82, 488-490.
5. Eberhard, Y.; McDermott, S. P.; Wang, X. M.; Gronda, M.; Venugopal, A.; Wood, T. E.; Hurren, R.; Datti, A.; Batey, R. A.; Wrana, J.; Antholine, W. E.; Dick, J.; Schimmer, A. D., Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood 2009, 114, 3064-3073.
6. Mao, X.; Li, X.; Sprangers, R.; Wang, X.; Venugopal, A.; Wood, T.; Zhang, Y.; Kuntz, D. A.; Coe, E.; Trudel, S.; Rose, D.; Batey, R. A.; Kay, L. E.; Schimmer, A. D., Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma. Leukemia 2009, 23, 585-590.
7. Mao, X. L.; Liang, S. B.; Hurren, R.; Gronda, M.; Chow, S.; Xu, G. W.; Wang, X. M.; Zavareh, R. B.; Jamal, N.; Messner, H.; Hedley, D. W.; Datti, A.; Wrana, J. L.; Zhu, Y. X.; Shi, C. X.; Lee, K. L.; Tiedemann, R.; Trudel, S.; Stewart, A. K.; Schimmer, A. D.,

Cyproheptadine displays preclinical activity in myeloma and leukemia. Blood 2008, 112, 760-769.
8. (a) Buzaid, A. C.; Durie, B. G. M., Management of refractory myeloma- A review. J. Clin. Oncol. 1988, 6, 889-905. (b) Alexanian, R.; Barlogie, B., New treatment strategies for multiple-myeloma. Amer. J. Hematol. 1990, 35, 194-198.
9. Worldwide Clinical Trials Listings. Study of Fluphenazine in relapsed or relapsed and refractory multiple myeloma. http://www.clinicaltrialssearch.org.
10. Spagnuolo, P. A.; Hu, J. Y.; Hurren, R.; Wang, X. M.; Gronda, M.; Sukhai, M. A.; Di Meo, A.; Boss, J.; Ashali, I.; Zavareh, R. B.; Fine, N.; Simpson, C. D.; Sharmeen, S.; Rottapel, R.; Schimmer, A. D., The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood 2010, 115, 4824-4833.
11. (a) Palumbo, A.; Facon, T.; Sonneveld, P.; Blade, J.; Offidani, M.; Gay, F.; Moreau, P.; Waage, A.; Spencer, A.; Ludwig, H.; Boccadoro, M.; Harousseau, J. L., Thalidomide for treatment of multiple myeloma: 10 years later. Blood 2008, 111, 3968-3977. (b) ChananKhan, A.; Porter, C. W., Immunomodulating drugs for chronic lymphocytic leukaemia. Lancet Oncol. 2006, 7, 480-488. (c) Goy, A. New directions in the treatment of mantle cell lymphoma: An overview. Clin. Lymphoma Myelom. 2006, 7, S24-S32.
12. (a) Shim, J. S.; Rao, R.; Beebe, K.; Neckers, L.; Han, I.; Nahta, R.; Liu, J. O., Selective Inhibition of HER2-Positive Breast Cancer Cells by the HIV Protease Inhibitor Nelfinavir. J. Natl Cancer I. 2012, 104, 1576-1590. (b) Kawabata, S.; Gills, J. J.; Mercado-Matos, J. R.; LoPiccolo, J.; Wilson, W., III; Hollander, M. C.; Dennis, P. A., Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells. Cell Death \& Disease 2012, 3. (c) Suresh, C.; Zhao, H.; Gumbs, A.; Chetty, C. S.; Bose, H. S., New ionic derivatives of betulinic acid as highly potent anti-cancer agents. Bioorg. Med. Chem. Lett. 2012, 22, 1734-1738. (d) Zhao, H.; Holmes, S. S.; Baker, G. A.; Challa, S.; Bose, H. S.; Song, Z., Ionic derivatives of betulinic acid as novel HIV-1 protease inhibitors. J. Enzym. Inhib. Med. Chem. 2012, 27, 715-721. (e) Lepist, E.-I.; Phan, T. K.; Roy, A.; Tong, L.; MacLennan, K.; Murray, B.; Ray, A. S., Cobicistat boosts the intestinal
absorption of transport substrates, including HIV protease inhibitors and GS-7340, in vitro. Antimicrob. Agents Chemotherapy 2012, 56, 5409-5413.
13. Chow, W. A.; Jiang, C.; Guan, M., Anti-HIV drugs for cancer therapeutics: back to the future? Lancet Oncol. 2009, 10, 61-71.
14. For the first report from DuPont Merck of cyclic urea diol-based HIV protease inhibitors, see: (a) Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N.; Chang, C.-H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.; Erickson-Viitanen, S.; Rational Design of Potent, Bioavailable, Nonpeptide Cyclic Ureas as HIV Protease Inhibitors. Science 1994, 263, 380-384. For later manuscripts and synopses, see: (b) De Lucca, G. V.; Lam, P. Y. S. De novo design, discovery and development of cyclic urea HIV protease inhibitors. Drugs Future 1998, 23, 987-994. (c) Confalone, P. N.; Waltermire, R. E. The Process Research and Development of DuPont Merck's Cyclic Urea Diols, A New Class of HIV Protease Inhibitors. In Process Chemistry in the Pharmaceutical Industry; Gadamasetti, K.G., Ed.; Marcel Dekker: New York, 1999; pp 201-219.
15. (a) Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, O. M. J.; Rayner, M. M. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 1994, 263, 380-384. (b) Patel, M.; Kaltenbach, R. F., III; Nugiel, D. A.; McHugh, R. J., Jr.; Jadhay, P. K.; Bacheler, L. T.; Cordova, B. C.; Klabe, R. M.; Erickson-Viitanen, S.; Garber, S.; Reid, C.; Seitz, S. P. Synthesis of Symmetrical and Unsymmetrical P1/P1' Cyclic Ureas as Hiv Protease Inhibitors. Bioorg. Med. Chem. Lett. 1998, 8, 1077-1082. (c) De Lucca, G. V.; Kim, U. T.; Liang, J.; Cordova, B.; Klabe, R. M.; Garber, S.; Bacheler, L. T.; Lam, G. N.; Wright, M. R.; Logue, K. A.; Erickson-Viitanen, S.; Ko, S. S.; Trainor, G. L. Nonsymmetric P2/P2' Cyclic Urea HIV Protease Inhibitors. Structure-Activity Relationship, Bioavailability, and Resistance Profile of Monoindazole-Substituted P2 Analogs. J. Med. Chem., 1998, 41, 2411-2423. (d) De Lucca, G. V.; Lam, P. Y. S. De novo design, discovery and development of cyclic urea HIV protease inhibitors. Drugs Future, 1998, 23, 987-994. (e) Stone, B. R. P.; Harris, G. D.; Cann, R. O.; Smyser, T. E.; Confalone, P. N. Synthesis of unsymmetric cyclic urea diols, a novel class of HIV protease inhibitors. Tetrahedron Lett. 1998, 39, 6127-6130. (f)

Dax, S. L.; Cook, S. C. Cyclic urea HIV protease inhibitors containing alkynyl- and alkenyl-tethered heterocycles in the P2 region. Bioorg. Med. Chem. Lett. 1996, 6, 797-802. (g) Hodge, C. N.; Lam, P. Y. S.; Eyermann, C. J.; Jadhav, P. K.; Ru, Y.; Fernandez, C. H.; De Lucca, G. V.; Chang, C.-H.; Kaltenbach, R. F., III; Holler, E. R.; Woerner, F.; Daneker, W. F.; Emmett, G.; Calabrese, J. C.; Aldrich, P. E. Calculated and Experimental LowEnergy Conformations of Cyclic Urea HIV Protease Inhibitors. J. Am. Chem. Soc. 1998, 120, 4570-4581.
16. (a) Nugiel, D. A.; Jacobs, K.; Worley, T.; Patel, M.; Kaltenbach, R. F., III; Meyer, D. T.; Jadhav, P. K.; De Lucca, G. V.; Smyser, T. E.; Klabe, R. M.; Bacheler, L. T.; Rayner, M. M.; Seitz, S. P. Preparation and structure-activity relationship of novel P1/P1'-substituted cyclic urea-based human immunodeficiency virus type-1 protease inhibitors. J. Med. Chem. 1996, 39, 2156-2169. (b) Pierce, M. E.; Harris, G. D.; Islam, Q.; Radesca, L. A.; Storace, L.; Waltermire, R. E.; Wat, E.; Jadhav, P. K.; Emmett, G. C. Stereoselective synthesis of HIV-1 protease inhibitor DMP 323. J. Org. Chem. 1996, 61, 444-450.
17. For evaluation of P2/P2' substituents see: (a) Nugiel, D. A.; Jacobs, K.; Cornelius, L.; Chang, C.-H.; Jadhav, P. K.; Holler, E. R.; Klabe, R. M.; Bacheler, L. T.; Cordova, B.; Garber, S.; Reid, C.; Louge, K. A.; Gorey-Feret, L. J.; Lam, G. N.; Seitz, S. P. Improved P1/P1' substituents for cyclic urea based HIV-1 protease inhibitors: synthesis, structureactivity relationship, and X-ray crystal structure analysis. J. Med. Chem. 1997, 40, 14651474. (b) Patel, M.; Bacheler, L. T.; Rayner, M. M.; Cordova, B. C.; Klabe, R. M.; Erickson-Viitanen, S.; Seitz, S. P. The synthesis and evaluation of cyclic ureas as HIV protease inhibitors: modifications of the P1/P1 residues. Bioorg. Med. Chem. Lett. 1998, 8, 823-828. For evaluation of P2/P2' substituents see: (c) Han, Q.; Chang, C.-H.; Li, R.; Ru, Y.; Jadhav, P. K.; Lam, P. Y. S. Cyclic HIV protease inhibitors: design and synthesis of orally bioavailable, pyrazole $\mathrm{P} 2 / \mathrm{P} 2$ ' cyclic ureas with improved potency. J. Med. Chem. 1998, 41, 2019-2028. (d) Rodgers, J. D.; Johnson, B. L.; Wang, H.; Erickson-Viitanen, S.; Klabe, R. M.; Bacheler, L.; Cordova, B. C.; Chang, C.-H. Potent cyclic urea HIV protease inhibitors with 3-aminoindazole P2/P2' groups. Bioorg. Med. Chem. Lett. 1998, 8, 715-720.
18. (a) Reitz, A. B.; Smith, G. R.; Parker, M. H., The role of sulfamide derivatives in medicinal chemistry: a patent review (2006-2008). Expert Opin. Ther. Pat. 2009, 19, 1449-1453. (b)

Nishimori, I.; Vullo, D.; Minakuchi, T.; Scozzafava, A.; Capasso, C.; Supuran, C. T., Restoring catalytic activity to the human carbonic anhydrase (CA) related proteins VIII, X and XI affords isoforms with high catalytic efficiency and susceptibility to anion inhibition.
Bioorg. Med. Chem. Lett. 2013, 23, 256-260.
19. (a) Master's thesis: Jun, J. H. "Synthesis of Seven-membered Cyclic Sulfamide Analogs of DMP 323 and Complex N-Hydroxy Sulfamide Scaffolds as Potential Inhibitors of MMP" 2005, July 6th. (b) Jun, J. H.; Dougherty, J. M.; Jimenez, M. D.; Hanson, P. R., New strategies to symmetric and unsymmetric cyclic sulfamide analogs of DMP 323: a 'sulfur linchpin'/RCM approach. Tetrahedron 2003, 59, 8901-8912.
20. (a) Petroski, R. J.; Weisleder, D. Improved Preparation of Sap Beetle (Coleoptera: Nitidulidae) Aggregation Pheromones. ACS Symposium Series, Synthesis and Chemistry of Agrochemicals VI, 2002, 800, 231-237. (b) Berbmann, J.; Löfstedt, C.; Ivanov, V. D.; Francke, W. Identification and Assignment of the Absolute Configuration of Biologically Active Methyl-Branched Ketones from Limnephilid Caddis Flies. Eur. J. Org. Chem. 2001, 3175-3179.
21. Poss, C. S.; Schreiber, S. L. Two-Directional Chain Synthesis and Terminus Differentiation. Acc. Chem. Res. 1994, 27, 9-17.
22. (a) Schneider, C. Quaternary Ammonium Salt Catalyzed Azidolysis of Epoxides with Trimethylsilyl Azide. Synlett 2000, 12, 1840-1842. (b) Schaus, S. E.; Larrow, J. F.; Jacobsen, E. N. Practical Synthesis of Enantiopure Cyclic 1,2-Amino Alcohols via Catalytic Asymmetric Ring Opening of Meso Epoxides. J. Org. Chem. 1997, 62, 41974199. (c) Sabitha, G.; Babu, R. S.;Rajkumar, M.; Yadav, J. S. Cerium(III) Chloride Promoted Highly Regioselective Ring Opening of Epoxides and Aziridines Using NaN_{3} in Acetonitrile: A Facile Synthesis of 1,2-Azidoalcohols and 1,2-Azidoamines. Org. Lett. 2002, 4, 343-345. (d) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Ring Opening of Epoxides with Sodium Azide in Water. A Regioselective pH-Controlled Reaction. J. Org. Chem. 1999, 64, 6094-6096. (e) Blandy, C.; Choukroun, R.; Gervais, D. Synthesis of O Protected Azidohydrines Catalyzed by Titanium and vanadium Complexes. Tetrahedron Lett. 1983, 24, 4189-4192. (f) Fringuelli, F.; Pizzo, F.; Vaccaro, L. Azidolysis of α, β -

Epoxycarboxylic Acids. A Water-Promoted Process efficiently Catalyzed by Indium Trichloride at pH 4.0. J. Org. Chem. 2001, 66, 3554-3558. (g) Emziane, M.; Lhoste, P.; Sinou, D. A Highly regio- and Chemoselective Ring Opening of Epoxides with Trimethylsilyl Azide/Aluminium Isopropoxide. Synthesis 1988, 541-544. (h) Meguro, M.; Asao. N.; Yamamoto, Y. Ytterbium Triisopropoxide Catalysed Ring Opening of Epoxides with Trimethylsilyl Azide. J. Chem. Soc., Chem. Commun., 1995, 1021-1022. (i) Tomoda, S.; Matsumoto,Y.; Takeuchi, Y.; Nomura, Y. The Reaction of 1,2-Epoxyalkylsilanes with Azidotrimethylsilane. A Novel Stereoselective Synthesis of (Z)-1-Alkenyl Azides. Bull. Chem. Soc. Jpn., 1986, 59, 3283-3284.
23. Chini, M.; Crotti, P.; Flippin, L. A.; Macchia, F. Regiochemical Control of the RingOpening of 1,2-Epoxides by Means of Chelating Processes. Aminolysis and Azidolysis of the cis- and trans- Oxides Derived from 4-(Benzyloxy)cyclohexene. J. Org. Chem. 1991, 56, 7043-7048.
24. Yamamoto, Y.; Hattori, R.; Miwa, T.; Nakagai, Y. I.; Kubota, T.; Yamamoto, C.; Okamoto, Y.; Itoh, K. Diastereoselective inter- and intramolecular pinacol coupling of aldehydes promoted by moonomeric titanocene(III) complex $\mathrm{Cp}_{2} \mathrm{TiPh}$. J. Org. Chem. 2001, 66, 3865-3870.
25. Jose, M. C.; Humberto R.-S.; Eva B.; Monica H. Very rapid preparation of SmI_{2} by sonic treatment of iodoform and metallic samarium. Eur. J. Org. Chem. 2003, 9, 1775-1778.
26. Konradi, A. W.; Pederson, S. F. Pinacol homocoupling of (S)-2-[N(benzyloxycarbonyl)amino]aldehydes by $\left[\mathrm{V}_{2} \mathrm{Cl}_{2}(\mathrm{THF})_{6}\right]_{2}\left[\mathrm{Zn}_{2} \mathrm{Cl}_{6}\right]$. Synthesis of $\mathrm{C}_{2^{-}}$ symmetric ($1 S, 2 R, 3 R, 4 S$)-1,4-diamino 2,3-diols. J. Org. Chem. 1992, 57, 28-32.
27. (a) Zine, R.; Mohamed, A.; Nour-Eddine, A.; Georges, D.; Montero, J.-L. Synthesis of 1,2,5-thiadiazolidine 1,1-dioxides (cyclosulfamides) starting from amino acids and chlorosulfonyl isocyanate. Tetrahedron 2000, 56, 381-387. (b) Georges, D.; Nourreddine, A.; Zine, R.; Montero, J.-L. Synthesis of pseudo-nucleosides containing chiral sulfahydantoins as aglycon. II. Tetrahedron 1996, 52, 993-1004.
28. Meyer, S. D.; Schreiber, S. L. Acceleration of the Dess-Martin Oxidation by Water. J. Org. Chem. 1994, 59, 7549-7552.
29. Nourreddine; A.; Georges, D.; Montero, J.- L. Synthesis and cyclization of carboxy sulfamide derivatives of amino acids. Tetrahedron Lett. 1991, 32, 6545-6546.
30. (a) McReynolds, M. D.; Sprott, K. T.; Hanson, P. R., A concise route to structurally diverse DMP 323 analogues via highly functionalized 1,4-diamines. Org. Lett. 2002, 4, 4673-4676. (b) Dougherty, J. M.; Jiměnez, M.; Hanson, P. R. Synthesis of Cyclic sulfamoyl Carbamates and Ureas via Ring-Closing Metathesis. Tetrahedron 2005, 61, 6218-6230.
31. (a) Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R., Feasibility of drug screening with panels of human-tumor cell-lines using a microculure tetrazolium assay. Cancer Research 1988, 48, 589-601. (b) Boyd, M. R.; Pauli, K. D., Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Develop. Res. 1995, 34, 91-109. (c) Shoemaker, R. H., The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813-823.
32. Kode, N.; Chen, L.; Murthy, D.; Adewumi, D.; Phadtare, S., New bis-N9(methylphenylmethyl)purine derivatives: Synthesis and antitumor activity. Eur. J. Med. Chem. 2007, 42, 327-333.
33. Corona, P.; Carta, A.; Loriga, M.; Vitale, G.; Paglietti, G., Synthesis and in vitro antitumor activity of new quinoxaline derivatives. Eur. J. Med. Chem. 2009, 44, 1579-1591.
34. Rostom, S. A. F., Synthesis and in vitro antitumor evaluation of some indeno 1,2-c pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorg. Med. Chem. 2006, 14, 6475-6485.

CHAPTER 5

Experimental data

5.1. General Methods

All air and moisture sensitive reactions were carried out in flame- or oven dried glassware under argon or nitrogen using standard gas tight syringes, cannulas, and septa. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, and toluene were purified by passage through a Solv-Tek solvent purification system employing activated $\mathrm{Al}_{2} \mathrm{O}_{3}$, or used them immediately after purchasing from Sigma-Aldrich as anhydrous solvent grade. Triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$) was stored over KOH. Sodium triacetoxyborohydride (97\%) was purchased from Sigma-Aldrich and was not further purified. All amino acids and amines were purchased from Sigma-Aldrich. Thin layer chromatography was performed on silica gel $60 \mathrm{~F}_{254}$ plates (EM-5717, Merck). Visualization of TLC spots were effected using KMnO_{4} stain or UV lamp (254 nm). Flash column chromatography was performed with Teledyne ISCO CombiFlash companion using various sizes of Teledyne columns or Grace ${ }^{\circledR}$ Flash Cartridges. Deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ with and without TMS ($\left.0.03 \%(\mathrm{v} / \mathrm{v})\right)$ was purchased from SigmaAldrich and stored in desiccator at room temperature. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} (unless otherwise noted) on either Varian- 400 MHz spectrometer operating at 400 MHz and 100 MHz , respectively.

5.2. Experimental Procedure and data: Chapter 2

4-Bromo- N -(3-fluorophenyl)benzenesulfonamide (2.4)

To a solution of 3-fluoroaniline ($1.0 \mathrm{~mL}, 10.39 \mathrm{mmol}$) and pyridine $(1.3 \mathrm{~mL}, 16.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added a solution of 4-bromobenzene sulfonyl chloride ($2.65 \mathrm{~g}, 10.44$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at room temperature. The color of solution was changed to light orange. The reaction mixture was stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product $2.4(3.31 \mathrm{~g}, 97 \%)$.

Analytical data for 2.4: $\mathrm{R}_{\mathrm{f}}=0.83$ (Sol. EtOAc:Hexane $=1 / 1$); FTIR (neat) 3240, 2383, 2368, $1612,1601,1573,1483,1468,1399,1389,1334,1265,1154,1130,1088,1067,1009,962,913$, 823, 762, 742, 682, $630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}$, $2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=8.2,8.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{ddd}, J=10.0,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.85-6.80 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 163.18(\mathrm{~d}, \mathrm{~J}=247.2 \mathrm{~Hz}$), 137.81, $137.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 132.68,130.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 128.84,128.67,116.69(\mathrm{~d}, J=3.1 \mathrm{~Hz})$, $112.61(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 108.64(\mathrm{~d}, J=25.3 \mathrm{~Hz}) ; \operatorname{HRMS}(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrFNNaO}_{2} \mathrm{~S}^{+}$ $(\mathrm{M}+\mathrm{Na})$ required 351.9419, found 351.9410 .
tert-Butyl 4-(4-bromo- N-(3-fluorophenyl)phenylsulfonamido)piperidine-1-carboxylate (2.5)

To a solution of $2.4(0.52 \mathrm{~g}, 1.56 \mathrm{mmol})$ and DIAD ($0.92 \mathrm{~mL}, 4.67 \mathrm{mmol}$) in THF (10 mL) was added a solution of tert-butyl-4-hydroxy-1-piperidinecarboxylate ($0.38 \mathrm{~g}, 1.88 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(1.23 \mathrm{~g}, 4.70 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at room temperature and heated to $60{ }^{\circ} \mathrm{C}$ for overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product $2.5(0.63 \mathrm{~g}$, 78 \%).

Analytical data for 2.5: $\mathrm{R}_{\mathrm{f}}=0.68$ (Sol. EtOAc:Hexane $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.66-6.55(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dddd}, J=8.3,8.3,2.5$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{tt}, J=12.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=12.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.76(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.27-1.26(\mathrm{~m}, 2 \mathrm{H})$.

4-Bromo- N-(3-fluorophenyl)- N-(piperidin-4-yl)benzenesulfonamide hydrochloride (2.6)

To a solution of $2.5(0.63 \mathrm{~g}, 1.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added 4 N HCl in $1,4-$ dioxane (20 mL ,) at $0^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product 2.6. It used without further purification.

4-Bromo- N -(1-(4-fluorobenzyl)piperidin-4-yl)-N-(3-fluorophenyl)benzenesulfonamide

(2.7)

To a solution of $2.6(0.34 \mathrm{~g}, 0.76 \mathrm{mmol})$, 4-fluorobenzaldehyde $(0.09 \mathrm{~mL}, 0.84 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.52 \mathrm{~g}, 2.44 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} 3)$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product 2.7 ($0.10 \mathrm{~g}, 24 \%)$.

Analytical data for 2.7: $\mathrm{R}_{\mathrm{f}}=0.81$ (Sol. EtOAc: Hexane $=1 / 1$); FTIR (neat) 3241, 3098, 2986, 2383, 2309, 1796, 1770, 1733, 1611, 1600, 1573, 1482, 1467, 1400, 1389, 1334, 1264, 1154, 1129, 1087, 1067, 1009, 962, 912, 823, 762, 741, 682, $621 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.09$ (ddd, $J=8.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.08(\mathrm{~m}$, $1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.92-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.33(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform) $\delta 162.58(\mathrm{~d}, J=248.9 \mathrm{~Hz}), 162.58(\mathrm{~d}, J=248.9 \mathrm{~Hz}), 140.20$, $136.63(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 132.43,130.08(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 128.94,128.84,128.34(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, 127.76, $119.82(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 116.47(\mathrm{~d}, J=20.5 \mathrm{~Hz}), 115.52(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 115.21(\mathrm{~d}, J=$ $21.1 \mathrm{~Hz}), 62.00,57.99,52.89,31.77$; HRMS $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 521.0710, found 521.0846.

(S)-2-hydroxy-3-methylbutanoic acid (2.8)

To a solution of L-valine ($5.00 \mathrm{~g}, 42.72 \mathrm{mmol})$ in $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ was added slowly a solution of $\mathrm{NaNO}_{2}(6.02 \mathrm{~g}, 87.25 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was extracted with diethyl ether (100 mL X 4) and concentrated by azeotropic distillation with toluene to provide yellow oil. A yellow oil was dried under reduced vacuum to furnish a crystal as white needles 2.8 ($3.50 \mathrm{~g}, 70 \%$).

Analytical data for 2.8: FTIR (neat) 3428, 2968, 2936, 2879, 1716, 1645, 1211, 1136, 1027, 727, $616 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right) \delta 4.03(\mathrm{~d}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 175.6,117.7,74.7,31.9,18.4$.

(S)-methyl 2-hydroxy-3-methylbutanoate (2.9)

To a solution of $2.8(3.49 \mathrm{~g}, 29.54 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ was added amberlyst-15 ion exchange resin at room temperature and stirred for overnight. The reaction mixture was filtered and evaporated to remove solvent to give yellow oil. The yellow oil was purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get yellow oil as a product $2.9(2.03 \mathrm{~g}, 52 \%)$.

Analytical data for 2.9: $\mathrm{R}_{\mathrm{f}}=0.71$ (Sol. EtOAc:Hexane $=1 / 1$, checked by KMnO_{4} stain solution); FTIR (neat) 2958, 2922, 2851, 1743, 1672, 1428, 1621, 1428, 1276, 1175, 1147, 936, $860,756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.02(\mathrm{dd}, J=6.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dqq}, J=6.9,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 175.5,75.3,52.4,32.3,18.7,16.2$.

tert-Butyl 4-(3-fluorophenylamino)piperidine-1-carboxylate (2.13)

To a solution of 1-Boc-4-piperidone ($7.92 \mathrm{~g}, 39.77 \mathrm{mmol}$) and 3-fluoroaniline (4.0 mL , $41.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $\mathrm{NaBH}(\mathrm{OAc})_{3}(26.05 \mathrm{~g}, 122.90 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hrs . To a reaction mixture was added glacial acetic acid ($5.0 \mathrm{~mL}, 87.34 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirred at ambient temperature overnight. The reaction mixture was washed with saturated aqueous NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL} \mathrm{X} 3)$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product $2.13(11.21 \mathrm{~g}, 99 \%)$.

Analytical data for 2.13: $\mathrm{Rf}=0.88$ (Sol. EtOAc:Hexane $=1 / 1$); FTIR (neat) 3353, 3010, 2168, 2141, 1666, 1621, 1494, 1421, 1236, 1160, 936, 756, 687, $609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{ddd}, J=8.1,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.36-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.28$ (ddd, $J=4.45,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 3.43-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.09-1.94(\mathrm{td}, J=7.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 164.29(\mathrm{~d}, J=242.7 \mathrm{~Hz}), 154.87,148.69(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 130.53(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}), 109.18(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 103.90(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 99.84(\mathrm{~d}, J=25.4 \mathrm{~Hz}), 79.79,76.82$, 50.25, 32.35, 28.56; HRMS $(\mathrm{M}+\mathrm{Na})$ calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{NaO}_{2}{ }^{+}(\mathrm{M}+\mathrm{Na})$ required 317.1636, found 317.1635 .
tert-Butyl 4-((N-(tert-butoxycarbonyl)sulfamoyl)(3-fluorophenyl)amino)piperidine-1carboxylate (2.15)

To a solution of chlorosulfonyl isocyanate ($1.5 \mathrm{~mL}, 17.23 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to a solution of tert-butyl alcohol $(1.65 \mathrm{~mL}, 17.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. This solution was cannulated to a solution of $2.13(3.46 \mathrm{~g}, 11.75 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL}, 21.52$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After that, the reaction mixture was stirred at ambient temperature for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} 4)$ and dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product $2.15(6.20 \mathrm{~g}, 91 \%)$.

Analytical data for 2.15: $\mathrm{R}_{\mathrm{f}}=0.80$ (Sol. EtOAc:Hexane $=1 / 1$); FTIR (neat) 3745, 3712, 3067, 2977, 2944, 2863, 2357, 2325, 1735, 1659, 1436, 1366, 1353, 1243, 1168, 1135, 1056, 979, 827, 725, 694, $616 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.38$ (ddd, $J=8.2,6.4,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15$ (dddd, $J=8.3,8.3,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{ddd}, J=4.4,2.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{tt}, J=12.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.05(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.94(\mathrm{~m}$, $2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{dtd}, J=15.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta$ $162.70(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 154.56,149.52,135.99(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 130.38(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 128.11$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}), 119.48(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 116.89(\mathrm{~d}, J=20.9 \mathrm{~Hz}) .83 .87,79.91,59.35,59.35$, 31.81, 28.49, 28.17.
(R)-tert-Butyl 4-((N-(tert-butoxycarbonyl)- N-(1-methoxy-3-methyl-1-oxobutan-2-yl) sulfamoyl)(3-fluorophenyl)amino)piperidine-1-carboxylate (2.17)

To a solution of $2.13(1.01 \mathrm{~g}, 2.14 \mathrm{mmol})$ and DIAD ($3.0 \mathrm{~mL}, 6.59 \mathrm{mmol}$) in THF (20 $\mathrm{mL})$ was added a solution of $2.9(0.34 \mathrm{~g}, 2.60 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(1.69 \mathrm{~g}, 6.44 \mathrm{mmol})$ in THF (20 mL) at room temperature and then the reaction mixture was heated at $65^{\circ} \mathrm{C}$ for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL} \mathrm{X} 3)$ and the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product $2.17(1.22 \mathrm{~g}, 97 \%)$.

Analytical data for 2.17: $\mathrm{R}_{\mathrm{f}}=0.86($ Sol. EtOAc:Hexane $=1 / 1) ;[\alpha]^{25}{ }_{\mathrm{D}}=+1.188(c=$ 1.094, CHCl_{3}); FTIR (neat) 3333, 2991, 2978, 2924, 2853, 1666, 1611, 1588, 1524, 1476, 1430, $1366,1342,1311,1233,1187,1167,1139,998,980,936,862,821,756,627 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.36$ (ddd, $J=8.2,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (ddd, $J=10.8,10.8,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{ddd}, J=9.6,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{tt}, J=12.0,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{t}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ (ddt, $J=13.5,8.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.26$ (ddd, $J=8.7$, $3.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta$ $170.18,162.34(\mathrm{~d}, J=247.6 \mathrm{~Hz}), 154.59,150.64,135.87(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 129.73(\mathrm{~d}, J=9.1 \mathrm{~Hz})$, $129.01(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 120.27(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 116.50(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 84.59,79.83,60.60$, 59.43, 59.27, 52.07, 28.49, 28.30, 28.09, 22.28, 19.50 .

(R)-Methyl 2-(N-(3-fluorophenyl)- N-(piperidin-4-yl)sulfamoylamino)-3-methylbutanoate

 dihydrochloride (2.19)

To a solution of $2.17(0.39 \mathrm{~g}, 0.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added 4 N HCl in 1,4-dioxane $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product 2.19. It used without further purification.
(R)-Methyl 2-(N-(1-(4-fluorobenzyl)piperidin-4-yl)- N-(3-fluorophenyl)sulfamoylamino)-3methyl butanoate (2.21)

To a solution of $2.19(0.13 \mathrm{~g}, 0.34 \mathrm{mmol})$ and 4-fluorobenzaldehyde ($0.045 \mathrm{~mL}, 0.42$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.22 \mathrm{~g}, 1.03 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hrs. To a solution was added glacial acetic acid ($0.04 \mathrm{~mL}, 0.70 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL} \mathrm{X} 3)$ and EtOAc (200 mL) and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 60% of EtOAc in hexane to get white oil as a product 2.21 ($0.0742 \mathrm{~g}, 45 \%$).

Analytical data for 2.21: $\mathrm{R}_{\mathrm{f}}=0.89$ (Sol. EtOAc:Hexane $=1 / 1$); $[\alpha]^{25}{ }_{\mathrm{D}}=+23.661(c=$ $0.224, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3316,2925,2854,2383,23236,1589,1512,1495,1338,1226$, 1151, $938,828,760,685 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.32$ (ddd, $J=16.3,16.3$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.93(\mathrm{~m}, 1 \mathrm{H}), 5.02$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{tt}, J=12.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=9.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.42(\mathrm{~s}, 2 \mathrm{H}), 2.90-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.83$ (dt, $J=12.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{dddd}, J=19.6,12.2,7.6,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.47,164.6(\mathrm{~d}, J=248.5 \mathrm{~Hz}), 164.2$ $(\mathrm{d}, J=247.5 \mathrm{~Hz}), 140.0(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 135.34,132.86,132.44(\mathrm{~d}, J=84.8 \mathrm{~Hz}), 129.65$, $121.08(\mathrm{~d}, J=21.2), 117.91(\mathrm{~d}, J=21.2), 117.20(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 63.88,63.62,60.26,54.84$, 54.78, 54.52, 34.07, 33.42, 33.15, 20.89, 19.83; HRMS (M+H) ${ }^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 496.2081, found 496.2090.

(R)-Methyl 2-(N-(3-fluorophenyl)-N-(1-(4-hydroxybenzyl)piperidin-4-yl)sulfamoyl-amino)-

 3-methylbutanoate (2.22)

A solution of $2.19(0.38 \mathrm{~g}, 0.98 \mathrm{mmol})$, 4-hydroxybenzaldehyde $(0.15 \mathrm{~g}, 1.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated with $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.65 \mathrm{~g}, 3.05 \mathrm{mmol})$ at room temperature and stirred for 2 hrs . To a reaction mixture was added glacial acetic acid $(0.11 \mathrm{~mL}, 1.92 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was quenched with aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL} \mathrm{X} 2)$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product $2.22(0.08 \mathrm{~g}, 17 \%)$.

Analytical data for 2.22: $\mathrm{R}_{\mathrm{f}}=0.29$ (Sol. EtOAc: $\mathrm{Hexane}=1 / 1$); $[\alpha]^{25}{ }_{\mathrm{D}}=+27.471(c=0.597$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3711,2925,2855,2369,1731,1610,1593,1516,1366,1248,1144,1131$, 1059, 1033, 1010, 831, 777, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{ddd}, J=14.7,8.0,0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=9.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H})$, $2.90(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{ddd}, \mathrm{J}=43.9,12.2,0 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H})$, $0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.33,162.37$ $(\mathrm{d}, J=249.5 \mathrm{~Hz}), 155.14,137.62,130.69,130.28(\mathrm{~d}, J=83.8 \mathrm{~Hz}), 129.82(\mathrm{~d}, J=9.1 \mathrm{~Hz})$, $127.42(\mathrm{~d}, ~ J=3.0 \mathrm{~Hz}), 118.85(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 115.52(\mathrm{~d}, J=48.5 \mathrm{~Hz}), 115.17,62.03,61.41$, $58.04,52.67,52.61,52.42,31.92,31.09,30.82,18.74,17.66 ; \operatorname{HRMS}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 494.2125, found 494.2160.

(R)-Methyl 2-(N-(3-fluorophenyl)-N-(1-(3-hydroxybenzyl)piperidin-4-yl)sulfamoyl-amino)-

 3-methylbutanoate (2.23)

A solution of $2.19(0.18 \mathrm{~g}, 0.45 \mathrm{mmol})$, 3-hydroxybenzaldehyde $(0.06 \mathrm{~g}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.29 \mathrm{~g}, 1.36 \mathrm{mmol})$ at room temperature and stirred for 2 hrs . To a reaction mixture was added glacial acetic acid $(0.05 \mathrm{~mL}, 0.87 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was quenched with aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} \mathrm{2})$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product 2.23 ($38.1 \mathrm{mg}, 17 \%$).

Analytical data for 2.23: $\mathrm{R}_{\mathrm{f}}=0.42$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+1.538(c=0.130$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3274,2964,2874,2845,2299,2256,1738,1591,1486,1455,1339,1264$, 1207, 1161, 1140, 1054, 982, 911, 888, 858, 777, 730, 692, 649, $605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{ddd}, J=14.7,8.0,0 \mathrm{~Hz}, 1 \mathrm{H}) 7.11(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.63(\mathrm{~m}, 3 \mathrm{H}), 5.00(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}$, $J=8.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{t}, J=12.2 \mathrm{~Hz}$, 2H), 1.99 (m, 1H), 1.85 (ddd, $J=44.2,12.4,0 \mathrm{~Hz}, 2 \mathrm{H}), 1.49$ (ddd, $J=20.8,11.6,8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 172.33, 161.15, 155.89, 137.42, $129.86(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 129.39,127.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 121.31,118.85(\mathrm{~d}, J=$ $22.2 \mathrm{~Hz}), 116.01,115.96(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 115.69,114.48,62.34,61.43,57.97,52.84,52.78$, $52.43,31.92,31.11,30.84,18.75,17.67 ; \operatorname{HRMS}(\mathrm{M}+\mathrm{H})$ calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 494.2125, found 494.3777.

(R)-Methyl 2-((N-(1-(3,4-dihydroxybenzyl)piperidin-4-yl)- N-(3-fluorophenyl)sulfamoyl)-

 amino)-3-methylbutanoate (2.24)

A solution of $2.19(0.16 \mathrm{~g}, 0.41 \mathrm{mmol}), ~ 3,4$-dihydroxybenzaldehyde $(0.06 \mathrm{~g}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.29 \mathrm{~g}, 1.36 \mathrm{mmol})$ at room temperature and stirred for 2 hrs . To a reaction mixture was added glacial acetic acid $(0.05 \mathrm{~mL}, 0.87 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was quenched with aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} 2)$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product 2.24 ($0.06 \mathrm{~g}, 28.5 \%$).

Analytical data for 2.24: $\mathrm{R}_{\mathrm{f}}=0.07$ (Sol. EtOAc:Hexane $=1 / 1$); $[\alpha]^{25}{ }_{\mathrm{D}}=+2.033(c=0.246$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) 3283, 2964, 2875, 2360, 2257, 1737, 1667, 1607, 1592, 1486, 1445, 1339, 1266, 1206, 1161, 1139, 1055, 982, 912, 787, 731, 693, 650, $604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{ddd}, \mathrm{J}=15.5,7.9,0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.47(\mathrm{~m}, 3 \mathrm{H}), 5.50(\mathrm{bs}, 3 \mathrm{H}), 3.87(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{t}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{dq}, J=11.6$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=47.1,11.4,0 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.45,162.29(\mathrm{~d}, J=249.5 \mathrm{~Hz})$, 144.70, 144.27, $137.49(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 129.94(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 127.12,122.11,118.67,118.45$, $116.91,115.89(\mathrm{~d}, ~ J=20.2 \mathrm{~Hz}), 114.93,61.63,61.52,57.04,52.44,52.12,51.99,31.83,30.04$, 29.72, 18.76, 17.69; HRMS $(M+H)^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{FN}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 510.2074, found 510.2185.

tert-Butyl 4-(butylamino)piperidine-1-carboxylate (2.14)

To a solution of 1-Boc-4-piperidone ($6.28 \mathrm{~g}, 31.50 \mathrm{mmol}$) and butylamine (3.10 mL , $31.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added $\mathrm{NaBH}(\mathrm{OAc})_{3}$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hrs . To a reaction mixture was added glacial acetic acid $(3.6 \mathrm{~mL}, 62.89 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirred at ambient temperature overnight. The reaction mixture was washed with saturated aqueous NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL} \mathrm{X} 3)$ and then the combined organic layer was dried over MgSO_{4}, filtered, and evaporated to a product $\mathbf{2 . 1 4}$ as a colorless oil with spectral data identical to those previously reported. ${ }^{1}$ It used without further purification.

Analytical data for 2.14: FTIR (neat) 3711, 2960, 2933, 2862, 2383, 2368, 1683, 1422, 1365, 1274, 1239, 1159, 865, 732, $649 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})$ required 257.2224 , found 257.2230 .
tert-Butyl 4-((N-(tert-butoxycarbonyl)sulfamoyl)(butyl)amino)piperidine-1-carboxylate (2.16)

A solution of the tert-butyl alcohol ($1.8 \mathrm{~mL}, 18.82 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated with a solution of CSI $(1.65 \mathrm{~mL}, 18.96 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. This mixture was cannulated to a solution of 2.14 and $\mathrm{Et}_{3} \mathrm{~N}(3.3 \mathrm{~mL}, 23.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The reaction mixture was stirred at ambient temperature for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (150 mL X 3) and the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product 2.16 (4.66 g, 68\%).

Analytical data for 2.16: $\mathrm{R}_{\mathrm{f}}=0.69$ (Sol. EtOAc:Hexane $=1 / 1$); FTIR (neat) 3259, 2974, 2935, 2873, 1734, 1668, 1436, 1366, 1244, 1136, 1022, 916, 869, 829, 771, 729, $604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{ddd}, J=14.3,7.1,2.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.91-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.64-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.47(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 9 \mathrm{H}), 1.31(\mathrm{dd}, J=8.9,6.2 \mathrm{~Hz}$, 2H), $1.26(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{td}, J=7.2,2.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.43, 154.81, $150.21,149.40,84.57,83.48,80.08,57.17,45.20,33.44,28.63,28.27,28.09,20.29,13.98 ;$ HRMS $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 458.2295, found 458.2294.
(R)-tert-Butyl 4-((N-(tert-butoxycarbonyl)- N-(1-methoxy-3-methyl-1-oxobutan-2-yl)sulfamoyl) (butyl)amino)piperidine-1-carboxylate (2.18)

To a solution of $2.16(0.10 \mathrm{~g}, 0.73 \mathrm{mmol}), 2.9(0.29 \mathrm{~g}, 0.66 \mathrm{mmol})$, and $\mathrm{PPh}_{3}(1.96 \mathrm{~g}$, $7.45 \mathrm{mmol})$ in THF (5 mL) was added DEAD ($40 \% \mathrm{wt}$. in toluene, $32 \mathrm{~mL}, 1.28 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and stirred 10 min . The reaction mixture was heated at $60^{\circ} \mathrm{C}$. The reaction mixture was quenched with 1 M aqueous HCl solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} 3)$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCOFlash column chromatography in 0% to 20% of EtOAc in hexane to get white oil as a product 2.18 ($0.19 \mathrm{~g}, 53 \%)$.

Analytical data for 2.18: $\mathrm{R}_{\mathrm{f}}=0.8$ (Sol. EtOAc:Hexane $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.46(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{td}, J=12.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{s}, 3 \mathrm{H}), 3.51-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.67(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 9 \mathrm{H}), 1.38(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, 9H), 1.29-1.16 (m, 4H), 1.14-1.06 (m, 6H), $0.93(\mathrm{dd}, J=7.0,2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.61,154.63,150.73,83.96,79.73,66.84,56.12,52.14,45.59,33.70,31.87,29.11$, $28.42,28.18,27.97,22.37,20.38,20.12,19.59,14.48,13.80$.

(R)-Methyl 2-(N-butyl- N-(piperidin-4-yl)sulfamoylamino)-3-methylbutanoate 2HCl (2.20)

To a solution of $2.18(0.19 \mathrm{~g}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added 4 N HCl in $1,4-$ dioxane $(2.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product 2.20. It used without further purification.

(R)-Methyl 2-(N-butyl-N-(1-(4-fluorobenzyl)piperidin-4-yl)sulfamoylamino)-3-methyl-

 butanoate (2.25)

A solution of $2.20(0.1481 \mathrm{~g}, 0.3507 \mathrm{mmol})$ and p-fluorobenzaldehyde ($0.04 \mathrm{~mL}, 0.38$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.08 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 10 minutes. $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.23 \mathrm{~g}, 1.07 \mathrm{mmol})$ was added to a reaction mixture at $0^{\circ} \mathrm{C}$ and stirred at ambient temperature overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL X 3) and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get colorless oil as a product $2.25(0.08 \mathrm{~g}, 51 \%)$.

Analytical data for 2.25: $\mathrm{R}_{\mathrm{f}}=0.28$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+7.209(c=$ $0.652, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3295,2958,2874,2801,2342,2296,1740,1508,1468,1325,1276$, $1166,1153,1133,1015,995,924,861,828,770,629 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.30-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 4.84,(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}, J=10.0,5.2 \mathrm{~Hz}$, 1H), 3.53-3.47 (m, 1H), $3.46(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=10.3,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.10-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.78(\mathrm{dt}, J=13.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{dt}, J=8.1,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{dddd}, J=$ $15.8,11.2,7.8,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.12,162.23(\mathrm{~d}, J=246.4 \mathrm{~Hz}), 134.13,130.78(\mathrm{~d}, J=8.1 \mathrm{~Hz})$, $115.25(\mathrm{~d}, \mathrm{~J}=22.2 \mathrm{~Hz}), 77.61,77.29,76.97$, 62.28, 61.22, 56.80, 53.36, 53.31, 52.56, 44.36, $33.95,31.89,31.09,30.77,20.40,19.23,18.02,14.04 ;$ HRMS $(M+H)$ calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}$ $(\mathrm{M}+\mathrm{H})$ required 458.2489, found 458.2465 .

(S)-2-Hydroxy-4-methylpentanoic acid (2.26)

To a solution of L-leucine ($10.10 \mathrm{~g}, 77.02 \mathrm{mmol}$) in $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{NaNO}_{2}(12.41 \mathrm{~g}, 179.86 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was extracted with diethyl ether (200 mL X 3) and concentrated by azeotropic distillation with toluene to provide yellow solid. A yellow solid was dried under reduced vacuum to furnish a crystal as white needles $2.26(9.92 \mathrm{~g}, 97 \%)$.

(S)-Methyl 2-hydroxy-4-methylpentanoate (2.27)

To a solution of $2.26(9.20 \mathrm{~g}, 69.61 \mathrm{mmol})$ in methanol $(100 \mathrm{~mL})$ was added amberlyst15 ion exchange resin at room temperature and stirred for overnight. The reaction mixture was filtered and evaporated to remove solvent to give yellow oil. The yellow oil was purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get yellow oil as a product $2.27(6.56 \mathrm{~g}, 64 \%) \mathrm{R}_{\mathrm{f}}=0.71\left(\mathrm{Sol} . \mathrm{EtOAc}:\right.$ Hexane $=1 / 1$, checked by KMnO_{4} stain solution).

Analytical data for 2.27: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right) \delta{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.21-4.12 (m, 1H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{dt}, J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H})$, $0.89(\mathrm{dd}, J=6.7,4.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 175.5,75.3,52.4,32.3,18.7,16.2$.
(R)-tert-Butyl 4-((N-(tert-butoxycarbonyl)- N-(1-methoxy-4-methyl-1-oxopentan-2-yl)-sulfamoyl)(3-fluorophenyl)amino)piperidine-1-carboxylate (2.28)

To a solution of $2.15(1.04 \mathrm{~g}, 2.20 \mathrm{mmol})$ and DIAD ($2.9 \mathrm{~mL}, 6.66 \mathrm{mmol}$) in THF (20 $\mathrm{mL})$ was added a solution of $2.27(0.36 \mathrm{~g}, 2.45 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(1.73 \mathrm{~g}, 6.583 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and then the reaction mixture was heated at $60^{\circ} \mathrm{C}$ for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL} \mathrm{X} 3)$ and the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 20% of EtOAc in hexane to get white oil as a product $2.28(1.12 \mathrm{~g}, 85 \%)$.

Analytical data for 2.28: $\mathrm{R}_{\mathrm{f}}=0.81$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+25.000(c=$ $0.168, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) 2957, 2870, 1732, 1693, 1592, 1486, 1425, 1365, 1275, 1238, 1146, $979,884,865,845,772,718,694,615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ (ddd, $J=16.2$, $16.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (dddd, $J=8.3,8.3,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (ddd, $J=9.5,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 2 \mathrm{H})$, $3.63(\mathrm{~s}, 2 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}$, $9 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.97,162.54(\mathrm{~d}, J=248.5 \mathrm{~Hz}), 154.66,150.69,135.85(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 129.98(\mathrm{~d}, J$ $=9.1 \mathrm{~Hz}), 128.95,120.22(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 116.69(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 84.64,79.90,59.59,52.45$, $40.44,31.80,31.15,28.56,28.24,25.02,23.05,22.87,22.13,14.34 ; \operatorname{HRMS}(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{FN}_{3} \mathrm{NaO}_{8} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{Na})$ required Exact Mass: 624.2725, found 624.2726.

(R)-Methyl 2-(N-(3-fluorophenyl)- N-(piperidin-4-yl)sulfamoylamino)-4-methylpentanoate

2HCl (2.29)

To a solution of $2.28(1.12 \mathrm{~g}, 1.87 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added 4 N HCl in 1,4dioxane $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product 2.29. It used without further purification.
(R)-Methyl 2-(N-(3-fluorophenyl)-N-(1-(4-(trifluoromethyl)benzyl)piperidin-4-yl)sulfamoyl-amino)-4-methylpentanoate (2.30)

A solution of $2.29(0.07 \mathrm{~g}, 0.15 \mathrm{mmol})$, 4-trifluoromethylbenzaldehyde ($0.03 \mathrm{~g}, 0.17$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.06 \mathrm{~mL}, 0.43 \mathrm{mmol})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.10 \mathrm{~g}$, 0.47 mmol) at room temperature and stirred for overnight. A reaction mixture was quenched with aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \mathrm{X} 3)$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product 2.30 ($0.04 \mathrm{~g}, 44 \%$).

Analytical data for 2.30: $\mathrm{R}_{\mathrm{f}}=0.61$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+6.320(c=$ $0.269, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3280,2956,2872,2383,2368,2342,1744,1606,1592,1485,1435$, $1324,1160,1120,1064,1018,981,822,787,692,644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dt}, J=$ $9.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.61(\mathrm{ddd}, J=$ 9.3, 6.6, 4.3 Hz, 1H), $3.45(\mathrm{~s}, 2 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{td}, J=11.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.78$ $(\mathrm{m}, 2 \mathrm{H}), 1.66(\mathrm{dq}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.53,162.66(\mathrm{~d}, \mathrm{~J}=249.5 \mathrm{~Hz}), 142.39,138.06(\mathrm{~d}, \mathrm{~J}=$ $10.1 \mathrm{~Hz}), 130.07(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 129.42,129.35(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 127.68(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 125.39$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}), 125.31(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 119.11(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 116.02(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 62.28$, $58.29,55.09,53.63,53.13,52.73,42.99,31.64,31.41,24.55,22.74,22.23$; HRMS (M+H) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 560.2206, found 560.2542 .

tert-Butyl 4-(4-fluorophenylamino)piperidine-1-carboxylate (2.31)

To a solution of 1-Boc-4-piperidone ($5.28 \mathrm{~g}, 26.49 \mathrm{mmol}$) and p-fluoroaniline (2.54 mL , $26.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added $\mathrm{NaBH}(\mathrm{OAc})_{3}(9.73 \mathrm{~g}, 45.90 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hrs . To a reaction mixture was added glacial acetic acid ($3 \mathrm{~mL}, 52.41 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and stirred at ambient temperature overnight. The reaction mixture was washed with saturated aqueous NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL} \mathrm{X} 3)$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCOFlash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product 2.31 ($5.51 \mathrm{~g}, 71 \%$).

Analytical data for 2.31: $\mathrm{R}_{\mathrm{f}}=0.75$ (Sol. EtOAc:Hexane $=1 / 1$); FTIR (neat) 3355, 2982, 2945, 2923, 2847, 1670, 1612, 1530, 1505, 1419, 1366, 1316, 1233, 1139, 1097, 973, 858, 821, 773, $645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.88-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~s}$, $1 \mathrm{H}), 4.01$ (ddd, $\mathrm{J}=13.6,3.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{tt}, \mathrm{J}=10.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 2 \mathrm{H}), 1.96$ $(\mathrm{dd}, J=13.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{dddd}, J=13.0,11.4,10.2,4.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left.\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 156.83,154.79(\mathrm{~d}, J=57.6 \mathrm{~Hz}), 143.83,114.88 \mathrm{~d}, J=22.2 \mathrm{~Hz}\right), 114.50(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}), 79.58,50.34,31.63,27.25 ;$ HRMS $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{NaO}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})$ required 317.1336 , found 317.1640 .
(S)-tert-Butyl 4-((4-fluorophenyl)(N-(1-methoxy-3-methyl-1-oxobutan-2-yl)sulfamoyl) amino)-piperidine-1-carboxylate (2.34)

To a solution of sulfuryl chloride $(0.30 \mathrm{~mL}, 3.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added Lvaline methyl ester ($0.62 \mathrm{~g}, 3.70 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ slowly at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 minutes to obtain 2.32. A solution of $2.31(0.31 \mathrm{~g}, 1.06 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}, 9.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated with a solution of 2.32 at $0{ }^{\circ} \mathrm{C}$ and stirred for overnight. The reaction mixture was evaporated and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product $2.34(0.38 \mathrm{~g}, 73 \%)$.

Analytical data for 2.34: $\mathrm{R}_{\mathrm{f}}=0.71$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]_{\mathrm{D}}^{25}=-4.52(c=0.310$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3274,2969,2935,2871,2383,2324,1740,1682,15061427,1365,1335$, $1275,1263,1250,1210,1164,1135,1092,1056,1092,1056,955,935,869,822,737,703,642$, $612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{dd}, J=8.2,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=8.8,8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.08(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{tt}, J=11.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=9.4$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{dd}, J=11.8,11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{qd}, J=19.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ $(\mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.29-1.14(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.56,162.66(\mathrm{~d}, \mathrm{~J}=249.5$ $\mathrm{Hz}), 154.60,133.60(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 132.19(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 116.14(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 79.93,61.73$, $58.11,53.66,52.59,43.37,32.11,31.75,31.45,28.52,18.98,17.96$; HRMS (M+Na) calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{FN}_{3} \mathrm{NaO}_{6} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{Na})$ required 510.2045 , found 510.2040.

(S)-Methyl 2-(N -(4-fluorophenyl)- N -(piperidin-4-yl)sulfamoylamino)-3-methylbutanoate

2HCl (2.36)

To a solution of $2.34(0.38 \mathrm{~g}, 0.78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added 4 N HCl in $1,4-$ dioxane $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product 2.36. It used without further purification.
(S)-Methyl 2-(N-(1-(4-fluorobenzyl)piperidin-4-yl)- N-(4-fluorophenyl)sulfamoylamino)-3methylbutanoate (2.38)

To a solution of $2.36(0.05 \mathrm{~g}, 0.12 \mathrm{mmol})$ and 4-fluorobenzaldehyde ($14 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(18 \mu \mathrm{~L}, 0.13 \mathrm{mmol})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.08 \mathrm{~g}, 0.37$ mmol) at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 60% of EtOAc in hexane to get colorless solid oil as a product $2.38(0.04 \mathrm{~g}, 63 \%)$.

Analytical data for 2.38: $\mathrm{R}_{\mathrm{f}}=0.43$ (Sol. EtOAc:Hexane $=1 / 1$); $[\alpha]^{25}{ }_{\mathrm{D}}=-5.031(c=0.318$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) 3280, 2958, 2927, 2854, 2383, 2368, 2185, 1738, 1603, 1505, 1454, 1337, 1208, 1161, 1133, 1057, 960, 871, 823, 740, $622 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.15$ $(\mathrm{m}, 4 \mathrm{H}), 7.03(\mathrm{t}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{tt}, J=$ $12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dq}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 1 \mathrm{H})$, 1.41 (dddd, $J=15.6,12.2,6.1,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.37,162.41(\mathrm{~d}, J=250.5 \mathrm{~Hz}), 162.11(\mathrm{~d}, J=246.4 \mathrm{~Hz})$, 133.42, 133.34, $131.96(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 130.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 115.87(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 115.11$ $(\mathrm{d}, J=21.2 \mathrm{~Hz}), 61.56,61.42,57.67,52.57,52.52,52.40,31.91,31.09,30.78,18.76,17.68$; HRMS $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 496.2076, found 496.2074.
(S)-Methyl 2-(N-(4-fluorophenyl)-N-(1-(4-(trifluoromethyl)benzyl)piperidin-4-yl)sulfamoyl-amino)-3-methylbutanoate (2.39)

To a solution of $2.36(0.05 \mathrm{~g}, 0.12 \mathrm{mmol})$ and 4-trifluorobenzaldehyde $(18 \mu \mathrm{~L}, 0.13$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(18 \mu \mathrm{~L}, 0.13 \mathrm{mmol})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.08 \mathrm{~g}$, 0.37 mmol) at $0^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 60% of EtOAc in hexane to get colorless solid oil as a product $2.39(0.06 \mathrm{~g}, 83 \%)$.

Analytical data for 2.39: $\mathrm{R}_{\mathrm{f}}=0.70$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}=-3.786(c=$ $0.449, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3295,2956,2924,2853,2342,2300,1739,1619,1602,1506,1454$, 1421, 1323, 1262, 1209, 1161, 1121, 1064, 1018, 959, 931, 871, 822, 740, $621 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.01-$ $6.95(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{tt}, J=12.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=9.4,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.79(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{t}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{dq}, J=$ $12.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{ddd}, J=12.3,8.8,3.8 \mathrm{~Hz}, 2 \mathrm{H})$, $0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.48,162.51$ $(\mathrm{d}, J=250.5 \mathrm{~Hz}), 142.31,133.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 132.19(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 129.22,125.26(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}), 125.19(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.93(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 62.17,61.54,57.96,53.05,52.99,52.46$, 32.01, 31.52, 31.21, 18.84, 17.79; HRMS $(M+H){ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 546.2044, found 546.2049.
(R)-tert-Butyl 4-((4-fluorophenyl)(N-(1-methoxy-3-methyl-1-oxobutan-2-yl)sulfamoyl) amino)piperidine-1-carboxylate (2.35)

To a solution of sulfuryl chloride $(0.48 \mathrm{~mL}, 5.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added Dvaline methyl ester $(1.00 \mathrm{~g}, 5.97 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ slowly at $0^{\circ} \mathrm{C}$ and stirred for 4 hrs to furnish 2.33. To a solution of $2.27(0.95 \mathrm{~g}, 3.22 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.50 \mathrm{~mL}, 17.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added 2.33 solution at $0{ }^{\circ} \mathrm{C}$ and stirred for overnight. The reaction mixture was evaporated and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product $2.35(1.50 \mathrm{~g}, 95 \%)$.

Analytical data for 2.35: $\mathrm{R}_{\mathrm{f}}=0.68$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}=-1.199(c=$ $0.584, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3333,2991,2924,2853,1666,1611,1588,1524,1448,1430,1366$, 1342, 1249, 1233, 1167, 1139, 1099, 1076, 998, 936, 821, 756, $627 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}$, $2 \mathrm{H}), 3.97(\mathrm{tt}, J=7.4,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 4 \mathrm{H}), 2.70(\mathrm{t}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.34(\mathrm{~s}, 9 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.29,162.44(\mathrm{~d}, J=250.5 \mathrm{~Hz}), 154.37,133.34(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 131.90,115.92$ $(\mathrm{d}, J=22.2 \mathrm{~Hz}), 79.72,61.47,61.12,57.93,52.39,43.14,31.92,31.52,31.23,28.30,18.74$, 17.68.

(R)-Methyl 2-(N-(4-fluorophenyl)- N-(piperidin-4-yl)sulfamoylamino)-3-methylbutanoate

2HCl (2.37)

To a solution of $2.35(1.50 \mathrm{~g}, 3.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added 4 N HCl in $1,4-$ dioxane (6 mL) at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product 2.37. It used without further purification.

(R)-Methyl 2-(N-(1-(4-fluorobenzyl)piperidin-4-yl)-N-(4-fluorophenyl)sulfamoylamino)-3-

 methylbutanoate (2.40)

To a solution of $2.37(0.11 \mathrm{~g}, 0.26 \mathrm{mmol})$, 4-fluorobenzaldehyde $(0.04 \mathrm{~g}, 0.32 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.04 \mathrm{~mL}, 0.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ was treated with $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.17 \mathrm{~g}, 0.78$ mmol) at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product $2.40(0.07 \mathrm{~g}, 51 \%)$.

Analytical data for 2.40: $\mathrm{R}_{\mathrm{f}}=0.42$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+3.767(c=$ $0.584, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) 3293, 2956, 2933 2383, 2325, 2299, 1738, 1603, 1505, 1468, 1453, $1435,1337,1259,1208,1162,1132,1058,960,931,823,740,619 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.21-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{ddd}, J=9.8,5.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~d}, 2 \mathrm{H})$, 2.08-1.96(m, 2H), 1.94-1.87 (m, 2H), $1.80(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{dd}, J$ $=6.8,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.63,162.64$ $(\mathrm{d}, J=250.5 \mathrm{~Hz}), 162.26(J=\mathrm{d}, 246.4 \mathrm{~Hz}), 133.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 133.52,132.32(\mathrm{~d}, J=3.3$ $\mathrm{Hz}), 130.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 116.05(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 115.25(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 61.99,61.68,58.12$, 52.95, 52.90, 52.61, 32.16, 31.53, 31.23, 18.99, 17.94; HRMS (M+H) ${ }^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}$ $(\mathrm{M}+\mathrm{H})$ required 496.2081, found 496.2543 .

(R)-Methyl 2-(N-(4-fluorophenyl)-N-(1-(4-(trifluoromethyl)benzyl)piperidin-4-yl)sulfamoyl

 -amino)-3-methylbutanoate (2.41)

To a solution of $2.37(0.12 \mathrm{~g}, 0.29 \mathrm{mmol})$ and 4-trifluorobenzaldehyde $(0.06 \mathrm{~g}, 0.32$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.04 \mathrm{~mL}, 0.29 \mathrm{mmol})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.18$ $\mathrm{g}, 0.87 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-FlashColumn chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product $2.41(0.0779 \mathrm{~g}, 50 \%)$.

Analytical data for 2.41: $\mathrm{R}_{\mathrm{f}}=0.67$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+2.734(c=$ $0.695, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3242,2957,2804,2326,2299,1739,1614,1601,1574,1505,1469$, 1324, 1263, 1209, 1161, 1126, 1066, 1018, 961, 871, 822, 740, $622 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=8.4$, $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{tt}, J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=9.4,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{ddd}, J=11.8,11.8$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{qd}, J=11.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{dddd}, J=34.9,18.7,14.7$, $10.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{~d}, 6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.48,162.51(\mathrm{~d}, J=248.9 \mathrm{~Hz})$, , $142.31,133.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 132.19(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 129.22$, $125.26(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 125.18(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 115.93(\mathrm{~d}, J=22.6 \mathrm{~Hz}), .62 .17,61.54,57.96$, $53.05,52.99,52.46,52.45,32.01,31.52,31.21,18.84,17.79$; HRMS $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 546.2049, found 546.2187.
(S)-Methyl 2-((N-(1-(4-fluorobenzoyl)piperidin-4-yl)- N-(4-fluorophenyl)sulfamoyl)amino)-3-methylbutanoate (2.42)

A solution of $2.36(0.09 \mathrm{~g}, 0.22 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.09 \mathrm{~mL}, 0.65 \mathrm{mmol})$ and 4-fluorobenzoyl chloride $(0.04 \mathrm{~g}, 0.24 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was stirred at room temperature for overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 50% of EtOAc in hexane to get colorless syrup as a product $2.42(0.09 \mathrm{~g}, 83 \%)$.

Analytical data for 2.42: $\mathrm{R}_{\mathrm{f}}=0.35$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]_{\mathrm{D}}^{25}=-1.232(c=$ $0.0594, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3334,2937,2863,2383,2368,1737,1672,1614,1505,1431$, $1366,1339,1233,1167,1138,1058,1014,961,936,845,822,759,737,663,617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{dd}, \mathrm{J}=8.4,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=8.8,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddt}, J=11.0,7.2,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=9.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{dt}, J=$ $13.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.35,169.28,163.37(\mathrm{~d}, J=$ $251.5 \mathrm{~Hz}), 162.51(\mathrm{~d}, J=250.5 \mathrm{~Hz}), 133.61(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 131.78(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 131.43(\mathrm{~d}, J$ $=4.0 \mathrm{~Hz}), 129.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 116.12(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 115.52(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 61.50,57.58$, 52.43, 31.86, 18.77, 17.68; HRMS $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 510.1874, found 510.3023.

(R)-Methyl 2-((N-(1-(4-fluorobenzoyl)piperidin-4-yl)- N-(4-fluorophenyl)sulfamoyl)amino)-

 3-methylbutanoate (2.43)

A solution of $2.37(0.11 \mathrm{~g}, 0.27 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.11 \mathrm{~mL}, 0.79 \mathrm{mmol})$ and 4-fluorobenzoyl chloride ($0.03 \mathrm{~mL}, 0.25 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ was stirred at room temperature for overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 50% of EtOAc in hexane to get colorless syrup as a product $2.43(0.07 \mathrm{~g}, 51 \%)$.

Analytical data for 2.43: $\mathrm{R}_{\mathrm{f}}=0.33$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+1.146(c=$ $0.584, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3261,2961,2927,2856,2366,1739,1622,1604,1505,1435,1336$, $1155,1138,1062,955,935,846,760,739,704,641,615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.28(\mathrm{dd}, J=8.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=8.8,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{q}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 5.02(\mathrm{~d}, J$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{tt}, J=11.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.73(\mathrm{dd}, J=9.4,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.20-2.93(\mathrm{bm}, 2 \mathrm{H}), 2.92-2.63(\mathrm{bm}, 2 \mathrm{H}), 2.00(\mathrm{ddd}, J=8.8,8.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-$ $1.76(\mathrm{bm}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.33,169.30,163.38(\mathrm{~d}, J=251.5 \mathrm{~Hz}), 162.52(\mathrm{~d}, J=250.5 \mathrm{~Hz}), 133.29(\mathrm{~d}, J=9.1 \mathrm{~Hz})$, $131.73(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 131.39(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 129.23(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 116.22(\mathrm{~d}, J=22.2 \mathrm{~Hz})$, $115.53(\mathrm{~d}, \mathrm{~J}=22.2 \mathrm{~Hz}), 61.48,57.62,52.45,31.88,29.67,18.76,17.64 ;$ HRMS $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 510.1874, found 510.3173 .

Piperidin-4-one hydrochloride (2.44)

$4 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$ in 1,4-dioxane was added to a solution of 4-Boc-1-piperidone (5.18 g, 26.00 mmol) at $0{ }^{\circ} \mathrm{C}$ and stirred overnight at room temperature. The mixture was evaporated to get white solid as a product 2.44. It was used for next reaction without further purification.

1-(4-Fluorobenzyl)piperidin-4-one (2.45)

$\mathrm{NaBH}(\mathrm{OAc})_{3}(16.67 \mathrm{~g}, 78.77 \mathrm{mmol})$ was added to a solution of 4-fluorobenzaldehyde (3.1 $\mathrm{mL}, 28.90 \mathrm{mmol})$ and $2.44(3.53 \mathrm{~g}, 26.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred at room temperature for overnight. The mixture was quenched with NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL X 3) and the combined organic layer was dried over MgSO_{4}. The mixture was filtered, concentrated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to furnish colorless syrup as a product $2.45(4.29 \mathrm{~g}, 80 \%)$.

Analytical data for 2.45: $\mathrm{R}_{\mathrm{f}}=0.29$ (Sol. EtOAc:Hexane $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{dd}, J=8.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{dd}, J=8.7,8.7,2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=5.9$ $\mathrm{Hz}, 4 \mathrm{H}), 2.37(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.16,162.26(\mathrm{~d}, \mathrm{~J}=246.4$ $\mathrm{Hz}), 134.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 130.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 115.35(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 61.22,52.92,41.33$.

1-(4-Fluorobenzyl)- N-(3-fluorophenyl)piperidin-4-amine (2.46)

$\mathrm{NaBH}(\mathrm{OAc})_{3}(13.45 \mathrm{~g}, 63.44 \mathrm{mmol})$ was added to a solution of $2.45(4.29 \mathrm{~g}, 20.72 \mathrm{mmol})$ and p-fluoroaniline ($2.60 \mathrm{~mL}, 27.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hrs . Acetic acid ($2.40 \mathrm{~mL}, 41.93 \mathrm{mmol}$) was treated at $0{ }^{\circ} \mathrm{C}$ and stirred for overnight at room temperature. The mixture was transferred to a separatory funnel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and distilled water $(50 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} 3)$ and $\mathrm{EtOAc}(100$ mL) and the combined organic layer was dried over MgSO_{4}. The mixture was filtered, concentrated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to furnish white solid as a product 2.46 ($4.03 \mathrm{~g}, 64 \%$).

Analytical data for 2.46: $\mathrm{R}_{\mathrm{f}}=0.19$ (Sol. EtOAc:Hexane $=1 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{dd}, J=8.7,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{ddd}, J=8.1,8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.98(\mathrm{dd}, J=$ 8.7, 8.7 Hz, 2H), 6.35 (ddd, $J=10.6,8.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{ddd}, J=11.8,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.22-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{ddd}, J=$ 11.4, 11.4, 2.9 Hz, 2H), 2.05-2.00 (m, 2H), 1.47 (dddd, $J=10.8,10.8,10.8,3.7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.53(\mathrm{~d}, J=223.2 \mathrm{~Hz}), 162.11(\mathrm{~d}, J=225.2 \mathrm{~Hz}), 149.14(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}), 134.37(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 130.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 130.55(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 115.24(\mathrm{~d}, J=$ $21.2 \mathrm{~Hz}), 109.26((\mathrm{~d}, J=2.0 \mathrm{~Hz}), 103.67(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 99.81(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 62.50,52.41$, 50.19, 32.62.

(S)-Methyl 2-((N-(1-(4-fluorobenzyl)piperidin-4-yl)-N-(3-fluorophenyl)sulfamoyl)amino)-3-

 methylbutanoate (2.47)

A mixture of L-valine methylester $\mathrm{HCl}(0.06 \mathrm{~g}, 0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added slowly to a solution of sulfuryl chloride $(0.03 \mathrm{~mL}, 0.37 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirred for 4 hrs . A solution of $2.46(0.07 \mathrm{~g}, 0.24 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to a reaction mixture at $0^{\circ} \mathrm{C}$ and stirred at room temperature for overnight. The mixture was evaporated and purified by the ISCO-Flash column chromatography in 0% to 50% of EtOAc in hexane to get colorless syrup as product $2.47(0.06 \mathrm{~g}, 51 \%)$.

Analytical data for 2.47: $\mathrm{R}_{\mathrm{f}}=0.33$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]_{\mathrm{D}}^{25}=-4.872(c=$ $0.390, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) 3284, 2960, 2801, 2762, 2256, 1738, 1669, 1607, 1592, 1508, 1485, $1468,1339,1264,1220,1162,1139,1055,981,908,861,828,728,691,646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{ddd}, J=6.9,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (ddd, $J=8.3,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88$ (ddd, $J=11.9,8.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{ddd}, J=9.4,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (d, $J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.93(\mathrm{~d}, \mathrm{~J}=12.2=\mathrm{Hz}$, $1 \mathrm{H}), 1.82(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}) 1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.30,162.41(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 161.97(\mathrm{~d}, J=245.4 \mathrm{~Hz})$, 137.86, 137.77, $130.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 129.84(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 127.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 118.93(\mathrm{~d}$, $J=22.2 \mathrm{~Hz}), 115.77(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 115.00(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 61.88,61.42,58.21,52.85,52.79$, $52.40,31.93,31.43,31.16,18.75,17.66 ; \operatorname{HRMS}(\mathrm{M}+\mathrm{H})$ calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 496.2082, found 496.2135 .

tert-Butyl 4-(3,5-bis(trifluoromethyl)phenylamino)piperidine-1-carboxylate (2.48)

To a solution of 1-Boc-4-piperidone (5.16g, 25.89 mmol) and 3,5bis(trifluoromethyl)aniline ($4.0 \mathrm{~mL}, 25.80 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $\mathrm{NaBH}(\mathrm{OAc})_{3}$ $(16.30 \mathrm{~g}, 76.92 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirred for 2 hrs . To a reaction mixture was added glacial acetic acid ($3 \mathrm{~mL}, 52.41 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirred at ambient temperature overnight. The reaction mixture was washed with saturated aqueous NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} 3)$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product 2.48 ($5.1053 \mathrm{~g}, 48 \%$).

Analytical data for 2.48: $\mathrm{R}_{\mathrm{f}}=0.37$ (Sol. EtOAc:Hexane = 1/1); FTIR (neat) 3337, 2941, $2859,1671,1615,1588,1477,1432,1405,1367,1275,1237,1167,1116,1088,979,927,858$, 822, 731, 683, $624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{t}, \mathrm{J}=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.00$ $(\mathrm{d}, J=15.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{td}, J=14.3,4.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.42,151.39(\mathrm{~d}, J=712.8 \mathrm{~Hz}), 132.64(\mathrm{q}, J=32.6 \mathrm{~Hz}), 123.78(\mathrm{q}, J=272.6 \mathrm{~Hz}), 111.04(\mathrm{dd}$, $J=223.7,3.3 \mathrm{~Hz}), 80.02,49.95,32.03,31.74,28.49$.
tert-Butyl 4-((3,5-bis(trifluoromethyl)phenyl)(N-(tert-butoxycarbonyl)sulfamoyl)amino) piperidine-1-carboxylate (2.49)

To a solution of chlorosulfonyl isocyanate $(1.0 \mathrm{~mL}, 11.49 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added to a solution of tert-butyl alcohol $(1.1 \mathrm{~mL}, 11.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. This solution was cannulated to a solution of $2.48(3.98 \mathrm{~g}, 9.65 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 14.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After that, the reaction mixture was stirred at ambient temperature for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} \mathrm{2})$ and dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product $2.49(4.78 \mathrm{~g}, 84 \%)$.

Analytical data for 2.49: $\mathrm{R}_{\mathrm{f}}=0.83$ (Sol. EtOAc:Hexane $=1 / 1$); FTIR (neat) 2981, 2934, 2866, 2383, 2369, 2325, 1736, 1666, 1436, 1366, 1276, 1247, 1131, 1075, 979, 917, 834, 770, 734, 705, 674, $610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H})$, $4.42(\mathrm{tt}, J=12.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{bt}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 2 \mathrm{H})$, $1.48(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{dddd}, J=12.5,12.3,12.3,4.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.47,152.13(\mathrm{~d}, J=500.4 \mathrm{~Hz}), 136.73,133.12(\mathrm{q}, J=34.1 \mathrm{~Hz}), 132.75,123.59$, $122.78(\mathrm{q}, ~ J=273.0 \mathrm{~Hz}), 84.27,80.23,59.58,53.61,31.85,28.44,28.07$.

(S)-tert-Butyl 4-((3,5-bis(trifluoromethyl)phenyl)(N-(tert-butoxycarbonyl)- N-(3-methoxy-2-methyl-3-oxopropyl)sulfamoyl)amino)piperidine-1-carboxylate (2.51)

To a solution of $2.49(0.51 \mathrm{~g}, 0.86 \mathrm{mmol})$ and DIAD $(0.35 \mathrm{~g}, 1.73 \mathrm{mmol})$ in THF (30 mL) was added a solution of methyl (s)-(+)-3-hydroxy-2-methylpropionate $2.50(0.10 \mathrm{~mL}, 0.86 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.45 \mathrm{~g}, 1.72 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at room temperature and stirred at room temperature for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} \mathrm{3})$ and the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless oil as a product 2.51 ($1.22 \mathrm{~g}, 97 \%$).

Analytical data for 2.51: $\mathrm{R}_{\mathrm{f}}=0.34$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]_{\mathrm{D}}^{25}=-0.992(c=$ $0.504, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) 2985, 2943, 2882, 2383, 2368, 1672, 1623, 1556, 1478, 1433, 1405, $1368,1274,1238,1166,1116,1088,1068,1001,979,944,927,855,773,705,682,646 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J$ $=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H})$, $2.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{dt}, J=12.9,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS $(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{NaO}_{8} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{Na})$ required 714.2254, found 714.2257.

(S)-Methyl 3-(N-(3,5-bis(trifluoromethyl)phenyl)- N-(piperidin-4-yl)sulfamoylamino)-2-

 methylpropanoate HCl (2.52)

To a solution of $2.51(0.30 \mathrm{~g}, 0.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added 4 N HCl in $1,4-$ dioxane $(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product 2.52. It used without further purification.

(S)-Methyl 3-(N-(3,5-bis(trifluoromethyl)phenyl)-N-(1-(4-fluorobenzyl)piperidin-4-yl)-

 sulfamoylamino)-2-methylpropanoate (2.53)

To a solution of $2.52(0.12 \mathrm{~g}, 0.23 \mathrm{mmol})$, 4-fluorobenzaldehyde $(0.03 \mathrm{~g}, 0.26 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.15 \mathrm{~g}, 0.73 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} \mathrm{2})$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product 2.53 ($0.05 \mathrm{~g}, 37 \%$).

Analytical data for 2.53: $\mathrm{R}_{\mathrm{f}}=0.45$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+1.714(c=$ $0.175, \mathrm{CHCl}_{3}$); FTIR (neat) $3317,2945,2815,2349,1727,1620,1520,1475,1436,1397,1372$, 1275, 1221, 1169, 1124, 1087, 1035, 943, 858, 844, 769, 702, 682, $662 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H})$, 4.29-4.23(m, 1H), 4.02 (d, J=7.8 Hz, 1H), 3.70 (s, 1H), 3.65-3.60 (m, 1H), $3.48(\mathrm{~s}, 3 \mathrm{H}), 3.38-$ $3.29(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{td}, J=11.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-$ $1.96(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{dtd}, J=13.6,10.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.62,162.22(\mathrm{~d}, J=244.9 \mathrm{~Hz}), 147.88,134.07(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 132.64(\mathrm{q}, J=$ $32.6 \mathrm{~Hz}), 130.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 123.77(\mathrm{q}, J=272.6 \mathrm{~Hz}), 115.24(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 112.18(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}), 109.99(\mathrm{p}, J=3.9 \mathrm{~Hz}), 71.59,69.62,69.13,62.41,52.32,52.12,46.12,39.43,32.26$, 14.98.

(S)-tert-Butyl 4-((4-fluorophenyl)(N-((1-methoxy-3-methyl-1-oxobutan-2-yloxy)carbonyl) sulfamoyl)amino)piperidine-1-carboxylate (2.54)

To a solution of $2.31(0.93 \mathrm{~g}, 3.17 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.66 \mathrm{~mL}, 4.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) was cannulated a solution of chlorosulfonyl isocyanate ($0.33 \mathrm{~mL}, 3.79 \mathrm{mmol}$) and (S)methyl 2-hydroxy-3-methylbutanoate $2.9(0.50 \mathrm{~g}, 3.81 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} \mathrm{2})$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 50% of EtOAc in hexane to get white solid as a product $2.54(0.50 \mathrm{~g}$, 30%).

Analytical data for 2.54: $\mathrm{R}_{\mathrm{f}}=0.70$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+33.939(c=$ $0.165, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) $3077,2972,2936,2878,1743,1667,1602,1506,1452,1435,1366$, $1265,1234,1212,1168,1133,1093,1064,954,938,873,738,641 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=9.0,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=5.2,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{tt}, J=11.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.59(\mathrm{~m}, 2 \mathrm{H})$, $2.28-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{t}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.15(\mathrm{~m} \mathrm{2H}), 1.08(\mathrm{dddd}, J=$ 12.4, 12.4 12.3, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.96,164.36,161.88,152.74(\mathrm{~d}, J=378.8 \mathrm{~Hz}), 134.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 130.12$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}), 116.45(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 79.97,78.59,59.33,53.64,52.54,30.18,28.49,18.82$, 17.21.

(S)-Methyl 2-(N-(4-fluorophenyl)- N-(piperidin-4-yl)sulfamoylcarbamoyloxy)-3-methyl-

 butanoate hydrochloride (2.55)

To a solution of $2.54(0.5 \mathrm{~g}, 0.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added 4 N HCl in 1,4dioxane $(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product 2.55. It used without further purification.

(S)-Methyl 2-(N-(1-(4-fluorobenzyl)piperidin-4-yl)-N-(4-fluorophenyl)sulfamoyl

 carbamoyloxy)-3-methylbutanoate (2.56)

To a solution of $2.55(0.09 \mathrm{~g}, 0.19 \mathrm{mmol})$, 4-fluorobenzaldehyde $(0.03 \mathrm{~mL}, 0.22 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.14 \mathrm{~g}, 0.64 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for overnight. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \mathrm{X} 2)$ and then the combined organic layer was dried over MgSO_{4}, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product 2.56 ($0.0786 \mathrm{~g}, 76 \%)$.

Analytical data for 2.56: $\mathrm{R}_{\mathrm{f}}=0.24$ (Sol. EtOAc:Hexane $\left.=1 / 1\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+16.467(c=$ $0.753, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) 2956, 2925, 2852, 2383, 2357, 1750, 1661, 1627, 1604, 1505, 1463, $1264,1226,1209,1089,918,874,838,791,739,626 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-$ 7.23 (m, 2H), 7.15 (dd, $J=8.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=8.9,8.9,2 \mathrm{H}), 6.96$ (dd, $J=8.7,8.7$, $2 \mathrm{H}), 4.84(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{tt}, J=12.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.41(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.63-$ $1.38(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.35,162.76(\mathrm{~d}, J=249.2 \mathrm{~Hz}), \delta 162.53(\mathrm{~d}, J=246.7 \mathrm{~Hz}), 152.77,134.20(\mathrm{~d}, J=8.7 \mathrm{~Hz})$, $131.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 131.20,130.62,116.10(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 115.43(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 77.88$, $60.65,57.95,52.22,52.01,30.85,30.37,30.19,29.78,18.68,17.40 ;$ HRMS $\left(\mathrm{M}^{+}{ }^{+}{ }^{+}\right.$calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 540.1980, found 540.2224.
(S)-Methyl 2-(N-(1-(4-fluorobenzoyl)piperidin-4-yl)- N-(4-fluorophenyl)sulfamoyl carbamoyloxy)-3-methylbutanoate (2.57)

To a solution of $2.55(0.10 \mathrm{~g}, 0.21 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.09 \mathrm{~mL}, 0.65 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ was added 4-fluorobenzoyl chloride ($0.03 \mathrm{~g}, 0.22 \mathrm{mmol}$) at room temperature and stirred for overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product $2.57(0.0458 \mathrm{~g}$, 39 \%).

Analytical data for 2.57: $\mathrm{R}_{\mathrm{f}}=0.30($ Sol. EtOAc:Hexane $=1 / 1) ;[\alpha]_{\mathrm{D}}^{25}=+25.410(c=$ $0.488, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (neat) 2964, 2933, 2878, 1741, 1604, 1506, 1449, 1370, 1281, 1213, 1170, 1151, 1067, 1013, 954, 938, 846, 760, 739, $615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.21$ $(\mathrm{m}, 4 \mathrm{H}), 7.09(\mathrm{dd}, J=8.42,8.42 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=8.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.69(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{tt}, J=12.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{bd}, J=4.8,2 \mathrm{H}), 2.23(\mathrm{ttd}, J=6.9$, 6.9, 4.2 Hz, 1H), 2.14-1.86(m, 2H), 1.45-1.00(m, 4H), $0.97(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.70,169.30,163.36(\mathrm{~d}, J=249.9 \mathrm{~Hz}), 163.00(\mathrm{~d}, J=$ $250.7 \mathrm{~Hz}), 150.64,133.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 131.35(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.67(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.25$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}), 116.45(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 115.46(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 78.43,58.83,52.36,50.92$, 29.93, 29.65, 18.63, 16.95; HRMS (M+H) calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})$ required 554.1772, found 554.1864.

5.3. Appendix A

Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR's

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.7

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.13

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.21

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.24

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.25

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.28

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.31

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.34

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 . 3 5}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.45

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 2.48

5.4. Appendix B

One and five dose experimental data from 60 cell line
-Tdp1 related compounds-

One dose experimental data of compound 2.7 (NSC 750772)

One dose experimental data of compound 2.15 (NSC 750710)

One dose experimental data of compound 2.16 (NSC 750711)

One dose experimental data of compound 2.21 (NSC 750706)

One dose experimental data of compound 2.22 (NSC 747166)

One dose experimental data of compound 2.23 (NSC 767523)

One dose experimental data of compound 2.24 (NSC 767524)

One dose experimental data of compound 2.25 (NSC 750707)

One dose experimental data of compound 2.30 (NSC 749205)

One dose experimental data of compound 2.34 (NSC 749201)

One dose experimental data of compound 2.38 (NSC 750715)

One dose experimental data of compound 2.40 (NSC 750713)

One dose experimental data of compound 2.42 (NSC 750714)

One dose experimental data of compound 2.43 (NSC 750712)

One dose experimental data of compound 2.47 (NSC 764209)

One dose experimental data of compound 2.53 (NSC 749204)

One dose experimental data of compound 2.56 (NSC 749203)

One dose experimental data of compound 2.57 (NSC 749202)

Five dose experimental data of compound 2.53 (NSC 749204)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : 749204 / 1					Experiment ID : 0902NS55							Test Type : 08		Units: Molar	
Report Date : February 12, 2012					Test Date : February 17, 2009							QNS :		MC :	
COMI : LSC-JHJ-I-150-1 (81538)					Stain Reagent : SRB Dual-Pass Related							SSPL: OX2L			
Log10 Concentration															
Pane//Cell Line	Time	Ctri	-8.0	Mean Optical Densities				-8.0	. $7.0{ }^{\text {P }}$	-6.0	-5.0	-4.0	GI50	TGI	LC50
Leukemia															
CCRF-CEM	0.568	1.793	1.699	1.753	1727	1.354	0.185	92	96	94	64	-68	$1.28 \mathrm{E}-5$	307E-5	$7.36 \mathrm{E}-5$
HL-60(TB)	0.660	1.253	1.323	1.276	1.218	0.829	0.129	112	104	94	28	-81	$4.69 \mathrm{E}-6$	$1.82 \mathrm{E}-5$	$5.25 \mathrm{E}-5$
K-562	0.229	1.171	1.239	1.284	1232	0.433	0.037	107	112	107	22	-84	$4.63 \mathrm{E}-6$	1.60E-5	$4.78 \mathrm{E}-5$
MOLT-4	0.524	1.392	1.440	1.526	1673	1.026	0.135	105	115	132	58	-74	1.15E-5	$274 \mathrm{E}-5$	$6.54 \mathrm{E} \cdot 5$
RPMI-8226	0.559	1.672	1.712	1.761	1.714	1.033	0.214	104	108	104	43	-62	7.57E-6	$2.56 \mathrm{E}-5$	$7.72 \mathrm{E}-5$
SR	0.208	0.513	0.526	0.581	0.598	0.199	0.125	102	120	126	-5	-40	$3.81 \mathrm{E}-6$	9.22E-6	> 1.00E-4
Non-Small Cell Lung Cancer															
A549/ATCC	0.242	1.163	1.207	1.228	1.178	0.895	0.065	105	107	102	71	-73	1.40E-5	3.10E-5	$6.91 \mathrm{E}-5$
EKVX	0.628	1.445	1.421	1.342	1.282	1.133	0.176	97	87	80	62	-72	1.22E-5	$2898 \mathrm{E}-5$	$6.84 \mathrm{E}-5$
HOP-62	0.512	1.153	1.138	1.178	1.132	1.027	0.034	98	104	97	80	-93	$1.50 \mathrm{E}-5$	$2.90 \mathrm{E}-5$ $200 \mathrm{E}-5$	5.62E-5
HOP-92	0.836	1.267	1.229	1.236	1167	1.015	0.033	91	93	77	42	-96	5.76E-6	$200 \mathrm{E}-5$	4.62E-5
$\mathrm{NCl}-\mathrm{H} 226$	0.727	1.463	1.449	1.373	1.377	1.218	0.201	98	88	88	67	-72	1.32E-5	$3.02 \mathrm{E}-5$	6.91E-5
$\mathrm{NCl}-\mathrm{H} 23$	0.532	1.764	1.753	1.714	1.678	1.307	0.058	99	96	93	63	-89	$1.22 \mathrm{E}-5$	$259 \mathrm{E}-5$	$5.53 \mathrm{E} \cdot 5$
NCI-H322M	0.646	${ }^{1.48)}$	1.559	1.519	1.493	1.246	0.118	110	105	102	72	-82	$1.39 \mathrm{E}-5$	$294 \mathrm{E}-5$	6.21 E .5
$\mathrm{NCl}-\mathrm{H} 460$	0.206	2.115	2.211	2.143	2112	0.997	0.044	105	101	100	41	-79	7.13E-6	$221 \mathrm{E}-5$	5.77E.5
NCl-H522	0.310	1.859	1.908	1.804	1739	1.424	0.141	103	96	92	72	-55	$1.49 \mathrm{E}-5$	$370 \mathrm{E}-5$	9.18E.5
Colon Cancer															
COLO 205	0.275	0.897	0.959	0.943	0890	0.057	0.015	110	107	99	-79	-95	1.88E-6	$3.59 \mathrm{E}-6$	6.85E. 6
HCC-2998	0.744	2.842	2.828	2.755	2624	0.889	0.039	99 93	96 98	90 95	7 25	-95 -92	$3.01 \mathrm{E}-6$ $4.41 \mathrm{E}-6$	$1.17 \mathrm{E}-5$ $164 \mathrm{E}-5$	3.62E-5 $4.37 E .5$
HCT-116	0.199	1.484	1.399	1.452	1416	0.525	0.016	93	98	95	25	-92	$4.41 \mathrm{E}-6$	$1.64 \mathrm{E}-5$	4.37E.5
HCT-15 HT29	0.448 0.137	${ }_{0}^{2.365}$	2.325 0.976	2.304 0.980	2181 0.918	0.981 0.285	0.079 0.014	98 101	97 102	90 94	${ }_{18}^{28}$	-82	$4.42 \mathrm{E}-6$ 3	$1.79 \mathrm{E}-5$ $1.46 \mathrm{E}-5$	$5.08 \mathrm{E} \cdot 5$ 4.25 E .5
KM12	0.205	1.064	1.094	1.053	1037	0.456	0.023	103	99	97	29	-89	4.92E-6	$176 \mathrm{E}-5$	$4.68 \mathrm{E} \cdot 5$
SW-620	0.223	1.279	1.205	1.191	1.168	0.820	0.031	93	92	89	57	-86	1.11E-5	$2.49 \mathrm{E}-5$	$5.58 \mathrm{E} \cdot 5$
CNS Cancer															
SF-268	0.406	1.43)	1.389	1.394	1.325	1.004	0.079	96	96	90	58	-81	1.15E-5	263E-5	$6.02 \mathrm{E}-5$
SF-295	0.773	1.903	1.768	1.735	1.679	1.370	0.133	88	85	80	53	-83	$1.05 \mathrm{E}-5$	245E-5	5.72E-5
SF-539	0.529	1.74)	1.703	1.679	1.636	1.375	0.023	97	95	91	70	-96	1.32E-5	$2.64 \mathrm{E}-5$	$5.29 \mathrm{E}-5$
SNB-19	0.666	${ }^{1.643}$	1.607	1.623	1.548	1.345	0.009	96	98	90	69	-99	1.30E-5	2.58E-5	5.13E-5
SNB-75	0.612	1.170	1.073	1.064	1.025	0.857	0.012	83	81	74	44	-98	6.24E-6	$2.04 \mathrm{E}-5$	$4.58 \mathrm{E} \cdot 5$
U251	0.177	1.047	1.061	1.022	0.980	0.620	0.065	102	97	92	51	-63	1.02E-5	279E-5	7.65E. 5
Melanoma															
LOXIMVI	0.231	1.611	1.593	1.594	1.531	0.860	0.072	99	99	94	46	-69	$8.10 \mathrm{E}-6$	2.50E-5	$6.84 \mathrm{E} \cdot 5$
MALME-3M	0.783	1.449	1.451	1.448	1.415	1.058	0.179	100	100	95	41	-77	$6.89 \mathrm{E}-6$	$223 \mathrm{E}-5$	5.90E. 5
M14	0.315	1.245	1.188	1.206	1.167	0.494	0.031	94	96	92	19	-90	$3.75 \mathrm{E}-6$	1.50E-5	$4.28 \mathrm{E}-5$
MDA-MB-435	0.429	1.744	1.593	1.542	1547	1.098	0.093	89	85	85	51	-78	1.02E-5	$248 \mathrm{E}-5$	$6.04 \mathrm{E}-5$
SK-MEL-2	0.369	0.827	0.888	0.896	0917	0.854	0.122	113	115	119	106	-67	2.10E-5	4.10E-5	7.98E.5
SK-MEL-28	0.504	1.412	1.401	1.421	1380	1.182	0.035	99	101	96	75	-93	1.40E-5	$278 \mathrm{E}-5$	$5.53 \mathrm{E} \cdot 5$
SK-MEL-5	0.358	1.647	1.511	1.547	1550	0.462	0.014	89	92	92	8	-96	3.19E-6	$120 \mathrm{E}-5$	3.61E-5
UACC-257	0.837	1.584	1.648	1.650	1.596	1.501	0.060	109	109	102	89	-93	$1.64 \mathrm{E}-5$	$3.08 \mathrm{E}-5$	5.81E.5
UACC-62	0.522	2.012	1.848	1.816	1.777	1.353	0.069	89	87	84	56	-87	1.10E-5	$246 \mathrm{E}-5$	$5.51 \mathrm{E} \cdot 5$
Ovarian Cancer															
IGROV1	0.198	1.371	1.640	1.682	1.549	1.208	0.107	123	126	115	86	-46	$1.88 \mathrm{E}-5$	4.49E-5	> $1.00 \mathrm{E}-4$
OVCAR-3	0.405	1.242	1.243	1.209	1.187	0.843	0.032	100	96	93	52	-92	$1.04 \mathrm{E}-5$	2.30E-5	$5.11 \mathrm{E} \cdot 5$
OVCAR-4	0.459	1.433	1.442	1.392	1.435	1.067	0.017	101	95	100	62	-96	1.19E-5	247E-5	$5.10 \mathrm{E} \cdot 5$
OVCAR-5	0.383	0.943	0.914	0.910	0.909	0.870	0.014	94	94	93	86	-96	$1.58 \mathrm{E}-5$	2.97E-5	$5.58 \mathrm{E}-5$
OVCAR-8	0.228	0.929	0.937	0.968	0.954	0.738	0.078	101	106	104	73	-66	$1.46 \mathrm{E}-5$	3.34E-5	7.67E-5
NCI/ADR-RES	0.344	1.259	1.255	1.263	1203	0.843	0.023	100	100	94	55	-93	1.07E-5	$234 \mathrm{E}-5$	$5.09 \mathrm{E}-5$
SK-OV-3	0.450	1.125	1.182	1.144	1.133	1.025	0.006	108	103	101	85	-99	$1.55 \mathrm{E}-5$	$2.90 \mathrm{E}-5$	$5.43 \mathrm{E} \cdot 5$
Renal Cancer															
786-0	0.947	2.397	2.418	2.354	2344	1.784	0.055	101	97	96	58	-94	1.12E-5	$240 \mathrm{E}-5$	5.11E. 5
A498	0.846	1.509	1.475	1.422	1.380	1.294	0.051	95	87	80	68	-94	1.29E-5	$2.62 \mathrm{E}-5$	$5.34 \mathrm{E} \cdot 5$
ACHN	0.340	1.337	1.342	1.320	1.304	1.058	0.073	101	98	97	72	-79	1,40E-5	3.00E-5	$6.45 \mathrm{E}-5$
CAKI-1	0.722	1.845	1.712	1.621	1580	1.235	0.104	88	80	76	46	-86	7.23E-6	$223 \mathrm{E}-5$	$5.36 \mathrm{E} \cdot 5$
RXF 393	0.685	1.284	1.346	1.358	1.318	1.006	0.075	110	112	106	54	-89	$1.06 \mathrm{E}-5$	$237 \mathrm{E}-5$	5.32E.5
SN12C	0.335	1.231	1.228	1.168	1.158	0.600	0.063	100	93	92	30	-81	$4.69 \mathrm{E}-6$	$185 \mathrm{E}-5$	$5.23 \mathrm{E} \cdot 5$
TK-10	0.877	1.373	1.388	1.414	1.385	1.337	0.114	102	108	102	92	-87	1.72E-5	$327 \mathrm{E}-5$	$6.21 \mathrm{E}-5$
UO-31	0.259	1.263	1.251	1.292	1.203	0.866	0.040	98	102	93	60	-85	1.17E-5	$2.60 \mathrm{E}-5$	$5.76 \mathrm{E} \cdot 5$
Prostate Cancer															
PC-3	0.349	1.125	1.140	1.090	1.061	0.694	0.017	102	95	92	44	-95	7.61E-6	208E-5	$4.75 \mathrm{E} \cdot 5$
DU-145	0.337	1.401	1.379	1.346	1.323	1.086	0.032	98	95	93	70	-91	1.34E-5	274E-5	5.60E. 5
Breast Cancer															
MCF7	0.295	1.592	1.575	1.487	1.524	0.833	0.058	99	92	95	41	-81	6.91E-6	$2.19 \mathrm{E}-5$	5.62E-5
MDA-MB-231/ATCC	C.326	0.927	0.930	0.918	0913	0.711	0.087	100	98	98	64	-73	1.27E-5	293E-5	$6.77 \mathrm{E}-5$
HS 578T	0.630	1.152	1.110	1.120	1.109	0.927	0.161	92	94	92	57	-75	1.13E-5	$271 \mathrm{E}-5$	$6.51 \mathrm{E} \cdot 5$
BT-549	0.995	1.483	1.518	1.533	1.487	1.220	0.186	106	109	100	46	-81	$8.34 \mathrm{E}-6$	$2.29 \mathrm{E}-5$	$5.67 \mathrm{E} \cdot 5$
T-47D	0.740	1.533	1.458	1.436	1443	1.026	0.102	90	87	88	36	-86	5.34E-6	$1.96 \mathrm{E}-5$	$5.04 \mathrm{E} \cdot 5$
MDA-MB-463	0.456	1.207	1.147	1.097	1.067	0.608	0.046	92	85	81	20	-90	$3.25 \mathrm{E}-6$	$1.53 \mathrm{E}-5$	4.34E.5

5.5. Appendix C

One and five dose experimental data from 60 cell line
 -Cyclic sulfamide compounds-

One dose experimental data of compound 4.21 (NSC 764190)

One dose experimental data of compound 4.22 (NSC 751486)

One dose experimental data of compound 4.23 (NSC 751478)

One dose experimental data of compound 4.27 (NSC 751468)

One dose experimental data of compound 4.28 (NSC 751469)

One dose experimental data of compound 4.29 (NSC 751470)

One dose experimental data of compound 4.37c (NSC 764189)

One dose experimental data of compound 4.44 (NSC 751477)

One dose experimental data of compound 4.56 (NSC 751472)

One dose experimental data of compound 4.61 (NSC 751473)

One dose experimental data of compound 4.62a (NSC 751479)

One dose experimental data of compound 4.62b (NSC 751483)

One dose experimental data of compound 4.63 (NSC 751467)

One dose experimental data of compound 4.64 (NSC 764191)

One dose experimental data of compound 4.65 (NSC 764192)

One dose experimental data of compound 4.66 (NSC 764193)

One dose experimental data of compound 4.67 (NSC 764194)

One dose experimental data of compound 4.68 (NSC 764195)

One dose experimental data of compound 4.69 (NSC 764196)

One dose experimental data of compound 4.70 (NSC 764197)

One dose experimental data of compound 4.71 (NSC 767525)

One dose experimental data of compound 4.72 (NSC 767526)

One dose experimental data of compound 4.73 (NSC 767527)

One dose experimental data of compound 4.74 (NSC 767528)

One dose experimental data of compound 4.75 (NSC 767529)

Developmental Therapeutics Program One Dose Mean Graph			Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012
		Experiment ID: 12090 S49		Report Date: May 09,2013
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Percent		
LeukemiaCCRF-CEMHL-60(TB)K-562MOLT-4RPMI-8226SRNonall Cell Lung CancerA549/ATCCHOP-62HOP-92NCI-H226NCI-H23NCI-H322MNCI-H460NCI-H522Colon CancerCOLO 205HCC-2998HCT-116HCT-15HT29KM12SWW-620	$\begin{array}{r} 93.61 \\ 102.81 \\ 95.25 \\ 90.95 \\ 97.85 \\ 85.38 \end{array}$	\|		
	$\begin{array}{r} 94.86 \\ 97.57 \\ 93.73 \\ 103.82 \\ 96.63 \\ 98.03 \\ 107.69 \\ 86.29 \end{array}$			
	105.14 101.85 101.15 104.70 99.91 108.48 103.84			
$\begin{aligned} & \text { SF-268 } \\ & \text { SF-539 } \\ & \text { SNB-19 } \\ & \text { SNB-75 } \end{aligned}$	$\begin{array}{r} 102.72 \\ 109.89 \\ 109.48 \\ 76.18 \end{array}$			
LOXIMVI MALME-3M M14 MDA-MB-435 SK-MEL-28 SK-MEL-5 UACC-62	$\begin{array}{r} 90.90 \\ 103.58 \\ 103.15 \\ 109.76 \\ 106.11 \\ 105.71 \\ 109.70 \end{array}$			
IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	107.42 107.20 104.67 105.10 99.60 100.04			
786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	101.57 115.57 100.91 87.17 114.51 100.94 101.09 70.87			
$\begin{aligned} & \text { PC- } 3 \\ & \text { DU- } 145 \end{aligned}$	$\begin{array}{r} 95.09 \\ 105.39 \end{array}$		$=$	
MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	$\begin{array}{r} 100.36 \\ 122.73 \\ 101.08 \\ 103.00 \\ 99.48 \\ 112.77 \end{array}$			
Mean Delta Range	$\begin{array}{r} 101.04 \\ 30.17 \\ 51.86 \end{array}$			
	150	10050	$0 \quad-50$	-100 -150

One dose experimental data of compound 4.76 (NSC 767530)

One dose experimental data of compound 4.77 (NSC 767531)

One dose experimental data of compound 4.78 (NSC 767532)

Five dose experimental data of compound 4.21 (NSC 764190)

Five dose experimental data of compound 4.22 (NSC 751486)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : 751486/1					Experiment ID : 0912NS69							Test Type : 08		Units: Molar	
Report Date : May 09, 2013					Test Date : December 14, 2009							QNS :		MC :	
COMI : LSC-KU-JJ-II-140-1 (91146)					Stain Reagent: SRB Dual-Pass Related							SSPL: 0X2L			
Log10 Concentration															
Panel/Cell Line	Zero	Ctri	-8.7	-7.7	Mean Optical Densities		-4.7	Percent Growth			-5.7	-4.7	G150	TGI	LC50
Leukemia															
CCRF-CEM	0.349	1.65)	1.647	1.656	1.620	1.503	0.442	100	100	98	89	7	$5.96 \mathrm{E}-6$	> $2.00 \mathrm{E}-5$	> 2.00E. 5
HL-60(TB)	0.717	2.673	2.438	2.401	2440	2.053	0.441	88	86	88	68	-38	2.97E-6	$8.72 \mathrm{E}-6$	> $2.00 \mathrm{E} \cdot 5$
K-562	0.257	1.66)	1.633	1.531	1572	1.221	0.171	98	91	94	69	-34	$3.05 \mathrm{E}-6$	$9.38 \mathrm{E}-6$	> $2.00 \mathrm{E}-5$
MOLT-4	0.598	1.955	1.932	1.790	1.837	1.467	0.440	98	88	91	64	-26	$2.86 \mathrm{E}-6$	$1.02 \mathrm{E}-5$	> 2.00E-5
RPMI-8226	0.685	2.365	2.332	2.329	2369	1.966	0.710	98	98	100	76	1	4.49E-6	> $2.00 \mathrm{E}-5$	> 2.00E. 5
Non-Small Cell Lung Cancer															
A549/ATCC	0.353	1.107	1.131	1.072	1030	0.893	0.171	103	95	90	72	-52	$2.99 \mathrm{E}-6$	7.62E-6	$1.94 \mathrm{E} \cdot 5$
EKVX	0.633	1.603	1.689	1.609	1.482	1.369	0.421	108	100	87	75	-33	3.43E-6	9.86E-6	> $2.00 \mathrm{E} \cdot 5$
HOP-62	0.259	0.823	0.893	0.837	0.845	0.800	0.069	112	102	103	95	-74	3.71E-6	$7.34 \mathrm{E}-6$	$1.45 \mathrm{E}-5$
HOP-92	1.146	2.033	1.975	1.993	1.974	1.859	0.308	93	95	93	80	-73	3.15E-6	$6.68 \mathrm{E}-6$	$1.41 \mathrm{E}-5$
NCl - H 226	0.670	1.443	1.403	1.305	1.396	1.285	0.114	95	82	94	80	-83	3.04E-6	6.17E-6	1.25E-5
$\mathrm{NCl}-\mathrm{H} 23$	0.402	1.253	1.245	1.253	1.251	1.077	0.116	98	99	99	79	-71	3.11E-6	6.71E-6	1.45 E .5
NCI-H322M	0.461	0.872	0.959	0.898	0883	0.838	0.335	121	106	103	92	-27	$4.48 \mathrm{E}-6$	1.18E-5	$>2.00 \mathrm{E}-5$
$\mathrm{NCl}-\mathrm{H} 460$	0.241	1.933	1.897	1.774	1.801	1.625	0.108	98	91	92	82	-55	$3.41 \mathrm{E}-6$	$7.91 \mathrm{E}-6$	$1.83 \mathrm{E}-5$
NCl-H522	0.593	0.822	0.743	0.726	0.748	0.684	0.210	66	58	68	40	-65	$8.47 \mathrm{E}-7$	$4.79 \mathrm{E}-6$	$1.45 \mathrm{E} \cdot 5$
Colon Cancer															
COLO 205	0.195	1.363	1.401	1.412	1.377	1.276	0.125	103	104	101	92	-36	4.26E-6	1.05E-5	> 2.00E.5
HCC-2998	0.747	1.797	1.848	1.808	1848	1.738	0.018	105	101	105	94	-98	3.41E-6	6.20E-6	1.13 E .5
HCT-116	0.239	1.655	1.590	1.506	1.559	1.137	0.014	95	89	93	63	-94	2.43E-6	5.05E-6	1.05 E .5
HCT-15	0.243	1.625	1.493	1.578	1.507	1.312	0.235	90	97	91	77	-3	$4.37 \mathrm{E}-6$	$1.82 \mathrm{E}-5$	> $2.00 \mathrm{E} \cdot 5$
HT29	0.153	0.599	0.592	0.545	0.563	0.456	0.026	98	88	92	68	-83	2.63E-6	$5.64 \mathrm{E}-6$	$1.21 \mathrm{E} \cdot 5$
KM12	0.247	1.315	1.291	1.211	1216	1.083	0.025	98	90	91	78	-90	$2.94 \mathrm{E}-6$	5.84E-6	$1.16 \mathrm{E} \cdot 5$
SW-620	0.205	1.169	1.157	1.070	1.109	0.965	0.074	99	90	94	79	-64	$3.18 \mathrm{E}-6$	7.12E-6	$1.59 \mathrm{E}-5$
CNS Cancer															
SF-268	0.389	1.221	1.222	1.148	1.151	1.071	0.180	100	91	92	82	-54	3.44E-6	8.03E-6	1.88 E .5
SF-295	0.751	1.474	1.455	1.436	1.326	1.240	0.139	97	95	80	68	-82	2.62E-6	5.68E-6	$1.23 \mathrm{E} \cdot 5$
SF-539	0.602	2.012	1.959	1.953	1.904	1.835	0.133	96	96	92	87	-78	3.37E-6	6.76E-6	$1.36 \mathrm{E}-5$
SNB-19	0.492	1.584	1.506	1.394	1.465	1.341	0.522	93	83	89	78	3	4.69E-6	> $2.00 \mathrm{E}-5$	> $2.00 \mathrm{E}-5$
SNB-75	0.519	1.053	0.961	0.900	0.935	0.823	0.291	82	71	77	56	-44	2.31E-6	$7.28 \mathrm{E}-6$	> $2.00 \mathrm{E} \cdot 5$
U251	0.273	1.215	1.212	1.134	1.153	1.016	0.066	100	91	93	79	-76	$3.07 \mathrm{E}-6$	6.47E-6	$1.36 \mathrm{E} \cdot 5$
Melanoma															
LOXIMVI	0.105	0.601	0.568	0.528	0.515	0.511	0.035	93	85	83	82	-67	3.28E-6	7.09E-6	1.53 E .5
MALME-3M	0.844	1.419	1.415	1.255	1344	1.241	0.269	99	71	87	69	-68	$2.75 \mathrm{E}-6$	6.37E-6	1.47 E .5
M14	0.297	1.005	0.993	0.951	0.972	0.866	0.041	98	92	95	80	-86	$3.04 \mathrm{E}-6$	6.07E-6	$1.21 \mathrm{E}-5$
MDA-MB-435	0.349	1.193	1.199	1.166	1.164	1.056	0.110	101	97	97	84	-68	3.33E-6	7.10E-6	1.51 E .5
SK-MEL-2	0.714	1.044	1.026	0.992	1.005	0.957	0.097	94	84	88	73	-86	2.80E-6	5.76E-6	1.18 E .5
SK-MEL-28	0.451	1.374	1.416	1.303	1.341	1.243	0.119	104	92	96	86	-74	3.35E-6	6.90E-6	1.42 E .5
SK-MEL-5	0.409	2.182	2.172	1.984	2112	1.874	0.017	99	89	96	83	-96	$3.05 \mathrm{E}-6$	$5.80 \mathrm{E}-6$	$1.11 \mathrm{E} \cdot 5$
UACC-257	0.559	0.993	0.915	0.929	0907	0.887	0.088	82	85	80	76	-84	2.89E-6	5.93E-6	$1.22 \mathrm{E}-5$
UACC-62	0.662	$1.96)$	1.991	1.784	1859	1.599	0.195	102	86	92	72	-71	$2.86 \mathrm{E}-6$	$6.40 \mathrm{E}-6$	$1.43 \mathrm{E} \cdot 5$
Ovarian Cancer															
IGROV1	0.479	1.057	1.007	0.902	1000	1.004	0.135	91	73	90	91	-72	3.57E-6	7.24E-6	$1.47 \mathrm{E} \cdot 5$
OVCAR-3	0.536	1.373	1.298	1.281	1288	1.166	0.103	91	89	90	75	-81	2.90E-6	6.07E-6	$1.27 \mathrm{E} \cdot 5$
OVCAR-4	0.347	0.633	0.622	0.589	0.610	0.535	0.168	96	85	92	66	-52	2.72E-6	7.26E-6	$1.94 \mathrm{E} \cdot 5$
OVCAR-5	0.488	1.192	1.162	1.113	1087	1.059	0.283	96	89	85	81	-42	3.57E-6	9.10E-6	> $2.00 \mathrm{E}-5$
OVCAR-8	0.228	$0.78)$	0.758	0.759	0744	0.713	0.161	96	96	93	88	-30	4.20E-6	1.12E-5	> $2.00 \mathrm{E}-5$
NCI/ADR-RES	0.283	0.945	0.970	0.933	0934	0.804	0.154	104	98	98	79	-46	$3.40 \mathrm{E}-6$	8.58E-6	> $2.00 \mathrm{E}-5$
SK-OV-3	0.460	1.157	1.141	1.112	1.115	1.081	0.304	98	94	94	89	-34	4.15E-6	$1.06 \mathrm{E}-5$	> 2.00E. 5
Renal Cancer															
786-0	0.387	1.419	1.474	1.317	1.449	1.235	0.111	105	90	103	82	. 71	3.24E-6	6.86E-6	$1.45 \mathrm{E} \cdot 5$
A498	0.736	1.533	1.444	1.283	1.373	1.243	0.071	89	69	80	64	-90	$2.45 \mathrm{E}-6$	5.18E-6	$1.09 \mathrm{E} \cdot 5$
ACHN	0.348	1.567	1.588	1.542	1572	1.441	0.430	102	98	100	90	7	6.01E-6	> $2.00 \mathrm{E}-5$	> 2.00 E .5
CAKI-1	0.678	1.103	1.148	1.237	1246	1.077	0.191	110	131	133	93	-72	$3.65 \mathrm{E}-6$	7.33E-6	$1.47 \mathrm{E} \cdot 5$
RXF 393	0.649	1.235	1.211	1.151	1.196	1.053	0.028	96	86	93	69	-96	2.60E-6	$5.24 \mathrm{E}-6$	$1.05 \mathrm{E}-5$
SN12C	0.519	1.847	1.763	1.656	1.635	1.563	0.229	94	86	84	79	-56	3.26E-6	$7.68 \mathrm{E}-6$	$1.81 \mathrm{E} \cdot 5$
TK-10	0.374	0.565	0.548	0.483	0.527	0.545	0.171	91	57	80	90	-54	3.77E-6	$8.38 \mathrm{E}-6$	1.86 E .5
U0-31	0.569	1.157	1.106	1.054	1.095	0.979	0.130	91	83	89	70	-77	2.73E-6	5.96E-6	$1.31 \mathrm{E} \cdot 5$
Prostate Cancer															
PC-3	0.397	1.583	1.625	1.591	1.595	1.295	0.278	103	100	101	75	-30	3.48E-6	$1.04 \mathrm{E}-5$	> $2.00 \mathrm{E} \cdot 5$
DU-145	0.309	1.145	1.103	1.013	1053	0.959	0.133	95	84	89	78	-57	3.21E-6	7.55E-6	$1.78 \mathrm{E} \cdot 5$
Breast Cancer															
MCF7	0.204	1.185	1.129	1.039	1097	1.102	0.167	94	85	91	91	-18	4.77E-6	1.36E-5	$>2.00 \mathrm{E} \cdot 5$
MDA-MB-231/ATCC	0.449	1.129	1.102	1.010	1.047	0.931	0.137	96	82	88	71	-70	2.82E-6	6.39E-6	1.45E-5
HS 578T	0.514	1.142	1.122	1.122	1.077	0.992	0.277	97	97	90	76	-46	3.27E-6	$8.38 \mathrm{E}-6$	> $2.00 \mathrm{E} \cdot 5$
BT-549	0.792	1.399	1.365	1.306	1342	1.211	0.101	94	85	91	69	-87	2.65E-6	5.53E-6	1.16E.5
MDA-MB-468	0.443	1.089	1.089	1.034	1.032	0.998	0.284	100	92	91	86	-36	$3.95 \mathrm{E}-6$	$1.02 \mathrm{E}-5$	> $2.00 \mathrm{E}-5$
	0.536	1.329	1.324	1.249	1.263	1.113	0.223	99	90	92	73	-58	2.98E-6	7.17E-6	1.73 E .5

Five dose experimental data of compound 4.23 (NSC 751478)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : 751478 / 1					Experiment ID : 0912NS69							Test Type : 08		Units: Molar	
Report Date : May 09, 2013					Test Date : December 14, 2009							QNS :		MC :	
COMI : LSC-KU-JJ-II-146-1 (91136)					Stain Reagent: SRB Dual-Pass Related							SSPL: 0X2L			
Log10 Concentration															
Panel/Cell Line	Zero	Ctri	-9.1	-8.1	-7.1	-6.1	-5.1	-9.1	Percent Growth			-5.1	GI50	TGI	LC50
Leukemia															
CCRF-CEM	0.349	1.575	1.560	1.610	1.560	1.430	1.037	99	103	99	88	56	> 7.50E-6	> 7.50E-6	> 7.50E.6
HL-60(TB)	0.717	2.509	2.451	2.519	2529	2.141	1.483	97	101	101	79	43	$4.75 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
K-562	0.257	1.607	1.600	1.651	1.696	1.342	0.710	100	103	107	80	34	$3.34 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> 7.50E-6
MOLT-4	0.598	1.935	1.800	2.003	2030	1.727	1.106	90	105	107	84	38	4.12E-6	> $7.50 \mathrm{E}-6$	> 7.50E-6
RPMI-8226	0.685	$2.35)$	2.324	2.292	2265	1.928	1.426	98	97	95	75	44	4.92E-6	> 7.50E-6	> 7.50E. 6
Non-Small Cell Lung CancerA549/ATCC															
	0.353	1.163	1.138	1.114	1.103	1.022	0.646	97	94	93	83	36	3.78E-6	> 7.50E-6	> 7.50E.6
EKVX	0.633	1.595	1.482	1.485	1.525	1.355	1.099	88	89	93	75	48	$6.55 E-6$ $>$ 7	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
HOP-62	0.259	0.871	0.849	0.834	0.798	0.870	0.573	96	94	88	100	51	$>7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> 7.50E.6
HOP-92	1.146	1.989	1.869	1.847	1809	1.821	1.700	86	83	79	80	66	> $7.7 .50 \mathrm{E}-6$	$\begin{aligned}> & 7.50 \mathrm{E}-6 \\ > & 750 \mathrm{E}\end{aligned}$	$\begin{aligned}> & 7.50 \mathrm{E} .6 \\ > & 7.50 \mathrm{E}\end{aligned}$
${ }_{\text {NCl- }}$	0.670 0.402	1.397 1.297	1.335 1.294	1.349 1.200	1.376 1215	1.204	1.153 0.808	91 100	93	97	73 58	66 46		$\begin{aligned}> & 7.50 \mathrm{E}-6 \\ > & 750 \mathrm{E}\end{aligned}$	$\begin{aligned}> & 7.50 \mathrm{E} .6 \\ > & 7.50 \mathrm{E}\end{aligned}$
NCl-H23 $\mathrm{NCl}-\mathrm{H} 322 \mathrm{M}$	0.402 0.461	$1.29)$ 0.893	1.294 0.886	1.200 0.889	1.215 0.922	0.921	0.808 0.761	100 97	90	92 105	58 106	46 69	- $\begin{array}{r}3.47 \mathrm{E}-6 \\ >\end{array}$	$>7.50 E-6$ $>7.50 \mathrm{E}-6$	> $77.50 \mathrm{E} \cdot 6$
NCl-H460	0.241	1.914	1.853	1.972	1937	1.721	0.501	96	103	101	88	16	$2.53 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> 7.50E.6
$\mathrm{NCl}-\mathrm{H} 522$	0.593	0.842	0.791	0.805	0.814	0.769	0.637	80	85	89	71	18	1.83E-6	> 7.50E-6	> 7.50E.6
Colon Cancer															
COLO 205	0.195	1.33)	1.334	1.313	1274	1.215	0.841	100	98	95	90	57	$>7.50 \mathrm{E}-6$	> 7.50E-6	> 7.50E.6
HCC-2998	0.747	1.829	1.818	1.871	1812	1.789	1.375	99	104	98	96	58	> 7.50E-6	> $7.50 \mathrm{E}-6$	> 7.50E. 6
HCT-116	0.239	1.533	1.521	1.523	1.444	0.908	0.536	99	99	93	51	23	$8.44 \mathrm{E}-7$	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
HCT-15	0.243	1.635	1.576	1.553	1.501	1.339	0.783	96	94	90	79	39	3.92E-6	> $7.50 \mathrm{E}-6$	> 7.50E.6
HT29	0.153	0.617	0.635	0.635	0.567	0.494	0.385	104	104	89	73	50	$>7.50 \mathrm{E}-6$	> 7.50E-6	> $7.50 \mathrm{E} \cdot 6$
KM12	0.247	1.233	1.208	1.246	1.193	1.162	0.735	97	101	96	92	49	7.19E-6	$>7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
SW-620	0.205	1.213	1.174	1.200	1.139	1.072	0.747	96	98	92	86	53	$>7.50 \mathrm{E}-6$	> 7.50E-6	> 7.50E.6
CNS Cancer															
SF-268	0.389	1.213	1.153	1.205	1.159	1.141	0.767	93	99	93	91	46	6.08E-6	> 7.50E-6	> 7.50E6
SF-295	0.751	1.585	1.573	1.527	1436	1.319	0.922	99	93	82	68	20	1.80E-6	$>7.50 \mathrm{E}-6$	$>7.50 \mathrm{E} \cdot 6$
SF-539	0.602	1.927	1.904	1.824	1832	1.839	1.295	98	92	93	93	52	$>7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	$>7.50 \mathrm{E} \cdot 6$
SNB-19	0.492	1.482	1.423	1.433	1434	1.338	0.993	94	95	95	85	51	> 7.50E-6	> 7.50E-6	> 7.50E.6
SNB-75	0.519	0.943	0.841	0.876	0.848	0.855	0.796	75	83	77	78	65	> 7.50E-6	> $7.50 \mathrm{E}-6$	> 7.50E.6
U251	0.273	1.23)	1.169	1.192	1.171	0.860	0.584	94	96	94	61	32	$1.84 \mathrm{E}-6$	> 7.50E-6	> 7.50E. 6
LOXIMVI	0.105	0.674	0.669	0.630	0.570	0.640	0.347	99	92	82	94	43	5.38E-6	> 7.50E-6	> 7.50E.6
MALME-3M	0.844	1.474	1.395	1.456	1384	1.310	1.244	87	97	86	74	63	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$
M14	0.297	0.925	0.905	0.913	0884	0.859	0.688	97	98	93	89	62	$>7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
MDA-MB-435	0.349	1.283	1.240	1.218	1219	1.178	0.943	95	93	93	88	63	$>7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
SK-MEL-2	0.714	1.071	1.055	1.113	1.084	1.060	1.058	96	112	104	97	96	$>7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> 7.50E.6
SK-MEL-28	0.451	1.253	1.220	1.280	1250	1.209	1.036	96	103	100	94	73	> 7.50E-6	> $7.50 \mathrm{E}-6$	> 7.50E.6
SK-MEL-5	0.409	2.277	2.133	2.189	2203	1.646	0.843	92	95	96	66	23	$1.79 \mathrm{E}-6$	$>7.50 \mathrm{E}-6$	$>7.50 \mathrm{E} \cdot 6$
UACC-257	0.559	0.993	0.979	0.961	0.975	0.890	0.696	97	93	96	76	31	$2.89 \mathrm{E}-6$	> 7.50E-6	> 7.50E-6
UACC-62	0.662	1.935	1.809	1.901	1804	1.655	1.282	90	97	90	78	49	$6.75 \mathrm{E}-6$	$>7.50 \mathrm{E}-6$	> 7.50E. 6
Ovarian Cancer															
IGROV1	0.479	1.103	0.988	0.964	0.970	0.950	0.761	81	77	78	75	45	5.06E-6	> 7.50E-6	> 7.50E.6
OVCAR-3	0.536	1.274	1.219	1.246	1247	1.035	0.857	93	96	96	68	44	4.03E-6	> 7.50E-6	> 7.50E. 6
OVCAR-4	0.347	0.641	0.596	0.613	0588	0.560	0.532	85	91	82	72	63	> 7.50E-6	> 7.50E-6	> 7.50E.6
OVCAR-5	0.488	1.135	1.074	1.056	1034	1.064	1.024	90	88	84	89	83	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
OVCAR-8	0.228	0.795	0.775	0.762	0754	0.737	0.532	96	94	93	90	54	$>7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> 7.50E. 6
NCI/ADR-RES	0.283	0.963	0.960	0.930	0.951	0.890	0.573	100	95	98	89	43	5.23E-6	> $7.50 \mathrm{E}-6$	> 7.50E-6
SK-OV-3	0.460	1.172	1.095	1.110	1.139	1.040	0.910	89	91	95	81	63	$>7.50 \mathrm{E}-6$	> 7.50E-6	> 7.50E.6
Renal Cancer															
786-0	0.387	1.419	1.394	1.447	1427	1.404	0.804	98	103	101	98	40	5.12E-6	> 7.50E-6	> $7.50 \mathrm{E} \cdot 6$
A498	0.736	1.583	1.385	1.397	1346	1.284	1.245	77	78	72	65	60	$>7.50 \mathrm{E}-6$	> 7.50E-6	$>7.50 \mathrm{E} \cdot 6$
ACHN	0.348	1.552	1.560	1.449	1514	1.333	0.905	101	91	97	82	46	5.88E-6	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
CAKI-1	0.678	1.223	1.132	1.092	1.166	0.981	0.709	82	75	89	55	6	$9.49 \mathrm{E}-7$	> $7.50 \mathrm{E}-6$	> 7.50E. 6
RXF 393	0.649	1.237	1.171	1.211	1.181	1.165	1.084	89	96	90	88	74	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> 7.50E.6
SN12C	0.519	1.801	1.676	1.702	1.679	1.525	1.190	90	92	91	78	52	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	$>7.50 \mathrm{E}-6$
TK-10	0.374	0.593	0.580	0.631	0.594	0.554	0.456	94	117	100	82	37	$3.90 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
UO-31	0.569	1.249	1.132	1.169	1.140	1.096	0.946	83	88	84	78	55	> 7.50E-6	> 7.50E-6	> 7.50E.6
PC-3	0.397	1.543	1.496	1.500	1413	1.051	0.922	96	96	88	57	46	3.06E-6	> 7.50E-6	> 7.50E-6
DU-145	0.309	1.083	1.047	1.088	1057	0.973	0.723	95	100	96	85	53	> 7.50E-6	> 7.50E-6	> 7.50E.6
Breast Cancer															
MCF7	0.204	1.223	1.105	1.231	1.147	1.110	0.589	88	100	92	88	38	4.27E-6	> 7.50E-6	> 7.50E.6
MDA-MB-231/ATCC	0.449	1.094	1.079	1.101	1052	1.014	0.875	98	101	93	88	66	$>7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	$>7.50 \mathrm{E} \cdot 6$
HS 578T	0.514	1.184	1.102	1.146	1.099	1.102	1.052	88	94	87	88	80	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E} \cdot 6$
BT-549	0.792	1.33)	1.288	1.316	1.320	1.237	0.998	92	97	98	83	38	$4.09 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> 7.50E-6
MDA-MB-468	0.443	1.175	1.133	1.098	1.089	1.027	0.800	94	89	88	80	49	$6.81 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$	> $7.50 \mathrm{E}-6$
	0.536	1.323	1.280	1.306	1.198	0.725	0.592	94	97	84	24	7	$2.74 \mathrm{E}-7$	> $7.50 \mathrm{E}-6$	> 7.50E. 6

Five dose experimental data of compound 4.37c (NSC 764189)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D-764189 / 1					Experiment ID : 1204NS58							Test Type : 08		Units: Molar	
Report Date : May 09, 2013					Test Date : April 30, 2012							QNS :		MC :	
COMI : LSC-KU-JJ-II-164-1 (91318)					Stain Reagent: SRB Dual-Pass Related							SSPL: 0X2L			
Log10 Concentration															
Panel/Cell Line	Zero	Ctrl	-9.3	-8.3	-7.3	-6.3	-5.3	-9.3	-8.3	-7.3	-6.3	-5.3	G150	TGI	LC50
Leukemia															
CCRF-CEM	0.703	2.711	2.724	2.655	2721	2.725	2.622	101	97	100	101	96	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	$>5.00 \mathrm{E} \cdot 6$
HL-60(TB)	0.718	2.843	2.722	2.781	2.681	2.765	2.718	94	97	${ }^{93}$	96	94	> $5.00 \mathrm{E}-6$	> 5.00E-6	> 5.00E.6
K-562 MOLT-4	0.265 0.512	1.952 2	2.048 2	2.006	2011	2.045	1.821	106	103	103	106	92	> 5 5.00E-6	> 5 5.00E-6	> 5 5.00E.6
RPMI-8226	0.882	2.372	2.327	2.323	2375	2.314	2.064	97	97	100	96	79	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
SR	0.510	1.893	1.923	1.809	1.950	1.933	1.763	102	94	104	102	90	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
Non-Small Cell Lung Cancer															
A549/ATCC	0.256	1.477	1.469	1.449	1509	1.424	1.313	99	98	103	96	87	$>5.00 \mathrm{E}-6$	> 5.00E-6	> 5.00E.6
HOP-62	0.357	0.955	0.895	0.905	0.928	0.936	0.879	90	92	96	97	87	$>5.00 \mathrm{E}-6$	$>5.00 \mathrm{E}-6$	> 5.00E.6
HOP-92 NCI-H226	1.100 0.549	1.465 1.344	1.441 1.356	1.413 1.344	1.414 1367	1.405 1.381	1.303 1.206	93 101	85 100	86 103	83 105	55 83	$\begin{aligned} & 5 \\ > & 5.00 \mathrm{E}-6 \\ > & 500 \mathrm{E}-6\end{aligned}$	$\begin{aligned} & > \\ & > \\ & > \\ & \\ & \\ & \\ & 5\end{aligned} 000 \mathrm{E}-6$	$>$ $>$ $>$ $5.00 \mathrm{E} \cdot 6$
NCl-H226 $\mathrm{NCl}-\mathrm{H} 23$	0.549 0.524	1.344 1.514	1.356 1.445	1.344 1.445	1.367 1.443	1.381 1.436	1.206 1.358	101 93	100 93	103 93	105 92	83 84	$\gg 5.00 \mathrm{E}-6$ $>$ $>$	$\begin{aligned}> & 5.00 E-6 \\ > & 5.00 \mathrm{E}-6\end{aligned}$	$>$ $>$ $>$ $5.000 \mathrm{E} \cdot 6$
NCl-H322M	0.723	1.555	1.569	1.515	1.547	1.492	1.460	102	95	99	92	89	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
$\mathrm{NCl}-\mathrm{H} 460$	0.368	2.727	2.740	2.813	2682	2.794	2.679	101	104	98	103	98	> $5.00 \mathrm{E}-6$	> 5.00E-6	> $5.00 \mathrm{E} \cdot 6$
$\mathrm{NCl}-\mathrm{H} 522$	0.829	1.912	1.914	1.954	1.989	1.912	1.744	100	104	107	100	84	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
Colon Cancer															
COLO 205	0.277	1.103	1.212	1.189	1219	1.217	1.132	113	110	114	114	103	$>5.00 \mathrm{E}-6$	$>5.00 \mathrm{E}-6$	$>5.00 \mathrm{E} \cdot 6$
HCC-2998	0.442	1.525	1.500	1.450	1.459	1.466	1.404	98	93	95	94	89	> $5.00 \mathrm{E}-6$	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
HCT-116 HCT-15	0.174 0.280	1.593 1.383	1.509 1.425	1.659 1.418	1.456 1.464	1.559 1.360	1.266 1.253	94 104	104 103	90 107	97 98	77 88	$\gg 5.00 \mathrm{E}-6$ $>5.00 \mathrm{E}-6$	$>5.00 E-6$ $>$ $>$	$>$ $>$ $>$ $5.000 \mathrm{E} \cdot 6$
HT29	0.313	1.709	1.708	1.821	1.799	1.766	1.554	100	108	106	104	89	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
KM12	0.208	1.124	1.167	1.166	1.189	1.131	1.062	105	105	107	101	93	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
SW-620	0.368	2.464	2.418	2.432	2384	2.372	2.263	98	98	96	96	90	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> 5.00E.6
CNS Cancer															
SF-268	0.553	1.717	1.706	1.786	1.786	1.833	1.751	99	106	106	110	103	$>5.00 \mathrm{E}-6$	> 5.00E-6	> 5.00E.6
SF-295	1.189	2.864	2.784	2.695	2682	2.716	2.728	95	90	89	91	92	> 5.00E-6	> 5.00E-6	> $5.00 \mathrm{E} \cdot 6$
SF-539	0.887	2.175	2.186	2.189	2257	2.293	2.095	101	101	106	109	94	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
SNB-19	0.466	1.273	1.247	1.285	1227	1.237	1.170	97	101	94	95	87	> $5.00 \mathrm{E}-6$	> 5.00E-6	> $5.00 \mathrm{E} \cdot 6$
SNB-75	0.533	1.114	1.092	1.045	1.027	1.053	1.002	96	88	85	90	81	> 5.00E-6	> $5.00 \mathrm{E}-6$	> 5.00E.6
U251	0.355	1.764	1.737	1.710	1.742	1.736	1.537	98	96	98	98	84	> 5.00E-6	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
Melanoma															
LOXIMVI	0.274	2.103	1.991	1.926	1.944	1.963	1.863	94	90	91	92	87	$>5.00 \mathrm{E}-6$	> 5.00E-6	> 5.00E.6
MALME-3M	0.670	1.383	1.357	1.387	1408	1.371	1.312	96	101	104	98	90	> 5.00E-6	> 5.00E-6	> 5.00E.6
M14	0.347	1.369	1.391	1.316	1.362	1.322	1.235	102	95	99	95	87	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
MDA-MB-435	0.473	2.153	2.120	2.029	2027	2.090	2.032	98	93	93	96	93	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> 5.00E.6
SK-MEL-2	0.971	1.903	2.022	2.072	2.061	2.080	1.873	112	118	116	118	96	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> 5.00E.6
SK-MEL-28	0.464	1.273	1.264	1.265	1287	1.309	1.264	98	98	101	104	98	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
SK-MEL-5	0.503	2.562	2.498	2.532	2583	2.544	2.208	97	99	101	99	83	> 5.00E-6	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
UACC-257	0.722	1.734	1.680	1.651	1679	1.681	1.613	95	92	94	95	88	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
UACC-62	0.960	2.192	2.127	2.172	2.145	2.136	1.871	95	98	96	95	74	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> 5.00E. 6
Ovarian Cancer															
IGROV1	0.620	1.775	1.873	1.888	1.878	1.874	1.805	108	110	109	109	103	$>5.00 \mathrm{E}-6$	> 5.00E-6	> 5.00E.6
OVCAR-3	0.545	1.407	1.505	1.502	1.485	1.532	1.360	111	111	109	114	95	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> 5.00E.6
OVCAR-4	0.661	1.515	1.499	1.470	1.542	1.535	1.369	98	95	103	102	83	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
OVCAR-5	0.531	1.367	1.373	1.338	1476	1.377	1.282	101	96	113	101	90	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
OVCAR-8	0.320	1.409	1.412	1.391	1420	1.410	1.364	100	98	101	100	96	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
NCI/ADR-RES	0.556	1.773	1.768	1.744	1842	1.727	1.622	99	97	105	96	87	> $5.00 \mathrm{E}-6$	> 5.00E-6	> 5.00E-6
SK-OV-3	0.340	0.847	0.846	0.865	0.891	0.871	0.814	100	104	109	105	93	> 5.00E-6	> $5.00 \mathrm{E}-6$	> 5.00E.6
Renal Cancer															
786-0	0.509	2.019	1.953	1.949	1.967	1.959	1.887	96	95	97	96	91	$>5.00 \mathrm{E}-6$	> 5.00E-6	> 5.00E.6
A498	1.232	1.973	1.726	1.891	1823	1.894	1.796	66	88	79	89	76	$>5.00 \mathrm{E}-6$	> 5.00E-6	> $5.00 \mathrm{E} \cdot 6$
ACHN	0.279	$1.27)$	1.303	1.320	1333	1.327	1.208	103	105	106	106	94	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
CAKI-1	0.628	2.389	2.186	2.177	2170	2.151	2.095	88	88	88	86	83	> $5.00 \mathrm{E}-6$	> 5.00E-6	> 5.00E.6
RXF 393	0.555	1.015	1.033	1.051	1042	1.020	0.959	104	107	105	101	87	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
SN12C	0.590	2.453	2.178	2.234	2157	2.199	2.080	85	88	84	86	80	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
TK-10	0.896	1.623	1.662	1.719	1.691	1.642	1.563	105	112	109	102	91	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
U0-31	0.685	1.754	1.662	1.766	1.759	1.727	1.596	91	101	100	97	85	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> 5.00E.6
Prostate Cancer															
PC-3	0.624	1.927	1.886	1.860	1852	1.853	1.593	97	95	94	94	74	$>5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> 5.00E-6
DU-145	0.374	1.369	1.432	1.444	1.528	1.484	1.357	106	108	116	111	99	> 5.00E-6	> $5.00 \mathrm{E}-6$	> 5.00E.6
Breast Cancer															
MCF7	0.264	1.413	1.334	1.367	1413	1.425	1.270	93	96	100	101	87	> 5.00E-6	> $5.00 \mathrm{E}-6$	> 5.00E.6
MDA-MB-231/ATCC	0.515	1.244	1.311	1.256	1228	1.251	1.065	109	102	98	101	75	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
HS 578T	1.090	1.864	1.768	1.761	1754	1.790	1.742	88	87	86	90	84	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
BT-549	0.700	1.715	1.715	1.624	1.635	1.666	1.564	100	91	92	95	85	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$
T-47D	0.624	1.353	1.336	1.342	1343	1.368	1.226	98	99	99	102	83	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$
MDA-MB-468	0.596	1.013	1.018	1.023	1.042	1.006	0.900	101	102	107	98	73	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E}-6$	> $5.00 \mathrm{E} \cdot 6$

5.6. References

1. Le Bourdonnec, B.; Leister, L. K.; Ajello, C. A.; Cassel, J. A.; Seida, P. R.; O'Hare, H.; Gu, M.; Chu, G. H.; Tuthill, P. A.; DeHaven, R. N.; Dolle, R. E., Discovery of a series of aminopiperidines as novel NOS inhibitors. Bioorganic \& Medicinal Chemistry Letters 2008, 18, 336-343.

[^0]: ${ }^{\text {a }}$ Compounds active of that particular cell lines, which shown growth inhibition $\leq 32 \%$ cell growth reduction following 48 h incubation with test compounds.

[^1]: ${ }^{a}$ Negative indicates the cell kill

