Newly Developed Piperidinyl Sulfamides as Tyrosyl-DNA Phosphodiesterase 1 (Tdp 1) Inhibitors, and Study of Anticancer Activity of Piperidinyl Sulfamides Derivatives and Seven-Membered Cyclic Sulfamide Analogs Using the National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screen

Jung Ho Jun

Submitted to the Department of Chemistry and the Faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements of the degree of Doctor of Philosophy

Paul R. Hanson, Chair

Sanjay V. Malhotra, co-advisor

Richard S. Givens

Jon Tunge

Thomas E. Prisinzano

Minae Mure

10/31/2013 Date Defended Thesis Committee for Jung Ho Jun certifies that this is the approved version of the following thesis:

Newly Developed Piperidinyl Sulfamides as Tyrosyl-DNA Phosphodiesterase 1 (Tdp 1) Inhibitors, and Study of Anticancer Activity of Piperidinyl Sulfamides Derivatives and Seven-Membered Cyclic Sulfamide Analogs Using the National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screen

Paul R. Hanson, Chair

Sanjay V. Malhotra, co-advisor

Richard S. Givens

Jon Tunge

Thomas E. Prisinzano

Minae Mure

10/31/2013 Date Defended

Abstract

Jung Ho Jun, Ph. D Department of Chemistry, October 2013 University of Kansas

Sulfur containing compounds have become increasingly important in the development of biological agents for pharmaceutical and industrial use. Cyclic sulfamides, in particular, have been found to be useful as cancer, HIV protease inhibitors and other therapeutic treatments. As the need for new and improved inhibitors is warranted by the serious cancer disease, the search for new synthetic pathways to access novel sulfamides is ongoing. To this end, the work discussed herein focuses on the synthesis of newly developed sulfamides utilizing the reductive amination and Mitsunobu reaction to generate novel chiral amino ester containing sulfamide compounds. These compounds are being screened for their biological activities as Tyrosyl-DNA phosphodiesterase 1 (Tdp 1) inhibitors and anti-cancer drugs. Initially, reductive amination, CSI coupling, and Mitsunobu reaction were employed to generate piperidinyl sulfamides, and these compounds were screened for Tdp1 inhibition. These compounds were submitted to Dr. Pomier's group at NIH to carry out the gel study to select active compounds. We also checked the binding effect through the protein docking study. In addition, these sulfamide compounds were screened from NCI 60-cancer cell lines to check the bioactivity and in vitro cytotoxicity evaluation. To understand anti-cancer activity of cyclic sulfamides, symmetric and unsymmetric seven-membered sulfamides compounds were tested in 60 cancer cell line from the National Cancer Institute. These compounds were made when I studied for the Master degree at the University of Kansas. RCM was employed to generate symmetric seven-membered cyclic sulfamides similar in structure to known active HIV protease inhibitor DMP 323.

Functionalization of these compounds employing "robust *S*-linchpins" in conjunction with RCM yields an array of new *S*-heterocycles. Further work in sulfamides employed a combination of RCM with different coupling routes to generate unsymmetric seven-membered cyclic sulfamides with varied substitution in their P1/P1' and P2/P2' periphery in attempts to broaden the scope of this chemistry and to generate new biologically active compounds.

To my friend and wife To my love

JungRim Moon

My soul mate and intimate prayer

To my family with love

My father and mother My daughter, *Talia Jun* My sister's family

Acknowledgements

First of all, I would like to thank the Lord for guiding my way, and my eternal friend, lovely wife and soul mate, *Jungrim Moon*. As I always mentioned, you are a precious gift from God. You always give me lots of ideas of how to endure torrential life and go straight toward our promised future with God. You have shown your love and support to me every single day and every moment. I sincerely appreciate your prayer that you always hope my life goes well. I love you and will love you forever.

My daughter, Talia. You are the greatest gift and an angel for me and your mom from the Lord. I still remember the first day when your mom gave birth to you. I enjoyed holding you in my arm as my first and only daughter. You were so cute and pretty!!! When you held my finger with your hand for the first time, I cried with joy and grace. The very first day of your walking, your mommy and daddy were so excited and proud of you. Now you are already the first grade student. Talia, I pray to God that you always enjoy your life and journey, and be in his graceful guidance.

My family, father, mother, my younger sister's family, and my father-in-law family. All of you are the Lord's greatest gift to me. I am entirely blessed to have you always praying on my behalf. Dad, you are my hero and master of my adventurous sailing. Whenever I needed your wisdom and experience, you always constantly encouraged and supported me. Dad, I will never forget memories of us climbing the mountains together every New Year's Day. Mom, thank you for always supporting my efforts and for being my best friend. You have been a major part of my life for so long. I will pray for your health and pleasure. My younger sister, Jungrim Jun, you are my lovely friend and I hope you are always happy with your son, Jinho. Without your thoughtful consideration of my life, it would have been impossible to achieve this goal. Jinho, you will be remembered always as my cute nephew and I want you to grow like Joseph with BIG DREAM! My mother-in-law and father-inlaw, thank you for your continuous prayer for my family. My wife's sister family, Misuk and Jaesung. I won't forget all of the memories that we had last summer. It was really great time with you.

Paul, it is a great honor to have been a member of your group at KU. It is really hard to say how much I appreciate your endless support for everything. I have enjoyed the past four years at KU very much and five years as an out-of state student. Well, it is hard to count how many years I have been studied as your student. I still remember that you always give us small gifts such as balloons, screwdrivers, stirring bars, etc. that bring joy to us every time. You are a great chemist and you advised me with all stimulating knowledge of chemistry. You always suggest thinking on the lighter side that I really appreciate. I thank you for every little but important thing you have done for me. You are a truly selfless, gifted advisor who cares of his group members like they are his own kids.

Yumi nuna ("nuna" means older sister in Korean)! I thank you all of your support and advise. Without your help, I couldn't even start my American life in the very beginning of study. I am very curious why I feel this way, but as I call you "nuna", I feel sometimes Paul is my brother-in-law or BIG Brother! Thank you so much for being a group MOM!! We really appreciate your endless support and love to all group members. Paul and Yumi nuna!! I will pray for you and your family.

To the rest of my committee: I would like to thank Dr. Richard Givens, Dr. Jon Tunge, Dr. Minae Mure, and Dr. Thomas Prisinzano for your guidance in my career, and your lesson in Wednesday Night Problem Sets. Professor Givens, I really enjoyed to read your warm and sincere e-mails.

Sanjay (a.k.a. S. V. Malhotra), you are my co-advisor and manager. I enjoyed many events and projects with you as your group member at SAIC-Frederick. Thank you for discussing with me many times about my Ph.D. project and I learned a lot about managing and networking skills from you. I also appreciate your investment in my career.

Many thanks to all of the other professors who have contributed to my intellectual and personal development: Dr. Robert Carlson, Dr. Helena, Malinakova, Dr. David Benson, Dr. Jeffrey Aube, Dr. Andrew Borovik, and Dr. Brian Blagg. I thank you all.

I want to thank all of Hanson group members who are in my memory. Don, Matt, Joel, Joe, Andy, Poon, Rusty, Shubashish, Mianji, Punitha, Alan, Steve, Maria, Josh, Thiwanka, and so on. I really miss the fun we had and lots of memories with you guys!! I do not think I will ever have an experience as enjoyable as I had working with you guys. I hope to see you all at Paul's 60th Birthday Party!!!! (It will come very soon).

Vineet, my previous colleague at SAIC-Frederick. I enjoyed every moment last five years with you as LSC group member. I have many memories with you from setting our lab to the renovation and more. I hope we keep in touch and I will be watching your career from afar. You are my good friend!

Many current Hanson group members. Even if we never work together in a lab, I feel like we've been worked altogether for a long time. Naeem, Pradip, Qin, Saqib, Joanna, Jana, Soma, Rambabu, Salim, Kyu Ok, Susanthi, Moon Young, and more. Thank you for listening my Skype- presentation at group meeting and reading my thesis. Kyu Ok, I will continuously watch your next steps as a young chemist. Naeem, I appreciate your time and effort to set up seminar schedules for me. Moon Young, I appreciate your technical support for each time. Guys! Remember this. One day you will move on leaving DOOMSDAY behind forever and ever. The day will come, the sun will rise, and we'll be fine!

Finally, I would like to thank Dr. Changkiu Lee and Dr. Insook Han-Lee, my former advisors and organic chemistry professors at the Kangwon National University in Korea. Your enthusiasm for organic chemistry encouraged many students including me to step up to higher field and to study abroad to explore new and advanced academic area. You introduced me a new life view to plan and help to educate next generation. I am forever grateful for your commitment to me. I hope you continue to harvest a greater research result every year.

Table of Contents

Table of Contents	
Title Page	i
Acceptance page	ii
Abstract	iii
Dedication	v
Acknowledgments	vii
Table of Contents	x
Thesis Explanation	xiii
Abbreviations	xiv

Chapter 1	Biologically Active Sulfamides and Synthetic Approaches to Sulfamides	1
	1.1. Introduction	2
	1.2. Methods for generation of acyclic sulfamides	6
	1.3. Methods to generate cyclic sulfamide	17
	1.4. Sulfamide catalysts	30
	1.4.1. Hydroaminoalkylation and hydroamination	31
	1.4.2. Aldol reaction	32
	1.4.3. Conjugate addition	33
	1.4.4. Michael addition	35
	1.4.5. Mitsunobu-like coupling	37
	1.4.6. Utilization of cyclic sulfamide as chiral auxiliaries	39
	1.5. Conclusion	41
	1.6. Reference	43

Chapter 2	Newly Developed Piperidinyl Sulfamides as Tyrosyl-DNA phosphodiesterase 1 (Tdp 1) Inhibitors	57
	2.1. Abstract	58
	2.2. Introduction	58
	2.3. Topoisomerase I (Top1) and Tyrosyl-DNA phosphodiesterase 1 (Tdp1)	59
	2.4. Chemistry	64
	2.4.1. Initial Gel Study	67
	2.4.2. Protein docking Study	68
	2.4.3. Synthesis of Piperidinyl Sulfamides	70
	2.5. Biology	74
	2.5.1. Expression and Purification of Tdp1	74
	2.5.2. Tdp1 Gel-Based Assay	75
	2.6. Molecular Modeling of Piperidinyl Sulfamide Derivatives	76
	2.6.1. Preparation of ligand structures	76
	2.6.2. Molecular Docking	77
	2.7. Conclusion	77
	2.8. Reference	78

Chapter 3	Study of Anticancer Activity of Piperidinyl Sulfar Using the USA National Cancer Institute 60 Hun	
	Line (NCI 60) Screening	84
	3.1. Introduction	85
	3.2. NCI 60 Cell Line Screening	86
	3.2.1. In vitro anticancer activity	89
	3.2.2. Five dose assay	94
	3.3. Conclusion	107
	3.4. References	107

Chapter 4	Study of Anticancer Activity of Seven-membered Cyclic Sulfam Analogs Using the USA National Cancer Institute 60 Human	nide	
	Cancer Cell Line (NCI 60) Screening	109	
	4.1. Introduction	110	
	4.2. Summary of the synthesis of cyclic sulfamide compounds	113	
	4.3. Anticancer drug discovery 60 cell line screening at the National Cancer Institute (NCI)	122	
	4.3.1. One dose assay	122	
	4.3.2. Five dose assay	131	
	4.4. Conclusion	145	
	4.5. References	146	
Chapter 5	Experimental Data	153	
	5.1. General Methods	154	
		1.5.5	

5.2. Experimental Procedure and data: Chapter 2	155
5.3. Appendix A: Selected ¹ H and ¹³ C NMR's	203
5.4. Appendix B: One and five dose experimental data from 60 cell line - Tdp1 related compounds	239
5.5. Appendix C: One and five dose experimental data from 60 cell line - Cyclic sulfamide compounds	262

5.6. References 307

Thesis Explanation:

This thesis is separated into three major parts and is set up to be easily perused by the interested reader.

Chapter 1 consists of an introduction of biologically active sulfamides and synthetic approaches to sulfamides.

Chapter 2 contains the synthesis of newly developed piperidinyl sulfamides as Tyrosyl-DNA phosphodiesterase 1 (Tdp 1) Inhibitors.

Chapter 3 is the study of anticancer activity of piperidinyl sulfamides derivatives using the National Cancer Institute 60 human cancer cell line (NCI 60) screening.

Chapter 4 is discussion about the anticancer activity of seven-membered cyclic sulfamide analogs using the Nnational Cancer Institute 60 human cancer cell line (NCI 60) Screening.

Chapter 5 is the experimental section consisting of an explanation of all synthetic methods and selected ¹H and ¹³C NMR spectra for new compounds that have been synthesized. In spectral data for pertinent new compounds is reported. This section also contains the results of one and five dose experimental data from NCI 60 cell line.

For the purpose of simplicity, Grubbs 1^{st} generation catalyst and 2^{nd} generation catalyst have been designated I and II, and refer to the structures listed below:

Abbreviations:

AIDS	Acquired Immune Deficiency Syndrome
Ala	Alanine
Bn	Benzyl
Boc	<i>tert</i> -butoxy carbonyl
<i>n-</i> BuLi	<i>n</i> -butyl lithium
CH ₂ Cl ₂	methylene chloride
DCM	methylene chloride
Cs2CO 3	cesium carbonate
CSI	chlorosulfonyl isocyanate
Cat-I	phenyl methylene bis(tricyclohexylphosphine)
	ruthenium dichloride
Cat-II	tricyclohexylphosphine [1,3-bis(2,4,6-trimethylphenyl)-
	4,5-dihydroimidazole-2-ylidene][benzylidine]-
	ruthenium(IV) dichloride
DEAD	diethylazodicarboxylate
DIAD	diisopropylazodicarboxylate
DMSO	dimethyl sulfoxide
DMF	dimethyl formamide
EDC	N-(3-dimethylaminopropyl)- N '-ethylcarbodiimide
FAB-MS	Fast Atom Bombardment-Mass Spectrometry
HIV	Human Immunodeficiency Virus
HRMS	High Resolution Mass Spectrometry
Hz	Hertz
K ₂ CO ₃	potassium carbonate
LAH	lithium aluminum hydride
LiAlH4	lithium aluminum hydride
<i>m</i> -CPBA	meta-chloro perbenzoic acid
MeCN	acetonitrile

MHz	Megahertz
NOE	nuclear overhauser enhancement
NMO	4-methylmorpholine N-oxide
NMR	Nuclear Magnetic Resonance
PhCH ₃	toluene
PhCl	chlorobenzene
PhH	benzene
ррт	parts per million
PR	protease
RCM	ring-closing metathesis
^{t-} Bu	<i>tert</i> -butyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	Thin layer chromatography
TMSI	1-(trimethylsily)imidazole

CHAPTER 1

Introduction:

Biologically Active Sulfamides and Synthetic Approaches to Sulfamides

1.1. Introduction

Over the past decade, the sulfamide ($R_2NSO_2NR_2$) functionality has found extensive use in medicinal chemistry for the development of novel small molecule therapeutic agents and high affinity protein ligands.^{1,2} The synthesis of the first sulfamide was reported in 1892 by Traube, who prepared it from sulfuryl chloride and gaseous ammonia.³

The utility of sulfamides can be attributed to the ability to variably substitute with up to four different substituents, which are distributed on the two nitrogen atoms, thus offering diversity. Moreover, the sulfamide functional group can also act as a useful biosteric replacement for sulfonamide, sulfamate, urea, carbamate, ketoamide, ester, and amide functionalities when incorporated into putative pharmaceutical agents, as it has the potential to construct several electrostatic interactions with protein and other targets.⁴

Notably, numerous compounds have been reported as marketed and investigational drugs in which the free or substituted sulfamide moiety plays a key role in dictating potent biological activity (Figure 1.1). Doripenem (**1.1**), structurally related to penicillin, is an ultra-broad spectrum injectable antibiotic that was recently approved by the Food and Drug Administration (FDA) for the treatment of complicated intra-abdominal infections and complicated urinary tract infections.⁵ It is currently on market by Johnson & Johnson and is a beta-lactam that belongs to the subgroup of carbapenems. Initially, it was launched in 2005 by the Shionogi Company of Japan under the brand name Finibax. Quinagolide (Norprolac, **1.2**), is a selective, dopamine receptor agonist that is used for the treatment of elevated levels of peptide hormone prolactin.⁶ JNJ-26990990 (**1.3**), a primary sulfamide used for the treatment of epileptic seizures is reported to have entered phase II clinical trials as a broad-spectrum anticonvulsant drug.⁷ Macitentan (**1.4**), has currently entered phase III human clinical trials for pulmonary arterial hypertension. Famotidine (**1.5**), is a histamine-2 (H2) blocker, which is now on the market for the treatment of ulcers in the stomach.

Figure 1.1. Examples of sulfamide-containing drugs.

Interestingly, sulfamides have also seen widespread utilization in early, and late-stage, drug discovery efforts in several therapeutic areas, such as glaucoma, cancer, obesity, epilepsy and other neurological disorders.⁸ In particular, the search for therapeutics for the treatment of cancer remains an ongoing endeavor with a World Health Organization (WHO)⁹ survey revealing that approximately 7.6 million people worldwide died (around 13% of all deaths) from cancer in 2008.

In this regard, several acyclic sulfamides have emerged as potential cancer drugs and are shown in Figure 1.2. Compound **1.8** has undergone clinical investigation at Merck as an orally dosed c-Met (Mesenchymal epithelial transition factor, tyrosine kinase receptor) inhibitor which inhibits the expression of hepatocyte growth factor (HGF, scatter factor).^{10,1a} Aberrant activation of c-Met can increase the tumorigenicity and metastatic potential of tumor cells, so it is hypothesized that the inhibition of c-Met could suppress tumor aggressiveness and decrease the lethal disruptions to embryogenesis.¹¹ Recently, kinesin spindle protein (KSP) has been the focus of intense interest as a novel biological target for anticancer therapy by GlaxoSmithKline.¹² Further, biphenyl sulfamide **1.9** was found to exhibit potent inhibitory activity against kinesin spindle protein (KSP) with *in vitro* anti-proliferative activity against

human cells with mutant KSP (HCT116 D130V).¹¹ Sulfamide compound **1.10** was rationally designed and tested for the steroid inhibition of glucose 6-phosphate dehydrogenase (G6PD) in HEK293T cells, with good activity, and was retained with this sulfamide compound.¹³ Moreover, a series of sulfamidocyclopropanecarboxylates **1.11** were discovered as potent, highly selective and orally bioavailable aggrecanase inhibitors in 2011.¹⁴ Aggrecanases are considered as possible drug targets for the treatment of osteoarthritis, a degenerative joint disease. While other potent MMP compounds bear a hydroxamate zinc-binding group that tend to lack metabolic stability,¹⁵ and inhibit other MMPs such as MMP-3, MMP-9, and MMP-13 in broad range selectivity panel, **1.11** has a carboxylate zinc-binding group which has good oral bioavailability and was identified as highly selective aggrecanase-2 inhibitor. It is widely admitted that a diversity of unacceptable hostile events, such as musculoskeletal disorder, that have been

Figure 1.2. Biologically active acyclic sulfamide compounds in early- and late-stage drugdiscovery.

clinically perceived with the use of broad spectrum MMP inhibitors arose from a lack of selectivity, and hence the identification of highly selective MMP inhibitors is greatly desired.

Cyclic sulfamides are an important class of compounds and can be found in a number of pharmaceutically useful compounds. Notably, cyclic sulfamides have been reported to be general templates suitable for the design of inhibitors against a variety of biological targets including HIV, serine proteases, γ -secretase as shown in Figure 1.3. Cyclic sulfamide compound **1.11** was developed by Merck as a γ -secretase inhibitor¹⁶ as alternative motifs to the acyclic sulfonamide derivatives reported in 2005 for inhibiting γ -secretase.¹⁷ Compound **1.12** is a potent and orally-bioavailable Factor Xa inhibitor.¹⁸ Factor Xa (FXa) is a serine protease that plays a critical role in the sequence of blood coagulation cascade by catalyzing the proteolytic conversion of prothrombin to active thrombin. Compound **1.13** was discovered as a potent inhibitor of Norwalk virus for viral gastroenteritis, and displayed enhanced binding, increased aqueous solubility, and better bioavailability.¹⁹ Fused cyclic sulfamide compound **1.14**

Figure 1.3. Representative examples of cyclic sulfamide compounds in clinical discovery.

represents yet another example of γ -secretase inhibitors containing the sulfamide moiety and was developed by Merck for the treatment of Alzheimer's disease (AD).²⁰ The Korean Institute of Science and Technology (KIST) has reported the development of carbapenem compounds

comprising a pendant cyclic sulfamide such as in **1.15**, which was found to exhibit potent antibacterial activity.²¹

1.2. Methods for generation of acyclic sulfamides

The significance of the sulfamide functional group is increasingly growing in bioactive small molecule, medicinal and supramolecular chemistry, yet surprisingly few selective synthetic methods are available for its elaboration.^{22,23} In this section, several selected general as well as efficient procedures are introduced for the generation of acyclic symmetric and asymmetric sulfamides.

Leschinsky and co-workers have reported the construction of acyclic, non-symmetric substituted sulfamides as shown in Scheme 1.1. Thus, sequential treatment of primary or secondary amines with chlorosulfonic acid and PCl_5 provides the substituted chlorosulfonamides **1.16**.²⁴ Treatment of the chlorosulfonamide with a second amine furnishes the desired di-, tri- or tetra-substituted sulfamides **1.17**.²⁵

$$R^{1}_{NH_{2}} + CISO_{3}H \qquad \frac{1) CH_{2}CI_{2}, 0 C \text{ to rt}}{2) PCI_{5}, reflux} \qquad R^{1}_{N} \stackrel{O, V}{\underset{H}{\longrightarrow}} R^{2}_{N} \stackrel{O, V}{\underset{H}{\longrightarrow}} \frac{R^{2}NH_{2}}{Et_{3}N, rt} \qquad R^{1}_{N} \stackrel{O, V}{\underset{H}{\longrightarrow}} R^{2}_{N} \stackrel{O, V}{\underset{H}{\longrightarrow}} R^{2}_{N}$$

$$1.16 \qquad 1.17$$

Scheme 1.1.

Application of DABCO-*bis*(sulfur dioxide) [DABSO] as a convenient source of sulfur dioxide was reported for the preparation of sulfonamides and sulfamides (Scheme 1.2).²⁶ DABSO was conveniently prepared from the direct combination of DABCO and SO₂ in quantitative yield, and was reported to be a bench-stable solid reagent. Treatment of two equivalents of DABSO with anilines and iodine allowed for the preparation of *N*,*N*'-diarylsulfamide derivatives, in moderate yields.²⁷

Scheme 1.2. Preparation of symmetric sulfamide using DABSO.

Nonhazardous sulfamide derivatives such as **1.19** have also been reported for the synthesis of non-symmetric sulfamide **1.20** (Scheme 1.3).²⁸ Chlorosulfonylisocyanate (CSI) was treated with 2-bromo or 2-chloroethanol to furnish the *N*-sulfamoyloxazolidinoes **1.18**. Addition of primary amine to the *in situ* generated chlorosulfonyloxazolidinone **1.18**, in the presence of Et_3N , afforded asymmetric intermediate **1.19** via the intermolecular S_N2 displacement of the halide. A second addition of primary amine to the oxazolidinone **1.19**, with base in CH₃CN, afforded a variety of sulfamides **1.20** in good yields as listed in the Table within Scheme 1.3. It is noteworthy that the first amine addition has to be a primary amine, *vide infra*.

	0 0 CI S NCO + HO X = I	→ X Br, Cl	CH ₂ Cl ₂	0 S N 1.18	$ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{R^1 R^2 N H}_{Et_3 N, \ 0 \ \Upsilon C} $
	0,00 R ¹ ,N ^S ,N ^O ,O ^E R ² 1.19	R ³ R ⁴ Et ₃ N, M reflu	eCN N	0 8 N R ³ 20	.4 R ¹ , R ² , R ³ , R ⁴ = alkyl, aryl, H
entry	R_1	R ₂	R ₃	R ₄	Yield (%)
1	<i>p</i> -MePh	Н	<i>i</i> -Pr	Н	74
2	<i>p</i> -MeSO ₂ Ph	Н	<i>i</i> -Pr	Н	85
3	<i>p</i> -MeSPh	Н	<i>i</i> -Pr	Н	62
4	<i>p</i> -ClPh	Н	<i>i</i> -Pr	Н	84
5	Ph	Η	<i>i</i> -Pr	Н	87
6	<i>p</i> -MeSO ₂ Ph	Η	<i>p</i> -MePh	Н	68
7	<i>i</i> -Pr	Н	<i>t</i> -amyl	Н	73

Scheme 1.3. Preparation of ozaxolidinone and non-symmetric sulfamide.

The postulated intermediate for the *trans*-sulfamoylation reaction is likely to involve the *N*-sulfamoylamine species **1.19d** (Scheme 1.4). This intermediate is formed via the deprotonation of the *N*-sulfamoyloxazolidinones **1.19** to generate species **1.19a**, which is stabilized through either mesomeric forms **1.19b** or **1.19c** depending on the substituents present. Presumably, only the form **1.19b** will lead to the formation of the sulfamide species via **1.19d**.

Scheme 1.4. Resonance effect involved in the formation of 1.19d.

In 2003, Burns and coworkers studied "primary amine effects" of the aforementioned *trans*-sulfamoylation reaction²⁹ and reported that when a secondary cyclic amine such as 1,2,3,4-tetrahydroisoquinalone was attached to a sulfamide, the oxazolidin-2-one group was not displaced by a primary amine, but rather resulted in ring-opening of the oxazolidinone ring to furnish sulfamide **1.22** (Scheme 1.5).

Scheme 1.5.

Burns and coworkers further investigated alternatives to the oxazolidin-2-one moiety for the preparation of non-symmetric sulfamides.²⁹ Immidazolium salts are known to be a superior leaving groups for the synthesis of sulfamides.³⁰ In this regard, *N*,*N'*-sulfuryldiimidazole **1.23** was prepared by reacting an excess of imidazole with sulfuryl chloride.³¹ The *N*,*N'*-sulfuryldiimidazoles were then allowed to undergo sequential and selective monoalkylation, followed by subsequent displacement for the preparation of a variety of sulfonylureas, including both sterically-crowded and electronically-deactivated amines. Thus, alkylation of **1.23** was carried out utilizing MeOTf in CH₂Cl₂ resulting in salt **1.24**. Precipitation and filtration of the imidazolium group of salt **1.24**, and treatment with an amine generated the corresponding imidazoylsulfonylurea **1.25**. A second addition of MeOTf in CH₂Cl₂ generated salt **1.26**, which was heated to 80 °C in CH₃CN in the presence of a primary or secondary amine, to convert the triflate salt **1.26** to the desired sulfamide product **1.27** in moderate to good yield (Scheme 1.6).

Scheme 1.6. Immidazolium salts for the synthesis of a non-symmetric sulfamides.

In 2001, Montero and coworkers reported the introduction of a new method for the synthesis of non-symmetric sulfamides utilizing Burgess-type reagents (Scheme 1.7). ³² Treatment of chlorosulfonyl isocyanate (CSI) with *tert*-BuOH in CH₂Cl₂ afforded *N*-(*tert*-butoxycarbonyl)-*N*-[4-(dimethylazaniumylidene)-1,4-dihydropyridin-1-ylsulfonyl]-azanide **1.28** as a colorless crystal, which was non-moisture sensitive and stable at ambient temperature in good yield and which exists in the zwitterionic form similar to the Burgess reagent.³³

Scheme 1.7. Sulfamoylating agent: N-(tert-Butoxycarbonyl)-N-[4-(dimethylazaniumylidene)-1,4dihydropyridin-1-ylsulfonyl] azanide.

Similarly, K. C. Nicolaou and coworkers explored the synthesis of non-symmetric, linear sulfamides from primary and secondary amines (Scheme 1.8).³⁴ A Burgess reagent could be generated appropriately by the treatment of chlorosulfonyl isocyanate with an alcohol of interest and exposing to Et_3N at 0 °C. Reactions of the Burgess reagent with starting amines furnished several linear sulfamides in high yields. This Burgess reagent provides a mild alternative, avoiding direct use of toxic and corrosive agents which contain traces of acid, such as HCl, making them incapable of associating with acid-sensitive functionality (Entry 3).³⁵

Scheme 1.8. Synthesis of linear sulfamides.

Catechol-derived cyclic sulfates **1.29** have been established as a useful intermediate in the synthesis of sulfamide compounds.³⁶ Until the mid-1990s, the procedures for the preparation of catechol sulfates suffered from low yield and lack of general applicability.³⁷ In 1994, the Tickner group reported a high yielding and efficient synthesis of catechol cyclic sulfate (Scheme 1.9),³⁸ which is readily prepared by reacting the catechol component with 1,1'-sulfurylimidazole in the presence of KF in DMF at 85–90 °C. There are several advantages to this method. Firstly, the use of 1,1'-sulfurylimidazole avoids the competing ring chlorination which often occurs when sulfuryl chloride is employed. Secondly, since this reaction is carried out under neutral conditions the potential oxidation of the starting catechol is circumvented. Potassium fluoride serves as an effective non-nucleophilic base which is tolerated by most functionalities.

Fettes and co-workers have reported the preparation of 4-nitrophenyl chlorosulfates for the preparation of non-symmetric sulfamides (Scheme 1.10).³⁹ Addition of sulfuryl chloride to a solution of 4-nitrophenol **1.30** and pyridine in Et₂O at -78 °C for 4 h afforded 4-nitrophenyl chlorosulfate 1.31 in 83% overall yield as a stable crystalline solid. 1.31 was then reacted with amine 1.32 at room temperature or -78 °C to afford the symmetrical sulfamide 1.33 as the major product and 4-nitrophenyl sulfamate 1.35 as a minor product, with none of the sulfamovl chloride 1.34 being isolated. The mechanism of nucleophilic substitution reaction of 1.31 includes nucleophilic attack at sulfur with either S-Cl or S-OAr bond scission with the S-OAr bond cleavage being the major reaction pathway.⁴⁰ The authors note that if the major pathway is the S-OAr bond cleavage, the more active sulfamoyl chloride 1.34 is generated in situ and reacts with the amine 1.32 to give the unwanted dimerized compound 1.33. Thus the less active 4-nitrophenyl sulfamate **1.35** is probably derived via the S-Cl bond cleavage reaction pathway. To avoid the generation of unwanted symmetrical dimer 1.33, an excess of 4-nitrophenol and Et₃N were added and 4-nitrophenyl sulfamoyl chloride **1.34** could be prepared in 68% yield. 4-nitrophenyl sulfamide 1.35 was then treated with secondary amine 1.36 in CH₂Cl₂ to afford asymmetric sulfamide 1.37 in 83% yield.

Scheme 1.10.

Recently, the Lubell group has reported an effective method to generate *N*-aminosulfamide using *p*-nitrophenylsulfamidate esters (Scheme 1.11).⁴¹ This method entailed the reaction of 4-nitrophenol **1.38**, sulfuryl chloride, and pyridine in Et₂O at -78 °C^{39,42} to afford the desired product as a crystalline and relatively stable solid that can be stored for several month under an inert gas. It must be noted that in order to prepare sulfamate **1.40**, 2 equiv. of 4-nitrophenol was required to avoid the formation of symmetric sulfamide as mentioned before. It is also noteworthy that microwave irradiation improved the formation of *N*-aminosulfamides **1.41** to more than 80% yield as compared to 36% yield with conventional heating at reflux for 24 h.

Scheme 1.11. Synthesis of p-nitrophenylsulfamidate esters and N-aminosulfamides.

The Bolli group reported a new method to generate a sulfamide compound ACT-064992, (macitentan, **1.50**) as an orally active, potent dual endothelin receptor antagonist for regulating blood pressure (Scheme 1.12).⁴³ The procedure starts by reacting chlorosulfonyl isocyanate (CSI) with *t*-BuOH to provide the Boc-protected amino-sulfonyl chloride **1.42**, which was subsequently added to *n*-propylamine to furnish **1.43**. Boc-deprotection using HCl in CH_2Cl_2 solution afforded **1.44**. Generation of potassium salt **1.45** and addition of pyrimidine **1.46** allowed the preparation of the desired sulfamide **1.47** via a nucleophilic aromatic substitution (S_NAr). Introduction of an ethylene glycol side-chain via a second S_NAr reaction furnished the corresponding alcohol **1.48**. Attachment of 2-chloropyrimidine **1.49** afforded the final product **1.50** in 88 % yield.

Scheme 1.12. Synthesis of sulfamide potassium salt and general route for the preparation of *ACT-064992* (1.50).

In 2001, Montero reported an efficient *N*-alkylation method for the generation of unsymmetric sulfamide using an alkyl bromide and a Mitsunobu betaine (Scheme 1.13).⁴⁴ In this reaction, the Mitsunobu betaine intermediate **1.51** is produced *in situ* from PPh₃ and an azodicarboxylate, which performs the role of a base to deprotonate the sulfamoyl carbamate NH. This reaction was employed in alkylation as well as glycosylation reactions utilizing two redox couples; (a) triphenylphosphine (TPP) and diisopropylazodicarboxylate (DIAD) and (b) tri-*n*-butylphosphine (TBP) and 1,1'-(azodicarbonyl)-dipiperidine (ADDP), and the results are highlighted in Table 1.1.

Scheme 1.13. N-alkylation method reported by Montero.⁴⁴

entry	R-Br	TPP/DIAD	TBP/ADDP
1	Br	37%	86%
2	Br	41%	88%
3	→ O Br	37%	60%
4	O H ₂ N Br	20%	45%
5	NC Br	32%	56%
6	$\begin{array}{c} A_{cO} \\ A_{cO} \\ A_{cO} \\ B_{r} \end{array}$ (α -acetobromoglucose) $A_{cO} \\ O_{Ac} \\ O_{Ac} \end{array}$	35% β-anomer	60% β-anomer
7	Aco Aco Br	23% β-anomer	44% β-anomer
8	(α -acetobromogalactose) A_{CO} A_{CO} A_{CO} A_{CO} α -acetobromorhamnose) A_{CO}	10% β-anomer	45% β-anomer
9	α -acetobromoribose)	21% β-anomer	42% β-anomer
10	$O_2N - O - O - O - O - O - O - O - O - O - $	20% β-anomer	40% β-anomer

Table 1.1. Reaction of 1.52 with alkyl bromide under Mitsunobu conditions using two different

redox couples.

The Vidal group reported the generation of mono- and di-substituted acyclic sulfamides using solid-support resins and sulfamoylating agent 1.28 (Scheme 1.14).⁴⁵ Montero and coworkers have described the preparation of a sulfamoylating agent 1.28 and its reactivity with various amines (vide infra).³² Vidal and coworkers employed the Burgess Type reagent **1.28** with polystyrene (PS)-supported benzylamine amine **1.55** to prepare Boc-substituted sulfamide **1.56** by the reaction of excess of sulfamoylating agent **1.28** (3 equiv.) and PS-benzyl amine **1.55** in DMF-CH₂Cl₂ at room temperature. Utilization of TFA allowed simultaneous deprotection and cleavage from the resin to provide sulfamide **1.57**. On the other hand, Mitsunobu alkylation of **1.56** and subsequent cleavage in TFA-CHCl₃-H₂O (50:50:1) afforded the non-symmetric sulfamide **1.59**.

Scheme 1.14. Synthesis of acyclic sulfamides using solid-support resins and 1.28.

1.3 Methods to generate cyclic sulfamide

Exploratory studies related to the design and synthesis of functionalized cyclic sulfamides have been achieved for the invention of pharmaceutical compounds such as HIV protease inhibitors, virus inhibitor, and diabetes treatment.⁴⁶ In this section, various methods for the generation of cyclic sulfamides are summarized.

In 2000, Hanson and coworkers reported new methods employing ring-closing metathesis (RCM) to generate C_2 -symmetric sulfamides **1.60** and **1.61** and the asymmetric cyclic sulfamide

1.62 starting from from sulfuryl chloride (SO₂Cl₂) and chlorosulfonyl isocyanate (OCNSO₂Cl) (Scheme 1.15).⁴⁷

Scheme 1.15.

The synthetic route to the amino acid-derived C_2 -symmetric sulfamides is outlined in Scheme 1.16. Condensation of amino ester with sulfuryl chloride generates sulfamide **1.63** in 70–85% yield. Diallylation to the sulfamide, and RCM using the first-generation Grubbs catalyst (**G-I**),⁴⁸ subsequently afforded the C_2 -symmetric cyclic sulfamide **1.60** in excellent yields.

Scheme 1.16. *Synthesis of C*₂*-symmetric cyclic sulfamide.*

Next a route to afford the substituted, C_2 -symmetric sulfamide **1.61** is described in Scheme 1.17. In this method, amine **1.64** obtained from amino ester via Swern oxidation and Wittig reaction, was coupled with sulfuryl chloride to furnish sulfamide **1.65** in 71% yield. Subsequent RCM using 15 mol% of the G-I catalyst generated the desired sulfamide 1.61 in 69% yield.

Scheme 1.17. *Synthesis of C*₂*-symmetric cyclic sulfamide.*

The Hanson group also developed a strategy to the unsymmetric cyclic sulfamide utilizing CSI chemistry as outlined in Scheme 1.18. Starting substrate **1.66** was obtained by reacting chlorosulfonyl isocyanate (CSI), *t*-BuOH and an amino ester, and was subsequently utilized in a regioselective Mitsunobu reaction and deprotection to afford unsymmetric intermediate **1.68**. Subsequent diallylation and RCM produced the unsymmetric cyclic sulfamide **1.62** in excellent yield.

Scheme 1.18. Synthesis of unsymmetric cyclic sulfamide.

In 2003, Hanson and coworkers reported the synthesis of tri- and tetra-substituted nonsymmetric cyclic sulfamide compounds (Scheme 1.19).⁴⁹ In this strategy they employed the Mitsunobu reaction to install a stereogenic center using the chiral, non-racemic secondary allyl alcohol **1.69** to produce sulfamide **1.70** in good yield. Allylation followed by RCM using the second-generation Grubbs catalyst (**G-II**),⁴⁸ and Boc-deprotection produced cyclic sulfamide **1.72**. Benzylation afforded the desired trisubstituted cyclic sulfamide **1.73** in excellent yield.

Scheme 1.19. Synthesis of tri- and tetra-substituted non-symmetric cyclic sulfamide compounds.

In 2009, Oh and co-workers reported the preparation of substituted cyclic sulfamides **1.75** via the condensation of the corresponding diamines **1.74** with sulfamide in refluxing pyridine (Scheme 1.20).^{21, 50} Their method was then employed for the preparation of 1β -methylcarbapenems **1.78** which possess excellent *in vitro* antibacterial activity.

Scheme 1.20. Synthesis of a substituted cyclic sulfamide.

Ahn and co-workers have described a component coupling reaction for the synthesis cyclic sulfamide **1.81** as shown in Scheme 1.21.^{46b} Intermediate **1.79** was synthesized via sequential addition of *t*-BuOH and the corresponding mustards to chlorosulfonyl isocyanate (CSI) in CH_2Cl_2 at 0 °C. The *N*-Boc cyclic sulfamide **1.80** was then obtained simply by the treatment of the intermediate **1.79** with K₂CO₃ in DMSO.

Scheme 1.21. Synthesis of cyclic sulfamide from chlorosulfonyl isocyanate (CSI).

In 2005, Chemler and coworkers reported $Cu(OAc)_2$ as an excellent promoter for the intramolecular diamination of inactivated olefins which have the sulfamide moiety (Scheme 1.22).⁵¹ Acyclic sulfamide **1.82** was treated with $Cu(OAc)_2$ (1.2 eq) in the presence of K₂CO₃ as a base at high temperature (90 °C) to provide the desired cyclic sulfamide **1.83** in up to 92%. Free diamine **1.84** can be furnished by the reduction of the sulfamide **1.83** with LiAlH₄ in THF under refluxing conditions in 93% yield.

Scheme 1.22. Intramolecular diamination of olefins.

Table 1.2.

The proposed mechanism suggests that intramolecular diamination is likely initiated by the engagement of $Cu(OAc)_2$ to sulfamide nitrogen to deliver intermediate **1.82a** (Scheme 1.23). Migratory insertion allows formation of the new sp³ N-C bond to furnish the intermediate **1.82b**. The organocopper species **1.82b** is then suggested to undergo ligand exchange with the remaining nitrogen, followed by reductive elimination to afford cyclic sulfamide **1.83**.

Scheme 1.23. Mechanism of diamination

In 2007, the Chemler group expanded the intramolecular diamination using copper (II) carboxylate for the synthesis of cyclic sulfamides (Scheme 1.24).⁵² The organic soluble copper (II) neodecanoate [Cu(ND)₂] allowed for shorter reaction times (90 °C, 24 h) alongside more general organic solvents (DCE, toluene) under the refluxing conditions. A notable development

in this regard was the use of microwave heating (120 °C for 20 min) to further reduce reaction times.

Scheme 1.24. Intramolecular diamination

The reaction mechanism for the copper (II) carboxylate-promoted intramolecular diamination is proposed in Scheme 1.25. Ligand exchange of **1.84** with $Cu(ND)_2$ generates the N–Cu bond, followed by *syn*-aminocupration via transition state **1.86**, to stereoselectively generate *cis*-pyrrolidine **1.87**. The organocopper (II) intermediate **1.87** generates primary radical **1.88** via C–N bond homolysis. Since it is necessary to lose another electron from the substrate, copper needs to be involved in the second C–N bond forming process. The resulting intermediate **1.89** then undergoes ligand exchange and reductive elimination or S_N2 to afford the cyclized unsymmetric sulfamide compound **1.90**.

Scheme 1.25. Proposed diamination mechanism.

In 2004, the Groutas group explored the synthesis of cyclic sulfamides for the generation of potential inhibitors of human leukocyte elastase (HLE) (Scheme 1.26).⁵³ Primary alcohol **1.91** was formed via the reduction of the corresponding amino ester and subsequently utilized in an intramolecular Mitsunobu reaction to furnish a cyclized sulfamide **1.93**.

Scheme 1.26. Synthesis of the clinical potential HLE inhibitor 1.93.

In 2003, the Montero group reported a two-step protocol starting from *N*-benzyl-*N*^{*}-tertbuthoxycarbonylsulfamide **1.94** to generate cyclic sulfamides **1.96** (Scheme 1.27).⁵⁴ Thus, regioselective *N*-alkylation of **1.94** was carried out using dibromoalkanes in the presence of K_2CO_3 in acetone to obtain **1.95** in moderate to good yield for n>3. Alternatively, bromoalcohols were utilized in a Mitsunobu alkylation reaction for the preparation of **1.95**. Subjection of **1.95** to basic conditions under reflux furnished a variety of cyclic sulfamides **1.96**. Bocdeprotection and the coupling with *t*-BuOH bromoacetate in the presence of DBU gave **1.97**. Hydrogenation and peptidic coupling using BOP with *N*-Boc-protected valine, generated sulfamide **1.98** in good yield.

Scheme 1.27. General synthesis of n-membered cyclic sulfamide.

A new heterocyclic class of cyclic sulfamides, 1,4,3,5-oxathiadiazepane-4,4-dioxanes were reported in 2012 as potential analogs of anti-HIV compounds (Scheme 1.28).⁵⁵ The key reaction for the preparation of the cyclic sulfamide **1.103** was the condensation of hydroxysulfamide **1.102** with aldehydes.⁵⁶ Sulfamoylation of amino acid methyl ester generated compound **1.99** which was then allowed to undergo a Mitsunobu alkylation with benzyl alcohol to afford **1.100**. Subsequent deprotection of the Boc group using TFA, followed by reduction of the ester using NaBH₄, furnished **1.102**. Hydroxysulfamide **1.102** was subjected to a cyclodehydration reaction by the treatment of a variety of substituted aromatic aldehydes in CH_2Cl_2 to afford cyclic sulfamide **1.103**.

Scheme 1.28. Synthesis of substituted amino alcohol sulfamides.

In 2010, Stahl and co-workers reported the utilization of Pd-catalyzed hydroamination of allylic sulfamides **1.104** for the synthesis of cyclic sulfamides **1.105** as shown in Scheme 1.29.⁵⁷ Treatment of the allyl sulfamide with Pd(TFA)₂ in the presence of sodium benzoate, catalytic DMSO and molecular oxygen allowed for an oxidative cyclization of allylic sulfamide to generate the desired cyclic sulfamide.

Scheme 1.29. Aerobic oxidative cyclization of sulfamide.

There are two different possible mechanisms to explain this oxidative cyclization reaction (Scheme 1.30): (1) aminopalladation of the alkene followed by the β -hydride elimination or (2) formation of a π -allyl-palladium (II) intermediate via allylic C-H activation followed by the C-N coupling.

Scheme 1.30. Possible mechanism for the palladium-catalyzed oxidative cyclization reaction.

Ligand **1.106** and **1.107** which are known to facilitate allylic C-H activation were tested but only low yields of sulfamide products were observed (Figure 1.4). A further study to distinguish these two mechanisms was carried out, whereby the homoallyl amine derivative **1.108** was synthesized. Cyclization of this substrate would provide evidence in favor of an allylic C–H activation pathway. However, treating this substrate **1.108** under the optimized cyclization reaction conditions resulted in complete recovery of starting material after 24 hrs. Thus, it can be concluded that cyclization via allylic C–H activation does not occur.

Figure 1.4. Ligands and homoallyl amine derivative.

Employment of the optimized reaction conditions with a variety of sulfamides afforded an array of cyclic sulfamides in good to excellent yields (Table 1.3). Substrates bearing both aliphatic or aryl *N*-substituents were found to undergo cyclization efficiently (Table 1.3, **1.109– 1.114**). Quaternary C–N bond formation (**1.115**) stemming from the use of a tri-substituted alkene was found to occur in quantitative yield while employment of a silyloxy allyl amine furnished the corresponding silyloxy vinyl ether **1.116**. Allylic substituents larger than a methyl group delivered diastereomeric product in good to high yield (**1.118–1.120**, diastereomeric ratios > 29:1).

 Table 1.3. Aerobic oxidative cyclization of sulfamide.

In 2007, the Girón group reported a new carboxamide series of 1,1-dioxo-1,2-dihydro- $1^{\lambda 6}$ -1,2,6-thiadiazine derivatives that have a cannabinoid (psychotropic constituent)-like molecular structure (Scheme 1.31).⁵⁸ The general synthetic route for the formation of substituted 1,2,6-thiadiazine 5-carboxamides employs a cyclocondensation with mono-substituted sulfamide and 2,4-dioxocarboxylic acid ethyl ester under the acidic conditions to furnish **1.121**, and subsequent amination with an exogenous amine to afford **1.122** in high yield.

Scheme 1.31. Synthesis of 1,1-dioxo-1,2,6-thiadiazine compounds.

In 2003, Hanson and coworkers reported a result of the synthesis of a variety of amino acid derived unsymmetric cyclic sulfamide compounds utilizing ring-opening metathesis (ROM) polymerization-derived oligomers as soluble supports (Scheme 1.32). ⁵⁹ In this method, norbornenyl-tagged sulfonamide **1.123**⁶⁰ was allowed to undergo sequential reactions with chlorosulfonyl isocyanate and amino acid methyl esters to afford the norbornenyl-tagged sulfamoyl carbamate **1.124**, which was polymerized with 5 mol% of the **G-II** catalyst to generate the soluble oligomer. Dissolving the oligomer in DMF, followed by bis-allylation (allyl bromide, NaI, K₂CO₃) furnished diene **1.125**. Upon precipitation with water, oligomer **1.125** was treated with 10 mol% of the **G-II** catalyst to afford the cyclized compound **1.126**. Cleavage by the TFA: CH₂Cl₂ (1:1) furnished unsymmetric cyclic sulfamide **1.127**. Overall, this method represents a chromatography-free method for the preparation of cyclic sulfamides using a soluble support.

Scheme 1.32. Synthesis of cyclic sulfamide using ring opening metathesis (ROM) oligomers

In 2002, K. C. Nicolaou and coworkers explored the synthesis of nonsymmetric cyclic sulfamides from amino alcohols (Table 1.4).³⁴ In this regard, a Burgess reagent-facilitated cyclic sulfamide synthesis was reported employing primary and secondary amino alcohols under optimized condition. Initially, the reaction mixtures (1.0 equiv. of amino alcohol and 2.5 equiv. of the Burgess reagent) were heated for specified hours in THF to yield cyclic sulfamides

Table 1.4. Synthesis of non-symmetric cyclic sulfamides from amino alcohols.

	$ \begin{array}{c} R^{1} \\ NH \\ OH \\ R^{2} \\ R^{3} \\ R^{4} \\ R^{4} \\ THF, \end{array} $	—→ \ \ \	
Entry	Starting amine	Product	Yield (%)
1	NH NH	N-CO ₂ Me	77 ^[a]
2	O OH H Me		89 ^[b]
3	OH NH2	$ \begin{array}{c} $	45 ^[c]
4	МеО		93 ^[a]
5	O ₂ N H OH	MeO O=S O'N CO ₂ Me	81 ^[a]
6	OH NH2		90 ^[a]
7	H ₂ N OH	HN ^{-S} N ^{-CO₂Me}	90 ^[d]
8	H ₂ N OH Ph Ph	$ \begin{array}{c} $	76 ^[d]

<u>Ph</u>[•] <u>Ph</u> [a] THF, reflux, 2 h; [b] THF, reflux, 21 h; [c] THF, reflux, 8 h; [d] 0 °C, 1 h, then 25 °C, 5 h

(entries 1, 2, and 3). Non-benzylic alcohols were employed to explore a series of six-, seven-, and eight-membered ring analogues (entries 4, 5, and 6) under optimized reaction condition (THF, refluxing 2 h). Utilizing primary aliphatic amines, in conjunction with secondary benzylic alcohols, the reaction mixture was commenced at 0 °C and allowed to warm to 25 °C for 5 h to produce compounds in high yields (entries 7 and 8).

The proposed mechanistic conversion of amino alcohols into non-symmetric cyclic sulfamides using a Burgess-type reagent is shown in Scheme 1.33. Thus, treatment of excess amounts of the Burgess reagent with an amino alcohol leads to a mono-protected, nonsymmetric cyclic sulfamide **B** through the S_N2 reaction of the proposed intermediate **A**. Potentially, deprotection of the carbamate **B** and substitution provides an array of pharmaceutically useful sulfamides such as high-affinity protein ligands⁶¹ and inhibitors of enzymes including HIV proteases.⁶²

Scheme 1.33. Proposed conversion of amino alcohols into cyclic sulfamides.

1.4. Sulfamide catalysts

Recently, asymmetric organocatalysis has emerged as a "third pillar" of enantioselective catalysts, together with biocatalysis and metal catalysis.^{63,64} Although the potential of proline-catalyzed asymmetric intramolecular aldol reactions have been shown by Hajos and Wiechert in the 1970s,⁶⁵ the pioneering discovery of L-proline-catalyzed direct intermolecular asymmetric

aldol reactions by Barbas et al. opened a new gate of asymmetric organocatalysis.^{66,67} Since this seminal discovery, organocatalysis has accumulated the attention of the synthetic community. In this section, various roles of sulfamide catalysts for several types of reactions are highlighted.

1.4.1. Hydroaminoalkylation and hydroamination

In 2012, Doyle group reported hydroaminoalkylation and hydroamination reactions using titanium complexes with sulfamide ligands as precatalysts (Scheme 1.34).⁶⁸ Diphenylsulfamide **1.129** was prepared from SO₂Cl₂ and aniline in the presence of pyridine. Subsequently, sulfamide **1.129** was reacted with two equivalents of Ti(NMe₂)₄ at room temperature to furnish the dinuclear titanium complex **1.130** in 65% yield. This sulfamide-titanium complex was used for catalyzing the hydroamination of olefins. Thus, hydroaminoalkylation of 1-octene, allylbenzene and styrene with *N*-methylaniline was carried out in the presence of 5 mol% of complex **1.130** at 120 °C for 48 hours in *n*-hexane to afford the desired product in moderate to good yield. Catalyst **1.130** was also found to be useful for the intramolecular hydroamination of several aminoalkenes **1.134** and **1.136** under mild conditions employing 2.5 mol% of catalyst loading to produce cyclized amines **1.135** and **1.137**. To date, mechanisms for these reactions are yet to be reported.

Scheme 1.34. Hydroaminoalkylation and hydroamination reactions using titanium complexes.

1.4.2. Aldol reaction

A Ti-enolate-derived diastereoselective aldol reaction using a cyclic sulfamide chiral auxiliary for the preparation of svn-aldol products was reported in 1992 by Ahn and coworkers.⁶⁹ Chiral sulfamide auxiliary **1.140** was synthesized through the coupling reaction of propional chloride and cyclic sulfamide 1.139 which was obtained from the reaction of (1S.2S)diphenyl-1,2-diaminoethane (1.138) and sulfamide. The titanium enolate of 1.140 was generated by the treatment of **1.140** with TiCl₄ in the presence of DIEA in CH₂Cl₂ at -78 °C. This enolate was treated with aldehyde at -78 °C for 5 minutes to afford the *svn*-aldol product in high yield (89–93%) (Table 1.5).

Scheme 1.35. Synthesis of chiral sulfamide auxiliary 1.140 and aldol reaction.

Table 1.5. Asymmetric aldol reactions of titanium enolate of 1.140.

Entry	R in RCHO	Stereoselectivity	Yield (%)
1	Ph	>96:4	91
2	Me	>97:3	90
3	<i>i</i> -Pr	>97:3	93
4	(trans)-MeCH=CH	>95:5	89

Each of the absolute stereochemistries of the *syn* products were identified by comparing the optical rotation of **1.142** with reported data.⁷⁰ The conversion of dialdol **1.141** into **1.142** and recovery of the sulfamide chiral auxiliary **1.139** are described in Scheme 1.36. Treatment of 1.141 with NaOMe generated aldol product 1.142 and sulfamide 1.143 in quantitative yield. Sulfamide 1.143 was, however, found to resist a second cleavage. In order to circumvent this issue, Boc-protection of 1.143 and treatment with NaOMe produced 1.145 and 1.146. Subsequent treatment of reaction mixture with TFA furnished 1.147 and sulfamide chiral auxiliary **1.139**.

1.4.3. Conjugate addition

Asymmetric conjugate addition of ketone or aldehyde to nitro-olefins is a very useful reaction to prepare chiral γ -amino acids. In 2009, Chan and coworkers reported that chiral bifunctional sulfamides were highly efficient organocatalysts in the conjugate addition of aldehydes to *trans-β*-aryl-nitroethenes in the presence of base additives (Scheme 1.37).⁷¹ In this regard, the chiral cyclohexanediamine unit exerted high enantiofacial selectivity in this reaction. Sulfamide catalyst **1.140** was prepared via stepwise reaction of the corresponding amines and (*1R,2R*)-cyclohexane-1,2-diamine with catechol sulfate.⁷²

Scheme 1.37. Conjugate addition of aldehydes to β -aryl-nitroethenes catalyzed by chiral bifunctional sulfamide.

Entry	R ₁	R_2	R ₃	T (h)	Yield (%)	ee (%)
1	Ph	CH_3	CH ₃	3	83	99
2	4-MeO-Ph	CH_3	CH ₃	2	79	99
3	4-Cl-Ph	CH_3	CH ₃	3	79	98
4	4-NO ₂ -Ph	CH_3	CH ₃	3	74	99
5	PhCH=CH	CH_3	CH ₃	24	53	98
6	2-furanyl	CH_3	CH ₃	6	94	98
7	2-thiophenyl	CH_3	CH ₃	24	99	99
8	Ph	$CH_2($	$CH_2)_2CH_2$	23	41	91
9	Ph	Η	CH ₃	23	96 (2/1)	78/70
10	Ph	Η	CH ₂ CH ₃	24	72 (2/1)	91/93
11	Ph	Н	Ph	21	90 (2/1)	82/80

Table for Scheme 1.37. Conjugate addition of aldehydes to β -aryl-nitroethenes catalyzed by chiral bifunctional sulfamide.

A catalytic mechanism of conjugate addition of aldehyde to nitro ethene using a chiral sulfamide catalyst is proposed in Scheme 1.38. Initially, the catalyst and isobutyraldehyde generate the imine intermediate **A**. Tautomerization of **A** is promoted by the base additive (DMAP or imidazole) and generates enamine **B**. As is shown in Scheme 1.37, two hydrogen bonds are postulated to form between the nitro group of nitrostyrene and the sulfamide (intermediate **C**) to attenuate the electrophilic nature of nitrostyrene. Attack of the enamine to the *re*-face of the nitrostyrene double bond provides intermediate **D**. Consequent proton transfer and hydrolysis affords the desired chiral aldehyde product and regenerates the chiral sulfamide catalyst for an ensuing cycle.

Scheme 1.38. Proposed catalytic mechanism.

1.4.4. Michael addition

In 2011, the Nugent group reported a Michael addition using a sulfamide as a catalyst/hydrogen bond donor to generate enantioenriched quaternary carbon containing 73 (Table 1.6). reaction compounds In this regard, of isobutyraldehyde, cyclopentanecarboxaldehyde, and cyclohexanecarboxaldehyde with 2-substituted-nitroethanes in the presence of O'Bu-L-threonine, DMAP and sulfamide as an H-bond donor afforded 1.141–1.144 in high yield and high ee. Addition of aldehyde with nonequivalent α, α '-substituents to β -nitrostyrene provided the Michael products 1.145–1.147 containing a stereogenic quaternary carbons in good yield and excellent ee, albeit with moderate diastereomeric ratios.

	$H \xrightarrow{R^{1}} R^{1} + R^{3} \xrightarrow{R^{1}}$		$\begin{array}{c} O'Bu \\ H_2 (5 \text{ mol}\%) \\ \hline \\ (5 \text{ mol}\%) \\ H_2 (5 \text{ mol}\%) \end{array} H \overset{O}{\underset{R^1}{\overset{R^1}{\underset{R^2}{R^2}{\underset{R^2}{\underset{R^2}{\underset{R^2}{\underset{R^2}{\underset{R^2}{\underset{R^2}{R^2}{\underset{R^2}{\underset{R^2}{R^2}{\underset{R^2}{R^2}{\underset{R^2}{R^2}{\underset{R^2}{R^2}{R^2}{R^2}{R^2}{R^2}{R^2}{R^2}$	\mathbb{R}^{3} (S) \mathbb{R}^{2} NO ₂	
Entry	Product	T (h)	Yield (%)	dr	ee (%)
1	H (S)-1.141	7	97	-	98
2	$H \xrightarrow{p-ClC_{6}H_{4}} NO_{2}$ (S)-1.142	24	98	-	96
3	H (S)-1.143	7	89	-	97
4	H (S)-1.144	48	88	-	91
5	H H CH ₃ O Ph I NO ₂ (S,S)- 1.145	12	84	70:30	97
6	H R C_8H_{17} R	12	71	78:28	91
7	H H (S,S)-1.147	12	70	77:23	98

In 2009, Shea and coworkers reported a new type of H-bond catalysis using a sulfamide catalyst (Scheme 1.39).⁷⁴ The sulfamide catalyst **1.149** can be readily synthesized from the

reaction of aniline **1.148** and SO₂Cl₂ in CH₂Cl₂ in 35% yield. The Friedel-Craft reaction between β -nitrostyrene **1.150** and *N*-methyl indole **1.151** was carried out with 10 mol% of sulfamide **1.149** to provide 3-alkylated indole compound **1.152** in 20% yield. The Baylis-Hillman reaction was performed between methyl acrylate **1.153** and benzaldehyde **1.154** in the presence of the sulfamide catalyst **1.149** and DABCO as a co-catalyst to furnish the vinyl ketone **1.155** in 73% of yield.

Scheme 1.39. Fridel-Crafts reaction and Baylis-Hillman reaction using sulfamide catalysis.

1.4.5. Mitsunobu-like coupling

Sulfamides have been reported for the preparation of a Mitsunobu-type betaine for coupling between alcohols and carboxylic acids and imides (Figure 1.5).⁷⁵ In 1994, Castro and coworkers isolated an unprecedented adduct **1.165** between triphenylphosphine and 3,3-dimethyl-1,2,5-thiadiazolidine 1,1-dioxide **1.159**, which was synthesized from diamine **1.161** and sulfamide ($SO_2(NH_2)_2$). Interestingly, the initial study involved the preparation of **1.160** using **1.156** or **1.157** with **1.158** or **1.159** for the identification of molecules for the treatment of migraine headaches (Figure 1.5).⁷⁶

Figure 1.5.

Under the standard Mitsunobu conditions, alcohol **1.156** and **1.157** failed to furnish the expected alkylated product when reacted with **1.159** ($R^1=R^2=Me$, $R^3=H$), but afforded a white solid was identified as the betaine **1.165** (Figure 1.6). It is important to note that when only one proton on the cyclic sulfamide ($R^1=R^2=H$, $R^3=Me$) is available, the betaine cannot be generated. On the other hand, using acidic component HX with a lower pKa than that of betaine **1.165** allows for the generation of ion pair **1.166**. Reaction with alcohol would then furnish the oxyphosphonium salt **1.167** and cyclic sulfamide **1.159**. Subsequent S_N2 displacement with the nucleophilic component afforded the corresponding product **1.168** with inversion of chiral center. Summary of the reactions with various alcohols and carboxylic acids and imides are given in Table 1.7.

Figure 1.6. Mechanism of coupling reaction through a Mitsunobu-like process.

Table 1.7. Utilization of betaine 1.165 in a Mitsunobu-like process.

1.4.6. Utilization of cyclic sulfamide as chiral auxiliaries

Cyclic sulfamides have been employed as chiral auxiliaries for the production of chiral, non-racemic molecules. In 2010, Dewynter and coworkers reported the application of an acyclic sulfamide as a chiral auxiliary for facilitating asymmetric aldol and alkylation reactions.⁷⁷ Thus, *N*-propionyl sulfamide **1.174** was efficiently synthesized in five steps and shown in Scheme 1.40.

Scheme 1.40. Preparation of cyclosulfamide 1.173 as a chiral auxiliary.

With this sulfamide in hand, the authors were able to accomplish a number of diasteroselective aldol reactions using chiral auxiliary **1.174** as represented in Scheme 1.41. Reaction with 1.2 equiv. of TiCl₄ and **1.174** in CH₂Cl₂ at -78 °C for 30 min followed by the addition of *N*-diisopropyl ethylamine generated the titanium enolate of **1.174**. The enolate was then reacted with aldehyde at the same temperature for 4 hours, warmed to 0 °C, and stirred overnight to afford the aldol product as a single diastereoisomeric, *syn*-aldol product **1.175** (dr >99:1). In this regard, a variety of aldehydes were used and the results are summarized in Table 1.7. The aldol products were subsequently hydrolyzed with 3 equiv. of LiOH monohydrate in THF/H₂O (1:1) at 0 °C to afford the corresponding carboxylic acids **1.176**, as well as the chiral auxiliary **1.173**, without any loss of the stereochemical integrity (Table 1.8).

Scheme 1.41. Diastereoselective aldol reactions.

Table 1.8.

Entry	aldehyde	dr	% Yield	Product	Yield of recovery 1.173	% Yield	Product
1	<i>i</i> Pr-CHO	>99:1	93%	1.175a	96%	95%	1.176a
2	Ph-CHO	>99:1	88%	1.175b	98%	96%	1.176b
3	nPr-CHO	>99:1	92%	1.175c	95%	94%	1.176c
4	cHex-CHO	>99:1	87%	1.175d	93%	93%	1.176d

Chiral sulfamide **1.174** was also reported in asymmetric alkylation reactions. Treatment of **1.174** with NaHMDS or LiHMDS and addition of benzyl bromide or allyl bromide allows for

generation of **1.177** and **1.178** (Scheme 1.42 and Table 1.9). Removal of the chiral auxiliary **1.173** using lithium hydroxide afford only one diastereomer in each case.

Scheme 1.42. Stereocontrolled alkylation.

Table 1.9.

Entry	R-X	Base	dr	Yield	Product	Yield of recovery 1.173	Yield	Product
1	Bn-Br	NaHMDS	>99:1	30%	1.177	96%	95%	1.179
2	Bn-Br	LiHMDS	>99:1	58%	1.177	97%	91%	1.179
3	Allyl-Br	NaHMDS	>99:1	48%	1.178	98%	94%	1.180
4	Allyl-Br	LiHMDS	>99:1	60%	1.178	97%	92%	1.180
5	Allyl-I	LiHMDS	>99:1	78%	1.178	98%	96%	1.180

1.5. Conclusions

In conclusion, sulfamide compounds have been reported possessing a variety of biological activities for the treatment of life threating illnesses such as AIDS and cancers. Despite the indisputable utility of sulfamide compounds, existing routes for their construction were lacking in the literature. With this essential need, synthetic approaches for acyclic and cyclic sulfamide compounds were summarized in this chapter. Many methods from typical procedures to advanced innovative approaches for the synthesis of sulfamides have been developed by scientists featuring symmetric and non-symmetric sulfamides to serve as high affinity protein ligands and pharmaceutically useful agents. There are several investigational and commercially available drugs containing sulfamide moiety in order to treat different types of

diseases. In this regard, generation of new molecular structures and chemical methodologies to discover new pharmacophores are important to survey more pharmaceutically active sulfamide-containing compounds. Several technological advances will undoubtedly enable the formation of new, structurally unique sulfamides exhibiting biological potential. Furthermore, advances in sulfamide organocatalysts will expand a pathway to develop and produce a powerful arsenal for both drug and reagent development.

1.6. References

- 1. For selected examples from recent literature see: (a) Avalle, P.; Foley, J. R.; Mullens, P.; Wang, Y.; Yehl, P. Preparation of N-[(2R)-1,4-dioxan-2-ylmethyl]-N-methyl-N-[3-(1methyl-1H-pyrazol-4-yl)-5-oxo-5H-benzo[4,5]cyclohepta[1,2-b]pyridin-7-yl]sulfamide salts as tyrosine kinase inhibitors. Chem. Abstr. 2009, 151, 173453; US-2009182002, 2009. (b) Harrison, R. J.; Major, J.; Middlesmiss, D.; Ramsden, N.; Kruse, U.; Drewes, G. Preparation of pyrimidinylaminophenyl sulfamide derivatives as ZAP-70 inhibitors. Chem. Abstr. 2009, 151, 10194; WO-2009080638, 2009. (c) Shibata, T.; Iwataru, H.; Kiga, M.; Shimazaki, N.; Echigo, Y.; Fujiwara, K.; Tanzawa, F. Preparation of sulfamide derivatives as mitogenactivated protein kinase (MEK) inhibitors for the treatment of cancer. Chem. Abstr. 2006, 144, 331427; JP-2006083133, 2006. (d) Zhong, J. Y.; Gan, X. D.; Alliston, K. R.; Groutas, W. C., Design, synthesis, and in vitro evaluation of inhibitors of human leukocyte elastase based on a functionalized cyclic sulfamide scaffold. Bioorg. Med. Chem. 2004, 12, 589-593. (e) Collins, I. J.; Cooper, L. C. Preparation of oxadiazole derivatives as γ -secretase inhibitors for treatment of Alzheimer's disease. Chem. Abstr. 2003, 139, 381492; WO-2003093264, 2003. (f) Kadow, J. F.; Regueiro-Ren, A.; Xue, Q. M. Preparation of indolyl-, azaindolyl-, and related heterocyclic sulfonylureidopiperazines for treatment of HIV and AIDS. Chem. Abstr. 2003, 140, 59662; WO-2004000210, 2003. (g) Cherney, R. J.; King, B.W. Preparation of cyclic sulfones as inhibitors of metalloproteases. *Chem. Abstr.* 2002, 136, 309923; WO-2002028846, 2002. (h) Schaal, W.; Karlsson, A.; Ahlse'n, G.; Lindberg, J.: Andersson, H. O.: Danielson, U. H.: Classon, B.: Unge, T.: Samuelsson, B.: Hulte'n, J.: Hallberg, A.; Karle'n, A. Synthesis and Comparative Molecular Field Analysis (CoMFA) of Symmetric and Nonsymmetric Cyclic Sulfamide HIV-1 Protease Inhibitors. J. Med. Chem. 2001, 44, 155–169. (i) Groutas, W. C.; He, S.; Kuang, R.; Ruan, S.; Tu, J.; Chan, H.-K. Inhibition of serine proteases by functionalized sulfonamides coupled to the 1,2,5thiadiazolidin-3-one 1,1 dioxide scaffold. Bioorg. Med. Chem. 2001, 9, 1543-1548.
- Bolli, M.; Boss, C.; Fischli, W.; Clozel, M.; Weller, T. Preparation of novel pyrimidinesulfamides as endothelin receptor antagonists. *Chem. Abstr.* 2002, 137, 93766; WO– 2002053557, 2002.
- Traube, W. Zur Kenntniss des Amids und Imide der Schwefelsäure. Ber. 1892, 25, 2472– 2475.

- (a) On Medicinal Chemistry, 1sr ed.; Stocks, M., Alcaraz, L., Griffen, E., Eds.; Sci.Ink: Oxford, UK, 2007. (b) The Practice of Medicinal Chemistry, 2nd ed.; Wermuth, C. G., Ed.; Academic Press: London, UK, 2003. (c) Albright, J. D.; DeVries, V. G.; Du, M. T.; Largis, E. E.; Miner, T. G.; Reich, M. F.; Shepherd, R. G. Potential antiatherosclerotic agents. 3. Substituted benzoic and nonbenzoic acid analogs of cetaben. J. Med. Chem. 1983, 26, 1393–1411.
- (a) Nickie D. Greer D. N., Doripenem (Doribax): the newest addition to the carbapenems. *Proc (Bayl Univ Med Cent)* 2008, 21, 337–341 (PMCID: PMC2446428). (b) Chahine, E. B.; Ferrill, M. J.; Poulakos, M. N., Doripenem: A new carbapenem antibiotic. *American Journal of Health-System Pharmacy* 2010, 67, 2015-2024. (c) Guo, C. X.; Dong, L. M.; Kephart, S.; Hou, X. J., An efficient synthesis of sulfamides. *Tetrahedron Lett.* 2010, *51*, 2909–2913.
- Barlier A.; Jaquet P., Quinagolide A valuable treatment option for hyperprolactinaemia. *Eur. J. Endocrinol* 2006, 154, 187–195.
- Parker, M. H.; Smith-Swintosky, V. L.; McComsey, D. F.; Huang, Y. F.; Brenneman, D.; Klein, B.; Malatynska, E.; White, H. S.; Milewski, M. E.; Herb, M.; Finley, M. F. A.; Liu, Y.; Lubin, M. L.; Qin, N.; Iannucci, R.; Leclercq, L.; Cuyckens, F.; Reitz, A. B.; Maryanoff, B. E., Novel, Broad-Spectrum Anticonvulsants Containing a Sulfamide Group: Advancement of N-((Benzo[b]thien-3-yl)methyl)sulfamide (JNJ-26990990) into Human Clinical Studies. *J. Med. Chem.* 2009, *52*, 7528–7536.
- (a) Temperini, C.; Winum, J.-Y.; Montero, J.-L.; Scozzafava, A.; Supurana, C. T., Carbonic anhydrase inhibitors: The X-ray crystal structure of the adduct of N-hydroxysulfamide with isozyme II explains why this new zinc binding function is effective in the design of potent inhibitors. *Bioorg. Med. Chem. Lett.* 2007, *17*, 2795–2801. (b) Scozzafava, A.; Mastrolorenzo, A.; Supuran. C. T., Carbonic anhydrase inhibitors and activators and their use in therapy. *Expert Opin. Ther. Pat.* 2006, *16*, 1627. (c) Supuran, C. T.; Scozzafava, A.; Casini, A., Carbonic anhydrase inhibitors. *Med. Res. Rev.* 2003, *23*, 146. (d) Winum, J.-Y.; Scozzafava, A.; Montero, J.-L.; Supuran, C. T., New zinc binding motifs in the design of selective carbonic anhydrase inhibitors. *Mini. Rev. Med. Chem.* 2006, *6*, 921–936. (e) Supuran, C. T.; Scozzafava, A.; Conway, J. In *Carbonic Anhydrase—Its Inhibitors and Activators*; CRC Press: Boca Raton, New York, London, 2004; pp 1–363. (f) Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C. T. *J. Enzyme Inhib. Med. Chem.* 2004, *19*, 199. (g)

- Boriack, P. A.; Christianson, D. W.; Kingery-Wood, J.; Whitesides, G. M. Secondary Interactions Significantly Removed from the Sulfonamide Binding Pocket of Carbonic Anhydrase II Influence Inhibitor Binding Constants. J. Med. Chem. 1995, 38, 2286–2291. (h) Kim, C. Y.; Chang, J. S.; Doyon, J. B.; Baird, T. T.; Fierke, C. A.; Jain, A.; Christianson, D. W. Contribution of Fluorine to Protein-Ligand Affinity in the Binding of Fluoroaromatic Inhibitors to Carbonic Anhydrase II. J. Am. Chem. Soc. 2000, 122, 12125-12134. (i) Vidgren, J.; Svensson, A.; Liljas, A. Refined structure of the aminobenzolamide complex of human carbonic anhydrase II at 1.9Å and sulphonamide modelling of bovine carbonic anhydrase III. Int. J. Biol. Macromol. 1993, 15, 97–100. (j) Gruneberg, S.; Stubbs, M. T.; Klebe, G. Successful virtual screening for novel inhibitors of human carbonic anhydrase: strategy and experimental confirmation. J. Med. Chem. 2002, 45, 3588-3602. (k) Abbate, F.; Supuran, C. T.; Scozzafava, A.; Orioli, P.; Stubbs, M.; Klebe, G. Nonaromatic Sulfonamide Group as an Ideal Anchor for Potent Human Carbonic Anhydrase Inhibitors: Role of Hydrogen-Bonding Networks in Ligand Binding and Drug Design. J. Med. Chem. 2002, 45, 3583–3578. (1) Nishimori, I.; Vullo, D.; Innocenti, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Carbonic anhydrase inhibitors. The mitochondrial isozyme VB as a new target for sulfonamide and sulfamate inhibitors. J. Med. Chem. 2005, 48, 7860-7866. (m) Vullo, D.; Franchi, M.; Gallori, E.; Pastorek, J.; Scozzafava, A.; Pastorekova, S.; Supuran, C. T. Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with aromatic and heterocyclic sulfonamides. Bioorg. Med. Chem. Lett. 2003, 13, 1005.
- 9. http://www.who.int/mediacentre/factsheets/fs297/en/
- (a) Stewart, G. W.; Brands, K. M. J.; Brewer, S. E.; Cowden, C. J.; Davies, A. J.; Edwards, J. S.; Gibson, A. W.; Hamilton, S. E.; Katz, J. D.; Keen, S. P.; Mullens, P. R.; Scott, J. P.; Wallace, D. J.; Wise, C. S., Process development and large-scale synthesis of a c-Met kinase inhibitor. *Org. Proc. Res. Dev.* 2010, *14*, 849–858. (b) Pan, B. S.; Chan, G. K. Y.; Chenard, M.; Chi, A.; Davis, L. J.; Deshmukh, S. V.; Gibbs, J. B.; Gil, S.; Hang, G. Z.; Hatch, H.; Jewell, J. P.; Kariv, I.; Katz, J. D.; Kunii, K.; Lu, W.; Lutterbach, B. A.; Paweletz, C. P.; Qu, X. L.; Reilly, J. F.; Szewczak, A. A.; Zeng, Q. W.; Kohl, N. E.; Dinsmore, C. J., MK-2461, a Novel Multitargeted Kinase Inhibitor, Preferentially Inhibits the Activated c-Met Receptor. *Cancer Research* 2010, *70*, 1524–1533. (c) Katz, J. D.; Jewell, J. P.; Guerin, D. J.; Lim, J.; Dinsmore, C. J.; Deshmukh, S. V.; Pan, B. S.; Marshall, C. G.; Lu, W.; Altman, M. D.;

Dahlberg, W. K.; Davis, L.; Falcone, D.; Gabarda, A. E.; Hang, G. Z.; Hatch, H.; Holmes, R.; Kunii, K.; Lumb, K. J.; Lutterbach, B.; Mathvink, R.; Nazef, N.; Patel, S. B.; Qu, X. L.; Reilly, J. F.; Rickert, K. W.; Rosenstein, C.; Soisson, S. M.; Spencer, K. B.; Szewczak, A. A.; Walker, D.; Wang, W. X.; Young, J.; Zeng, Q. W., Discovery of a 5H-Benzo 4,5 cyclohepta 1,2-b pyridin-5-one (MK-2461) Inhibitor of c-Met Kinase for the Treatment of Cancer. *J. Med. Chem.* **2011**, *54*, 4092–4108.

- (a) Jeffers, M.; Rong, S.; Vande Woude, G. F. Enhanced tumorigenicity and invasionmetastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. *Mol. Cell. Biol.* 1996, *16*, 1115–1125. (b) Matsumoto, K.; Date, K; Shimura, H.; Nakamura, T., Acquisition of Invasive Phenotype in Gallbladder Cancer Cells via Mutual Interaction of Stromal Fibroblasts and Cancer Cells as Mediated by Hepatocyte Growth Factor. *Jpn. J. Cancer Res.* 1996, *87*, 702–710. (c) Vuononvirta, R.; Sebire, N. J.; Messahel, B.; Perusinghe, N.; Reisfilho, J. S.; Pritchard-Jones, K.; Vujanic, G. M.; Jones, C., Expression of HGF and its receptor Met in Wilms tumours and nephrogenic rests reflects their roles in kidney development, *Clin. Cancer Res.* 2009, *15*, 2723–2730.
- Parrish, C. A.; Adams, N. D.; Auger, K. R.; Burgess, J. L.; Carson, J. D.; Chaudhari, A. M.; Copeland, R. A.; Diamond, M. A.; Donatelli, C. A.; Duffy, K. J.; Faucette, L. F.; Finer, J. T.; Huffman, W. F.; Hugger, E. D.; Jackson, J. R.; Knight, S. D.; Luo, L.; Moore, M. L.; Newlander, K. A.; Ridgers, L. H.; Sakowicz, R.; Shaw, A. N.; Sung, C. M. M.; Sutton, D.; Wood, K. W.; Zhang, S. Y.; Zimmerman, M. N.; Dhanak, D., Novel ATP-competitive kinesin spindle protein inhibitors. *J. Med. Chem.* **2007**, *50*, 4939–4952.
- Hamilton, N. M.; Dawson, M.; Fairweather, E. E.; Hamilton, N. S.; Hitchin, J. R.; James, D. I.; Jones, S. D.; Jordan, A. M.; Lyons, A. J.; Small, H. F.; Thomson, G. J.; Waddell, I. D.; Ogilvie, D. J., Novel Steroid Inhibitors of Glucose 6-Phosphate Dehydrogenase. *J. Med. Chem.* 2012, 55, 4431–4445.
- Shiozaki, M.; Maeda, K.; Miura, T.; Kotoku, M.; Yamasaki, T.; Matsuda, I.; Aoki, K.; Yasue, K.; Imai, H.; Ubukata, M.; Suma, A.; Yokota, M.; Hotta, T.; Tanaka, M.; Hase, Y.; Haas, J.; Fryer, A. M.; Laird, E. R.; Littmann, N. M.; Andrews, S. W.; Josey, J. A.; Mimura, T.; Shinozaki, Y.; Yoshiuchi, H.; Inaba. T. Discovery of (1*S*,2*R*,3*R*)-2,3-Dimethyl-2-phenyl-

1-sulfamidocyclopropanecarboxylates: Novel and Highly Selective Aggrecanase Inhibitors. *J. Med. Chem.* **2011**, *54*, 2839–2863.

- (a) Tortorella, M. D.; Tomasselli, A. G.; Mathis, K. J.; Schnute, M. E.; Woodard, S. S.; Munie, G.; Williams, J. M.; Caspers, N.; Wittwer, A. J.; Malfait, A.-M.; Shieh, H.-S. Structural and inhibition analysis reveals the mechanism of selectivity of a series of aggrecanase inhibitors. *J. Biol. Chem.* 2009, 284, 24185–24191. (b) Noe, M. C.; Natarajan, V.; Snow, S. L.; Mitchell, P. G.; Lopresti-Morrow, L.; Reeves, L. M.; Yocum, S. A.; Carty, T. J.; Barberia, J. A.; Sweeney, F. J.; Liras, J. L.; Vaughn, M.; Hardink, J. R.; Hawkins, J. M.; Tokar, C. Discovery of 3,3-dimethyl-5-hydroxypipecolic hydroxamate-based inhibitors of aggrecanase and MMP-13. *Bioorg. Med. Chem. Lett.* 2005, *15*, 2808–2811.
- Sparey, T.; Beher, D.; Best, J.; Biba, M.; Castro, J. L.; Clarke, E.; Hannam, J.; Harrison, T.; Lewis, H.; Madin, A.; Shearman, M.; Sohal, B.; Tsou, N.; Welch, C.; Wrigley, J., Cyclic sulfamide γ-secretase inhibitors. *Bioorg. Med. Chem. Lett.* 2005, *15*, 4212–4216.
- Lewis, S. J.; Smith, A. L.; Neduvelil, J. G.; Stevenson, G. I.; Lindon, M. J.; Jones, A. B.; Shearman, M. S.; Beher, D.; Clarke, E.; Best, J. D.; Peachey, J. E.; Harrison, T.; Castro, J. L., A novel series of potent γ-secretase inhibitors based on a benzobicyclo 4.2.1 nonane core. *Bioorg. Med. Chem. Lett.* 2005, *15*, 373–378.
- (a) Hirayama, F.; Koshio, H.; Ishihara, T.; Watanuki, S.; Hachiya, S.; Kaizawa, H.; Kuramochi, T.; Katayama, N.; Kurihara, H.; Taniuchi, Y.; Sato, K.; Sakai-Moritani, Y.; Kaku, S.; Kawasaki, T.; Matsumoto, Y.; Sakamoto, S.; Tsukamoto, S., Design, synthesis and biological activity of YM-60828 derivatives: Potent and orally-bioavailable factor Xa inhibitors based on naphthoanilide and naphthalensulfonanilide templates. *Bioorg. Med. Chem. Lett.* 2002, *10*, 2597–2610. (b) Hirayama, F.; Koshio, H.; Katayama, N.; Ishihara, T.; Kaizawa, H.; Taniuchi, Y.; Sato, K.; Sakai-Moritani, Y.; Kaku, S.; Kurihara, H.; Kawasaki, T.; Matsumoto, Y.; Sakamoto, S.; Tsukamoto, S., Design, synthesis and biological activity of YM-60828 derivatives. Part 2: Potent and orally-bioavailable factor Xa inhibitors based on benzothiadiazine-4-one template. *Bioorg. Med. Chem. Lett.* 2003, *11*, 367–381.
- Dou, D. F.; Tiew, K. C.; He, G. J.; Mandadapu, S. R.; Aravapalli, S.; Alliston, K. R.; Kim, Y.; Chang, K. O.; Groutas, W. C., Potent inhibition of Norwalk virus by cyclic sulfamide derivatives. *Bioorg. Med. Chem. Lett.* 2011, 19, 5975–5983.

- Shaw, D.; Best, J.; Dinnell, K.; Nadin, A.; Shearman, M.; Pattison, C.; Peachey, J.; Reilly, M.; Williams, B.; Wrigley, J.; Harrison, T., 3,4-Fused cyclohexyl sulfiones as gamma-secretase inhibitors. *Bioorg. Med. Chem. Lett.* 2006, *16*, 3073–3077.
- Kim, S. J.; Park, H. B.; Lee, J. S.; Jo, N. J.; Yoo, K. H.; Baek, D.; Kang, B.-W.; Cho, J.-H.; Oh, C.-H., Novel lβ-methylcarbapenems having cyclic sulfonamide moieties: Synthesis and evaluation of *in vitro* antibacterial activity. *Eur. J. Med. Chem.* 2007, *42*, 1176–1183.
- Castro, J. L.; Baker, R.; Guiblin, A. R.; Hobbs, S. C.; Jenkins, M. R.; Russell, M. G. N.; Beer, M. S.; Stanton, J. A.; Scholey, K.; Hargreaves, R. J.; Graham, M. I.; Matassa, V. G., Synthesis and biological activity of 3-[2-(dimethylamino)ethyl]-5-[(1,1-dioxo-5-methyl-1,2,5-thiadiazolidin-2-yl)methyl]-1H-indole and analogs: antagonists for the 5-HT1D receptor. *J. Med. Chem.* **1994**, *37*, 3023–3032.
- Gong, B.; Zheng, C.; Skrzypczak-Jankun, E.; Yan, Y. F.; Zhang, J. H., A robust twodimensional hydrogen-bonded network: The sulfamide moiety as a new building block for the design of molecular solids. *J. Am. Chem. Soc.* **1998**, *120*, 11194–11195.
- 24. Kloek, J. A.; Leschinsky, K. L., An improved synthesis of sulfamoyl chlorides. J. Org. Chem. 1976, 41, 4028–4029.
- Cano, C.; Pavon, J.; Serrano, A.; Goya, P.; Paez, J. A.; de Fonseca, F. R.; Macias-Gonzalez, M., Novel sulfamide analogs of oleoylethanolamide showing in vivo satiety inducing actions and PPAR alpha activation. *J. Med. Chem.* 2007, *50*, 389–393.
- Woolven, H.; Gonzalez-Rodriguez, C.; Marco, I.; Thompson, A. L.; Willis, M. C., DABCO-Bis(sulfur dioxide), DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation. *Org. Lett.* 2011, *13*, 4876–4878.
- Santos, P. S.; Mello, M. T. S., The raman-spectra of some molecular-complexes of 1azabicyclo [2.2.2]-octane and 1,4-diazabicyclo [2.2.2]-octane. J. Mol. Struc. 1988, 178, 121–133.
- 28. (a) Montero, J. L.; Dewynter, G.; Agoh, B.; Delaunay, B.; Imbach, J. L., Selective synthesis of sulfonylureas and carboxysulfamides: a novel route to oxazolidinones. *Tetrahedron Lett.* 1983, 24, 3091–3094. (b) Borghese, A.; Antoine, L.; Van Hoeck, J. P.; Mockel, A.;

Merschaert, A., Mild and safer preparative method for nonsymmetrical sulfamides via N-sulfamoyloxazolidinone derivatives: Electronic effects affect the transsulfamoylation reactivity. *Org. Proc. Res. Dev.* **2006**, *10*, 770–775.

- 29. Beaudoin, S.; Kinsey, K. E.; Burns, J. F., Preparation of unsymmetrical sulfonylureas from *N*,*N*'-sulfuryldiimidazoles. *J. Org. Chem.* **2003**, *68*, 115–119.
- 30. (a) Saha, A. K.; Schultz, P.; Rapoport, H., 1,1'-Carbonylbis(3-methylimidazolium) triflate: an efficient reagent for aminoacylations. *J. Am. Chem. Soc.* 1989, *111*, 4856–4859.
 (b) Watkins, B. E.; Kiely, J. S.; Rapoport, H., Synthesis of oligodeoxyribonucleotides using N-(benzyloxycarbonyl)-blocked nucleosides. *J. Am. Chem. Soc.* 1982, *104*, 5702–5708.
- 31. Staab, H. A. New Methods of Preparative Organic Chmistry IV. Syntheses Using Heterocyclic Amides (Azolides). *Angew. Chem., Int. Ed. Engl.* **1962**, *1*, 351–367.
- Winum, J. Y.; Toupet, L.; Barragan, V.; Dewynter, G.; Montero, J. L., *N-(tert-butoxycarbonyl)-N-* 4-(dimethylazaniumylidene)-1,4-dihydropyridin -1-ylsulfonyl azanide: A new sulfamoylating agent. Structure and reactivity toward amines. *Org. Lett.* 2001, *3*, 2241–2243.
- 33. Burgess, E. M.; Penton, H. R.; Taylor, E. A., Thermal reactions of alkyl *N*-carbomethoxysulfamate esters. *J. Org. Chem.* **1973**, *38*, 26–31 and references therein.
- (a)Nicolaou, K. C.; Snyder, S. A.; Longbottom, D. A.; Nalbandian, A. Z.; Huang, X. H., New uses for the Burgess reagent in chemical synthesis: Methods for the facile and stereoselective formation of sulfamidates, glycosylamines, and sulfamides. *Chem. Eur. J.* 2004, 10, 5581–5606. (b) Nicolaou, K. C.; Longbottom, D. A.; Snyder, S. A.; Nalbanadian, A. Z.; Huang, X. H., A new method for the synthesis of nonsymmetrical sulfamides using Burgess-type reagents. *Angew. Chem., Int. Ed. Engl.* 2002, 41, 3866–3870.
- For an alternative synthesis of linear sulfamide, see: Davis, F. A.; Giangiordano, M. A.; Starner, W. E., A new synthesis of primary amines from diarylidenesulfamides. *Tetrahedron Lett.* 1986, 27, 3957–3960.
- (a) Dubois, G. E., Amination of aryl sulfamate esters a convenient general synthesis of aliphatic sulfamides. *J. Org. Chem.* 1980, 45, 5373–5375. (b) Gavernet, L.; Elvira, J. E.; Samaja, G. A.; Pastore, V.; Cravero, M. S.; Enrique, A.; Estiu, G.; Bruno-Blanch, L. E.,

Synthesis and anticonvulsant activity of amino acid-derived sulfamides. *J. Med. Chem.* **2009**, *52*, 1592–1601. (c) Zhang, X. J.; Liu, S. P.; Li, X. M.; Yan, M.; Chan, A. S. C., Highly enantioselective conjugate addition of aldehydes to nitroolefins catalyzed by chiral bifunctional sulfamides. *Chem. Commun.* **2009**, 833–835. (d) Wang, J. J.; Lao, J. H.; Du, Q. S.; Nie, S. Z.; Hu, Z. P.; Yan, M., Enantioselective conjugate addition of ketones to nitroalkenes catalyzed by pyrrolidine-sulfamides. *Chirality* **2012**, *24*, 232–238. (e) Chen, J. R.; Fu, L.; Zou, Y. Q.; Chang, N. J.; Rong, J.; Xiao, W. J., Pyrrolidinyl-sulfamide derivatives as a new class of bifunctional organocatalysts for direct asymmetric Michael addition of cyclohexanone to nitroalkenes. *Org. Biomol. Chem.* **2011**, *9*, 5280–5287.

- 37. (a) Kaiser, E. T.; Katz, I. R.; Wulfers, T. F., Alkaline hydrolysis of catechol cyclic sulfate. An extraordinary rate acceleration. *J. Am. Chem. Soc.* 1965, *87*, 3781–3782. (b) Tintel, C.; Terheijden, J.; Lugtenburg, J.; Cornelisse, J., Photoreduction and photoaddition reactions of pyrenediones. *Tetrahedron Lett.* 1987, *28*, 2057–2060. (c) Dubois, G. E.; Stephenson, R. A., Sulfonylamine-mediated sulfamation of amines – A mild, high-yield synthesis of sulfamic acid salts. *J. Org. Chem.* 1980, *45*, 5371–5373.
- Tickner, A. M.; Liu, C.; Hild, E.; Mendelson, W., An efficient synthesis of catechol cyclic sulfates. *Syn. Comm.* 1994, 24, 1631–1637.
- Fettes, K. J.; Howard, N.; Hickman, D. T.; Adah, S.; Player, M. R.; Torrence, P. F.; Micklefield, J., Synthesis and nucleic-acid-binding properties of sulfamide- and 3 '-Nsulfamate-modified DNA. J. Chem. Soc.-Perk. Trans. 1 2002, 485–495.
- 40. Buncel, E.; Raoult, A.; Lancaste.La, Bond scission in sulfur-compounds. VIII. Reaction of aryl chlorosulfates with anionic nucleophiles. *J. Am. Chem. Soc.* **1973**, *95*, 5964–5967.
- 41. Turcotte, S.; Bouayad-Gervais, S. H.; Lubell, W. D., N-Aminosulfamide Peptide Mimic Synthesis by Alkylation of Aza-sulfuryllglycinyl Peptides. *Org. Lett.* **2012**, *14*, 1318–1321.
- 42. Charalambous, J.; Frazer, M. J.; Gerrard, W., Solubility of hydrogen chloride in sulphones, sulphonates, and sulphonyl chlorides. *J. Chem. Soc.* **1964**, 1520–1521.
- Bolli, M. H.; Boss, C.; Binkert, C.; Buchmann, S.; Bur, D.; Hess, P.; Iglarz, M.; Meyer, S.; Rein, J.; Rey, M.; Treiber, A.; Clozel, M.; Fischli, W.; Weller, T., The discovery of *N*-5-(4bromophenyl)-6-2-(5-bromo-2-pyrimidinyl)oxy ethoxy-4-pyrimidinyl-N' propylsulfamide

(Macitentan), an orally active, potent dual endothelin receptor antagonist. *J. Med. Chem.* **2012**, *55*, 7849–7861.

- Winum, J. Y.; Barragan, V.; Montero, J. L., A convenient method for the alkylation of sulfamides using alkyl bromides and Mitsunobu betaine. *Tetrahedron Lett.* 2001, 42, 601– 603.
- 45. Esteve, C.; Vidal, B., Solid-phase synthesis of sulfamides. *Tetrahedron Lett.* 2002, 43, 1019–1021.
- 46. (a) Jadhav, P. K.; Woerner, F. J., Synthesis of 8-membered cyclic sulfamides: novel HIV-1 protease inhibitors. *Tetrahedron Lett.* 1995, *36*, 6383–6386. (b) Kim, S. H.; Bok, J. H.; Lee, J. H.; Kim, I. H.; Kwon, S. W.; Lee, G. B.; Kang, S. K.; Park, J. S.; Jung, W. H.; Kim, H. Y.; Rhee, S. D.; Ahn, S. H.; Bae, M. A.; Ha, D. C.; Kim, K. Y.; Ahn, J. H., Synthesis and biological evaluation of cyclic sulfamide derivatives as 11 β-hydroxysteroid dehydrogenase 1 inhibitors. *ACS. Med. Chem. Lett.* 2012, *3*, 88–93.
- Dougherty, J. M.; Probst, D. A.; Robinson, R. E.; Moore, J. D.; Klein, T. A.; Snelgrove, K. A.; Hanson, P. R., Ring-closing metathesis strategies to cyclic sulfamide peptidomimetics. *Tetrahedron* 2000, *56*, 9781–9790.
- 48. For the first-generation Grubbs catalyst: (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H., A Series of well-defined metathesis catalysts–synthesis of [RuCl₂(= CHR')(PR₃)₂] and its reactions. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 2039. (b) Wu, Z.; Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. Reactions of ruthenium carbenes of the type (PPh₃)₂(X)₂Ru:CH-CH:CPh₂ (X = Cl and CF₃COO) with strained acyclic olefins and functionalized olefins. *J. Am. Chem. Soc.* **1995**, *117*, 5503. (c) Schwab, P.; Grubbs, R. H.; Ziller, J. W. Synthesis and applications of RuCl₂(=CHR⁴)(PR₃)₂: The influence of the alkylidene moiety on metathesis activity. *J. Am. Chem. Soc.* **1996**, *118*, 100. For the second-generation Grubbs catalyst, see: Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. *Org. Lett.* **1999**, *1*, 953.
- (a) Jun, J. H.; Dougherty, J. M.; Jimenez, M. D.; Hanson, P. R., New strategies to symmetric and unsymmetric cyclic sulfamide analogs of DMP 323: a 'sulfur linchpin'/RCM approach. *Tetrahedron* 2003, *59*, 8901–8912. (b) McReynolds, M. D.; Dougherty, J. M.; Hanson, P.

R., Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. *Chem. Rev.* **2004**, *104*, 2239–2258.

- Kim, S. J.; Cho, J. H.; Oh, C. H., Novel 1 β-methylcarbapenems having cyclic sulfonamide moieties: Synthesis and evaluation of in vitro antibacterial activity - Part II. *Archiv Der Pharmazie* 2009, 342, 528–532.
- 51. Zabawa, T. P.; Kasi, D.; Chemler, S. R., Copper(II) acetate promoted intramolecular diamination of unactivated olefins. *J. Am. Chem. Soc.* **2005**, *127*, 11250–11251.
- Zabawa, T. P.; Chemler, S. R., Copper(II) carboxylate promoted intramolecular diamination of terminal alkenes: Improved reaction conditions and expanded substrate scope. *Org. Lett.* 2007, *9*, 2035–2038.
- Zhong, J. Y.; Gan, X. D.; Alliston, K. R.; Groutas, W. C., Design, synthesis, and in vitro evaluation of inhibitors of human leukocyte elastase based on a functionalized cyclic sulfamide scaffold. *Bioorg. Med. Chem.* 2004, *12*, 589–593.
- Regainia, Z.; Winum, J. Y.; Smaine, F. Z.; Toupet, L.; Aouf, N. E.; Montero, J. L., General synthesis of *n*-membered cyclic sulfamides. *Tetrahedron* 2003, 59, 6051–6056.
- 55. Bendjeddou, A.; Abbaz, T.; Regainia, Z.; Aouf, N.-E., A New Class of Heterocycles: 1,4,3,5-Oxathiadiazepane 4,4-dioxides. *Molecules* **2012**, *17*, 1890–1899.
- (a) Kumar, G. B.; Patel, H. V.; Shah, A. C.; Trenkle, M.; Cardin, C. J., Diastereoselective formation of 2-aryl-3-arenesulfonyl 4-ethyl-1,3-oxazolidines: An x-ray crystallographic and H-1 NMR study. *Tetrahedron-Asymm.* **1996**, *7*, 3391–3396. (b) Wilken, J.; Wallbaum, S.; Saak, W.; Haase, D.; Pohl, S.; Patkar, L. N.; Dixit, A. N.; Chittari, P.; Rajappa, S.; Martens, J., Utilization of industrial waste materials, 6. Utilization of derivatives of the bicyclic proline analog (all-*R*)-octahydrocyclopenta[b]pyrrol-2-carboxylic acid in the stereoselective synthesis. *Liebigs Ann.* **1996**, 927–934. (c) Heydenreich, M.; Koch, A.; Lazar, L.; Szatmari, I.; Sillanpaa, R.; Kleinpeter, E.; Fulop, F. Synthesis and stereochemical studies of 1- and 2-phenyl-substituted 1,3-oxazino[4,3-*a*]isoquinoline derivatives, *Tetrahedron* **2003**, *59*, 1951–1959.

- McDonald, R. I.; Stahl, S. S., Modular synthesis of 1,2-diamine derivatives by palladiumcatalyzed aerobic oxidative cyclization of allylic sulfamides. *Angew. Chem., Int. Ed. Engl.* 2010, 49, 5529–5532.
- Cano, C.; Goya, P.; Paez, J. A.; Giron, R.; Sanchez, E.; Martin, M. I., Discovery of 1,1dioxo-1,2,6-thiadiazine-5-carboxamide derivatives as cannabinoid-like molecules with agonist and antagonist activity. *Bioorg. Med. Chem.* 2007, *15*, 7480–7493.
- Harned, A. M.; Mukherjee, S.; Flynn, D. L.; Hanson, P. R., Ring-opening metathesis phase-trafficking (ROMpt) synthesis: Multistep synthesis on soluble ROM supports. *Org. Lett.* 2003, *5*, 15–18.
- (a) Dougherty, J. M.; Probst, D. A.; Robinson, R. E.; Moore, J. D.; Klein, T. A.; Snelgrove, K. A.; Hanson, P. R., Ring-closing metathesis strategies to cyclic sulfamide peptidomimetics. *Tetrahedron* 2000, *56*, 9781–9790. (b) Dougherty, J. M.; Probst, D. A.; Hanson, P. R., Ring-closing metathesis strategies to cyclic sulfamides. *Abst. of Papers of the Am. Chem. Soc.* 2000, *220*, U107–U107.
- (a) Cherney, R. J.; King, B. W. Cyclic sulfonyl compounds as inhibitors of metalloproteases. *Chem. Abstr.* 2002. 136. 309923; WO-2002028846, 2002. (b) Shih, N. –Y.; Shue, H. –J. Reichard, G. A.; Paliwal, S.; Blythin, D. J.; Piwinski, J. J.; Xiao, D.; Chen, X. Selective neurokinin antagonists. *Chem. Abstr.* 2001. 135. 61331; WO–2001044200, 2001.
- (a) Schaal, W.; Karlsson, A.; Ahlsen, G.; Lindberg, J.; Andersson, H. O.; Danielson, U. H.; Classon, B.; Unge, T.; Samuelsson, B.; Hulten, J.; Hallberg, A.; Karlen, A. Synthesis and comparative molecular field analysis (CoMFA) of symmetric and nonsymmetric cyclic sulfamide HIV-1 protease inhibitors. *J. Med. Chem.* 2001, *44*, 155–169. (b) Spaltenstein, A.; Almond, M. R.; Bock, W. J.; Cleary, D. G.; Furfine, E. S.; Hazen, R. J.; Kazmierski, W. M.; Salituro, F. G.; Tung, R. D.; Wright, L. L. Novel inhibitors of HIV protease: design, synthesis and biological evaluation of picomolar inhibitors containing cyclic P1/P2 scaffolds. *Bioorg. Med. Chem. Lett.* 2000, *10*, 1159–1162. (c) Backbro, K.; Lowgren, S.; Osterlund, K.; Atepo, J.; Unge, T.; Hulten, J.; Bonham, N. M.; Schaal, W.; Karlen, A.; Hallberg, A. Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor. *J. Med. Chem.* 1997, *40*, 898–902. (d) Hulten, J.; Bonham, N. M.; Nillroth, U.; Hansson, T.; Zuccarello, G.; Bouzide, A.; Aqvist, J.; Classon, B.; Danielson, U. H.; Karlen, A.; Kvarnstrom, I.;

Samuelsson, B.; Hallberg, A. Cyclic HIV-1 protease inhibitors derived from mannitol: synthesis, inhibitory potencies, and computational predictions of binding affinities. *J. Med. Chem.* **1997**, *40*, 885–897.

- 63. Moyano, A.; Rios, R., Asymmetric Organocatalytic cyclization and cycloaddition reactions. *Chem. Rev.* **2011**, *111*, 4703–4832.
- 64. For reviews on the organocatalytic synthesis of drugs and of bioactive natural products, see:
 (a) de Figueiredo, R. M.; Christmann, M., Organocatalytic synthesis of drugs and bioactive natural products. *Eur. J. Org. Chem.* 2007, 2575–2600. (b) Grondal, C.; Jeanty, M.; Enders, D., Organocatalytic cascade reactions as a new tool in total synthesis. *Nature Chem.* 2010, *2*, 167–178. (c) Marques-Lopez, E.; Herrera, R. P.; Christmann, M., Asymmetric organocatalysis in total synthesis a trial by fire. *Nat. Prod. Rep.* 2010, *27*, 1138–1167.
- 65. (a) Wieland, P.; Miescher, K., Über die Herstellung mehrkerniger Ketone. Helv. Chim. Acta, 1950, 33, 2215 (b) Wendler, N. L.; Slates, H. L.; Tishler, M., Δ⁴-9-Methyloctalin-3,8-dione. *J. Am. Chem. Soc.* 1951, 73, 3816–3818. (c) Eder, U.; Sauer, G.; Weichert, R., New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures *Angew. Chem., Int. Ed. Engl.* 1971, *10*, 496–497. (d) Z. G. Hajos and D. R. Parrish, Ger. Offen., 1971, CODEN: GWXXBX DE 2102623 19710729, CAN 76:59072 (in German: pp. 42). (e) S. Ramachandran and M. S. Newman, Org. Synth. Coll., 1973, V, 486. (f) Hajos, Z. G.; Parrish, D. R., Synthesis and conversion of 2-methyl-2-(3-oxobutyl)-1,3-cyclopentanedione to the isomeric racemic ketols of the [3.2.1]bicyclooctane and of the perhydroindane series. *J. Org. Chem.* 1974, *39*, 1612–1615. (g) Hajos, Z. G.; Parrish, D. R., Asymmetric synthesis of bicyclic intermediates of natural product chemistry. *J. Org. Chem.* 1974, *39*, 1615–1621. (h) Bui, T.; Barbas, C. F., A proline-catalyzed asymmetric Robinson annulation reaction. *Tetrahedron Lett.* 2000, *41*, 6951–6954.
- 66. (a) List, B.; Lerner, R. A.; Barbas, C. F., Proline-catalyzed direct asymmetric aldol reactions. *J. Am. Chem. Soc.* 2000, *122*, 2395–2396. (b) Notz, W.; List, B., Catalytic asymmetric synthesis of anti-1,2-diols. *J. Am. Chem. Soc.* 2000, *122*, 7386–7387. (c) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., Amino acid catalyzed direct asymmetric aldol reactions: A bioorganic approach to catalytic asymmetric carbon-carbon bond-forming reactions. *J. Am. Chem. Soc.* 2001, *123*, 5260–5267.

- 67. For two complementary views on the origins and development of organocatalysis:
 (a) Barbas, C. F., III, Organocatalysis Organocatalysis lost: Modern chemistry, ancient chemistry, and an unseen biosynthetic apparatus. *Angew. Chem., Int. Ed. Engl.* 2008, 47, 42–47. (b) List, B., Emil Knoevenagel and the roots of aminocatalysis. *Angew. Chem., Int. Ed. Engl.* 2010, 49, 1730–1734.
- Jaspers, D.; Saak, W.; Doye, S., Dinuclear Titanium Complexes with Sulfamide Ligands as Precatalysts for Hydroaminoalkylation and Hydroamination Reactions. *Synlett* 2012, 2098– 2102.
- 69. Ahn, K. H.; Yoo, D. J.; Kim, J. S., Asymmetric aldol reactions employing a cyclic sulfamide chiral auxiliary. *Tetrahedron Lett.* **1992**, *33*, 6661–6664.
- 70. (a) Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E., Bornanesultam-directed asymmetric synthesis of crystalline, enantiomerically pure syn aldols. *J. Am. Chem. Soc.* 1990, *112*, 2767–2772. (b) Evans, D. A.; Bartroli, J.; Shih, T. L., Enantioselective aldol condensations.
 2. Erythro-selective chiral aldol condensations via boron enolates. *J. Am. Chem. Soc.* 1981, *103*, 2127–2129.
- Zhang, X. J.; Liu, S. P.; Li, X. M.; Yan, M.; Chan, A. S. C., Highly enantioselective conjugate addition of aldehydes to nitroolefins catalyzed by chiral bifunctional sulfamides. *Chem. Commun.* 2009, 833–835.
- 72. (a) Dubois, G. E.; Stephenson, R. A., Sulfonylamine-mediated sulfamation of amines. A mild, high-yield synthesis of sulfamic acid salts. *J. Org. Chem.* 1980, 45, 5371–5373. (b) Dubois, G. E., Amination of aryl sulfamate esters. A convenient general synthesis of aliphatic sulfamides. *J. Org. Chem.* 1980, 45, 5373–5375.
- 73. Nugent, T. C.; Shoaib, M.; Shoaib, A., Practical access to highly enantioenriched quaternary carbon Michael adducts using simple organocatalysts. *Org. Biomol. Chem.* **2011**, *9*, 52–56.
- Rodriguez, A. A.; Yoo, H.; Ziller, J. W.; Shea, K. J., New architectures in hydrogen bond catalysis. *Tetrahedron Lett.* 2009, *50*, 6830–6833.
- 75. Castro, J. L.; Matassa, V. G.; Ball, R. G., Mitsunobu-like processes with a novel triphenylphosphine-cycle sulfamide betaine. *J. Org. Chem.* **1994**, *59*, 2289–2291.

- 76. Castro, J. L.; Matassa, V. G., Methiodide approach to the synthesis of 3-[2-(dimethylamino)ethyl]-5-[(1,1-dioxo-S-methyl-1,2,5-thiadiazolidin-2-yl)methyl]-lH-indole and analogues. *Tetrahedron Lett.* **1993**, *34*, 4705–4708.
- 77. Fecourt, F.; Lopez, G.; Van Der Lee, A.; Martinez, J.; Dewynter, G., Cyclosulfamide as a chiral auxiliary: application to efficient asymmetric synthesis (alkylation/aldolization). *Tetrahedron-Asymm.* **2010**, *21*, 2361–2366.

CHAPTER 2

Newly Developed Piperidinyl Sulfamides as

Tyrosyl-DNA phosphodiesterase 1 (Tdp 1) Inhibitors

2.1. Abstract

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds.¹ Such linkages form *in vivo* following the DNA processing activity of topoisomerase I (Top1). For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes, which can be generated by either exogenous or endogenous factors. Tdp1 has been regarded as a potential therapeutic co-target of Top1 in that it seemingly counteracts the effects of Top1 inhibitors, such as camptothecin and indenoisoquinolines and its clinically used derivatives. Thus, by reducing the repair of Top1-DNA lesions, Tdp1 inhibitors have the potential to augment the anticancer activity of Top1 inhibitors. There are no known specific pharmacological inhibitors of Tdp1. In our attempts to design new chemical scaffolds for anti-cancer activity against various protein targets, we have recently synthesized a host of piperidinyl-based sulfamides. Some of these compounds have shown activity in screeening for Tdp 1 inhibition activity in biochemical assays against recombinant Tdp1. Using molecular modeling and homology studies, a small library of compounds has been synthesized and tested further.

2.2. Introduction

Most people and living organisms on planet earth are exposed to substances that are known to damage DNA, which is caused by UV light, radiation (including x-rays and gamma rays), plastics, cigarette smoke, pesticides, micronutrient deficiency, hydrolysis or thermal disruption, etc. While rare, mistakes also occur during DNA replication, namely, when a cell copies its DNA in preparation for cell division. Ultimately, damaged DNA can be prompted to a tumor cell by proliferating through continuous cell division. Many anticancer drugs used for

chemotherapy generate their anti-cancer activity by damaging DNA in rapidly replicating tumor cells, and this poses a significant risk of generating a new cancer, such as leukemia. Therefore, there is a high demand to develop new inhibitors that may help to repair DNA or oppose the unwanted action of these anticancer agents. Topoisomerase I (Top1) inhibitors, such as Camptothecins,² are chemotherapeutic agents which prevent the replication of single strand DNA molecules, ultimately leading to cell death (Figure 2.1). The natural product camptothecin (2.1) was first isolated from the bark of the Chinese tree, *Camptotheca acuminata*, by the National Cancer Institute (NCI).³ The water-soluble derivatives of Camptothecin–Topotecan (2.2) and Irinotecan (2.3) were developed successfully and approved by the US Food and Drug Administration (FDA): Topotecan for ovarian and lung cancers and Irinotecan for colorectal cancer.⁴

Figure 2.1. Structures of Top1 inhibitors.

2.3. Topoisomerase I (Top1) and Tyrosyl-DNA phosphodiesterase 1 (Tdp1)

Nuclear DNA (nDNA) is approximately a 2 meter-long polymer that is located in a cell nuclear volume of 10⁻¹⁷ m³. Because it is highly compacted, cellular DNA must have many curved DNA domains/loops and points of contact between these domains (Figure 2.2).⁵

Furthermore, DNA metabolism needs the two strands of the double helix to be separated to serve as templates for transcription, replication, recombination and repair and this fundamental processes commences during the cell cycle to maintain its own integrity and generate genetic diversity. Due to the size and mass of replication and transcription complexes, the rigid complexes do not rotate easily around the DNA helix. This limitation of free rotation of the flanking DNA domain generates supercoiled DNA, which needs to be relaxed by topoisomerases. TOP1 relieves DNA torsional stress and relaxes supercoiled DNA by nicking the DNA and rotating the broken strand around the TOP1-bound DNA strand. The yellow circle in Figure 2.2 A shows the covalently linked catalytic tyrosine of TOP1. Figure 2.2 **B** is an expanded version of DNA-relaxation by a TOP1 cleavage complex (TOP1cc). The first step is a transesterification reaction catalyzed by the TOP1 whereby the catalytic tyrosine (Y) is linked to the 3'-DNA end (nicking step) (Figure 2.2 **B**, left). A nucleophilic attack by the tyrosine residue of TOP1 on the phosphate moiety of the substrate releases tyrosine and forms a new covalent enzyme-DNA complex, TOP1cc (Figure 2.3).⁶ In the second step, the torsion strain from DNA supercoiling allows the controlled rotation of the 5' end of the nicked DNA strand around the intact strand (Figure 2.2 B, middle). Once the DNA is relaxed, the nucleophilic attack of the tyrosyl-DNA-phosphodiester bond by the free 5'-hydroxyl end of the nicked DNA is required to religate (bind back) with the corresponding 3' end of DNA, which is called the closing step of the nicking-closing reaction (DNA religation, Figure 2.2 B, right and Figure 2.3). TOP1ccs are generally ephemeral that they are not detectable because the closing step is much faster than the nicking step. It is crucial that any misalignment of the 5'-hydroxyl-DNA end with the scissile tyrosyl-DNA-phosphodiester bond leads to an accumulation of TOP1cc, and it will end up as DNA modification⁷ or result in apoptosis.⁸

Figure 2.2. *Relaxation of DNA supercoiling by TOP1-mediated DNAcleavage complexes*.⁵ (This figure was copied from 'Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. *Nature Reviews Cancer* **2006**, *6*, 789–802)

Figure 2.3. Trans-esterification catalyzed by Top1.

Camptothecin, a Top1 inhibitor, targets Top1 and novel Top1 inhibitors are in development as anticancer agents that prevent the religation of DNA after cleavage during replication (Figure 2.4).⁹ Mechanistically and undesirably, Top1 inhibitors selectively bind to the TOP1-DNA interface and damage DNA by trapping covalent complexes between the Top1 catalytic tyrosine and the 3'-end of the broken DNA.¹⁰

Figure 2.4. *Mechanism for each of Top1 and inhibitor with DNA* (This figure was copied from "Pommier, Y. et al., *Progress in Nucleic Acid Research and Molecular Biology, Vol 81*, Moldave, K., Ed. 2006; pp 179–229.")

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a recently discovered DNA repair enzyme that catalyzes the cleavage (hydrolysis) of phosphodiester bond between the Top1 catalytic tyrosine residue and a DNA 3'-phosphate as shown Figure 2.5.^{1, 11, 12, 13} When the 5'-hydroxyl end of the broken DNA is too far to carry out the nucleophilic addition resulting in DNA religation, then Tdp1 hydrolyzes the intermediate tyrosyl-phosphodiester bond using a water molecule.^{7c, 14} Tdp1 repairs topoisomerase I (Top1)-DNA covalent complexes by this mechanism and Tdp1 has the potential to enhance the negative activity of Top 1 inhibitors in cancer cell as mentioned before.¹⁵ The PNKP (Polynucleotide kinase 3'-phosphatase) enzyme

can then hydrolyze the damaged DNA by either removing 3'-phosphates from, or by phosphorylating 5'-hydroxyl groups on the broken DNA backbone. This is now a substrate for DNA polymerase, which is an enzyme that assists in DNA replication, by adding free nucleotides to the 3' end of a newly forming strand, and ligase which helps the combining of DNA strands together by catalyzing the formation of a phosphodiester bond. As discussed above, Tdp1 counteracts the action of Top1 inhibitors and possibly decrease their effectiveness in reducing cancer cells. Tdp1 repairs DNA lesions and chemotherapeutic-mediated DNA damage, such as the DNA breaks prompted by top1 inhibitors. Thus, Tdp1 is a potentially rational anticancer target whose inhibition should improve the activity of cancer chemotherapeutics.

Figure 2.5. Action of Tdp1 and PNKP.

Tdp1 inhibitors have become a major area of drug research for anti-cancer treatment.^{5,16} A recent study on a steroid-linked benzenesulfonate (NSC 88915) and other derivatives reported that both the steroid and phenylsulfonyl ester moieties of NSC 88915 are required for Tdp1 inhibition (Figure 2.6).¹⁷ In particular, the *p*-Br-substituted benzenesulfonate NSC 88915 showed the best result among the derivatives, its IC₅₀ value was $7.7 \pm 0.8 \mu$ M.

Figure 2.6. Structure of NSC88915 and other derivatives.

Since only a limited number of weak Tdp1 inhibitors have been reported, ¹⁸ we commenced the investigation by designing and developing new desired compounds from a sulfamide moiety. The structural features considered for initial scaffold design were based on various literature reports on compounds tested as inhibitor of Aggrecanase-1, ¹⁹ TACE ²⁰ or KSP (Kinesin Spindle Protein). ²¹ Herein, we report the study of a small library of sulfamide compounds, designed, synthesized and tested for Tdp1 inhibitory activity

2.4. Chemistry

The initial study was the synthesis of the sulfonamide compound 2.7, which has a p-bromo phenyl ring similar to NSC88915 (Scheme 2.1). The synthesis route for the sulfonamide 2.7 was started from the reaction of p-bromo benzenesulfonyl chloride with m-fluoroaniline

under basic conditions. After the generation of sulfonamide intermediate **2.4**, a Mitsunobu reaction was carried out to generate the piperidine-containing secondary amine **2.5**. Reductive amination after deprotection of Boc group, using HCl, was successfully accomplished to generate sulfonamide compound **2.7**.

Scheme 2.1. Preparation of sulfonamide 2.7.

In order to observe the effect of an amino ester moiety on DNA binding or H-bonding, we changed the phenyl ring to an amino ester. The new scaffold design is composed of three fragments as outlined in Figure 2.7, namely, a western subunit (hydrophilic amino ester), central subunit (sulfamide with phenyl ring), and eastern subunit (benzyl piperidine). Modification of the structure of the inhibitor was mainly focused on these three fragments.

Figure 2.7. Scaffold design for Tdp 1 analogues.

Piperidinyl sulfamides derivatives 2.21–2.25 were prepared starting from the reductive amination reaction of *p*-fluoroaniline 2.10 or *n*-butylamine 2.11 and *N*-Boc-4-piperidinone 2.12 to give 2.13 and 2.14 (Scheme 2.2).²² The secondary amines 2.13 and 2.14 were coupled with chlorosulfonyl isocyanate (CSI) and *t*-BuOH in the presence of Et₃N as a base to the corresponding Boc-protected sulfamide moieties 2.15 and 2.16.²³ The subsequent Mitsunobu reaction was carried out with the *α*-hydroxyl amino ester 2.9 to generate the amino ester-linked sulfamides 2.17 and 2.18.²⁴ In this regard, L-valine was converted to the *α*-hydroxyl carboxylic acid 2.8 using the Van Slyke²⁵ reaction which maintains the chiral integrity using H₂SO₄ and NaNO₂ in water at 0 °C overnight with vigorous generation of nitrogen gas being observed.²⁶ Amino ester 2.9 was obtained from amino acid 2.8 via esterification using MeOH/acid.^{27,28} Deprotection of the Boc group furnished the secondary amines 2.19 and 2.20, and reductive amination afforded the piperidinyl sulfamides 2.21–2.25.²⁹

Scheme 2.2. Preparation of compounds 2.21–2.25.

2.4.1. Initial Gel Study

Results of the initial gel study of sulfamide compounds 2.21, 2.25, and other intermediates are shown in Figure 2.8. Key points of Figure 2.8, include: (A) Sulfamide intermediates and final sulfamide compounds; (B) Tdp1 biochemical assays. Single-stranded 14Y (14-mer strand) was used as substrates and ³²P-Radiolabeling (*) was at the 5' terminus of the strand. Tdp1 catalyzes the hydrolysis of the 3'-phosphotyrosine bond using water molecule and converts 14Y to an oligonucleotide with 3'-phosphate 14P; (C) Gel illustrates Tdp1 inhibition by sulfamides with single strand 14Y. 3'-Phosphate oligonucleotide product (14P) was developed faster than the corresponding tyrosyl oligonucleotide substrate (14Y). Reactions were performed with sulfamides in concentration 0.01, 0.1, 1.0, 10, and 100 μ M, and (D) Cleavage inhibition analysis of the gel shown in panel C was calculated as percentage. Gel study for compounds LSC-JHJ-I-55-1 and LSC-JHJ-I-64-1 was carried out together but they are intermediates for other projects. Compound 2.21 showed the best result among the tested compounds with a measured IC₅₀ value of 23.7 μ M.

Figure 2.8. Inhibition of Tdp1 activity by sulfamides and intermediates (Initial Gel Study).

2.4.2. Protein Docking Study

Dr. Iwona Weidlich carried out molecular modeling of piperidinyl sulfamide derivatives (Figure 2.9). The arrow indicates the direction to the Tdp1 active site. Hydrophobic and hydrophilic surface areas of the protein are colored in grey and orange, respectively. The coloring of atoms is as follows: carbon – yellow (**A**), green (**B**); nitrogen – blue; oxygen – red; sulfur - orange. Ligands are displayed in stick representations, while all hydrogen atoms have been shown. Hydrogen bonds are represented by green dotted lines. Both inhibitors bind in the

same binding pocket and form hydrogen bond with Serine 400. In newly synthesized compound **2.21**, the benzyl piperidine moiety is oriented towards Tdp1 active site and the hydrophobic amino ester moiety forms a hydrogen bond with Tyrosine 204.

Piperidinyl sulfamide derivative (2.21) Phenyl sulfonyl ester derivative (NSC 88915)

Figure 2.9. Comparison of the best docking poses of active Compound **2.21** (JHJ-I-44-1, **A**) and reported earlier phenyl sulfonyl ester derivative (NSC 88915, **B**)³⁰ docked into the active site of Tdp1 (H263, K265, H493, and K495).

2.4.3. Synthesis of Piperidinyl Sulfamides

Since we obtained the promising results of the gel study and protein docking study, we continued to make an analogue of the piperidinyl sulfamide. The same synthetic route was utilized for the synthesis of sulfamide compound **2.30** where L-leucine was used as the starting substrate as outlined in Scheme 2.3. After the conversion of L-leucine to α -hydroxy ester **2.27** through **2.26** via esterification, it was used for the Mitsunobu reaction with **2.15** to furnish intermediate **2.28**. In an analogous manner to the aforementioned L-valine-derived analogues **2.21–2.25**, de-protection and reductive amination with *p*-substituted benzaldehyde generated compound **2.30**.

Scheme 2.3. Preparation of compound 2.30.

An alternative route to obtain piperidinyl sulfamides is described below (Scheme 2.4). Sulfuryl chloride was coupled with L- or D-valine methyl ester hydrochlorides to generate sulfamoyl chlorides **2.32** and **2.33** at a low temperature.³¹ The sulfamoyl chloride **2.32** and **2.33** then reacted with *p*-F-phenyl piperidinyl amine **2.31** to furnish sulfamides **2.34** and **2.35**. The secondary piperidinyl amine **2.36** and **2.37** were prepared using HCl (4N in 1,4-dioxane), and reductive amination afforded sulfamides **2.38**, **2.39**, **2.40** and **2.41**. Acylation also proceeded from compound **2.36** and **2.37** to generate compound **2.42**, ³² and compound **2.43** was synthesized from D-valine.

Scheme 2.4. Synthetic route for the preparation of compounds 2.38–2.43.

Synthesis of **2.47** was accomplished through the route described below (Scheme 2.5). *N*-Boc-1-piperidone was deprotected using HCl (4N in 1,4-dioxane) to generate free-base **2.44**, which was reacted with benzaldehyde under reductive amination conditions to afford compound **2.45** in 80% yield. Reductive amination reaction with *m*-fluoroaniline at 0 °C to room temperature, generated amine **2.46** which was coupled with **2.32** under basic condition to complete the synthesis of sulfamide compound **2.47** in 51%.

Scheme 2.5. Synthesis of sulfamide compound 2.47 derived from L-valine.

Secondary amine **2.48** was prepared by the reductive amination of 3,5-bis-trifluoromethyl aniline and *N*-Boc-4-piperidinone (Scheme 2.6). The secondary amine **2.48** was coupled with chlorosulfonyl isocyanate (CSI) and *t*-BuOH in the presence of Et_3N as a base to generate the corresponding Boc-protected sulfamide moiety **2.49**. To diversify the amino ester moiety of the compound, methyl (*S*)-(+)-3-hydroxy-2-methyl propionate **2.50** was used for the Mitsunobu reaction with intermediate **2.49** to afford the corresponding compound **2.51**. Compound **2.51**, when treated with 4N HCl solution in 1,4-dioxane at 0 °C, yielded **2.52**. Intermediate **2.52** was reacted with *p*-fluorobenzaldehyde to furnish compound **2.53** through reductive amination, which was carried out at 0 °C and warmed to room temperature.

Scheme 2.6. Preparation of compound 2.53.

An alternative route to the modified amino ester part is through the use of chlorosulfonyl isocyanate (CSI) chemistry (Scheme 2.7). A solution of CSI and α -hydroxyl ester **2.9**, generated from L-valine via diazotization and esterification, was cannulated to a solution of secondary amine **2.31** in CH₂Cl₂ at 0 °C to obtain a carbamate compound **2.54** in moderate yield. Generation of secondary amine **2.55** via Boc-deprotection of **2.54** and reductive amination with benzaldehyde, afforded the sulfur-containing carbamate compound **2.56**. The coupling reaction with **2.55** and *p*-fluorobenzoyl chloride generated compound **2.57** containing a carbonyl group.

Scheme 2.7. Preparation of compound 2.56 and 2.57.

2.5. Biology

2.5.1. Expression and Purification of Tdp1.

Wild-type and mutant (H493R) human Tdp1 enzymes were expressed in E. coli BL21 (DE3) cells and purified as described earlier,³³ following the described method in reference (Nucleic Acids Res. 2007, 35, 4474-4484). Human Tdp1 expressing plasmid pHN1910 (a gift from Dr. Howard Nash, Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health) was constructed using vector pET-15b (Novagen, Madison, WI, USA) with full-length human Tdp1 and an additional His-tag sequence of MGSSHHHHHHHSSGLVPRGSHMLEDP in its N terminus. The His-tagged human Tdp1 was purified from Novagen BL21 cells using chelating sepharoseTM fast flow column (Amersham Biosciences, Piscataway, NJ, USA) according to the company's protocol. The collected fractions were assayed immediately for Tdp1 activity. Fractions that showed Tdp1 activity were pooled and dialyzed in 20 % glycerol, 50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 10 mM β mercaptoethanol and 2 mM EDTA. Dialyzed samples were aliquoted and stored at -80 °C. Tdp1 concentration was determined using the Bradford protein assay (Bio-Rad Laboratories, Hercules, CA, USA). Tdp1 purity was determined as a single ~70kDa band representing over 95% of the detectable proteins stained by Coomassie after SDS–polyacrylamide gel electrophoresis (SDS-PAGE).

2.5.2. Tdp1 Gel-Based Assay

A 1 nM 5'-³²P-labeled DNA substrate was incubated with 0.1 nM recombinant Tdp1 in the absence or presence of inhibitor for 20 min at 25 °C in a reaction buffer containing 50 μ M Tris-HCl (pH 7.5), 80 mM KCl, 2 mM EDTA, and 40 μ g/mL bovine serum albumin (BSA). Reactions were terminated by the addition of two volumes of gel loading buffer (96% (v/v) formamide, 10 μ M EDTA, 1% (w/v) xylene cyanol, and 1% (w/v) bromphenol blue). The samples were subsequently heated to 95 °C for 5 min and subjected to 18% sequencing gel electrophoresis. A concentration of 100 nM was used when employing the SCAN1 mutant H493R. In addition, H493R reactions were divided in half. One-half of the reaction was run on a sequencing gel, while the other half was analyzed by 4-20% SDS-PAGE electrophoresis. Imaging and quantification were performed using the Typhoon 8600 and ImageQuant software (Molecular Dynamics), respectively.

The results of the final gel study with 17 compounds including compound **2.21** are shown in Figure 2.10. While the compound **2.21** is showing Tdp1 inhibition identical to our previous observations, the compound **2.47** is inactive against Tdp1. This experiment is showing very

interesting result. Compound 2.21 has (R)-configuration on the amino ester moiety, whereas compound 2.47 has (S)-configuration. From this observation, it could be concluded that the chirality of the compound contributes to the affinity of inhibitor for the active site of the Tdp1 enzyme.

Figure 2.10. Gel study with final compounds.

2.6. Molecular Modeling of Piperidinyl Sulfamide Derivatives

2.6.1. Preparation of ligand structures

The piperidinyl sulfamide derivatives described in this paper were drawn in the program ChemBioDraw Ultra 12.0.³⁴ Additional molecular construction and modeling of the derivatives were performed using the building tools available in MACROMODEL 2011 (Schrödinger

Inc.).³⁵ The ligands were minimized using the OPLS-2005 force field. The preparation procedure in GLIDE requires the preparation of the structures in the appropriate ionization state. We used 2D to 3D conversion program LigPrep³⁶ to generate accurate energy minimized molecular structures, expands tautomeric and ionization states, ring conformations, and stereoisomers to produce broad chemical and structural diversity of ligand libraries for further computational analyses.

2.6.2. Molecular Docking

To investigate the binding mode of the piperidinyl sulfamide derivatives to Tdp1 at the molecular level, we performed docking analysis using the high-resolution structure of Tdp1, cocrystallized with a peptide-vanadate-DNA substrate mimic (PDB accession code 1NOP). After construction of a molecular model from 1NOP (published earlier)³⁰ the prepared ligands were docked into the substrate binding pocket of Tdp1 using the program GLIDE (Schrödinger)³⁷ with the Extra Precision mode. A set of Grid files was generated with residues H263, K265, H493 and K495 at the center of the binding box defining the space through which the center of the docked ligand is allowed to move. The size of the cube box was set to 16 Å edge in length in order to explore a large region of the protein. To conduct a more precise analysis of docked poses of the ligands, we mapped the output docking poses to the pharmacophores of the lead compounds³⁰ using absolute positioning in program MOE.³⁸

2.7. Conclusion

Overall, the routes described in this chapter are applicable to the synthesis of sulfamides related to a promising Tdp1 inhibitor. We identified piperidinyl sulfamide derivative **2.21**,

which has exhibited inhibitory activity against Tdp1 at low μ M concentrations. The inhibitory activity was confirmed using a gel-based assay. Through the analysis of concentration versus percentage inhibition curves, we estimated the IC₅₀ value for **2.21** as 23.7 μ M (Figure 2.7). To investigate the binding mode of piperidinyl sulfamide derivatives to Tdp1 at the molecular level, we studied docking analysis. From a stereoview representation of **2.21** (Figure 2.10), we found that the benzyl piperidine moiety is oriented towards the Tdp1 active site and hydrophobic amino ester moiety forms a hydrogen bond with Tyrosine 204. We are currently investigating more compounds with varying pharmacophores that might be active against Tdp1.

2.8. References

- 1. Pouliot, J. J.; Yao, K. C.; Robertson, C. A.; Nash, H. A., Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. *Science* **1999**, *286*, 552–555.
- Wani, M. C.; Wall, M. E., Plant antitumor agents. II. Structure of two new alkaloids from Camptotheca acuminata. J. Org. Chem. 1969, 34, 1364–1367.
- Wall, M. E.; Wani, M. C., Camptothecin and taxol- Discovery to clinic -13th Bruce F. Cain Memorial Award Lecture. *Cancer Research* 1995, 55, 753–760.
- 4. Hsiang, Y. H.; Hertzberg, R.; Hecht, S.; Liu, L. F., Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase-I. *J. Biol. Chem.* **1985**, *260*, 4873–4878.
- 5. Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. *Nature Reviews Cancer* **2006**, *6*, 789–802.
- (a) Interthal, H.; Pouliot, J. J.; Champoux, J. J. The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. *Proc. Natl. Acad. Sci. U. S. A.* 2001, *98*, 12009–12014. (b) Davies, D. R.; Interthal, H.; Champoux, J. J.; Hol, W. G. J. Explorations

of Peptide and Oligonucleotide Binding Sites of Tyrosyl-DNA Phosphodiesterase Using Vanadate Complexes. J. Med. Chem. 2004, 47, 829–837.

- (a) Pommier, Y.; Barcelo, J. A.; Rao, V. A.; Sordet, O.; Jobson, A. G.; Thibaut, L.; Miao, Z. H.; Seiler, J. A.; Zhang, H.; Marchand, C.; Agama, K.; Nitiss, J. L.; Redon, C., Repair of topoisomerase I Mediated DNA damage. In *Progress in Nucleic Acid Research and Molecular Biology, Vol 81*, Moldave, K., Ed. 2006; Vol. 81, pp 179–229. (b) Pourquier, P.; Pommier, Y., Topoisomerase I-mediated DNA damage. *Advances in Cancer Research, Vol 80* **2001,** *80*, 189-216. (c) Pommier, Y.; Redon, C.; Rao, V. A.; Seiler, J. A.; Sordet, O.; Takemura, H.; Antony, S.; Meng, L. H.; Liao, Z. Y.; Kohlhagen, G.; Zhang, H. L.; Kohn, K. W., Repair of and checkpoint response to topoisomerase I-mediated DNA damage. *Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis* **2003**, *532*, 173–203.
- (a) Sordet, O.; Khan, Q. A.; Plo, I.; Pourquier, P.; Urasaki, Y.; Yoshido, A.; Antony, S.; Kohlhagen, G.; Solary, E.; Saparbaev, M.; Laval, J.; Pommier, Y., Apoptotic topoisomerase I-DNA complexes induced by staurosporine-mediated oxygen radicals. *J. Biol. Chem.* 2004, 279, 50499–50504. (b) Sordet, O.; Khan, Q. A.; Pommier, Y., Apoptotic topoisomerase I-DNA complexes induced by oxygen radicals and mitochondrial dysfunction. *Cell Cycle* 2004, *3*, 1095–1097. (c) Sordet, O.; Liao, Z. Y.; Liu, H.; Antony, S.; Stevens, E. V.; Kohlhagen, G.; Fu, H. Q.; Pommier, Y., Topoisomerase I-DNA complexes contribute to arsenic trioxide-induced apoptosis. *J. Biol. Chem.* 2004, *279*, 33968–33975.
- Pommier, Y.; Barcelo, J. A.; Rao, V. A.; Sordet, O.; Jobson, A. G.; Thibaut, L.; Miao, Z.-H.; Seiler, J. A.; Zhang, H.; Marchand, C.; Agama, K.; Nitiss, J. L.; Redon, C., Repair of topoisomerase I - Mediated DNA damage. In *Progress in Nucleic Acid Research and Molecular Biology, Vol 81*, Moldave, K., Ed. 2006; Vol. 81, pp 179–229.
- Marchand, C.; Antony, S.; Kohn, K. W.; Cushman, M.; Ioanoviciu, A.; Staker, B. L.; Burgin, A. B.; Stewart, L.; Pommier, Y., A novel norindenoisoquinoline structure reveals a common interfacial inhibitor paradigm for ternary trapping of the topoisomerase I-DNA covalent complex. *Mol. Cancer Ther.* 2006, *5*, 287–295.

- 11. Wang, J. C. DNA Topoisomerases. Annu. Rev. Biochem. 1996, 65, 635-692.
- Yang, S. W.; Burgin, A. B. Jr; Huizenga, B. N.; Robertson, C. A.; Yao, K. C.; Nash, H. A. A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. *Proc. Natl. Acad. Sci. U. S.A.* **1996**, *93*, 11534–11539.
- 13. Pouliot, J. J.; Yao, K. C.; Robertson, C. A.; Nash, H. A. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. *Science* **1999**, *286*, 552–555.
- Davies, D. R.; Interthal, H.; Champoux, J. J.; Hol, W. G. J. Insights into Substrate Binding and Catalytic Mechanism of Human Tyrosyl-DNA Phosphodiesterase (Tdp1) from Vanadate and Tungstate-inhibited Structures. *J. Mol. Biol.* 2002, *324*, 917–932.
- 15. Pommier, Y. DNA Topoisomerase I Inhibitors: Chemistry, Biology, and Interfacial Inhibition. *Chem. Rev.* **2009**, *109*, 2894–2902.
- Pommier Y, Leo E, Zhang H, et al. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. *Chem. Biol.* May 28; 2010 17(5): 421–433.
- Dexheimer, T. S.; Gediya, L. K.; Stephen, A. G.; Weidlich, I.; Antony, S.; Marchand, C.; Interthal, H.; Nicklaus, M.; Fisher, R. J.; Njar, V. C.; Pommier, Y. 4-Pregnen-21-ol-3,20dione-21-(4-bromobenzenesufonate) (NSC 88915) and Related Novel Steroid Derivatives as Tyrosyl-DNA Phosphodiesterase (Tdp1) Inhibitors. *J. Med. Chem.* 2009, *52*, 7122–7131.
- (a) Antony, S.; Marchand, C.; Stephen, A. G.; Thibaut, L.; Agama, K. K.; Fisher, R. J.; Pommier, Y. Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1. *Nucleic Acids Research* 2007, *35*, 4474–4484. (b) Liao Z.; Thibaut, L.; Jobson, A.; Pommier, Y. Inhibition of Human Tyrosyl-DNA Phosphodiesterase by Aminoglycoside Antibiotics and Ribosome Inhibitors. *Mol. Pharmacol* 2006, *70*, 366–372.
- 19. Xiang, J. S.; Hu, Y.; Rush, T. S.; Thomason, J. R.; Ipek, M.; Sum, P.-E.; Abrous, L.; Sabatini, J. J.; Georgiadis, K.; Reifenberg, E.; Majumdar, M.; Morris, E. A.; Tam, S.

Synthesis and biological evaluation of biphenylsulfonamide carboxylate aggrecanase-1 inhibitors. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 311–316.

- Lombart, H.-G.; Feyfant, E.; Joseph-McCarthy, D.; Huang, A.; Lovering, F.; Sun L.-H.; Zhu, Y.; Zeng, C.; Zhang, Y.; Levinb J. Design and synthesis of 3,3-piperidine hydroxamate analogs as selective TACE inhibitors. *Bioorg. Med. Chem. Lett.* 2007 17, 4333–4337.
- Parrish, C. A.; Adams, N. D.; Auger, K. R.; Burgess, J. L.; Carson, J. D.; Chaudhari, A. M.; Copeland, R. A.; Diamond, M. A.; Donatelli, C. A.; Duffy, K. J.; Faucette, L. F.; Finer, J. T.; Huffman, W. F.; Hugger, E. D.; Jackson, J. R.; Knight, S. D.; Luo, L.; Moore, M. L.; Newlander, K. A.; Ridgers, L. H.; Sakowicz, R.; Shaw, A. N.; Sung, C.-M. M.; Sutton, D.; Wood, K. W.; Zhang, S.-Y.; Zimmerman, M. N.; Dhanak, D. Novel ATP-Competitive Kinesin Spindle Protein Inhibitors. *J. Med. Chem.* 2007, *50*, 4939–4952.
- (a) Miller, N. R.; Daniels, R. N.; Bridges, T. M.; Brady, A. E.; Conn, P. J.; Lindsley, C. W. Synthesis and SAR of analogs of the M1 allosteric agonist TBPB. Part II: Amides, sulfonamides and ureas-The effect of capping the distal basic piperidine nitrogen. *Bioorg. Med. Chem. Lett.* 2008, *18*, 5443–5447. (b) Kazmierski, Wieslaw M.; Aquino, Christopher; Chauder, Brian A.; Deanda, Felix; Ferris, Robert; Jones-Hertzog, Deborah K.; Kenakin, Terrence; Koble, Cecilia S.; Watson, Christian; Wheelan, Pat; Yang, Hanbiao; Youngman, Michael. Discovery of Bioavailable 4,4-Disubstituted Piperidines as Potent Ligands of the Chemokine Receptor 5 and Inhibitors of the Human Immunodeficiency Virus-1. *J. Med. Chem.* 2008, *51*, 6538–6546. (c) Mattson, R. J.; Pham, K. M.; Leuck, D. J.; Cowen, K. A. An Improved Method for Reductive Alkylation of Amines Using Titanium (1V) Isopropoxide and Sodium Cyanoborohydride. *J. Org. Chem.* 1990, *55*, 2552–2554.
- Jun, J. H.; Dougherty, J. M.; Jimenez, M. S; Hanson, P. R. New strategies to symmetric and unsymmetric cyclic sulfamide analogs of DMP 323: a sulfur linchpin/RCM approach. *Tetrahedron* 2003, 59, 8901–8912.
- (a) Jiménez-Hopkins, M.; Hanson, P. R. An RCM Strategy to Stereodiverse δ-Sultam Scaffolds. Org. Lett. 2008, 10, 2223–2226. (b) Harned, A. M.; He, H. S.; Toy, P. H.; Flynn,

D. L.; Hanson, P. R. Multipolymer Solution-Phase Reactions: Application to the Mitsunobu Reaction. *J. Am. Chem. Soc.* **2005**, *127*, 52–53. (c) Mukherjee, S.; Poon, K. W. C.; Flynn, D. L.; Hanson, P. R. Capture-ROMP-release: application to the synthesis of amines and alkyl hydrazines. *Tetrahedron Lett.* **2003**, *44*, 7187–7190.

- 25. Moumne, R.; Lavielle, S.; Karoyan, P., Efficient synthesis of β^2 -amino acid by homologation of α -amino acids involving the Reformatsky reaction and Mannich-type imminium electrophile. *J. Org. Chem.* **2006**, *71*, 3332–3334.
- Romanelli, M. N.; Bartolini, A.; Bertucci, C.; Dei, S.; Ghelardini, C.; Giovannini, M. G.; Gualtieri, F.; Pepeu, G.; Scapecchi, S.; Teodori, E., Chiral synthesis and pharmacological evaluation of the enantiomers of SM₃₂, a new analgesic and cognition-enhancing agent. *Chirality* 1996, *8*, 579–584.
- 27. Zubia, A.; Mendoza, L.; Vivanco, S.; Aldaba, E.; Carrascal, T.; Lecea, B.; Arrieta, A.; Zimmerman, T.1; Vidal-Vana-clocha, F.; Cossio, F. P. Application of stereocontrolled stepwise [3+2] cycloadditions to the preparation of inhibitors of α4β1-integrin-mediated hepatic melanoma metastasis. *Angew. Chem. Int. Edit.* 2005, *44*, 2903–2907.
- 28. Anand, R. C.; Selvapalam, N. A convenient and mild procedure for the preparation of hydroxy esters from lactones and hydroxy acids. *Syn. Comm.* **1994**, *24*, 2743–2747.
- Duan, M. S.; Kazmierski, W. M.; Tallant, M.; Jun, J. H.; Edelstein, M.; Ferris, R.; Todd, D.; Wheelan, P.; Xiong, Z. P. Discovery of a novel series of cyclic urea as potent CCR5 antagonists. *Bioorg. Med. Chem. Lett.* 2011, 21, 6381–6385.
- Weidlich, I. E.; Pommier, Y.; Dexheimer, T. S.; Marchand, C.; Nicklaus, M. C. Virtual screening using ligand-based pharmacophores for inhibitors of human tyrosyl-DNA phosphodiesterase (hTdp1). *Biorg. Med. Chem.* 2010, *18*, 2347–2355.
- 31. Hanewacker, G. A.; Mester, Z.; Unterhalt, B. New 2,4,4-trisubstituted 3-oxo-1,2,5-thiadiazolidine 1,1-dioxides. *Archiv der Pharmazie* **1993**, *326*, 497–505.

- Sato, T.; Okamoto, K.; Nakano, Y.; Uenishi, J.; Ikeda, M. Regioselective synthesis of bridged azabicyclic compounds using radical translocation/cyclization reactions of 4alkynyl-1-(o-iodobenzoyl)piperidines. *Heterocycles* 2001, 54, 747–755.
- 33. Antony, S.; Marchand, C.; Stephen, A. G.; Thibaut, L.; Agama, K. K.; Fisher, R. J.; Pommier, Y. Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1. *Nucleic Acids Res.* 2007, 35, 4474–4484.
 - 34. ChemBioDraw Ultra 12.0 Suite, PerkinElmer Inc. 2011.
 - 35. MACROMODEL 2011, Schrodinger: LLC, New York, NY, 2011.
 - 36. LIGPREP, Schrödinger LLC, New York, NY, 2011.
 - 37. MACROMODEL 2011, Schrodinger: LLC, New York, NY, 2011.
 - 38. Chemical Computing Group's Molecular Operating Environment (MOE), version 2011.

CHAPTER 3

Study of Anticancer Activity of Piperidinyl Sulfamides Derivatives

Using the USA National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screen

3.1. Introduction

Cancer is not one disease, but rather many diseases in which abnormal cells divide without control and are able to occupy other tissues. Cancer cells can spread to other parts of the human body through the blood and lymph systems.¹ Damaged or mutated DNA affects normal cell growth and division, while the immortal cells become a mass of tissue called tumor. In spite of enormous developments in the field of medical research area, which have resulted in higher cure rates for a number of malignancies, cancer is the second ranked leading cause of death after heart disorders in developing, as well as, advanced countries.² Although major advances have been made in the chemotherapeutic treatment of some patients, high obligation to the demanding task of discovering new anti-cancer drugs remains crucially important. As a major pioneering cancer research center, the US National Cancer Institute (NCI) has played a significant role in leading the discovery and development of cancer treatment. Since 1955, NCI has provided screening support to cancer researchers globally. In the late 1980s, 60 anticancer drug screens were developed with the aim of changing the emphasis of drug discovery from murine neoplasms (household rats and mice tumors) to human solid tumors as an *in vitro* drug-discovery tool.³ Since then, it was available to identify the clinical activity of the compounds for the human adult tumor, such as lung, colon, breast, and prostate cancers.

The compounds shown in Figure 3.1 are examples identified by the NCI 60 cell line screen. The first boronic acid compound (NSC 681239, Bortezomib, **3.1**) is the first therapeutic proteasome inhibitor, which was synthesized in 1995 at Myogenics Topotecan (NSC 609699, **3.2**),⁴ and is a TOP1 inhibitor to treat ovarian cancer and lung cancer, as well as other types of

cancers.⁵ Doxoruicin (NSC 123127, **3.3**) is microbial product for breast cancer, bladder cancer, and stomach cancer.⁶

Figure 3.1. Examples of compounds identified by NCI 60 cell line.

The discovery and development of potential anticancer drugs by NCI are based on a series of sequential screening and detailed testing steps to identify new, effective lead compounds and to eliminate inactive and/or highly toxic materials from further consideration. With this concern, Tdp1 related compounds were submitted and screened against the NCI-60 cell line, and the results will be discussed.

3.2. NCI 60 Cell Line Screening

Pharmacological evaluation of anticancer activity was carried out on selected compounds by the developmental therapeutic program of *Frederick National Laboratory for Cancer Research*, Frederick, Maryland. All selected compounds for *in vitro* cancer screening have been given a unique NSC (National Service Center) number. Compounds in Table 3.1 were submitted to the NCI-60 cell line screen and evaluated for their *in vitro* anticancer activity at a single dose $(1 \times 10^{-5}$ M or 10 µM) against the full NCI-60 cell line panels (Table 3.1). Some sulfamide intermediates were also submitted to compare the NCI-60 cell line results with final compound

results. Details of the methodologies for the NCI-60 cell line screening are described at http://dtp.nci.nih.gov/branches/btb/ivclsp.html.^{3,7} Briefly, the panel is organized into nine subpanels representing diverse histologies: leukemia, melanoma, and cancers of lung, colon, kidney, ovary, breast, prostate, and central nervous system. The human tumor cells are grown in supplemented RPMI 1640 medium containing 5% fetal bovine serum and 2 mL glutamine for 24 h. The cells are inoculated into 96-well microtiter plates in 100 µL at plating densities ranging from 5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates are incubated at 37 °C, 5 % CO₂, 95 % air and 100 % relative humidity for 24 h prior to addition of experimental drugs. The submitted compounds 2.7-2.57 in Table 3.1 were dissolved in DMSO and incubated with cells at five concentrations with 10-fold dilutions, the highest being 10^{-4} M and the others being 10^{-5} , 10^{-6} , 10^{-7} , and 10^{-8} M. The assay is terminated by the addition of cold trichloroacetic acid, and the cells are fixed and stained with sulforhodamine B. Bound stain is solubilized, and the absorbance is read on an automated plate reader. The cytostatic parameter that is 50% growth inhibition (GI_{50} , concentrations required to inhibit the growth by 50%) was calculated from time zero, control growth, and the five concentration level absorbance. The cytotoxic parameter that is inhibitory concentrations (LC₅₀, lethal concentration, standard measure of the toxicity of the medium that kills half of the sample population in a specified period, lower number means more toxic) represents the average of two independent experiments. In vitro screening is a two-stage process starting with the evaluation of all compounds against the NCI-60 human tumor cell lines with a single dose of 10.0 μ M, which is done by following the same protocol as for five-dose screening. The output from the single dose screen was reported as a mean graph (given in the Supplementary data section with general interpretation) of the percentage growth of the treated

cells. Results of each test agents are reported as percentage growth of the treated cell when compared with untreated control cells. The value numbers from the single dose screen were analyzed by the COMPARE program with only the compounds that showed more than 60% of growth inhibition in at least 8 tumor cell lines selected for further testing, while the others were assumed as inactive.

NSC No.	Structure	NSC No.	Structure
750772	O O N F	750710	Boc N Boc
(2.7)	Br	(2.15)	F
750711	Boc N S N Boc	750706	
(2.16)		(2.21)	o F
747166		767523	
(2.22)	O F	(2.23)	о п он Г
767524		750707	
(2.24)	ОН	(2.25)	0 H

 Table 3.1. List of compounds screened for NCI 60 cell lines.

3.2.1. In vitro anticancer activity

The one-dose data for the aforementioned screen is reported as a mean graph of the percent growth of treated cells and will be similar in appearance to the mean graphs from the 5-dose assay. The number reported for the one-dose assay is growth relative to the no-drug control, and relative to the time zero number of cells. This allows detection of both growth inhibition

(values between 0 and 100) and lethality (values less than 0). This is the same as for the 5-dose assay, described on http://dtp.nci.nih.gov/branches/btb/ivclsp.html. For example, a value of 100 means no growth inhibition. A value of 40 would mean 60% growth inhibition. A value of 0 means no net growth over the course of the experiment. A value of -40 would mean 40%lethality. A value of -100 means all cells are dead. Information from the one-dose mean graph is available for COMPARE analysis (http://dtp.nci.nih.gov/docs/compare/compare.html). The primary, one-dose screening data showed that NSC 749204 (2.53) was active, while other compounds were determined as inactive. Table 3.2 is the summary of one-dose experiments for each compound. Even if it was not selectively considered using a 60% of growth inhibition as criterion, many compounds were moderately sensitive on the non-small cell lung cancer (HOP-92) and leukemia (HL-60(TB) cell lines. Compound 2.7 (NSC 750772) showed 35.19% growth inhibition against the RPMI-8226 cell line (Leukemia), compound 2.15 (NSC 750710), 67.08% against the HOP-92 cell line (Non-small cell lung cancer), compound 2.16 (NSC 750711), 78.38% against the HL-60(TB) cell line (Leukemia), compound 2.21 (NSC 750706), 43.68% against the HL-60(TB) cell line (Leukemia), compound 2.22 (NSC 747166), 12.34% against the HOP-62 cell line (Non-small cell lung cancer), compound 2.23 (NSC 767523), 67.24% against the UO-31 cell line (Renal cancer), compound 2.24 (NSC 767524), 33.30% against the CCRF-CEM cell line (Leukemia), compound 2.25 (NSC 750707), 69.67% against the UO-31 cell line (Renal cancer), compound 2.30 (NSC 749205), 39.58% against the HOP-92 cell line (Non-small cell lung cancer), compound 2.34 (NSC 749201), 71.49% against the HOP-92 cell line (Non-small cell lung cancer), compound 2.38 (NSC 750715), 76.86% against the CCRF-CEM cell line (Leukemia), compound 2.40 (NSC 750713), 39.99% against the HL-60(TB) cell line (Leukemia), compound 2.42 (NSC 750714), 43.07% against the HL-60(TB) cell line (Leukemia), compound

2.43 (NSC 750712), 62.35% against the A498 cell line (Renal cancer), compound **2.47** (NSC 764209), 87.42% against the SNB-75 cell line (CNS cancer), compound **2.53** (NSC 749204), 19.49% against the HT29 cell line (Colon cancer), compound **2.56** (NSC 749203), 41.46% against the MOLT-4 cell line (Leukemia), and compound **2.57** (NSC 749202), 83.92% against the NCI-H322M cell line (Non-small cell lung cancer). A compound that reduced the growth of a cell line to 32% or less (negative number indicate kills), is considered *in vitro* active.^{8,9} The output from the NCI 60-cell lines single dose screen of **NSC 749204** was reported as a mean graph (Figure 3.2).

Comp. No. (NSC No.)	60 cell line assay in one dose at 10^{-5} concentration						
	Range of growth percentage	Most sensitive cell line	Growth % of most sensitive cell line	Mean	Delta	range	activity ^a
2.7 (750772)	35.19 to 112.96	Leukemia (RPMI-8226)	35.19	82.41	47.22	77.77	inactive
2.15 (750710)	67.08 to 134.43	Non-small cell lung cancer (HOP-92)	67.08	100.62	33.54	67.35	inactive
2.16 (750711)	78.38 to 132.86	Leukemia (HL-60(TB))	78.38	103.06	24.68	54.48	inactive
2.21 (750706)	43.68 to 115.29	Leukemia (HL-60(TB))	43.68	81.90	38.22	71.61	inactive
2.22 (747166)	12.34 to 208.78	Non-small cell lung cancer (HOP-62)	12.34	100.63	88.29	196.44	active
2.23 (767523)	67.24 to 117.68	Renal Cancer (UO-31)	67.24	97.34	30.10	50.44	inactive
2.24 (767524)	33.20 to 109.93	Leukemia (CCRF-CEM)	33.20	84.99	51.79	76.73	inactive
2.25 (750707)	69.67 to 118.35	Renal cancer (UO-31)	69.67	98.62	28.95	48.68	inactive
2.30 (749205)	39.58 to 107.51	Non-small cell lung cancer (HOP-92)	39.58	78.32	38.74	67.93	inactive
2.34	71.49 to 130.53	Non-small cell lung cancer	71.49	97.81	26.32	59.04	inactive

Table 3.2. Anti-cancer screening data of compounds.

(749201)		(HOP-92)					
2.38 (750715)	76.86 to 124.74	Leukemia (CCRF-CEM)	76.86	98.79	21.93	47.88	inactive
2.40 (750713)	39.99 to 131.35	Leukemia (HL-60(TB))	39.99	96.65	56.66	91.36	inactive
2.42 (750714)	43.07 to 131.06	Leukemia (HL-60(TB))	43.07	99.49	56.42	87.99	inactive
2.43 (750712)	62.35 to 131.82	Renal cancer (A498)	62.35	100.64	38.29	69.47	inactive
2.47 (764209)	87.42 to 126.22	CNS (SNB-75)	87.42	105.30	17.88	38.80	inactive
2.53 (749204)	19.49 to 92.88	Colon cancer (HT29)	19.49	56.65	121.91	158.14	active
2.56 (749203)	41.46 to 116.72	Leukemia (MOLT-4)	41.46	98.11	56.65	84.64	inactive
2.57 (749202)	83.92 to 127.35	Non-small cell lung cancer (NCI-H322M)	83.92	99.52	15.60	43.43	inactive

^a Compounds active of that particular cell lines, which shown growth inhibition $\leq 32\%$ cell growth reduction following 48 h incubation with test compounds.

Developmental Ther	apeutics Program	NSC: 749204 / 1	Test Date: Dec 08, 2003	
One Dose Mea	an Graph	Experiment ID: 0812	Report Date: Feb 12, 2012	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
Leukemia CCRF-CEM	56.64			
HL-60(TB)	31.29 58.22			
HL-60(TB) MOLT-4	58.22			
SR Non-Small Cell Lung Cancer	26.73			
Non-Small Cell Lung Cancer A549/ATCC	53.96		•	
EKVX	74.60		_	
HOP-62	79.02			
HOP-92 NCI-H226	47.80 70.09			
NCI-H23	66.78		_	
NCI-H322M	79.04			
NCI-H460 NCI-H522	62.34 56.14			
Colon Cancer	56.14			
COLO 205	-43.19			
HCC-2998	-65.26			
HCT-116 HCT-15	43.37 27.86			
HT29	19.49			
KM12	51.02			
SW-620 CNS Cancer	73.90			
SF-268	84.38			
SF-295	81.14			
SF-539	73.55			
SNB-19 SNB-75	67.67 65.45			
U251	52.28			
Melanoma				
LOX IMVI	48.20			
MALME-3M M14	43.83 58.50			
MDA-MB-435	76.81			
SK-MEL-2	81.71			
SK-MEL-28	82.87			
SK-MEL-5 UACC-62	29.94 69.15			
Ovarian Cancer	05.10			
IGROV1	54.72			
OVCAR-3 OVCAR-4	56.73			
OVCAR-5	73.41 76.08			
OVCAR-8	67.33		_	
NCI/ADR-RES	50.97			
SK-OV-3 Renal Cancer	76.24			
786-0	59.73			
A498	65.97		-	
ACHN SN12C	86.39 36.84			
TK-10	88.98			
UO-31	43.98			
Prostate Cancer	45.20			
PC-3 DU-145	45.36 92.88			
Breast Cancer				
MCF7	48.69			
MDA-MB-231/ATCC HS 578T	70.95 90.74			
HS 578T BT-549	89.63			
T-47D	31.11			
MDA-MB-468	23.62			
Mean	56.65			
Delta	121.91			
Range	158.14			
	150	100 50	0 -50	-100 -150

Figure 3.2. Selected NCI60-cell lines screening data for one dose study of 2.53 (NSC 749204).

3.2.2. Five-dose assay

When the result of growth inhibition is satisfied to more than 60% over 8 cell lines, the compound is selected for the five-dose assay. To explain the data, the activity of a one-test compound on three non-small-cell lung cancer cell lines is shown in Figure 3.3.³ The response parameters GI_{50} (50% growth inhibition) and LC_{50} (50% lethal concentration) are extracted from concentration-response curves by linear interpolation. TGI (total growth inhibition, concentration at which the total growth inhibition is 100%) is indicated as the x-axis intercept. Five-dose assays are carried out with 10-fold dilutions at five different concentrations (0.01, 0.1, 1, 10 and 100 μ M). Thus, for EKVX cell line, $GI_{50} = 0.12$, the TGI = 0.84 and the LC_{50} of effect is not reached.

Figure 3.3. Activity of a one-test compound on three non-small-cell lung cancer cell lines. This graph was depicted with a hypothetical number to explain GI_{50} , TGI, and LC_{50} value. (This Figure was copied from 'Shoemaker, R. H., The NCI60 human tumor cell line anticancer drug screen. Nat. Rev. Cancer **2006**, 6, 813–823').

The complete *in-vitro* anti-cancer data collected on the 60 subpanel cell lines for the most active compound, 2.53 (NSC 749204), is highlighted in Tables 3.3 and 3.4. Secondary screening was carried out on this active compound in order to determine its cytostatic and cytotoxic activities. Compound 2.53 (NSC 749204) satisfied 60% of growth inhibition as a criterion over 8 cell lines and was further selected for the NCI full panel five-dose assay at 10-fold dilutions using five different concentrations $(0.01, 0.1, 1, 10 \text{ and } 100 \,\mu\text{M})$. The result of compound 2.53 for five-dose screening is given with three response parameters (GI_{50} , TGI and LC_{50}) for each cell line from log₁₀ of sample concentration (molar) vs. percentage growth inhibition curves of nine cancer diseases (Figures 3.4 and 3.5). NCI renamed the IC_{50} value, the concentration that causes 50% growth inhibition, the GI₅₀ value (growth inhibitory activity) to emphasize the correction for the cell count at time zero. Namely, GI₅₀ is the concentration of test compound where $100 \times (T-T_0) / (C-T_0) = 50$. T is the optical density of the test well after a 48-h period of exposure to test drug, T_0 is the optical density at time zero, and C is the controlled optical density. The GI_{50} value (growth inhibitory activity) corresponds to the concentration of the compound causing 50% decrease in net cell growth, namely it is the growth inhibitory power of the testing compound. The TGI value (cytostatic activity, the inhibition of cell growth and multiplication) is the concentration of the compound resulting in total growth inhibition. The LC_{50} value, signifies cytotoxic activity (the quality of being toxic to cells), and is the concentration of the compound causing a net 50% loss of initial cells at the end of the incubation period of 48 h. Furthermore, a mean graph midpoint (MID) is calculated giving an averaged activity parameter over all cell lines.

Compound 2.53 (NSC 749204) shows moderate to good anticancer activity against many tested cell lines responding nine different panels with GI_{50} values between 1.88 and 21.0 μ M.

Regarding sensitivity against some individual cell lines, the compound showed good activity against colon cancer COLO 205 and HCC-2998 cell lines with GI₅₀ value 1.88 and 3.01 μ M, respectively. Generally, obtained data shows a good sensitivity profile towards colon cancer (least for COLO 205 cell line, GI₅₀ = 1.88 μ M and maximum for SW-620 cell line, GI₅₀ = 11.1 μ M). The compound also shows the sensitivity toward leukemia (least for SR cell line, GI₅₀ = 3.18 μ M and maximum for CCRF-CEM cell line, GI₅₀ = 12.8 μ M) and the breast cancer subpanel (least for MDA-MB-468 cell line, GI₅₀ = 3.25 μ M and maximum for MDA-MB-231/ATCC cell line, GI₅₀ = 12.7 μ M). Compound **2.53** also exhibited sensitivity toward some of cell lines of the melanoma cancer cell panel such as LOX IMVI (GI₅₀ = 8.10 μ M), MALME-3M (GI₅₀ = 6.89 μ M), M14 (GI₅₀ = 3.75 μ M), and SK-MEL-5 (GI₅₀ = 3.19 μ M). All remaining subpanel cell lines showed maximum sensitive toward tested compounds with not more than 21 μ M of GI₅₀ concentrations.

Figure 3.4. Nine panel dose response curves of compound 2.53 (NSC 749204).

Figure 3.5. Dose response (% growth verses sample concentration at NCI fixed protocol, μ M) obtained from the NCI's in vitro disease-oriented human tumor cells line of compound **2.53** (NSC 749204) on nine cancer panels.

Figure 3.5. Dose response (% growth verses sample concentration at NCI fixed protocol, μ M) obtained from the NCI's in vitro disease-oriented human tumor cells line of compound **2.53** (NSC 749204) on nine cancer panels. (Continued)

NSC : 74920	4/1				Exp	erimer	nt ID : 09	02NS55	5			Test 7	Гуре : 08	Units : M	olar
Report Date	: Februar	ry 12, 20)12		Tes	t Date	: Februa	iry 17, 2	009			QNS	:	MC :	
COMI : LSC-	JHJ-I-15	0-1 (815	38)		Stai	n Rea	gent : SF	RB Dual	Pass I	Related	1	SSPL	: 0X2L		
						Lo	g10 Cond	entration				4			
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mear -7.0	Optical -€.0	Densiti -5.0	-	-8.0	P -7.0	ercent G -6.D	rowth -5.0	-4.0	GI50	TGI	LC50
.eukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.568 0.660 0.229 0.524 0.559 0.208	1.796 1.253 1.171 1.392 1.672 0.518	1.699 1.323 1.239 1.440 1.712 0.526	1.753 1.276 1.284 1.526 1.761 0.581	1727 1218 1232 1673 1714 0598	1.354 0.829 0.433 1.026 1.033 0.199	0.185 0.129 0.037 0.135 0.214 0.125	92 112 107 105 104 102	96 104 112 115 108 120	94 94 107 132 104 126	64 28 22 58 43 -5	-68 -81 -84 -74 -62 -40	1.28E-5 4.69E-6 4.63E-6 1.15E-5 7.57E-6 3.81E-6	3.07E-5 1.82E-5 1.60E-5 2.74E-5 2.56E-5 9.22E-6	7.36E-5 5.25E-5 4.78E-5 6.54E-5 7.72E-5 > 1.00E-4
Von-Small Cell Lut A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H23 NCI-H22M NCI-H460 NCI-H522	ng Cancer 0.242 0.628 0.512 0.836 0.727 0.532 0.646 0.206 0.310	1.163 1.445 1.153 1.267 1.463 1.764 1.480 2.115 1.859	1.207 1.421 1.138 1.229 1.449 1.753 1.559 2.211 1.908	1.228 1.342 1.178 1.236 1.373 1.714 1.519 2.143 1.804	1178 1282 1132 1167 1377 1678 1493 2112 1739	0.895 1.133 1.027 1.015 1.218 1.307 1.246 0.997 1.424	0.065 0.176 0.034 0.033 0.201 0.058 0.118 0.044 0.141	105 97 98 91 98 99 110 105 103	107 87 104 93 88 96 105 101 96	102 80 97 77 88 93 102 100 92	71 62 80 42 67 63 72 41 72	-73 -72 -93 -96 -72 -89 -82 -79 -55	1.40E-5 1.22E-5 1.50E-5 5.76E-6 1.32E-5 1.39E-5 7.13E-6 1.49E-5	3.10E-5 2.89E-5 2.90E-5 3.02E-5 2.50E-5 2.59E-5 2.94E-5 2.21E-5 3.70E-5	6.91E-5 6.84E-5 5.62E-5 4.62E-5 5.53E-5 5.53E-5 6.21E-5 5.77E-5 9.18E-5
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.275 0.744 0.199 0.448 0.137 0.205 0.223	0.897 2.842 1.484 2.365 0.967 1.064 1.279	0.959 2.828 1.399 2.325 0.976 1.094 1.205	0.943 2.755 1.452 2.304 0.980 1.053 1.191	0890 2624 1416 2181 0918 1037 1168	0.057 0.889 0.525 0.981 0.285 0.456 0.820	0.015 0.039 0.016 0.079 0.014 0.023 0.031	110 99 93 98 101 103 93	107 96 98 97 102 99 92	99 90 95 90 94 97 89	-79 7 25 28 18 29 57	-95 -95 -92 -82 -90 -89 -86	1.88E-6 3.01E-6 4.41E-6 4.42E-6 3.78E-6 4.92E-6 1.11E-5	3.59E-6 1.17E-5 1.64E-5 1.79E-5 1.46E-5 1.76E-5 2.49E-5	6.85E-6 3.62E-5 4.37E-5 5.08E-5 4.25E-5 4.68E-5 5.58E-5
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.406 0.773 0.529 0.666 0.612 0.177	1.430 1.903 1.740 1.646 1.170 1.047	1.389 1.768 1.703 1.607 1.073 1.061	1.394 1.735 1.679 1.623 1.064 1.022	1325 1679 1636 1548 1025 0980	1.004 1.370 1.375 1.345 0.857 0.620	0.079 0.133 0.023 0.009 0.012 0.065	96 88 97 96 83 102	96 85 95 98 81 97	90 80 91 90 74 92	58 53 70 69 44 51	-81 -83 -96 -99 -98 -63	1.15E-5 1.05E-5 1.32E-5 1.30E-5 6.24E-6 1.02E-5	2.63E-5 2.45E-5 2.64E-5 2.58E-5 2.04E-5 2.79E-5	6.02E-5 5.72E-5 5.29E-5 5.13E-5 4.58E-5 7.65E-5
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.231 0.783 0.315 0.429 0.369 0.504 0.358 0.837 0.522	1.611 1.449 1.245 1.744 0.827 1.412 1.647 1.584 2.012	1.593 1.451 1.188 1.593 0.888 1.401 1.511 1.648 1.848	1.594 1.448 1.206 1.542 0.896 1.421 1.547 1.650 1.816	1.531 1415 1167 1547 0917 1380 1550 1596 1777	0.860 1.058 0.494 1.098 0.854 1.182 0.462 1.501 1.353	0.072 0.179 0.031 0.093 0.122 0.035 0.014 0.060 0.069	99 100 94 89 113 99 89 109 89	99 100 96 85 115 101 92 109 87	94 95 92 85 119 96 92 102 84	46 41 19 51 106 75 8 89 56	-69 -77 -90 -78 -67 -93 -96 -93 -87	8.10E-6 6.89E-6 3.75E-6 1.02E-5 2.10E-5 1.40E-5 3.19E-6 1.64E-5 1.10E-5	2.50E-5 2.23E-5 1.50E-5 2.48E-5 4.10E-5 2.78E-5 1.20E-5 3.08E-5 2.46E-5	6.84E-5 5.90E-5 4.28E-5 6.04E-5 5.53E-5 3.61E-5 5.81E-5 5.51E-5
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.198 0.405 0.459 0.383 0.228 0.344 0.450	1.371 1.242 1.436 0.946 0.929 1.259 1.126	1.640 1.243 1.442 0.914 0.937 1.255 1.182	1.682 1.209 1.392 0.910 0.968 1.263 1.144	1549 1187 1435 0909 0954 1203 1133	1.208 0.843 1.067 0.870 0.738 0.843 1.025	0.107 0.032 0.017 0.014 0.078 0.023 0.006	123 100 101 94 101 100 108	126 96 95 94 106 100 103	115 93 100 93 104 94 101	86 52 62 86 73 55 85	-46 -92 -96 -96 -66 -93 -99	1.88E-5 1.04E-5 1.19E-5 1.58E-5 1.46E-5 1.07E-5 1.55E-5	4.49E-5 2.30E-5 2.47E-5 2.97E-5 3.34E-5 2.34E-5 2.90E-5	> 1.00E-4 5.11E-5 5.58E-5 7.67E-5 5.09E-5 5.43E-5
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.947 0.846 0.340 0.722 0.685 0.335 0.877 0.259	2.397 1.509 1.337 1.845 1.284 1.231 1.376 1.269	2.418 1.475 1.342 1.712 1.346 1.228 1.388	2.354 1.422 1.320 1.621 1.358 1.168 1.414 1.292				101 95 101 88 110 100 102 98	97 87 98 80 112 93 108 102	96 80 97 76 106 92 102 93	58 68 72 46 54 30 92 60	-94 -94 -79 -86 -89 -81 -87 -85	1.12E-5 1.29E-5 1.40E-5 7.23E-6 1.06E-5 4.69E-6 1.72E-5 1.17E-5	2.40E-5 2.62E-5 3.00E-5 2.23E-5 2.37E-5 1.85E-5 3.27E-5 2.60E-5	5.11E-5 5.34E-5 6.45E-5 5.36E-5 5.32E-5 5.23E-5 6.21E-5 5.76E-5
Prostate Cancer PC-3 DU-145	0.349 0.337	1.125 1.401		1.090 1.346	1.061 1323	0.694 1.086	0.017 0.032	102 98	95 95	92 93	44 70	-95 -91	7.61E-6 1.34E-5	2.08E-5 2.74E-5	4.75E₅5 5.60E₅5
Breast Cancer MCF7 MDA-MB-231/AT(HS 578T BT-549 T-47D MDA-MB-463	0.295 CC 0.326 0.630 0.995 0.740 0.456	1.592 0.927 1.152 1.486 1.538 1.207	0.930 1.110 1.518 1.458	1.487 0.918 1.120 1.533 1.436 1.097	0913 1109 1487 1443	1.026	0.058 0.087 0.161 0.186 0.102 0.046	99 100 92 106 90 92	92 98 94 109 87 85	95 98 92 100 88 81	41 64 57 46 36 20	-81 -73 -75 -81 -86 -90	6.91E-6 1.27E-5 1.13E-5 8.34E-6 5.34E-6 3.25E-6	2.19E-5 2.93E-5 2.71E-5 2.29E-5 1.96E-5 1.53E-5	5.62E-5 6.77E-5 6.51E-5 5.67E-5 5.04E-5 4.34E-5

Table 3.3. Result of the five-dose assay for compound **2.53** (NSC 749204).

			NSC 749	9204			
Panel/cell line	GI ₅₀	TGI	LC ₅₀	Panel/cell line	GI ₅₀	TGI	LC ₅
Leukemia				Melanoma			
CCRF-CEM	12.8	30.7	73.6	LOX IMVI	8.10	25.0	68.4
HL-60(TB)	4.69	18.2	52.5	MALME-3M	6.89	22.3	59.0
K-562	4.63	16.0	47.8	M14	3.75	15.0	42.8
MOLT-4	11.5	27.4	65.4	MDA-MB-435	10.2	24.8	60.4
RPMI-8226	7.57	25.6	77.2	SK-MEL-2	21.0	41.0	79.8
SR	3.81	9.22	>100	SK-MEL-28	14.0	27.8	55.3
				SK-MEL-5	3.19	12.0	36.1
Non-small cell lung cancer				UACC-257	16.4	30.8	58.1
A549/ATCC	14.0	31.0	69.1	UACC-62	11.0	24.6	55.1
EKVX	12.2	28.9	68.4				
HOP-62	15.0	29.0	56.2	Ovarian cancer			
HOP-92	5.76	20.0	46.2	IGROV1	18.8	44.9	>100
NCI-H226	13.2	30.2	69.1	OVCAR-3	10.4	23.0	51.1
NCI-H23	12.2	25.9	55.3	OVCAR-4	11.9	24.7	51.0
NCI-H322M	13.9	29.4	62.1	OVCAR-5	15.8	29.7	55.8
NCI-H460	7.13	22.1	57.7	OVCAR-8	14.6	33.4	76.7
NCI-H522	14.9	37.0	91.8	NCI/ADR-RES	10.7	23.4	50.9
				SK-OV-3	15.5	29.0	54.3
Colon cancer							
COLO 205	1.88	3.59	6.85	Renal cancer			
HCC-2998	3.01	11.7	36.2	786-0	11.2	24.0	51.1
HCT-116	4.41	16.4	43.7	A498	12.9	26.2	53.4
HCT-15	4.42	17.9	50.8	ACHN	14.0	30.0	64.5
HT29	3.78	14.6	42.5	CAKI-1	7.23	22.3	53.6
KM12	4.92	17.6	46.8	RXF 393	10.6	23.7	53.2
SW-620	11.1	24.9	55.8	SN12C	4.69	18.5	52.3
				TK-10	17.2	32.7	62.1
CNS cancer				UO-31	11.7	26.0	57.6
SF-268	11.5	26.3	60.2				

Table 3.4. Anti-tumor activity $(GI_{50}/\mu M)^a$, TGI^b and toxicity $(LC_{50}/\mu M)^c$ data of **2.53** (NSC 749204) selected for 5 dose studies for the NCI60-cell lines screen.

SF-295	10.5	24.5	57.2	Prostate cancer			
SF-539	13.2	26.4	52.9	PC-3	7.61	20.8	47.5
SNB-19	13.0	25.8	51.3	DU-145	13.4	27.4	56.0
SNB-75	6.24	20.4	45.8				
U251	11.1	27.9	76.5	Breast cancer			
				MCF7	6.91	21.9	56.2
				MDA-MB-	12.7	29.3	67.7
				231/ATCC	12.7	29.5	07.7
				HS 578T	11.3	27.1	65.1
				BT-549	8.34	22.9	56.7
				T-47D	5.34	19.6	50.4
				MDA-MB-468	3.25	15.3	43.4

^a $\overline{\text{GI}_{50}}$: 50% growth inhibition, concentration of drug resulting in a 50% reduction in net protein increase compared with control cells.

^b TGI: total cell growth inhibition

 c LC₅₀: lethal concentration, concentration of drug lethal to 50% of cells.

The criterion for selectivity of a compound depends on the ratio obtained by dividing the full panel MID (the average sensitivity of all cell lines towards the test agent) by their individual subpanel MID (the average sensitivity of all cell lines of a particular subpanel towards the test agent). Ratios between 3 and 6 refer to moderate selectivity; ratios greater than 6 indicate high selectivity towards the corresponding cell line, while compounds not meeting either of these criteria were rated non-selective.¹⁰ Following this criterion, compound **2.53** (NSC 749204) was found to be mildly selective toward the colon cancer panel. In addition, compound **2.53** was also found to demonstrate mild to no-selectivity in both the leukemia and breast cancer subpanels.

Panel	Cell line	$GI_{50}(10^{-6} M)$						
		Concentration	Subpanel	Subpanel MID	Selectivity ratio			
		per cell line	concentration					
Leukemia	CCRF-CEM	12.8						
	HL-60(TB)	4.69						
	K-562	4.63	45	7.500	1.340			
	MOLT-4	11.5	45	7.500	1.540			
	RPMI-8226	7.57						
	SR	3.81						
Non-small cell	A549/ATCC	14.0						
lung cancer	EKVX	12.2						
	HOP-62	15.0						
	HOP-92	5.76						
	NCI-H226	13.2	108.29	12.032	0.835			
	NCI-H23	12.2						
	NCI-H322M	13.9						
	NCI-H460	7.13						
	NCI-H522	14.9						
Colon cancer	COLO 205	1.88						
	HCC-2998	3.01						
	HCT-116	4.41						
	HCT-15	4.42	33.52	4.789	2.098			
	HT29	3.78						
	KM12	4.92						
	SW-620	11.1						
CNS cancer	SF-268	11.5						
	SF-295	10.5						
	SF-539	13.2	(E . E A	10.022	0.020			
	SNB-19	13.0	65.54	10.923	0.920			
	SNB-75	6.24						
	U251	11.1						
Melanoma	LOX IMVI	8.10						
	MALME-3M	6.89	94.53	10.503	0.957			
	M14	3.75						

Table 3.5. Calculated value of GI50 of the cell lines: full cell line panel, MG-MID and selectivity ratio of the compound **2.53** (NSC 749204).

MDA-MB-435 102 SK-MEL-2 21.0 SK-MEL-28 14.0 SK-MEL-28 14.0 SK-MEL-5 3.19 UACC-257 16.4 UACC-257 16.4 Ovarian cancer IGROV1 IGROV1 18. OVCAR-3 10.4 OVCAR-4 11.9 OVCAR-5 15.8 OVCAR-5 15.5 Renal cancer 786-0 K-OV-3 15.5 Renal cancer 786-0 NCI/ADR-RES 10.7 SK-OV-3 15.5 Renal cancer 786-0 RAPS 1.2 A498 12.9 RAF 393 10.6 SN12C 4.69 TK-10 1.2 Prostate cancer 7.61 QU-31 1.7 REF 393 1.6 SN12C 5.4 Prostate cancer 7.61 QU-31 1.7 QU-31 1.7 QU-31 1.7 QU-3			10.0			
SK-ME1-28140SK-ME1-53.9VACC-257164UACC-2501.0UACC-621.0OVCAR-61.8OVCAR-71.9OVCAR-81.9OVCAR-81.6NCI/ADR-RES1.7SK-0V-31.5Fenal cancer786-0A4981.2A4981.9A1011.2SK-101.6SK-101.2A1111.3A1211.4A1211.3Prostate cancer1.6IGA11.2A1221.1A1241.2A1251.3A1251.3A1261.2IGA11.2IGA11.3A1241.4IGA11.4IGA11.4IGA31.4IGA41.4IGA51.4IGA51.4IGA51.4IGA41.4IGA51.4<						
SK-MEL-53.9UACC-2576.4UACC-2501.0UACC-6201.0GR0V11.8O'CAR-301.9O'CAR-401.9O'CAR-501.6O'CAR-501.6NCI/ADR-RE51.6SK-0V-301.5Kenal cancer786-0A4981.2A1981.9A1981.9A1981.9A1991.6SK-101.2A1981.6SK-101.2A1911.4A1921.9A1931.6SK121.6SK121.6SK121.6SK121.6SK121.6SK121.4A1041.2A1041.4A1051.4SK141.4SK151.3SK141.2SK141.3SK141.3SK141.3SK141.3SK141.4SK141.3SK141.4SK141.3SK141.3SK141.4SK141.3SK141.3SK141.4SK141.4SK141.3SK141.4SK141.3SK141.4SK141.4SK141.4SK141.4SK141.4SK141.4SK						
UACC-257164UACC-621.0UACC-621.0UACC-621.0UGR0V1188OVCAR-3104OVCAR-41.9OVCAR-515.8OVCAR-814.6NCI/ADR-RES10.7SK-OV-315.5Renal cancer786-0A49812.9ACHN10.1CAK1-17.3RNF 39310.6SN12C4.09IT-1017.2UO-311.7Prostate cancerRCF7MCF76.9TK-101.2UATS7.61DU-14513.4MDA-MB- 231/ATCC1.2HS 578T1.3HS 578T1.3HS 578T1.3HT-4D5.4		SK-MEL-28	14.0			
IACC-621.0Ovarian cancerIGROVI18OVCAR-310OVCAR-41.9OVCAR-515.NCI/ADR-RES10.7SK-OV-315.Kenal cancer786-0A49812.ACHN12.KAU-316.SN-1012.A19812.A19812.A19810.6SN-1012.A19910.6SN-1012.A10112.A11113.1Prostate cancerIC3MCF76.91D1-14513.4MDA-MB- 21/ATCC21.01A152A154A1541.2.A1541.2.A1541.3.4A1541.2.4		SK-MEL-5	3.19			
Ovarian cancerIGROVI18.8OVCAR-310.4OVCAR-411.9OVCAR-515.8OVCAR-814.6OVCAR-810.7SK-OV-315.5Renal cancer786-0A49812.9ACHN14.0CAKI-17.23RAF 39310.6SN12C4.69TK-1017.2Prostate cancerPC-3Prostate cancerNCF7MDA-MB- 231/ATCC21.01MDA-MB- 231/ATCC21.01MDA-MB- 231/ATCC21.01MDA-MB- 231/ATCC21.01MDA-MB- 231/ATCC11.3ATS 78311.3ATS 7847.973ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.2ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3ATS 78411.3 </td <td></td> <td>UACC-257</td> <td>16.4</td> <td></td> <td></td> <td></td>		UACC-257	16.4			
OVCAR-31.4OVCAR-41.9OVCAR-51.8OVCAR-81.6OVCAR-81.6NCI/ADR-RES1.7SK-OV-31.5Kenol1.2A4981.9ACHN1.0CAKI-17.3Renal cancer1.6N12C1.6M141.9A1981.6CAKI-17.3N12C4.69N12C1.6TK-101.2UO-311.7Prestate cancer1.7Prestate cancerNCF7MCF76.9MDA-MB- 231/ATCC2.101MDA-MB- 231/ATCC2.1MD5-MB- 231/ATCC1.3Frest1.3MCF31.3ACT 45.91.2MD5-MB- 231/ATCC2.1MD5-MB- 231/ATCC2.1MD5-MB- 231/ATCC2.1MD5-MB- 231/ATCC3.4		UACC-62	11.0			
OVCAR-41.9OVCAR-515.OVCAR-816.OVCAR-810.NCI/ADR-RES10.SK-OV-315.Renal cancer786-0A49812.ACHN14.CAK1-17.23RYS 39310.6SN12C4.69TK-1017.UO-311.7Prostate cancerPC-3MCF76.9MDA-MB- 231/ATCC2.01MDA-MB- 231/ATCC1.3Frest 5381.3HS 578T1.3HS 578T5.4	Ovarian cancer	IGROV1	18.8			
OVCAR-515.897.713.9570.720OVCAR-814.6NCI/ADR-RES10.7SK-OV-315.5Frenal cancer786-011.2A49812.9ACHN14.0CAK1-17.3RYF 39310.6SN12C4.69TK-1017.210-3111.7Prostate cancerPC-3Prostate cancerMCF7MDA-MB- 21/ATCC1.3Freast cancerMDA-MB- 21/ATCCINDA-MB- 13/ATCC1.3Freast 241.3Freast 241.3 <td></td> <td>OVCAR-3</td> <td>10.4</td> <td></td> <td></td> <td></td>		OVCAR-3	10.4			
OVCAR-8146NCI/ADR-RES10.7SK-OV-315.Frenal cancer786-0A49812.A49812.ACHN14.0CAKI-17.3RXF 39310.6SN12C4.69TK-1017.2UO-3117.7Prostate cancerPC-3MCF76.9MCF76.9MCF76.9MDA-MB- 21/ATCCFR-59T11.3AT-5498.34		OVCAR-4	11.9			
NCI/ADR-RES10.7KA-OV-315.Renal cancer186-0186-01.2A4982.9ACHN14.0CAK1-17.3RXF 39310.6N12C4.6917.1017.2UO-311.7Prostate cancerNGTMCFA5.1D1-1453.4MDA-MB- 231/ATCC2.101MDA-MB- 231/ATCC1.3FR558T1.3AF5493.4TATO5.3		OVCAR-5	15.8	97.7	13.957	0.720
SK-OV-315.5Renal cancer786-011.2A49812.9ACHN14.0CAK1-17.23RXF 39310.6SN12C4.69TK-1017.2UO-311.7Prostate cancerPC-3MCF76.91MDA-MB- 231/ATCC2.01HS 578T11.3FT-5498.34T-47D5.34		OVCAR-8	14.6			
Renal cancer 786-0 11.2 A498 12.9 ACHN 14.0 CAKI-1 7.23 RXF 393 10.6 SN12C 4.69 TK-10 17.2 UO-31 17.7 Prostate cancer PC-3 MCF7 6.91 MDA-MB- 21.01 21/ATCC 13.4 MDA-MB- 2.7 MDA-MB- 12.7 HS 578T 11.3 FT-549 8.34 T-47D 5.34		NCI/ADR-RES	10.7			
A49812.9ACHN14.0CAKI-17.23RXF 39310.6SN12C4.69TK-1017.2UO-3117.7DU-14513.4Prostate cancerMCF7MCF76.91MDA-MB- 231/ATCC12.7HDS 78T11.3ATS 78T11.3ATS 78T5.34		SK-OV-3	15.5			
ACHN 14.0 CAKI-1 7.23 RXF 393 10.6 SN12C 4.69 TK-10 17.2 UO-31 17.7 Prostate cancer PC-3 DU-145 13.4 Breast cancer MCF7 MDA-MB- 2.1 231/ATCC 1.7 Frester 1.3 ACF7 1.3 ACF3 1.260 TATO 5.34	Renal cancer	786-0	11.2			
CAKI-1 7.23 89.52 11.190 0.898 RXF 393 10.6 10.7 10.7 10.91 10.7 Prostate cancer PC-3 7.61 10.505 0.957 Breast cancer MCF7 6.91 10.505 0.957 MDA-MB- 1.2 1.2 1.2 1.2 S1/ATCC 11.3 47.84 7.973 1.260 BT-549 8.34 5.34 1.260 1.260		A498	12.9			
RXF 393 10.6 89.52 11.190 0.898 SN12C 4.69 500		ACHN	14.0			
RXF 393 10.6 SN12C 4.69 TK-10 17.2 UO-31 11.7 Prostate cancer PC-3 7.61 DU-145 13.4 21.01 10.505 0.957 Breast cancer MCF7 6.91 0.957 0.957 HS 578T 11.3 47.84 7.973 1.260 BT-549 8.34 7.47D 5.34		CAKI-1	7.23	20.52	11 100	0.000
TK-10 17.2 UO-31 11.7 Prostate cancer PC-3 DU-145 13.4 Breast cancer MCF7 MDA-MB- 231/ATCC HS 578T 11.3 47.84 7.973 1.260 T-47D		RXF 393	10.6	89.52	11.190	0.898
IDO-31 11.7 Prostate cancer PC-3 7.61 21.01 10.505 0.957 Breast cancer MCF7 6.91 21.01 10.505 0.957 MDA-MB- 2.31/ATCC 12.7 47.84 7.973 1.260 BT-549 8.34 5.34 5.34 5.34 5.34		SN12C	4.69			
Prostate cancer PC-3 7.61 21.01 10.505 0.957 DU-145 13.4 10.505 0.957 Breast cancer MCF7 6.91 - - MDA-MB- 12.7 - - - 231/ATCC 11.3 47.84 7.973 1.260 BT-549 8.34 - - - T-47D 5.34 - - -		TK-10	17.2			
DU-145 13.4 10.505 0.957 Breast cancer MCF7 6.91 10.505 0.957 MDA-MB- 12.7 10.505 10.505 10.505 ATCC 12.7 10.505 11.3 10.505 11.260 BT-549 8.34 1.260 11.260 11.260 T-47D 5.34 5.34 1.260 11.260		UO-31	11.7			
DU-145 13.4 Breast cancer MCF7 6.91 MDA-MB- 12.7 231/ATCC 11.3 47.84 7.973 1.260 BT-549 8.34 T-47D 5.34	Prostate cancer	PC-3	7.61	21.01	10 505	0.057
MDA-MB- 231/ATCC HS 578T 11.3 47.84 7.973 1.260 BT-549 8.34 T-47D 5.34		DU-145	13.4	21.01	10.505	0.957
12.7 231/ATCC HS 578T 11.3 BT-549 8.34 T-47D 5.34	Breast cancer	MCF7	6.91			
231/ATCC HS 578T 11.3 47.84 7.973 1.260 BT-549 8.34 T-47D 5.34		MDA-MB-	10 -			
BT-549 8.34 T-47D 5.34		231/ATCC	12.7			
T-47D 5.34		HS 578T	11.3	47.84	7.973	1.260
		BT-549	8.34			
		T-47D	5.34			
MDA-MB-468 3.25			3.25			

The log molar concentration of the resulted screening of compound **2.53** (NSC 749204) shown for each of the parameters; for log GI_{50} ranged from -5.73 to -4.68, for log TGI ranged from -5.45 to -4.39, for log LC₅₀ ranged from -5.16 to -4.00 (Table 3.6). A mean graph midpoint

(MG-MID) calculated for each of the parameters; log GI_{50} (-5.05), log TGI (-4.64), and log LC_{50} (-4.26).

Cancer disease Used cell lines $log_{10}GI_{50}$ log₁₀TGI $log_{10}LC_{50}$ Leukemia CCRF-CEM -4.89 -4.51 -4.13 HL-60(TB) -5.33 -4.74 -4.28 K-562 -4.80 -5.33 -4.32 MOLT-4 -4.94 -4.56 -4.18 RPMI-8226 -5.12 -4.59 -4.11 SR -5.42 -5.04 -4.00Non-small cell lung cancer A549/ATCC -4.86 -4.51 -4.16 EKVX -4.91 -4.54 -4.16 **HOP-62** -4.83 -4.54 -4.25 HOP-92 -5.24 -4.70 -4.33 NCI-H226 -4.88 -4.52 -4.16 NCI-H23 -4.92 -4.59 -4.26 -4.86 NCI-H322M -4.53 -4.21 NCI-H460 -5.15 -4.65 -4.24 -4.83 -4.43 -4.04 NCI-H522 Colon cancer -5.73 **COLO 205** -5.45 -5.16 HCC-2998 -5.52 -4.93 -4.44 HCT-116 -5.36 -4.78 -4.36 HCT-15 -5.35 -4.75 -4.29 HT29 -5.42 -4.84 -4.37 KM12 -5.31 -4.75 -4.33 SW-620 -4.95 -4.60 -4.25 CNS cancer SF-268 -4.94 -4.58 -4.22 SF-295 -4.98 -4.61 -4.24 SF-539 -4.88 -4.58 -4.28

Table 3.6. Values of the log molar concentration of response parameter ($log_{10}GI_{50}$, $log_{10}TGI$ and $log_{10}LC_{50}$) of the compound **2.53** (NSC 749204).

	SNB-19	-4.89	-4.59	-4.29
	SNB-75	-5.20	-4.69	-4.34
	U251	-4.99	-4.55	-4.12
Melanoma	LOX IMVI	-5.09	-4.60	-4.16
	MALME-3M	-5.16	-4.65	-4.23
	M14	-5.43	-4.82	-4.37
	MDA-MB-435	-4.99	-4.61	-4.22
	SK-MEL-2	-4.68	-4.39	-4.10
	SK-MEL-28	-4.85	-4.56	-4.26
	SK-MEL-5	-5.50	-4.92	-4.44
	UACC-257	-4.79	-4.51	-4.24
	UACC-62	-4.96	-4.61	-4.26
Ovarian cancer	IGROV1	-4.73	-4.35	-4.00
	OVCAR-3	-4.98	-4.64	-4.29
	OVCAR-4	-4.92	-4.61	-4.29
	OVCAR-5	-4.80	-4.53	-4.25
	OVCAR-8	-4.84	-4.48	-4.12
	NCI/ADR-RES	-4.97	-4.63	-4.29
	SK-OV-3	-4.81	-4.54	-4.27
Renal cancer	786-0	-4.95	-4.62	-4.29
	A498	-4.89	-4.58	-4.27
	ACHN	-4.85	-4.52	-4.19
	CAKI-1	-5.14	-4.65	-4.27
	RXF 393	-4.98	-4.62	-4.27
	SN12C	-5.33	-4.73	-4.28
	TK-10	-4.76	-4.49	-4.21
	UO-31	-4.93	-4.59	-4.24
Prostate cancer	PC-3	-5.12	-4.68	-4.32
	DU-145	-4.87	-4.56	-4.25
Breast cancer	MCF7	-5.16	-4.66	-4.25
	MDA-MB-231/ATCC	-4.90	-4.53	-4.17
	HS 578T	-4.95	-4.57	-4.19
	BT-549	-5.08	-4.64	-4.25

	T-47D	-5.27	-4.71	-4.30
	MDA-MB-468	-5.49	-4.82	-4.36
MID		-5.05	-4.64	-4.26
Delta		0.68	0.81	0.9
Range		1.05	1.1	1.16

3.3. Conclusion

Compounds synthesized for the study of Tdp1 inhibition were screened in the NCI-60 cancer cell line assay to identify their anti-cancer activity. Among the selected compounds for screening, compound **2.53** (NSC 749204) was selected for five-dose experiments and showed moderate-to-good anticancer activity against many tested cell lines responding nine different panels with GI_{50} values between 1.88 and 21.0 μ M. Compound **2.53** (NSC 749204) was found to be mildly selective in the colon cancer panel, as well as mildly-to-non-selective in the leukemia and breast cancer subpanel.

3.4. References

- 1. http://www.cancer.gov/cancertopics/cancerlibrary/what-is-cancer
- Eckhardt, S., Recent progress in the development of anticancer agents. *Curr. Med. Chem. Anticancer Agents*, 2002, 2, 419–439.
- 3. Shoemaker, R. H., The NCI60 human tumor cell line anticancer drug screen. *Nat. Rev. Cancer* **2006**, *6*, 813–823.
- Adams, J.; Kauffman, M., Development of the proteasome inhibitor Veleade((TM)) (Bortezomib). *Cancer Invest.* 2004, 22, 304–311.

- Dexheimer, T. S.; Gediya, L. K.; Stephen, A. G.; Weidlich, I.; Antony, S.; Marchand, C.; Interthal, H.; Nicklaus, M.; Fisher, R. J.; Njar, V. C.; Pommier, Y., 4-Pregnen-21-ol-3,20dione-21-(4-bromobenzenesulfonate) (NSC 88915) and related novel steroid derivatives as Tyrosyl-DNA Phosphodiesterase (Tdp1) inhibitors. *J. Med. Chem.* 2009, *52*, 7122–7131.
- Cragg, G. M.; Boyd, M. R.; Khanna, R.; Kneller, R.; Mays, T. D.; Mazan, K. D.; Newman, D. J.; Sausville, E. A., International collaboration in drug discovery and development: the NCI experience. *Pure Appl. Chem.* **1999**, *71*, 1619–1633.
- (a) Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R., Feasibility of drug screening with panels of human-tumor cell-lines using a microculure tetrazolium assay. *Cancer Res.* **1988**, *48*, 589–601. (b) Boyd, M. R.; Pauli, K. D., Some practical considerations and applications of the National Cancer Institute *in vitro* anticancer drug discovery screen. *Drug Develop. Res.* **1995**, *34*, 91–109.
- Kode, N.; Chen, L.; Murthy, D.; Adewumi, D.; Phadtare, S., New bis-N9-(methylphenylmethyl)purine derivatives: Synthesis and antitumor activity. *Eur. J. Med. Chem.* 2007, 42, 327–333.
- 9. Corona, P.; Carta, A.; Loriga, M.; Vitale, G.; Paglietti, G., Synthesis and in vitro antitumor activity of new quinoxaline derivatives. *Eur. J. Med. Chem.* **2009**, *44*, 1579–1591.
- Rostom, S. A. F., Synthesis and in vitro antitumor evaluation of some indeno 1,2-c pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. *Biorg. Med. Chem.* 2006, *14*, 6475–6485.

CHAPTER 4

Study of Anticancer Activity of Seven-membered Cyclic Sulfamide Analogs

Using the USA National Cancer Institute 60 Human Cancer Cell Line (NCI 60) Screen

4.1. Introduction

Among the various human diseases, cancer, human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS), and hepatitis C virus (HCV) are among the most devastating diseases in contemporary human history. Accordingly, development and discovery of novel potent, significantly selective, and less toxic antitumor, antiviral drugs is one of the main hurdles to overcome health problems. Manytimes, AIDS patients have accompany cancers and other lethal diseases because the immune system is so weakened by the HIV in a human body.

Drug repositioning (drug repurposing, reprofiling and indication switch) has gained attention from drug discovery.¹ Development of a new pharmaceutical product requires at least 10 to 15 years and costs between \$500 million and \$2 billion.² Thus, the identification and characterization of new pharmacological activities through screening from existing therapeutic drugs is an effective method to accelerate the translation of discoveries in short time and to save the development cost. It also opens new applications of the subsequent target identification and validation.

There are several examples of newly rescued drugs from old drugs **4.1–4.7** shown in Table 4.1.³ These drugs are newly indicated for cancers that affect blood, bone marrow, and lymph nodes. With successful results from old drugs to new treatments, scientists are becoming more and more interested in drug repositioning.⁴

Drugs	Original indications	New indications	Notes
	Fungal infection	Leukemia	Preclinical ⁵
Ciclopirox (4.1) $\downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Fungal and protozoal infection	Leukemia and Myeloma	Phase I ⁶
	Antihistamine	Leukemia, Mantle cell lymphoma, and myeloma	Preclinical ⁷
Cyproheptadine (4.3) HO	Inflammatory and autoimmune conditions	Multiple myeloma	Clinical, FDA approved ⁸
$ \begin{array}{c} $	Mental and emotional disorders	Multiple myeloma and other plasma cell neoplasm	Phase II ⁹
$ \begin{array}{c} $	Antihelmintics	Leukemia, myeloma	Preclinical ¹⁰
Flubendazole (4.6) $ \begin{array}{c} \circ \\ \circ \\ \circ \\ \circ \\ \end{array} $ Thalidomide (4.7)	Morning sickness	Multiple myeloma	Clinical, FDA approved ¹¹
	111		

Table 4.1. Developed treatments for hematological malignancies from old drugs.

Recently, focused studies of the effective inhibitions of selective cancer cells by HIV protease inhibitors have surfaced in the literature (Figure 4.1).¹² Nelfinavir (4.8) is an HIV protease inhibitor that is recently being evaluated in an oncology clinical trial as a potential candidate of cancer therapeutic treatment.¹³ Liu reported that Nelfinavir (4.8) selectively inhibits the growth of HER2-positive breast cancer cells *in vitro*.^{12a} Although breast cancer is one of the leading causes of cancer death, only few treatment options are available, and development of new drug targets is still in need. In 2012, Dennis and coworkers reported that Nelfinavir (4.8) and bortezomib (4.9) are able to induce endoplasmic reticulum (ER) stress, whereas the combination enhances ATF3 and CHOP expression to cause cell death.^{12b} Betulinic acid (4.10) is a natural product possessing biological activities such as including anti-cancer, anti-malarial, anti-inflammatory and anti-HIV properties.^{12c,d} Cobicistat (4.11), a potential inhibitor of cytochrome P450 3A enzymes, has been developed as a pharmacoenhancer (booster) for coformulation with HIV drugs.^{12e} Tenofovir alafenamide fumarate (TAF), or GS 7340, (**4.12**) is under development by Gilead Sciences for use in the treatment of HIV infection. Cobicistat (4.11) is a substrate of breast cancer resistance protein (BCRP), and experimental data shown that Cobicistat (4.11) has a competitive mode of inhibition with coadministrated agent 4.12 during intestinal absorption to inhibit breast cancer resistance protein (BCRP).

Figure 4.1. Active compounds possessing biological activity on cancer cell.

In this regard, we previously synthesized and reported an array of sulfur-based potential HIV-PR inhibitors (DMP 323 analogs in Jung Ho Jun Master Thesis) that we now have submitted to the NCI-60 cancer cell line screen and herein report the summarized results in order to discuss possible opportunities in an oncology study.

4.2. Summary of the synthesis of cyclic sulfamide compounds

Cyclic urea-based compounds have demonstrated antiviral activity and there are prominent examples of highly potent HIV protease inhibitors developed by pharmaceutical industry.^{14,15,16} Previous studies have elucidated the effect of substituents, absolute and relative stereochemistry, hydrophobicity etc., on the hydrogen bonding and catalytic aspartate interactions with enzyme, and thereby, overall inhibitor potency.¹⁷ It is well known that modification with sulfamide functional group provides an attractive and versatile opportunity for the selective and potent modulation of protein function.¹⁸ These observations inspired us to

explore the potential of cyclic sulfamide analogs of ureas, for anti-cancer activity. Since it is already published in my Master thesis and paper,¹⁹ the methodologies in synthesizing cyclic sulfamide compounds utilizing ring-closing metathesis (RCM) are only summarized in this section. Synthesis of cyclic sulfamide **4.15**, which has alkyl substituents at the P1/P1' positions, was accomplished from **4.13** (Scheme 4.1). Alkylation of C₂-cymmetric sulfamide **4.13**, followed by the conversion of the ester groups to terminal olefins, RCM, and subsequent dihydroxylation generated cyclic sulfamide **4.15**.

Scheme 4.1. *Symmetric Sulfamides from SO*₂*Cl*₂: *Ester as Latent Olefin.*

The initial synthesis of amino ester derived C_2 -symmetric sulfamides **4.22** and further synthesis is described in Scheme 4.2. Condensation of a slight excess of phenylalanine•HCl with SO₂Cl₂ in CH₂Cl₂ at 0 °C furnished sulfamides **4.17** in 93% yield. Benzylation using benzyl bromide and reduction by the addition of LiAlH₄ cautiously into a reaction mixture in THF at low temperature (0 °C) allowed primary alcohol **4.18** in 91%. Swern oxidation and following Wittig reaction²⁰ using *n*-butyl lithium provided terminal olefin **4.20** in moderate yield. Addition of the **G-II** catalyst in 3–6 mol% in refluxing benzene was found to be highly efficient for the metathesis of these substrates to provide cyclic C_2 -symmetric sulfamides **4.21** in quantitative yield. This pathway represents the first important example of a C₂-symmetric sulfamide that has functionality occupying the P1/P1' and P2/P2' positions. Each reaction of dihydroxylation and epoxidation from **4.21** yielded diol **4.22** and the 7-membered epoxy sulfamide **4.23**. Scheme 4.2

With the desire for a more effective route to C_2 -symmetric sulfamides with bulky endocyclic substituents occupying the P1/P1' positions, an improved synthetic pathway was explored. This route employed a two-directional chain synthesis²¹ on the leucine-derived, C_2 symmetric sulfamide **4.24** (Scheme 4.3). Dialkylation of **4.24** with benzyl bromide under standard conditions (K₂CO₃, CH₃CN, 70 °C) and LiAlH₄ reduction gave the corresponding *bis*benzylated sulfamide **4.25** in 99% yield. Next, a two-step protocol was used to convert the diol moieties to sulfamide diene **4.26**. Swern oxidation in 99% followed by *bis*-Wittig olefination (PPh₃CH₂Br, *n*-BuLi, THF) yielded **4.26** in 89%. With use of 5 mol% of the **G-II** catalyst, C_2 symmetric sulfamide **4.27** was furnished in moderate yield. Dihydroxylation proceeded smoothly to produce sulfamide diol **4.28** in 99% yield. Alternatively, treatment with *m*-CPBA yielded epoxy sulfamide **4.29** in an un-optimized yield of 52%. Scheme 4.3

Attempt at the installation of an α -hydroxyl amine at the P2/P2' positions is shown in Scheme 4.4. Several efforts were studied to open the epoxide ring using sodium azide with various conditions (Table 4.2).²² The first reaction condition using sodium azide and epoxide **4.29** in DMF and H₂O (7:1) did not afford the ring-opened product. The second reaction condition utilized cerium chloride and NaN₃ in CH₃CN and H₂O (9:1), yet also failed to yield the desired products. Finally, the reaction condition using NH₄Cl with NaN₃ in DMF and H₂O (7:1) furnished desired product **4.30** and **4.31** in less than 30% yield (ratio 1.3:1)²³. These two α -hydroxyl azides, **4.30** and **4.31**, could be distinguished by NOE analysis (Figure 4.2). The relationship between H1 and H3 of **4.30** is *cis*, since no NOE was seen between H2 and either H1 or H3.

Investigations using the Staudinger reaction will be explored in the future. Under the simple reaction condition (PPh₃ and H₂O), sulfamides **4.30** and **4.31** should be able to be converted to α -hydroxyl amines **4.32** and **4.33**. Since the α -hydroxyl amines have a higher

probability to engage in hydrogen bonds, the degree of coordination between these α -hydroxyl amines and aspartate residues present in the active site of HIV-PR could potentially be enhanced in comparison with the corresponding diol compound. These efforts will be reported in due course.

Table 4.2. Result of ring opening reaction using various conditions.

Condition	Solvent	Yield
NaN ₃	DMF:H ₂ O = 7:1	None
CeCl ₃ ·7H ₂ O/NaN ₃	CH ₃ CN:H ₂ O = 9:1	None
NH ₄ Cl/NaN ₃	DMF:H ₂ O = 7:1	30%

Figure 4.2

An attractive route to diol **4.37** is outlined in Scheme 4.5 and utilizes the pinacol coupling reaction that converts internal or external aldehydes to *cis* or *trans* diols using various catalysts.

The first trial to generate a *trans*-diol using titanium cyclopentadiene catalyst was performed.²⁴ The reaction of aldehyde **4.19b**, titanium catalyst **4.34**, and TMSCl in the presence of catalytic amount of Zn powder in THF did not furnish the desired trans-diol, **4.35**. Secondly, a widely known method to furnish *cis*-diol using SmI₂ was applied to the pinacol coupling reaction, but the desired product *cis*-diol **4.38** was not generated.²⁵ Fortunately, by using a protocol reported by Pederson and coworkers,²⁶ pinacol coupling reaction of the aldehyde **4.19b** with a vanadium (II) reagent, $[V_2Cl_3(THF)_6]_2[Zn_2Cl_6]$ generated diol **4.37** as a single diastereomer in 56% yield. We next embarked upon studies to elucidate the stereochemistry of diol **4.37**.

Scheme 4.5

There are three possible stereochemical outcomes of the pinacol coupling, namely two *trans*-diastereomers **4.37a**, **4.37b**, and the *cis*-diol **4.37c** (Figure 4.3). ¹H NMR NOE studies allowed us to assign the product as the *cis*-diol **4.37c**.

An approach to synthesize *meso* compound **4.44** utilizing CSI and chiral amino acid was developed (Scheme 4.6). Mitsunobu reaction of α -hydroxy ester **4.39**, which was generated by the reaction of α -hydroxy amino acid and amberlyst-15 ion exchange resin in MeOH, and the unsymmetric sulfamide **4.38**,²⁷ provided the *N*-Boc protected sulfamide **4.40** in 72% yield. Benzylation and deprotection of Boc group furnished **4.41**, and further benzylation and LiAlH₄ reduction produced *meso* sulfamide **4.42**. Swern oxidation followed by Wittig reaction generated terminal olefin **4.43**, and RCM using the **G-II** catalyst (5 mol%) furnished cyclized *meso* sulfamide **4.44** in good yields.

Scheme 4.6

The newest route to unsymmetric sulfamides is represented in Scheme 4.6. This approach involves the use of the Mitsunobu reaction of sulfamoyl carbamates to apply a stereogenic center occupying the P1 position in a tri-differentiated sulfamide.¹⁹ Mitsunobu reaction of sulfamide **4.45** with readily prepared chiral nonracemic secondary allylic alcohol **4.46** provided sulfamide **4.47** in 67% yield. Allylation afforded sulfamide diene **4.48** in 92%. RCM (96%), Boc-deprotection (96%) and benzylation (89%) gave the desired cyclic sulfamide **4.50** in excellent yield. Finally, dihydroxylation gave sulfamide diol **4.51** in good yield (70%) and with high diastereoselectivity (*dr*=16:1).

Scheme 4.7

Another new approach to unsymmetric sulfamides is represented in Scheme 4.8.¹⁹ This strategy involves mono benzylation followed by *p*-methoxy benzylation on the nitrogen to generate diverse substituents occupying the P2 and P2' positions in a tri-differentiated sulfamide. Mono benzylation of sulfamide **4.24** with benzyl bromide allowed sulfamide **4.52** in 53% yield with dibenzylated sulfamide as a byproduct. *p*-Methoxy benzylation of **4.52** on the rest of nitrogen and reduction of ester gave diol **4.53**. Dess-Martin oxidation of **4.53** in wet CH₂Cl₂ organic solvent generated unstable dialdehyde **4.54**.²⁸ Wittig reaction using KHMDS to produce terminal olefin **4.55**, and RCM in refluxing benzene generated desired cyclic sulfamide **4.56**.

Scheme 4.8

The methods outlined below were exploited further in the synthesis of an unsymmetric sulfamide bearing tetra-differentiated P1/P1'/P2/P2' regions (Scheme 4.9).¹⁹ Mitsunobu reaction of sulfamide **4.57**²⁹ and L-ethyl lactate, and benzylation of sulfamoyl carbamate furnished unsymmetric sulfamide **4.58** in 94% yield. Boc-deprotection and protection of the remaining sulfamide nitrogen with *p*-methoxybenzyl chloride gave 77% of sulfamide **4.59**. LiAlH₄ reduction (38%), Swern oxidation (99%), and Wittig olefination (69%) gave the metathesis precursor **4.60**. Ring-closing metathesis with 5 mol % of the **G-II** catalyst afforded 69% of

unsymmetric sulfamide **4.61**. Conversion of the cyclic internal olefin to the corresponding diol via *cis*-dihydroxylation was the final step toward analogues of DMP 323. Dihydroxylation furnished the sulfamide diol **4.62** in 91% yield, albeit with modest diastereoselectivity (dr=3.9:1).

Scheme 4.9

4.3. Anticancer drug discovery NCI-60 cell line screening at National Cancer Institute (NCI)

4.3.1. One-dose assay

Pharmacological evaluation of the anticancer activity was carried out on the selected compounds by developmental therapeutic program of the *National Cancer Institute (NCI)*, Frederick, Maryland. All the selected 29 compounds for *in vitro* cancer screening have been given a unique NSC (National Service Center) number. The compounds **4.21–4.78** in Table 4.3 were submitted to NCI-60 cell line screening. Compounds **4.63–4.78** were prepared by our group members and synthetic methods and supplemental data can be found in cited references.^{30,19b} Cyclic sulfamide, urea, and phosphorus containing compounds **4.63–4.78** were

screened to obtain structure activity relationships (SAR). Details of the methodologies for NCI-60 cell line screening are described at http://dtp.nci.nih.gov/branches/btb/ivclsp.html.³¹ Briefly, the panel is organized into nine subpanels representing diverse histologies: leukemia, melanoma, and cancers of lung, colon, kidney, ovary, breast, prostate, and central nervous system. The human tumor cells are grown in supplemented RPMI 1640 medium containing 5% fetal bovine serum and 2 mL glutamine for 24 h. The cells are inoculated into 96-well microtiter plates in 100 µL at plating densities ranging from 5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the micro-titer plates are incubated at 37° C, 5 % CO₂, 95 % air and 100 % relative humidity for 24 h prior to addition of experimental drugs. The selected compounds 4.21-4.78 were dissolved in DMSO and incubated with cells at five concentrations with 10-fold dilutions, the highest being 10^{-4} M and the others being 10^{-5} , 10^{-6} , 10⁻⁷, and 10⁻⁸ M. The assay is terminated by addition of cold trichloroacetic acid, and the cells are fixed and stained with sulforhodamine B. Bound stain was solubilized, and the absorbance read on an automated plate reader. The cytostatic parameter that is 50% growth inhibition (GI₅₀, concentrations required to inhibit growth by 50%) was calculated from time zero, control growth, and the five concentration level absorbance. The cytotoxic parameter that is, inhibitory concentrations (LC50, lethal concentration, standard measure of the toxicity of the medium that kills half of the sample population in a specified period, lower number means more toxic) represent the average of two independent experiments. The in vitro screening is a two-stage process started with the evaluation of all the compounds against the NCI-60 human tumor cell lines with a single dose of 10.0 μ M, which is done by following same protocol as for five-dose screening. The output from the single dose screen was reported as a mean graph (given in the Supplementary data with general interpretation). Only the compounds, which showed more than

60% of growth inhibition in at least 8 tumor cell lines, were selected for further testing and the others were assumed as inactive.

Compd No. NSC No.	Structure	Activity	Compd No. NSC No.	Structure	Activity
4.21 NSC 764190	Bn N S N Bn Ph Ph	Active	4.22 NSC 751486	$\begin{array}{c} O & O \\ Bn \\ N^{S} \\ N^{S} \\ N^{H} \\ Ph \\ HO \\ OH \end{array} \begin{array}{c} Bn \\ Ph \\ Ph \end{array}$	Active
4.23 NSC 751478	Ph O Ph	Active	4.27 NSC 751468	Bn N S N Bn	
4.28 NSC 751469	Bn N S N Bn		4.29 NSC 751470	Bn NSN Bn	
4.37C NSC 764189	Ph HO OH Ph	Active	4.44 NSC 751477	Bn N S N Bn	
4.56 NSC 751472	PMB _N S _N Bn		4.61 NSC 751473	PMB _N S _N Bn	
4.62a NSC 751479	PMB N S HO OH		4.62b NSC 751483		
4.63 NSC 751467			4.64 NSC 764191		

 Table 4.3. List of compounds screened for NCI 60-cell lines.

The one-dose data is reported as a mean graph of the percent growth of treated cells and is similar in appearance to mean graphs from the 5-dose assay. The number reported for the one-dose assay is growth relative to the no-drug control, and relative to the time zero number of cells.

This allows detection of both growth inhibition (values between 0 and 100) and lethality (values less than 0). This is the same as for the 5-dose assay. described on http://dtp.nci.nih.gov/branches/btb/ivclsp.html. For example, a value of 100 means no growth inhibition. A value of 40 would mean 60% growth inhibition. A value of 0 means no net growth over the course of the experiment. A value of -40 would mean 40% lethality. A value of -100 means all cells are dead. Information from the One-dose mean graph is available for COMPARE analysis (http://dtp.nci.nih.gov/docs/compare/compare.html). This primary one-dose screening showed that compounds (4.21, 4.22, 4.23, and 4.37c) were active, while other compounds are determined as inactive. Table 4.4 is the summary of one-dose experiment for each compound. Even if it was not selectively considered 60% of growth inhibition as criterion, many compounds are moderately sensitive on the breast cancer (MDA-MB-468), renal cancer (UO-31 and CAKI-1) and leukemia (MOLT-4 and SR).

Compound **4.21** (NSC 764190) showed 11.87% growth inhibition against the SR cell line (Leukemia), compound **4.22** (NSC 751486), 0% against the UO-31 cell line (Renal cancer), compound **4.23** (NSC 751478), 6.52% against MDA-MB-468 the cell line (Breast cancer), compound **4.27** (NSC 751468), 39.65% against MDA-MB-468 the cell line (Breast cancer), compound **4.28** (NSC 751469), 46.61% against HCT-116 the cell line (Colon cancer), compound **4.29** (NSC 751470), 35.50% against MDA-MB-468 the cell line (Breast cancer), **4.37c** (NSC 751489), 18.03% against MDA-MB-468 the cell line (Breast cancer), compound **4.44** (NSC 751477), 41.68% against the MDA-MB-468 cell line (Breast cancer), compound **4.56** (NSC 751472), 44.15% against the MDA-MB-468 cell line (Breast cancer), compound **4.61** (NSC 751473), 81.62% against the HT29 cell line (Colon cancer), compound **4.62a** (NSC 751479), 67.93% against the SNB-75 cell line (CNS cancer), compound **4.62b** (NSC 751483), 75.56%

against the UO-31 cell line (Renal cancer), Compound 4.63 (NSC 751467), 69.49% against the SNB-19 cell line (CNS cancer), compound 4.64 (NSC 751491), 71.87% against the Leukemia MOLT-4 cell line (Leukemia), compound 4.65 (NSC 764192), 78.05% against the SNB-75 cell line (CNS cancer), compound 4.66 (NSC 764193), 87.73% against the UO-31 cell line (Renal cancer), compound 4.67 (NSC 764194), 43.31% against the CAKI-1 cell line (Renal cancer), compound 4.68 (NSC 764195), 57.52% against the HCT-116 cell line (Colon cancer), compound 4.69 (NSC 764196), 73.57% against the CAKI-1 cell line (Renal cancer), compound 4.70 (NSC 764197), 82.35% against the UO-31 cell line (Renal cancer), compound 4.71 (NSC 767525), 79.70% against the NCI-H522 cell line (Non-small cell lung cancer), compound 4.72 (NSC 767526), 34.17% against the MOLT-4 cell line (Leukemia), compound **4.73** (NSC 767527), 39.80% against the MOLT-4 cell line (Leukemia), compound 4.74 (NSC 767528), 82.41% against the SR cell line (Leukemia), compound 4.75 (NSC 767529), 76.18% against the SNB-75 cell line (CNS cancer), compound 4.76 (NSC 767530), 80.47% against the SR cell line (Leukemia), compound 4.77 (NSC 767531), 64.25% against the UO-31 cell line (Renal cancer), and compound 4.78 (NSC 767532), 64.80% against the UO-31 cell line (Renal cancer) (Table 4.4). The compounds which reduced the growth of the cell lines to 32% or less (negative number indicate kills) are considered *in vitro* active.^{32,33} The output from the NCI-60 cell lines single dose screen of NSC 764190 was reported as a mean graph (Figure 4.4).

NSC No.	Range of growth percentage	Most sensitive cell line	Growth % of most sensitive cell line	Mean	Delta	range
751467	69.49 to 127.06	CNS cancer (SNB-19)	69.49	100.68	31.19	57.57
751468	39.65 to 140.80	Breast cancer (MDA-MB-468)	39.65	85.77	46.12	101.15
751469	46.61 to 113.74	Colon cancer (HCT-116)	46.61	81.18	34.57	67.13
751470	35.50 to 123.55	Breast cancer (MDA-MB-468)	35.50	79.44	43.94	88.05
751472	44.15 to 132.68	Breast cancer (MDA-MB-468)	44.15	81.64	37.49	88.53
751473	81.62 to 126.01	Colon cancer (HT29)	81.62	102.22	20.60	44.39
751477	41.68 to 110.24	Breast cancer (MDA-MB-468)	41.68	76.40	35.15	68.99
751478	6.52 to 114.43	Breast cancer (MDA-MB-468)	6.52	46.84	40.32	107.9
751479	67.93 to 150.32	CNS cancer (SNB-75)	67.93	100.64	32.71	82.39
751483	75.56 to 125.47	Renal cancer (UO-31)	75.56	99.69	24.13	49.91
751486	-45.75 to 60.35	Renal cancer (UO-31)	0	-0.81 ^a	44.94	106.1
751489	18.03 to 102.81	Breast cancer (MDA-MB-468)	18.03	65.12	47.09	91.32
764190	11.87 to 99.65	Leukemia (SR)	11.87	55.00	43.13	87.78
764191	71.87 to 116.41	Leukemia (MOLT-4)	71.87	96.44	24.57	44.54
764192	78.05 to 120.37	CNS cancer (SNB-75)	78.05	103.32	25.27	42.32
764193	87.73 to 125.96	Renal cancer (UO-31)	87.73	104.45	16.72	38.23
764194	43.31 to 107.76	Renal cancer (CAKI-1)	43.31	82.97	39.66	64.45
764195	57.52 to 122.20	Colon cancer (HCT-116)	57.52	85.01	38.72	75.91
764196	73.57 to 127.74	Renal cancer (CAKI-1)	73.57	101.26	27.69	54.17
764197	82.35 to 129.96	Renal cancer (UO-31)	82.35	99.55	17.20	47.61
767525	79.70 to 119.76	Non-small cell lung cancer (NCI- H522)	79.70	101.95	22.25	40.06
767526	34.17 to 115.22	Leukemia (MOLT-4)	34.17	80.46	46.29	81.05
767527	39.80 to 110.48	Leukemia (MOLT-4)	39.80	85.89	46.09	70.68
767528	82.41 to 119.28	Leukemia (SR)	82.41	102.75	20.34	36.87
767529	76.18 to 122.73	CNS cancer (SNB-75)	76.18	101.04	30.17	51.86
767530	80.47 to 187.29	Leukemia (SR)	80.47	104.72	24.25	106.8
767531	64.25 to 119.03	Renal cancer (UO-31)	64.25	100.51	36.26	55.75
767532	64.80 to 119.30	Renal cancer (UO-31)	64.80	99.27	34.47	54.50

Table 4.4. Anti-cancer screening data of compounds.

^a Negative indicates the cell kill

Developmental The	apeutics Flogram	NSC: D-764190/1	Conc: 1.00E-5 Molar	Test Date: Mar	19, 2012	
One Dose Me	an Graph	Experiment ID: 1203	OS38	Report Date: Nov 19, 2012		
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Percent	cent		
Leukemia						
CCRF-CEM	48.60					
HL-60(TB)	35.73 22.97					
K-562						
MOLT-4 RPMI-8226	23.72 37.48					
SR	11.87					
Non-Small Cell Lung Cancer	11.07					
Non-Small Cell Lung Cancer A549/ATCC	50.80		► I			
HOP-62	62.98		_			
HOP-92	86.58					
NCI-H226	76.36					
NCI-H23	37.91					
NCI-H322M	82.88					
NCI-H460 NCI-H522	20.82					
Colon Cancer	47.45					
COLO 205	80.98					
HCC-2998	75.36					
HCT-116	26.78					
HCT-15	25.36					
HT29	57.41		L			
KM12	49.96					
SW-620	70.68					
CNS Cancer SF-268	62.25					
SF-295	41.82					
SF-539	59.87		=			
SNB-19	74.07					
U251	45.72					
Melanoma						
MALME-3M	87.71					
M14 MDA-MB-435	39.38					
SK-MEL-2	73.86 81.79					
SK-MEL-28	60.47					
SK-MEL-5	27.89					
UACC-257	55.24					
UACC-62	51.05		– 1			
Ovarian Cancer						
IGROV1	58.05		1 1			
OVCAR-3	53.26					
OVCAR-4 OVCAR-5	37.00 86.88					
OVCAR-8	55.54					
NCI/ADR-RES	52.89		•			
SK-OV-3	68.49		_			
Renal Cancer						
786-0	53.83					
A498	57.01					
ACHN CAKI-1	41.03 46.76					
RXF 393	78.05				- 1	
SN12C	61.78		-			
TK-10	68.15					
UO-31	57.14		•			
Prostate Cancer	40.97					
PC-3 DU-145	40.87 66.80					
Breast Cancer	00.00				- 1	
MCF7	47.43					
MDA-MB-231/ATCC	87.54					
HS 578T	99.65					
BT-549	56.36					
T-47D MDA-MB-468	49.45 17.38				- 1	
WDA-WD-400	17.00					
Mean	55.00					
Delta	43.13					
Range	87.78					
	150	100 50	0 -50	-100	-150	

Figure 4.4. Selected NCI60-cell lines screening data for one-dose study of 4.21 (NSC 764190).

Table 4.5 represents the growth percent inhibition (100 - growth percent) of compounds that inhibited more than 50% of growth inhibition for one-dose studies from the NCI60-cell lines screen. Generally, compounds were selectively sensitive on the leukemia, colon cancer, prostate cancer and breast cancer cell. Especially, almost every compound in Table 4.5 showed strong inhibition of the breast cancer cell line (MDA-MB-468).

Table 4.5. Growth percent inhibition of compounds inhibited more than 50% for one-dosestudies for the NCI 60-cell lines screen.

Panel/cell line	NSC 751468	NSC 751470	NSC 751472	NSC 751477	NSC 751478	NSC 751486	NSC 764189	NSC 764190	NSC 767527
Leukemia									
CCRF-CEM					70.51	92.67		51.40	
HL-60(TB)					54.91			64.27	
K-562					76.65	96.88	58.11	77.03	
MOLT-4					64.56	94.35	73.65	76.28	61.20
RPMI-8226					72.12		62.31	62.52	
SR					70.44	95.55	58.23	88.13	
Colon cancer									
HCT-116		51.37	50.59		82.98		68.99	73.22	
HCT-15					73.92	96.84		74.64	
HT29	55.97				53.32	93.05			
KM12					59.78			50.04	
SW-620						90.78			
Prostate cance	r								
PC-3				52.03	57.96	95.11	60.25	59.13	
V66666DU-					65.74				
145					05.74				
Breast cancer									
MCF7							66.13	52.57	
MDA-MB-					75.79		58.41		
231/ATCC					15.19		50.71		
HS 578T						80.33			
BT-549					7	84.33		F O	
T-47D					67.51	92.13		50.55	
MDA-MB- 468	60.35	64.5	55.85	58.32	93.48		81.97	82.62	

4.3.2. Five-dose assay

The log mean values for GI_{50} and LC_{50} in NCI-60 cell lines for compounds **4.21**, **4.22**, **4.23**, and **4.37c** are provided in Table 4.6 along with the log delta value (the maximum sensitivity in excess of the mean) and the log range (the maximum difference between the least sensitive and the most sensitive cell lines). These parameters provided insights into selectivity and potency of anti-tumor agents. Large values of the delta and range indicate high selectivity for some histological cancers over others. The lower median log GI_{50} values of compounds **4.22**, **4.23** and **4.37c** show that these three compounds are active, followed by **4.21**. The high median log LC_{50} value of **4.21**, along with the low delta and range value, indicates the complete absence of cytotoxicity against all cell lines.

Table 4.6. *Cytostatic (GI*₅₀) and cytotoxic (LC₅₀) parameters for **4.21** (NSC 764190), **4.22** (NSC 751486), **4.23** (NSC 751478), and **4.37c** (NSC 764189).

Compound		GI ₅₀			LC ₅₀	
Compound	Median	Delta	Range	Median	Delta	Range
4.21 (NSC 764190)	-4.94	1.63	2.57	-4.0	0	0.0
4.22 (NSC 751486)	-5.49	0.58	0.85	-4.8	0.18	0.28
4.23 (NSC 751478)	-5.31	1.25	1.44	-5.12	0	0.0
4.37c (NSC 764189)	-5.30	0	0.0	-5.3	0	0.0

The complete *in-vitro* anti-cancer data collected on NCI-60 subpanel cell lines for the four most active compounds informed are shown in Table 4.7. Secondary screening was carried out on these active compounds (4.21, 4.22, 4.23, and 4.37c) in order to determine their cytostatic and cytotoxic activities. Generally, cyclic sulfamides possessing benzyl group substituted at the 3- and 6-positions have antitumor activities in several cancer cells. Cyclic sulfamides 4.27, 4.28, 4.29, 4.44, 4.56, 4.61, 4.62a and 4.62b which have alkyl substituents at the 3- and 6-positions do not have noticeable sensitivities toward the 60 tumor cell screening line. To compare as *in vitro* SAR data, unsymmetric phosphorus-containing analogues of DMD 232 4.64–4.66, 4.69, cyclic

ureas 4.67, 4.68, 4.70, and di- or tri-substituted unsymmetric cyclic sulfamides 4.71–4.78 were submitted to 60-cell lines additionally. One-dose experimental results show that these compounds did not possess enough biological availability to warrant additional five-dose screening. The result of compound 4.21 for five-dose screening is given by three response parameters (GI_{50} , TGI and LC_{50}) for each cell line from log_{10} of sample concentration (molar) vs percentage growth inhibition curves in nine cancer diseases (Figure 4.5).

Table 4.7. Anti-tumor activity $(GI_{50}/\mu M)^a$, TGI^b and toxicity $(LC_{50}/\mu M)^c$ data of compounds selected for 5 dose studies for the NCI60-cell lines screen.

Panel/cell line		NSC 76	/		NSC 75	,		NSC 75	/		(NSC 7	
	GI ₅₀	TGI	LC_{50}	GI ₅₀	TGI	LC_{50}	GI ₅₀	TGI	LC_{50}	GI ₅₀	TGI	LC ₅₀
Leukemia												
CCRF-CEM	3.85	>100	>100	5.96	>20	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HL-60(TB)	3.43	>100	>100	2.97	8.72	>20	4.75	>7.5	>7.5	>5.0	>5.0	>5.0
K-562	2.00	>100	>100	3.05	9.38	>20	3.34	>7.5	>7.5	>5.0	>5.0	>5.0
MOLT-4	2.15	>100	>100	2.86	1.02	>20	4.12	>7.5	>7.5	>5.0	>5.0	>5.0
RPMI-8226	0.859	>100	>100	4.49	>20	>20	4.92	>7.5	>7.5	>5.0	>5.0	>5.0
SR	1.66	>100	>100	nd	nd	nd	nd	nd	nd	nd	nd	nd
Non-small cell lung car												
A549/ATCC	7.67	>100	>100	2.99	7.62	19.4	3.78	>7.5	>7.5	>5.0	>5.0	>5.0
EKVX	nd	>100	>100	3.43	9.86	>20	6.55	>7.5	>7.5	>5.0	>5.0	>5.0
HOP-62	>100	>100	>100	3.71	7.34	14.5	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HOP-92	4.40	>100	>100	3.15	6.68	14.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H226	4.35	>100	>100	3.04	6.17	12.5	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H23	1.66	>100	>100	3.11	6.71	14.5	3.47	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H322M	>100	>100	>100	4.48	11.8	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H460	2.75	>100	>100	3.41	7.91	18.3	2.53	>7.5	>7.5	>5.0	>5.0	>5.0
NCI-H522	5.46	>100	>100	0.847	4.79	14.5	1.83	>7.5	>7.5	>5.0	>5.0	>5.0
Colon cancer												
COLO 205	>100	>100	>100	4.26	10.5	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HCC-2998	>100	>100	>100	3.41	6.20	11.3	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HCT-116	0.535	>100	>100	2.43	5.05	10.5	0.844	>7.5	>7.5	>5.0	>5.0	>5.0
HCT-15	3.51	>100	>100	4.37	1.82	>20	3.92	>7.5	>7.5	>5.0	>5.0	>5.0
HT29	42.6	>100	>100	2.63	5.64	12.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
KM12	9.92	>100	>100	2.94	5.84	11.6	7.19	>7.5	>7.5	>5.0	>5.0	>5.0
SW-620	nd	>100	>100	3.18	7.12	15.9	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
CNS cancer												
SF-268	7.85	>100	>100	3.44	8.03	18.8	6.08	>7.5	>7.5	>5.0	>5.0	>5.0
SF-295	0.667	>100	>100	2.62	5.68	12.3	1.80	>7.5	>7.5	>5.0	>5.0	>5.0
SF-539	>100	>100	>100	3.37	6.76	13.6	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SNB-19	>100	>100	>100	4.69	>20	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SNB-75	>100	>100	>100	2.31	7.28	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0

U251	1.11	>100	>100	3.07	6.47	13.6	1.84	>7.5	>7.5	>5.0	>5.0	>5.0
Melanoma												
LOX IMVI	1.40	>100	>100	3.28	7.09	15.3	5.38	>7.5	>7.5	>5.0	>5.0	>5.0
MALME-3M	>100	>100	>100	2.75	6.37	14.7	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
M14	nd	>100	>100	3.04	6.07	12.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
MDA-MB-435	>100	>100	>100	3.33	7.10	15.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SK-MEL-2	>100	>100	>100	2.80	5.76	11.8	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SK-MEL-28	>100	>100	>100	3.35	6.90	14.2	1.79	>7.5	>7.5	>5.0	>5.0	>5.0
SK-MEL-5	1.14	>100	>100	3.05	5.80	11.1	2.89	>7.5	>7.5	>5.0	>5.0	>5.0
UACC-257	2.23	>100	>100	2.89	5.93	12.2	6.75	>7.5	>7.5	>5.0	>5.0	>5.0
UACC-62	2.66	>100	>100	2.86	6.40	14.3	nd	nd	nd	>5.0	>5.0	>5.0
Ovarian cancer												
IGROV1	>100	>100	>100	3.57	7.24	14.7	5.06	>7.5	>7.5	>5.0	>5.0	>5.0
OVCAR-3	2.34	>100	>100	2.90	6.07	12.7	4.03	>7.5	>7.5	>5.0	>5.0	>5.0
OVCAR-4	0.483	>100	>100	2.72	7.26	19.4	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
OVCAR-5	>100	>100	>100	3.57	9.10	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
OVCAR-8	>100	>100	>100	4.20	11.2	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
NCI/ADR-RES	7.03	>100	>100	3.40	8.58	>20	5.23	>7.5	>7.5	>5.0	>5.0	>5.0
SK-OV-3	>100	>100	>100	4.15	10.6	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
Renal cancer												
786-0	>100	>100	>100	3.24	6.86	14.5	5.12	>7.5	>7.5	>5.0	>5.0	>5.0
A498	1.77	>100	>100	2.45	5.18	10.9	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
ACHN	2.10	>100	>100	6.01	>20	>20	5.88	>7.5	>7.5	>5.0	>5.0	>5.0
CAKI-1	2.83	>100	>100	3.65	7.33	14.7	0.949	>7.5	>7.5	>5.0	>5.0	>5.0
RXF 393	28.0	>100	>100	2.60	5.24	10.5	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
SN12C	9.42	>100	>100	3.26	7.68	18.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
TK-10	8.26	>100	>100	3.77	8.38	18.6	3.90	>7.5	>7.5	>5.0	>5.0	>5.0
UO-31	>100	>100	>100	2.73	5.96	13.1	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
Prostate cancer												
PC-3	0.580	>100	>100	3.48	10.4	>20	3.06	>7.5	>7.5	>5.0	>5.0	>5.0
DU-145	>100	>100	>100	3.21	7.55	17.8	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
Breast cancer												
MCF7	>100	>100	>100	4.77	13.6	>20	4.27	>7.5	>7.5	>5.0	>5.0	>5.0
MDA-MB-231/ATCC	>100	>100	>100	2.82	6.39	14.5	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
HS 578T	>100	>100	>100	3.27	8.38	>20	>7.5	>7.5	>7.5	>5.0	>5.0	>5.0
BT-549	>100	>100	>100	2.65	5.53	11.6	4.09	>7.5	>7.5	>5.0	>5.0	>5.0
T-47D	>100	>100	>100	3.95	10.2	>20	6.81	>7.5	>7.5	>5.0	>5.0	>5.0
MDA-MB-468	0.267	60.1	>100	2.98	7.17	17.3	0.274	>7.5	>7.5	>5.0	>5.0	>5.0

nd: not determined. ^a GI₅₀: 50% growth inhibition, concentration of drug resulting in a 50% reduction in net protein increase compared with control cells. ^b TGI: total cell growth inhibition ^c LC₅₀: lethal concentration, concentration of drug lethal to 50% of cells.

Figure 4.5. Dose response curves (% growth verses samples concentration at NCI fixed protocol, μ M) obtained from the NCI in vitro disease-oriented human cancer cell line of compounds **4.21** (NSC 764190) in nine cancer diseases.

Figure 4.5. Dose response curves (% growth verses samples concentration at NCI fixed protocol, μ M) obtained from the NCI in vitro disease-oriented human cancer cell line of compounds **4.21** (NSC 764190) in nine cancer diseases (continued).

The criterion for selectivity of a compound depends on the ratio obtained by dividing the full panel MID (the average sensitivity of all cell lines towards the test agent) by their individual subpanel MID (the average sensitivity of all cell lines of a particular subpanel towards the test agent). The ratios between 3 and 6 refer to moderate selectivity; ratios greater than 6 indicate high selectivity towards the corresponding cell line, while compounds not meeting either of there criteria are rated non-selective.³⁴ Since it is difficult for the calculation of GI₅₀ in cases which have values of >7.5 μ M, they are excluded from the calculation. Following this criterion, compound **4.23** (NSC 751478) was found to be mildly selective toward every cancer panel.

Table 4.8. Calculated value of GI50 of the cell lines: full cell line panel, MG-MID and selectivity ratio of compound 4.23 (NSC 751478).

Panel	Cell line	$GI_{50}(10^{-6} \text{ M})$			
		Concentration per cell line	Subpanel concentration	Subpanel MID	Selectivity ratio
Leukemia	CCRF-CEM	>7.5			
	HL-60(TB)	4.75			
	K-562	3.34			
	MOLT-4	4.12	17.13	4.282	0.922
	RPMI-8226	4.92			
	SR	nd			
Non-small cell	A549/ATCC	3.78			
lung cancer	EKVX	6.55			
0	HOP-62	>7.5			
	HOP-92	>7.5			
	NCI-H226	>7.5	18.16	3.632	1.088
	NCI-H23	3.47			
	NCI-H322M	>7.5			
	NCI-H460	2.53			
	NCI-H522	1.83			
Colon cancer	COLO 205	>7.5			
	HCC-2998	>7.5			
	HCT-116	0.844			
	HCT-15	3.92	11.954	3.984	0.991
	HT29	>7.5			
	KM12	7.19			
	SW-620	>7.5			
CNS cancer	SF-268	6.08			
	SF-295	1.80			
	SF-539	>7.5	0.50	2.24	1 0 1 0
	SNB-19	>7.5	9.72	3.24	1.219
	SNB-75	>7.5			
	U251	1.84			
Melanoma	LOX IMVI	5.38			
	MALME-3M	>7.5			
	M14	>7.5			
	MDA-MB-435	>7.5			
	SK-MEL-2	>7.5	16.81	4.203	0.940
	SK-MEL-28	1.79			
	SK-MEL-5	2.89			
	UACC-257	6.75			
	UACC-62	nd			
Ovarian cancer	IGROV1	5.06			
	OVCAR-3	4.03			
	OVCAR-4	>7.5			
	OVCAR-5	>7.5	14.32	4.773	0.828
	OVCAR-8	>7.5			
	NCI/ADR-RES	5.23			
	SK-OV-3	>7.5			
Renal cancer	786-0	5.12			
	A498	>7.5			
	ACHN	5.88	15.849	3.962	0.997
	CAKI-1	0.949			

	SN12C	>7.5			
	TK-10	3.90			
	UO-31	>7.5			
Prostate cancer	PC-3	3.06	2.06	2.06	1 201
	DU-145	>7.5	3.06	3.06	1.291
Breast cancer	MCF7	4.27			
	MDA-MB- 231/ATCC	>7.5			
	HS 578T	>7.5	15.444	3.861	1.023
	BT-549	4.09			
	T-47D	6.81			
	MDA-MB-468	0.274			
1 . 1 .					

nd: not determined

Based on the discussion on the criterion of selectivity, compound **4.22** (NSC **751486**) was found to be mild selective in the colon cancer panel. It was also found to be mildly selective in every cancer panel.

Panel	Cell line	GI ₅₀ (10 ⁻⁶ M)			
		Concentration	Subpanel	Subpanel MID	Selectivity ratio
		per cell line	concentration		
Leukemia	CCRF-CEM	5.96			
	HL-60(TB)	2.97			
	K-562	3.05	19.33	3.866	0.863
	MOLT-4	2.86	19.55	5.800	0.805
	RPMI-8226	4.49			
	SR	nd			
Non-small cell	A549/ATCC	2.99			
lung cancer	EKVX	3.43			
	HOP-62	3.71			
	HOP-92	3.15			
	NCI-H226	3.04	28.167	3.130	1.066
	NCI-H23	3.11			
	NCI-H322M	4.48			
	NCI-H460	3.41			
	NCI-H522	0.847			
Colon cancer	COLO 205	4.26			
	HCC-2998	3.41			
	HCT-116	2.43			
	HCT-15	4.37	23.22	3.317	1.006
	HT29	2.63			
	KM12	2.94			
	SW-620	3.18			
CNS cancer	SF-268	3.44	19.50	2 25	1.027
	SF-295	2.62	19.30	3.25	1.027

Table 4.9. Calculated value of GI50 of the cell lines: full cell line panel, MG-MID and selectivity ratio of compound **4.22** (NSC 751486).

	SF-539	3.37			
	SNB-19	4.69			
	SNB-75	2.31			
	U251	3.07			
Melanoma	LOX IMVI	3.28			
meranoma	MALME-3M	2.75			
	M14	3.04			
	MDA-MB-435	3.33			
	SK-MEL-2	2.80	27.35	3.039	1.098
	SK-MEL-28	3.35	21.35	5.057	1.070
	SK-MEL-5	3.05			
	UACC-257	2.89			
	UACC-62	2.86			
Ovarian cancer	IGROV1	3.57			
	OVCAR-3	2.90			
	OVCAR-4	2.72			
	OVCAR-5	3.57	24.51	3.501	0.953
	OVCAR-8	4.20		0.001	0.500
	NCI/ADR-RES	3.40			
	SK-OV-3	4.15			
Renal cancer	786-0	3.24			
	A498	2.45			
	ACHN	6.01			
	CAKI-1	3.65	07.71	2.464	0.064
	RXF 393	2.60	27.71	3.464	0.964
	SN12C	3.26			
	TK-10	3.77			
	UO-31	2.73			
Prostate cancer	PC-3	3.48	((0	2 2 4 5	0.009
	DU-145	3.21	6.69	3.345	0.998
Breast cancer	MCF7	4.77			
	MDA-MB-	2.02			
	231/ATCC	2.82			
	HS 578T	3.27	20.44	3.407	0.980
	BT-549	2.65			
	T-47D	3.95			
	MDA-MB-468	2.98			
	• 1				

nd: not determined

The next table, Table 4.10, contains the calculated values of the selectivity ratio of compound **4.21** (**NSC 764190**). Cases with values over 100 of the GI_{50} value were excluded from the calculation. Following the selectivity criterion, compound **4.21** (**NSC 764190**) was found to be mildly selective toward the leukemia (selectivity ratio = 2.238) and melanoma (selectivity ratio = 2.801) cancer panels. Even though it was chosen in only one cell line from each of the prostate cancer and breast cancer panels for the calculation of the selectivity ratio,

compound **4.21** (NSC 764190) was indicated to be highly selective toward these two cancer panels.

Panel	Cell line	$GI_{50}(10^{-6} \text{ M})$			
		Concentration	Subpanel	Subpanel MID	Selectivity ratio
		per cell line	concentration	-	-
Leukemia	CCRF-CEM	3.85			
	HL-60(TB)	3.43			
	K-562	2.00	12.040	2 225	2 2 2 9
	MOLT-4	2.15	13.949	2.325	2.238
	RPMI-8226	0.859			
	SR	1.66			
Non-small cell	A549/ATCC	7.67			
lung cancer	EKVX	nd			
0	HOP-62	>100			
	HOP-92	4.40			
	NCI-H226	4.35	26.29	4.382	1.188
	NCI-H23	1.66			
	NCI-H322M	>100			
	NCI-H460	2.75			
	NCI-H522	5.46			
Colon cancer	COLO 205	>100			
	HCC-2998	>100			
	HCT-116	0.535			
	HCT-15	3.51	56.565	14.141	0.368
	HT29	42.6			
	KM12	9.92			
	SW-620	nd			
CNS cancer	SF-268	7.85			
	SF-295	0.667			
	SF-539	>100	o (o =	• • • • •	
	SNB-19	>100	9.627	3.209	1.622
	SNB-75	>100			
	U251	1.11			
Melanoma	LOX IMVI	1.40			
	MALME-3M	>100			
	M14	nd			
	MDA-MB-435	>100			
	SK-MEL-2	>100	7.43	1.858	2.801
	SK-MEL-28	>100	,	1.000	
	SK-MEL-5	1.14			
	UACC-257	2.23			
	UACC-62	2.66			
Ovarian cancer	IGROV1	>100			
	OVCAR-3	2.34			
	OVCAR-4	0.483	9.853	3.284	1.585
	OVCAR-5	>100	2.000	5.201	1.505
	OVCAR-8	>100			

Table 4.10. Calculated value of GI50 of the cell lines: full cell line panel, MG-MID and selectivity ratio of the compound **4.21** (NSC 764190).

Renal cancer SK-OV-3 >100 A498 1.77 ACHN 2.10 CAKI-1 2.83
A498 1.77 ACHN 2.10 CAKL1 2.83
ACHN 2.10 CAKL1 2.83
CAKI 1 2.83
CAKI-1 2.83
52.20 0.72 0.506
CARLET 2.85 52.38 8.73 0.596 RXF 393 28.0 52.38 8.73 0.596
SN12C 9.42
TK-10 8.26
UO-31 >100
Prostate cancer PC-3 0.580 0.58 8.972
DU-145 >100 0.58 0.58 8.972
Breast cancer MCF7 >100
MDA-MB-
231/ATCC >100
HS 578T >100 0.267 0.267 19.491
BT-549 >100
T-47D >100
MDA-MB-468 0.267

nd: not determined

The log molar concentration of the resulted screening of compound **4.23** (NSC 751478) shown for each of the parameters; for log GI_{50} ranged from -6.56 to -5.12, for log TGI ranged -5.12 only, for log LC₅₀ ranged -5.12 only (Table 4.11). A mean graph midpoint (MG-MID) calculated for each of the parameters; log GI_{50} (-5.31), log TGI (-5.12), and log LC₅₀ (-5.12).

Cancer disease	Used cell lines	$log_{10}GI_{50}$	log ₁₀ TGI	$log_{10}LC_{50}$
Leukemia	CCRF-CEM	> -5.12	> -5.12	> -5.12
	HL-60(TB)	-5.32	> -5.12	> -5.12
	K-562	-5.48	> -5.12	> -5.12
	MOLT-4	-5.38	> -5.12	> -5.12
	RPMI-8226	-5.31	> -5.12	> -5.12
Non-small cell lung cancer	A549/ATCC	-5.42	> -5.12	> -5.12
-	EKVX	-5.18	> -5.12	> -5.12
	HOP-62	> -5.12	> -5.12	> -5.12
	HOP-92	> -5.12	> -5.12	> -5.12
	NCI-H226	> -5.12	> -5.12	> -5.12
	NCI-H23	-5.46	> -5.12	> -5.12
	NCI-H322M	> -5.12	> -5.12	> -5.12
	NCI-H460	-5.60	> -5.12	> -5.12
	NCI-H522	-5.74	> -5.12	> -5.12

Table 4.11. Values of the log molar concentration of response parameter ($log_{10}GI_{50}$, $log_{10}TGI$ and $log_{10}LC_{50}$) of the **4.23** (NSC 751478).

Colon cancer	COLO 205	> -5.12	> -5.12	> -5.12
	HCC-2998	> -5.12	> -5.12	> -5.12
	HCT-116	-6.07	> -5.12	> -5.12
	HCT-15	-5.41	> -5.12	> -5.12
	HT29	> -5.12	> -5.12	> -5.12
	KM12	-5.14	> -5.12	> -5.12
	SW-620	> -5.12	> -5.12	> -5.12
CNS cancer	SF-268	-5.22	> -5.12	> -5.12
	SF-295	-5.75	> -5.12	> -5.12
	SF-539	> -5.12	> -5.12	> -5.12
	SNB-19	> -5.12	> -5.12	> -5.12
	SNB-75	> -5.12	> -5.12	> -5.12
	U251	-5.73	> -5.12	> -5.12
Melanoma	LOX IMVI	-5.27	> -5.12	> -5.12
	MALME-3M	> -5.12	> -5.12	> -5.12
	M14	> -5.12	> -5.12	> -5.12
	MDA-MB-435	> -5.12	> -5.12	> -5.12
	SK-MEL-2	>-5.12	> -5.12	> -5.12
	SK-MEL-28	>-5.12	>-5.12	> -5.12
	SK-MEL-5	-5.75	>-5.12	> -5.12
	UACC-257	-5.54	> -5.12	> -5.12
	UACC-62	-5.17	> -5.12	> -5.12
Ovarian cancer	IGROV1	-5.30	> -5.12	> -5.12
	OVCAR-3	-5.39	> -5.12	> -5.12
	OVCAR-4	> -5.12	> -5.12	> -5.12
	OVCAR-5	> -5.12	> -5.12	> -5.12
	OVCAR-8	> -5.12	> -5.12	> -5.12
	NCI/ADR-RES	-5.28	> -5.12	> -5.12
	SK-OV-3	> -5.12	> -5.12	> -5.12
Renal cancer	786-0	-5.29	> -5.12	> -5.12
tenar cancer	A498	> -5.12	> -5.12	> -5.12
	ACHN	-5.23	> -5.12	> -5.12
	CAKI-1	-6.02	> -5.12	> -5.12
	RXF 393	-0.02 > -5.12	> -5.12	> -5.12
	SN12C	> -5.12	> -5.12	> -5.12
	TK-10	-5.41	> -5.12	> -5.12
	UO-31 PC 2	> -5.12	> -5.12	> -5.12
Prostate cancer	PC-3	-5.51	> -5.12	> -5.12
	DU-145	> -5.12	> -5.12	> -5.12
Breast cancer	MCF7	-5.37	> -5.12	> -5.12
	MDA-MB-231/ATCC	> -5.12	> -5.12	> -5.12
	HS 578T	> -5.12	> -5.12	> -5.12
	BT-549	-5.39	> -5.12	>-5.12
	T-47D	-5.17	>-5.12	> -5.12
	MDA-MB-468	-6.56	> -5.12	> -5.12
MID		-5.31	-5.12	-5.12
Delta		1.25	0	0
Range		1.44	0	0

The log molar concentration of the resulted screening of compound **4.22** (NSC 751486) shown for each of the parameters; for log GI_{50} ranged from -6.07 to -5.22, for log TGI ranged from -5.32 to -4.70, for log LC_{50} ranged from -4.98 to -4.70 (Table 4.12). A mean graph midpoint (MG-MID) calculated for each of the parameters; log GI_{50} (-5.49), log TGI (-5.10), and log LC_{50} (-4.80).

Cancer disease	Used cell lines	$log_{10}GI_{50}$	log ₁₀ TGI	$log_{10}LC_{50}$
Leukemia	CCRF-CEM	-5.22	> -4.70	> -4.70
	HL-60(TB)	-5.53	-5.06	> -4.70
	K-562	-5.52	-5.03	> -4.70
	MOLT-4	-5.54	-4.99	> -4.70
	RPMI-8226	-5.35	> -4.70	> -4.70
Non-small cell lung cancer	A549/ATCC	-5.52	-5.12	-4.71
	EKVX	-5.47	-5.01	> -4.70
	HOP-62	-5.43	-5.13	-4.84
	HOP-92	-5.50	-5.18	-4.85
	NCI-H226	-5.52	-5.21	-4.90
	NCI-H23	-5.51	-5.17	-4.84
	NCI-H322M	-5.35	-4.93	> -4.70
	NCI-H460	-5.47	-5.10	-4.74
	NCI-H522	-6.07	-5.32	-4.84
Colon cancer	COLO 205	-5.37	-4.98	> -4.70
	HCC-2998	-5.47	-5.21	-4.95
	HCT-116	-5.61	-5.30	-4.98
	HCT-15	-5.36	-4.74	> -4.70
	HT29	-5.58	-5.25	-4.92
	KM12	-5.53	-5.23	-4.94
	SW-620	-5.50	-5.15	-4.80
CNS cancer	SF-268	-5.46	-5.10	-4.73
	SF-295	-5.58	-5.25	-4.91
	SF-539	-5.47	-5.17	-4.87
	SNB-19	-5.33	> -4.7	> -4.70
	SNB-75	-5.64	-5.14	> -4.70
	U251	-5.51	-5.19	-4.87
Melanoma	LOX IMVI	-5.48	-5.15	-4.81
	MALME-3M	-5.56	-5.20	-4.83
	M14	-5.52	-5.22	-4.92
	MDA-MB-435	-5.48	-5.15	-4.82
	SK-MEL-2	-5.55	-5.24	-4.93
	SK-MEL-28	-5.47	-5.16	-4.85
	SK-MEL-5	-5.52	-5.24	-4.96
	UACC-257	-5.54	-5.23	-4.91

Table 4.12. Values of the log molar concentration of response parameter ($log_{10}GI_{50}$, $log_{10}TGI$ and $log_{10}LC_{50}$) of the **4.22** (NSC 751486).

	UACC-62	-5.54	-5.19	-4.84
Ovarian cancer	IGROV1	-5.45	-5.14	-4.83
	OVCAR-3	-5.54	-5.22	-4.90
	OVCAR-4	-5.57	-5.14	-4.71
	OVCAR-5	-5.45	-5.04	> -4.70
	OVCAR-8	-5.38	-4.95	> -4.70
	NCI/ADR-RES	-5.47	-5.07	> -4.70
	SK-OV-3	-5.38	-4.98	> -4.70
Renal cancer	786-0	-5.49	-5.16	-4.84
	A498	-5.61	-5.29	-4.96
	ACHN	-5.22	> -4.70	> -4.70
	CAKI-1	-5.44	-5.13	-4.83
	RXF 393	-5.58	-5.28	-4.98
	SN12C	-5.49	-5.11	-4.74
	TK-10	-5.42	-5.08	-4.73
	UO-31	-5.56	-5.22	-4.88
Prostate cancer	PC-3	-5.46	-4.98	> -4.70
	DU-145	-5.49	-5.12	-4.75
Breast cancer	MCF7	-5.32	-4.87	> -4.70
	MDA-MB-231/ATCC	-5.55	-5.19	-4.84
	HS 578T	-5.49	-5.08	> -4.70
	BT-549	-5.58	-5.26	-4.94
	T-47D	-5.40	-4.99	> -4.70
	MDA-MB-468	-5.53	-5.14	-4.76
MID		-5.49	-5.10	-4.80
Delta		0.58	0.22	0.18
Range		0.85	0.22	0.28

The log molar concentration of the resulted screening of compound **4.37c** (NSC 764189) shown for each of the parameters; for log GI_{50} ranged - 5.30 only, for log TGI ranged - 5.30 only, for log LC₅₀ ranged - 5.30 only. A mean graph midpoint (MG-MID) calculated for each of the parameters; log GI_{50} (-5.30), log TGI (-5.30), and log LC₅₀ (-5.30) (refer to the Supplementary data in chapter 5).

The log molar concentration of the resulted screening of compound **4.21** (NSC 764190) shown for each of the parameters; for log GI_{50} ranged from -6.57 to -4.00, for log TGI ranged from -4.22 to -4.00, for log LC_{50} ranged -4.00 only (Table 4.13). A mean graph midpoint (MG-MID) calculated for each of the parameters; log GI_{50} (-4.94), log TGI (-4.0), and log LC_{50} (-4.0).

Cancer disease	Used cell lines	$log_{10}GI_{50}$	log ₁₀ TGI	$log_{10}LC_{50}$
Leukemia	CCRF-CEM	-5.41	> -4.00	> -4.00
	HL-60(TB)	-5.46	> -4.00	> -4.00
	K-562	-5.70	> -4.00	> -4.00
	MOLT-4	-5.67	> -4.00	> -4.00
	RPMI-8226	-6.07	> -4.00	> -4.00
	SR	-5.78	> -4.00	> -4.00
Non-small cell lung cancer	A549/ATCC	-5.12	> -4.00	> -4.00
6	HOP-62	> -4.00	> -4.00	> -4.00
	HOP-92	-5.36	> -4.00	> -4.00
	NCI-H226	-5.36	> -4.00	> -4.00
	NCI-H23	-5.78	> -4.00	> -4.00
	NCI-H322M	> -4.00	> -4.00	> -4.00
	NCI-H460	-5.56	> -4.00	> -4.00
	NCI-H522	-5.26	> -4.00	> -4.00
Colon cancer	COLO 205	> -4.00	> -4.00	> -4.00
	HCC-2998	> -4.00	> -4.00	> -4.00
	НСС 2990 НСТ-116	-6.27	> -4.00	> -4.00
	HCT-15	-5.45	> -4.00	> -4.00
	НТ29	-4.37	> -4.00	> -4.00
	KM12	-5.00	> -4.00	> -4.00
	SW-620	nd	> -4.00	> -4.00
CNS cancer	SF-268	-5.11	> -4.00	> -4.00
ents cuncer	SF-295	-6.18	> -4.00	> -4.00
	SF-539	> -4.00	> -4.00	> -4.00
	SNB-19	> -4.00	> -4.00	> -4.00
	SNB-75	> -4.00	> -4.00	> -4.00
	U251	-5.96	> -4.00	> -4.00
Melanoma	LOX IMVI	-5.85	> -4.00	> -4.00
wielunomu	MALME-3M	>-4.00	> -4.00	> -4.00 > -4.00
	M14	nd	> -4.00	> -4.00 > -4.00
	MDA-MB-435	> -4.00	> -4.00 > -4.00	> -4.00 > -4.00
	SK-MEL-2	> -4.00	> -4.00 > -4.00	> -4.00 > -4.00
	SK-MEL-28	> -4.00		
			> -4.00	> -4.00
	SK-MEL-5	-5.94	> -4.00	> -4.00
	UACC-257	-5.65	> -4.00	> -4.00
	UACC-62	-5.57	> -4.00	> -4.00
Ovarian cancer	IGROV1	> -4.00	> -4.00	> -4.00
	OVCAR-3	-5.63	> -4.00	> -4.00
	OVCAR-4	-6.32	> -4.00	> -4.00
	OVCAR-5	> -4.00	> -4.00	> -4.00
	OVCAR-8	> -4.00	> -4.00	> -4.00
	NCI/ADR-RES	-5.15	> -4.00	> -4.00
	SK-OV-3	> -4.00	> -4.00	> -4.00
Renal cancer	786-0	> -4.00	> -4.00	> -4.00
	A498	-5.75	> -4.00	> -4.00
	ACHN	-5.68	> -4.00	> -4.00
	CAKI-1	-5.55	> -4.00	> -4.00

Table 4.13. Values of the log molar concentration of response parameter ($log_{10}GI_{50}$, $log_{10}TGI$ and $log_{10}LC_{50}$) of the **4.21** (NSC 764190).

	RXF 393	-4.55	> -4.00	> -4.00
	SN12C	-5.03	> -4.00	> -4.00
	TK-10	-5.08	> -4.00	> -4.00
	UO-31	> -4.00	> -4.00	> -4.00
Prostate cancer	PC-3	-6.24	> -4.00	> -4.00
	DU-145	> -4.00	> -4.00	> -4.00
Breast cancer	MCF7	> -4.00	> -4.00	> -4.00
	MDA-MB-231/ATCC	> -4.00	> -4.00	> -4.00
	HS 578T	> -4.00	> -4.00	> -4.00
	BT-549	> -4.00	> -4.00	> -4.00
	T-47D	> -4.00	> -4.00	> -4.00
	MDA-MB-468	-6.57	> -4.22	> -4.00
MID		-4.94	-4.0	-4.0
Delta		1.63	0.22	0
Range		2.57	0.22	0.0
5				

4.4. Conclusion

In conclusion, an analog of DMP 323 from a variety of synthesized symmetric, and unsymmetric cyclic sulfamides and additional urea and phosphorus-containing compounds were screened in NCI 60 cancer cell line to identify biologically active compounds. With the concept of drug repositioning, we studied a new opportunity of application of these compounds which are known HIV protease inhibitors to potential agents for the treatment of cancer. The two-stage process of *in vitro* screening was carried out: wherein 29 compounds were selected for one-dose study and 4 compounds selected for a five-dose study for *in vitro* cytotoxicity evaluation. Generally, compounds were selectively sensitive on the leukemia, colon cancer, prostate cancer and breast cancer cell. Notably, almost every compound demonstrated strong inhibition against breast cancer (MDA-MB-468). The primary one-dose study revealed that compounds **4.21**, **4.22**, **4.23**, and **4.37c** possessed high activity against different cancer types. Four such compounds were further tested in the five-dose experiment. To understand the mechanism of the observed cytotoxicity, investigations with a representative compound are underway to learn about the effect for apoptosis, migration, anchorage independent growth and cellular senescence.

4.5. References

- (a) Ashburn, T. T.; Thor, K. B., Drug repositioning: Identifying and developing new uses for existing drugs. *Nat. Rev. Drug Discov.* 2004, *3*, 673–683. (b) Boguski, M. S.; Mandl, K. D.; Sukhatme, V. P., Repurposing with a difference. *Science* 2009, *324*, 1394–1395.
 (c) Aube, J., Drug repurposing and the medicinal chemist. *ACS Med. Chem. Lett.* 2012, *3*, 442–444.
- DiMasi, J. A.; Hansen, R. W.; Grabowski, H. G., The price of innovation: new estimates of drug development costs. *J. Health Econ.* 2003, *22*, 151–185.
- 3. Gan, F.; Cao, B.; Wu, D.; Chen, Z.; Hou, T.; Mao, X., Exploring old drugs for the treatment of hematological malignancies. *Curr. Med. Chem.* **2011**, *18*, 1509–1514.
- 4. (a) Aronson, J. K., Old drugs new uses. *Brit. J. Clin. Pharmaco.* 2007, *64*, 563–565.
 (b) Chong, C. R.; Sullivan, D. J., New uses for old drugs. *Nature* 2007, *448*, 645–646.
 (c) McPhie, D. C., Old drugs, new uses: Solving a Hatch-Waxman patent predicament. *Food Drug Law J.* 2004, *59*, 155–168. (d) Berger, S. P., Old laws stop drugs being used in valuable new ways. *Nature* 2007, *449*, 972–972. (e) DiMasi, J. A.; Grabowski, H. G., Should the patent system for new medicines be abolished? *Clin. Pharmacol. Ther.* 2007, *82*, 488–490.
- Eberhard, Y.; McDermott, S. P.; Wang, X. M.; Gronda, M.; Venugopal, A.; Wood, T. E.; Hurren, R.; Datti, A.; Batey, R. A.; Wrana, J.; Antholine, W. E.; Dick, J.; Schimmer, A. D., Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. *Blood* 2009, *114*, 3064–3073.
- Mao, X.; Li, X.; Sprangers, R.; Wang, X.; Venugopal, A.; Wood, T.; Zhang, Y.; Kuntz, D. A.; Coe, E.; Trudel, S.; Rose, D.; Batey, R. A.; Kay, L. E.; Schimmer, A. D., Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma. *Leukemia* 2009, 23, 585–590.
- Mao, X. L.; Liang, S. B.; Hurren, R.; Gronda, M.; Chow, S.; Xu, G. W.; Wang, X. M.; Zavareh, R. B.; Jamal, N.; Messner, H.; Hedley, D. W.; Datti, A.; Wrana, J. L.; Zhu, Y. X.; Shi, C. X.; Lee, K. L.; Tiedemann, R.; Trudel, S.; Stewart, A. K.; Schimmer, A. D.,

Cyproheptadine displays preclinical activity in myeloma and leukemia. *Blood* **2008**, *112*, 760–769.

- (a) Buzaid, A. C.; Durie, B. G. M., Management of refractory myeloma- A review. J. Clin. Oncol. 1988, 6, 889–905. (b) Alexanian, R.; Barlogie, B., New treatment strategies for multiple-myeloma. Amer. J. Hematol. 1990, 35, 194–198.
- Worldwide Clinical Trials Listings. Study of Fluphenazine in relapsed or relapsed and refractory multiple myeloma. http://www.clinicaltrialssearch.org.
- Spagnuolo, P. A.; Hu, J. Y.; Hurren, R.; Wang, X. M.; Gronda, M.; Sukhai, M. A.; Di Meo, A.; Boss, J.; Ashali, I.; Zavareh, R. B.; Fine, N.; Simpson, C. D.; Sharmeen, S.; Rottapel, R.; Schimmer, A. D., The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. *Blood* 2010, *115*, 4824–4833.
- (a) Palumbo, A.; Facon, T.; Sonneveld, P.; Blade, J.; Offidani, M.; Gay, F.; Moreau, P.; Waage, A.; Spencer, A.; Ludwig, H.; Boccadoro, M.; Harousseau, J. L., Thalidomide for treatment of multiple myeloma: 10 years later. *Blood* 2008, *111*, 3968–3977. (b) Chanan-Khan, A.; Porter, C. W., Immunomodulating drugs for chronic lymphocytic leukaemia. *Lancet Oncol.* 2006, *7*, 480–488. (c) Goy, A. New directions in the treatment of mantle cell lymphoma: An overview. *Clin. Lymphoma Myelom.* 2006, *7*, S24–S32.
- (a) Shim, J. S.; Rao, R.; Beebe, K.; Neckers, L.; Han, I.; Nahta, R.; Liu, J. O., Selective Inhibition of HER2-Positive Breast Cancer Cells by the HIV Protease Inhibitor Nelfinavir. *J. Natl Cancer I.* 2012, 104, 1576–1590. (b) Kawabata, S.; Gills, J. J.; Mercado-Matos, J. R.; LoPiccolo, J.; Wilson, W., III; Hollander, M. C.; Dennis, P. A., Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells. *Cell Death & Disease* 2012, *3.* (c) Suresh, C.; Zhao, H.; Gumbs, A.; Chetty, C. S.; Bose, H. S., New ionic derivatives of betulinic acid as highly potent anti-cancer agents. *Bioorg. Med. Chem. Lett.* 2012, *22*, 1734–1738. (d) Zhao, H.; Holmes, S. S.; Baker, G. A.; Challa, S.; Bose, H. S.; Song, Z., Ionic derivatives of betulinic acid as novel HIV-1 protease inhibitors. *J. Enzym. Inhib. Med. Chem.* 2012, *27*, 715–721. (e) Lepist, E.-I.; Phan, T. K.; Roy, A.; Tong, L.; MacLennan, K.; Murray, B.; Ray, A. S., Cobicistat boosts the intestinal

absorption of transport substrates, including HIV protease inhibitors and GS-7340, in vitro. *Antimicrob. Agents Chemotherapy* **2012**, *56*, 5409–5413.

- Chow, W. A.; Jiang, C.; Guan, M., Anti-HIV drugs for cancer therapeutics: back to the future? *Lancet Oncol.* 2009, 10, 61–71.
- For the first report from DuPont Merck of cyclic urea diol-based HIV protease inhibitors, see: (a) Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N.; Chang, C.-H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.; Erickson-Viitanen, S.; Rational Design of Potent, Bioavailable, Nonpeptide Cyclic Ureas as HIV Protease Inhibitors. *Science* 1994, *263*, 380–384. For later manuscripts and synopses, see: (b) De Lucca, G. V.; Lam, P. Y. S. De novo design, discovery and development of cyclic urea HIV protease inhibitors. *Drugs Future* 1998, *23*, 987–994. (c) Confalone, P. N.; Waltermire, R. E. The Process Research and Development of DuPont Merck's Cyclic Urea Diols, A New Class of HIV Protease Inhibitors. In *Process Chemistry in the Pharmaceutical Industry*; Gadamasetti, K.G., Ed.; Marcel Dekker: New York, 1999; pp 201–219.
- (a) Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; 15. Meek, O. M. J.; Rayner, M. M. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 1994, 263, 380–384. (b) Patel, M.; Kaltenbach, R. F., III; Nugiel, D. A.; McHugh, R. J., Jr.; Jadhay, P. K.; Bacheler, L. T.; Cordova, B. C.; Klabe, R. M.; Erickson-Viitanen, S.; Garber, S.; Reid, C.; Seitz, S. P. Synthesis of Symmetrical and Unsymmetrical P1/P1' Cyclic Ureas as Hiv Protease Inhibitors. *Bioorg.* Med. Chem. Lett. 1998, 8, 1077-1082. (c) De Lucca, G. V.; Kim, U. T.; Liang, J.; Cordova, B.; Klabe, R. M.; Garber, S.; Bacheler, L. T.; Lam, G. N.; Wright, M. R.; Logue, K. A.; Erickson-Viitanen, S.; Ko, S. S.; Trainor, G. L. Nonsymmetric P2/P2' Cyclic Urea HIV Protease Inhibitors. Structure-Activity Relationship, Bioavailability, and Resistance Profile of Monoindazole-Substituted P2 Analogs. J. Med. Chem., 1998, 41, 2411–2423. (d) De Lucca, G. V.; Lam, P. Y. S. De novo design, discovery and development of cyclic urea HIV protease inhibitors. Drugs Future, 1998, 23, 987–994. (e) Stone, B. R. P.; Harris, G. D.; Cann, R. O.; Smyser, T. E.; Confalone, P. N. Synthesis of unsymmetric cyclic urea diols, a novel class of HIV protease inhibitors. Tetrahedron Lett. 1998, 39, 6127-6130. (f)

Dax, S. L.; Cook, S. C. Cyclic urea HIV protease inhibitors containing alkynyl- and alkenyl-tethered heterocycles in the P2 region. *Bioorg. Med. Chem. Lett.* 1996, *6*, 797–802.
(g) Hodge, C. N.; Lam, P. Y. S.; Eyermann, C. J.; Jadhav, P. K.; Ru, Y.; Fernandez, C. H.; De Lucca, G. V.; Chang, C.-H.; Kaltenbach, R. F., III; Holler, E. R.; Woerner, F.; Daneker, W. F.; Emmett, G.; Calabrese, J. C.; Aldrich, P. E. Calculated and Experimental Low-Energy Conformations of Cyclic Urea HIV Protease Inhibitors. *J. Am. Chem. Soc.* 1998, *120*, 4570–4581.

- (a) Nugiel, D. A.; Jacobs, K.; Worley, T.; Patel, M.; Kaltenbach, R. F., III; Meyer, D. T.; Jadhav, P. K.; De Lucca, G. V.; Smyser, T. E.; Klabe, R. M.; Bacheler, L. T.; Rayner, M. M.; Seitz, S. P. Preparation and structure-activity relationship of novel P1/P1'-substituted cyclic urea-based human immunodeficiency virus type-1 protease inhibitors. *J. Med. Chem.* **1996**, *39*, 2156–2169. (b) Pierce, M. E.; Harris, G. D.; Islam, Q.; Radesca, L. A.; Storace, L.; Waltermire, R. E.; Wat, E.; Jadhav, P. K.; Emmett, G. C. Stereoselective synthesis of HIV-1 protease inhibitor DMP 323. *J. Org. Chem.* **1996**, *61*, 444–450.
- For evaluation of P2/P2' substituents see: (a) Nugiel, D. A.; Jacobs, K.; Cornelius, L.; Chang, C.-H.; Jadhav, P. K.; Holler, E. R.; Klabe, R. M.; Bacheler, L. T.; Cordova, B.; Garber, S.; Reid, C.; Louge, K. A.; Gorey-Feret, L. J.; Lam, G. N.; Seitz, S. P. Improved P1/P1' substituents for cyclic urea based HIV-1 protease inhibitors: synthesis, structureactivity relationship, and X-ray crystal structure analysis. *J. Med. Chem.* **1997**, *40*, 1465– 1474. (b) Patel, M.; Bacheler, L. T.; Rayner, M. M.; Cordova, B. C.; Klabe, R. M.; Erickson-Viitanen, S.; Seitz, S. P. The synthesis and evaluation of cyclic ureas as HIV protease inhibitors: modifications of the P1/P1 residues. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 823–828. For evaluation of P2/P2' substituents see: (c) Han, Q.; Chang, C.-H.; Li, R.; Ru, Y.; Jadhav, P. K.; Lam, P. Y. S. Cyclic HIV protease inhibitors: design and synthesis of orally bioavailable, pyrazole P2/P2' cyclic ureas with improved potency. *J. Med. Chem.* **1998**, *41*, 2019–2028. (d) Rodgers, J. D.; Johnson, B. L.; Wang, H.; Erickson-Viitanen, S.; Klabe, R. M.; Bacheler, L.; Cordova, B. C.; Chang, C.-H. Potent cyclic urea HIV protease inhibitors with 3-aminoindazole P2/P2' groups. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 715–720.
- (a) Reitz, A. B.; Smith, G. R.; Parker, M. H., The role of sulfamide derivatives in medicinal chemistry: a patent review (2006-2008). *Expert Opin. Ther. Pat.* 2009, *19*, 1449–1453. (b)

Nishimori, I.; Vullo, D.; Minakuchi, T.; Scozzafava, A.; Capasso, C.; Supuran, C. T., Restoring catalytic activity to the human carbonic anhydrase (CA) related proteins VIII, X and XI affords isoforms with high catalytic efficiency and susceptibility to anion inhibition. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 256–260.

- (a) Master's thesis: Jun, J. H. "Synthesis of Seven-membered Cyclic Sulfamide Analogs of DMP 323 and Complex *N*-Hydroxy Sulfamide Scaffolds as Potential Inhibitors of MMP"
 2005, July 6th. (b) Jun, J. H.; Dougherty, J. M.; Jimenez, M. D.; Hanson, P. R., New strategies to symmetric and unsymmetric cyclic sulfamide analogs of DMP 323: a 'sulfur linchpin'/RCM approach. *Tetrahedron* 2003, *59*, 8901–8912.
- 20. (a) Petroski, R. J.; Weisleder, D. Improved Preparation of Sap Beetle (Coleoptera: Nitidulidae) Aggregation Pheromones. *ACS Symposium Series, Synthesis and Chemistry of Agrochemicals VI*, 2002, 800, 231–237. (b) Berbmann, J.; Löfstedt, C.; Ivanov, V. D.; Francke, W. Identification and Assignment of the Absolute Configuration of Biologically Active Methyl-Branched Ketones from Limnephilid Caddis Flies. *Eur. J. Org. Chem.* 2001, 3175–3179.
- Poss, C. S.; Schreiber, S. L. Two-Directional Chain Synthesis and Terminus Differentiation. Acc. Chem. Res. 1994, 27, 9–17.
- (a) Schneider, C. Quaternary Ammonium Salt Catalyzed Azidolysis of Epoxides with Trimethylsilyl Azide. Synlett 2000, 12, 1840–1842. (b) Schaus, S. E.; Larrow, J. F.; Jacobsen, E. N. Practical Synthesis of Enantiopure Cyclic 1,2-Amino Alcohols via Catalytic Asymmetric Ring Opening of Meso Epoxides. J. Org. Chem. 1997, 62, 4197–4199. (c) Sabitha, G.; Babu, R. S.;Rajkumar, M.; Yadav, J. S. Cerium(III) Chloride Promoted Highly Regioselective Ring Opening of Epoxides and Aziridines Using NaN₃ in Acetonitrile: A Facile Synthesis of 1,2-Azidoalcohols and 1,2-Azidoamines. Org. Lett. 2002, 4, 343–345. (d) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Ring Opening of Epoxides with Sodium Azide in Water. A Regioselective pH-Controlled Reaction. J. Org. Chem. 1999, 64, 6094–6096. (e) Blandy, C.; Choukroun, R.; Gervais, D. Synthesis of O-Protected Azidohydrines Catalyzed by Titanium and vanadium Complexes. Tetrahedron Lett. 1983, 24, 4189–4192. (f) Fringuelli, F.; Pizzo, F.; Vaccaro, L. Azidolysis of α, β-

Epoxycarboxylic Acids. A Water-Promoted Process efficiently Catalyzed by Indium Trichloride at pH 4.0. *J. Org. Chem.* **2001**, *66*, 3554–3558. (g) Emziane, M.; Lhoste, P.; Sinou, D. A Highly regio- and Chemoselective Ring Opening of Epoxides with Trimethylsilyl Azide/Aluminium Isopropoxide. *Synthesis* **1988**, 541–544. (h) Meguro, M.; Asao. N.; Yamamoto, Y. Ytterbium Triisopropoxide Catalysed Ring Opening of Epoxides with Trimethylsilyl Azide. *J. Chem. Soc., Chem. Commun.*, **1995**, 1021–1022. (i) Tomoda, S.; Matsumoto,Y.; Takeuchi, Y.; Nomura, Y. The Reaction of 1,2-Epoxyalkylsilanes with Azidotrimethylsilane. A Novel Stereoselective Synthesis of (*Z*)-1-Alkenyl Azides. *Bull. Chem. Soc. Jpn.*, **1986**, *59*, 3283–3284.

- Chini, M.; Crotti, P.; Flippin, L. A.; Macchia, F. Regiochemical Control of the Ring-Opening of 1,2-Epoxides by Means of Chelating Processes. Aminolysis and Azidolysis of the *cis-* and *trans-* Oxides Derived from 4-(Benzyloxy)cyclohexene. *J. Org. Chem.* 1991, 56, 7043–7048.
- Yamamoto, Y.; Hattori, R.; Miwa, T.; Nakagai, Y. I.; Kubota, T.; Yamamoto, C.; Okamoto, Y.; Itoh, K. Diastereoselective inter- and intramolecular pinacol coupling of aldehydes promoted by moonomeric titanocene(III) complex Cp₂TiPh. *J. Org. Chem.* 2001, *66*, 3865–3870.
- 25. Jose, M. C.; Humberto R.-S.; Eva B.; Monica H. Very rapid preparation of SmI₂ by sonic treatment of iodoform and metallic samarium. *Eur. J. Org. Chem.* **2003**, *9*, 1775–1778.
- Konradi, A. W.; Pederson, S. F. Pinacol homocoupling of (S)-2-[N-(benzyloxycarbonyl)amino]aldehydes by [V₂Cl₂(THF)₆]₂[Zn₂Cl₆]. Synthesis of C₂symmetric (1*S*,2*R*,3*R*,4*S*)-1,4-diamino 2,3-diols. *J. Org. Chem.* **1992**, *57*, 28–32.
- 27. (a) Zine, R.; Mohamed, A.; Nour-Eddine, A.; Georges, D.; Montero, J.-L. Synthesis of 1,2,5-thiadiazolidine 1,1-dioxides (cyclosulfamides) starting from amino acids and chlorosulfonyl isocyanate. *Tetrahedron* 2000, *56*, 381–387. (b) Georges, D.; Nourreddine, A.; Zine, R.; Montero, J.-L. Synthesis of pseudo-nucleosides containing chiral sulfahydantoins as aglycon. II. *Tetrahedron* 1996, *52*, 993–1004.
- Meyer, S. D.; Schreiber, S. L. Acceleration of the Dess-Martin Oxidation by Water. J. Org. Chem. 1994, 59, 7549–7552.

- 29. Nourreddine; A.; Georges, D.; Montero, J.- L. Synthesis and cyclization of carboxy sulfamide derivatives of amino acids. *Tetrahedron Lett.* **1991**, *32*, 6545–6546.
- 30. (a) McReynolds, M. D.; Sprott, K. T.; Hanson, P. R., A concise route to structurally diverse DMP 323 analogues via highly functionalized 1,4-diamines. *Org. Lett.* 2002, *4*, 4673–4676.
 (b) Dougherty, J. M.; Jiměnez, M.; Hanson, P. R. Synthesis of Cyclic sulfamoyl Carbamates and Ureas via Ring-Closing Metathesis. *Tetrahedron* 2005, *61*, 6218–6230.
- (a) Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R., Feasibility of drug screening with panels of human-tumor cell-lines using a microculure tetrazolium assay. *Cancer Research* 1988, 48, 589–601. (b) Boyd, M. R.; Pauli, K. D., Some practical considerations and applications of the National Cancer Institute *in vitro* anticancer drug discovery screen. *Drug Develop. Res.* 1995, 34, 91–109. (c) Shoemaker, R. H., The NCI60 human tumour cell line anticancer drug screen. *Nat. Rev. Cancer* 2006, 6, 813–823.
- Kode, N.; Chen, L.; Murthy, D.; Adewumi, D.; Phadtare, S., New bis-N9-(methylphenylmethyl)purine derivatives: Synthesis and antitumor activity. *Eur. J. Med. Chem.* 2007, 42, 327–333.
- Corona, P.; Carta, A.; Loriga, M.; Vitale, G.; Paglietti, G., Synthesis and in vitro antitumor activity of new quinoxaline derivatives. *Eur. J. Med. Chem.* 2009, 44, 1579–1591.
- Rostom, S. A. F., Synthesis and in vitro antitumor evaluation of some indeno 1,2-c pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. *Bioorg. Med. Chem.* 2006, 14, 6475–6485.

CHAPTER 5

Experimental data

5.1. General Methods

All air and moisture sensitive reactions were carried out in flame- or oven dried glassware under argon or nitrogen using standard gas tight syringes, cannulas, and septa. Methylene chloride (CH₂Cl₂), tetrahydrofuran (THF), diethyl ether (Et₂O), and toluene were purified by passage through a Solv-Tek solvent purification system employing activated Al₂O₃, or used them immediately after purchasing from Sigma-Aldrich as anhydrous solvent grade. Triethylamine (Et₃N) was stored over KOH. Sodium triacetoxyborohydride (97%) was purchased from Sigma-Aldrich and was not further purified. All amino acids and amines were purchased from Sigma-Aldrich. Thin layer chromatography was performed on silica gel 60F₂₅₄ plates (EM-5717, Merck). Visualization of TLC spots were effected using KMnO₄ stain or UV lamp (254 nm). Flash column chromatography was performed with Teledyne ISCO CombiFlash companion using various sizes of Teledyne columns or Grace® Flash Cartridges. Deuterochloroform (CDCl₃) with and without TMS (0.03% (v/v)) was purchased from Sigma-Aldrich and stored in desiccator at room temperature. ¹H and ¹³C NMR spectra were recorded in CDCl₃ (unless otherwise noted) on either Varian-400 MHz spectrometer operating at 400MHz and 100 MHz, respectively.

5.2. Experimental Procedure and data: Chapter 2

4-Bromo-N-(3-fluorophenyl)benzenesulfonamide (2.4)

To a solution of 3-fluoroaniline (1.0 mL, 10.39 mmol) and pyridine (1.3 mL, 16.07 mmol) in CH_2Cl_2 (20 mL) was added a solution of 4-bromobenzene sulfonyl chloride (2.65 g, 10.44 mmol) in CH_2Cl_2 (30 mL) at room temperature. The color of solution was changed to light orange. The reaction mixture was stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.4** (3.31 g, 97 %).

Analytical data for **2.4:** $R_f = 0.83$ (Sol. EtOAc:Hexane = 1/1); FTIR (neat) 3240, 2383, 2368, 1612, 1601, 1573, 1483, 1468, 1399, 1389, 1334, 1265, 1154, 1130, 1088, 1067, 1009, 962, 913, 823, 762, 742, 682, 630 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.65 (m, 2H), 7.62–7.57 (m, 2H), 7.25 (s, 1H), 7.20 (ddd, J = 8.2, 8.2, 6.3 Hz, 1H), 6.91 (ddd, J = 10.0, 2.3, 2.3 Hz, 1H), 6.85–6.80 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.18 (d, J = 247.2 Hz), 137.81, 137.74 (d, J = 6.4 Hz), 132.68, 130.88 (d, J = 9.3 Hz), 128.84, 128.67, 116.69 (d, J = 3.1 Hz), 112.61 (d, J = 21.2 Hz), 108.64 (d, J = 25.3 Hz); HRMS (M+Na)⁺ calcd for C₁₂H₉BrFNNaO₂S⁺ (M+Na) required 351.9419, found 351.9410.

tert-Butyl 4-(4-bromo-*N*-(3-fluorophenyl)phenylsulfonamido)piperidine-1-carboxylate (2.5)

To a solution of **2.4** (0.52 g, 1.56 mmol) and DIAD (0.92 mL, 4.67 mmol) in THF (10 mL) was added a solution of *tert*-butyl-4-hydroxy-1-piperidinecarboxylate (0.38 g, 1.88 mmol) and PPh₃ (1.23 g, 4.70 mmol) in THF (10 mL) at room temperature and heated to 60 °C for overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.5** (0.63 g, 78 %).

Analytical data for **2.5**: $R_f = 0.68$ (Sol. EtOAc:Hexane = 1/1); ¹H NMR (400 MHz, CDCl₃) δ 7.66–6.55 (m, 4H), 7.31 (ddd, J = 8.1, 6.4, 6.4 Hz, 1H), 7.11 (dddd, J = 8.3, 8.3, 2.5, 0.8 Hz, 1H), 6.83–6.72 (m, 2H), 4.29 (tt, J = 12.1, 3.8 Hz, 1H), 4.12 (m, 2H), 2.74 (t, J = 12.9 Hz, 2H), 1.76 (d, J = 12.2 Hz, 2H), 1.37 (s, 9H), 1.27–1.26 (m, 2H).

4-Bromo-N-(3-fluorophenyl)-N-(piperidin-4-yl)benzenesulfonamide hydrochloride (2.6)

To a solution of **2.5** (0.63g, 1.22 mmol) in CH_2Cl_2 (20 mL) was added 4N HCl in 1,4dioxane (20 mL,) at 0 °C and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product **2.6**. It used without further purification.

4-Bromo-*N*-(**1**-(**4**-fluorobenzyl)piperidin-4-yl)-*N*-(**3**-fluorophenyl)benzenesulfonamide (2.7)

To a solution of **2.6** (0.34 g, 0.76 mmol), 4-fluorobenzaldehyde (0.09 mL, 0.84 mmol) and Et₃N (0.1 mL, 0.72 mmol) in CH₂Cl₂ (10 mL) was added NaBH(OAc)₃ (0.52 g, 2.44 mmol) at 0 °C and stirred for overnight. The reaction mixture was extracted with CH₂Cl₂ (100 mL X 3) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product **2.7** (0.10 g, 24 %).

Analytical data for **2.7**: $R_f = 0.81$ (Sol. EtOAc:Hexane = 1/1); FTIR (neat) 3241, 3098, 2986, 2383, 2309, 1796, 1770, 1733, 1611, 1600, 1573, 1482, 1467, 1400, 1389, 1334, 1264, 1154, 1129, 1087, 1067, 1009, 962, 912, 823, 762, 741, 682, 621 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.55 (m, 2H), 7.57 (d, J = 8.6 Hz, 2H), 7.29 (m, 1H), 7.23–7.13 (m, 2H), 7.09 (ddd, J = 8.2, 2.4, 2.4 Hz, 1H), 6.95 (dd, J = 8.5, 8.5 Hz, 2H), 6.79–6.73 (m, 2H), 4.22–4.08 (m, 1H), 3.39 (s, 2H), 2.92–2.74 (m, 2H), 2.14–1.94 (m, 2H), 1.78-1.65 (m, 2H), 1.52–1.33 (m, 2H); ¹³C NMR (101 MHz, Chloroform) δ 162.58 (d, J = 248.9 Hz), 162.58 (d, J = 248.9 Hz), 140.20, 136.63 (d, J = 8.9 Hz), 132.43, 130.08 (d, J = 9.2 Hz), 128.94, 128.84, 128.34 (d, J = 2.7 Hz), 127.76, 119.82 (d, J = 21.4 Hz), 116.47 (d, J = 20.5 Hz), 115.52 (d, J = 21.4 Hz), 115.21 (d, J = 21.1 Hz), 62.00, 57.99, 52.89, 31.77; HRMS (M+H)⁺ calcd for C₂₄H₂₄BrF₂N₂O₂S⁺ (M+H) required 521.0710, found 521.0846.

(S)-2-hydroxy-3-methylbutanoic acid (2.8)

To a solution of L-valine (5.00 g, 42.72 mmol) in 1N H₂SO₄ (100 mL) was added slowly a solution of NaNO₂ (6.02 g, 87.25 mmol) at 0 °C and stirred overnight. The reaction mixture was extracted with diethyl ether (100 mL X 4) and concentrated by azeotropic distillation with toluene to provide yellow oil. A yellow oil was dried under reduced vacuum to furnish a crystal as white needles **2.8** (3.50 g, 70%).

Analytical data for **2.8**: FTIR (neat) 3428, 2968, 2936, 2879, 1716, 1645, 1211, 1136, 1027, 727, 616 cm⁻¹; ¹H NMR (CD₃CN, 400 MHz) δ 4.03 (d, 1H), 2.06 (m, 1H), 0.99 (d, *J* = 8.0 Hz, 3H), 0.87 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 101 MHz) δ 175.6, 117.7, 74.7, 31.9, 18.4.

(S)-methyl 2-hydroxy-3-methylbutanoate (2.9)

To a solution of **2.8** (3.49 g, 29.54 mmol) in methanol (50 mL) was added amberlyst-15 ion exchange resin at room temperature and stirred for overnight. The reaction mixture was filtered and evaporated to remove solvent to give yellow oil. The yellow oil was purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get yellow oil as a product **2.9** (2.03 g, 52%).

Analytical data for **2.9**: $R_f = 0.71$ (Sol. EtOAc:Hexane = 1/1, checked by KMnO₄ stain solution); FTIR (neat) 2958, 2922, 2851, 1743, 1672, 1428, 1621, 1428, 1276, 1175, 1147, 936, 860, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.02 (dd, J = 6.0, 3.6 Hz, 1H), 3.76 (s, 3H), 2.80 (d, J = 6.0 Hz, 1H), 2.04 (dqq, J = 6.9, 6.9, 3.4 Hz, 1H), 0.99 (d, J = 6.9 Hz, 3H), 0.84 (d, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 101 MHz) δ 175.5, 75.3, 52.4, 32.3, 18.7, 16.2.

tert-Butyl 4-(3-fluorophenylamino)piperidine-1-carboxylate (2.13)

To a solution of 1-Boc-4-piperidone (7.92 g, 39.77 mmol) and 3-fluoroaniline (4.0 mL, 41.61 mmol) in CH_2Cl_2 (100 mL) was added NaBH(OAc)₃ (26.05 g, 122.90 mmol) at 0 °C and stirred for 2 hrs. To a reaction mixture was added glacial acetic acid (5.0 mL, 87.34 mmol) at 0 °C and stirred at ambient temperature overnight. The reaction mixture was washed with saturated aqueous NaHCO₃ solution. The mixture was extracted with CH_2Cl_2 (200 mL X 3) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.13** (11.21 g, 99%).

Analytical data for **2.13**: Rf = 0.88 (Sol. EtOAc:Hexane = 1/1); FTIR (neat) 3353, 3010, 2168, 2141, 1666, 1621, 1494, 1421, 1236, 1160, 936, 756, 687, 609 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.08 (ddd, *J* = 8.1, 6.8, 6.8 Hz, 1H), 6.40–6.38 (m, 1H), 6.36–6.32 (m, 1H), 6.28 (ddd, *J* = 4.45, 2.3, 2.3 Hz, 1H), 4.18-3.93 (m, 2H), 3.66 (s, 1H), 3.43-3.32 (m, 1H), 2.92 (t, *J* = 12.0 Hz, 2H), 2.09–1.94 (td, *J* = 7.4, 2.7 Hz, 2H), 1.47 (s, 9H), 1.39–1.26 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.29 (d, *J* = 242.7 Hz), 154.87, 148.69 (d, *J* = 11.0 Hz), 130.53 (d, *J* = 10.2 Hz), 109.18 (d, *J* = 2.2 Hz), 103.90 (d, *J* = 21.6 Hz), 99.84 (d, *J* = 25.4 Hz), 79.79, 76.82, 50.25, 32.35, 28.56; HRMS (M+Na)⁺ calcd for C₁₆H₂₃FN₂NaO₂⁺ (M+Na) required 317.1636, found 317.1635.

tert-Butyl 4-((*N*-(tert-butoxycarbonyl)sulfamoyl)(3-fluorophenyl)amino)piperidine-1carboxylate (2.15)

To a solution of chlorosulfonyl isocyanate (1.5 mL, 17.23 mmol) in CH_2Cl_2 (20 mL) was added to a solution of *tert*-butyl alcohol (1.65 mL, 17.25 mmol) in CH_2Cl_2 (20 mL) at 0 °C. This solution was cannulated to a solution of **2.13** (3.46 g, 11.75 mmol) and Et_3N (3.0 mL, 21.52 mmol) in CH_2Cl_2 (30 mL) at 0 °C. After that, the reaction mixture was stirred at ambient temperature for overnight. The reaction mixture was extracted with CH_2Cl_2 (100 mL X 4) and dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.15** (6.20 g, 91%).

Analytical data for **2.15**: $R_f = 0.80$ (Sol. EtOAc:Hexane = 1/1); FTIR (neat) 3745, 3712, 3067, 2977, 2944, 2863, 2357, 2325, 1735, 1659, 1436, 1366, 1353, 1243, 1168, 1135, 1056, 979, 827, 725, 694, 616 cm⁻¹; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (ddd, J = 8.2, 6.4, 6.4 Hz, 1H), 7.15 (dddd, J = 8.3, 8.3, 2.5, 0.9 Hz, 1H), 7.07–7.01 (m, 2H), 6.95 (ddd, J = 4.4, 2.4, 2.4 Hz, 1H), 4.41 (tt, J = 12.1, 3.8 Hz, 1H), 4.20–4.05 (m, 2H), 2.78 (t, J = 11.9 Hz, 2H), 2.03–1.94 (m, 2H), 1.52 (s, 9H), 1.38 (s, 9H), 1.27 (dtd, J = 15.5, 4.0 Hz, 2H); ¹³C NMR (101 MHz, cdcl₃) δ 162.70 (d, J = 249.0 Hz), 154.56, 149.52, 135.99 (d, J = 9.7 Hz), 130.38 (d, J = 9.1 Hz), 128.11 (d, J = 3.5 Hz), 119.48 (d, J = 21.7 Hz), 116.89 (d, J = 20.9 Hz). 83.87, 79.91, 59.35, 59.35, 31.81, 28.49, 28.17.

(*R*)-*tert*-Butyl 4-((*N*-(tert-butoxycarbonyl)-*N*-(1-methoxy-3-methyl-1-oxobutan-2-yl) sulfamoyl)(3-fluorophenyl)amino)piperidine-1-carboxylate (2.17)

To a solution of **2.13** (1.01 g, 2.14 mmol) and DIAD (3.0 mL, 6.59 mmol) in THF (20 mL) was added a solution of **2.9** (0.34 g, 2.60 mmol) and PPh₃ (1.69 g, 6.44 mmol) in THF (20 mL) at room temperature and then the reaction mixture was heated at 65 °C for overnight. The reaction mixture was extracted with CH_2Cl_2 (150 mL X 3) and the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product **2.17** (1.22 g, 97%).

Analytical data for **2.17**: $R_f = 0.86$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]_{D}^{25} = + 1.188$ (c = 1.094, CHCl₃); FTIR (neat) 3333, 2991, 2978, 2924, 2853, 1666, 1611, 1588, 1524, 1476, 1430, 1366, 1342, 1311, 1233, 1187, 1167, 1139, 998, 980, 936, 862, 821, 756, 627 cm⁻¹; ¹H NMR (400 MHz, Chloroform-d) δ 7.36 (ddd, J = 8.2, 6.5, 6.5 Hz, 1H), 7.14 (ddd, J = 10.8, 10.8, 2.5 Hz, 1H), 7.11–7.07 (m, 1H), 6.99 (ddd, J = 9.6, 2.2, 2.2 Hz, 1H), 4.47 (tt, J = 12.0, 3.7 Hz, 1H), 4.30 (d, J = 8.8 Hz, 1H), 4.12 (q, J = 7.2 Hz, 2H), 3.59 (s, 3H), 2.80 (t, J = 12.2 Hz, 2H), 2.42 (ddt, J = 13.5, 8.7, 6.8 Hz, 1H), 2.03–1.94 (m, 2H), 1.50 (s, 9H), 1.38 (s, 9H), 1.26 (ddd, J = 8.7, 3.9, 2.2 Hz, 2H), 1.07 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, cdcl₃) δ 170.18, 162.34 (d, J = 247.6 Hz), 154.59, 150.64, 135.87 (d, J = 10.1 Hz), 129.73 (d, J = 9.1 Hz), 129.01 (d, J = 3.2 Hz), 120.27 (d, J = 21.8 Hz), 116.50 (d, J = 21.0 Hz), 84.59, 79.83, 60.60, 59.43, 59.27, 52.07, 28.49, 28.30, 28.09, 22.28, 19.50.

(*R*)-Methyl 2-(*N*-(3-fluorophenyl)-*N*-(piperidin-4-yl)sulfamoylamino)-3-methylbutanoate dihydrochloride (2.19)

To a solution of **2.17** (0.39 g, 0.66 mmol) in CH_2Cl_2 (20 mL) was added 4N HCl in 1,4-dioxane (5 mL) at 0 °C and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product **2.19**. It used without further purification.

(*R*)-Methyl 2-(*N*-(1-(4-fluorobenzyl)piperidin-4-yl)-*N*-(3-fluorophenyl)sulfamoylamino)-3methyl butanoate (2.21)

To a solution of **2.19** (0.13 g, 0.34 mmol) and 4-fluorobenzaldehyde (0.045 mL, 0.42 mmol) in CH_2Cl_2 (20 mL) was added NaBH(OAc)₃ (0.22 g, 1.03 mmol) at 0 °C and stirred for 2 hrs. To a solution was added glacial acetic acid (0.04 mL, 0.70 mmol) at 0 °C and stirred overnight. The reaction mixture was extracted with CH_2Cl_2 (150 mL X 3) and EtOAc (200 mL) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 60% of EtOAc in hexane to get white oil as a product **2.21** (0.0742 g, 45%).

Analytical data for **2.21**: $R_f = 0.89$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 23.661$ (c = 0.224, CH₂Cl₂); FTIR (neat) 3316, 2925, 2854, 2383, 23236, 1589, 1512, 1495, 1338, 1226, 1151, 938, 828, 760, 685 cm⁻¹; ¹H NMR (400 MHz, Chloroform-d) δ 7.32 (ddd, J = 16.3, 16.3, 8.2 Hz, 1H), 7.21–7.15 (m, 2H), 7.10–7.02 (m, 2H), 6.99–6.95 (m, 2H), 6.94–6.93 (m, 1H), 5.02 (d, J = 9.4 Hz, 1H), 3.89 (tt, J = 12.1, 3.8 Hz, 1H), 3.77 (dd, J = 9.4, 5.0 Hz, 1H), 3.73 (s, 3H), 3.42 (s, 2H), 2.90–2.87 (m, 2H), 2.11–2.02 (m, 2H), 2.02–1.98 (m, 1H), 1.97–1.90 (m, 1H), 1.83 (dt, J = 12.3, 3.1 Hz, 1H), 1.47 (dddd, J = 19.6, 12.2, 7.6, 4.0 Hz, 2H), 0.94 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.47, 164.6 (d, J = 248.5 Hz), 164.2 (d, J = 247.5 Hz), 140.0 (d, J = 11.1 Hz), 135.34, 132.86, 132.44 (d, J = 84.8 Hz), 129.65, 121.08 (d, J = 21.2), 117.91 (d, J = 21.2), 117.20 (d, J = 22.2 Hz), 63.88, 63.62, 60.26, 54.84, 54.78, 54.52, 34.07, 33.42, 33.15, 20.89, 19.83; HRMS (M+H)⁺ calcd for C₂₄H₃₂F₂N₃O₄S⁺ (M+H) required 496.2081, found 496.2090.

(*R*)-Methyl 2-(*N*-(3-fluorophenyl)-*N*-(1-(4-hydroxybenzyl)piperidin-4-yl)sulfamoyl-amino)-3-methylbutanoate (2.22)

A solution of **2.19** (0.38 g, 0.98 mmol), 4-hydroxybenzaldehyde (0.15 g, 1.11 mmol) in CH_2Cl_2 (20 mL) was treated with NaBH(OAc)₃ (0.65 g, 3.05 mmol) at room temperature and stirred for 2 hrs. To a reaction mixture was added glacial acetic acid (0.11 mL, 1.92 mmol) at 0 °C and stirred overnight. A reaction mixture was quenched with aqueous NaHCO₃ solution and extracted with CH_2Cl_2 (150 mL X 2) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.22** (0.08 g, 17%).

Analytical data for **2.22**: $R_f = 0.29$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 27.471$ (c = 0.597, CH₂Cl₂); FTIR (neat) 3711, 2925, 2855, 2369, 1731, 1610, 1593, 1516, 1366, 1248, 1144, 1131, 1059, 1033, 1010, 831, 777, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.26 (ddd, J = 14.7, 8.0, 0 Hz, 1H), 7.05 (d, J = 8.3 Hz, 2H), 7.02(m, 2H), 6.89 (m, 1H), 6.62 (d, J = 8.3 Hz, 2H), 4.97 (d, J = 9.4 Hz, 1H), 3.87 (t, J = 11.9 Hz, 1H), 3.74 (dd, J = 9.3, 5.0 Hz, 1H), 3.71 (s, 3H), 3.36 (s, 2H), 2.90 (d, J = 10.9 Hz, 2H), 2.10–1.96 (m, 3H), 1.87 (ddd, J = 43.9, 12.2, 0 Hz, 2H), 1.47 (m, 2H), 0.92 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.33, 162.37 (d, J = 249.5 Hz), 155.14, 137.62, 130.69, 130.28 (d, J = 83.8 Hz), 129.82 (d, J = 9.1 Hz), 127.42 (d, J = 3.0 Hz), 118.85 (d, J = 22.2 Hz), 115.52 (d, J = 48.5 Hz), 115.17, 62.03, 61.41, 58.04, 52.67, 52.61, 52.42, 31.92, 31.09, 30.82, 18.74, 17.66; HRMS (M+H)⁺ calcd for C₂₄H₃₃FN₃O₅S⁺ (M+H) required 494.2125, found 494.2160.

(*R*)-Methyl 2-(*N*-(3-fluorophenyl)-*N*-(1-(3-hydroxybenzyl)piperidin-4-yl)sulfamoyl-amino)-3-methylbutanoate (2.23)

A solution of **2.19** (0.18 g, 0.45 mmol), 3-hydroxybenzaldehyde (0.06 g, 0.45 mmol) in CH_2Cl_2 (10 mL) was treated with NaBH(OAc)₃ (0.29 g, 1.36 mmol) at room temperature and stirred for 2 hrs. To a reaction mixture was added glacial acetic acid (0.05 mL, 0.87 mmol) at 0 °C and stirred overnight. A reaction mixture was quenched with aqueous NaHCO₃ solution and extracted with CH_2Cl_2 (100 mL X 2) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.23** (38.1 mg, 17%).

Analytical data for **2.23**: $R_f = 0.42$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 1.538$ (c = 0.130, CH₂Cl₂); FTIR (neat) 3274, 2964, 2874, 2845, 2299, 2256, 1738, 1591, 1486, 1455, 1339, 1264, 1207, 1161, 1140, 1054, 982, 911, 888, 858, 777, 730, 692, 649, 605 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (ddd, J = 14.7, 8.0, 0 Hz, 1H) 7.11 (dd, J = 7.8, 7.8 Hz, 1H), 7.03 (m, 2H), 6.91 (d, J = 9.5 Hz, 1H), 6.76–6.63 (m, 3H), 5.00 (d, J = 9.4 Hz, 1H), 3.87 (t, J = 12.0 Hz, 1H), 3.76 (dd, J = 8.2, 3.3 Hz, 1H), 3.71 (s, 3H), 3.38 (s, 2H), 2.90 (d, J = 11.0 Hz, 2H), 2.06 (t, J = 12.2 Hz, 2H), 1.99 (m, 1H), 1.85 (ddd, J = 44.2, 12.4, 0 Hz, 2H), 1.49 (ddd, J = 20.8, 11.6, 8.8 Hz, 2H), 0.92 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.33, 161.15, 155.89, 137.42, 129.86 (d, J = 9.1 Hz), 129.39, 127.42 (d, J = 3.0 Hz), 121.31, 118.85 (d, J = 22.2 Hz), 116.01, 115.96 (d, J = 11.1 Hz), 115.69, 114.48, 62.34, 61.43, 57.97, 52.84, 52.78, 52.43, 31.92, 31.11, 30.84, 18.75, 17.67; HRMS (M+H)⁺ calcd for C₂₄H₃₃FN₃O₅S ⁺ (M+H) required 494.2125, found 494.3777.

(*R*)-Methyl 2-((*N*-(1-(3,4-dihydroxybenzyl)piperidin-4-yl)-*N*-(3-fluorophenyl)sulfamoyl)amino)-3-methylbutanoate (2.24)

A solution of **2.19** (0.16 g, 0.41 mmol), 3,4-dihydroxybenzaldehyde (0.06 g, 0.45 mmol) in CH₂Cl₂ (10 mL) was treated with NaBH(OAc)₃ (0.29 g, 1.36 mmol) at room temperature and stirred for 2 hrs. To a reaction mixture was added glacial acetic acid (0.05 mL, 0.87 mmol) at 0 °C and stirred overnight. A reaction mixture was quenched with aqueous NaHCO₃ solution and extracted with CH₂Cl₂ (100 mL X 2) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.24** (0.06 g, 28.5%).

Analytical data for **2.24**: $R_f = 0.07$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 2.033$ (c = 0.246, CH₂Cl₂); FTIR (neat) 3283, 2964, 2875, 2360, 2257, 1737, 1667, 1607, 1592, 1486, 1445, 1339, 1266, 1206, 1161, 1139, 1055, 982, 912, 787, 731, 693, 650, 604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (ddd, J = 15.5, 7.9, 0 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 6.84 (d, J = 9.3 Hz, 1H), 6.62–6.47 (m, 3H), 5.50 (bs, 3H), 3.87 (t, J = 11.5 Hz, 1H), 3.71 (s, 1H), 3.69 (s, 3H), 3.37 (s, 2H), 2.95 (d, J = 10.2 Hz, 2H), 2.13 (t, J = 11.5 Hz, 2H), 1.98 (dq, J = 11.6, 6.8 Hz, 1H), 1.84 (ddd, J = 47.1, 11.4, 0 Hz, 2H), 1.53–1.43 (m, 2H), 0.89 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.45, 162.29 (d, J = 249.5 Hz), 144.70, 144.27, 137.49 (d, J = 9.1 Hz), 129.94 (d, J = 9.1 Hz), 127.12, 122.11, 118.67, 118.45, 116.91,115.89 (d, J = 20.2 Hz), 114.93, 61.63, 61.52, 57.04, 52.44, 52.12, 51.99, 31.83, 30.04, 29.72, 18.76, 17.69; HRMS (M+H)⁺ calcd for C₂₄H₃₃FN₃O₆S ⁺ (M+H) required 510.2074, found 510.2185.

tert-Butyl 4-(butylamino)piperidine-1-carboxylate (2.14)

To a solution of 1-Boc-4-piperidone (6.28 g, 31.50 mmol) and butylamine (3.10 mL, 31.24 mmol) in CH_2Cl_2 (200 mL) was added NaBH(OAc)₃ at 0 °C and stirred for 2 hrs. To a reaction mixture was added glacial acetic acid (3.6 mL, 62.89 mmol) at 0 °C and stirred at ambient temperature overnight. The reaction mixture was washed with saturated aqueous NaHCO₃ solution. The mixture was extracted with CH_2Cl_2 (150 mL X 3) and then the combined organic layer was dried over MgSO₄, filtered, and evaporated to a product **2.14** as a colorless oil with spectral data identical to those previously reported.¹ It used without further purification.

Analytical data for **2.14**: FTIR (neat) 3711, 2960, 2933, 2862, 2383, 2368, 1683, 1422, 1365, 1274, 1239, 1159, 865, 732, 649 cm⁻¹; HRMS $(M+H)^+$ calcd for $C_{14}H_{29}N_2O_2^+$ (M+H) required 257.2224, found 257.2230.

tert-Butyl 4-((*N*-(tert-butoxycarbonyl)sulfamoyl)(butyl)amino)piperidine-1-carboxylate (2.16)

A solution of the *tert*-butyl alcohol (1.8 mL, 18.82 mmol) in CH_2Cl_2 (20 mL) was treated with a solution of CSI (1.65 mL, 18.96 mmol) in CH_2Cl_2 (20 mL) at 0 °C. This mixture was cannulated to a solution of **2.14** and Et₃N (3.3 mL, 23.68 mmol) in CH_2Cl_2 (20 mL). The reaction mixture was stirred at ambient temperature for overnight. The reaction mixture was extracted with CH_2Cl_2 (150 mL X 3) and the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product **2.16** (4.66 g, 68%).

Analytical data for **2.16**: $R_f = 0.69$ (Sol. EtOAc:Hexane = 1/1); FTIR (neat) 3259, 2974, 2935, 2873, 1734, 1668, 1436, 1366, 1244, 1136, 1022, 916, 869, 829, 771, 729, 604 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 4.27–4.24 (m, 1H), 4.13 (ddd, J = 14.3, 7.1, 2.9 Hz, 2H), 3.91–3.83 (m, 1H), 3.27 (t, J = 8.0 Hz, 2H), 2.76 (t, J = 11.6 Hz, 2H), 1.81 (d, J = 11.5 Hz, 2H), 1.64–1.53 (m, 2H), 1.48 (d, J = 2.6 Hz, 9H), 1.47 (d, J = 2.7 Hz, 9H), 1.31 (dd, J = 8.9, 6.2 Hz, 2H), 1.26 (m, 2H), 0.91 (td, J = 7.2, 2.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.43, 154.81, 150.21, 149.40, 84.57, 83.48, 80.08, 57.17, 45.20, 33.44, 28.63, 28.27, 28.09, 20.29, 13.98; HRMS (M+H)⁺ calcd for C₁₉H₃₇N₃NaO₆S ⁺ (M+H) required 458.2295, found 458.2294.

(*R*)-*tert*-Butyl 4-((*N*-(tert-butoxycarbonyl)-*N*-(1-methoxy-3-methyl-1-oxobutan-2-yl)sulfamoyl) (butyl)amino)piperidine-1-carboxylate (2.18)

To a solution of **2.16** (0.10 g, 0.73 mmol), **2.9** (0.29 g, 0.66 mmol), and PPh₃ (1.96 g, 7.45 mmol) in THF (5 mL) was added DEAD (40% wt. in toluene, 32 mL, 1.28 mmol) at 0 °C and stirred 10 min. The reaction mixture was heated at 60 °C. The reaction mixture was quenched with 1M aqueous HCl solution and extracted with CH_2Cl_2 (100 mL X 3) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 20% of EtOAc in hexane to get white oil as a product **2.18** (0.19 g, 53%).

Analytical data for **2.18**: $R_f = 0.8$ (Sol. EtOAc:Hexane = 1/1); ¹H NMR (400 MHz, CDCl₃) δ 4.46 (dd, J = 8.9, 2.6 Hz, 1H), 4.26–4.15 (m, 2H), 3.87 (td, J = 12.0, 3.1 Hz, 1H), 3.67 (s, 3H), 3.51–3.43 (m, 1H), 3.21–3.05 (m, 1H), 2.70 (m, 2H), 2.43 (m, 1H), 1.81 (d, J = 11.9 Hz, 1H), 1.67 (d, J = 12.7 Hz, 1H), 1.62–1.48 (m, 2H), 1.40 (d, J = 3.2 Hz, 9H), 1.38 (d, J = 2.7 Hz, 9H), 1.29–1.16 (m, 4H), 1.14–1.06 (m, 6H), 0.93 (dd, J = 7.0, 2.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.61, 154.63, 150.73, 83.96, 79.73, 66.84, 56.12, 52.14, 45.59, 33.70, 31.87, 29.11, 28.42, 28.18, 27.97, 22.37, 20.38, 20.12, 19.59, 14.48, 13.80.

(R)-Methyl 2-(N-butyl-N-(piperidin-4-yl)sulfamoylamino)-3-methylbutanoate 2HCl (2.20)

To a solution of **2.18** (0.19 g, 0.35 mmol) in CH_2Cl_2 (10 mL) was added 4N HCl in 1,4dioxane (2.4 mL) at 0 °C and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product **2.20**. It used without further purification. (*R*)-Methyl 2-(*N*-butyl-*N*-(1-(4-fluorobenzyl)piperidin-4-yl)sulfamoylamino)-3-methylbutanoate (2.25)

A solution of **2.20** (0.1481 g, 0.3507 mmol) and *p*-fluorobenzaldehyde (0.04 mL, 0.38 mmol) in CH₂Cl₂ (20 mL) was treated with Et₃N (0.15 mL, 1.08 mmol) at 0 °C and stirred for 10 minutes. NaBH(OAc)₃ (0.23 g, 1.07 mmol) was added to a reaction mixture at 0 °C and stirred at ambient temperature overnight. The reaction mixture was extracted with CH₂Cl₂ (100 mL X 3) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get colorless oil as a product **2.25** (0.08 g, 51%).

Analytical data for **2.25**: $R_f = 0.28$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 7.209$ (c = 0.652, CH₂Cl₂); FTIR (neat) 3295, 2958, 2874, 2801, 2342, 2296, 1740, 1508, 1468, 1325, 1276, 1166, 1153, 1133, 1015, 995, 924, 861, 828, 770, 629 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.24 (m, 2H), 7.01 (m, 2H), 4.84, (d, J = 9.9 Hz, 1H), 3.77 (s, 3H), 3.70 (dd, J = 10.0, 5.2 Hz, 1H), 3.53–3.47 (m, 1H), 3.46 (s, 2H), 3.10 (dd, J = 10.3, 5.0 Hz, 2H), 2.92 (d, J = 9.8 Hz, 2H), 2.10–1.95 (m, 3H), 1.78 (dt, J = 13.5, 3.0 Hz, 2H), 1.72 (dt, J = 8.1, 4.0 Hz, 2H), 1.58 (dddd, J = 15.8, 11.2, 7.8, 5.2 Hz, 2H), 1.37–1.20 (m, 2H), 1.01 (d, J = 6.7 Hz, 3H), 0.93 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.12, 162.23 (d, J = 246.4 Hz), 134.13, 130.78 (d, J = 8.1 Hz), 115.25 (d, J = 22.2 Hz), 77.61, 77.29, 76.97, 62.28, 61.22, 56.80, 53.36, 53.31, 52.56, 44.36, 33.95, 31.89, 31.09, 30.77, 20.40, 19.23, 18.02, 14.04; HRMS (M+H)⁺ calcd for C₂₂H₃₇FN₃O₄S⁺ (M+H) required 458.2489, found 458.2465.

(S)-2-Hydroxy-4-methylpentanoic acid (2.26)

To a solution of L-leucine (10.10 g, 77.02 mmol) in 1N H_2SO_4 (100 mL) was added dropwise a solution of NaNO₂ (12.41 g, 179.86 mmol) at 0 °C and stirred overnight. The reaction mixture was extracted with diethyl ether (200 mL X 3) and concentrated by azeotropic distillation with toluene to provide yellow solid. A yellow solid was dried under reduced vacuum to furnish a crystal as white needles **2.26** (9.92 g, 97%). (S)-Methyl 2-hydroxy-4-methylpentanoate (2.27)

To a solution of **2.26** (9.20 g, 69.61 mmol) in methanol (100 mL) was added amberlyst-15 ion exchange resin at room temperature and stirred for overnight. The reaction mixture was filtered and evaporated to remove solvent to give yellow oil. The yellow oil was purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get yellow oil as a product **2.27** (6.56 g, 64%) $R_f = 0.71$ (Sol. EtOAc:Hexane = 1/1, checked by KMnO₄ stain solution).

Analytical data for **2.27**: ¹H NMR (CD₃CN, 400 MHz) δ ¹H NMR (400 MHz, CDCl₃) δ 4.21–4.12 (m, 1H), 3.72 (s, 3H), 2.86 (s, 1H), 1.83 (dt, *J* = 13.5, 6.8 Hz, 1H), 1.56–1.46 (m, 2H), 0.89 (dd, *J* = 6.7, 4.1 Hz, 6H); ¹³C NMR (CDCl₃, 101 MHz) δ 175.5, 75.3, 52.4, 32.3, 18.7, 16.2. (*R*)-*tert*-Butyl 4-((*N*-(*tert*-butoxycarbonyl)-*N*-(1-methoxy-4-methyl-1-oxopentan-2-yl)sulfamoyl)(3-fluorophenyl)amino)piperidine-1-carboxylate (2.28)

To a solution of **2.15** (1.04 g, 2.20 mmol) and DIAD (2.9 mL, 6.66 mmol) in THF (20 mL) was added a solution of **2.27** (0.36 g, 2.45 mmol) and PPh₃ (1.73 g, 6.583 mmol) in THF (20 mL) at 0 °C and then the reaction mixture was heated at 60 °C for overnight. The reaction mixture was extracted with CH_2Cl_2 (150 mL X 3) and the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 20% of EtOAc in hexane to get white oil as a product **2.28** (1.12 g, 85%).

Analytical data for **2.28**: $R_f = 0.81$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = +25.000$ (c = 0.168, CH₂Cl₂); FTIR (neat) 2957, 2870, 1732, 1693, 1592, 1486, 1425, 1365, 1275, 1238, 1146, 979, 884, 865, 845, 772, 718, 694, 615 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (ddd, J = 16.2, 16.2, 8.2 Hz, 1H), 7.14 (dddd, J = 8.3, 8.3, 2.5, 0.8 Hz, 1H), 7.06 (dd, J = 7.9, 0.8 Hz, 1H), 6.97 (ddd, J = 9.5, 2.3, 2.3 Hz, 1H), 4.66 (t, J = 6.6 Hz, 1H), 4.54–4.40 (m, 1H), 4.14–4.10 (m, 2H), 3.63 (s, 2H), 2.82–2.76 (m, 2H), 2.17 (s, 2H), 2.00 (d, J = 11.4 Hz, 3H), 1.51 (s, 9H), 1.39 (s, 9H), 1.31–1.19 (m, 3H), 0.81 (d, J = 6.3 Hz, 3H), 0.76 (d, J = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.97, 162.54 (d, J = 248.5 Hz), 154.66, 150.69, 135.85 (d, J = 10.1 Hz), 129.98 (d, J = 9.1 Hz), 128.95, 120.22 (d, J = 22.2 Hz), 116.69 (d, J = 21.2 Hz), 84.64, 79.90, 59.59, 52.45, 40.44, 31.80, 31.15, 28.56, 28.24, 25.02, 23.05, 22.87, 22.13, 14.34; HRMS (M+Na)⁺ calcd for C₂₈H₄₄FN₃NaO₈S⁺ (M+Na) required Exact Mass: 624.2725, found 624.2726.

(*R*)-Methyl 2-(*N*-(3-fluorophenyl)-*N*-(piperidin-4-yl)sulfamoylamino)-4-methylpentanoate 2HCl (2.29)

To a solution of **2.28** (1.12 g, 1.87 mmol) in CH_2Cl_2 (40 mL) was added 4N HCl in 1,4dioxane (4 mL) at 0 °C and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product **2.29**. It used without further purification. (R)-Methyl 2-(N-(3-fluorophenyl)-N-(1-(4-(trifluoromethyl)benzyl)piperidin-4-

yl)sulfamoyl-amino)-4-methylpentanoate (2.30)

A solution of **2.29** (0.07 g, 0.15 mmol), 4-trifluoromethylbenzaldehyde (0.03 g, 0.17 mmol) in CH_2Cl_2 (3 mL) was treated with Et_3N (0.06 mL, 0.43 mmol) and $NaBH(OAc)_3$ (0.10 g, 0.47 mmol) at room temperature and stirred for overnight. A reaction mixture was quenched with aqueous NaHCO₃ solution and extracted with CH_2Cl_2 (50 mL X 3) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product **2.30** (0.04 g, 44%).

Analytical data for **2.30**: $R_f = 0.61$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 6.320$ (c = 0.269, CH₂Cl₂); FTIR (neat) 3280, 2956, 2872, 2383, 2368, 2342, 1744, 1606, 1592, 1485, 1435, 1324, 1160, 1120, 1064, 1018, 981, 822, 787, 692, 644 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 7.5 Hz, 2H), 7.30–7.21 (m, 1H), 7.09–7.01 (m, 2H), 6.94 (dt, J = 9.6, 2.3 Hz, 1H), 4.92 (d, J = 9.5 Hz, 1H), 3.98–3.82 (m, 2H), 3.78–3.64 (m, 3H), 3.61 (ddd, J = 9.3, 6.6, 4.3 Hz, 1H), 3.45 (s, 2H), 2.88–2.80 (m, 2H), 2.06 (td, J = 11.8, 2.6 Hz, 2H), 1.94–1.78 (m, 2H), 1.66 (dq, J = 13.3, 6.6 Hz, 1H), 1.53–1.36 (m, 2H), 1.27–1.18 (m, 1H), 0.87 (d, J = 6.5 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.53, 162.66 (d, J = 249.5 Hz), 142.39, 138.06 (d, J = 10.1 Hz), 130.07 (d, J = 9.1 Hz), 129.42, 129.35 (d, J = 5.0 Hz), 127.68 (d, J = 3.0 Hz), 125.31 (d, J = 4.0 Hz), 119.11 (d, J = 21.2 Hz), 116.02 (d, J = 21.2 Hz), 62.28, 58.29, 55.09, 53.63, 53.13, 52.73, 42.99, 31.64, 31.41, 24.55, 22.74, 22.23; HRMS (M+H)⁺ calcd for C₂₆H₃₄F₄N₃O₄S⁺ (M+H) required 560.2206, found 560.2542.

tert-Butyl 4-(4-fluorophenylamino)piperidine-1-carboxylate (2.31)

To a solution of 1-Boc-4-piperidone (5.28 g, 26.49 mmol) and *p*-fluoroaniline (2.54 mL, 26.45 mmol) in CH₂Cl₂ (60 mL) was added NaBH(OAc)₃ (9.73 g, 45.90 mmol) at 0 °C and stirred for 2 hrs. To a reaction mixture was added glacial acetic acid (3 mL, 52.41 mmol) at 0 °C and stirred at ambient temperature overnight. The reaction mixture was washed with saturated aqueous NaHCO₃ solution. The mixture was extracted with CH₂Cl₂ (200 mL X 3) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.31** (5.51 g, 71%).

Analytical data for **2.31**: $R_f = 0.75$ (Sol. EtOAc:Hexane = 1/1); FTIR (neat) 3355, 2982, 2945, 2923, 2847, 1670, 1612, 1530, 1505, 1419, 1366, 1316, 1233, 1139, 1097, 973, 858, 821, 773, 645 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 6.88–6.80 (m, 2H), 6.69–6.59 (m, 2H), 4.85 (s, 1H), 4.01 (ddd, J = 13.6, 3.4, 3.4 Hz, 2H), 3.38 (tt, J = 10.2, 3.9 Hz, 1H), 2.97-2.91 (m, 2H), 1.96 (dd, J = 13.3, 3.3 Hz, 2H), 1.45 (s, 9H), 1.29 (dddd, J = 13.0, 11.4, 10.2, 4.2 Hz, 2H); ¹³C NMR (101 MHz, CD₃OD) δ 156.83, 154.79 (d, J = 57.6 Hz), 143.83, 114.88 d, J = 22.2 Hz), 114.50 (d, J = 7.1 Hz), 79.58, 50.34, 31.63, 27.25; HRMS (M+H)⁺ calcd for C₁₆H₂₃FN₂NaO₂⁺ (M+H) required 317.1336, found 317.1640.

(S)-*tert*-Butyl 4-((4-fluorophenyl)(N-(1-methoxy-3-methyl-1-oxobutan-2-yl)sulfamoyl) amino)-piperidine-1-carboxylate (2.34)

To a solution of sulfuryl chloride (0.30 mL, 3.70 mmol) in CH_2Cl_2 (20 mL) was added Lvaline methyl ester (0.62 g, 3.70 mmol) in CH_2Cl_2 (20 mL) slowly at 0 °C and stirred for 30 minutes to obtain **2.32**. A solution of **2.31** (0.31 g, 1.06 mmol) and Et_3N (1.3 mL, 9.33 mmol) in CH_2Cl_2 (20 mL) was treated with a solution of **2.32** at 0 °C and stirred for overnight. The reaction mixture was evaporated and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product **2.34** (0.38 g, 73%).

Analytical data for **2.34**: $R_f = 0.71$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_{D} = -4.52$ (c = 0.310, CH₂Cl₂); FTIR (neat) 3274, 2969, 2935, 2871, 2383, 2324, 1740, 1682, 15061427, 1365, 1335, 1275, 1263, 1250, 1210, 1164, 1135, 1092, 1056, 1092, 1056, 955, 935, 869, 822, 737, 703, 642, 612 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, J = 8.2, 5.1 Hz, 2H), 7.02 (dd, J = 8.8, 8.8 Hz, 2H), 5.08 (d, J = 9.4 Hz, 1H), 4.14–4.05 (m, 2H), 3.98 (tt, J = 11.9, 3.1 Hz, 1H), 3.74 (dd, J = 9.4, 5.1 Hz, 1H), 3.71 (s, 3H), 2.71 (dd, J = 11.8, 11.8 Hz, 2H), 2.00 (qd, J = 19.0, 6.3 Hz, 1H), 1.91 (d, J = 12.4 Hz, 1H), 1.81 (d, J = 12.3 Hz, 1H), 1.36 (s, 9H), 1.29–1.14 (m, 2H), 0.91 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.56, 162.66 (d, J = 249.5 Hz), 154.60, 133.60 (d, J = 9.1 Hz), 132.19 (d, J = 3.0 Hz), 116.14 (d, J = 23.2 Hz), 79.93, 61.73, 58.11, 53.66, 52.59, 43.37, 32.11, 31.75, 31.45, 28.52, 18.98, 17.96; HRMS (M+Na)⁺ calcd for C₂₂H₃₄FN₃NaO₆S⁺ (M+Na) required 510.2045, found 510.2040.

(S)-Methyl 2-(N-(4-fluorophenyl)-N-(piperidin-4-yl)sulfamoylamino)-3-methylbutanoate 2HCl (2.36)

To a solution of **2.34** (0.38 g, 0.78 mmol) in CH_2Cl_2 (40 mL) was added 4N HCl in 1,4dioxane (4 mL) at 0 °C and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product **2.36**. It used without further purification. (S)-Methyl 2-(N-(1-(4-fluorobenzyl)piperidin-4-yl)-N-(4-fluorophenyl)sulfamoylamino)-3methylbutanoate (2.38)

To a solution of **2.36** (0.05 g, 0.12 mmol) and 4-fluorobenzaldehyde (14 μ L, 0.13 mmol) in CH₂Cl₂ (10 mL) was treated with Et₃N (18 μ L, 0.13 mmol) and NaBH(OAc)₃ (0.08 g, 0.37 mmol) at 0 °C and stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 60% of EtOAc in hexane to get colorless solid oil as a product **2.38** (0.04 g, 63%).

Analytical data for **2.38**: $R_f = 0.43$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}{}_D = -5.031$ (c = 0.318, CH₂Cl₂); FTIR (neat) 3280, 2958, 2927, 2854, 2383, 2368, 2185, 1738, 1603, 1505, 1454, 1337, 1208, 1161, 1133, 1057, 960, 871, 823, 740, 622 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.22–7.15 (m, 4H), 7.03 (t, 2H), 6.94 (t, J = 8.6 Hz, 2H), 5.30 (s, 1H), 4.93 (d, J = 9.4 Hz, 1H), 3.87 (tt, J = 12.0, 4.0 Hz, 1H), 3.76 (dd, J = 9.5, 5.0 Hz, 1H), 3.73 (s, 3H), 3.39 (s, 2H), 2.86 (d, J = 10.9 Hz, 2H), 2.09–1.98 (m, 3H), 1.95–1.88 (m, 1H), 1.80 (dq, J = 8.5, 2.6 Hz, 1H), 1.84–1.78 (m, 1H), 1.41 (dddd, J = 15.6, 12.2, 6.1, 3.1 Hz, 2H), 0.93 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.37, 162.41 (d, J = 250.5 Hz), 162.11 (d, J = 246.4 Hz), 133.42, 133.34, 131.96 (d, J = 4.4 Hz), 130.80 (d, J = 8.1 Hz), 115. 87 (d, J = 22.2 Hz), 115.11 (d, J = 21.2 Hz), 61.56, 61.42, 57.67, 52.57, 52.52, 52.40, 31.91, 31.09, 30.78, 18.76, 17.68; HRMS (M+H)⁺ calcd for C₂₄H₃₂F₂N₃O₄S⁺ (M+H) required 496.2076, found 496.2074.

(S)-Methyl 2-(N-(4-fluorophenyl)-N-(1-(4-(trifluoromethyl)benzyl)piperidin-4-yl)sulfamoylamino)-3-methylbutanoate (2.39)

To a solution of **2.36** (0.05 g, 0.12 mmol) and 4-trifluorobenzaldehyde (18 μ L, 0.13 mmol) in CH₂Cl₂ (10 mL) was treated with Et₃N (18 μ L, 0.13 mmol) and NaBH(OAc)₃ (0.08 g, 0.37 mmol) at 0 °C and stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 60% of EtOAc in hexane to get colorless solid oil as a product **2.39** (0.06 g, 83%).

Analytical data for **2.39**: $R_f = 0.70$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = -3.786$ (c = 0.449, CH₂Cl₂); FTIR (neat) 3295, 2956, 2924, 2853, 2342, 2300, 1739, 1619, 1602, 1506, 1454, 1421, 1323, 1262, 1209, 1161, 1121, 1064, 1018, 959, 931, 871, 822, 740, 621 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.16–7.11 (m, 2H), 7.01–6.95 (m, 2H), 4.96 (d, J = 9.4 Hz, 1H), 3.82 (tt, J = 12.1, 3.7 Hz, 1H), 3.69 (dd, J = 9.4, 5.0 Hz, 1H), 3.66 (s, 3H), 3.41 (s, 2H), 2.79 (d, J = 11.0 Hz, 2H), 2.02 (t, J = 11.2 Hz, 2H), 1.95 (dq, J = 12.9, 7.1 Hz, 1H), 1.88–1.83 (m, 1H), 1.77–1.72 (m, 1H), 1.36 (ddd, J = 12.3, 8.8, 3.8 Hz, 2H), 0.87 (d, J = 6.8 Hz, 3H), 0.81 (d, J = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.48, 162.51 (d, J = 250.5 Hz), 142.31, 133.52 (d, J = 8.1 Hz), 132.19 (d, J = 4.0 Hz), 129.22, 125.26 (d, J = 4.4 Hz), 125.19 (d, J = 3.0 Hz), 115.93 (d, J = 22.2 Hz), 62.17, 61.54, 57.96, 53.05, 52.99, 52.46, 32.01, 31.52, 31.21, 18.84, 17.79; HRMS (M+H)⁺ calcd for C₂₅H₃₂F₄N₃O₄S⁺ (M+H) required 546.2044, found 546.2049.

(*R*)-*tert*-Butyl 4-((4-fluorophenyl)(*N*-(1-methoxy-3-methyl-1-oxobutan-2-yl)sulfamoyl) amino)piperidine-1-carboxylate (2.35)

To a solution of sulfuryl chloride (0.48 mL, 5.92 mmol) in CH_2Cl_2 (40 mL) was added Dvaline methyl ester (1.00 g, 5.97 mmol) in CH_2Cl_2 (20 mL) slowly at 0 °C and stirred for 4 hrs to furnish **2.33**. To a solution of **2.27** (0.95 g, 3.22 mmol) and Et_3N (2.50 mL, 17.94 mmol) in CH_2Cl_2 (20 mL) was added **2.33** solution at 0 °C and stirred for overnight. The reaction mixture was evaporated and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product **2.35** (1.50 g, 95%).

Analytical data for **2.35**: $R_f = 0.68$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = -1.199$ (c = 0.584, CH₂Cl₂); FTIR (neat) 3333, 2991, 2924, 2853, 1666, 1611, 1588, 1524, 1448, 1430, 1366, 1342, 1249, 1233, 1167, 1139, 1099, 1076, 998, 936, 821, 756, 627 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.19–7.14 (m, 2H), 7.07–6.96 (m, 2H), 4.95 (dd, J = 9.0, 4.8 Hz, 1H), 4.15–4.05 (m, 2H), 3.97 (tt, J = 7.4, 5.0 Hz, 2H), 3.76–3.71 (m, 4H), 2.70 (t, J = 11.5 Hz, 2H), 1.86 (m, 2H), 1.34 (s, 9H), 1.27–1.16 (m, 2H), 0.91 (t, J = 6.4 Hz, 3H), 0.86 (t, J = 5.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.29, 162.44 (d, J = 250.5 Hz), 154.37, 133.34 (d, J = 9.1 Hz), 131.90, 115.92 (d, J = 22.2 Hz), 79.72, 61.47, 61.12, 57.93, 52.39, 43.14, 31.92, 31.52, 31.23, 28.30, 18.74, 17.68.

(*R*)-Methyl 2-(*N*-(4-fluorophenyl)-*N*-(piperidin-4-yl)sulfamoylamino)-3-methylbutanoate 2HCl (2.37)

To a solution of 2.35 (1.50 g, 3.08 mmol) in CH_2Cl_2 (60 mL) was added 4N HCl in 1,4dioxane (6 mL) at 0 °C and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product 2.37. It used without further purification.

(*R*)-Methyl 2-(*N*-(1-(4-fluorobenzyl)piperidin-4-yl)-*N*-(4-fluorophenyl)sulfamoylamino)-3methylbutanoate (2.40)

To a solution of **2.37** (0.11 g, 0.26 mmol), 4-fluorobenzaldehyde (0.04 g, 0.32 mmol) and Et₃N (0.04 mL, 0.29 mmol) in CH₂Cl₂ (18 mL) was treated with NaBH(OAc)₃ (0.17 g, 0.78 mmol) at 0 °C and stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product **2.40** (0.07 g, 51%).

Analytical data for **2.40**: $R_f = 0.42$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 3.767$ (c = 0.584, CH₂Cl₂); FTIR (neat) 3293, 2956, 2933 2383, 2325, 2299, 1738, 1603, 1505, 1468, 1453, 1435, 1337, 1259, 1208, 1162, 1132, 1058, 960, 931, 823, 740, 619 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.21–7.16 (m, 4H), 7.05–7.01 (m, 2H), 6.97–6.92 (m, 2H), 4.98 (d, J = 9.4 Hz, 1H), 3.91–3.82 (m, 1H), 3.75 (ddd, J = 9.8, 5.2, 1.8 Hz, 1H), 3.72 (s, 3H), 3.40 (s, 2H), 2.87 (d, 2H), 2.08–1.96 (m, 2H), 1.94–1.87 (m, 2H), 1.80 (d, J = 12.4 Hz, 1H), 1.48–1.36 (m, 2H), 0.92 (dd, J = 6.8, 1.7 Hz, 3H), 0.87 (dd, J = 6.9, 1.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.63, 162.64 (d, J = 250.5 Hz), 162.26 (J = d, 246.4 Hz), 133.68 (d, J = 8.7 Hz), 133.52, 132.32 (d, J = 3.3 Hz), 130.88 (d, J = 7.9 Hz), 116.05 (d, J = 22.6 Hz), 115.25 (d, J = 21.2 Hz), 61.99, 61.68, 58.12, 52.95, 52.90, 52.61, 32.16, 31.53, 31.23, 18.99, 17.94; HRMS (M+H)⁺ calcd for C₂₄H₃₂F₂N₃O₄S⁺ (M+H) required 496.2081, found 496.2543.

(*R*)-Methyl 2-(*N*-(4-fluorophenyl)-*N*-(1-(4-(trifluoromethyl)benzyl)piperidin-4-yl)sulfamoyl -amino)-3-methylbutanoate (2.41)

To a solution of **2.37** (0.12 g, 0.29 mmol) and 4-trifluorobenzaldehyde (0.06 g, 0.32 mmol) in CH_2Cl_2 (18 mL) was treated with Et_3N (0.04 mL, 0.29 mmol) and $NaBH(OAc)_3$ (0.18 g, 0.87 mmol) at 0 °C and stirred overnight. The reaction mixture was evaporated, and purified by the ISCO-FlashColumn chromatography in 0% to 30% of EtOAc in hexane to get colorless syrup as a product **2.41** (0.0779 g, 50%).

Analytical data for **2.41**: $R_f = 0.67$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 2.734$ (c = 0.695, CH₂Cl₂); FTIR (neat) 3242, 2957, 2804, 2326, 2299, 1739, 1614, 1601, 1574, 1505, 1469, 1324, 1263, 1209, 1161, 1126, 1066, 1018, 961, 871, 822, 740, 622 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 7.22–7.19 (m, 2H), 7.04 (dd, J = 8.4, 8.4 Hz, 2H), 4.92 (d, J = 9.4 Hz, 1H), 3.89 (tt, J = 12.0, 3.8 Hz, 1H), 3.77 (dd, J = 9.4, 5.1 Hz, 1H), 3.73 (d, J = 0.5 Hz, 3H), 3.48 (s, 2H), 2.86 (d, J = 11.5 Hz, 2H), 2.10 (ddd, J = 11.8, 11.8, 1.8 Hz, 2H), 2.02 (qd, J = 11.4, 4.7 Hz, 1H), 1.94–1.79 (m, 2H), 1.44 (dddd, J = 34.9, 18.7, 14.7, 10.8 Hz, 2H), 0.95 (d, 6.8 Hz, 3H), 0.89 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.48, 162.51 (d, J = 248.9 Hz), 142.31, 133.52 (d, J = 8.7 Hz), 132.19 (d, J = 3.3 Hz), 129.22, 125.26 (d, J = 3.7 Hz), 125.18 (d, J = 3.8 Hz), 115.93 (d, J = 22.6 Hz), .62.17, 61.54, 57.96, 53.05, 52.99, 52.46, 52.45, 32.01, 31.52, 31.21, 18.84, 17.79; HRMS (M+H)⁺ calcd for C₂₅H₃₂F₄N₃O₄S⁺ (M+H) required 546.2049, found 546.2187.

(S)-Methyl 2-((N-(1-(4-fluorobenzoyl)piperidin-4-yl)-N-(4-fluorophenyl)sulfamoyl)amino)-3-methylbutanoate (2.42)

A solution of **2.36** (0.09 g, 0.22 mmol), Et₃N (0.09 mL, 0.65 mmol) and 4-fluorobenzoyl chloride (0.04 g, 0.24 mmol) in THF (10 mL) was stirred at room temperature for overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 50% of EtOAc in hexane to get colorless syrup as a product **2.42** (0.09 g, 83%).

Analytical data for **2.42**: $R_f = 0.35$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]_D^{25} = -1.232$ (c = 0.0594, CH₂Cl₂); FTIR (neat) 3334, 2937, 2863, 2383, 2368, 1737, 1672, 1614, 1505, 1431, 1366, 1339, 1233, 1167, 1138, 1058, 1014, 961, 936, 845, 822, 759, 737, 663, 617 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, J = 8.4, 5.4 Hz, 2H), 7.12 (dd, J = 8.8, 5.0 Hz, 2H), 7.01 (d, J = 8.5 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 5.08 (d, J = 9.4 Hz, 1H), 4.06 (ddt, J = 11.0, 7.2, 3.7 Hz, 1H), 3.69 (dd, J = 9.5, 5.1 Hz, 1H), 3.66 (s, 3H), 3.00 (m, 1H), 2.74 (m, 1H), 1.95 (dt, J = 13.6, 5.1 Hz, 2H), 1.84 (m, 2H), 1.36–1.25 (m, 2H), 1.18 (t, J = 6.9 Hz, 1H), 0.86 (d, J = 6.8 Hz, 3H), 0.81 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.35, 169.28, 163.37 (d, J = 251.5 Hz), 162.51 (d, J = 250.5 Hz), 133.61 (d, J = 9.1 Hz), 131.78 (d, J = 3.0 Hz), 131.43 (d, J = 4.0 Hz), 129.24 (d, J = 8.1 Hz), 116.12 (d, J = 23.2 Hz), 115.52 (d, J = 22.2 Hz), 61.50, 57.58, 52.43, 31.86, 18.77, 17.68; HRMS (M+H)⁺ calcd for C₂₄H₃₀F₂N₃O₅S⁺ (M+H) required 510.1874, found 510.3023.

(*R*)-Methyl 2-((*N*-(1-(4-fluorobenzoyl)piperidin-4-yl)-*N*-(4-fluorophenyl)sulfamoyl)amino)-3-methylbutanoate (2.43)

A solution of **2.37** (0.11 g, 0.27 mmol), Et_3N (0.11 mL, 0.79 mmol) and 4-fluorobenzoyl chloride (0.03 mL, 0.25 mmol) in THF (10 mL) was stirred at room temperature for overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 50% of EtOAc in hexane to get colorless syrup as a product **2.43** (0.07 g, 51%).

Analytical data for **2.43**: $R_f = 0.33$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 1.146$ (c = 0.584, CH₂Cl₂); FTIR (neat) 3261, 2961, 2927, 2856, 2366, 1739, 1622, 1604, 1505, 1435, 1336, 1155, 1138, 1062, 955, 935, 846, 760, 739, 704, 641, 615cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, J = 8.6, 5.4 Hz, 2H), 7.17 (dd, J = 8.8, 4.9 Hz, 2H), 7.04 (q, J = 8.8 Hz, 4H), 5.02 (d, J = 9.4 Hz, 1H), 4.72 (s, 1H), 4.11 (tt, J = 11.9, 2.3 Hz, 1H), 3.78–3.73 (dd, J = 9.4, 5.0 Hz, 1H), 3.71 (s, 3H), 3.20–2.93 (bm, 2H), 2.92–2.63 (bm, 2H), 2.00 (ddd, J = 8.8, 8.8, 6.8 Hz, 2H), 1.95–1.76 (bm, 2H), 0.92 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.33, 169.30, 163.38 (d, J = 251.5 Hz), 162.52 (d, J = 250.5 Hz), 133.29 (d, J = 9.1 Hz), 131.73 (d, J = 3.0 Hz), 131.39 (d, J = 3.0 Hz), 129.23 (d, J = 9.1 Hz), 116.22 (d, J = 22.2 Hz), 115.53 (d, J = 22.2 Hz), 61.48, 57.62, 52.45, 31.88, 29.67, 18.76, 17.64; HRMS (M+H)⁺ calcd for C₂₄H₃₀F₂N₃O₅S⁺ (M+H) required 510.1874, found 510.3173.

Piperidin-4-one hydrochloride (2.44)

4N HCl (30 mL) in 1,4-dioxane was added to a solution of 4-Boc-1-piperidone (5.18 g, 26.00 mmol) at 0 °C and stirred overnight at room temperature. The mixture was evaporated to get white solid as a product **2.44**. It was used for next reaction without further purification.

1-(4-Fluorobenzyl)piperidin-4-one (2.45)

NaBH(OAc)₃ (16.67 g, 78.77 mmol) was added to a solution of 4-fluorobenzaldehyde (3.1 mL, 28.90 mmol) and **2.44** (3.53 g, 26.00 mmol) in CH_2Cl_2 (100 mL) at 0 °C and stirred at room temperature for overnight. The mixture was quenched with NaHCO₃ and extracted with CH_2Cl_2 (200 mL X 3) and the combined organic layer was dried over MgSO₄. The mixture was filtered, concentrated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to furnish colorless syrup as a product **2.45** (4.29 g, 80%).

Analytical data for **2.45**: $R_f = 0.29$ (Sol. EtOAc:Hexane = 1/1); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (dd, J = 8.4, 5.5 Hz, 2H), 6.95 (dd, J = 8.7, 8.7, 2H), 3.51 (s, 2H), 2.66 (t, J = 5.9 Hz, 4H), 2.37 (t, J = 5.9 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 209.16, 162.26 (d, J = 246.4 Hz), 134.0 (d, J = 3.0 Hz), 130.62 (d, J = 8.1 Hz), 115.35 (d, J = 21.2 Hz), 61.22, 52.92, 41.33.

1-(4-Fluorobenzyl)-N-(3-fluorophenyl)piperidin-4-amine (2.46)

NaBH(OAc)₃ (13.45 g, 63.44 mmol) was added to a solution of **2.45** (4.29 g, 20.72 mmol) and *p*-fluoroaniline (2.60 mL, 27.05 mmol) in CH₂Cl₂ (50 mL) at 0 °C and stirred for 2 hrs. Acetic acid (2.40 mL, 41.93 mmol) was treated at 0 °C and stirred for overnight at room temperature. The mixture was transferred to a separatory funnel using CH₂Cl₂ (100 mL) and distilled water (50 mL). The mixture was extracted with CH₂Cl₂ (100 mL X 3) and EtOAc (100 mL) and the combined organic layer was dried over MgSO₄. The mixture was filtered, concentrated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to furnish white solid as a product **2.46** (4.03 g, 64%).

Analytical data for **2.46**: $R_f = 0.19$ (Sol. EtOAc:Hexane = 1/1); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, J = 8.7, 5.6 Hz, 2H), 7.07 (ddd, J = 8.1, 8.1, 4.6 Hz, 1H), 7.04–6.98 (dd, J = 8.7, 8.7 Hz, 2H), 6.35 (ddd, J = 10.6, 8.2, 2.4 Hz, 2H), 6.27 (ddd, J = 11.8, 2.3, 2.3 Hz, 1H), 3.66 (d, J = 7.8 Hz, 1H), 3.48 (s, 2H), 3.22–3.29 (m, 1H), 2.82 (d, J = 12.0 Hz, 2H), 2.13 (ddd, J = 11.4, 11.4, 2.9 Hz, 2H), 2.05–2.00 (m, 2H), 1.47 (dddd, J = 10.8, 10.8, 10.8, 3.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.53 (d, J = 223.2 Hz), 162.11 (d, J = 225.2 Hz), 149.14 (d, J = 10.1 Hz), 134.37 (d, J = 3.0 Hz), 130.73 (d, J = 8.1 Hz), 130.55 (d, J = 10.1 Hz), 115.24 (d, J = 21.2 Hz), 109.26 ((d, J = 2.0 Hz), 103.67 (d, J = 21.2 Hz), 99.81 (d, J = 25.3 Hz), 62.50, 52.41, 50.19, 32.62.

(S)-Methyl 2-((N-(1-(4-fluorobenzyl)piperidin-4-yl)-N-(3-fluorophenyl)sulfamoyl)amino)-3methylbutanoate (2.47)

A mixture of L-valine methylester HCl (0.06 g, 0.37 mmol) in CH_2Cl_2 (20 mL) was added slowly to a solution of sulfuryl chloride (0.03 mL, 0.37 mmol) at 0 °C and stirred for 4 hrs. A solution of **2.46** (0.07 g, 0.24 mmol) and Et₃N (0.15 mL, 1.07 mmol) in CH_2Cl_2 (20 mL) was added to a reaction mixture at 0 °C and stirred at room temperature for overnight. The mixture was evaporated and purified by the ISCO-Flash column chromatography in 0% to 50% of EtOAc in hexane to get colorless syrup as product **2.47** (0.06 g, 51%).

Analytical data for **2.47**: $R_f = 0.33$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = -4.872$ (c = 0.390, CH₂Cl₂); FTIR (neat) 3284, 2960, 2801, 2762, 2256, 1738, 1669, 1607, 1592, 1508, 1485, 1468, 1339, 1264, 1220, 1162, 1139, 1055, 981, 908, 861, 828, 728, 691, 646 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (ddd, J = 6.9, 6.9, 6.9 Hz, 1H), 7.16 (dd, J = 7.5, 7.5 Hz, 2H), 7.06 (ddd, J = 8.3, 1.2, 1.2 Hz, 1H), 7.06–7.01 (m, 1H), 6.94 (dd, J = 7.5, 7.5 Hz, 2H), 5.00 (d, J = 9.3 Hz, 1H), 3.88 (ddd, J = 11.9, 8.7, 3.2 Hz, 1H), 3.76 (ddd, J = 9.4, 2.0, 1.1 Hz, 1H), 3.73 (d, J = 1.2 Hz, 3H), 3.40 (s, 2H), 2.87 (d, J = 9.5 Hz, 2H), 2.10–1.97 (m, 3H), 1.93 (d, J = 12.2 = Hz, 1H), 1.82 (d, J = 12.3 Hz, 1H) 1.50–1.38 (m, 2H), 0.94 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.30, 162.41 (d, J = 249.5 Hz), 161.97 (d, J = 245.4 Hz), 137.86, 137.77, 130.54 (d, J = 8.1 Hz), 129.84 (d, J = 9.1 Hz), 127.51 (d, J = 4.0 Hz), 118.93 (d, J = 22.2 Hz), 115.77 (d, J = 21.2 Hz), 115.00 (d, J = 21.2 Hz), 61.88, 61.42, 58.21, 52.85, 52.79, 52.40, 31.93, 31.43, 31.16, 18.75, 17.66; HRMS (M+H)⁺ calcd for C₂₄H₃₂F₂N₃O₄S⁺ (M+H) required 496.2082, found 496.2135.

То solution 1-Boc-4-piperidone (5.16g, 25.89 mmol) 3,5a of and bis(trifluoromethyl)aniline (4.0 mL, 25.80 mmol) in CH₂Cl₂ (100 mL) was added NaBH(OAc)₃ (16.30 g, 76.92 mmol) at 0 °C and stirred for 2 hrs. To a reaction mixture was added glacial acetic acid (3 mL, 52.41 mmol) at 0 °C and stirred at ambient temperature overnight. The reaction mixture was washed with saturated aqueous NaHCO₃ solution. The mixture was extracted with CH₂Cl₂ (100 mL X 3) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product 2.48 (5.1053 g, 48%).

Analytical data for **2.48**: $R_f = 0.37$ (Sol. EtOAc:Hexane = 1/1); FTIR (neat) 3337, 2941, 2859, 1671, 1615, 1588, 1477, 1432, 1405, 1367, 1275, 1237, 1167, 1116, 1088, 979, 927, 858, 822, 731, 683, 624 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.08 (s, 1H), 6.91 (s, 2H), 4.44 (d, J = 7.1 Hz, 1H), 4.13–4.00 (m, 2H), 3.52–3.40 (m, 1H), 3.47 (s, 1H), 2.95 (t, J = 11.9 Hz, 2H), 2.00 (d, J = 15.4 Hz, 2H), 1.45 (s, 9H), 1.36 (td, J = 14.3, 4.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.42, 151.39 (d, J = 712.8 Hz), 132.64 (q, J = 32.6 Hz), 123.78 (q, J = 272.6 Hz), 111.04 (dd, J = 223.7, 3.3 Hz), 80.02, 49.95, 32.03, 31.74, 28.49.

tert-Butyl 4-((3,5-bis(trifluoromethyl)phenyl)(*N*-(tert-butoxycarbonyl)sulfamoyl)amino) piperidine-1-carboxylate (2.49)

To a solution of chlorosulfonyl isocyanate (1.0 mL, 11.49 mmol) in CH₂Cl₂ (60 mL) was added to a solution of *tert*-butyl alcohol (1.1 mL, 11.50 mmol) in CH₂Cl₂ (20 mL) at 0 °C. This solution was cannulated to a solution of **2.48** (3.98 g, 9.65 mmol) and Et₃N (2.0 mL, 14.35 mmol) in CH₂Cl₂ (40 mL) at 0 °C. After that, the reaction mixture was stirred at ambient temperature for overnight. The reaction mixture was extracted with CH₂Cl₂ (100 mL X 2) and dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.49** (4.78 g, 84%).

Analytical data for **2.49**: $R_f = 0.83$ (Sol. EtOAc:Hexane = 1/1); FTIR (neat) 2981, 2934, 2866, 2383, 2369, 2325, 1736, 1666, 1436, 1366, 1276, 1247, 1131, 1075, 979, 917, 834, 770, 734, 705, 674, 610 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.67 (s, 2H), 7.57 (s, 1H), 4.42 (tt, J = 12.1, 3.8 Hz, 1H), 4.19–4.04 (m, 2H), 2.78 (bt, J = 11.9 Hz, 2H), 2.02–1.98 (m, 2H), 1.48 (s, 9H), 1.33 (s, 9H), 1.15 (dddd, J = 12.5, 12.3, 12.3, 4.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.47, 152.13 (d, J = 500.4 Hz), 136.73, 133.12 (q, J = 34.1 Hz), 132.75, 123.59, 122.78 (q, J = 273.0 Hz), 84.27, 80.23, 59.58, 53.61, 31.85, 28.44, 28.07.

(*S*)-*tert*-Butyl 4-((3,5-bis(trifluoromethyl)phenyl)(*N*-(tert-butoxycarbonyl)-*N*-(3-methoxy-2-methyl-3-oxopropyl)sulfamoyl)amino)piperidine-1-carboxylate (2.51)

To a solution of **2.49** (0.51 g, 0.86 mmol) and DIAD (0.35 g, 1.73 mmol) in THF (30 mL) was added a solution of methyl (s)-(+)-3-hydroxy-2-methylpropionate **2.50** (0.10 mL, 0.86 mmol) and PPh₃ (0.45 g, 1.72 mmol) in THF (30 mL) at room temperature and stirred at room temperature for overnight. The reaction mixture was extracted with CH_2Cl_2 (100 mL X 3) and the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 30% of EtOAc in hexane to get colorless oil as a product **2.51** (1.22 g, 97%).

Analytical data for **2.51**: $R_f = 0.34$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}{}_D = -0.992$ (c = 0.504, CH₂Cl₂); FTIR (neat) 2985, 2943, 2882, 2383, 2368, 1672, 1623, 1556, 1478, 1433, 1405, 1368, 1274, 1238, 1166, 1116, 1088, 1068, 1001, 979, 944, 927, 855, 773, 705, 682, 646 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.62 (s, 2H), 4.45 (m, 1H), 4.13 (s, 2H), 3.63 (dd, J = 12.0, 8.0 Hz, 1H), 3.61 (s, 3H), 3.40 (dd, J = 12.0, 8.0 Hz, 1H), 2.80 (m, 2H), 2.58 (m, 1H), 2.01 (d, J = 8.0 Hz, 2H), 1.55 (s, 9H), 1.37 (s, 9H), 1.13 (dt, J = 12.9, 7.7 Hz, 2H), 1.02 (d, J = 7.2 Hz, 3H); HRMS (M+Na)⁺ calcd for C₂₈H₃₉F₆N₃NaO₈S⁺ (M+Na) required 714.2254, found 714.2257.

(S)-Methyl 3-(N-(3,5-bis(trifluoromethyl)phenyl)-N-(piperidin-4-yl)sulfamoylamino)-2methylpropanoate HCl (2.52)

To a solution of **2.51** (0.30 g, 0.44 mmol) in CH_2Cl_2 (20 mL) was added 4N HCl in 1,4dioxane (6 mL) at 0 °C and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product **2.52**. It used without further purification.

(S)-Methyl 3-(N-(3,5-bis(trifluoromethyl)phenyl)-N-(1-(4-fluorobenzyl)piperidin-4-yl)sulfamoylamino)-2-methylpropanoate (2.53)

To a solution of **2.52** (0.12 g, 0.23 mmol), 4-fluorobenzaldehyde (0.03 g, 0.26 mmol) and Et_3N (0.1 mL, 0.72 mmol) in CH_2Cl_2 (10 mL) was added NaBH(OAc)₃ (0.15 g, 0.73 mmol) at 0 °C and stirred for overnight. The reaction mixture was extracted with CH_2Cl_2 (100 mL X 2) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product **2.53** (0.05 g, 37%).

Analytical data for **2.53**: $R_f = 0.45$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}{}_D = + 1.714$ (c = 0.175, CHCl₃); FTIR (neat) 3317, 2945, 2815, 2349, 1727, 1620, 1520, 1475, 1436, 1397, 1372, 1275, 1221, 1169, 1124, 1087, 1035, 943, 858, 844, 769, 702, 682, 662 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.22 (m, 2H), 7.08 (s, 1H), 7.02–6.95 (m, 2H), 6.87 (s, 2H), 5.35 (s, 1H), 4.29–4.23 (m, 1H), 4.02 (d, J = 7.8 Hz, 1H), 3.70 (s, 1H), 3.65–3.60 (m, 1H), 3.48 (s, 3H), 3.38–3.29 (m, 1H), 3.27 (d, J = 6.4 Hz, 1H), 2.86–2.77 (m, 2H), 2.16 (td, J = 11.4, 2.7 Hz, 2H), 2.05–1.96 (m, 2H), 1.49 (dtd, J = 13.6, 10.4, 3.6 Hz, 2H), 1.22 (d, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.62, 162.22 (d, J = 244.9 Hz), 147.88, 134.07 (d, J = 3.2 Hz), 132.64 (q, J = 3.0 Hz), 130.75 (d, J = 7.9 Hz), 123.77 (q, J = 272.6 Hz), 115.24 (d, J = 21.2 Hz), 112.18 (d, J = 3.0 Hz), 109.99 (p, J = 3.9 Hz), 71.59, 69.62, 69.13, 62.41, 52.32, 52.12, 46.12, 39.43, 32.26, 14.98.

(S)-*tert*-Butyl 4-((4-fluorophenyl)(N-((1-methoxy-3-methyl-1-oxobutan-2-yloxy)carbonyl) sulfamoyl)amino)piperidine-1-carboxylate (2.54)

To a solution of **2.31** (0.93 g, 3.17 mmol) and Et₃N (0.66 mL, 4.74 mmol) in CH₂Cl₂ (20 mL) was cannulated a solution of chlorosulfonyl isocyanate (0.33 mL, 3.79 mmol) and (*S*)methyl 2-hydroxy-3-methylbutanoate **2.9** (0.50 g, 3.81 mmol) at 0 °C and stirred for overnight. The reaction mixture was extracted with CH₂Cl₂ (100 mL X 2) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 50% of EtOAc in hexane to get white solid as a product **2.54** (0.50 g, 30 %).

Analytical data for **2.54**: $R_f = 0.70$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}{}_D = + 33.939$ (c = 0.165, CH₂Cl₂); FTIR (neat) 3077, 2972, 2936, 2878, 1743, 1667, 1602, 1506, 1452, 1435, 1366, 1265, 1234, 1212, 1168, 1133, 1093, 1064, 954, 938, 873, 738, 641 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.25 (dd, J = 9.0, 4.9 Hz, 2H), 7.07 (dd, J = 5.2, 5.2 Hz, 2H), 4.85 (d, J = 4.3 Hz, 1H), 4.33 (tt, J = 11.9, 3.6 Hz, 1H), 4.10–3.96 (m, 2H), 3.75 (s, 3H), 2.79–2.59 (m, 2H), 2.28–2.15 (m, 1H), 1.90 (t, J = 11.5 Hz, 2H), 1.32 (s, 9H), 1.25–1.15 (m 2H), 1.08 (dddd, J = 12.4, 12.4 12.3, 4.2 Hz, 1H), 0.96 (d, J = 6.9 Hz, 3H), 0.89 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.96, 164.36, 161.88, 152.74 (d, J = 378.8 Hz), 134.29 (d, J = 8.9 Hz), 130.12 (d, J = 3.2 Hz), 116.45 (d, J = 22.7 Hz), 79.97, 78.59, 59.33, 53.64, 52.54, 30.18, 28.49, 18.82, 17.21.

(S)-Methyl 2-(N-(4-fluorophenyl)-N-(piperidin-4-yl)sulfamoylcarbamoyloxy)-3-methylbutanoate hydrochloride (2.55)

To a solution of **2.54** (0.5 g, 0.94 mmol) in CH_2Cl_2 (20 mL) was added 4N HCl in 1,4dioxane (6 mL) at 0 °C and stirred overnight. A reaction mixture was evaporated to remove solvent, and then the mixture was dried under reduced vacuum to furnish a white solid as a product **2.55**. It used without further purification. (S)-Methyl 2-(N-(1-(4-fluorobenzyl)piperidin-4-yl)-N-(4-fluorophenyl)sulfamoyl carbamoyloxy)-3-methylbutanoate (2.56)

To a solution of **2.55** (0.09 g, 0.19 mmol), 4-fluorobenzaldehyde (0.03 mL, 0.22 mmol) and Et₃N (0.08 mL, 0.22 mmol) in CH₂Cl₂ (10 mL) was added NaBH(OAc)₃ (0.14 g, 0.64 mmol) at 0 °C and stirred for overnight. The reaction mixture was extracted with CH₂Cl₂ (100 mL X 2) and then the combined organic layer was dried over MgSO₄, filtered, evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white oil as a product **2.56** (0.0786 g, 76 %).

Analytical data for **2.56**: $R_f = 0.24$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = + 16.467$ (c = 0.753, CH₂Cl₂); FTIR (neat) 2956, 2925, 2852, 2383, 2357, 1750, 1661, 1627, 1604, 1505, 1463, 1264, 1226, 1209, 1089, 918, 874, 838, 791, 739, 626 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.23 (m, 2H), 7.15 (dd, J = 8.6, 5.5 Hz, 2H), 7.04 (dd, J = 8.9, 8.9, 2H), 6.96 (dd, J = 8.7, 8.7, 2H), 4.84 (d, J = 4.6 Hz, 1H), 4.23 (tt, J = 12.0, 3.9 Hz, 1H), 3.75 (s, 3H), 3.49 (d, J = 13.2 Hz, 1H), 3.41 (d, J = 13.2 Hz, 1H), 3.05–2.91 (m, 3H), 2.28–2.08 (m, 3H), 2.02–1.90 (m, 2H), 1.63–1.38 (m, 2H), 0.93 (t, J = 6.5 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.35, 162.76 (d, J = 249.2 Hz), δ 162.53 (d, J = 246.7 Hz), 152.77, 134.20 (d, J = 8.7 Hz), 131.54 (d, J = 8.1 Hz), 131.20, 130.62, 116.10 (d, J = 22.6 Hz), 115.43 (d, J = 21.4 Hz), 77.88, 60.65, 57.95, 52.22, 52.01, 30.85, 30.37, 30.19, 29.78, 18.68, 17.40; HRMS (M+H)⁺ calcd for C₂₅H₃₂F₂N₃O₆S⁺ (M+H) required 540.1980, found 540.2224.

(S)-Methyl 2-(N-(1-(4-fluorobenzoyl)piperidin-4-yl)-N-(4-fluorophenyl)sulfamoyl carbamoyloxy)-3-methylbutanoate (2.57)

To a solution of **2.55** (0.10 g, 0.21 mmol) and Et_3N (0.09 mL, 0.65 mmol) in THF (8 mL) was added 4-fluorobenzoyl chloride (0.03 g, 0.22 mmol) at room temperature and stirred for overnight. The reaction mixture was evaporated, and purified by the ISCO-Flash column chromatography in 0% to 40% of EtOAc in hexane to get white solid as a product **2.57** (0.0458 g, 39 %).

Analytical data for **2.57:** $R_f = 0.30$ (Sol. EtOAc:Hexane = 1/1); $[\alpha]^{25}_D = +25.410$ (c = 0.488, CH₂Cl₂); FTIR (neat) 2964, 2933, 2878, 1741, 1604, 1506, 1449, 1370, 1281, 1213, 1170, 1151, 1067, 1013, 954, 938, 846, 760, 739, 615 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.21 (m, 4H), 7.09 (dd, J = 8.42, 8.42 Hz, 2H), 7.00 (dd, J = 8.6, 8.6 Hz, 2H), 4.85 (d, J = 4.2 Hz, 1H), 4.69 (s, 1H), 4.48 (tt, J = 12.1, 3.9 Hz, 1H), 3.75 (s, 3H), 2.92 (bd, J = 4.8, 2H), 2.23 (ttd, J = 6.9, 6.9, 4.2 Hz, 1H), 2.14–1.86 (m, 2H), 1.45–1.00 (m, 4H), 0.97 (d, J = 6.9 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.70, 169.30, 163.36 (d, J = 249.9 Hz), 163.00 (d, J = 250.7 Hz), 150.64, 133.99 (d, J = 9.0 Hz), 131.35 (d, J = 3.2 Hz), 129.67 (d, J = 3.2 Hz), 129.25 (d, J = 8.6 Hz), 116.45 (d, J = 22.6 Hz), 115.46 (d, J = 21.7 Hz), 78.43, 58.83, 52.36, 50.92, 29.93, 29.65, 18.63, 16.95; HRMS (M+H)⁺ calcd for C₂₅H₃₀F₂N₃O₇S⁺ (M+H) required 554.1772, found 554.1864.

5.3. Appendix A

Selected ¹H and ¹³C NMR's

¹H NMR of compound 2.5

¹H NMR of compound 2.51

5.4. Appendix B

One and five dose experimental data from 60 cell line

-Tdp1 related compounds-

Developmental Therapeutics Program		NSC: 75077	2/1	Conc: 1.00E-5 Mol	ar res	bullet Jul	20, 2009
One Dose Mea	an Graph	Experiment	Experiment ID: 0907OS88		Re	Report Date: Feb 15, 20	
Panel/Cell Line	Growth Percent	Mean	Mean Growth Percent - Growth Per				
Leukemia CCRF-CEM	84.78						
CCRF-CEM	48.99						
HL-60(TB) K-562	74.02						
MOLT-4	74.05			_			
RPM-8226	35.19				-		
SR	57.56						
Non-Small Cell Lung Cancer	104031000						
A549/ATCC	89.28			-			
EKVX	83.18						
HOP-62	90.22						
HOP-92	55.98						
NCI-H226 NCI-H23	87.61 59.42						
NCI-H322M	105.98						
NCI-H460	91.81			_			
NCI-H522	84.55			•			
Colon Cancer							
COLO 205	103.87						
HCC-2998	84.37			<u> </u>			
HCT-116	56.17						
HCT-15 HT29	85.15 58.22			1			
KM12	86.88						
SW-620	87.18			-			
CNS Cancer							
SF-268	103.45						
SF-295	101.32						
SF-539	100.98						
SNB-75 U251	79.57 87.39						
Melanoma	07.55			7			
LOX MVI	86.19			•			
MALME-3M	78.56			•			
M14	85.40						
MDA-MB-435	98.14						
SK-MEL-2	91.47 94.74			_			
SK-MEL-28 SK-MEL-5	94.74						
UACC-257	81.46			E E			
UACC-62	80.31			j.			
Ovarian Cancer	2000/00/00/00						
IGR0V1	82.97						
OVCAR-3	89.49						
OVCAR-4	57.14						
OVCAR-5 OVCAR-8	112.96 97.86						
NCI/ADR-RES	89.91			-			
SK-OV-3	103.87						
Renal Cancer	2010 - 2010						
786-0	61.98						
A498	82.85						1
ACHN CAKI-1	92.53 75.54						
RXF 393	108.43						
TK-10	94.03			-			
UO-31	57.18						
Prostate Cancer							
PC-3	54.73						
DU-145 Breast Cancer	108.61						
MCF7	79.26			•			
MDA-MB-231/ATCC	90.88			-			
HS 578T	92.95			_			
BT-549	112.58						
T-47D	58.45						
MDA-MB-468	46.57						
Mean	82.41						
Delta	47.22				-		
Range	77.77			-			
	150	100	50	0	-50	-100	-150

One dose experimental data of compound 2.7 (NSC 750772)

Developmental Therapeutics Program			Conc: 1.00E-5 Molar	Test Date: Jul 06, 2009	
One Dose Mean Graph		Experiment ID: 0907OS76		Report Date: Feb 15, 201	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Per		cent	
eukemia CCRF-CEM	92.08				
HL-60(TB)	67.24				
K-562	95.78		– 1		
K-562 MOLT-4	85.92				
RPM-8226	102.88		•		
SR	78.66				
Non-Small Cell Lung Cancer					
A549/ATCC	100.72				
EKVX	105.48				
HOP-62 HOP-92	92.52 67.08				
NCI-H226	90.36				
NCI-H23	86.12				
NCI-H322M	113.49				
NCI-H460	109.81		_		
NCI-H522	110.83		_		
Colon Cancer					
COL0 205	124.29				
HCC-2998	105.33				
HCT-116 HCT-15	95.59 97.97				
HT29	102.39				
KM12	102.93				
SW-620	110.44				
NS Cancer					
SF-268	95.08				
SF-295	106.38				
SF-539	104.01		3 1		
SNB-19 SNB-75	105.16 102.26				
U251	105.08				
lelanoma	536577937				
LOX IMVI	95.34		_ —		
MALME-3M	104.97		-		
M14 MDA-MB-435	100.15				
SK-MEL-2	113.52 134.43				
SK-MEL-28	112.89				
SK-MEL-5	107.83		-		
UACC-257	110.59		-		
UACC-62	97.74		•		
Ovarian Cancer	100.27				
IGROV1 OVCAR-3	108.37 97.84				
OVCAR-3 OVCAR-4	99.47		F		
OVCAR-5	94.02		-		
OVCAR-8	115.14				
NCI/ADR-RES	101.57				
SK-OV-3	104.57		-		
Renal Cancer 786-0	00.11				
	90.44 87.34				
A498 ACHN	98.43				
CAKI-1	98.71		•		
RXF 393	108.76		-		
SN12C	90.42		_		
TK-10	105.70				
UO-31	89.30				
Prostate Cancer PC-3	8141				
DU-145	106.57		-		
reast Cancer					
MCF7	107.39		-		
MDA-MB-231/ATCC	114.12				
HS 578T	103.B2		_		
BT-549 T-47D	105.99 92.73				
MDA-MB-468	101.57				
Mean Delta	100.52 33.54				
Range	67.35				
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 2.15 (NSC 750710)

Developmental Therapeutics Program		NSC: 750711/1	Conc: 1.00E-5 Molar		6, 2009
One Dose Me	an Graph	Experiment ID: 090	7OS76	Report Date: Fe	eb 15, 201
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Perc		cent	
Leukemia	07.00				
CCRF-CEM	87.89				
HL-60(TB) K-562	78.38 122.76				
MOLT-4	120.31				
RPM-8226	98.03				
SR	101.84		•		
Non-Small Cell Lung Cancer					
A549/ATCC	105.59				
EKVX	107.94				
HOP-62	94.34				
HOP-92	79.47				
NCI-H226	93.42 89.79				
NCI-H23 NCI-H322M	120.12				
NCI-H460	111.35				
NCI-H522	107.34				
Colon Cancer					1
COLO 205	132.86				
HCC-2998	108.13		-		1
HCT-116	98.43		_=		
HCT-15	108.13				
HT29	107.28				1
KM12	110.61				
SW-620 CNS Cancer	111.47				
SF-268	100.77				
SF-295	110.52		_		
SF-539	105.05		4		
SNB-19	103.50				
SNB-75	101.53				
U251	103.79				
LOX IMVI	92.34				
MALME-3M	114.43				
M14	105.85				
MDA-MB-435	113.77		_		
SK-MEL-2	110.50		_		
SK-MEL-28	101.20		•		
SK-MEL-5	110.14				
UACC-257	110.31				
UACC-62	89.03				
Ovarian Cancer IGROV1	115.54				
OVCAR-3	103.50				
OVCAR-4	97.11		- I		
OVCAR-5	91.93		-		
OVCAR-8	108.87				
NCI/ADR-RES	93.79				
SK-OV-3	103.56		1		
Renal Cancer 786-0	94.24				1
A498	87.86				
ACHN	109.50		-		
CAKI-1	102.24				
RXF 393	107.22		-		
SN12C	99.22		_		
TK-10 UO-31	110.58 83.54				
Prostate Cancer	03.54				
PC-3	9641				
DU-145	106.40		-		1
Breast Cancer	10105				
MCF7	101.56				
MDA-MB-231/ATCC HS 578T	101.73 105.12				
BT-549	101.38				
T-47D	96.85		⊢		
MDA-MB-468	96.73				
Mean	103.06				
Delta Range	24.58 54.48				
	150	100 50	0 -50	-100	-150

One dose experimental data of compound 2.16 (NSC 750711)

Developmental Therapeutics Program		NSC: 750706/1	Conc: 1.00E-5 Molar	Test Date: Jul 06, 2009	
One Dose Mean Graph		Experiment ID: 0907OS76		Report Date: Feb 15, 201	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Per		cent	
_eukemia CCRF-CEM	64.95				
HL-60(TB)	43.58				
K-562	74.58				
HL-60(TB) K-562 MOLT-4	79.52		•		
RPM-8226	53.B2				
SR	67.45				
Non-Small Cell Lung Cancer A549/ATCC	88.22				
EKVX	76.33				
HOP-62	86.05				
HOP-92	69.38				
NCI-H226	70.98				
NCI-H322M NCI-H460	87.82 92.01				
NCI-H522	66.88				
Colon Cancer					
COLO 205	115.29				
HCC-2998	96.30				
HCT-116 HCT-15	68.92 92.75				
HT29	80.46				
KM12	88.50				
SW-620	95.98				
CNS Cancer					
SF-268	83.34		1		
SF-295 SF-539	85.14 100.29				
SNB-19	92.77		_		
SNB-75	77.97				
U251	94.41				
LOX IMVI	82.20				
MALME-3M	82.20 84.51				
M14	85.28		•		
MDA-MB-435	90.56		_		
SK-MEL-2	90.80		_		
SK-MEL-28	97.30				
SK-MEL-5 UACC-257	89.14 65.79				
UACC-62	88.86				
Ovarian Cancer	00.00				
IGROV1	96.87				
OVCAR-3	76.33				
OVCAR-4 OVCAR-5	78.35 97.82				
OVCAR-8	87.26				
NCI/ADR-RES	86.19				
SK-OV-3	90.92		-		
Renal Cancer 786-0	76.43				
A498	67.17				
ACHN	92.90				
CAKI-1	61.45				
RXF 393	95.01 84.48				
SN12C TK-10	93.73				
UO-31	72.35				
Prostate Cancer					
PC-3	55.71				
DU-145 Breast Cancer	96.55				
MCF7	79.06		•		
MDA-MB-231/ATCC	72.99				
HS 578T	88.41				
BT-549 T-47D	99.45 63.00				
MDA-MB-468	51.53				
Mean	81.90				
Delta Range	38.22 71.61				
Range					
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 2.21 (NSC 750706)

Developmental Therapeutics Program		NSC: 747166 / 1 Conc: 1.00E-5 Molar		Test Date: Mar 03, 2008	
One Dose Mean Graph		Experiment ID: 0803OS30		Report Date: Feb 12, 20	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Per		cent	
Leukemia	101.05				
CCRF-CEM	101.95				
HL-60(1B)	132.14				
HL-60(TB) K-562 MOLT-4	113.79 102.26				
RPM-8226	110.53				
SR	115.78				
Non-Small Cell Lung Cancer	115.76				
Non-Small Cell Lung Cancer A549/ATCC	80.49				
EKVX	109.58				
HOP-62	12.34				
HOP-92	95.48				
NCI-H226	101.98				
NCI-H23	41.77			-	
NCI-H322M	117.85				
NCI-H460	98.77				
NCI-H522	84.10				
Colon Cancer COLO 205	107.17		_		
HCT-116	82.52				
HCT-15	91.90				
HT29	101.54				
KM12	98.57		•		
SW-620	102.84		•		
CNS Cancer					
SF-268	108.31				
SF-295	122.74				
SF-539	99.48				
SNB-19 SNB-75	94.90 85.46				
U251	94.46				
Velanoma	54.40				
LOX MVI	95.94		– 1		
MALME-3M	141.40				
M14	112.52				
MDA-MB-435	113.80				
SK-MEL-2	90.45				
SK-MEL-28	112.75				
SK-MEL-5	93.72				
UACC-257 UACC-62	86.11 99.83				
Ovarian Cancer	99.55				
IGROV1	79.44				
OVCAR-3	103.91				
OVCAR-4	102.59				
OVCAR-5	83.53				
OVCAR-8	97.07		<u> </u>		
NCI/ADR-RES	85.04				
SK-OV-3	93.46				
Renal Cancer 786-0	90.28				
A498	85.27				
ACHN	96.46				
CAKI-1	114.97				
RXF 393	80.97				
SN12C	98.17				
TK-10	179.28				
UO-31	82.61				
Prostate Cancer PC-3	97.35				
DU-145	106.83		_ <u></u> _		
Breast Cancer	100.55				
MCF7	87.71				
MDA-MB-231/ATCC	95.85		–		
HS 578T	119.94				
BT-549	208.78				
T-47D	97.53		<u> </u>		
MDA-MB-468	94.73				
Maan	100 53				
Mean Delta	100.53 88.29				
Range	196.44				
		400		400	
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 2.22 (NSC 747166)

Developmental Ther	apeutics Program	NSC: D-767523/1	Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012	
One Dose Me	an Graph	Experiment ID: 1209	0549	Report Date: May 05, 201	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Per		cent	
Leukemia CCRF-CEM	90.36				
HL-60(TB)	90.23				
K-562	90.72				
MOLT-4	78.52				
RPM-8226	9421		• •		
SR	71.73				
Non-Small Cell Lung Cancer A549/ATCC					
	97.13				
HOP-62	98.78				
HOP-92	86.45				
NCI-H226	95.89				
NCI-H23 NCI-H322M	10221 97.73				
NCI-H460	105.31		_		
NCI-H522	85.98				
Colon Cancer	00.50				
COLO 205	106.10		–		
HCC-2998	98.28		()		
HCT-116	93.96				
HCT-15	104.96				
HT29	101.00		3 1		
KM12 SW/620	101.13				
SW-620 CNS Cancer	102.31		7		
SF-268	94.45				
SF-539	102.59		-		
SNB-19	95.55		• •		
SNB-75	82.79				
lelanoma					
LOX IMVI	9281				
MALME-3M	101.85				
M14 MDA MR 435	103.48				
MDA-MB-435 SK-MEL-28	107.65 96.79				
SK-MEL-28 SK-MEL-5	98.03				
UACC-62	98.53				
Ovarian Cancer					
IGR0V1	97.57				
OVCAR-3	96.75				
OVCAR-4	110.54				
OVCAR-5	108.57				
OVCAR-8	103.27				
NCI/ADR-RES SK-OV-3	94.41 98.51		- F		
Renal Cancer	30.51		1		
786-0	97.27				
A498	107.38		–		
ACHN	98.02				
CAKI-1	105.09		-		
RXF 393	117.58				
SN12C	94.75		_ _		
TK-10 UO-31	100.72		1		
Prostate Cancer	67.24				
PC-3	87.26				
DU-145	107.77				
Breast Cancer					
MCF7	101.47				
MDA-MB-231/ATCC	100.04		1		
HS 578T	96.D9 97.44				
BT-549 T-47D	93.19		<u> </u>		
MDA-MB-468	104.29				
Mean	97.34				
Delta Range	30.10 50.44				
izalige	00.44				
	450	100 50	0 50	100 150	
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 2.23 (NSC 767523)

Developmental Therapeutics Program		NSC: D-767524/1	Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012
One Dose Me	an Graph	Experiment ID: 1209	Experiment ID: 1209OS49	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Percent		cent
Leukemia	22.20			
CCRF-CEM HL-60(TB)	33.20 80.00			
K-562	85.01		ГІ	
MOLT-4	53.55			
RPM-8226	77.30			
SR	50.71			
Non-Small Cell Lung Cancer A549/ATCC				
	92.54		_	
HOP-62 HOP-92	95.74			
NCI-H226	7641 9641			
NCI-H23	94.33			
NCI-H322M	82.93		•	
NCI-H460	102.46			
NCI-H522	45.22			
Colon Cancer				
COLO 205	85.13			
HCC-2998	94.50			
HCT-116 HCT-15	84.34 76.07			
HT29	85.24			
KM12	95.90			
SW-620	80.10		– 1	
CNS Cancer				
SF-268	83.58			
SF-539	79.72			
SNB-19 SNB-75	91.85 77.57		I	
Melanoma	11.51			
LOX MVI	75.02			
MALME-3M	75.D2 93.77		-	
M14	97.78			
MDA-MB-435	90.75			
SK-MEL-28 SK-MEL-5	98.26 93.78			
UACC-62	103.58			
Ovarian Cancer				
IGR0V1	39.79			
OVCAR-3	78.02			
OVCAR-4	74.56			
OVCAR-5 OVCAR-8	109.93 88.25			
NCI/ADR-RES	89.91			
SK-OV-3	97.42			
Renal Cancer				
786-0	101.47			
A498	108.50			
ACHN CAKI-1	85.30 87.20			
RXF 393	97.65			
SN12C	90.87			
TK-10	79.43		– 1	
UO-31	40.96			
Prostate Cancer	87.77			
PC-3 DU-145	98.95			
Breast Cancer	00.00			
MCF7	96.00			
MDA-MB-231/ATCC	82.58			
HS 578T	91.23			
BT-549 T-47D	99.97 91.24			
MDA-MB-468	104.01			
Mean	84.99			
Delta	51.79			
Range	76.73			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 2.24 (NSC 767524)

Developmental Therapeutics Program		NSC: 750707 / 1	Conc: 1.00E-5 Molar	Test Date: Jul 06, 2009	
One Dose Mean Graph		Experiment ID: 0907OS76		Report Date: Feb 15, 201	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Per		cent	
Leukemia CCRF-CEM	95.27				
HL-60(TB)	78.96				
HL-60(TB) K-562 MOLT-4	97.18		• •		
MOLT-4	98.44		•		
RPM-8226	95.64		- E I		
SR	94.89				
Non-Small Cell Lung Cancer A549/ATCC	96.83				
EKVX	99.55				
HOP-62	86.18				
HOP-92	95.46		•		
NCI-H226	86.98				
NCI-H322M NCI-H460	104.58 108.10				
NCI-H522	90.45				
Colon Cancer	00.40				
COLO 205	118.35				
HCC-2998	101.73		• I		
HCT-116	85.85				
HCT-15 HT29	100.43 100.97				
KM12	107.52				
SW-620	108.35				
CNS Cancer					
SF-268	103.92		-		
SF-295	95.97 112.97				
SF-539 SNB-19	98.52				
SNB-75	87.44				
U251	99.30				
Melanoma					
LOX IMVI MALME-3M	98.22 106.75				
M14	92.00				
MDA-MB-435	105.73		_		
SK-MEL-2	103.54		-		
SK-MEL-28	116.79				
SK-MEL-5	106.57				
UACC-257 UACC-62	109.95 102.94				
Ovarian Cancer	102.54		1 1		
IGR0V1	95.55				
OVCAR-3	101.22		•		
OVCAR-4	96.74				
OVCAR-5 OVCAR-8	96.39 96.86		F		
NCI/ADR-RES	94.03		-		
SK-OV-3	106.47		-		
Renal Cancer					
786-0 A498	77.49 95.92				
ACHN	101.24				
CAKI-1	89.54				
RXF 393	115.93				
SN12C	103.53				
TK-10 UO-31	95.13 69.57				
Prostate Cancer	00.07				
PC-3	91.97		-		
DU-145	105.56				
Breast Cancer MCF7	105.00				
MDA-MB-231/ATCC	86.17				
HS 578T	102.59		•		
BT-549	102.09				
T-47D	94.39				
MDA-MB-468	102.14				
Mean	98.52				
Delta	28.95				
Range	48.58				
	150	100 50	0 -50	-100 -150	
	54550 ⁻⁰		100 Test		

One dose experimental data of compound 2.25 (NSC 750707)

bevelopmental me	rapeutics Program	NSC: 749205 / 1	Conc: 1.00E-5 Molar	Test Date: Dec 08, 2008
One Dose Me	an Graph	Experiment ID: 081	Experiment ID: 0812OS07	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent
Leukemia CCRF-CEM	65.07			
HL-60(TB)	43.70			
MOLT-4	65.60			
SR	77.98		· · · · · · · · · · · · · · · · · · ·	
Non-Small Cell Lung Cancer A549/ATCC	57.84			
EKVX	69.81			
HOP-62	85.39			
HOP-92	39.58			
NCI-H226	76.B7			
NCI-H23	77.33			
NCI-H322M NCI-H460	89.52 85.07			
NCI-H522	62.55			
Colon Cancer				
COL0 205	98.80			
HCT-116	67.40			
HCT-15 HT29	83.74 74.07			
KM12	82.52			
SW-620	95.26			
CNS Cancer				
SF-268 SF-295	92.83 93.26			
SF-295 SF-539	89.85			
SNB-19	61.33			
SNB-75	72.53		- I	
U251	82.00			
Melanoma	85.20			
LOX IMVI MALME-3M	85.30 76.56			
M14	84.55		- I	
MDA-MB-435	97.48			
SK-MEL-2	81.94			
SK-MEL-28 SK-MEL-5	9921 65.58			
UACC-62	76.58			
Ovarian Cancer	10.00			
IGR0V1	76.41			
OVCAR-3	83.B6			
OVCAR-4 OVCAR-5	70.51 86.52			
OVCAR-8	86.56		_	
NCI/ADR-RES	74.12		-	
SK-OV-3	80.56		1 1	
Renal Cancer 786-0	70.85			
A498	82.37			
ACHN	95.39			
SN12C	87.77		_	
TK-10	89.31 58.59			
UO-31 Prostate Cancer	56.55			
PC-3	50.15			
DU-145	107.51			
Breast Cancer MCF7	65.53			
MDA-MB-231/ATCC	88.01			
HS 578T	91.33			
BT-549	98.08			
T-47D MDA-MB-468	51.56 76.49			
Mean	78.32			
Delta	38.74			
Range	67.93			
		400		
	150	100 50	0 -50	0 -100 -150

One dose experimental data of compound 2.30 (NSC 749205)

Developmental Therapeutics Program		NSC: 749201/1	Conc: 1.00E-5 Molar	Test Date: Dec 08, 2008	
One Dose Me	an Graph	Experiment ID: 0812OS07		Report Date: Feb 12, 201	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Per		cent	
eukemia CCRF-CEM	7721				
HL-60(TB)	130.53				
MOLT-4	101.41		5 1		
SR	101.91				
Non-Small Cell Lung Cancer EKVX	98.56				
HOP-62	93.98				
HOP-92	71.49				
NCI-H226	98.54		L I		
NCI-H23 NCI-H322M	95.75 79.88				
NCI-H460	99.56				
NCI-H522	77.16				
Colon Cancer					
COL0 205 HCC-2998	120.70 100.94				
HCT-116	85.59				
HCT-15	100.30				
HT29	116.88				
KM12	98.13				
SW-620 CNS Cancer	100.53		1		
SF-268	106.47		-		
SF-295	91.82				
SF-539	102.91		-		
SNB-19 SNB-75	97.35 96.20				
U251	100.41		- I		
Aelanoma					
LOX IMVI	94.50		•		
MALME-3M M14	97.76 101.43				
MDA-MB-435	105.45		_		
SK-MEL-2	92.93		-		
SK-MEL-28	109.27				
SK-MEL-5 UACC-62	94.57 88.27				
Ovarian Cancer	00.27				
IGR0V1	90.05		-		
OVCAR-3	106.58				
OVCAR-4 OVCAR-5	104.86 99.55				
NCI/ADR-RES	97.84		1		
SK-OV-3	96.31				
Renal Cancer	04.95				
786-0 A498	91.95 113.44				
ACHN	102.31				
SN12C	100.50				
TK-10	93.57				
UO-31 Prostate Cancer	85.77				
DU-145	113.36				
Breast Cancer					
MCF7 MDA MB-231/ATCC	91.15 97.55				
MDA-MB-231/ATCC HS 578T	84.44				
BT-549	102.46		-		
T-47D	86.04				
MDA-MB-468	99.47		1		
Mean	97.81				
Delta	26.32				
Range	59.D4				
	150	100 50	0 -50	-100 -150	
				100	

One dose experimental data of compound 2.34 (NSC 749201)

One Dose Mear Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62	Growth Percent 76.86 78.76 84.33 98.90 88.52 78.52 97.78	Experiment ID: 09 Mean Growt	070S76	Report Date: F	eb 15, 201
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPM-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62	76.86 78.76 84.33 98.90 88.52 78.52	Mean Growt	h Percent - Growth Per	cent	
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EK/X HOP-62	78.76 84.33 98.90 88.52 78.52		_		
HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EK/X HOP-62	78.76 84.33 98.90 88.52 78.52				
MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62	84.33 98.90 88.52 78.52				
MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62	98.90 88.52 78.52				
RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62	88.52 78.52				
SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62	78.52				
Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62					
A549/ATCC EKVX HOP-62	97.78				
EKVX HOP-62		1 1	• •		
HOP-62	109.87	1 1	– 1		
	89.76	1 1			
HOP-92	83.05	1 1			
NCI-H226	81.01	1 1			
NCI-H23	92.22	1 1	—		
NCI-H322M	109.42	1 1			
NCI-H460	115.23	1 1			
NCI-H522	98.70	1 1			
Colon Cancer	124 74				
COLO 205	124.74				
HCC-2998 HCT-116	93.12 87.47				
HCT-15	100.29				
HT29	94.71				
KM12	111.25				
SW-620	108.93	1 1	– 1		
CNS Cancer		1 1			
SF-268	94.52		- I		
SF-295	115.06	1 1			
SF-539	106.40	1 1	=		
SNB-19	96.50	1 1	<u> </u>		
SNB-75	88.53	1 1			
U251	106.51				
Ielanoma LOX IMVI	97.95				
MALME-3M	102.39				
MALME-SM	95.84		_		
MDA-MB-435	120.12				
SK-MEL-2	119.58	1 1			
SK-MEL-28	107.27	1 1			
SK-MEL-5	102.25	1 1			
UACC-257	110.93	1 1			
UACC-62	93.97	1 1	– 1		
Ovarian Cancer		1 1			
IGROV1	99.32	1 1	1 I		
OVCAR-3	97.25	1 1	- I I		
OVCAR-4 OVCAR-5	99.59 90.20	1 1	<u> </u>		
OVCAR-8	105.16	1 1			
NCI/ADR-RES	93.75				
SK-OV-3	102.47		■ 1		
Renal Cancer					
786-0	85.88		<u> </u>		
A498	84.91				
ACHN	110.96		_		
CAKI-1	98.99				
RXF 393	108.53				
SN12C TK-10	104.54 108.08		_		
UO-31	82.72				
Prostate Cancer	02.72				
PC-3	78.84				
DU-145	103.98		-		
Breast Cancer					
MCF7	109.29		_		
MDA-MB-231/ATCC	111.36				
HS 578T	110.59				
BT-549	100.70				
T-47D MDA-MB-468	81.53 96.92				
Mean Delta	98.79 21.93				
Range	47.88				
	150	100 50	0 -50	0 -100	-150

One dose experimental data of compound 2.38 (NSC 750715)

Developmental Therapeutics Program		NSC: 750713/1	Conc: 1.00E-5 Molar	Test Date: Jul 06, 2009	
One Dose Me	an Graph	Experiment ID: 0907OS76		Report Date: Feb 15, 201	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Perc		cent	
Leukemia CCRF-CEM	84.57				
	39.99				
HL-60(TB) K-562	87.06		_		
MOLT-4	63.09				
RPM-8226	84.02				
SR	74.12				
Non-Small Cell Lung Cancer					
A549/ATCC	102.52		-		
EKVX	106.57		_		
HOP-62	86.37				
HOP-92	72.52				
NCI-H226	95.95 84.70				
NCI-H23 NCI-H322M	113.08				
NCI-H460	109.26				
NCI-H522	107.74				
Colon Cancer	107.14				
COLO 205	108.49				
HCC-2998	94.57		•		
HCT-116	82.06				
HCT-15	97.99		L		
HT29	92.38				
KM12	108.52				
SW-620	102.11				
CNS Cancer SF-268	101.39				
SF-295	108.36				
SF-539	105.21		-		
SNB-19	92.26				
SNB-75	82.30				
U251	104.11				
Melanoma	1-0-100 (0.00)				
LOX IMVI	9421				
MALME-3M	106.27				
M14 MDA-MB-435	91.55 113.71				
SK-MEL-2	131.35				
SK-MEL-28	100.20				
SK-MEL-5	99.57		•		
UACC-257	108.78				
UACC-62	99.53		•		
Ovarian Cancer					
IGROV1	99.22				
OVCAR-3 OVCAR-4	106.59 94.52				
OVCAR-5	92.85				
OVCAR-8	110.08				
NCI/ADR-RES	90.07		-		
SK-OV-3	105.71				
Renal Cancer					
786-0	88.10				
A498	83.55				
ACHN CAKI-1	105.75 96.74				
RXF 393	108.31				
SN12C	96.94				
TK-10	117.12				
UO-31	87.25		—		
Prostate Cancer					
PC-3	78.10				
DU-145	104.43				
Breast Cancer MCF7	103.52		_		
MDA-MB-231/ATCC	98.47				
HS 578T	101.75		-		
BT-549	105.55		_		
T-47D	92.59		 		
MDA-MB-468	94.19				
Mean Delta	96.55 56.56			.	
Range	91.36			•	
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 2.40 (NSC 750713)

Developmental Ther		NSC: 750714 / 1	Conc: 1.00E-5 Molar	Test Date: Jul 06, 2009
One Dose Me	an Graph	Experiment ID: 0907	OS76	Report Date: Feb 15, 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
Leukemia CCRF-CEM	8621			
HL-60(TB)	43.07			
HL-60(TB) K-562 MOLT-4	111.22		_	
MOLT-4	108.26			
RPM-8226	93.06			
SR	85.93			
Non-Small Cell Lung Cancer A549/ATCC				
A549/ATCC	112.52			
EKVX	105.50			
HOP-62 HOP-92	92.D3 71.61			
NCI-H226	99.48			
NCI-H322M	106.51			
NCI-H460	111.89		_	
NCI-H522	88.28		- I	
Colon Cancer				
COLO 205	131.06			
HCC-2998	99.14			
HCT-116 HCT-15	10101 11131			
HT29	101.15			
KM12	99.75			
SW-620	108.00		-	
CNS Cancer				
SF-268	87.52			
SF-295 SF-539	100.40 95.82		L	
SNB-19	93.61			
SNB-75	83.73			
U251	113.83		_	
Melanoma				
LOX MVI	100.03			
MALME-3M M14	108.82 100.14			
MDA-MB-435	117.87			
SK-MEL-2	124.03			
SK-MEL-28	106.11		-	
SK-MEL-5	100.32		4	
UACC-257	112.42			
UACC-62 Ovarian Cancer	110.16			
IGROV1	116.58			
OVCAR-3	87.51		_	
OVCAR-4	95.64			
OVCAR-5	92.73			
OVCAR-8	111.03			
NCI/ADR-RES SK-OV-3	94.28 99.53			
Renal Cancer	55.55			
786-0	91.25			
A498	68.51			
ACHN	103.23			
CAKI-1 RXF 393	97.89 120.35			
SN12C	108.57			
TK-10	113.46			
UO-31	89.40			
Prostate Cancer				
PC-3	85.99			
DU-145 Breast Cancer	80.52			
MCF7	102.59			
MDA-MB-231/ATCC	114.57			
HS 578T	89.06			
BT-549	100.55			
T-47D MDA-MB-468	88.14 96.06			
	30.00			
Mean	99.49			
Delta	56.42			
Range	87.99			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 2.42 (NSC 750714)

Panel/Cell Line Growth Percent Mean Growth Percent - Growth Percent Leukenia CRF-CEM 8930 HL-60(TF) 7410 K-56(TF) 74100 K-56(TF) 741000 K-56(TF) 741000 K-56(TF) 7410000 K-56(TF) 741000000000000000000000000000000000000	Developmental Ther	5 GT: 1	NSC: 750712/1	Conc: 1.00E-5 Molar	Test Date: Jul 06, 2009
Leukamia H.G.(TE) H.G.(T	One Dose Me	an Graph	Experiment ID: 0907	OS76	Report Date: Feb 15, 20
CCP-7CEM 8930 FL-60TD HL-60TD HL-60TD MCU-4 MCU-4 HC-2026 RPM-8226 RPM-8226 RPM-8226 RPM-8226 RPM-8226 RCVX RCVX HC-11926 RCVX HC-14320 HC-	Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
HL69(TB) 7410 K-562 RPKM-5226 19748 SR SR SR K-562 HC-562 HC-562 HC-562 HC-562 HC-562 HC-562 HC-562 HC-562 HC-1255 HC-1452 HC-1452 HC-1452 HC-1452 HC-1452 HC-145	Leukemia	80.00			
K-652' 13132 MOLT-4 BR - 1142' BR - 1142' HONS-5mall Cell Lung Cancer EV/2 1077' HOP-32 BR - 1142' HOP-32 BR - 1142' HOP-32 Concer Coll 205 Coll 205 BR - 238 SF - 238	CCRF-CEM	7410			
RPM-8226 9748 SM Call Ling Cancer 10139 EXX 10774 HOP62 8232 HOP62 8232 HOP62 10139 NCH460 10925 NCH461 10925 NCH462 10139 Concers 11538 HC7.115 10276 HT21 103467 HC7.115 10276 HT22 10337 SF-235 10681 SF-235 10613 SF-235 10613 SF-235 10613 SF-235 10614 SF-235 10237 UACC-527 10237 UACC-527 10237 UACC-527 10237 UACC-527 10237 UACC-52 10317 SK-41 10222 <t< td=""><td>K-562</td><td>131.82</td><td></td><td></td><td></td></t<>	K-562	131.82			
RPM-8226 9748 SM Call Ling Cancer 10139 EXX 10774 HOP62 8232 HOP62 8232 HOP62 10139 NCH460 10925 NCH461 10925 NCH462 10139 Concers 11538 HC7.115 10276 HT21 103467 HC7.115 10276 HT22 10337 SF-235 10681 SF-235 10613 SF-235 10613 SF-235 10613 SF-235 10614 SF-235 10237 UACC-527 10237 UACC-527 10237 UACC-527 10237 UACC-527 10237 UACC-52 10317 SK-41 10222 <t< td=""><td>MOLT-4</td><td></td><td></td><td>_</td><td></td></t<>	MOLT-4			_	
SR 9341 MonSmall Edil Lung Cancer 0199 ABV TCC 019774 HOPS2 6591 HOCH225M 11710 NCH4522 11033 Coll 2305 1892 HCT-116 9351 HCT-15 10246 SF-238 9754 SF-238 106814 SNB-75 80.26 U251 10736 U251 10736 U251 10736 WALME-3M 10635 M44 9159 MALME-3M 10636 M44 9159 MALME-3M 10637 UAC-62 11275 Ovache-43 9133 OVCAR-5 10417 NAMEL-3 9937 UAC-62 933	RPMI-8226			• I	
EKVX 10774 HOP-62 822 HOP-62 822 HOP-62 822 HOP-62 822 HOP-62 822 HOP-62 82 HOP-62 82 HOP-64 82	SR				
EKVX 10774 HOP-62 822 HOP-62 822 HOP-62 822 HOP-62 822 HOP-62 822 HOP-62 82 HOP-62 82 HOP-64 82	Non-Small Cell Lung Cancer	000000000			
HOP-62 6232 HOP-62 6531 NCH4228 11710 NCH4228 11033 Colon Cancer COLO 2005 11538 HCC-2968 9522 HCC-2968 9522 HCC-2978 10226 HCC-297 10226 MALME-3M 10652 MALME-3M 106526 MALME-3M 106526 MALME-3M 106526 MALME-3M 106526 MALME-3M 106526 MALME-3M 106526 MALME-3M 10526 MALME-3M 10526 MALME-3M 10526 HCC-297 12027 CAK11 99222 Cak1 9133 OVCAR-5 0051 SK-0CV-3 9578 HCC-297 12027 CAK11 99227 CAK11 99227 CAK11 99227 CAK11 99227 CAK11 99227 CAK11 99227 CAK11 9923 SNE-75 8056 DL-145 8435 SH2-6 DL-145 8435 SH2-6 SH2-7	A549/ATCC				
HOP-82 NCI-H225 NCI-H225 NCI-H222 NCI-H	EKVX	107.74			
NCI-H3226 NCI-H322M NCI-H322M NCI-H322M NCI-H460 COL0 2005 H1538 HCC 2996 HCC 2996 HCC 116 HCC					
NCI-H322M 114.34 NCI-H322 110.93 DioT Cancer HCC 23998 98.72 HCC 116 9351 HCT 116 9351 HCT 116 9351 HCT 116 102.76 KM120 106.54 KM120 106.54 KM120 106.54 KM120 106.55 SF-358 97.54 SF-358 97.54 SF-358 106.61 SF-358 100.41 SF-255 106.61 SF-255 107.75 UAC-62 102.57 UAC-62 112.57 UAC-62 112.57 UAC-62 112.57 UAC-62 112.57 UAC-62 112.57 UAC-62 112.57 UAC-62 112.57 UAC-62 112.57 UAC-62 112.57 UAC-62 90.34 OVCAR-5 90.34 OVCAR-5 90.34 OVCAR-5 90.34 OVCAR-5 90.34 OVCAR-5 90.51 SK-00 96.53 SF-255 106.77 SF-26 SF-255 106.77 SF-26 SF-255 106.77 SF-26 SF-255 106.77 SF-26 SF-255 106.77 SF-26 SF-255 106.77 SF-26 SF-255 106.77 SF-26 SF-255 106.77 SF-26 SF-27 SF					
NCI-H460 10925 Concreter COLC 2006 H1522 H1522 H1522 H1523 H1523 H1523 H1523 H1523 H1523 H1535 H1535 H1535 H1535 H1535 H1535 H1545 H1545 H1545 H1555 H1545 H1555 H1545 H15555 H1555					
NCI-H522 110.93 COLO 205 115.38 COLO 205 115.38 HCC 2986 96.71 HCT 116 102.76 HT21 106.67 SW-200 106.24 CNS Cancer 97.54 SF-236 97.54 SF-236 106.61 SH219 103.88 SNR575 80.26 U251 107.96 Welanoma 97.95 LOX MVI 97.95 ML4E-3M 106.36 M14 91.53 MH4 91.53 MKHEL-28 103.11 SK-WEL-28 90.51 SK-WEL-28 90.51 SK-WEL-28 90.51 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-6 90.53 T-70 85.95 AABH 102.22 RK-71 95.95				_	
COL0.205 115.38 HCC-116 93.51 HCT-116 102.76 HK112 106.57 SW-220 106.24 SF-238 97.54 SF-238 106.61 SF-238 101.41 SHE-13 80.33 U121 107.56 MALME-3M 106.56 M14 91.59 MDA-MB-435 117.24 SK-WEL-5 100.71 SK-WEL-5 100.71 SK-WEL-6 199.75 UACC-257 120.57 UACC-257 120.57 UACC-257 120.57 UACC-257 120.57 UACC-257 120.57 UACC-257 120.57 VALADR-8 93.41 OVCRR-5 93.41 OVCRR-5 93.41 OVCRR-5 93.41 OVCRR-5 93.41 OVCRR-5 93.41 OVCRR-5 93.41 OVCRR-5 95.5 Remail Cancer 786-0 88.56 PC-3 88.56 DUC Cancer 88.56 DUC Cancer 95.55 BT-549 110.22 Range 69.47		110.93		_	
HCC 2998 98.72 HCT 116 9351 HCT 116 102.76 HT73 103.49 KMI230 106.24 SF-38 97.54 SF-38 97.54 SF-28 106.81 SF-38 101.41 SF-75 80.25 U251 107.75 NHALME-5M 106.75 NALME-5M 105.05 MALME-5M 105.05 MALME-5M 105.05 MALME-435 117.24 SK-WEL-2 130.37 SK-WEL-28 103.11 SK-WEL-28 103.11 SK-WEL-3 12.75 VACC-62.67 VCAR-8 107.71 NCIADR-RES 90.61 SK-OV-3 96.78 Tenal Cancer 88.56 ACHN 102.27 CAKL-1 99.22 SK-WL 12.3 SK-WE	Colon Cancer	and the second second			
HCT-116 10276 HT28 10348 KM12 10657 SW420 10624 SF-839 10681 SF-839 10681 SF-839 10141 SNB-19 9038 SNB-75 8026 U251 10736 Welanoma LOX INV1 9735 MALME-3M 10635 MH4.ME-3M 10635 MALME-3M 10535 MALME-28 10317 SK-WEL-28 10317 SK-WEL-5 19976 UACC-267 12057 UACC-262 11275 OvclarA 9 133 OVCAR-3 9133 OVCAR-4 9061 SK-CV-3 9878 Ranal Cancer T66-0 88.56 Ad-98 66235 Ad-98 6647 Beat ad					
HCT-15 102.76 HT23 103.48 KM12 106.57 SW-20 106.24 SF-28 10681 SF-38 10141 SF-53 10141 SNB-19 90.38 SNB-75 80.26 U251 107.75 Melanora 97.55 MAL-SM 1955 MAL-SM 195					
HT25 103.48 KM12 10657 SW-200 10624 SF-288 97.54 SF-289 10611 SF-289 10616 U251 107.86 M14 MDA-MB-235 117.347 SK-MEL-28 10311 SK-MEL-28 10311 SK-MEL-5 9975 UACC-2877 12057 UACC-287 12057 UACC-288 9341 OVCAR-3 9133 OVCAR-4 9051 SK-VD-3 98.78 Real Cancer 786-0 88.86 A498 6235 ACHM 10227 CAKL1 99222 RAF 393 12634 SN 126 35 ACHM 10227 CAKL1 99232 RAF 393 12634 SN 126 35 ACHM 10227 CAKL1 99325 BT-349 110325 BT-349 110325 B					
KM12 106.57 SW-220 106.24 SF-285 97.54 SF-285 106.81 SH-375 90.26 U251 107.36 Welanoma 97.35 Mulanema 97.35 Mulanema 97.35 Mulanema 97.35 Mulanema 97.35 MLAME-335 117.34 SK-WEL-28 103.11 SK-WEL-28 103.17 SK-WEL-28 103.17 SK-WEL-28 103.17 UACC-287 120.57 UACC-287 120.37 OVCAR-3 91.33 OVCAR-4 90.341 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-6 83.66 A498 62.37 A498<					
SW-20 105.24 SF-28 97.54 SF-285 106.81 SF-295 106.81 SNB-19 90.38 SNB-75 80.26 U251 107.86 Welanoma 97.85 MALME-3M 106.36 MDA-MB-435 117.34 SK-MEL-2 130.87 SK-MEL-28 103.11 SK-MEL-28 107.11 OVCAR-3 91.83 OVCAR-4 90.34 OVCAR-3 93.83 OVCAR-4 90.34 OVCAR-5 98.78 Renal Cancer 88.56 A498 62.35 ACHN 102.277 CAK1 99.23 UO-31 96.37 PC-3 88.36 DU-145 84.35 Stradt Cincer 96.19 PC-3 88.36 DU-145 84.35 Stradt Cincer 96.19 PC-3 88	KM12			-	
SF-286 97.54 SF-295 106.81 SF-399 101.41 SNB-19 90.38 SNB-75 80.26 U251 107.86 Melanona 97.55 MC MP-435 117.24 SK-MEL-28 100.311 SK-MEL-28 100.311 SK-MEL-2	SW-620				
SF-295 10681 SF-39 10141 SNB-19 9038 SNB-75 8026 U21 107.86 Welanoma LOX MVI 97.85 MALME-3M 106.86 M14 91.59 MDA.ME-435 117.94 SK-MEL-2 100.87 SK-MEL-2 100.87 SK-MEL-2 100.87 SK-MEL-2 100.77 UACC-257 100.77 UACC-257 100.77 UACC-252 102.75 Dualan Cancer 91.83 OVCAR-3 91.83 OVCAR-4 90.34 OVCAR-4 90.34 OVCAR-8 10771 NCIADR-RES 90.61 SK-CV-3 98.78 Renal Cancer 786-0 ACH 1 9922 RAP8 62.35 ACH 1 10922 TK-10 122.77 CAK+1 9922 RXF 393 126.94 SN12C 99.55 BT-549 510 MDA.MB-231/ATCC 106.78 HS /781 95.95 BT-549 100.92 Range 69.97					
SF-539 10141 SNB-19 9038 SNB-75 8026 U251 107.86 Melanoma 79.59 MDAMB-435 117.34 SK-MEL-2 130.87 SK-MEL-2 130.87 SK-MEL-2 130.87 SK-MEL-2 130.87 SK-MEL-2 130.87 SK-MEL-2 130.87 SK-MEL-2 130.87 SK-MEL-2 120.57 UACC-267 120.57 UACC-267 120.57 UACC-262 112.75 OvCAR-3 91.83 OVCAR-4 90.34 OVCAR-4 90.54 OVCAR-8 100.11 NCLAR-RES 90.61 SK-0.3 90.78 Renal Cancer 88.56 A488 62.35 A488 62.35 A488 66 A488 66 SN12C 995.3 TK-10 121.23 UC-31 99.53 TK-10 121.24 UC-31 99.53 TK-10 121.24 TK-10					
SNB-19 9038 SNB-75 8026 U251 10736 Helanoma 9735 MALME-3M 10636 M14 9139 MDA-MB-435 11734 SK-MEL-2 13037 SK-MEL-28 10311 SK-MEL-28 9034 OVCAR-3 9133 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9353 SK-0/3 9876 Renal Cancer 786-0 786-0 8856 Ad98 6235 ACHN 10227 CAKH1 9922 RXF13 9637 Prostate Cancer 9637 Prostate Cancer 9535 BT-549 110322 T-470 8730 MDA-MB-231/ATCC 10678 <	SF-295				
SNB-75 80.26 U251 10736 Welanoma 10736 LOX IMVI 97.95 MALME-3M 106.06 M14 91.99 MDA-MB-435 117.14 SK-MEL-2 130.87 SK-MEL-28 103.11 SK-MEL-26 99.75 UACC-267 120.57 UACC-267 120.57 UACC-267 104.07 OVCAR-3 91.83 OVCAR-4 90.34 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-6 93.41 OVCAR-7 96.76 Renal Cancer 88.56 Advis 99.22 RXF 10 121.23 UO-31 96.37 Prostate Cancer 96.37 Pota 87.80 MDA-MB-231/ATCC 106.73 Pata 38.29 Range 69.419 MDA-MB-468 94.422 Mean 100.54 <td></td> <td></td> <td></td> <td></td> <td></td>					
U251 10736 LOX IMVI 9735 MALME-3M 10636 M14 9159 MDA-MB-435 11734 SK-MEL-2 13037 SK-MEL-2 13037 SK-MEL-28 10311 SK-MEL-28 10311 SK-MEL-28 10311 SK-MEL-28 10311 SK-MEL-28 10311 OVCAR-3 9975 UACC-62 11275 OVCAR-3 9133 OVCAR-4 9034 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9353 TK-10 10227 CAKI-1 9922 RXF 933 12634 SN12C 9953 TK-10 12123 UO-31 9637 Prostate Cancer PC-3 8836 DU-145 Streast Cancer PC-3 88356 DU-145 Streast Cancer MCF ⁷ 9619 MDA-MB-231/ATCC 10678 HS 678T 9535 BT-549 11092 T-470 8730 MDA-MB-468 9432					
LOX IMVI 9735 MALURE-3M 10636 M14 9139 MDAMB-435 11734 SK-MEL-2 130.87 SK-MEL-2 130.87 SK-MEL-2 130.87 UACC-62 11275 UACC-62 11275 UACC-62 11275 UACC-62 11275 UACC-62 11275 UACC-62 11275 OVCAR-3 9133 OVCAR-4 9344 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9341 OVCAR-5 9061 SK-OV-3 9878 Renal Cancer 786-0 8836 A498 6235 ACHN 10227 CAK1 99533 TK-10 12123 UO-31 99537 PC-3 8836 DU-145 88435 Breast Cancer PC-3 8836 DU-145 88435 DU-145					
MALME-3M 106.36 M14 9159 MDAMB-435 117.04 SK-MEL-2 130.37 SK-MEL-28 103.11 SK-MEL-28 104.07 UACC-622 112.75 Dvarian Cancer 104.07 OVCAR-3 90.34 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-8 10771 NCIADR-RES 90.61 SK-OV.3 98.78 Renal Cancer 786.4 786.9 62.35 ACHN 102.27 CAK11 92.22 RAF 303 126.34 DV-31 96.37 Prostate Cancer PC-3 MDA-MD-231/ATCC 106.78 MDA-MB-231/ATCC					
M14 91:9 MDAMB-435 117.04 SK-MEL-2 130.87 SK-MEL-28 103.11 SK-MEL-26 99.75 UACC-52 120.57 UACC-52 112.75 OvCAR-3 91.83 OVCAR-4 90.341 OVCAR-5 9341 OVCAR-5 9341 OVCAR-8 91071 NCI/ADR-RES 9061 SK-0V-3 98.76 Renal Cancer 786-0 Renal Cancer 83.56 A498 62.35 ACHN 102.27 CAK1 99.22 CAK1 95.37 PC-3 86.36 DU-145 84.35 Breast Cancer 96.37 PC-3 86.36 DU-145 84.35 Breast Cancer 95.95 BT-549 110.92 MDA-MB-231/ATCC 106.78 MDA-MB-468 94.82 MEA 100.54 Delta 38.29					
MDA:MB-435 117.04 SK-MEL-2 130.87 SK-MEL-28 103.11 SK-MEL-5 9975 UACC-257 120.57 UACC-252 112.75 Ovarian Cancer 104.07 IGROV1 104.07 OVCAR-3 91.83 OVCAR-4 90.34 OVCAR-5 93341 OVCAR-8 10771 NCIMDR-RES 9061 SK-V0-3 9878 Renal Cancer 786-0 786-0 88.56 SN12C 9953 TK-10 121.23 UO-31 96.37 Prostate Cancer 95.95 Breast Cancer 95.95 MCF7 96.19 MDA-MB-231/ATCC 106.78 MDA-MB-468 94.82 MDA-MB-468 94.82 MDA-MB-468 94.82 MDA-MB-468 94.82					
SK-WEL-2 13087 SK-WEL-28 10311 SK-WEL-5 9975 UACC-287 12057 UACC-282 11275 OvcAR-3 9133 OVCAR-3 9034 OVCAR-4 9034 OVCAR-5 9341 OVCAR-8 10771 NCIADR-RES 9061 SK-0V-3 9876 Renal Cancer 786-0 786-0 8856 A438 62357 ACHN 10227 CAKI-1 9922 RXF 333 12634 SN12C 9953 TK-10 12123 UO-31 96637 Prostate Cancer 9 PC-3 8856 DU-145 8435 Streast Cancer 9 MCF7 96.19 MDA-MB-231/ATCC 10678 HS 678T 9535 BT-549 11032 T-470 8730 MDA-MB-468 9432 Mean 10024 Pange					
SK-WEL-28 10311 SK-WEL-5 9975 UACC-257 12057 UACC-62 1275 Ovarian Cancer 104.07 IGROV1 104.07 OVCAR-3 91.83 OVCAR-4 90.34 OVCAR-5 9341 OVCAR-8 10771 NCI/ADR-RES 9061 SK-OV-3 98.76 Renal Cancer 786-0 786-0 88.56 A438 62.35 ACHN 102.27 CAKI-1 99.22 RKF 393 126.34 SN12C 9953 TK-10 121.23 UO-31 96.37 Prostate Cancer 9 PC-3 88.56 DU-145 84.35 Breast Cancer 9 PC-3 88.56 DU-145 84.35 Breast Cancer 9 MCF7 96.19 MDA-MB-231/ATCC 106.78 Bata 38.29 Range 94.82 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
UACC-257 120.57 UACC-62 112.75 Ovarian Cancer IGROV1 104.07 OVCAR-3 91.83 OVCAR-4 90.34 OVCAR-5 9341 OVCAR-5 9341 OVCAR-8 10771 NCIADR-RES 9061 SK-OV-3 98.78 Renal Cancer 786-0 88.56 A498 62.35 ACHN 102.27 CAKI-1 99.22 TK-10 121.23 UO-31 96.37 PC-3 88.56 DU-145 84.35 Breast Cancer PC-3 88.56 DU-145 84.35 Breast Cancer MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 678T 95.35 BT-549 110.92 T-470 87.30 MDA-MB-231/ATCC 95.55 BT-549 110.92 T-470 87.30 MDA-MB-268 94.52 MCAT 96.47	SK-MEL-28			• •	
UACC-62 112.75 Divarian Cancer IGROV1 104.07 OVCAR-3 91.83 OVCAR-4 90.34 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-8 107.71 NCI/ADR-RES 9061 SK-OV-3 98.78 Renal Cancer 786-0 88.56 A498 62.35 ACHN 102.27 CAKI-1 99.22 RXF 393 126.94 SN12C 99.53 TK-10 121.23 UO-31 96.37 Prostate Cancer Prostate Cancer MCF7 96.19 MD2AMB-231/ATCC 106.78 H5 578T 95.95 BT-54.9 110.92 T-47D 87.80 MDA-MB-2468 94.82 Mean 100.54 Delta 382.99 Range 69.47					
Dvarian Cancer IGROV1 104.D7 OVCAR-3 91.83 OVCAR-4 90.34 OVCAR-5 93.41 OVCAR-5 93.41 OVCAR-8 107.71 NCI/ADR-RES 90.61 SK-OV-3 98.78 Renal Cancer 786-0 88.56 A498 62.35 ACHN 102.27 CAKI-1 99.22 RXF 393 126.54 SN12C 99.53 TK-10 121.23 UO-31 96.37 Prostate Cancer PC-3 88.56 DU-145 84.35 Breast Cancer MDA-MB-231/ATCC 106.78 HS 678T 95.95 BT-549 110.92 T-470 87.50 MDA-MB-468 94.82 Mean 100.54 Delta 382.9 Range 69.47					
IGROV1 104.07 OVCAR-3 9133 OVCAR-4 90.34 OVCAR-5 93.41 OVCAR-8 107.71 NCIADR-RES 90.61 SK-0V-3 98.76 Renal Cancer 786-0 786-0 88.56 A498 62.35 ACHN 102.27 CAKI-1 99.22 RX-7933 126.34 SN12C 99.53 TK-10 121.23 UO-31 96.37 Postate Cancer 9 PC-3 88.56 DU-145 84.35 Breast Cancer 9 MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.35 BT-549 110.32 T-470 87.80 MDA-MB-468 94.82 MDA-MB-468 94.82 Mean 100.54 Delta 382.29 Range 69.47		112./5			
OVCAR-3 9183 OVCAR-4 9034 OVCAR-5 9341 OVCAR-8 10771 NCI/ADR-RES 9061 SK-OV-3 98.76 Renal Cencer 786-0 786-0 88.56 A498 62.35 ACHN 102.27 CAKI-1 99.22 RXF 393 126.34 SN12C 99.53 TK-10 121.23 UO-31 96.37 Prostate Cancer 96.37 Prostate Cancer 96.37 PC-3 88.56 DU-145 84.35 Breast Cancer 95.35 MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.35 BT-549 110.32 T-470 87.30 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47	IGROV1	104.07			
OVCAR-5 9341 OVCAR-8 10771 NCI/ADR-RES 9061 SK-CV-3 98.78 Renal Cancer 786-0 786-0 88.56 A498 62.35 ACHN 102.27 CAKH-1 99.22 RXF.393 126.94 SN12C 99.53 TK-10 121.23 UO-31 96.37 Prostate Cancer 96.19 MCF7 96.19 MCF7 96.19 MDA-MB-231/ATCC 106.78 BT-549 110.32 T-470 87.90 MDA-MB-468 94.82 Mean 100.54 Detta 38.29 Range 69.47	OVCAR-3	91.83			
OVCAR-8 10771 NCI/ADR-RES 9061 SK-CV-3 9878 Renal Cancer 786-0 786-0 88.56 A498 62.35 ACHN 102.27 CAKI-1 99.22 RXF 393 126.94 SN12C 99.53 TK-10 121.23 UO-31 96.37 Prostate Cancer 96.37 PC-3 88.56 DU-145 84.35 Breast Cancer 96.59 MCF7 96.19 MDA-MB-231/ATCC 106.78 MDA-MB-231/ATCC 106.78 MDA-MB-468 94.82 MEan 100.54 Delta 38.29 Range 69.47					
NCI/ADR-RES 9061 SK-CV-3 9878 Renal Cancer 786-0 88.56 A498 62.35 ACHN 102.27 CAKH 1 99.22 RXF 393 126.34 SN12C 995.33 TK-10 121.23 UO-31 96.37 Prostate Cancer PC-3 88.56 DU-145 84.35 Breast Cancer PC-3 96.19 MDA-MB-231/ATCC 106.78 HS 678T 95.35 BT-549 110.32 T-470 87.30 MDA-MB-468 94.32 Mean 100.54 Delta 38.29 Range 69.47					
SK-CV-3 98.78 Renal Cancer 786-0 786-0 88.56 A498 62.35 ACHN 102.27 CAK:1 99.22 RXF 333 126.34 SN12C 99.53 TK-10 121.23 UO-31 96.37 Prostate Cancer 96.37 Prostate Cancer 96.19 MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.35 BT-549 110.32 T-47D 87.80 MDA-MB-468 94.82 Mean 100.54 Deita 38.29 Range 69.47					
Renal Cancer 786-0 88.36 A498 62.35 ACHN 102.27 CAKH 99.22 RXF.393 126.94 SN12C 99.53 TK-10 121.23 UO-31 96.37 Prostate Cancer 9 PC-3 88.36 DU-145 84.35 Breast Cancer 9 MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-47D 87.50 MDA-MB-468 94.52 Mean 100.54 Delta 38.29 Range 69.47					
A498 6235 ACHN 10227 CAKI-1 9922 RXF 393 12694 SN12C 9953 TK-10 12123 UO-31 96.37 Prostate Cancer PC-3 88.56 DU-145 84.35 Breast Cancer MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-47D 87.30 MDA-MB-468 94.32 Mean 100.54 Delta 38.29 Range 69.47	Renal Cancer	00.10			
ACHN 10227 CAKI-1 9922 RXF 393 12634 SN12C 9953 TK-10 12123 UO-31 9637 Prostate Cancer PC-3 88.56 DU-145 84.35 Breast Cancer MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-470 87.30 MDA-MB-468 94.82 MEAN 100.54 Delta 38.29 Range 69.47	786-0	88.56			
CAKI-1 9922 RXF 393 12694 SN12C 9953 TK-10 12123 UO-31 96.37 Prostate Cancer PC-3 88.56 DU-145 84.35 Breast Cancer MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-470 87.30 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47					
RXF 393 126.94 SN12C 99.53 TK-10 121.23 UO-31 96.37 Prostate Cancer 96.37 PC-3 88.56 DU-145 84.35 Breast Cancer 96.99 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-47D 87.80 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47					
SN12C 9953 TK-10 12123 UO-31 9637 Prostate Cancer 9637 PC-3 88.56 DU-145 84.35 Breast Cancer 96.19 MDF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-470 87.80 MDA-MB-468 94.82	RXF 393				
TK-10 12123 UO-31 96.37 Prostate Cancer 96.37 PC-3 88.56 DU-145 84.35 Breast Cancer 96.19 MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-47D 87.30 MDA-MB-468 94.82		99.53			
Prostate Cancer PC-3 88.56 DU-145 84.35 Breast Cancer MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-470 87.80 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47	TK-10	121.23			
PC-3 88.56 DU-145 84.35 Breast Cancer MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-47D 87.80 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47		96.37		•	
DU-145 84.35 Breast Cancer MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-470 87.30 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47		0000			
Breast Cancer 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-470 87.80 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47					
MCF7 96.19 MDA-MB-231/ATCC 106.78 HS 578T 95.95 BT-549 110.92 T-470 87.80 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47		04.00			
HS 578T 95.95 BT-549 110.92 T-470 87.80 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47	MCF7			–	
BT-549 110.92 T-470 87.50 MDA-MB-468 94.52 Mean 100.54 Delta 38.29 Range 69.47					
T-470 87.80 MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47					
MDA-MB-468 94.82 Mean 100.54 Delta 38.29 Range 69.47					
Mean 100.54 Delta 38.29 Range 69.47					
Delta 38.29 Range 69.47					
Range 69.47					
		69.47			
150 100 50 0 -50 -100 -150		issues of a			
		150	100 50	0 -50	-100 -150
		150	100 30	-50	-100 -100

One dose experimental data of compound 2.43 (NSC 750712)

One dose experimental data of compound 2.47 (NSC 764209)

One Dose Mea	Growth Percent	Experiment ID: 1203 Mean Growth		Report Date: N	/lay 05, 201
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4	106.00	Mean Growth	Boroont Crowth D		
CCRF-CEM HL-60(TB) K-562 MOLT-4			Fercent - Growth Perc	cent	
HL-60(TB) K-562 MOLT-4					
K-562 MOLT-4					
MOLT-4	110.57 112.58				
	111.56				
	102.16		_		
SR	97.89		—		
Non-Small Cell Lung Cancer	0.00				
Non-Small Cell Lung Cancer A549/ATCC	101.B4		•		
HOP-62	123.16				
HOP-92	93.92				
NCI-H226	112.09				
NCI-H23	102.04				
NCI-H322M	112.89				
NCI-H460 NCI-H522	115.33 94.09				
Colon Cancer	54.05				
COLO 205	113.55				
HCC-2998	106.88				
HCT-116	99.59				
HCT-15	108.35				
HT29	96.70				
KM12	112.01				
SW-620	107.91		1		
SF-268	110.57				
SF-295	92.21				
SF-539	117.22				
SNB-19	102.82		• I		
SNB-75	87.42				
U251	96.15				
lelanoma	100.07				1
MALME-3M	100.87				
M14 MDA-MB-435	99.57 108.31		. .		
SK-MEL-2	114.07				
SK-MEL-28	94.36				
SK-MEL-5	102.10		• • I		
UACC-257	103.B7		•		
UACC-62	105.55				
Ovarian Cancer					
IGROV1	95.94				
OVCAR-3 OVCAR-4	114.54				
OVCAR-4 OVCAR-5	99.19 109.17		• • • • • • •		
OVCAR-8	101.52				
NCI/ADR-RES	99.59				
SK-OV-3	109.14				
Renal Cancer					
786-0	99.13				
A498	109.47				
ACHN CAKI-1	111.58 91.54				
RXF 393	117.78		_		
SN12C	111.54		-		
TK-10	109.70		-		
UO-31	93.85		_		
Prostate Cancer	100.00				
PC-3 DU-145	102.58 116.59		_		
Breast Cancer	110.39				
MCF7	92.73				
MDA-MB-231/ATCC	126.22				
HS 578T	98.35				
BT-549	106.75				
T-47D MDA-MB-468	10221				
	11.35				
Mean	105.30				
Delta	17.88				
Range	38.80		200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
	150	100 50	0 -50	-100	-150
	150	100 50	-50	-100	-150

One dose experimental data of compound 2.53 (NSC 749204)

5.04	apeutics Program	NSC: 749204 / 1	Conc: 1.00E-5 Molar	Test Date: Dec 08, 2008
One Dose Me	an Graph	Experiment ID: 0812	20507	Report Date: Feb 12, 201
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Percent	cent
	50.04			
CCRF-CEM	56.54			
HL-60(TB) MOLT-4	31.29 58.22			
SR	26.73			
Non-Small Cell Lung Cancer	20.70			
A549/ATCC	53.96		• •	
EKVX	74.50			
HOP-62	79.02			
HOP-92	47.80			
NCI-H226 NCI-H23	70.09 66.78			
NCI-H322M	79.04			
NCI-H460	62.34		-	
NCI-H522	56.14			
Colon Cancer				
COL0 205	-43.19			
HCC-2998	-65.26			
HCT-116 HCT-15	43.37 27.86			
HT29	19.49			
KM12	51.02			
SW-620	73.90			
CNS Cancer				
SF-268	84.38			
SF-295 SF-539	81.14 73.55			
SNB-19	67.57		_	
SNB-75	65.45			
U251	52.28			
lelanoma				
	48.20 43.83			
MALME-3M M14	58.50			
MDA-MB-435	76.81			
SK-MEL-2	81.71			
SK-MEL-28	82.87			
SK-MEL-5	29.94			
UACC-62	69.15			
Ovarian Cancer IGROV1	54.72			
OVCAR-3	56.73			
OVCAR-4	73.41			
OVCAR-5	76.08			
OVCAR-8	67.33			
NCI/ADR-RES SK-OV-3	50.97 76.24			
Renal Cancer	70.24			
786-0	59.73			
A498	65.97		_	
ACHN	86.39			
SN12C	36.84			
TK-10 UO-31	88.98 43.98			
Prostate Cancer	10.000			
PC-3	45.36			
DU-145	92.88			
Breast Cancer MCF7	48.59			
MDA-MB-231/ATCC	70.95			
HS 578T	90.74			
BT-549	89.53			
T-47D	31.11			
MDA-MB-468	23.52			
Mean	56.65			
Delta	121.91			
Range	158.14			
	150	100 50	0 -50	-100 -150

Developmental Ther	apenneerregian	NSC: 749203 / 1	Conc: 1.00E-5 Molar		08, 2008
One Dose Me	an Graph	Experiment ID: 0812	20507	Report Date: F	eb 12, 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent	
Leukemia CCRF-CEM	94.42		_		
HL-60(TB)	107.05		_		
MOLT-4	41.46			•	
SR	116.72				
Non-Small Cell Lung Cancer	100.00				
A549/ATCC EKVX	126.10 97.78				
HOP-62	94.41				
NCI-H226	103.83				
NCI-H23	100.15				
NCI-H322M	83.44				
NCI-H460 NCI-H522	101.43 88.96		I		
Colon Cancer	88.56				
COL0 205	121.13				
HCT-116	94.25				
HCT-15	100.82				
HT29 KM12	107.90 102.16				1
SW-620	104.55		•		
CNS Cancer					
SF-268	101.17		1		
SF-295 SF-539	94.17 97.02		F		1
SNB-19	91.13				
SNB-75	96.56		• •		
U251	99.11		1 1		
LOX IMVI	99.02				
MALME-3M	87.05				
M14	96.15				1
MDA-MB-435	97.02				
SK-MEL-2 SK-MEL-28	102.03 114.50				
SK-MEL-5	98.14				
UACC-62	100.97		•		
Ovarian Cancer	95 55				
IGROV1 OVCAR-3	95.55 96.97		F I		
OVCAR-4	100.47				
OVCAR-5	93.35		-		
OVCAR-8	105.73				
NCI/ADR-RES SK-OV-3	97.42 94.99				
Renal Cancer	and a state of the				
786-0	87.09				
A498 ACHN	102.54 106.50				
SN12C	102.22				
TK-10	85.52				
UO-31	88.01		-		
Prostate Cancer PC-3	92.46				
DU-145	114.28				
Breast Cancer					
MCF7	91.11				
MDA-MB-231/ATCC HS 578T	98.39 109.47				
BT-549	104.94				
T-47D	85.93				
MDA-MB-468	85.81				
Mean	98.11				
Delta	56.55				
Range	84.54				
	450	100 50		400	454
	150	100 50	0 -50	-100	-150

One dose experimental data of compound 2.56 (NSC 749203)

Developmental Ther	apeatest rogram	NSC: 749202 / 1	Conc: 1.00E-5 Molar	Test Date: Dec 08, 2008
One Dose Me	an Graph	Experiment ID: 081	20507	Report Date: Feb 12, 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent
Leukemia CCRF-CEM	102.22			
HL-60(TB)	95.13		1	
MOLT-4	86.07		<u> </u>	
SR	127.35			
Non-Small Cell Lung Cancer	0.00		L I	
EKVX HOP-62	94.01 92.10			
HOP-92	90.74			
NCI-H226	102.71			
NCI-H23	97.07		<u> </u>	
NCI-H322M	83.92			
NCI-H460 NCI-H522	96.71 85.95		I	
Colon Cancer	85.55			
COL0 205	122.16			
HCC-2998	103.78		-	
HCT-116	85.29			
HCT-15 HT29	103.58 105.97			
KM12	105.73			
SW-620	104.92		•	
CNS Cancer				
SF-268 SF-295	104.59 103.46			
SF-539	95.52		I	
SNB-19	93.96		- I	
SNB-75	98.87			
U251	96.94		-	
Melanoma LOX IMVI	93.31			
MALME-3M	100.38			
M14	100.92		•	
MDA-MB-435	99.23			
SK-MEL-2 SK-MEL-28	109.46 116.99			
SK-MEL-5	97.74		-	
UACC-62	102.16		•	
Ovarian Cancer				
IGROV1	99.33			
OVCAR-3 OVCAR-4	107.84 100.24			
OVCAR-5	97.17		•	
NCI/ADR-RES	96.56			
SK-OV-3	97.05			
Renal Cancer 786-0	90.40			
A498	109.65			
ACHN	109.43		-	
SN12C	106.86			
TK-10 UO-31	91.34 94.94			
Prostate Cancer	54.54			
PC-3	98.06			
DU-145	108.98			
Breast Cancer MCF7	92.88		_	
MDA-MB-231/ATCC	105.22			
HS 578T	86.45			
BT-549	104.55			
T-47D MDA-MB-468	90.54 87.97			
Mean	99.52			
Delta	15.50		-	
Range	43.43			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 2.57 (NSC 749202)

Five dose experimental data of compound 2.53 (NSC 749204)

		Natio	onal	Cano	er Ir			evelop Testir				peuti	cs Prograr	n	
NSC : 749204	/1				Exp	erimer	nt ID : 0	902NS55				Test	Type : 08	Units : M	olar
Report Date : I	Februar	ry 12,20	12		Tes	t Date	: Febru	iary 17, 2	009			QNS	:	MC :	
COMI : LSC-JI	HJ-I-15	0-1 (815	38)		Stai	n Rea	gent : S	RB Dual-	Pass I	Related	i –	SSP	_: 0X2L		
						L	og10 Cor	ncentration							
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mean -7.0	Cptical	Densiti -5.0	-4.0	-8.0	P -7.0	ercent G -6.0	rowth -5.0	-4.0	GI50	TGI	LC50
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.568 0.660 0.229 0.524 0.559 0.208	1.796 1.253 1.171 1.392 1.672 0.513	1.699 1.323 1.239 1.440 1.712 0.526	1.753 1.276 1.284 1.526 1.761 0.581	1727 1218 1232 1673 1714 0598	1.354 0.829 0.433 1.026 1.033 0.199	0.185 0.129 0.037 0.135 0.214 0.125	92 112 107 105 104 102	96 104 112 115 108 120	94 94 107 132 104 126	64 28 22 58 43 -5	-68 -81 -84 -74 -62 -40	1.28E-5 4.69E-6 4.63E-6 1.15E-5 7.57E-6 3.81E-6	307E-5 182E-5 160E-5 274E-5 256E-5 922E-6	7.36E-5 5.25E-5 4.78E-5 6.54E-5 7.72E-5 > 1.00E-4
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H227 NCI-H322M NCI-H460 NCI-H522	Cancer 0.242 0.628 0.512 0.836 0.727 0.532 0.646 0.206 0.310	1.163 1.445 1.153 1.267 1.463 1.764 1.480 2.115 1.859	1.207 1.421 1.138 1.229 1.449 1.753 1.559 2.211 1.908	1.228 1.342 1.178 1.236 1.373 1.714 1.519 2.143 1.804	1 178 1282 1132 1167 1377 1678 1493 2112 1739	0.895 1.133 1.027 1.015 1.218 1.307 1.246 0.997 1.424	0.065 0.176 0.034 0.033 0.201 0.058 0.118 0.044 0.141	105 97 98 91 98 99 110 105 103	107 87 104 93 88 96 105 101 96	102 80 97 77 88 93 102 100 92	71 62 80 42 67 63 72 41 72	-73 -72 -93 -96 -72 -89 -82 -79 -55	1.40E-5 1.22E-5 1.50E-5 5.76E-6 1.32E-5 1.32E-5 1.39E-5 7.13E-6 1.49E-5	310E-5 289E-5 290E-5 200E-5 302E-5 259E-5 294E-5 221E-5 370E-5	6.91E-5 6.84E-5 5.62E-5 6.91E-5 5.53E-5 6.21E-5 5.77E-5 9.18E-5
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.275 0.744 0.199 0.448 0.137 0.205 0.223	0.897 2.842 1.484 2.365 0.967 1.064 1.279	0.959 2.828 1.399 2.325 0.976 1.094 1.205	0.943 2.755 1.452 2.304 0.980 1.053 1.191	0890 2624 1416 2.181 0918 1037 1.168	0.057 0.889 0.525 0.981 0.285 0.456 0.820	0.015 0.039 0.016 0.079 0.014 0.023 0.031	110 99 93 98 101 103 93	107 96 98 97 102 99 92	99 90 95 90 94 97 89	-79 7 25 28 18 29 57	-95 -95 -92 -82 -89 -89 -89	1.88E-6 3.01E-6 4.41E-6 4.42E-6 3.78E-6 4.92E-6 1.11E-5	359E-6 117E-5 164E-5 179E-5 146E-5 176E-5 249E-5	6.85E-6 3.62E-5 4.37E-5 5.08E-5 4.25E-5 4.68E-5 5.58E-5
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.406 0.773 0.529 0.666 0.612 0.177	1.430 1.903 1.740 1.646 1.170 1.047	1.389 1.768 1.703 1.607 1.073 1.061	1.394 1.735 1.679 1.623 1.064 1.022	1325 1679 1636 1548 1025 0980	1.004 1.370 1.375 1.345 0.857 0.620	0.079 0.133 0.023 0.009 0.012 0.065	96 88 97 96 83 102	96 85 95 98 81 97	90 80 91 90 74 92	58 53 70 69 44 51	-81 -83 -96 -99 -98 -63	1.15E-5 1.05E-5 1.32E-5 1.30E-5 6.24E-6 1.02E-5	263E-5 245E-5 264E-5 258E-5 204E-5 279E-5	6.02E-5 5.72E-5 5.29E-5 5.13E-5 4.58E-5 7.65E-5
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-62	0.231 0.783 0.315 0.429 0.369 0.504 0.358 0.837 0.522	1.611 1.449 1.245 1.744 0.827 1.412 1.647 1.584 2.012	1.593 1.451 1.188 1.593 0.888 1.401 1.511 1.648 1.848	1.594 1.448 1.206 1.542 0.896 1.421 1.547 1.650 1.816	1.531 1415 1167 1547 0917 1380 1550 1596 1777	0.860 1.058 0.494 1.098 0.854 1.182 0.462 1.501 1.353	0.072 0.179 0.031 0.093 0.122 0.035 0.014 0.060 0.069	99 100 94 89 113 99 89 109 89	99 100 96 85 115 101 92 109 87	94 95 92 85 119 96 92 102 84	46 41 19 51 106 75 8 89 56	-69 -77 -90 -78 -67 -93 -96 -93 -87	8.10E-6 6.89E-6 3.75E-6 1.02E-5 2.10E-5 1.40E-5 3.19E-6 1.64E-5 1.10E-5	250E-5 223E-5 150E-5 248E-5 410E-5 278E-5 120E-5 308E-5 246E-5	6.84E-5 5.90E-5 4.28E-5 6.04E-5 7.98E-5 5.53E-5 3.61E-5 5.81E-5 5.51E-5
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.198 0.405 0.459 0.383 0.228 0.344 0.450	1.371 1.242 1.435 0.945 0.929 1.259 1.125	1.640 1.243 1.442 0.914 0.937 1.255 1.182	1.682 1.209 1.392 0.910 0.968 1.263 1.144	1549 1187 1435 0909 0954 1203 1133	1.208 0.843 1.067 0.870 0.738 0.843 1.025	0.107 0.032 0.017 0.014 0.078 0.023 0.006	123 100 101 94 101 100 108	126 96 95 94 106 100 103	115 93 100 93 104 94 101	86 52 62 86 73 55 85	-46 -92 -96 -66 -93 -99	1.88E-5 1.04E-5 1.19E-5 1.58E-5 1.46E-5 1.07E-5 1.55E-5	449E-5 230E-5 247E-5 297E-5 334E-5 234E-5 290E-5	1.00E-4 5.11E-5 5.10E-5 5.58E-5 7.67E-5 5.09E-5 5.43E-5
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.947 0.846 0.340 0.722 0.685 0.335 0.877 0.259	2.397 1.509 1.337 1.845 1.284 1.231 1.376 1.269	1.475 1.342 1.712 1.346 1.228 1.388	2.354 1.422 1.320 1.621 1.358 1.168 1.414 1.292	2344 1380 1304 1580 1318 1158 1385 1203	1.784 1.294 1.058 1.235 1.006 0.600 1.337 0.866	0.055 0.051 0.073 0.104 0.075 0.063 0.114 0.040	101 95 101 88 110 100 102 98	97 87 98 80 112 93 108 102	96 80 97 76 106 92 102 93	58 68 72 46 54 30 92 60	-94 -94 -79 -86 -89 -81 -87 -85	1.12E-5 1.29E-5 1.40E-5 7.23E-6 1.06E-5 4.69E-6 1.72E-5 1.17E-5	240E-5 262E-5 300E-5 223E-5 237E-5 185E-5 327E-5 260E-5	5.11E-5 5.34E-5 5.36E-5 5.36E-5 5.32E-5 5.23E-5 6.21E-5 5.76E-5
Prostate Cancer PC-3 DU-145	0.349 0.337	1.125 1.401		1.090 1.346	1.061 1.323	0.694 1.086	0.017 0.032	102 98	95 95	92 93	44 70	-95 -91	7.61E-6 1.34E-5	208E-5 274E-5	4.75E-5 5.60E-5
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-463	0.295 0.326 0.630 0.995 0.740 0.456	1.592 0.927 1.152 1.485 1.533 1.207	0.930 1.110 1.518 1.458	1.487 0.918 1.120 1.533 1.436 1.097	1524 0913 1109 1487 1443 1067	0.833 0.711 0.927 1.220 1.026 0.608	0.058 0.087 0.161 0.186 0.102 0.046	99 100 92 106 90 92	92 98 94 109 87 85	95 98 92 100 88 81	41 64 57 46 36 20	-81 -73 -75 -81 -86 -90	6.91E-6 1.27E-5 1.13E-5 8.34E-6 5.34E-6 3.25E-6	219E-5 293E-5 271E-5 229E-5 196E-5 153E-5	5.62E-5 6.77E-5 6.51E-5 5.67E-5 5.04E-5 4.34E-5

National Cancer Institute Developmental Therapeutics Program	velopmental Therapeuti	ics Program	NSC :749204/1	Units :Molar	SSPL :0X2L	EXP. ID :0902NS55
	Mean Graphs		Report Date : February 12, 2012	, 2012	Test Date :February 17, 2009	, 2009
Panel/Cell Line	Log10GIED	GIEO	Log10TGI T	TGI	roat0rceo	1090J
Leukemia CCRF-CEM HL-60(TB) K-602 N-17-4 RPMI-326 RPMI-326 SR	နက်ကုန်ကိုက် စစ္စစ္စစ်သူ့ရောက် စစ္စစ္စစ်နာရောက်		44444ŵ 25888666	الجنب	v 444444 81144 81144 001	
NA 629 (2014) 6039(2014) 6039(2014) 6039(2014) 1004 100	4440444404 898989 80-898988 80-88988 80-88988 80-88988 80-88988 80-889 80-889 80-889 80-889 80-889 80-88 80-80 80-88 80-80 80 80-80 80 80-80 80 80-80 80 80-80 80 80 80	101 ⁸ 101 ⁰ 1	144444444 044699884		444444444 899888868688688	
00000000000000000000000000000000000000	ល់លំលំលំលំសំអំ4 ក្រលួមខ្លួងខ្លួងខ្លួងខ្លួង ខ្លួលខ្លួងខ្លួងខ្លួងខ្លួងខ្លាំង	1	84.0 84.0 80.7 80.7 80.7 80.0 80.0 80.0 80.0 80	1	6 16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 3 3 7 5 5 5 3 7 5 5 5 5 5 5 5 5 5 5 5 5	
CVS 528 287-286 SYF-286 SYF-539 SVB-75 SVB-75 SVB-75 SVAB-75 SVAB-75 SVAB-75	444464 8888000 8888000		444444 86888888888888888888888888888888		444444 232888244 2328844444	
MAX MIXI MAXAME 3M MAXAME 3M MAXAME 23 SKAME 28 SKAME 28	ἀἀἀᢤᢤᢤᢤᢤᢤ 85±480888888 85±80888888888	<u>-1-11-</u>	4444444 88868889999		280058498	
October Control and Control and Control and Control and Second and	44444444 8998 8998 8998 8998 8944 1897 1897 1897 1897 1897 1897 1897 1897	I-I	4414444 8900858889		v 44444444444 255 2727 2727	
Nema Cancer 288-0 A498 A498 A498 A484 A484 A484 A484 A184 A184 A184 A18	44404044 8885585868688	·····	4444444 888888666888		4 4 28 4 4 127 4 4 227 4 4 228 4 4 28 2 4 28	
PC-3 DU-145 Prost	-5.12 -4.87	-	88 868 868		-4.32 -4.25	
MCF79100 MCF79100 HIS 201 1 243 H17D MDA-MB-468	ດ.44. 916 200 200 200 200 200 200 200 200 200 20	I	4,55 167 167 17 17 17 17 17 17 17 17 17 17 17 17 17		25 417 817 80 80 80 80 80 80 80 80 80 80 80 80 80	
MID Detta Range	-5.05 0.68 1.05 *3 *2		-4.64 0.81 1.1 +.1	0 	-4.26 -4.26 -1.16 -3 -2 -1	

5.5. Appendix C

One and five dose experimental data from 60 cell line

-Cyclic sulfamide compounds-

Developmental Ther		NSC: D-764190/1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012
One Dose Me	an Graph	Experiment ID: 1203	OS38	Report Date: May 09, 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
_eukemia CCRF-CEM	48.50			
HL-60(TB)	35.73			
K-562	22.97			
MOLT-4	23.72			
RPM-8226	37.48			
SR	11.87			
Non-Small Cell Lung Cancer A549/ATCC				
A549/ATCC	50.80			
HOP-62	62.98		-	
HOP-92	86.58			
NCI-H226	76.36			
NCI-H23	37.91			
NCI-H322M	82.88			
NCI-H460 NCI-H522	20.82 47.49			
Colon Cancer	47.49			
COLO 205	80.98			
HCC-2998	75.36			
HCT-116	26.78			
HCT-15	25.36			
HT29	57.41		•	
KM12	49.96		– 1	
SW-620	70.58			
CNS Cancer				
SF-268	62.25			
SF-295	41.82			
SF-539	59.B7			
SNB-19	74.07			
U251	45.72			
Melanoma MALME-3M	87.71			
MALME-SM M14	39.38			
MDA-MB-435	73.86			
SK-MEL-2	81.79			
SK-MEL-28	60.47		-	
SK-MEL-5	27.89			
UACC-257	55.24			
UACC-62	51.05		– 1	
Ovarian Cancer				
IGR0V1	58.05			
OVCAR-3	53.26			
OVCAR-4	37.00			
OVCAR-5 OVCAR-8	86.88 55.54			
NCI/ADR-RES	52.89			
SK-OV-3	68.49			
Renal Cancer	00.10			
786-0	53.83		•	
A498	57.01		4	
ACHN	41.03		—	
CAKI-1	46.76		-	
RXF 393	78.05			
SN12C	61.78			
TK-10	68.15			
UO-31 Prostate Cancer	57.14		1	
PC-3	40.87			
DU-145	66.80			
reast Cancer	00.00			
MCF7	47.43		_	
MDA-MB-231/ATCC	87.54			
HS 578T	99.65			
BT-549	56.36			
T-47D	49.45			
MDA-MB-468	17.38			
Maan	55.00			
Mean Delta	43.13			
Range	87.78			
, ange				
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.21 (NSC 764190)

Developmental Ther	apeutics Program	NSC: 751486 / 1	Conc: 1.00E-5 Molar	Test Date: Nov 09, 2009
One Dose Me	an Graph	Experiment ID: 0911	IOS45	Report Date: Feb 15, 201
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
eukemia	7.70		_	
CCRF-CEM	7.73			
HL-60(TB) K-562	3.12			
MOLT-4	5.65		– 1	
RPMI-8226	-7.20			
SR	4.45			
Ion-Small Cell Lung Cancer	- 1000			
A549/ATCC	6.12		-	
EKVX	-1.30			
HOP-62	18.38			
HOP-92	4.20			
NCI-H23 NCI-H322M	1.32 12.53			
NCI-H460	-44.82			
NCI-H522	921			
olon Cancer	02.			
COLO 205	-0.27		1	
HCC-2998	-45.75			
HCT-116	-36.49			
HCT-15	3.16		_	
HT29	6.95			
KM12	-41.58			
SW-620 NS Cancer	9.22			
SF-268	25.28			
SF-295	-11.23			
SF-539	-5.16		=	
SNB-19	17.04			
SNB-75	13.31			
U251	4.33			
lelanoma				
LOX MVI	-11.35			
MALME-3M	-14.17			
M14 MDA-MB-435	-2.40 -4.20			
SK-MEL-2	-5.58			
SK-MEL-5	-1.02			
UACC-257	-22.12			
UACC-62	5.81		-	
Ovarian Cancer	8.577550			
IGROV1	10.35			
OVCAR-3	-22.03			
OVCAR-4	15.38			
OVCAR-5 OVCAR-8	41.06 7.06			
NCI/ADR-RES	-7.86			
SK-OV-3	6.58		-	
enal Cancer	0.00			
786-0	-1.43			
A498	18.54			
ACHN	-7.05			
CAKI-1	-19.13			
RXF 393 SN12C	-40.80 5.15		-	
TK-10	60.35			
UO-31	0.00			
rostate Cancer				
PC-3	4.89		-	
DU-145	-23.44			
reast Cancer	700			
MDA-MB-231/ATCC	-7.98			
HS 578T BT-549	19.57 15.57			
T-47D	7.87			
MDA-MB-468	-27.71			
	0.0			
Mean	-81			
Delta	44.94 106.10			
Range	100.10			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.22 (NSC 751486)

Developmental Ther	· · · · · · · · · · · · · · · · · · ·	NSC: 751478/1	Conc: 1.00E-5 Molar	Test Date: Nov 09, 2009
One Dose Me	an Graph	Experiment ID: 0911	OS45	Report Date: May 09, 201
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Percent	cent
eukemia	20.40			
CCRF-CEM	29.49 45.99			
HL-60(TB) K-562	23.35			
MOLT-4	35.44			
RPM-8226	27.88			
SR	29.56			
Non-Small Cell Lung Cancer	20.00			
Non-Small Cell Lung Cancer A549/ATCC	44.14		• •	
EKVX	24.02			
HOP-62	53.53		-	
HOP-92	114.43			
NCI-H23	37.58			
NCI-H322M	84.89			
NCI-H460 NCI-H522	9.31 49.28			
Colon Cancer	45.20		1 1	
COLO 205	61.75			
HCC-2998	61.42			
HCT-116	17.02			
HCT-15	26.08			
HT29	46.58			
KM12	40.22			
SW-620 CNS Cancer	50.61		7	
SF-268	57.80			
SF-295	38.01			
SF-539	38.52			
SNB-19	44.90		• •	
SNB-75	46.27			
U251	41.45			
Ielanoma LOX IMVI	19.61			
MALME-3M	67.81			
M14	72.50			
MDA-MB-435	60.07			
SK-MEL-2	84.06			
SK-MEL-5	28.27			
UACC-257	39.09		-	
UACC-62	40.76		-	
Ovarian Cancer IGROV1	60.50			
OVCAR-3	62.80			
OVCAR-4	6.50			
OVCAR-5	93.51			
OVCAR-8	52.43			
NCI/ADR-RES	40.01		-	
SK-OV-3	47.03			
Renal Cancer 786-0	40.61			
A498	65.42			
ACHN	41.23		-	
CAKI-1	33.75			
RXF 393	45.18		<u>•</u>	
SN12C	47.82			
TK-10	71.05			
UO-31 Prostate Cancer	68.14			
PC-3	42.04			
DU-145	34.26			
Breast Cancer	and the second			
MDA-MB-231/ATCC	2421			
HS 578T	98.95			
BT-549 T-47D	63.D7 32.49			
MDA-MB-468	6.52			
Mean	46.84			
Delta	40.32			
Range	107.91			
	150	100 50	0 50	-100 -150
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.23 (NSC 751478)

Developmental Ther	apeutics Frogram	NSC: 7514	00/1	Conc: 7.50E-6 N	Iolar	Test Date: Nor	/ 09, 2009
One Dose Mea	an Graph	Experimen	t ID: 09110	OS45		Report Date: F	eb 15, 20
Panel/Cell Line	Growth Percent	Mean	Growth I	Percent - Growt	h Perce	nt	
eukemia	77.42						
CCRF-CEM HL-60(TB)	89.96						
K-562	85.33						
MOLT-4	65.92						
RPM-8226	72.45						
SR	75.23			-			
Non-Small Cell Lung Cancer A549/ATCC							
A549/ATCC	89.05						
EKVX	140.80						
HOP-62 HOP-92	91.45 80.33						
NCI-H23	63.04						
NCI-H322M	129.84						
NCI-H460	78.74			-			
NCI-H522	55.30						
Colon Cancer							
COLO 205	91.53						
HCC-2998 HCT-116	93.58 55.58						
HCT-15	68.08						
HT29	44.03						1
KM12	88.44						
SW-620	85.83						1
NS Cancer							
SF-268	87.18						
SF-295 SF-539	93.07 111.06						
SNB-19	84.58						
SNB-75	75.34						
U251	72.36						
lelanoma							
LOX IMVI	71.50						
MALME-3M M14	120.76 94.37			_			
MDA-MB-435	108.39						
SK-MEL-2	82.54			-			
SK-MEL-5	75.07			_			
UACC-257	71.15						
UACC-62	77.83						
Ovarian Cancer IGROV1	82.56						
OVCAR-3	94.53			_			
OVCAR-4	63.95						
OVCAR-5	115.49						
OVCAR-8	94.16						
NCI/ADR-RES	93.82 82.03						
SK-OV-3 Renal Cancer	02.03						
786-0	85.08						
A498	112.48						1
ACHN	91.31			-			
CAKI-1	93.73						
RXF 393 SN12C	103.49 89.15						1
TK-10	96.46						
UO-31	99.55						
Prostate Cancer							
PC-3	56.40						
DU-145	105.13						
MDA-MB-231/ATCC	87.83						
HS 578T	102.28						
T-47D	66.39						
MDA-MB-468	39.55						
Mean	85.77						
Delta	46.12						
Range	101.15		-				
	150	100	50	0	-50	-100	-150
	150	100	50	U	-50	-100	-150

One dose experimental data of compound 4.27 (NSC 751468)

Developmental Therapeutics Program One Dose Mean Graph		NSC: 751469/1	Conc: 2.00E-6 Molar	Test Date: Nov 09, 2009
		Experiment ID: 0911OS45		Report Date: Feb 15, 2012
anel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
eukemia CCRF-CEM	88.10			
	83.96			
HL-60(TB) K-562	71.75		—	
MOLT-4	52.29			
RPM-8226	57.41			
SR	84.32			
Ion-Small Cell Lung Cancer				
A549/ATCC	61.57			
EKVX	77.56			
HOP-62	89.99			
HOP-92	97.09			
NCI-H23	74.35 80.91			
NCI-H322M				
NCI-H460 NCI-H522	68.D9 68.D9			
colon Cancer	00.03			
COLO 205	91.05			
HCC-2998	86.43		-	
HCT-116	46.61			
HCT-15	80.82			
HT29	62.18			
KM12	77.75			
SW-620	97.40			
SF-268	93.73			
SF-200 SF-295	59.81			
SF-539	101.19			
SNB-19	83.71			
SNB-75	70.29			
U251	82.39		()	
lelanoma				
LOX IMVI	79.07			
MALME-3M	101.49			
M14	92.44			
MDA-MB-435	94.86 107.32			
SK-MEL-2 SK-MEL-5	93.32			
UACC-257	78.11			
UACC-62	67.87			
Ovarian Cancer				
IGR0V1	81.11			
OVCAR-3	94.57			
OVCAR-4	80.57			
OVCAR-5	96.29			
OVCAR-8 NCI/ADR-RES	87.36 75.36			
SK-OV-3	85.58			
Renal Cancer				
786-0	70.75		-	
A498	79.91			
ACHN	94.28			
CAKI-1	66.15			
RXF 393	7661		I	
SN12C TK-10	84.36 113.74			
UO-31	63.81			
Prostate Cancer	0001			
PC-3	62.95			
DU-145	112.35			
reast Cancer	All the second sec			
MDA-MB-231/ATCC	80.04			
HS 578T	88.42			
BT-549 T-47D	100.27 70.27			
MDA-MB-468	59.03			
	00.00			
Mean	81.18			
Delta	34.57			
Range	67.13			
	150	100 50	0 -50	-100 -150
	150	100 50	J -50	-100 -100

One dose experimental data of compound 4.28 (NSC 751469)

Developmental Therapeutics Program One Dose Mean Graph		NSC: 751470/1	Conc: 5.00E-6 Molar	Test Date: Nov 09, 2009
		Experiment ID: 0911OS45		Report Date: Feb 15, 2012
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
eukemia	co. 40			
CCRF-CEM	62.40 78.96			
HL-60(TB) K-562	62.96			
MOLT-4	59.30			
RPM-8226	56.11			
SR	65.36			
Ion-Small Cell Lung Cancer				
A549/ATCC	85.88			
EKVX	67.50			
HOP-62	83.39			
HOP-92	105.35			
NCI-H23 NCI-H322M	53.89 91.87			
NCI-H460	84.96			
NCI-H522	58.16			
colon Cancer	00.10			
COLO 205	86.61			
HCC-2998	85.82			
HCT-116	48.53			
HCT-15	69.81			
HT29	51.42			
KM12	93.26			
SW-620 NS Cancer	98.10			
SF-268	94.73			
SF-295	75.22			
SF-539	98.77			
SNB-19	82.80			
SNB-75	75.11			
U251	59.20			
lelanoma	50.07			
	52.97			
MALME-3M M14	97.81 89.57			
MDA-MB-435	95.30			
SK-MEL-2	86.43		_	
SK-MEL-5	74.49		► I	
UACC-257	70.57		— 1	
UACC-62	75.47		P 1	
Ovarian Cancer				
IGROV1	82.47			
OVCAR-3 OVCAR-4	11321 64.94			
OVCAR-5	102.24			
OVCAR-8	96.58			
NCI/ADR-RES	70.87		-	
SK-OV-3	70.40		-	
Renal Cancer				
786-0	72.50			
A498 ACHN	91.97 90.47			
CAKI-1	87.88			
RXF 393	102.74			
SN12C	90.06			
TK-10	89.71			
UO-31	75.97		P	
Prostate Cancer PC-3	53.06			
DU-145	123.55			
MDA-MB-231/ATCC	79.58			
HS 578T	104.57			
BT-549	94.39			
T-47D	57.30			
MDA-MB-468	35.50			
Mean	79.44			
Delta	43.94			
Range	88.05	•		
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.29 (NSC 751470)

Developmental Therapeutics Program One Dose Mean Graph		NSC: D-764189/1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012
		Experiment ID: 1203OS38		Report Date: Sep 19, 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Percent	cent
Leukemia	50.00			
CCRF-CEM HL-60(TB)	52.98 79.36			
K-562	41.89			
MOLT-4	26.35			
RPMI-8226	37.59			
SR	41.77			
Non-Small Cell Lung Cancer A549/ATCC				
A549/ATCC	70.01			
HOP-62	73.89			
HOP-92	109.35			
NCI-H226 NCI-H23	72.98 35.88			
NCI-H322M	80.99			
NCI-H460	65.81			
NCI-H522	50.39			
Colon Cancer	and the second sec			
COLO 205	86.50			
HCC-2998	74.98			
HCT-116	3101			
HCT-15 HT29	61.53 69.76		I	
KM12	61.54		7	
SW-620	81.23			
CNS Cancer				
SF-268	70.39		-	
SF-539	99.00			
SNB-19	78.70			
U251 Melanoma	64.82		1 1	
MALME-3M	96.53			
M14	65.52			
MDA-MB-435	78.83			
SK-MEL-2	85.83			
SK-MEL-28	77.81			
SK-MEL-5 UACC-257	64.49 89.34			
UACC-62	61.26			
Ovarian Cancer	0.120			
IGR0V1	73.61		-	
OVCAR-3	49.37			
OVCAR-4	36.57			
OVCAR-5	102.81			
OVCAR-8 NCI/ADR-RES	71.98 47.57			
SK-OV-3	73.77			
Renal Cancer	10-210-00			
786-0	70.14			
A498	77.50			
ACHN CAKI-1	61.87 46.78			
RXF 393	64.41			
SN12C	70.88		-	
TK-10	89.25			
UO-31	49.91			
Prostate Cancer PC-3	39.75			
DU-145	39.75 83.87			
Breast Cancer	00.07			
MCF7	33.87			
MDA-MB-231/ATCC	41.59			
HS 578T	66.74			
BT-549 T-47D	85.05 52.84			
MDA-MB-468	18.03			
	8.000 (1927)			
Mean	65.12			
Delta Range	47.09 91.32			
	150	100 50	0 -50	-100 -150
	0.00	1140	1.55	

One dose experimental data of compound 4.37c (NSC 764189)

Developmental Therapeutics Program One Dose Mean Graph		NSC: 751477 / 1	Conc: 3.75E-6 Molar	Test Date: Nov 09, 2009
		Experiment ID: 0911OS45		Report Date: Feb 15, 201
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Per		cent
eukemia	60.20			
CCRF-CEM	60.20 88.52			
HL-60(TB) K-562	58.00			
MOLT-4	54.02			
RPM-8226	74.20		• •	
SR	55.81			
Ion-Small Cell Lung Cancer A549/ATCC				
A549/ATCC	83.59			
EKVX HOP-62	82.59 89.11			
HOP-92	9321			
NCI-H23	69.56			
NCI-H322M	92.36			
NCI-H460	52.72			
NCI-H522	74.52		• •	
colon Cancer				
COLO 205	88.50			
HCC-2998 HCT-116	86.19 41.25			
HCT-15	43.59			
HT29	58.34			
KM12	86.13			
SW-620	7821		• •	
NS Cancer				
SF-268	87.96			
SF-295	50.82 89.59			
SF-539 SNB-19	61.12			
SNB-75	84.45			
U251	51.95			
lelanoma				
LOX IMVI	53.21			
MALME-3M M14	85.56 91.36			
MDA-MB-435	92.52			
SK-MEL-2	107.84			
SK-MEL-5	65.69			
UACC-257	64.84		_	
UACC-62	65.54		_	
Ovarian Cancer				
IGROV1	83.12 84.95			
OVCAR-3 OVCAR-4	69.58			
OVCAR-5	104.22			
OVCAR-8	90.53			
NCI/ADR-RES	95.59			
SK-OV-3	71.57		•	
Renal Cancer	70.77			
786-0	76.77		_	
A498 ACHN	60.41			
CAKI-1	59.48			
RXF 393	86.48			
SN12C	85.16			
TK-10	102.76			
UO-31	85.79			
Prostate Cancer PC-3	47.97			
DU-145 reast Cancer	101.83			
MDA-MB-231/ATCC HS 578T	78.50 97.22			
BT-549	110.24			
T-47D	71.52		-	
MDA-MB-468	41.58			
	70.15			
Mean Delta	76.40 35.15			
Range	68.99			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.44 (NSC 751477)

Developmental Therapeutics Program One Dose Mean Graph		NSC: 751472/1	Conc: 5.00E-6 Molar	Test Date: Nov 09, 2009
		Experiment ID: 0911OS45		Report Date: Feb 15, 201
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent
Leukemia CCRF-CEM	71.37			
HL-60(TB)	92.83			
K-562 MOLT-4	75.53			
MOLT-4	57.43			
RPM-8226	71.39			
SR Non-Small Cell Lung Cancer	66.53			
A549/ATCC	81.23			
EKVX	66.11			
HOP-62	97.77		_	
HOP-92	132.58	· · · · ·		
NCI-H23 NCI-H322M	76.17 105.57			
NCI-H322M NCI-H460	79.85			
NCI-H522	61.90			
Colon Cancer	Sec. 199			
COLO 205	94.75			
HCC-2998	84.06 49.41			
HCT-116 HCT-15	58.12			
HT29	52.86			
KM12	89.33			
SW-620	76.91		P	
CNS Cancer SF-268	0071			
SF-295	92.71 68.25			
SF-539	104.00			
SNB-19	76.18			
SNB-75	84.59			
U251 Melanoma	54.07			
	57.51			
MALME-3M	82.53			
M14	95.06			
MDA-MB-435	88.82 66.09			
SK-MEL-5 UACC-257	68.50			
UACC-62	63.48			
Ovarian Cancer	100			
IGR0V1	95.35			
OVCAR-3 OVCAR-4	94.54 62.93			
OVCAR-5	117.93			
OVCAR-8	93.02		-	
NCI/ADR-RES	98.18			
SK-OV-3	78.00			
Renal Cancer 786-0	92.31		_	
A498	108.50			
ACHN	88.20		-	
CAKI-1	67.20			
RXF 393 SN12C	93.50 81.59			
TK-10	84.39		•	
UO-31	84.43		•	
Prostate Cancer	5450			
PC-3 DU-145	54.56 108.41			
Breast Cancer	100.41			
MDA-MB-231/ATCC	79.35			
HS 578T	109.95			
BT-549 T-47D	125.44 65.79			
MDA-MB-468	44.15			
	100 224			
Mean Delta	81.54 37.49			
Range	88.53			
	150	100 50	0 -50	-100 -150
			-00	-100

One dose experimental data of compound 4.56 (NSC 751472)

Developmental Therapeutics Program One Dose Mean Graph		NSC: 751473 / 1	Conc: 1.25E-6 Molar	Test Date: Nov 09, 2009
		Experiment ID: 0911OS45		Report Date: Feb 15, 201
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent
Leukemia CCRF-CEM	91.16			
HL-60(TB)	119.38			
HL-60(TB) K-562	102.89		•	
MOLT-4	85.27			
RPMI-8226	94.18			
SR Non Small Coll Lung Concor	84.36			
Non-Small Cell Lung Cancer A549/ATCC	90.38			
EKVX	103.56			
HOP-62	106.58			
HOP-92	121.00			
NCI-H23	96.87			
NCI-H322M NCI-H460	102.98 110.36			
NCI-H400	83.56			
Colon Cancer				
COLO 205	111.BO			
HCC-2998	109.47			
HCT-116 HCT-15	84.44 102.07			
HT29	81.52			
KM12	111.17			
SW-620	101.B2			
CNS Cancer	100.07			
SF-268	106.27			
SF-295 SF-539	105.13 113.25			
SNB-75	103.81			
U251	101.07		• •	
Melanoma				
LOX IMVI MALME-3M	101.81 93.20			
M14	110.47			
MDA-MB-435	108.98		-	
SK-MEL-2	102.74			
SK-MEL-5	106.18		•	
UACC-257 UACC-62	84.34 89.94			
Ovarian Cancer	03.54			
IGR0V1	95.24		-	
OVCAR-3	106.76		•	
OVCAR-4	102.09			
OVCAR-5 OVCAR-8	100.93 99.20			
NCI/ADR-RES	108.55			
SK-OV-3	97.47			
Renal Cancer	10501			
786-0	10521			
A498 ACHN	107.B3 108.D3			
CAKI-1	96.87			
RXF 393	120.30			
SN12C	102.78			
TK-10 UO-31	96.D3 92.36			
Prostate Cancer	52.50			
PC-3	101.56			
DU-145	117.48			
Breast Cancer	95.29			
MDA-MB-231/ATCC HS 578T	95.28 119.32			
BT-549	126.01			
T-47D	97.22			
MDA-MB-468	105.55			
Mean	102.22			
Delta	20.50			
Range	44.39			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.61 (NSC 751473)

Developmental Therapeutics Program One Dose Mean Graph		NSC: 751479/1	Conc: 1.00E-5 Molar	Test Date: Nov 09, 2009
		Experiment ID: 0911OS45		Report Date: Feb 15, 201:
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Percent		cent
eukemia	10710			
CCRF-CEM	107.18			
HL-60(TB) K-562	150.32 111.92			
MOLT-4	96.39			
RPM-8226	102.92		•	
SR	102.86		• •	
Non-Small Cell Lung Cancer A549/ATCC				
A549/ATCC	79.96			
EKVX	114.44			
HOP-62	97.85		I	
HOP-92 NCI-H23	102.85 93.32		<u> </u>	
NCI-H322M	106.11			
NCI-H460	104.47			
NCI-H522	7821			
Colon Cancer	Constantion			
COLO 205	106.05			
HCC-2998	111.48			
HCT-116	86.52			
HCT-15 HT29	93.27 104.14		I	
KM12	91.87			
SW-620	102.56			
CNS Cancer				
SF-268	96.23			
SF-295	97.70			
SF-539	95.71			
SNB-19 SNB-75	109.59 67.93			
U251	85.50			
lelanoma				
LOX MVI	97.09		•	
MALME-3M	11101			
M14 MDA-MB-435	104.79 105.10		3 1	
SK-MEL-2	101.55		7 1	
SK-MEL-5	99.50			
UACC-257	91.47		—	
UACC-62	107.59		-	
Ovarian Cancer				
IGROV1	99.78 98.02		L	
OVCAR-3 OVCAR-4	97.90			
OVCAR-5	11121			
OVCAR-8	90.14		_	
NCI/ADR-RES	98.15			
SK-OV-3	105.76			
Renal Cancer	0040			
786-0 A498	90.16 99.80			
ACHN	108.31		-	
CAKI-1	92.18		-	
RXF 393	84.89			
SN12C	123.94			
TK-10 UO-31	105.51 98.55			
Prostate Cancer	50.55			
PC-3	91.90			
DU-145	116.42			
reast Cancer				
MDA-MB-231/ATCC	116.03			
HS 578T BT-549	106.51 103.81			
T-47D	92.91			
MDA-MB-468	88.78			
Mean	100.54			
Delta Range	3271 82.39			
i diige	02.00			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.62a (NSC 751479)

Developmentar mer	apeutics Program	NSC: 751483 / 1	Conc: 1.00E-5 Molar	Test Date: Nov 09, 2009	
One Dose Mea	an Graph	Experiment ID: 09110S45		Report Date: Feb 15, 201	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Perc		cent	
eukemia	01.20				
CCRF-CEM	91.32 125.47				
HL-60(TB) K-562	98.54				
MOLT-4	91.18		— 1		
RPMI-8226	109.53				
SR	103.80				
Non-Small Cell Lung Cancer	A STOCK STOCK STOCK				
A549/ATCC	86.86				
EKVX	98.87 101.01		1		
HOP-62 HOP-92	80.76		<u> </u>		
NCI-H23	99.50				
NCI-H322M	102.53		• 1		
NCI-H460	102.86				
NCI-H522	96.29		• I		
colon Cancer					
COLO 205	101.34				
HCC-2998	115.46				
HCT-116 HCT-15	86.71 105.32				
HT29	92.38		7_		
KM12	105.98				
SW-620	105.59		-		
NS Cancer					
SF-268	101.37				
SF-295	112.17				
SF-539 SNB-19	107.53 97.66		7. 1		
SNB-75	77.42				
U251	96.47		► I		
lelanoma					
LOX IMVI	96.97				
MALME-3M	115.01 97.54				
M14 MDA-MB-435	112.05				
SK-MEL-2	104.14				
SK-MEL-5	106.55		- 1		
UACC-257	94.44		– 1		
UACC-62	86.30				
Ovarian Cancer	00.05				
IGROV1 OVCAR-3	90.35 100.47				
OVCAR-4	113.78				
OVCAR-5	95.90				
OVCAR-8	89.46		- I		
NCI/ADR-RES	99.17				
SK-OV-3	94.04				
Renal Cancer	100.24				
786-0 A498	100.24 102.50				
ACHN	93.92		—		
CAKI-1	81.87				
RXF 393	109.98		-		
SN12C	9811				
TK-10 UO-31	104.70 75.56				
Prostate Cancer	10.50				
PC-3	93.19		– 1		
DU-145	119.49				
Breast Cancer	05.00				
MDA-MB-231/ATCC	95.30 104.08				
HS 578T BT-549	98.87		7		
T-47D	104.95		-		
MDA-MB-468	109.00		-		
	00.05				
Mean Delta	99.59 24.13				
Range	49.91				
	150	100 50	0 -50	-100 -150	
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 4.62b (NSC 751483)

One Dose Me	an Graph	Experiment ID: 0911	IOS45	Report Date: Feb 15, 201	
Panel/Cell Line	Growth Percent	Mean Growth	Mean Growth Percent - Growth Percent		
Leukemia	01.01				
CCRF-CEM	91.94 105.06				
HL-60(TB) K-562	102.38				
MOLT-4	78.82				
RPM-8226	95.71		– 1		
SR	88.53		I		
Non-Small Cell Lung Cancer					
A549/ATCC	91.04				
EKVX	111.12				
HOP-62	104.28		I		
HOP-92	77.41				
NCI-H23 NCI-H322M	102.48 102.36				
NCI-H460	105.73		I		
NCI-H522	90.77				
colon Cancer	00.1				
COLO 205	108.27		-		
HCC-2998	101.13				
HCT-116	98.18		_• _		
HCT-15	109.05				
HT29	100.02				
KM12 SW-620	109.73 104.94				
CNS Cancer	104.54		7 1		
SF-268	106.73		-		
SF-295	107.B3				
SF-539	98.85		• •		
SNB-19	95.14				
SNB-75	69.49				
U251	98.76				
LOX IMVI	101.35				
MALME-3M	108.10				
M14	104.91		-		
MDA-MB-435	110.34		_		
SK-MEL-2	95.50		-		
SK-MEL-5	104.53				
UACC-257	95.50		–		
UACC-62	94.01		-		
Ovarian Cancer	100.00				
IGROV1 OVCAR-3	108.23 112.83				
OVCAR-4	103.70				
OVCAR-5	97.56				
OVCAR-8	99.53				
NCI/ADR-RES	97.59		•		
SK-OV-3	90.23		_		
Renal Cancer	02.02				
786-0 A498	93.83 105.35				
ACHN	105.55				
CAKI-1	104.34				
RXF 393	118.09				
SN12C	91.54				
TK-10	103.09		1		
UO-31 Prostate Cancer	90.79				
PC-3	96.54				
DU-145 Breast Cancer	127.06				
MDA-MB-231/ATCC	101.88				
HS 578T	113.28				
BT-549 T-47D	101.80 101.47				
MDA-MB-468	103.95		•		
	100.00				
Mean Delta	100.58 31.19				
Range	57.57				
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 4.63 (NSC 751467)

Developmental Ther		NSC: D-764191/1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012	
One Dose Me	an Graph	Experiment ID: 1203OS38		Report Date: May 09, 20	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Percent		cent	
Leukemia CCRF-CEM	113.40				
HL-60(TB)	92.82				
K-562	89.56		—		
MOLT-4	71.87				
RPMI-8226	95.13				
SR	80.88				
Non-Small Cell Lung Cancer A549/ATCC	95.30				
HOP-62	103.59				
HOP-92	90.53				
NCI-H226	96.16				
NCI-H23	96.74		L		
NCI-H322M	94.91				
NCI-H460 NCI-H522	103.53 81.81				
Colon Cancer	0101				
COLO 205	103.25		-		
HCC-2998	101.90				
HCT-116	86.38				
HCT-15 HT29	91.77 103.14				
KM12	105.78				
SW-620	109.25				
CNS Cancer					
SF-268	107.35				
SF-295	83.18				
SF-539 SNB-19	99.D4 89.98		1		
U251	101.23				
Melanoma	101120				
MALME-3M	96.49				
M14	106.85				
MDA-MB-435 SK-MEL-2	101.73 109.96				
SK-MEL-28	94.25				
SK-MEL-5	96.58				
UACC-257	103.19				
UACC-62	91.93		–		
Ovarian Cancer	97.40				
IGROV1 OVCAR-3	87.40 111.41				
OVCAR-4	9161		–		
OVCAR-5	107.94				
OVCAR-8	100.55		•		
NCI/ADR-RES	95.77 98.96				
SK-OV-3 Renal Cancer	96.96		1		
786-0	95.73				
A498	80.04				
ACHN	98.09				
CAKI-1	77.24				
RXF 393 SN12C	116.41 95.99				
TK-10	99.11				
UO-31	80.30				
Prostate Cancer					
PC-3	85.53				
DU-145 Breast Cancer	106.28				
MCF7	90.56				
MDA-MB-231/ATCC	108.16				
HS 578T	85.08				
BT-549 T-47D	109.73 88.27				
MDA-MB-468	97.06				
Mean	96.44				
Delta Range	24.57 44.54				
Range					
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 4.64 (NSC 764191)

Developmental Ther	apenneerregian	NSC: D-764192/1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012	
One Dose Me	an Graph	Experiment ID: 1203OS38		Report Date: May 09, 20	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Perc		cent	
eukemia	100.70				
HL-60(TB)	106.76		- <u>-</u> I		
K-562 MOLT-4	95.50 97.41				
RPM-8226	109.79				
SR	100.77		•		
Non-Small Cell Lung Cancer					
A549/ATCC	100.79		•		
HOP-62	108.42				
HOP-92	97.56				
NCI-H226	105.43 97.83		- L I		
NCI-H23 NCI-H322M	115.22				
NCI-H460	104.36				
NCI-H522	86.52				
Colon Cancer					
COLO 205	106.77				
HCC-2998	103.99		1		
HCT-116 HCT-15	104.54 101.54		1 1		
HT29	100.03				
KM12	102.98				
SW-620	107.B3		•		
CNS Cancer					
SF-268	110.96				
SF-295 SF-539	91.D8 100.30				
SNB-19	101.15				
SNB-75	78.05				
U251	10021				
Melanoma					
MALME-3M	106.99				
M14 MDA-MB-435	119.51 110.83				
SK-MEL-2	107.26				
SK-MEL-28	88.36				
SK-MEL-5	96.53				
UACC-257	105.20				
UACC-62	102.88				
Ovarian Cancer IGROV1	106.53		I		
OVCAR-3	120.37				
OVCAR-4	98.36				
OVCAR-5	104.23		()		
OVCAR-8	106.89				
NCI/ADR-RES	105.84 100.50				
SK-OV-3 Renal Cancer	100.50				
786-0	104.15				
A498	116.98				
ACHN	104.65				
CAKI-1	96.27				
RXF 393 SN12C	112.45 110.57				
TK-10	109.89		-		
UO-31	95.90		-		
Prostate Cancer	1000-000-000-000-000-000-000-000-000-00				
PC-3	99.81				
DU-145 Breast Cancer	111.80				
MCF7	92.41				
MDA-MB-231/ATCC	119.82				
HS 578T	103.25				
BT-549	100.28				
T-47D MDA-MB-468	95.59 99.05				
MDAND-400	55.55				
Mean	103.32 25.27				
Delta Range	25.27 42.32				
Range					
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 4.65 (NSC 764192)

Panel/Cell Line Growth Percent Mean Growth Percent - Growth Percent Leukenia CL-00(TB) 118.28 102.25 118.28 102.25 118.28 102.25 MCL-14 94.18 552 97.52 102.37 102.37 Mont-Sales 103.35 103.37 103.35 103.37 103.35 103.37 Non-Small Cell Lung Cancer Addata 103.85 101.37 104.35 101.37 104.35 101.37 Non-Herzen H0562 107.36 101.37 104.35 101.37 104.35 101.42 104.45 101.43 NCH423 97.14 101.41 97.14 101.41 97.14 101.41 97.14 101.41 97.14 101.41 Strass 102.17 101.41 97.14 101.41 97.14 101.41 <th colspan="2">Developmental Therapeutics Program</th> <th>NSC: D-764193</th> <th></th> <th>Conc: 1.00E-5 Molar</th> <th>Tool Date: It</th> <th>lar 19, 2012</th>	Developmental Therapeutics Program		NSC: D-764193		Conc: 1.00E-5 Molar	Tool Date: It	lar 19, 2012	
eukemia 118.38 H-640(TE) 193.41 K-652 97.52 MOLT-4 94.18 RPR 80.30 AS49ATCC 103.81 HOP-62 116.11 MOL-43 107.56 MOL-43 107.56 MOL-430 118.10 MOL-4450 118.10 MOL-425 107.61 NCH-423 107.71 NCH-423 97.44 NCH-423 90.14 COLO 205 112.20 MCL-490 118.10 NOB-573 100.17 HT716 108.17 HT725 99.45 KM12 107.71 NOB-462 116.11 NOB-4753 102.320 Meanora 104.41 MALLE-57 103.35 SK-412-28 103.35 SK-412	One Dose Me	an Graph	Experiment ID:	12030	DS38	Report Date:	Report Date: May 09, 20	
CCPT-CEM 118.28 H-S01TB) 99542 MOL1-4 9542 MOL1-4 9542 MOL1-4 9542 MOLT-4 9542 MOLT-4226 10037 MC-H225 10037 MC-H225 10756 MC-H225 10037 MC-H225 10037 MC-H226 10037 MC-H227 10038 MC-M26 10037 MC-H228 10038 MC-M26 10037 MC-H228 10038 MC-M26 10037 MC-H228 10038 MC-M26	Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Perc		ercent			
HL-69(TB) 9954 K-562 FPH-14226 FPH-14226 FPH-14226 FPH-14226 FPH-14226 FPH-14226 H-1422 H-14226 H-1422 H-1422 H-1422 H-14226 H-1422 H-1		119.09						
K-652 97.52 MOLT-4 94.18 MOLT-4 94.18 MOLT-4 94.18 MOLT-4 95.20 MOLT-4 99.37 A54947CC 103.88 MOP-52 HOP-52								
MOLT-4 94.18 RPM-8226 103.36 SR 897 ASBATCS 103.37 HOP62 116.11 HOP62 100.37 NCH4226 107.54 NCH4226 107.54 NCH4226 106.17 NCH4522 90.14 Calo Cancer 12.20 HC2.3958 104.80 HC7.15 102.17 HT16 108.10 HC7.16 102.17 HT24 99.45 SF-236 20.54 SF-236 20.54 SF-236 20.54 SH251 102.37 HT24 99.45 SF-236 20.54 SF-236 20.54 SH251 102.17 HT24 99.45 SH253 20.54 SH253 20.54 SH253 20.54 SH253 20.54 SH253 10.33 Otage 10.41 MC4 10.41 MC4 10.41 MC4 10.42 M1 10.23 Otage 10.33 Otage 10.33 Otage 10.33 <tr< td=""><td>K-562</td><td>97.52</td><td></td><td></td><td>_</td><td></td><td></td></tr<>	K-562	97.52			_			
RP 103.35 SR 100-510-44 CC Von-510-47 CC 11811 HOP 52 100.37 HOP 52 107.510 HOP 53 107.510 HOP 54 107.510 HOP 52 107.510 HOH 52 90.14 Solan Cancer 11810 HC1-1450 108.10 HC1-15 102.17 HC2-128 90.14 Solan Cancer 5 104.30 HC2-135 90.41 SSC 2000 114.41 SSC 3000 114.41 SSC 3000 104.30 SSC 4000 104.30 SSC 4000 104.31 SSC 4000 104.31 SSC 4000 104.31 M0AME-35 102.30 SSC 4000 104.41 M14 106.33 M0AME-35 102.30 SSC 40000 104.35 SC 4000035<					_			
SR 89.77 ADM-Small (2ell Lung Cancer 10.38 ADM-SCC 103.11 HOP-S2 100.37 NCI-H225 107.36 NCI-H220 107.36 NCI-H221 190.14 NCI-H223 190.14 NCI-H224 190.14 NCI-H225 100.37 NCI-H226 100.37 NCI-H220 190.14 NCI-H221 190.14 NCI-H223 100.17 HT73 99.45 KM112 107.71 CNS Cancer 101.14 SF-236 92.54 SF-338 101.14 SF-336 102.30 Welanoma 101.41 MALME-3M 101.43 SK-MEL-23 103.36 SK-MEL-23 103.36 SK-MEL-23 103.36 SK-MEL-23 103.36 SK-MEL-23 103.35 OVCAR-3 102.30 OVCAR-3 102.33 OVCAR-3 <td< td=""><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></td<>					•			
Add All CC 10388 HOP 82 10037 NCH226 10756 NCH226 10756 NCH226 10756 NCH226 10756 NCH4321M 10673 NCH450 118:10 NCH452 90.14 COL0 205 HCC 2989 10430 HCT.116 108:10 HCT.116 108:108:108:108:108:108:108:108:108:108:	SR	89.07						
Add All CC 10385 HOP 22 1067 NCH226 10756 NCH226 10756 NCH226 10756 NCH226 10756 NCH226 10756 NCH226 10756 NCH452 90.14 NCH452 90.14 HT21 90.771 SW-200 111441 SF-286 10.14 SF-286 10.14 SF-285 90.24 SF-285 90.24 SF-295 90.24	Non-Small Cell Lung Cancer							
H0P-82 NCI-H226 NCI-H23 NCI-H226 NCI-H23 NCI-H232 NCI-H432 NCI-H432 NCI-H432 NCI-H432 NCI-H432 NCI-H432 NCI-H33 NCI-H3	A549/ATCC							
NCI-H226 10736 NCI-H223 9714 NCI-H222 9714 NCI-H222 9816 NCI-H222 16614 COLC 205 COLC 205 COL								
NCI-H323 NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M H450 HCC.2998 HCC.2998 HCC.2998 HCC.116 HC2.2998 HCC.2998 HCC.2998 HCC.116 HC2.1998 HCC.2998 HCC.2998 HCC.2998 HCC.2998 HCC.2998 HCC.2998 HCC.2998 HCC.2998 HCC.297 HC24 SF-238								
NCI-H322M 10673 NCI-H322 90.14 Dion Cancer HCC.23988 104.80 HCT.116 108.10 HCT.115 102.17 HT23 99.45 KM12 107711 SV62ger HT23 99.45 KM12 107711 SV62ger SF-535 92.24 SF-535 92.24 SF-535 92.24 SF-535 90.23 U251 102.20 Hei MAIR=3M 101.41 M14 106.53 SK-MEL-28 97.38 SK-MEL-28 97.38 SK-MEL-2								
NCI-H460 118.10 NCI-H460 112.0 COL0.2080 112.0 HCC.116 108.10 HCC.116 108.10 HCC.117 16 HCC.15 102.17 HT25 99.45 KM12 107.71 SW-220 114.41 SF-238 102.42 SF-539 102.42 SF-540 102.42 SF-540 102.52 SF-540 102.55 SF-540 102.55 SF-								
Doin Cancer 112.20 HCC 23998 104.80 HCT 116 108.101 HTT 15 199.45 KM12 10771 SW-200 114.41 SNS Cancer 57-295 SF-295 32.52 SR-393 10.29 U251 102.90 Hanna 101.41 MLMF-3M 101.41 M14 106.33 MAHB-435 112.25 SK-KBL-5 100.36 UACC-287 104.46 UACC-287 104.46 UACC-287 104.46 UACC-287 104.48 UACC-287 104.48 UACC-287 104.48 UACC-287 104.48 UACC-287 104.48 UACC-287 104.48 UACC-287 104.29 OVCAR-3 102.29 Real Cancer 102.99 T66-0 104.24 A488 119.83 UO-31 107.73 PC3 99.34 DO1005 90.49					_			
COL0.205 112.20 HCC.2998 104.80 HCC.116 108.10 HCT.15 122.17 HT23 36.45 SF-33 50.45 SF-33 10.14 SF-236 10.14 SF-236 32.54 SF-33 104.29 SNB-19 105.54 SNB-19 105.54 SNB-19 105.54 SNB-19 102.30 HU251n 102.30 HU251n 102.30 HU251n 102.30 SK-WEL-28 97.88 SK-WEL-28 97.88 SK-WEL-28 97.88 SK-WEL-28 103.36 SK-WEL-28 103.35 VUAC 52.57 UAC 52.57 UAC 52.57 SK-WEL-28 103.35 SK-WEL-28 103.35 SK-WEL-39 104.31 SK-OV-3 102.22 Renal Concer 104.31 SH 100 SH		90.14						
HCC:2998 104:80 HCT:16 108:10 HCT:16 102:17 HT29 99:45 KM72 10771 VT29 99:45 KM72 10771 HT29 99:45 KM72 10771 VT29 107771 VT29 10771 VT29 10771								
HCT-116 108.10 HCT-15 102.17 HT28 9945 KM12 10771 SW-200 11441 SF-389 1014 SF-389 10429 SF-339 105.4 SF-339 105.4 SF-339 105.4 SF-359 102.90 Welanoma MALME-3M 10141 M14 106.33 MDA-MB-435 112.25 SK-WEL-2 103.56 SK-WEL-2 103.55 SK-WEL-2 102.30 OVCAR-3 102.32 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-5 103.55 SK-WEL-5 109.49 SK-OV-3 102.92 FK-10 100.78 UO-31 07.7 Totale Cancer PC-3 99.34 DU-145 112.25 Sreat Cancer PC-3 99.34 DU-145 112.25 Sreat Cancer PC-3 99.34 DU-145 112.25 Sreat Cancer PC-3 99.34 DU-145 112.25 Sreat Cancer PC-3 99.34 DU-145 112.25 MCP7 90.26 MCP7 90.26 MCP4 90.27 MDA-MB-468 110.29								
HCT-15 102.17 HT25 89945 KM12 10771 SW-220 11441 SF-389 105.24 SF-389 104.29 SNB-19 105.54 SNB-75 90.33 U251 102.30 Melanoma 10141 M14 - 44 106.33 SK-MEL-5 100.36 UAC-62 104.33 SK-MEL-5 100.36 UAC-62 104.33 OvcIAR-4 102.38 OvCAR-3 113.25 SK-MEL-5 100.36 UAC-62 104.33 OvcIAR-4 102.38 OvCAR-4 102.38 OVCAR-5 113.33 OVCAR-6 104.04 A498 119.58 ACHN 109.00 CAKL1 100.55 RX-73 99.34 DU-145 112.25 Jeast Cancer 10 DU-145 112.25 Jeast Cancer 10 MCF7 90.26 MDA-MB-231/ATCC 125.56 MCAMB-231/ATCC 125.56 MCAMB-231/ATCC 125.56 MCAMB-231/ATCC 125.56 MCF7 90.26 MDA-MB-231/ATCC 125.56 MCF7 90.26 MDA-MB-231/ATCC 125.56 MCF7 90.26 MDA-MB-2431/ATCC 125.56 MCF7 90.26 MDA-MB-468 110.29 MEANB-468 110.29 MEANB-46								
HT28 99.45 KM12 1014 SW-200 11441 SF-238 10.14 SF-239 10.14 SF-24					7			
KM12 10771 SW-220 11441 NS Cancer 5F-288 SF-285 92.54 SF-283 104.29 SNB575 90.230 IU25 ma 102.90 IU25 ma 102.90 IU25 ma 102.90 MALME-SM 10141 MALME-SM 10141 MALME-SM 10141 MALME-SM 1041 MALME-SA 102.90 SK-WEL-28 97.88 SK-WEL-28 97.88 SK-WEL-28 97.88 SK-WEL-28 103.85 OVCAR-3 103.10 OVCAR-3 103.13 OVCAR-3 103.13 OVCAR-4 102.28 OVCAR-3 103.35 OVCAR-4 102.32 tenal Cancer 103.49 IGROV1 104.61 OVCAR-4 102.32 tenal Cancer 102.32 PC-3 99.34 UU-31 87.73 Tostate Cancer 92.8 PC-3 99.34 UU-145 110.215 Teses Cancer 92.8 PC-3 99.34 UU-145 12.25 Teses Cancer <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>					•			
CNS Cancer SF-285 92:54 SF-393 104:29 SNB-75 90:33 U251 102:20 lelanoma 101:41 MALINE-3M 106:33 MDA-MB-435 112:85 SK-WEL-2 103:86 SK-WEL-28 97:88 SK-WEL-26 104:36 UACC-257 104:36 UACC-257 104:36 UACC-257 104:36 UACC-257 104:36 OVCAR-3 113:35 OVCAR-5 103:35 OVCAR-5 103:35 OVCAR-5 103:35 OVCAR-5 103:35 OVCAR-5 103:35 OVCAR-5 103:35 OVCAR-6 103:35 OVCAR-7 104:94 Ad98 119:58 ACHN 109:20 Cancer 99:34 UO-31 87:73 Postate Cancer 90:34 PC-3 99:34 UD-145 110:29 MDA-MB-468 100:29 <t< td=""><td>KM12</td><td>107.71</td><td></td><td></td><td>•</td><td></td><td> </td></t<>	KM12	107.71			•			
SF-286 110.14 SF-285 92.54 SF-389 104.29 SNB-19 105.84 SNB-75 90.03 U251 102.290 Helanoma 01.41 M4LME-SM 101.41 M44 106.33 SK-WEL-2 103.86 SK-WEL-2 103.86 SK-WEL-3 10.461 UACC-267 104.96 UACC-262 104.93 OvCAR-3 113.05 OVCAR-3 103.85 NC/AR-8 103.35 NC/AR-8 103.35 NC/AR-7 102.92 tenal Cancer 104.94 A498 119.58 ACHN 109.50 CAK-1 100.55 SK-0/2.3 102.92 tenal Cancer 104.34 DUC-33 105.75 SNI2C 102.92 tenal Cancer 93.4 DU-45 112.25 ireast Cancer 92.4 DV-45 112.25 ireast Cancer 92.4 Difta Elancer 102.97 MDA-MB-231/ATCC 102.97 MDA-MB-2468 102.97 MDA-MB-2468 102.97		114.41			-			
SF-235 9254 SF-539 10429 SNB-75 90.03 U251 102.90 leianoma 101.41 M14 106.33 MDA.MB-435 112.85 SK-WEL-2 103.86 SK-WEL-23 97.88 SK-WEL-5 100.36 UACC-267 104.96 UACC-262 104.93 Varian Cancer 106.83 OVCAR-3 113.35 OVCAR-4 102.33 OVCAR-8 103.45 OVCAR-8 103.45 OVCAR-8 103.45 OVCAR-8 105.49 NCIADR-RES 106.49 NCIADR-RES 106.73 SN12C 102.59 T-40 102.97 MDA-MB-231/ATCC 125.96 HS 5781 110.1		110.14						
SF-539 10429 SNB-75 9033 U251 10290 felanoma 10141 M4LME-3M 10141 M14 10633 MDA-MB-435 11285 SK-WEL-28 97.88 SK-WEL-28 97.88 SK-WEL-28 100.36 UACC-62 104.39 UACC-62 104.33 OVCAR-3 113.25 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-8 103.55 NCL/ADR-RES 109.49 SK-OV-3 102.92 Ieral Cencer 786-0 786-0 104.34 A498 119.58 ACHN 109.50 CAKL1 100.55 RXF 333 106.73 SN12C 102.59 TK-10 100.78 U0-31 87.73 Postec Cancer 99.34 DU-145 112.25 MDA-MB-231/ATCC 122.96 MDA-MB-231/ATCC 122.96 MDA-MB-2468 110.29 MDA-MB-2468 110.29 MDA-MB-2468 102.97 MDA-MB-2468 102.97 MDA-MB-2468 104.45 <tr< td=""><td></td><td></td><td></td><td></td><td>~</td><td></td><td></td></tr<>					~			
SNB-19 105.84 SNB-75 90.03 UZ51 102.30 MALME-3M 101.41 M14 106.33 MDA-MB-435 112.85 SK-WEL-2 103.86 SK-WEL-2 103.86 SK-WEL-2 104.96 UACC-267 104.96 UACC-262 104.33 OVCAR-3 113.35 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-6 103.35 OVCAR-8 109.39 SNE-000000000000000000000000000000000000		104.29						
U251 10230 MALME-3M 10141 M14 10633 MDA-MB-435 11235 SK-WEL-2 10336 SK-WEL-28 9738 SK-WEL-5 10036 UACC-257 10436 UACC-257 10436 UACC-252 10433 Varian Cancer IGROV1 10461 OVCAR-3 11335 OVCAR-4 10238 OVCAR-5 10335 NCI/ADR-RES 10849 SK-CV-3 10232 tenal Cancer 786-0 10434 ACHN 10930 OVCAR-8 11938 ACHN 10930 OVCAR-8 11938 ACHN 10930 OVCAR-9 1934 SK-K-10 10078 U-31 8773 Tostate Cancer PC-3 9934 DU-145 11225 Teast Cancer PC-3 9934 DU-145 11225 Teast Cancer MCF ⁻ 9026 MDA-MB-231/ATCC 12536 HS 578T 11011 BT-549 9538 T-47D 10237 MDA-MB-468 11029								
MaLME-3M 10141 M14 10633 MDA-MB-435 11225 SK-MEL-28 10336 SK-MEL-28 9788 SK-MEL-28 9788 SK-MEL-28 10433 UACC-62 10433 UACC-62 10433 UACC-62 10433 UACC-62 10433 UACC-62 10433 OVCAR-3 113.05 OVCAR-4 10238 OVCAR-5 113.33 OVCAR-5 10345 NCI/ADR-RES 10949 SK-CV-3 10222 Tenal Cancer 766-0 104.04 A498 11938 ACHN 109.00 CAK1 100.78 UC-31 99.34 DU-145 112.05 Jreast Cancer PC-3 90.26 MCF MCF PC-3 90.26 MCF PC-3 90.26		90.03						
MALME-3M 10141 M14 10633 MDAMB-435 11235 SK-MEL-2 10386 SK-MEL-28 9788 SK-MEL-5 10036 UACC-257 10446 UACC-62 10433 OvCAR-3 11335 OVCAR-4 10238 OVCAR-5 11333 OVCAR-8 10355 NCI/ADR-RES 10441 A488 11938 ACHN 10930 OVCAR-8 10673 SN12C 10259 VOCAR 10078 UO-31 87.73 Yostate Cancer 9934 DU-145 112.05 WDA-MB-231/ATCC 12396 MDA-MB-231/ATCC 12396 MDA-MB-231/ATCC 12396 MDA-MB-468 102.9 MDA-MB-468 102.9		102.90			1			
M14 106.33 MDA.MB-435 112.85 SK-MEL-2 103.86 SK-MEL-28 97.88 SK-MEL-5 100.36 UACC-527 104.96 UACC-62 104.93 OVCAR-3 113.05 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-5 113.35 OVCAR-6 103.95 NCI/ADR-RES 109.49 SK-0/C-3 102.92 tenal Cancer 766-0 T66-0 104.04 A498 119.58 ACHN 109.00 CAK1 100.55 SN12C 102.59 TK-10 100.78 UO-31 87.73 Yostate Cancer 90.26 MDA-MB-231/ATCC 125.96 MDA-MB-468 110.29 MDA-MB-468 110.29 MDA-MB-468 110.29		10141						
MDA-MB-435 112.85 SK-MEL-28 97.88 SK-MEL-28 97.88 UACC-257 104.96 UACC-252 104.93 Varian Cancer 104.61 OVCAR-3 113.05 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-6 103.55 NCI/ADR-RES 109.49 SK-OV-3 102.92 Renal Cancer 786-0 786-0 104.14 A498 119.58 ACHN 109.55 RXF 1933 106.73 SN12C 102.79 TK-10 100.78 UO-31 87.73 Yostate Cancer 70 PC-3 99.34 DU-145 112.05 Ifeast Cancer 90.26 MDA-MB-231/ATCC 125.96 MDA-MB-231/ATCC 125.96 MDA-MB-468 110.29 MDA-MB-468 110.29 MDA-MB-468 110.29					•			
SK-MEL-2 103.86 SK-MEL-28 97.88 SK-MEL-5 100.36 UACC-62 104.93 UACC-62 104.93 OvCAR-3 113.25 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-8 103.55 NCI/ADR-RES 109.49 SK-0V-3 102.92 Renal Cancer 104.94 786-0 104.94 A498 119.88 ACHN 109.00 CAKL1 100.55 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 PC-3 99.34 DU-145 112.05 Breast Cancer 90.26 MCF7 90.26 MDA-MB-231/ATCC 125.96 MDA-MB-468 110.29 Mean 104.45 Detta 16.72 Range 38.23		112.85			-			
SK-MEL-5 100.36 UACC-257 104.396 UACC-62 104.33 Dvarian Cancer 104.61 OVCAR-3 113.25 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-8 103.55 NCI/ADR-RES 109.49 SK-OV-3 102.32 tenal Cancer 786-0 786-0 104.34 A498 119.58 ACHN 109.00 CAKL1 100.55 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 Pc-3 99.34 DU-145 112.05 Breast Cancer 90.26 MCF7 90.26 MCF7 90.26 MCF7 90.26 MCF7 90.26 MCF7 102.37 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23	SK-MEL-2	103.86						
ÚACC-257 10436 ÚACC-62 10433 Óvarian Cancer 10461 ÍCROV1 10461 ÓVCAR-3 11335 ÓVCAR-4 10238 ÓVCAR-5 11333 ÓVCAR-8 10355 NCI/ADR-RES 10949 SK-OV-3 10232 Renal Cancer 786-0 786-0 104.04 A498 119.58 ACHN 109.00 CAK-1 100.55 TK-10 100.78 UO-31 87.73 Prostate Cancer 99.34 DU-145 112.05 Streast Cancer 90.26 MCF7 90.26 MDA-MB-231/ATCC 125.36 HS 678T 110.11 BT-549 96.38 T-47D 102.27 MDA-MB-468 110.29 Mean 104.45 Delta 102.37 MDA-MB-468 110.29					_			
UACC-62 104.33 Divarian Cancer IGROV1 104.61 OVCAR-3 113.35 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-5 109.49 SK-OV-3 102.32 Renal Cancer 786-0 104.04 A498 119.58 ACHN 109.00 CAKL-1 100.55 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UC-31 97.3 Prostate Cancer PC-3 99.34 DU-145 112.05 Breast Cancer MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.38 T-47D 102.37 MDA-MB-248 110.29 Mean 104.45 Delta 16.72 Range 38.23	SK-MEL-5							
Dvarian Cancer IGROV1 10461 OVCAR-3 113,05 OVCAR-4 102,38 OVCAR-5 113,33 OVCAR-8 103,55 NCI/ADR-RES 109,49 SK-OV-3 102,92 Renal Cancer 786-0 104,04 A498 119,58 ACHN 109,00 CAKI-1 100,55 SN12C 102,59 TK-10 100,78 UO-31 87,73 PC-3 99,34 DU-145 112,05 Sreast Cancer MCF7 90,26 MDA-MB-231/ATCC 125,96 HS 578T 110,11 BT-549 96,38 T-47D 102,97 MDA-MB-468 110,29 Mean 104,45 Delta 16,72 Range 38,23							1	
IGROV1 10461 OVCAR-3 113.05 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-8 103.55 NCI/ADR-RES 109.49 SK-0V-3 102.92 Renal Cencer 786-0 786-0 104.04 A498 119.58 ACHN 109.00 CAKI-1 100.55 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 Yostate Cancer 99.34 DU-145 112.05 Breast Cancer 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.58 T-47D 102.97 MDA-MB-468 110.29 MDA-MB-468 110.29 MDA-MB-468 110.29 MDA-MB-468 10.29		104.00						
OVCAR-3 113.05 OVCAR-4 102.38 OVCAR-5 113.33 OVCAR-5 113.33 OVCAR-8 103.55 NCI/ADR-RES 109.49 SK-OV-3 102.92 Renal Cancer 786-0 104.04 A498 119.88 ACHN 109.00 CAKI-1 100.55 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 Prostate Cancer PC-3 99.34 DU-145 112.25 3reast Cancer PC-3 99.34 DU-145 112.25 3reast Cancer MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.38 T-470 102.97 MDA-MB-468 110.29	IGROV1							
OVCAR-5 113.33 OVCAR-8 103.55 NCI/ADR-RES 109.49 SK-CV-3 102.92 Paenal Cancer 786-0 786-0 104.04 A498 119.58 ACHN 109.00 CAKI-1 100.55 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 Prostate Cancer 99.34 DU-145 112.05 3reast Cancer 90.26 MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-54.9 96.38 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 167.2 Range 38.23					-			
OVCAR-8 103:55 NCI/ADR-RES 109:49 SK-OV-3 102:92 Renal Cencer 786-0 786-0 104:04 A498 119:58 ACHN 109:00 CAKI-1 100:55 RXF 393 106:73 SN12C 102:59 TK-10 100:78 UO-31 87.73 Pc-3 99:34 DU-145 112:05 Breast Cancer 90:26 MCF7 90:26 MDA-MB-231/ATCC 12:59 T-47D 100:29 MDA-MB-468 110:29 Mean 104:45 Deita 16:72 Range 38:23								
NCI/ADR-RES 109.49 SK-CV-3 102.32 Renal Cancer 786-0 786-0 104.04 A498 119.38 ACHN 109.00 CAKI-1 100.55 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 Prostate Cancer 99.34 DU-145 112.05 Breast Cancer 90.26 MDA-MB-231/ATCC 122.596 HS 578T 110.11 BT-549 96.38 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Deita 16.72 Range 38.23	OVCAR-5							
SK-CV-3 102.92 Renal Cancer 104.04 A498 119.58 ACHN 109.00 CAKI-1 100.55 RXF 393 106.73 SM12C 102.59 TK-10 100.78 UO-31 87.73 PC-3 99.34 DU-145 112.05 Sreast Cancer 90.26 MDA-MB-231/ATCC 125.96 MDA-MB-231/ATCC 125.96 MDA-MB-468 110.29 Mean 104.45 Deita 16.72 Range 38.23	NCI/ADR-RES				-			
Renal Cancer 104.04 786-0 104.04 A498 119.58 ACHN 109.00 CAKI-1 100.35 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 Prostate Cancer 99.34 DU-145 112.05 Breast Cancer 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.38 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23	SK-OV-3				•			
A498 119.58 ACHN 109.00 CAKI-1 100.55 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 Prostate Cancer PC-3 99.34 DU-145 112.05 Breast Cancer MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23	Renal Cancer	sales in the						
ACHN 109.00 CAKI-1 100.35 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 Prostate Cancer PC-3 99.34 DU-145 112.05 Breast Cancer MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23								
CAKI-1 100255 RXF 393 106.73 SN12C 102.59 TK-10 100.78 UO-31 87.73 Prostate Cancer 99.34 DU-145 112.05 Sreast Cancer 90.26 MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.38 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23								
RXF 393 10673 SN12C 10259 TK-10 100.78 UO-31 87.73 PC-3 99.34 DU-145 112.05 Sreast Cancer 90.26 MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29					1			
SN12C 10259 TK-10 10078 UO-31 87.73 Prostate Cancer 99.34 DU-145 112.05 Breast Cancer 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23	RXF 393	106.73			•			
UO-31 87.73 Prostate Cancer 99.34 DU-145 112.05 sreast Cancer 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23	SN12C	102.59			•			
Prostate Cancer PC-3 99.34 DU-145 112.05 irreast Cancer MDCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23								
PC-3 9934 DU-145 112.05 ireast Cancer MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23		87.73						
DU-145 112.05 Breast Cancer 90.26 MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23		99.34						
Breast Cancer 90.26 MCF7 90.26 MDA-MB-231/ATCC 125.96 HS 578T 110.11 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23					-			
MDA-MB-231/ATCC 125.96 HS 578T 11011 BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23	reast Cancer	and the second se						
HS 578T 110.11 BT-549 96.98 T-470 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23	MCF7							
BT-549 96.98 T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23								
T-47D 102.97 MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23								
MDA-MB-468 110.29 Mean 104.45 Delta 16.72 Range 38.23								
Mean 104.45 Delta 16.72 Range 38.23					-			
Delta 16.72 Range 38.23		17 THE SECOND						
Range 38.23								
150 100 50 0 -50 -100 -15	, ango							
150 100 50 0 -50 -100 -15			100	50				
		150	100	50	0 -	-100	-150	

One dose experimental data of compound 4.66 (NSC 764193)

	apeutics Program	NSC: D-764194/1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012
One Dose Me	an Graph	Experiment ID: 120	Experiment ID: 1203OS38	
Panel/Cell Line	Growth Percent	Mean Growth	cent	
_eukemia CCRF-CEM	102.84			
HL-60(TB)	88.10			
K-562	68.31			
MOLT-4	67.16			
RPM-8226	75.65		_	
SR	71.04			
Non-Small Cell Lung Cancer A549/ATCC				
A549/ATCC	77.39			
HOP-62	107.76			
HOP-92	93.05			
NCI-H226 NCI-H23	94.42 76.85			
NCI-H322M	90.40		_ 1	
NCI-H460	79.55			
NCI-H522	58.31			
Colon Cancer	Difference of the second			
COL0 205	99.21			
HCC-2998	76.77			
HCT-116	61.83			
HCT-15 HT29	76.29 70.01			
KM12	93.34			
SW-620	103.18			
CNS Cancer				
SF-268	89.97			
SF-295	58.92			
SF-539 SNB-19	92.38 79.25			
SNB-75	71.86			
U251	85.52			
lelanoma				
MALME-3M	91.88		<u> </u>	
M14 MDA MB-435	91.13			
MDA-MB-435 SK-MEL-2	103.31 92.71			
SK-MEL-28	93.05		_	
SK-MEL-5	85.86		•	
UACC-257	100.52			
UACC-62	66.94			
Ovarian Cancer IGROV1	64.48			
OVCAR-3	99.59			
OVCAR-4	79.87			
OVCAR-5	90.42			
OVCAR-8	91.05			
NCI/ADR-RES SK-OV-3	83.86 84.83			
Renal Cancer	04.00		1	
786-0	89.94		- I	
A498	87.83			
ACHN	88.34			
CAKI-1	43.31			
RXF 393 SN12C	77.42 90.57		_	
TK-10	87.98			
UO-31	71.01		-	
Prostate Cancer				
PC-3	59.81			
DU-145 reast Cancer	101.13			
MCF7	80.54			
MDA-MB-231/ATCC	79.13		– 1	
HS 578T	76.83			
BT-549	89.07			
T-47D MDA-MB-468	80.85 79.29			
	A DE LA SKEPS			
Mean	82.97			
Delta	39.56			
Range	64.45			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.67 (NSC 764194)

Developmental Ther	apeutics Program	NSC: D-764195/1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012
One Dose Mea	an Graph	Experiment ID: 1203	Experiment ID: 1203OS38	
Panel/Cell Line	Growth Percent	Mean Growth	Mean Growth Percent - Growth Per	
Leukemia	00.50			
HL-60(TB) K-562	99.50 74.56			
MOLT-4	80.82			
RPM-8226	78.56		– 1	
SR	79.89		– 1	
Non-Small Cell Lung Cancer				
A549/ATCC	82.45			
HOP-62	109.44			
HOP-92 NCI-H226	122.20 96.71			
NCI-H322M	97.76			
NCI-H460	79.52			
NCI-H522	60.31			
Colon Cancer				
HCC-2998	89.52			
HCT-116	57.52			
HCT-15 HT29	83.D6 65.34			
KM12	87.48		• I	
SW-620	94.97			
CNS Cancer	322 02.5			
SF-268	90.54			
SF-295	65.D6			
SF-539 SNB-19	101.92 87.50			
SNB-75	92.53			
U251	86.13			
Melanoma				
MALME-3M	79.72		—	
M14 MDA MR 435	70.61			
MDA-MB-435 SK-MEL-2	97.89 97.58			
SK-MEL-28	94.26			
SK-MEL-5	91.47		-	
UACC-257	87.97			
UACC-62	65.92			
Ovarian Cancer	64.92			
IGROV1 OVCAR-3	79.59			
OVCAR-4	80.17			
OVCAR-5	94.54		–	
OVCAR-8	88.49		I	
NCI/ADR-RES	83.98			
SK-OV-3	90.39			
Renal Cancer 786-0	80.40			
A498	95.90			
ACHN	85.08			
CAKI-1	46.29			
RXF 393	86.18		<u> </u>	
SN12C	86.83		<u> </u>	
TK-10 UO-31	88.77 79.59		_	
Prostate Cancer				
PC-3	63.55			
DU-145	96.01			
Breast Cancer	82.00			
MCF7 MDA-MB-231/ATCC	82.96 97.95			
HS 578T	92.96			
BT-549	105.22			
T-47D	75.36			
MDA-MB-468	80.85			
Mean	85.01			
Delta	38.72			
Range	75.91			
0.022000-7020				
	150	100 50	0 -50	-100 -150
				-100

One dose experimental data of compound 4.68 (NSC 764195)

Developmental Ther		NSC: D-764196/1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012
One Dose Mea	an Graph	Experiment ID: 120	Experiment ID: 1203OS38	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Percent		cent
Leukemia HL-60(TB)	127.74			
HL-60(TB) K-562	87.90			
MOLT-4	75.53			
RPM-8226	107.27		– 1	
SR	91.42		—	
Non-Small Cell Lung Cancer				
A549/ATCC	96.90		– 1	
HOP-62	110.40		_	
HOP-92	108.55		_	
NCI-H226 NCI-H23	109.59 97.55			
NCI-H322M	108.74			
NCI-H460	109.01			
NCI-H522	89.06			
Colon Cancer				
COLO 205	120.08			
HCC-2998	105.08		1	
HCT-116	95.98			
HCT-15 HT29	82.78 99.50			
KM12	104.89		_ I	
SW-620	104.94			
CNS Cancer				
SF-268	103.54		4 1	
SF-295	78.85			
SF-539 SNB-19	101.89 11421			
U251	93.56			
Melanoma	00.00			
MALME-3M	107.21		-	
M14	113.61			
MDA-MB-435	104.35			
SK-MEL-2 SK-MEL-28	114.17 116.59			
SK-MEL-20 SK-MEL-5	87.01			
UACC-257	116.40			
UACC-62	110.95		-	
Ovarian Cancer	05.00			
IGROV1	95.39		_	
OVCAR-3 OVCAR-4	104.76 104.35			
OVCAR-5	109.45			
OVCAR-8	106.08		•	
NCI/ADR-RES	91.99		—	
SK-OV-3	101.56			
Renal Cancer	104 70			
786-0 A498	104.70 103.76			
ACHN	99.93]	
CAKI-1	73.57			
RXF 393	102.58		4	
SN12C	108.90			
TK-10 UO-31	108.59 74.54			
Prostate Cancer	17.54			
PC-3	86.34			
DU-145	109.05		-	
Breast Cancer				
MCF7	94.97			
MDA-MB-231/ATCC HS 578T	109.95 98.43			
BT-549	95.55			
T-47D	89.41			
MDA-MB-468	100.47			
Mean	101.26			
Delta	27.59			
Range	54.17			
	150	100 50	0 -50	-100 -150
	150	100 00	-50	-100 -100

One dose experimental data of compound 4.69 (NSC 764196)

Panel/Cell Line Growth Percent Mean Growth Percent - Growth Percent Leukemia CCRF, CEM K-S62 MCL-14 MCL-14 MCL-14 MCL-142 MCL-142 MCL-142 MCL-142 MCL-142 MCL-1423	Developmental Ther		NSC: D-764197/1	Conc: 1.00E-5 Molar	Test Date: Mar 19, 2012	
Leukenis H-GO(TE) 118:10 K-S62 SF 20 SF 20 HOPC22	One Dose Me	an Graph	Experiment ID: 1203OS38		Report Date: May 09, 20	
CCRF-CEM 11578 H-60(TP) 19 11510 K10(1-4 9510 RPM-8226 9511 SR 9051 Nor-Small Cell Lung Cancer 9620 AGR 2C 620 AGR 2C 10731 NCI-H222 12396 NCI-H222 12396 NCI-H223 124 NCI-H22 12396 NCI-H223 124 NCI-H22 12	Panel/Cell Line	Growth Percent	Mean Growth	Mean Growth Percent - Growth Percent		
HL-63(TB) 118:10 K-562 MOH-42 SR SR SR AL92AFC2 HOP-82		116.79				
K-682, 97.37 MOLT-328 801 RF M228 8051 NO-5mail Cell Lung Cancer 9051 HOP-62 10739 HOP-62 10759 HOP-62 10759						
RPM.8226 9411 SR 9051 SR 9051 Mon-Small Call Lung Cancer 620 HOP-62 10759 HOP-62 10731 NCL-H226 10731 NCL-H226 10731 NCL-H228 10731 NCL-H228 10731 NCL-H320M 11740 NCL-H322 19973 Colon Cancer 00010 COLO 2055 11139 HC7:2988 10140 HC7:2989 10149 SF-530 9001 SF-531 901 SH-171 1173 U251 9779 Wilz 10255 SW-422er 10149 SF-533 9001 SH-19 9125 SK-MEL-2 6853 SK-MEL-2 6854 SK-MEL-2 8854 UACC-257 11173 UACC-267 11173 UACC-277 11173 UACC-28 9516	K-562			•		
SR 9051 AdsPATCC 920 AdsPATCC 1728 HDP-92 1729 NCH-226 1729 NCH-226 17731 NCH-226 19793 NCH-226 19793 NCH-226 19793 NCH-230 9980 NCH-4321M 114.44 NCH-4322M 114.44 NCH-4326 10730 Colon Gener 8973 Colon Gener 8973 St-288 9930 SK-281 9930 SK-283 9930 SK-283 930 SK-283 930 SK-283 930 SK-284 10795 MLME-3M 11453 Welanoma 11176 UAC-257 11173 UAC-257 11173 UAC-257 11176 UAC-257 11176 UAC-257 11177 UAC-257 9312 SK-VEL-28	MOLT-4					
Non-Small Cell Lung Cancer AS4947CC HOP42 HOP4 H				_		
HOP-62 10739 NCH232M 1144 NCH232M 11444 NCH322M 11444 NCH322M 11444 NCH322 8973 Concreter COL0.209 HT07.00 NCH522 8973 Concreter COL0.209 HT07.01 HT15 96.08 HT07.116 10140 HT15 96.08 HT07.116 10140 HT15 96.08 HT07.116 10140 HT178 96.30 SF-538 96.00 SF-538 98.01 SF-538 98.01 SF-548 98.01 SF-548 98.01 SF-548 99.01 SF-548 99.01 SF-	SR Non Small Call Lung Canaar	90.51				
HOP-62 10739 HOP-62 10739 NCH4236 10730 NCH4232M 1144 NCH4232M 11444 NCH4522 8973 Concencer COC0 2059 10730 COC0 2059 10140 HCT-15 96.08 HCT-15 96.08 HT23 9535 HT23 9535 SF-538 9630 SF-538 9630 SF-538 9630 SF-538 901 SF-538 901 SF-545 902 SF-545 9071 SF-545 9071 SF-545 9071 SF-545 9071 SF-545 9071 SF-545 9071 SF-545 9071 SF-545 9071 SF-545 9075 SF-545 9075 SF-	A549/ATCC	96.20				
HOP-92 129.36 NCH-423 1973 NCH-423 114.40 NCH-423 114.40 NCH-423 119.73 COLO 205 111.9 COLO 205 110.38 HCT.116 101.43 HT13 96.33 HT13 96.345 SW-20 110.19 SNS Cancer 97.9 SH29 96.35 SW-20 110.49 SNS Cancer 97.9 SH29 96.35 SK-88 96.39 SK-88 96.39 SNS Cancer 97.9 Welanoma 114.53 MALME-345 108.35 SK-WEL-26 98.39 SK-KWEL-26 98.39 UACC-267 111.73 UACC-262 8501 OvcAR-8 98.33 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 93.73 OvcAR-8 93.72 OvCAR-8 93.72 OvCAR-8 93.73 ACH 87.73	HOP-62			_		
NCI-H323 NCI-H322 NCI-H3	HOP-92	129.96				
NCI-H322M 114.44 NCI-H322 8973 Dio Cancer HCC-162 HCC-25988 105.38 HCC-25988 105.38 HCC-1715 96.38 HT72 95.35 KM72 102.55 KM72 102.55 SF-538 96.30 SF-538 96.01 SF-538 96.01 SF-538 96.01 SR-539 96.01 SR-539 96.01 SR-539 96.01 SR-539 96.01 SR-539 96.01 SR-538 96.01 SR-538 96.01 SR-548 96.01 U251 09.77.9 Helanoma MALM-3M 1145.31 HCC-257 11173 U26C 257 11173 U26C 256 SK-MEL-23 86.54 SK-MEL-28 86.54 SK-MEL-28 86.54 SK-MEL-28 86.54 SK-MEL-28 96.58 SK-MEL-28 96.59 UACC 257 11176 OVCAR-3 11176 OVCAR-3 11176 OVCAR-3 99.17 OVCAR-4 86.17 OVCAR-5 99.37 OVCAR-6 99.43 A488 92.12 OVCAR-6 89.43 A488 92.12 OVCAR-8 99.43 A488 92.12 OVCAR-8 99.43 A488 92.12 OVCAR-8 99.43 A488 92.12 OVCAR-8 99.43 A488 92.12 TK-10 98.84 UO-31 75.25 TK-10 98.84 UO-31 75.25 TK-10 98.84 UO-31 75.25 TK-10 98.84 UO-31 75.25 TR-10 98.84 UO-31 Fr-36 90.71 T-470 MDA-MB-431/ATCC 97.76 MDA-MB-4321/ATCC 97.76 MDA-MB-431/ATCC 97.76 MDA-MB-431/ATCC 97.76 MDA-MB-431/ATCC 97.76 MDA-MB-48 97.85 MDA-MB-48 97.85 MD				-		
NCI-H460 107.20 NCI-H522 8973 Concerneer 111.29 COC 20306 106.38 HCC-1716 101.40 HCC-1516 56.08 HT23 55.35 KM12 102.55 SW-620 110.49 SNS Cancer 9 SF-838 98.00 SNS Cancer 9 SF-838 98.00 SNS Cancer 9 SF-838 98.00 SNS 19 91.55 U251 97.79 Velanoma MALME-3M 114.53 M14 10701 MDA-MB-435 106.35 SK-WEL-5 93.39 UACC-257 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-267 111.73 UACC-27 11.73 UACC-27 11.73 UA						
NCI-HS22 8973 COL0 205 111:29 HC2:2998 106:38 HC1:16 940 HC2:2998 106:38 HT23 9535 KM12 102:55 SW-220 110.49 CNS Cancer 96:39 SF-288 96:00 SF-288 90:01 SF-288 90:01 MDA.MB-435 106:35 SK-WEL-28 90:54 SK-WEL-28 90:54 SK-WEL-28 90:54 SK-WEL-28 90:54 SK-WEL-28 90:54 SK-WEL-28 90:54 SK-WEL-28 90:54 SK-WEL-28 90:55 SK-00:73 90:40 CVCAR-8 90:52 SK-00:73 90:40 Train SF-288 90:40 SK-00:73 90:40 Train SF-288 90:55 SK-00:73 90:40 Train SF-288 90:55 DU-145 11381 Breat Cancer 7 MCF7 87:26 MDA.MB-231/ATCC 97:70 MDA.MB-243(ATCC 97:70 MCF4 90:55 DU-145 11381 Breat Cancer 7 MCF7 87:28 SR-20:37 MCF4 80 97:39 MCF4 81 99:55 Delta 17:20 Range 47:61						
Colo Carcer COLO 205 HCC-22998 HCC-116 S0:0205 S0:02	NCI-H522					
HCC-2998 106.38 HCT-116 10140 HCT-115 96.28 KMT20 102.35 SK-328 96.20 SF-539 9801 SNF-19 91.55 U251 97.79 Welanoma 114.53 M14.8-3M 114.53 M14.8-3M 114.53 M14.8-3M 114.53 M14.8-3M 114.53 M14.8-3M 114.53 SK-MEL-20 98.54 SK-MEL-20 98.54 SK-MEL-20 89.54 SK-MEL-20 89.54 SK-MEL-5 93.29 UACC-257 111.73 UACC-257 111.73 UACC-257 81.11.76 UACC-257 81.11.76 UACC-257 81.11.76 UACC-257 98.40 OvcAR-3 93.29 UACC-257 98.40 OvcAR-4 86.17 OVCAR-4 86.17 OVCAR-5 93.22 SK-MEL-5 98.40 Renal Cancer 98.40 786-0 89.43 A498 92.12 ACHI 97.37 CAKL-1 87.32 RX-78.33 95.22 SK-VC-3 98.40 Renal Cancer 82 Tro-31 82.35 Prostate Cancer 82 MCF7 87.28 MCF7 87.28 MCF4	Colon Cancer	57-57-57-57				
HCT-116 10140 HCT-15 96.28 HT23 95.35 SW-200 110.49 SF-268 960 SNB-19 9155 U251 9779 Welanoma MALME-3M 114.53 M14 10701 MDA-MB-435 108.35 SK-WEL-2 98.88 SK-WEL-2 98.88 SK-WEL-23 8954 SK-WEL-23 8954 SK-WEL-23 8954 OVCAR-4 91.176 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-5 98.40 SK-V3 98.40 Real Cencer PC-3 88.29 SN12C 105.72 SH20-3 88.29 SH20-3 88.2						
HC7:15 96.28 HT25 95.35 KM12 102.35 SW-20 110.49 SF-288 96.20 SF-288 96.20 SF-288 96.20 SF-289 96.20 SF-289 90.20 SF-288 96.20 SF-288 96.20 SF-288 96.20 SF-288 98.20 SF-288 98.20 SF-288 98.20 SF-288 98.20 SF-288 98.20 MDA.MB-435 108.25 SK-MEL-28 98.28 SK-MEL-28 89.24 SK-MEL-28 99.24 SK-MEL-28 99.24 SK-MEL-28 99.24 SK-MEL-28 99.24 SK-MEL-28 99.24 SK-MEL-28 99.25 SK-MEL-28 99.25 SK-MEL-28 99.21 SK-MEL-28 99.21 SK-MEL-						
HT22 95.35 KM12 10.49 SW-200 110.49 SF-539 96.30 SF-539 9001 SNB-19 91.55 U251 97.79 Helanoma 114.53 M4LME-435 10271 M4LME-435 10271 M4LME-435 10271 M4LME-435 10271 UACC-257 11173 UACC-257 11173 UACC-257 11173 UACC-257 11173 UACC-252 8501 OvcAR-4 86.17 OvCAR-3 98.53 NCIADR-RES 94.70 OVCAR-4 86.17 OVCAR-4 898.53 NCIADR-RES 94.70 OVCAR-4 898.53 NCIADR-RES 94.70 OVCAR-8 98.53 NCIADR-RES 94.70 SK-0V-3 98.40 Tel-60 89.43 Ad98 92.12 SN12C 103122 SN12C 10312 SN12C 10312						
KM12 10255 SW-220 110.49 SP-288 96.30 SF-288 96.30 SF-289 96.30 SF-289 96.30 SF-281 91.55 U251 97.79 Helanoma 114.53 MDA.MB-435 106.855 SK-MEL-2 98.88 SK-MEL-28 89.54 SK-MEL-28 89.53 OVCAR-3 111.76 OVCAR-4 86.17 OVCAR-5 92.72 OVCAR-5 92.72 OVCAR-6 89.43 Ad98 92.12 Ad98 92.12 Ad98 92.12 CAKH 87.32 PC-3 88.39 DU-145 113.81 Sreate Cancer 97.70 PC-3 84.57 Deita 17.20				•		
CNS Cancer 96.30 SF-258 96.30 SF-258 96.30 SNB-19 91.55 U251 97.79 Welanoma 114.53 M14 10701 MDA.MB-435 106.35 SK-MEL-2 96.38 SK-MEL-28 89.54 SK-MEL-20 85.01 UACC-267 111.73 UACC-267 111.73 UACC-262 85.01 OvCAR-3 11.176 OVCAR-4 80.17 OVCAR-5 93.72 OVCAR-8 94.33 NCLADOR-RES 94.30 SHC-03 94.40 Yemal Cancer 77.70 VCAR-8 96.32 SN1C 103.72 TK-10 108.32 PC-3 88.39 DU-145 113.81 Streat Cancer 82.35 PC-3 88.39 DU-145 113.81 Streat Cancer 84.37 MDA.MB-231/ATCC 97.70 HS 781 84.37	KM12	102.55		_		
SF-288 96:00 SF-539 9001 SNB-19 91:55 U251 97.79 Welanoma MALME-3M 114:53 M14 10701 MDA-MB-435 108:95 SK-MEL-2 98:88 SK-MEL-2 98:54 SK-MEL-28 89:54 SK-MEL-28 89:54 SK-MEL-28 89:54 SK-MEL-28 89:54 SK-MEL-28 89:54 SK-MEL-28 89:54 SK-MEL-3 93:72 UACC-62 8501 Dvarian Cancer IGROV1 108:50 OVCAR-4 86:17 OVCAR-5 93:72 OVCAR-5 93:72 OVCAR-5 98:40 NCI/ADR-RES 94:70 SK-CV-3 98:40 Real Cancer 786-0 89:43 A498 92:12 ACHN 97:37 CAKL1 87:92 RXF 39:3 95:22 SN12C 103:72 TK-10 98:84 UO-31 82:35 Prostate Cancer PC-3 86:39 DU-145 11381 Sreast Cancer MCF7 87:26 MDA-MB-231/ATCC 97:70 HS fr8T 84:57 BT-549 90:71 T-470 104:50 MDA-MB-231/ATCC 97:38 MEan 99:55 Delta 17:20 Range 47:51		110.49				
SF-539 9801 SNB-19 9155 U251 97.79 MALME-3M 114.53 M14 10701 MDA-MB-435 108.95 SK-MEL-2 98.58 SK-MEL-28 89.54 SK-MEL-20 8501 UACC-257 111.73 UACC-257 111.73 UACC-252 8501 Ovarian Cancer 108.50 OVCAR-3 111.76 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-6 84.33 A669 89.43 A649 92.12 A769 96.52 SN12.0 103.72 TK-10 103.72 TK-10 103.72 TK-10 98.34 UO-31 82.35 Postate Cancer 84.37 MDA-MB-231/ATCC 97.70 HDA-MB-468 97.38 MDA		96.90				
SNB-19 9155 U251 9779 Welanoma 114,53 M14 10701 MDA.MB-435 108,35 SK-MEL-2 96,88 SK-MEL-28 89,54 SK-MEL-28 8501 Doratina Cancer 0VCAR-3 IGROV1 108,50 OVCAR-5 93,72 OVCAR-5 93,72 OVCAR-5 93,72 OVCAR-5 93,72 OVCAR-5 93,72 OVCAR-5 93,72 OVCAR-6 89,43 A498 92,12 ACHN 97,37 CAKI-1 87,92 RXF 1933 95,22 SN12C 103,72 TK-10 98,84 UO-31 82,35 Prostate Cancer 97,70 MDA-MB-231/ATCC 97,70 HDA-MB-231/ATCC 97,38 MDA-MB-468 97,38 Mean <td></td> <td></td> <td></td> <td>F I</td> <td></td>				F I		
Melanoma MALME-3M 114.53 M14 10701 MDA-MB-435 108.95 SK-MEL-2 98.88 SK-MEL-2 98.89.54 SK-MEL-28 89.54 SK-MEL-28 93.39 UACC-627 111.73 UACC-627 111.73 UACC-627 111.76 OVCAR-3 111.76 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-5 94.70 SK-CV-3 98.40 Venal Cancer 786-0 89.43 A498 92.12 ACHN 97.37 CAKL1 87.32 SN12C 103.72 TK-10 98.84 UO-31 782-0 89.99 PC-3 88.99 DU-145 113.81 3reast Cancer PC-3 84.57 BT-54.9 90.71 T-47D 104.50 MDA-MB-231/ATCC 97.70 MDA-MB-468 97.38 MEAN 99.55 Delta 17.20 Range 476.1		91.55				
MAL/ME-3M 114.53 M14 10701 MDA-MB-435 108.35 SK-MEL-2 98.58 SK-MEL-28 89.34 SK-MEL-26 8501 UACC-257 111.73 UACC-262 8501 Dvarian Cancer 108.50 OVCAR-3 111.76 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-6 98.53 NCI/ADR-RES 94.70 SK-0V-1 108.50 OVCAR-7 98.34 ACHN 97.37 CAK11 87.32 ACHN 97.37 CAK11 82.35 Prostate Cancer 82.35 Prostate Cancer 82.35 PC-3 88.99 DU-145 11381 Breast Cancer 87.26 MDA-MB-231/ATCC 97.26 MDA-MB-231/ATCC 97.26 MDA-MB-488 97.38 MDA-MB-488 97.38 MDA-MB-488 97.38		97.79		•		
MDA-MB-435 108.95 SK-MEL-2 98.58 SK-MEL-28 895.4 SK-MEL-5 93.09 UACC-257 111.73 UACC-62 8501 Ovarian Cancer 108.50 OVCAR-3 111.76 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-6 89.40 SK-OV-3 98.40 Sk-OLDR-RES 94.70 SK-CV-3 98.40 Strait 95.22 SN12C 103.72 TK-10 98.34 A498 92.12 ACHN 97.31 Breast Cancer 97.3 PC-3 88.99 DU-145 113.81 Breast Cancer 90.71 MCF7 87.26 MDA-MB-231/ATCC 97.70 MDA-MB-468 97.38 Deta 17.20		114.52				
MDA-MB-435 108.95 SK-MEL-2 98.58 SK-MEL-28 895.4 SK-MEL-5 93.09 UACC-257 111.73 UACC-62 8501 Ovarian Cancer 108.50 OVCAR-3 111.76 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-6 89.40 SK-OV-3 98.40 Sk-OLDR-RES 94.70 SK-KOV-3 98.40 Sh12C 103.72 TK-10 98.34 A498 92.12 ACHN 97.31 RXF 333 95.22 SN12C 103.72 TK-10 98.34 JBreat Cancer 97.3 PC-3 88.99 DU-145 113.81 Breat Cancer 90.71 MCF7 87.26 MDA-MB-231/ATCC 97.78 <		107.01				
SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-5 SK-MEL-7 SK-	MDA-MB-435	108.95		-		
SK-MEL-5 93.09 UACC-257 111.73 UACC-257 8501 DiGRCV1 108.50 OVCAR-3 111.76 OVCAR-3 111.76 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-8 98.53 NCI/ADR-RES 94.70 SK-0V-3 98.40 Renal Cancer 786-0 89.43 A498 92.12 ACHN 97.37 CAKL-1 87.32 RXF 393 95.12 SN12C 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer PC-3 88.99 DU-145 11381 Bite ast Cancer PC-3 88.99 DU-145 11381 Bite ast Cancer MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.38						
UACC-257 11173 UACC-262 8501 Ovarian Cancer IGROV1 108.50 OVCAR-3 111.76 OVCAR-3 98.172 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-8 98.40 Renal Cancer 786-0 89.43 A498 92.12 ACHN 97.37 CAKI-1 87.32 SN12C 103.72 TK-10 98.34 UO-31 82.35 Prostate Cancer PC-3 88.39 DU-145 11381 Sreast Cancer MDF/MJB-231/ATCC 97.70 HS 578T 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-231/ATCC 97.78 HS 678T 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-231/ATCC 97.78 HS 678T 90.55 Delta 17.20 Range 47.61						
UACC-62 8501 Dvarian Cancer IGROV1 108.50 OVCAR-3 111.76 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-5 93.72 OVCAR-8 98.53 NCI/ADR-RES 94.70 SK-OV-3 98.40 Renal Cencer 786-0 89.43 A498 92.12 ACHN 97.37 CAKI-1 87.32 RXF 393 95.02 SN12C 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer PC-3 88.99 DU-145 11381 Breast Cancer MDA-MB-231/ATCC 97.70 H5 578T 84.57 BT-549 9071 T-47D 104.50 MDA-MB-231/ATCC 97.70 H5 578T 84.57 BT-549 9071 T-47D 10450 MDA-MB-231/ATCC 97.70 H5 678T 84.57 BT-549 9071 T-47D 10450 BT-549 9071 T-47D 90 BT-549 9071 T-47D 90 BT-549 9071 T-47D 90 BT-549 9071 BT-549 9071						
Dvarian Cancer IGROV1 108:50 OVCAR-3 11176 OVCAR-4 86:17 OVCAR-5 93:72 OVCAR-5 93:72 OVCAR-8 98:53 NCI/ADR-RES 94:70 SK-OV-3 98:40 Renal Cancer 786-0 89:43 A498 92:12 ACHN 97:37 CAKI-1 87:92 SN12C 103:72 TK-10 98:84 UO-31 82:35 Prostate Cancer PC-3 88:99 DU-145 11381 Sreast Cancer MDA-MB-231/ATCC 97:70 HS 678T 84:65 BT-549 90:71 T-47D 104:50 MDA-MB-231/ATCC 97:70 HS 678T 84:57 BT-549 90:71 T-47D 104:50 MDA-MB-231/ATCC 97:70 HS 678T 84:57 BT-549 90:71 T-47D 104:50 MDA-MB-468 97:98 Mean 99:55 Delta 17:20 Range 47:51	UACC-62					
OVCAR-3 111.76 OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-8 98.53 NCI/ADR-RES 94.70 SK-OV-3 98.40 Renal Cancer 89.43 A498 92.12 ACHN 97.37 CAKI-1 87.92 RXF 393 95.02 SN1/2C 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer 97.70 PC-3 88.99 DU-145 113.81 Breast Cancer 97.70 MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Delta 17.20 Range 47.61	Ovarian Cancer					
OVCAR-4 86.17 OVCAR-5 93.72 OVCAR-8 94.70 SK-CV-3 98.40 Renal Cancer 89.43 786-0 89.43 A498 92.12 ACHN 97.37 CAKI-1 87.32 RKF 393 95.02 SN12C 103.72 TK-10 98.84 UO-31 98.34 UO-31 88.39 DU-145 113.81 Breast Cancer 77.0 HS 578T 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.38 Delta 17.20 Range 47.61						
OVCAR-5 93.72 OVCAR-8 98.53 NCI/ADR-RES 94.70 SK-CV-3 98.40 Renal Cancer 97.37 CAKH 97.37 ShitzC 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer 82.95 DU-145 113.81 Breast Cancer 87.26 MDA-MB-231/ATCC 97.70 MDA-MB-468 97.38 Delta 17.20 Range 4761						
OVCAR-8 9653 NCI/ADR-RES 9470 SK-CV-3 98.40 Renal Cancer 9212 ACHN 97.37 CAKL1 87.92 RXF 393 95.02 SN12C 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer 82.99 DU-145 113.81 Breast Cancer 87.26 MCF7 87.26 MCF7 87.26 MDA-MB-231/ATCC 97.98 Mean 99.55 Delta 17.20 Range 47.61				-		
SK-CV-3 98.40 Renal Cancer 89.43 A498 92.12 ACHN 97.37 CAK1 87.92 RXF 393 95.02 SN12C 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer 97.07 MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Deita 17.20 Range 47.61	OVCAR-8	98.53				
Renal Cancer 89.43 786-0 89.43 A498 92.12 ACHN 97.37 CAKI-1 87.32 RXF.393 95.02 SN12C 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer 90.71 PC-3 88.99 DU-145 113.81 Breast Cancer 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.38 Mean 99.55 Delta 17.20 Range 47.61						
786-0 89,43 A498 92,12 ACHN 97,37 CAKI-1 87,92 RXF 393 95,02 SN12C 103,72 TK-10 98,84 UO-31 82,35 Prostate Cancer 92,03 PC-3 88,99 DU-145 113,81 Breast Cancer 97,70 MCF7 87,26 MDA-MB-231/ATCC 97,70 HS 578T 84,57 BT-549 90,71 T-47D 104,50 MDA-MB-468 97,98 Mean 99,55 Deita 17,20 Range 47,61	SK-UV-3 Renal Cancer	98.40				
A498 92.12 ACHN 97.37 CAKI-1 87.92 RXF 393 95.02 SN12C 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer PC-3 88.99 DU-145 113.81 Breast Cancer MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Delta 17.20 Range 47.51	786-0	89.43		_		
CAKI-1 87.92 RXF 393 95.02 SN12C 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer 90.113.81 Breast Cancer 86.99 DU-145 113.81 Breast Cancer 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Deita 17.20 Range 47.61	A498	92.12		-		
RXF 393 95.02 SN12C 103.72 TK-10 98.84 UO-31 82.35 PC-3 88.99 DU-145 113.81 Breast Cancer 77.0 MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 90.71 T-470 104.50 MDA-MB-468 97.98 Mean 99.55 Delta 17.20 Range 47.61				<u> </u>		
SN12C 103.72 TK-10 98.84 UO-31 82.35 Prostate Cancer 88.99 DU-145 113.81 Breast Cancer 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Deita 17.20 Range 47.61				_		
TK-10 98.84 UO-31 82.35 Prostate Cancer 90.145 PC-3 88.99 DU-145 113.81 Breast Cancer MCF7 MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 9071 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Deita 17.20 Range 47.61						
Prostate Cancer PC-3 88.99 DU-145 113.81 Breast Cancer MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 90.711 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Delta 17.20 Range 47.61	TK-10	98.84				
PC-3 88.99 DU-145 11381 Breast Cancer 87.26 MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 9071 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Delta 17.20 Range 47.61		82.35				
DU-145 11381 Breast Cancer MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.57 BT-549 9071 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Delta 17.20 Range 47.61		88 99				
Breast Cancer MCF7 87.26 MDA-MB-231/ATCC 97.70 HS 578T 84.87 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.38 Mean 99.55 Delta 17.20 Range 47.61						
MDA-MB-231/ATCC 97.70 HS 578T 84.87 BT-549 90.71 T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Delta 17.20 Range 47.61	Breast Cancer					
HS 578T 84.57 BT-549 9071 T-470 104.50 MDA-MB-468 97.38 Mean 99.55 Delta 17.20 Range 47.61						
BT-549 9071 T-470 104.50 MDA-MB-468 97.98 Mean 99.55 Delta 17.20 Range 47.61	HS 578T	84.57				
T-47D 104.50 MDA-MB-468 97.98 Mean 99.55 Delta 17.20 Range 47.61	BT-549	90.71				
Mean 99.55 Delta 17.20 Range 47.61	T-47D					
Delta 17.20 Range 47.61	MDA-MB-468	86.16				
Range 47.61						
150 100 50 0 -50 -100 -15						
		150	100 50	0 -50	-100 -150	
		11715)	1555	1.45.0		

One dose experimental data of compound 4.70 (NSC 764197)

Developmental Ther	apeutics rogram	NSC: D-767525/1	Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012	
One Dose Me	an Graph	Experiment ID: 1209OS49		Report Date: May 09, 20	
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Perc		cent	
Leukemia CCRF-CEM	83.17				
HL-60(TB)	96.78				
K-562	99.54		• •		
MOLT-4	90.32		I		
RPM-8226	97.79				
SR	83.55				
Non-Small Cell Lung Cancer	0400				
A549/ATCC HOP-62	94.90 102.40				
HOP-92	119.76				
NCI-H226	106.70		-		
NCI-H23	102.20				
NCI-H322M	103.83		• •		
NCI-H460	106.09		•		
NCI-H522	79.70				
Colon Cancer COLO 205	103.80				
HCC-2998	96.52		1		
HCT-116	103.71				
HCT-15	103.34		(L		
HT29	98.56				
KM12	103.34				
SW-620	107.00				
CNS Cancer SF-268	103.85				
SF-539	105.87		1		
SNB-19	102.26				
SNB-75	104.20				
Melanoma					
LOX IMVI	94.17				
MALME-3M M14	96.03 101.30				
MDA-MB-435	103.73				
SK-MEL-28	11641				
SK-MEL-5	98.95				
UACC-62	106.10		-		
Ovarian Cancer					
IGROV1	103.54				
OVCAR-3 OVCAR-4	107.15 114.96				
OVCAR-5	106.74				
OVCAR-8	100.36		—		
NCI/ADR-RES	103.41				
SK-OV-3	100.41		•		
Renal Cancer	100.00				
786-0	102.89				
A498 ACHN	117.70 104.13				
CAKI-1	92.73		—		
RXF 393	108.98		-		
SN12C	103.21				
TK-10	112.27				
UO-31	85.38				
Prostate Cancer PC-3	99.56				
DU-145	106.48				
Breast Cancer	100.10				
MCF7	101.86				
MDA-MB-231/ATCC	108.17		-		
HS 578T	106.74				
BT-549 T-47D	105.66 94.59				
MDA-MB-468	104.02				
Mean	101.95				
Delta	22.25				
Range	40.06				
	150	100 50	0 -50	-100 -150	
	150	100 50	-50	-100 -100	

One dose experimental data of compound 4.71 (NSC 767525)

Developmental Ther	apeuties riogram	NSC: D-767526/1	Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012	
One Dose Me	an Graph	Experiment ID: 1209	9OS49	Report Date: May 09, 201	
Panel/Cell Line	Growth Percent	Mean Growth	Mean Growth Percent - Growth Per		
Leukemia	57.00				
CCRF-CEM HL-60(TB)	57.02 54.58				
K-562	52.08				
MOLT-4	34.17				
RPM-8226	37.57				
SR	36.58				
Non-Small Cell Lung Cancer A549/ATCC					
A549/ATCC	75.16		P		
HOP-62	97.11				
HOP-92 NCI-H226	72.15 90.41				
NCI-H23	83.23				
NCI-H322M	115.22				
NCI-H460	92.31				
NCI-H522	54.76				
Colon Cancer					
COLO 205	85.58				
HCC-2998	92.85				
HCT-116 HCT-15	60.37 84.76				
HC1-15 HT29	62.01				
KM12	87.07				
SW-620	90.99		_		
CNS Cancer					
SF-268	94.58				
SF-539	98.71				
SNB-19 SNB-75	89.01 89.50				
Velanoma	89.50				
LOX MVI	90.55		_		
MALME-3M	76.23		-		
M14	88.89		-		
MDA-MB-435	97.13				
SK-MEL-28 SK-MEL-5	101.61 81.56				
UACC-62	62.37				
Ovarian Cancer					
IGR0V1	74.39				
OVCAR-3	87.03				
OVCAR-4	8621				
OVCAR-5 OVCAR-8	9921 95.40				
NCI/ADR-RES	69.83				
SK-OV-3	90.29				
Renal Cancer					
786-0	91.54				
A498	94.14				
ACHN	94.05				
CAKI-1 RXF 393	42.19 90.17				
SN12C	86.05		-		
TK-10	95.24				
UO-31	68.77		—		
Prostate Cancer PC-3	39.75				
DU-145	105.20				
Breast Cancer	100.20				
MCF7	90.15				
MDA-MB-231/ATCC	99.20				
HS 578T	100.52				
BT-549 T-47D	90.96 66.07				
MDA-MB-468	82.26				
Mean	80.46				
Delta	46.29 81.05				
Range	01.00				
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 4.72 (NSC 767526)

Developmental The	upeuties riogram	NSC: D-767527 / 1	Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012	
One Dose Me	an Graph	Experiment ID: 1209	9OS49	Report Date: May 09, 201	
Panel/Cell Line	Growth Percent	Mean Growth	Mean Growth Percent - Growth Per		
	60.97				
CCRF-CEM HL-60(TB)	62.87 67.45				
K-562	66.37				
MOLT-4	39.80				
RPM-8226	57.52				
SR	62.16				
Non-Small Cell Lung Cancer A549/ATCC	10700393020				
A549/ATCC	78.43		-		
HOP-62	99.35				
HOP-92	100.18				
NCI-H226	8241				
NCI-H23 NCI-H322M	93.51 91.49				
NCI-H460	98.05				
NCI-H522	68.81				
Colon Cancer					
COLO 205	92.80		-		
HCC-2998	110.48				
HCT-116	86.97		1		
HCT-15	86.13				
HT29	81.73				
KM12 SW-620	96.23 100.35				
CNS Cancer	100.50				
SF-268	82.53		- I		
SF-539	94.91		_		
SNB-19	80.27				
SNB-75	65.31				
Ielanoma LOX IMVI	94.29				
MALME-3M	91.55				
M14	87.56		•		
MDA-MB-435	98.19		_		
SK-MEL-28	100.70				
SK-MEL-5	90.75		-		
UACC-62	82.52				
Ovarian Cancer IGROV1	99.95				
OVCAR-3	89.51				
OVCAR-4	91.24		-		
OVCAR-5	102.78				
OVCAR-8	91.49		-		
NCI/ADR-RES	76.10				
SK-OV-3	95.19				
Renal Cancer 786-0	88.74				
A498	96.03		_		
ACHN	90.58				
CAKI-1	68.79				
RXF 393	99.42				
SN12C	92.03				
TK-10 UO-31	98.37 58.05				
Prostate Cancer	00.00				
PC-3	60.29				
DU-145	103.59				
Breast Cancer	00/0				
MCF7	83.16				
MDA-MB-231/ATCC HS 578T	96.59 90.84				
BT-549	97.90				
T-47D	71.13				
MDA-MB-468	90.07		•		
Mean	85.89				
Delta	46.09				
Range	70.58				
	2 2 ANTES				
	150	100 50	0 -50	-100 -150	

One dose experimental data of compound 4.73 (NSC 767527)

Developmental Ther	apeauost togram	NSC: D-767528/1	Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012
One Dose Me	an Graph	Experiment ID: 1209	OS49	Report Date: May 09, 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent
	92.29			
CCRF-CEM HL-60(TB)	100.00			
K-562	86.92			
MOLT-4	8971			
RPM-8226	99.59		• 1	
SR	8241			
Non-Small Cell Lung Cancer	0001		L	
A549/ATCC HOP-62	9821		-	
HOP-92	105.24 107.30		2	
NCI-H226	96.51			
NCI-H23	105.25		•	
NCI-H322M	103.09			
NCI-H460	105.79		• •	
NCI-H522	97.94		- 1	
Colon Cancer COLO 205	11231			
HCC-2998	109.82			
HCT-116	98.75			
HCT-15	103.31			
HT29	95.93		– 1	
KM12	107.38			
SW-620	109.76		-	
CNS Cancer	104.87			
SF-268 SF-539	104.87 103.72		1	
SNB-19	109.80			
SNB-75	90.73			
Melanoma				
LOX IMVI	97.72			
MALME-3M	102.58			
M14 MDA-MB-435	102.84 112.53			
SK-MEL-28	104.46			
SK-MEL-5	102.54			
UACC-62	119.28			
Ovarian Cancer				
IGR0V1	104.55		1	
OVCAR-3	106.09			
OVCAR-4 OVCAR-5	111.D6 102.76			
OVCAR-8	104.18			
NCI/ADR-RES	105.47			
SK-OV-3	100.37			
Renal Cancer				
786-0	99.12			
A498 ACHN	113.33 106.77			
CAKI-1	93.78			
RXF 393	113.06			
SN12C	102.74			
TK-10	104.55			
UO-31 Prostate Cancer	83.96			
Prostate Cancer PC-3	100.33			
DU-145	111.37			
Breast Cancer				
MCF7	96.15			
MDA-MB-231/ATCC	109.05			
HS 578T BT-549	108.15 102.82			
T-47D	102.52			
MDA-MB-468	112.54			
Mean	102.75			
Delta Range	20.34 36.87			
Italiye	00.07			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.74 (NSC 767528)

Developmental Ther	apeuticsTrogram	NSC: D-767529/1	Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012
One Dose Me	an Graph	Experiment ID: 1209	90549	Report Date: May 09, 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Percent	cent
Leukemia CCRF-CEM	9361			
HL-60(TB)	10281			
K-562	95.25			
MOLT-4	90.95			
RPM-8226	97.85		• I	
SR	85.38			
Non-Small Cell Lung Cancer A549/ATCC				
A549/ATCC	94.86			
HOP-62 HOP-92	97.57 93.73			
NCI-H226	103.82		I	
NCI-H23	96.53		1	
NCI-H322M	98.03		• I	
NCI-H460	107.59		-	
NCI-H522	86.29			
Colon Cancer	10511			
COLO 205 HCC-2998	105.14 101.85		7	
HCC-2998 HCT-116	101.55			
HCT-15	104.70		- I	
HT29	99.91		• •	
KM12	108.48		-	
SW-620	103.B4		•	
CNS Cancer	102 72			
SF-268 SF-539	102.72 109.89			
SNB-19	109.48			
SNB-75	76.18			
Aelanoma				
LOX IMVI	90.90			
MALME-3M	103.58		1	
M14 MDA MR-435	103.15		I	
MDA-MB-435 SK-MEL-28	109.76 106.11			
SK-MEL-20	105.71			
UACC-62	109.70		-	
Ovarian Cancer				
IGR0V1	107.42			
OVCAR-3	107.20			
OVCAR-4 OVCAR-5	104.06 104.57			
OVCAR-8	105.10			
NCI/ADR-RES	99.50			
SK-OV-3	100.04			
Renal Cancer	101 57			
786-0 A498	101.57 115.57			
ACHN	100.91			
CAKI-1	87.17			
RXF 393	114.51			
SN12C	100.94			
TK-10	101.09			
UO-31 Prostate Cancer	70.87			
PC-3	95.09			
DU-145	105.39			
Breast Cancer				
MCF7	100.36			
MDA-MB-231/ATCC	122.73			
HS 578T BT-549	101.08 103.00			
T-47D	99.48			
MDA-MB-468	112.77		_	
Mean Delta	101.04 30.17			
Range	51.86			
, tange				
	150	100 50	0 -50	-100 -150
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.75 (NSC 767529)

Developmental Ther	apeutics rogram	NSC: D-767530/1	Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012
One Dose Me	an Graph	Experiment ID: 1209	OS49	Report Date: May 09 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Percent	cent
	00.74			
CCRF-CEM	92.74 98.94			
HL-60(TB) K-562	98.79			
MOLT-4	83.99			
RPM-8226	100.03		– 1	
SR	80.47			
Non-Small Cell Lung Cancer				
A549/ATCC	98.47			
HOP-62	110.50 103.52			
HOP-92 NCI-H226	108.88		I	
NCI-H23	103.37			
NCI-H322M	108.54		•	
NCI-H460	107.44		•	
NCI-H522	91.95		_	
Colon Cancer]]	
COLO 205	105.94			
HCC-2998	102.35		F	
HCT-116 HCT-15	103.13 106.27			
HT29	98.30			
KM12	100.69			
SW-620	108.28		-	
CNS Cancer				
SF-268	100.58			
SF-539	98.02			
SNB-19 SNB-75	100.80 97.46			
Melanoma	57,46			
LOX IMVI	104.43			
MALME-3M	98.89		–	
M14	106.79		4	
MDA-MB-435	106.10		L	
SK-MEL-28	101.55 104.95		r l	
SK-MEL-5 UACC-62	109.80			
Ovarian Cancer	100.00			
IGR0V1	107.88			
OVCAR-3	102.50			
OVCAR-4	123.34			
OVCAR-5 OVCAR-8	105.66 103.86		1	
NCI/ADR-RES	107.34			
SK-OV-3	104.96			
Renal Cancer				
786-0	10251		•	
A498	112.98		-	
ACHN	105.90			
CAKI-1 RXF 393	187.29 110.28			
SN12C	105.75			
TK-10	99.09		-	
UO-31	85.34			
Prostate Cancer PC-3	94.00			
DU-145	110.02			
Breast Cancer				
MCF7	101.24		•	
MDA-MB-231/ATCC	115.88			
HS 578T	10781			
BT-549 T-47D	106.85 108.86			
MDA-MB-468	108.31			
Mean	104.72			
Delta	24.25			
Range	106.82			
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.76 (NSC 767530)

Developmental Ther	apeuticsTrogram	NSC: D-767531/1	Conc: 1.00E-5 Molar	Test Date: Sep 24, 2012
One Dose Me	an Graph	Experiment ID: 1209	0549	Report Date: May 09, 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
	0.C P.5			
CCRF-CEM HL-60(TB)	96.85 96.23			
K-562	93.20		_	
MOLT-4	83.15			
RPM-8226	102.31			
SR	77.13			
Non-Small Cell Lung Cancer A549/ATCC				
	97.29			
HOP-62	99.01			
HOP-92 NCI-H226	100.17 101.08			
NCI-H23	98.79			
NCI-H322M	102.15			
NCI-H460	107.01		_	
NCI-H522	82.54			
Colon Cancer	The second s			
COLO 205	106.59			
HCC-2998	99.57			
HCT-116	100.16			
HCT-15 HT29	10981 96.11			
KM12	104.76			
SW-620	103.82			
CNS Cancer				
SF-268	98.40			
SF-539	106.31			
SNB-19	105.10			
SNB-75 Aelanoma	79.57			
LOX IMVI	90.84			
MALME-3M	98.28			
M14	104.90		-	
MDA-MB-435	110.24		-	
SK-MEL-28	102.05		<u> </u>	
SK-MEL-5	102.24		1 1	
UACC-62	103.50		•	
Ovarian Cancer IGROV1	105.40			
OVCAR-3	103.71		•	
OVCAR-4	120.00			
OVCAR-5	110.51		-	
OVCAR-8	105.06			
NCI/ADR-RES	100.23		L	
SK-OV-3	97.91			
Renal Cancer 786-0	102.61			
A498	114.08			
ACHN	99.42			
CAKI-1	110.26		_	
RXF 393	119.03			
SN12C	96.74			
TK-10 UO-31	106.24 64.25			
Prostate Cancer	04.20			
PC-3	92.01			
DU-145	105.08		•	
Breast Cancer				
MCF7	101.43			
MDA-MB-231/ATCC	106.39			
HS 578T BT-549	102.17 103.76			
T-47D	97.19		•	
MDA-MB-468	105.40		-	
Maan	100.51			
Mean Delta	100.51 36.26			
Range	55.75			
	10000			
	150	100 50	0 -50	-100 -150
	100			

One dose experimental data of compound 4.77 (NSC 767531)

One Dose Me				
one bose me	an Graph	Experiment ID: 1209	OS49	Report Date: May 09, 20
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent
Leukemia	00.00			
CCRF-CEM HL-60(TB)	88.52 95.41			
K-562	87.61			
MOLT-4	82.80			
RPM-8226	91.59			
SR	77.01			
Non-Small Cell Lung Cancer A549/ATCC			L	
	96.53			
HOP-62 HOP-92	97.43 90.88			
NCI-H226	98.40			
NCI-H23	102.29		- I	
NCI-H322M	97.54		• •	
NCI-H460	102.38		• •	
NCI-H522	87.38			
Colon Cancer	100.07			
COLO 205	103.97			
HCC-2998 HCT-116	98.D2 99.15		[]	
HCT-15	108.30			
HT29	103.25		- I	
KM12	106.45		-	
SW-620	100.02			
CNS Cancer	100.20			
SF-268 SF-539	100.29 109.16			
SNB-19	105.59			
SNB-75	92.32		⊢ I	
Aelanoma				
LOX IMVI	92.33			
MALME-3M	95.03			
M14 MDA-MB-435	106.35 113.93			
SK-MEL-28	108.44			
SK-MEL-5	100.58		4	
UACC-62	102.75		•	
Ovarian Cancer				
IGROV1	92.78			
OVCAR-3 OVCAR-4	99.72 115.23			
OVCAR-5	111.59			
OVCAR-8	99.D4			
NCI/ADR-RES	96.08		•	
SK-OV-3	98.96			
Renal Cancer	102.09			
786-0 A498	102.09			
ACHN	100.76			
CAKI-1	88.76			
RXF 393	111.53			
SN12C	101.88		<u> </u>	
TK-10 UO-31	106.75 64.80			
Prostate Cancer	04.50			
PC-3	90.39			
DU-145	104.52			
Breast Cancer	- 12-14-14-14-14-14-14-14-14-14-14-14-14-14-			
MCF7	102.76			
MDA-MB-231/ATCC	105.56			
HS 578T BT-549	101.50 99.97		1	
T-47D	97.46			
MDA-MB-468	119.30			
	00.27			
Mean Delta	99.27 34.47			
Range	54.50			
	150	100 50	0 -50	-100 -150
	150	100 50	0 -50	-100 -150

One dose experimental data of compound 4.78 (NSC 767532)

Five dose experimental data of compound 4.21 (NSC 764190)

		Natio	onal	Cano	er Ir			evelop Testir				peut	ics Progra	m			
NSC : D - 764	190 / 1				Exp	erimer	nt ID : 1	204NS58				Tes	t Type : 08		Units : N	lolar	
Report Date :	May 09	2013			Tes	t Date	: April 3	30, 2012				QNS	S :		MC :		
COMI : LSC-K	U-JJ-II-	134-1 (9	91319)		Sta	in Rea	gent : S	RB Dual-	Pass I	Related	i i	SSF	PL:0X2L				
	0000						-	ncentration	172	12.12	a ar						
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mear -7.0	-6.0	-5.0	-4.0	-8.0	-7.0	ercent G -6.0	-5.0	-4.0	GI50		TGI	1	LC50
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.703 0.718 0.265 0.512 0.882 0.510	2.625 2.622 1.739 1.901 2.369 1.775	2.566 2.615 1.696 1.895 2.353 1.761	2.539 2.600 1.611 1.809 2.280 1.671	2046 2115 1183 1432 1579 1292	1.395 1.285 0.584 0.753 1.047 0.618	1.537 1.507 0.616 0.884 1.095 0.679	97 100 97 100 99 99	95 99 91 93 94 92	70 73 62 66 47 62	36 30 22 17 11 9	43 41 24 27 14 13	3.85E-6 3.43E-6 2.00E-6 2.15E-6 8.59E-7 1.66E-6	~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4
Non-Small Cell Lung A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H223 NCI-H322M NCI-H460 NCI-H522	Cancer 0.256 0.357 1.100 0.549 0.524 0.723 0.368 0.829	1.450 0.938 1.471 1.348 1.519 1.609 2.742 1.749	1.415 0.883 1.460 1.292 1.479 1.558 2.742 1.630	1.427 0.901 1.439 1.186 1.427 1.512 2.708 1.656	1142 0914 1325 1000 1060 1488 2206 1422	0.816 0.813 1.264 0.918 0.885 1.324 0.725 1.242	0.830 0.793 1.245 0.888 0.872 1.243 0.723 1.169	97 91 97 93 96 94 100 87	98 94 91 80 91 89 99 90	74 96 61 57 54 86 77 64	47 79 44 46 36 68 15 45	48 75 39 43 35 59 15 37	7.67E-6 > 1.00E-4 4.40E-6 4.35E-6 1.66E-6 > 1.00E-4 2.75E-6 5.46E-6	~ ~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	~ ~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.277 0.442 0.174 0.280 0.313 0.208 0.368	1.078 1.641 1.593 1.393 1.540 1.143 2.384	1.108 1.541 1.550 1.324 1.488 1.127 2.281	1.094 1.622 1.473 1.265 1.440 1.091 2.256	1.091 1414 0668 1072 1200 1065 1856	0.886 1.286 0.465 0.645 0.959 0.674 1.355	0.914 1.170 0.515 0.621 0.907 0.630 1.389	104 92 97 93 96 98 95	102 98 91 88 92 94 94	102 81 35 71 72 92 74	76 70 20 33 53 50 49	80 61 24 31 48 45 51	> 1.00E-4 > 1.00E-4 5.35E-7 3.51E-6 4.26E-5 9.92E-6	~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.553 1.189 0.887 0.466 0.533 0.355	1.688 2.860 2.218 1.307 1.145 1.720	1.607 2.755 2.186 1.239 1.087 1.688	1.634 2.730 2.167 1.218 1.077 1.750	1469 1874 2091 1062 1017 1044	1.080 1.536 1.719 0.887 0.882 0.910	1.066 1.511 1.700 0.898 0.890 0.886	93 94 98 92 90 98	95 92 96 89 89 102	81 41 90 71 79 50	46 21 62 50 57 41	45 19 61 51 58 39	7.85E-6 6.67E-7 > 1.00E-4 > 1.00E-4 > 1.00E-4 1.11E-6	~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.274 0.670 0.347 0.473 0.971 0.464 0.503 0.722 0.960	2.115 1.404 1.379 2.136 1.699 1.273 2.555 1.713 2.305	2.079 1.340 1.345 2.128 1.604 1.300 2.503 1.625 2.274	2.034 1.352 1.318 2.104 1.721 1.288 2.506 1.638 2.246	1.301 1.314 1.169 1.893 1.605 1.213 1.571 1.286 1.800	0.570 1.161 0.821 1.457 1.448 1.088 0.827 1.091 1.406	0.563 1.141 0.920 1.426 1.414 1.089 0.773 1.130 1.425	98 91 97 100 87 103 97 91 98	96 93 94 98 103 102 98 92 96	56 88 80 85 87 93 52 57 62	16 67 46 59 66 77 16 37 33	16 64 55 57 61 77 13 41 35	1.40E-6 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 1.14E-6 2.23E-6 2.66E-6	~ ~ ~ ~ ~ ~ ~	100E-4 100E-4 100E-4 100E-4 100E-4 100E-4 100E-4 100E-4 100E-4	~ ~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-4 OVCAR-8 NCI/ADR-RES SK-OV-3	0.620 0.545 0.661 0.531 0.320 0.556 0.340	1.843 1.398 1.536 1.470 1.398 1.829 0.888	1.852 1.382 1.505 1.429 1.363 1.815 0.894	1.785 1.408 1.395 1.326 1.364 1.969 0.875	1.571 1007 0962 1.281 1176 1462 0835	1.331 0.911 0.889 1.108 0.880 1.144 0.705	1.278 0.866 0.875 1.073 0.916 1.132 0.694	101 98 96 97 99 101	95 101 84 85 97 111 98	78 54 34 80 79 71 91	58 43 26 61 52 46 67	54 38 24 58 55 45 65	<pre>> 1.00E-4 2.34E-6 4.83E-7 > 1.00E-4 > 1.00E-4 7.03E-6 > 1.00E-4</pre>	~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.509 1.232 0.279 0.628 0.555 0.590 0.896 0.685	2.003 1.875 1.249 2.289 1.020 2.401 1.472 1.815	1.794 1.233 2.198 0.987 2.370 1.447	1.953 1.738 1.200 2.139 0.972 2.333 1.505 1.680	1596 0848 1667 0874 1912 1328	1.305 1.428 0.589 1.206 0.828 1.485 1.171 1.300	1.316 1.461 0.608 1.186 0.738 1.423 1.103 1.263	100 87 98 95 93 98 96 90	96 79 95 91 90 96 106 88	80 56 59 63 69 73 75 77	53 30 32 35 59 49 48 54	54 36 34 39 46 36 51	1.00E-4 1.77E-6 2.10E-6 2.83E-6 2.80E-5 9.42E-6 8.26E-6 > 1.00E-4	~ ~ ~ ~ ~ ~	100E-4 100E-4 100E-4 100E-4 100E-4 100E-4 100E-4	~ ~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4
Prostate Cancer PC-3 DU-145	0.624 0.374	1.953 1.338		1.719 1.346	1156 1260	0.986 0.902	0.978 0.882	96 100	82 101	40 92	27 55	27 53	5.80E-7 > 1.00E-4		1.00E-4 1.00E-4		1.00E-4 1.00E-4
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-463	0.264 0.515 1.090 0.700 0.624 0.596	1.498 1.280 1.835 1.738 1.338 1.051	1.340 1.801 1.696 1.321	1.490 1.317 1.789 1.698 1.294 0.923	1176 1695 1572 1138	0.988 1.625 1.278	0.897 0.963 1.595 1.248 1.007 0.579	90 108 95 96 98 74	99 105 94 96 94 72	81 86 81 84 72 21	50 62 72 56 53 10	51 59 68 53 54 -3	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 2.67E-7	~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 3.01E-5	~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4

National Cancer Institute Developmental T	velopmental Therapeut	herapeutics Program	NSC : D - 764190/1	Units :Molar	SSPL :0X2L	EXP. ID :1204NS58
	Mean Graphs		Report Date : May 09, 2013		Test Date : April 30, 2012	2
Danal/Call Lina	1-0010	GISD	1.00 ₁₀ Tai Tai	5	1-0111 CS0 1.050	0
Leukemia CCRF-CEM CCRF-CEM K552 K552 RMI-0226 SR	λλάλλα 440 2600706 2607708				*****	
NG:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2	ν ν Α4λλάγ4λά 258888888888	-11 1 11	*****			
20202000 10101-1-2030 10100-1-20300 10100-1-20300 10100-1-20300 10100-1-20300 10	v v 44&nu4nu 88024809		******		******	
0.65-288 SF-288 SF-538 SNB-19 SNB-15 UJS1	۷۷۷ ئۇم444ئ 2560008	. 1	v v v v v v 8888888			
MANUA MAU MALANE 3M MDA ME-435 SKAMEL-58 SKAMEL-58 UAACC-527 UAACC-527			888888888 *********		\$\$\$\$\$\$\$\$\$\$ *********	
OGROVING OCARA-3 OCCARA-3 OCCARA-8 OCCARA-8 SICCADA-8 SI			******			
Nation Cancer 786-0 ACHN ACHN RXF 333 RXF 333 TX-10 TX-10 TX-10 Distribution	v v 4ẻỏỏ,4ოỏ,4 8৮%,8%,8888		**************************************			
POCAS DU-145 Breast Cancer						
MCF7 MCAMB-231/ATCC HS 5781 BT-549 T-17D MDA-MB-468	v v v v v 444446 8688892		v v v v 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8		*****	
MID Delta Range	-4.94 1.63 2.57 +3 +2		4.0 0.22 0.22 		4.0 0.0 	

		Natio	onal	Cano	er Ir			evelop Testir				peuti	cs Program	n	
NSC : 751486	/ 1				Exp	erimer	nt ID : 0	912NS69)			Test	Туре : 08	Units : N	lolar
Report Date :	May 09	2013			Tes	t Date	: Dece	mber 14,	2009			QNS	:	MC :	
COMI : LSC-K	U-JJ-II-	140-1 (9	91146)		Stai	n Rea	gent : S	RB Dual	Pass	Related		SSPI	: 0X2L		
	Kriste			2012			-	ncentration	1		. 1.05				
Panel/Cell Line Leukemia	Time Zero	Ctrl	-8.7	Mear -7.7	-6.7	Densiti -5.7	es -4.7	-8.7	-7.7	ercent G -6.7	-5.7	-4.7	GI50	TGI	LC50
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226	0.349 0.717 0.257 0.598 0.685	1.650 2.673 1.660 1.955 2.365	1.647 2.438 1.633 1.932 2.332	1.656 2.401 1.531 1.790 2.329	1620 2440 1572 1837 2369	1.503 2.053 1.221 1.467 1.966	0.442 0.441 0.171 0.440 0.710	100 88 98 98 98	100 86 91 88 98	98 88 94 91 100	89 68 69 64 76	7 -38 -34 -26 1	5.96E-6 2.97E-6 3.05E-6 2.86E-6 4.49E-6	<pre>> 200E-5 872E-6 938E-6 102E-5 > 200E-5</pre>	> 2.00E-5 > 2.00E-5 > 2.00E-5 > 2.00E-5 > 2.00E-5
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H227 NCI-H322M NCI-H460 NCI-H522	Cancer 0.353 0.633 0.259 1.146 0.670 0.402 0.461 0.241 0.593	1.107 1.603 0.825 2.033 1.443 1.253 0.872 1.933 0.822	1.131 1.689 0.893 1.975 1.403 1.245 0.959 1.897 0.743	1.072 1.609 0.837 1.993 1.305 1.253 0.898 1.774 0.726	1030 1482 0845 1974 1396 1251 0883 1.801 0.748	0.893 1.369 0.800 1.859 1.285 1.077 0.838 1.625 0.684	0.171 0.421 0.069 0.308 0.114 0.116 0.335 0.108 0.210	103 108 112 93 95 98 121 98 66	95 100 102 95 82 99 106 91 58	90 87 103 93 94 99 103 92 68	72 75 95 80 80 79 92 82 40	-52 -33 -74 -73 -83 -71 -27 -55 -65	2.99E-6 3.43E-6 3.15E-6 3.15E-6 3.04E-6 4.48E-6 3.41E-6 8.47E-7	762E-6 936E-6 638E-6 638E-6 617E-6 118E-5 791E-6 479E-6	1.94E-5 > 2.00E-5 1.45E-5 1.25E-5 1.45E-5 1.45E-5 > 2.00E-5 1.83E-5 1.45E-5
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.195 0.747 0.239 0.243 0.153 0.247 0.205	1.363 1.797 1.655 1.625 0.599 1.316 1.169	1.401 1.848 1.590 1.493 0.592 1.291 1.157	1.412 1.808 1.506 1.578 0.545 1.211 1.070	1377 1848 1559 1507 0563 1216 1109	1.276 1.738 1.137 1.312 0.456 1.083 0.965	0.125 0.018 0.014 0.235 0.026 0.025 0.074	103 105 90 98 98 99	104 101 89 97 88 90 90	101 105 93 91 92 91 94	92 94 63 77 68 78 79	-36 -98 -94 -3 -83 -90 -64	4.26E-6 3.41E-6 2.43E-6 4.37E-6 2.63E-6 2.94E-6 3.18E-6	1.05E-5 6.20E-6 5.05E-6 1.82E-5 5.64E-6 5.84E-6 7.12E-6	> 2.00E-5 1.13E-5 1.05E-5 2.00E-5 1.21E-5 1.16E-5 1.59E-5
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.389 0.751 0.602 0.492 0.519 0.273	1.221 1.474 2.012 1.584 1.053 1.215	1.222 1.455 1.959 1.506 0.961 1.212	1.148 1.436 1.953 1.394 0.900 1.134	1.151 1.326 1.904 1.465 0.935 1.153	1.071 1.240 1.835 1.341 0.823 1.016	0.180 0.139 0.133 0.522 0.291 0.066	100 97 96 93 82 100	91 95 96 83 71 91	92 80 92 89 77 93	82 68 87 78 56 79	-54 -82 -78 3 -44 -76	3.44E-6 2.62E-6 3.37E-6 4.69E-6 2.31E-6 3.07E-6	8.03E-6 5.68E-6 6.76E-6 > 2.00E-5 7.28E-6 6.47E-6	1.88E-5 1.23E-5 1.36E-5 > 2.00E-5 > 2.00E-5 1.36E-5
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.105 0.844 0.297 0.349 0.714 0.451 0.409 0.559 0.662	0.600 1.419 1.005 1.193 1.044 1.374 2.182 0.993 1.960	0.568 1.415 0.993 1.199 1.026 1.416 2.172 0.915 1.991	0.528 1.255 0.951 1.166 0.992 1.303 1.984 0.929 1.784	0515 1344 0972 1164 1005 1341 2112 0907 1859	0.511 1.241 0.866 1.056 0.957 1.243 1.874 0.887 1.599	0.035 0.269 0.041 0.110 0.097 0.119 0.017 0.088 0.195	93 99 98 101 94 104 99 82 102	85 71 92 97 84 92 89 85 85	83 87 95 97 88 96 96 80 92	82 69 80 84 73 86 83 76 72	-67 -68 -86 -86 -74 -96 -84 -71	3.28E-6 2.75E-6 3.04E-6 3.33E-6 2.80E-6 3.35E-6 3.05E-6 2.89E-6 2.89E-6	7 09E-6 6.37E-6 6.07E-6 7 10E-6 5.76E-6 6.90E-6 5.80E-6 5.93E-6 6.40E-6	1.53E-5 1.47E-5 1.21E-5 1.51E-5 1.18E-5 1.42E-5 1.11E-5 1.22E-5 1.43E-5
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.479 0.536 0.347 0.488 0.228 0.283 0.460	1.057 1.373 0.633 1.192 0.780 0.945 1.157	1.007 1.298 0.622 1.162 0.758 0.970 1.141	0.902 1.281 0.589 1.113 0.759 0.933 1.112	1000 1288 0610 1087 0744 0934 1115	1.004 1.166 0.535 1.059 0.713 0.804 1.081	0.135 0.103 0.168 0.283 0.161 0.154 0.304	91 96 96 96 104 98	73 89 85 89 96 98 94	90 90 92 85 93 98 94	91 75 66 81 88 79 89	-72 -81 -52 -42 -30 -46 -34	3.57E-6 2.90E-6 2.72E-6 3.57E-6 4.20E-6 3.40E-6 4.15E-6	7 24E-6 6 07E-6 7 26E-6 9 10E-6 1 12E-5 8 58E-6 1 06E-5	1.47E-5 1.27E-5 1.94E-5 > 2.00E-5 > 2.00E-5 > 2.00E-5 > 2.00E-5
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.387 0.736 0.348 0.678 0.649 0.519 0.374 0.569	1.419 1.533 1.567 1.106 1.235 1.847 0.565 1.157	1.444 1.588 1.148 1.211 1.763 0.548	1.317 1.283 1.542 1.237 1.151 1.656 0.483 1.054	1373 1572 1246 1196 1635 0527	1.235 1.243 1.441 1.077 1.053 1.563 0.545 0.979	0.111 0.071 0.430 0.191 0.028 0.229 0.171 0.130	105 89 102 110 96 94 91 91	90 69 98 131 86 86 57 83	103 80 100 133 93 84 80 89	82 64 90 93 69 79 90 70	-71 -90 7 -72 -96 -56 -54 -77	3.24E-6 2.45E-6 6.01E-6 3.65E-6 3.60E-6 3.26E-6 3.26E-6 3.77E-6 2.73E-6	686E-6 518E-6 > 200E-5 733E-6 524E-6 768E-6 838E-6 596E-6	1.45E-5 1.09E-5 2.00E-5 1.47E-5 1.05E-5 1.81E-5 1.86E-5 1.31E-5
Prostate Cancer PC-3 DU-145	0.397 0.309	1.583 1.145		1.591 1.013		1.295 0.959	0.278 0.133	103 95	100 84	101 89	75 78	-30 -57	3.48E-6 3.21E-6	104E-5 755E-6	> 2.00E-5 1.78E-5
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-463	0.204 0.449 0.514 0.792 0.443 0.536	1.186 1.129 1.142 1.399 1.089 1.329	1.102 1.122 1.365 1.089	1.039 1.010 1.122 1.306 1.034 1.249			0.167 0.137 0.277 0.101 0.284 0.223	94 96 97 94 100 99	85 82 97 85 92 90	91 88 90 91 91 92	91 71 76 69 86 73	-18 -70 -46 -87 -36 -58	4.77E-6 2.82E-6 3.27E-6 2.65E-6 3.95E-6 2.98E-6	1.36E-5 6.39E-6 8.38E-6 5.53E-6 1.02E-5 7.17E-6	<pre>> 2.00E-5 1.45E-5 > 2.00E-5 1.16E-5 > 2.00E-5 1.73E-5</pre>

National Cancer Institute Developmental Therapeutics Program	velopmental Therapeut	tics Program	NSC :751486/1	Units :Molar	SSPL :0X2L	EXP. ID :0912NS69
	Mean Graphs		Report Date :May 09, 2013	m	Test Date :December 14	14, 2009
Panel/Cell Line	Log 10 GI50	GI50	Loa ₁₀ TGI T	TGi	Log In LC50 LC50	50
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 MOLT-4	ស់សុំសុំសុំ អត្ថិតិភ្លូង អត្ថិទីភ្លូង អតី		v v 600 600 600 600 600 600 600 600 600 60		22222 44444 *****	
Nov Small Cell Lung Cancer A55-901 Cell Lung Cancer 1002-55 NOC1+1236 NOC1+1236 NOC1+1236 NOC1+1430 NOC1+1430 NOC1+1450 NOC1+1450 NOC1+1450	ល់លំល់លំលំសំសំលុំចំ លូ443២លុខសេ42		ისი დიდი ისი დიდი 1917 191	1	v v 144444444 1552022542	
COST COST COST COST COST COST COST COST	ស់លុំសំសុំសុំសុំសុំ 64.6688.828		4.00.44.00.0 820244.00 820244.00 810044.00 81004		v v 44444444 5.8856248	
CNS-1208 SNF-2285 SNF-2295 SNE-139 SNRF-19 SNRF-19 SNRF-75 SNR	လံလုံလုံလုံလုံလုံ ဗန္ကာဗုန္က ဗန္ကာဗုန္က		× 5555 177 177 174 176		v v 44470 700 7889 700 784 700 784 700	
MERCARAN KOXINNA MIALME-3M MIALME-33 SKAREL-28 SKAREL-28 SKAREL-28 SKAREL-28 OCO2557	იბიტიდიდი გივიკიდიდი გივიკიდი		άθάφοροφό 2010-25-202 2010-25-202 2010-25-202		6888888994 1111111111	
Ovarancer Ovarancer Oversite a Oversite a Oversite a Siscov a Siscov a	လုံလုံလုံလုံလုံလုံလုံ ဗိုသူကုန်မ္တာ(၄၆)		იბისაკიკ 422420000 24200000		vvvv 8882555555	
Name Cancer 786-0 A498 ACHI-1 RXFXI-1 SN12C TK/11 TK/12 200-310	ისისისისისისი ტლექგდექვე		۰ ۵۴۵۵ مەرەمەرە ۱۳۵۵ مەرەمەرە ۱۳۵۵ مەرەمەرە ۱۳۵۵ مەرەمەرە ۱۳۵۵ مەرەمەرە ۱۳۵۵ مەرەمەرەمەرە ۱۳۵۵ مەرەمەرەمەرەمەرەمەرەمەرەمەرەمەرەمەرەمەر		v 44444444 2865884558	
PIC-3 DU-145			-4.98 -5.12		× 4.70 4.75	
MGF7 MGF7 MGF7 HS 578 HS 578 BF 549 T-470 MDA-MB 468	လဲလဲလဲလဲလဲ မ္ကလဲနေ့ဆင်ဆို		4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		v v v 546444 546465	
MID Detta Range	-5.49 0.58 0.85 * - * -		-5.1 0.22 0.62 •3 •2 •1		0.18 0.18 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	- 2 - 4 - 4
-						

		Natio	onal	Cano	cer Ir			evelop Testir				peut	ics Progra	m		
NSC : 751478	/ 1				Exp	erimer	nt ID : 0	912NS69	1			Test	Туре : 08		Units : M	olar
Report Date :	May 09	, 2013			Tes	t Date	: Decer	mber 14,	2009			QNS	S :		MC :	
COMI : LSC-K	U-JJ-II-	146-1 (§	91136)		Sta	in Rea	gent : S	RB Dual	Pass	Related	I	SSP	PL:0X2L			
							-	ncentration								
Panel/Cell Line Leukemia	Time Zero	Ctrl	-9.1	-8.1	-7.1	Densiti -6.1	-5.1	-9.1	-8.1	ercent G -7.1	-6.1	-5.1	GI50		īģi	LC50
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226	0.349 0.717 0.257 0.598 0.685	1.575 2.509 1.607 1.936 2.350	1.560 2.451 1.600 1.800 2.324	1.610 2.519 1.651 2.003 2.292	1560 2529 1696 2030 2265	1.430 2.141 1.342 1.727 1.928	1.037 1.483 0.710 1.106 1.426	99 97 100 90 98	103 101 103 105 97	99 101 107 107 95	88 79 80 84 75	56 43 34 38 44	> 7.50E-6 4.75E-6 3.34E-6 4.12E-6 4.92E-6	> 7 > 7 > 7	50E-6 50E-6 50E-6 50E-6 50E-6	> 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H227 NCI-H322M NCI-H460 NCI-H522	Cancer 0.353 0.633 0.259 1.146 0.670 0.402 0.461 0.241 0.593	1.163 1.595 0.871 1.989 1.397 1.290 0.893 1.914 0.842	1.138 1.482 0.849 1.335 1.294 0.886 1.853 0.791	1.114 1.485 0.834 1.847 1.349 1.200 0.889 1.972 0.805	1103 1525 0798 1809 1376 1215 0922 1937 0814	1.022 1.355 0.870 1.821 1.204 0.921 0.925 1.721 0.769	0.646 1.099 0.573 1.700 1.153 0.808 0.761 0.501 0.637	97 88 96 86 91 100 97 96 80	94 89 94 83 93 90 98 103 85	93 93 88 79 97 92 105 101 89	83 75 100 80 73 58 106 88 71	36 48 51 66 66 46 69 16 18	3.78E-6 6.55E-6 > 7.50E-6 > 7.50E-6 3.47E-6 > 7.50E-6 2.53E-6 1.83E-6	> 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7	50E-6 50E-6 50E-6 50E-6 50E-6 50E-6 50E-6 50E-6	 7.50E-6
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.195 0.747 0.239 0.243 0.153 0.247 0.205	1.330 1.829 1.533 1.636 0.617 1.233 1.213	1.334 1.818 1.521 1.576 0.635 1.208 1.174	1.313 1.871 1.523 1.553 0.635 1.246 1.200	1274 1812 1444 1501 0567 1193 1139	1.215 1.789 0.908 1.339 0.494 1.162 1.072	0.841 1.375 0.536 0.783 0.385 0.735 0.747	100 99 96 104 97 96	98 104 99 94 104 101 98	95 98 90 89 96 92	90 96 51 79 73 92 86	57 58 23 39 50 49 53	 7.50E-6 7.50E-6 8.44E-7 3.92E-6 7.50E-6 7.50E-6 7.50E-6 7.50E-6 	> 7 > 7 > 7 > 7 > 7 > 7	50E-6 50E-6 50E-6 50E-6 50E-6 50E-6 50E-6	> 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.389 0.751 0.602 0.492 0.519 0.273	1.213 1.585 1.927 1.482 0.943 1.230	1.153 1.573 1.904 1.423 0.841 1.169	1.205 1.527 1.824 1.433 0.876 1.192	1159 1436 1832 1434 0848 1.171	1.141 1.319 1.839 1.338 0.855 0.860	0.767 0.922 1.295 0.993 0.796 0.584	93 99 98 94 75 94	99 93 92 95 83 96	93 82 93 95 77 94	91 68 93 85 78 61	46 20 52 51 65 32	6.08E-6 1.80E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 1.84E-6	> 7 > 7 > 7 > 7 > 7	50E-6 50E-6 50E-6 50E-6 50E-6 50E-6	> 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.105 0.844 0.297 0.349 0.714 0.451 0.409 0.559 0.662	0.674 1.474 0.925 1.283 1.071 1.253 2.277 0.993 1.935	0.669 1.395 0.905 1.240 1.055 1.220 2.133 0.979 1.809	0.630 1.456 0.913 1.218 1.113 1.280 2.189 0.961 1.901	0570 1384 0884 1219 1084 1250 2203 0975 1804	0.640 1.310 0.859 1.178 1.060 1.209 1.646 0.890 1.655	0.347 1.244 0.688 0.943 1.058 1.036 0.843 0.696 1.282	99 87 95 96 96 92 97 90	92 97 98 93 112 103 95 93 97	82 86 93 93 104 100 96 90	94 74 89 88 97 94 66 76 78	43 63 62 63 96 73 23 31 49	5.38E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 1.79E-6 2.89E-6 6.75E-6	> 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7	50E-6 50E-6 50E-6 50E-6 50E-6 50E-6 50E-6 50E-6 50E-6	 7.50E-6
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-4 OVCAR-8 NCI/ADR-RES SK-OV-3	0.479 0.536 0.347 0.488 0.228 0.283 0.460	1.103 1.274 0.641 1.136 0.795 0.963 1.172	0.988 1.219 0.596 1.074 0.775 0.960 1.095	0.964 1.246 0.613 1.056 0.762 0.930 1.110	0.970 1.247 0.588 1.034 0.754 0.951 1.139	0.950 1.035 0.560 1.064 0.737 0.890 1.040	0.761 0.857 0.532 1.024 0.532 0.573 0.910	81 93 85 90 96 100 89	77 96 91 88 94 95 91	78 96 82 84 93 98 95	75 68 72 89 90 89 81	45 44 63 83 54 43 63	5.06E-6 4.03E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 5.23E-6 > 7.50E-6	> 7 > 7 > 7 > 7 > 7 > 7	50E-6 50E-6 50E-6 50E-6 50E-6 50E-6 50E-6	> 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.387 0.736 0.348 0.678 0.649 0.519 0.374 0.569	1.419 1.583 1.552 1.223 1.237 1.801 0.593 1.249	1.385 1.560 1.132 1.171 1.676 0.580	1.447 1.397 1.449 1.092 1.211 1.702 0.631 1.169	1346 1514 1166 1181 1679 0594		0.804 1.245 0.905 0.709 1.084 1.190 0.456 0.946	98 77 101 82 89 90 94 83	103 78 91 75 96 92 117 88	101 72 97 89 90 91 100 84	98 65 82 55 88 78 82 78	40 60 46 6 74 52 37 55	5.12E-6 5.88E-6 9.49E-7 > 7.50E-6 3.90E-6 > 7.50E-6 > 7.50E-6	> 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7	50E-6 50E-6 50E-6 50E-6 50E-6 50E-6 50E-6	> 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6
Prostate Cancer PC-3 DU-145	0.397 0.309	1.543 1.083		1.500 1.088		1.051 0.973		96 95	96 100	88 96	57 85	46 53	3.06E-6 > 7.50E-6		50E-6	> 7.50E-6 > 7.50E-6
Breast Cancer MCF7 MDA-MB-231/ATC0 HS 578T BT-549 T-47D MDA-MB-463	0.204 0.449 0.514 0.792 0.443 0.536	1.223 1.094 1.184 1.330 1.176 1.323	1.079 1.102 1.288 1.133	1.231 1.101 1.146 1.316 1.098 1.306	1052 1099 1320 1089	1.110 1.014 1.102 1.237 1.027 0.725	0.589 0.875 1.052 0.998 0.800 0.592	88 98 92 94 94	100 101 94 97 89 97	92 93 87 98 88 88	88 88 83 80 24	38 66 80 38 49 7	4.27E-6 > 7.50E-6 > 7.50E-6 4.09E-6 6.81E-6 2.74E-7	> 7 > 7 > 7 > 7 > 7	50E-6 50E-6 50E-6 50E-6 50E-6 50E-6	> 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6 > 7.50E-6

National Cancer Institute Developmental	svelopmental Therapeutics Program	jram	NSC :751478/1	Units :Molar	SSPL :0X2L	EXP. ID :0912NS69
	Mean Graphs		Report Date :May 09, 2013	3	Test Date :December 14, 2009	1, 2009
Panal/Call Line	1 40 10 GI50 C	GIED	1.0010 TGI TC	TGI	Log ₁₀ LC50 LC50	US
Leukemia CCRF-CEM HL-60(TB) K-562 MO(TB) R-562 MO(1-82-26	۷ ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲		ကုံကုံကုံ ကုံကုံ			
N95-25-26-26-26-26-26-26-26-26-26-26-26-26-26-	777 7		*****		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Coolo Cancer COLO 2088 HCC-2988 HCC-116 HCC-116 HCC-116 KM12 KM12 KM12	νν ν ν άφαλφά άάρ4.556		ကိုကိုကိုကိုကိုကို ကို		ယုံ ဟုံတုံတုံတုံကုံ	
CM2-286 SPT-286 SPT-295 SPT-539 SMB-19 SMB-19 SMB-75 SMB-7	*** 25555555	-11	ကိုကိုကိုကိုကို ကို		ဟု ံကုံကုံကုံကုံ	
MERING MALNE 3M MALNE 3M MALNE 3M MALE 4 SKMEL 5 SKMEL	77777		လှကုံ တုံတုံတုံတုံတုံတုံတုံတုံ			
Outstand Cancer OCCAR-3 OCCAR-4 OCCAR-4 OCCAR-4 OCCAR-4 OCCAR-4 SCOV-3 S	ууу у Фоффофф Өөнөнөө		ကိုကိုလိုကိုကိုကို ကို		ဟု ံလုံလုံလုံလုံလုံလုံ	
Read Cancer 788-0 ACHN ACHN ACKI-1 RXFX-333 FX-10 FX-1	۷ ۷۷ ۷ ۵ <u>۵۲۵</u> ۵۵۵۵4 ۵		******		့လုံလုံလုံလုံလုံလုံလုံလုံ	
Prostate Cancer PC-3 DU-145 Breast Cancer	 -5.51 -5.12 		ဟုံဟုံ			
MCF7amor MCF7amor HS 5781 HS 5781 1470 MDA-MD 468	v v မို့လုံလုံလုံလုံရဲ မိုင်ငံမြင်းမိုင်		៴៴៴៴៴ ៥៥៥៥៥៥៥			
MID Detta Range	-5.31 1.25 1.44 		-5.12 0.0 *3 +2 +1 0	- .	-5.12 0.0 -3 -3 -2 -1 -0	 - - -
<u> </u>		7	+2 +1	-1 -2	£+	Ŧ

Five dose experimental data of compound 4.37c (NSC 764189)

		Natio	onal	Cano	er Ir			evelop Testir				peut	ics Progra	m			
NSC : D - 764	189 / 1				Exp	erimer	nt ID : 1	204NS58				Test	Туре : 08	Units : I	Molar		
Report Date :	May 09	, 2013			Tes	t Date	: April 3	30, 2012				QNS	S :	MC :			
COMI : LSC-K	(U-JJ-II-	164-1 (§	91318)		Sta	in Rea	gent : S	RB Dual-	Pass	Related	i	SSF	PL:0X2L				
	Press			162			-	centration	1		o 1 00						
Panel/Cell Line	Time Zero	Ctrl	-9.3	Mear -8.3	-7.3	Densiti -6.3	-5.3	-9.3	-8.3	ercent G -7.3	-6.3	-5.3	GI50	TGI	LC50		
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.703 0.718 0.265 0.512 0.882 0.510	2.711 2.840 1.952 2.043 2.372 1.893	2.724 2.722 2.048 2.095 2.327 1.923	2.655 2.781 2.006 2.084 2.323 1.809	2721 2681 2011 2129 2375 1950	2.725 2.765 2.045 2.093 2.314 1.933	2.622 2.718 1.821 1.870 2.064 1.763	101 94 106 103 97 102	97 97 103 103 97 94	100 93 103 106 100 104	101 96 106 103 96 102	96 94 92 89 79 90	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6	> 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6		
Non-Small Cell Lung A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H223 NCI-H322M NCI-H322M NCI-H460 NCI-H522	Cancer 0.256 0.357 1.100 0.549 0.524 0.723 0.368 0.829	1.477 0.955 1.466 1.344 1.514 1.555 2.727 1.912	1.469 0.895 1.441 1.356 1.445 1.569 2.740 1.914	1.449 0.905 1.413 1.344 1.445 1.515 2.813 1.954	1509 0928 1414 1367 1443 1547 2682 1989	1.424 0.936 1.405 1.381 1.436 1.492 2.794 1.912	1.313 0.879 1.303 1.206 1.358 1.460 2.679 1.744	99 90 93 101 93 102 101 100	98 92 85 100 93 95 104 104	103 96 103 93 99 98 107	96 97 83 105 92 92 103 100	87 55 83 84 89 98 84	<pre>> 5.00E-6 > 5.00E-6</pre>	<pre>> 500E-6 > 500E-6</pre>	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6		
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.277 0.442 0.174 0.280 0.313 0.208 0.368	1.103 1.525 1.595 1.383 1.709 1.124 2.464	1.212 1.500 1.509 1.425 1.708 1.167 2.418	1.189 1.450 1.659 1.418 1.821 1.166 2.432	1219 1469 1456 1464 1799 1189 2384	1.217 1.466 1.559 1.360 1.766 1.131 2.372	1.132 1.404 1.266 1.253 1.554 1.062 2.263	113 98 94 104 100 105 98	110 93 104 103 108 105 98	114 95 90 107 106 107 96	114 94 97 98 104 101 96	103 89 77 88 89 93 90	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6	<pre>> 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6</pre>	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6		
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.553 1.189 0.887 0.466 0.533 0.355	1.717 2.864 2.175 1.273 1.114 1.764	1.706 2.784 2.186 1.247 1.092 1.737	1.786 2.695 2.189 1.285 1.045 1.710	1786 2682 2257 1227 1027 1742	1.833 2.716 2.293 1.237 1.053 1.736	1.751 2.728 2.095 1.170 1.002 1.537	99 95 101 97 96 98	106 90 101 101 88 96	106 89 106 94 85 98	110 91 109 95 90 98	103 92 94 87 81 84	<pre>> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6</pre>	<pre>> 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6</pre>	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6		
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.274 0.670 0.347 0.473 0.971 0.464 0.503 0.722 0.960	2.103 1.383 1.369 2.153 1.903 1.273 2.562 1.734 2.192	1.991 1.357 1.391 2.120 2.022 1.264 2.498 1.680 2.127	1.926 1.387 1.316 2.029 2.072 1.265 2.532 1.651 2.172	1944 1408 1362 2027 2061 1287 2583 1679 2145	1.963 1.371 1.322 2.090 2.080 1.309 2.544 1.681 2.136	1.863 1.312 1.235 2.032 1.873 1.264 2.208 1.613 1.871	94 96 102 98 112 98 97 95 95	90 101 95 93 118 99 99 92 98	91 104 99 93 116 101 101 94 96	92 98 95 96 118 104 99 95 95	87 90 87 93 96 98 83 88 74	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6	<pre>> 500E-6 > 500E-6</pre>	<pre>> 5.00E-6 > 5.00E-6</pre>		
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-4 OVCAR-8 NCI/ADR-RES SK-OV-3	0.620 0.545 0.661 0.531 0.320 0.556 0.340	1.775 1.407 1.515 1.367 1.409 1.773 0.847	1.873 1.505 1.499 1.373 1.412 1.768 0.846	1.888 1.502 1.470 1.338 1.391 1.744 0.865	1878 1485 1542 1476 1420 1842 0.891	1.874 1.532 1.535 1.377 1.410 1.727 0.871	1.805 1.360 1.369 1.282 1.364 1.622 0.814	108 111 98 101 100 99 100	110 111 95 96 98 97 104	109 109 103 113 101 105 109	109 114 102 101 100 96 105	103 95 83 90 96 87 93	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6	<pre>> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6</pre>	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6		
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.509 1.232 0.279 0.628 0.555 0.590 0.896 0.685	2.019 1.973 1.270 2.389 1.015 2.453 1.623 1.754	1.726 1.303 2.186 1.033 2.178 1.662	1.949 1.891 1.320 2.177 1.051 2.234 1.719 1.766	2157 1.691	1.642	1.887 1.796 1.208 2.095 0.959 2.080 1.563 1.596	96 66 103 88 104 85 105 91	95 88 105 88 107 88 112 101	97 79 106 88 105 84 109 100	96 89 106 86 101 86 102 97	91 76 94 83 87 80 91 85	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6	<pre>> 500E-6 > 500E-6</pre>	> 5.00E.6 > 5.00E.6 > 5.00E.6 > 5.00E.6 > 5.00E.6 > 5.00E.6 > 5.00E.6 > 5.00E.6		
Prostate Cancer PC-3 DU-145	0.624 0.374	1.927 1.369		1.860 1.444	1852 1528	1.853 1.484	1.593 1.357	97 106	95 108	94 1 16	94 111	74 99	> 5.00E-6 > 5.00E-6	> 5.00E-6 > 5.00E-6	> 5.00E-6 > 5.00E-6		
Breast Cancer MCF7 MDA-MB-231/ATC0 HS 578T BT-549 T-47D MDA-MB-463	0.264 C 0.515 1.090 0.700 0.624 0.596	1.418 1.244 1.864 1.715 1.353 1.013	1.311 1.768 1.715 1.336	1.367 1.256 1.761 1.624 1.342 1.023	1413 1228 1754 1635 1343 1042	1.425 1.251 1.790 1.666 1.368 1.006	1.270 1.065 1.742 1.564 1.226 0.900	93 109 88 100 98 101	96 102 87 91 99 102	100 98 86 92 99 107	101 101 90 95 102 98	87 75 84 85 83 73	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6	<pre>> 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6 > 500E-6</pre>	> 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6 > 5.00E-6		

National Cancer Institute Developmental Th	velopmental Therapeutics Program	-	NSC : D - 764189/1	Units :Molar	SSPL :0X2L	EXP. ID :1204NS58
	Mean Graphs		Report Date :May 09, 2013		Test Date : April 30, 2012	
Panel/Cell Line	Log 10 GIEO GIEO		105101 TC	12	10501 10200 1020	Q
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 M-05 cml Cold Lang					,	
A549/ATCC LUNG CONCEL A549/ATCC LUNG CONCEL HOP-25 NOLH228 NOLH322M NOLH522	99999999999999999999999999999999999999					
COLO2226 100102226 1101115 1101115 1101115 1101115 110112 11011112 1101112 11011110 110110			S			
CS 201 SS 201 SS 205 SS 205	88888888 4444444 * * * * * * *					
MALVER MAL	8899999999999 9000000000000000000000000		88888888888 9999999999999 1 1 1 1 1 1 1 1 1 1 1 1 1		32222222222222222222222222222222222222	
OCARA OVCARA OVCARA OVCARA OVCARA SKOUDR RES SKOUDR RES			Second and second second		Sector and the sector of the	
786-0 786-0 ACHN ACHN ACHN ACHN ACHN TK-10 TK-10 TK-10 D0-31			20222000000000000000000000000000000000			
PC-1 PC-1 DU-145 Reset Cancer					မိုကို	
MCCF7 and MCF7 and MS781 F1549 MDA-MB-468 MDA-MB-468	ရရှိရှိရရှိ လုံလုံလုံလုံလုံကို		ଚିତ୍ରିଚିତ୍ରଚିତ୍ର ଦୁର୍ଦ୍ଦର୍ଦ୍ଦ୍ଦ୍		ភិទិទិទិទិទិទីទីទី សំណុំសំណុំណុំ ^ ^ ^ ^ ^ ^ ^ ^	
MID Delta Range	6.0 0.0 5 5 -1 - 5 -1	 	-5.3 -0.0 -3 -3 -3 -2 -1 -0	- ÷	-5.3 0.0 *3 *2 *1 *2	 ?

5.6. References

 Le Bourdonnec, B.; Leister, L. K.; Ajello, C. A.; Cassel, J. A.; Seida, P. R.; O'Hare, H.; Gu, M.; Chu, G. H.; Tuthill, P. A.; DeHaven, R. N.; Dolle, R. E., Discovery of a series of aminopiperidines as novel NOS inhibitors. *Bioorganic & Medicinal Chemistry Letters* 2008, 18, 336-343.