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Model membranes as a tool for biological studies and biosensor applications 

By 

Kevin P. Armendariz 

Abstract – 

 The biological membrane is a fundamental cellular structure which forms the natural 

selective barrier separating cells from their environment.  Model membranes have long been 

employed to study these complicated structures in controlled environments.  Within this 

dissertation we report the use of a defocused single molecule fluorescence imaging approach 

for examining the molecular level structure of model membranes which incorporate biological 

lipid components.  Through these single molecule studies, an optimal single molecule probe of 

membrane structure was determined.  Using this probe the influence of a minor biological 

membrane component, ganglioside GM1 (GM1), on membrane structure was examined.  In 

addition to structural studies, we also report the use of model membranes as coatings for 

whispering gallery mode (WGM) label-free biosensors.  Using Langmuir-Blodgett/Langmuir-

Schaffer deposited bilayers we were able to demonstrate the specific detection of cholera toxin 

with a membrane containing the glycosphingolipid, GM1.   Further studies of lipid coated WGM 

sensor showed polyethylene glycol (PEG) functionalized lipid bilayers are capable of reducing 

nonspecific adsorption on sensor surfaces while maintaining functional sites for specific analyte 

detection.  Finally, preliminary studies for expanding the single molecule orientation approach to 

investigate antibody orientation on sensor surfaces are also reported.  Through these studies 

the utility of both the defocused single molecule imaging technique and model membranes as a 

tool for biological and sensor applications is demonstrated. 
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Chapter 1: Introduction 

 

1.1 - Biological membranes 

 

 Biological membranes serve a well-known and vital role within living organisms forming 

the natural selective barrier for individual cells.  Not only do biological membranes separate a 

cell from its chemical and biological environment, but they are responsible for controlling 

communication across this boundary.  This requires that the biological membrane be more than 

a simple barrier, but rather a complex structure which can regulate both transport and signaling 

across the barrier. Additionally, biological membranes also serve to compartmentalize 

organelles within the cell. Given the importance of biological membranes as a fundamental 

structural and functional element of living cells, membranes have been the subject of significant 

scientific investigation.  For several decades researchers have studied biological and model 

systems to elucidate the principles which relate structure and function within cellular 

membranes. 

 Biological membranes are highly heterogeneous and dynamic structures which are 

composed of a wide assortment of lipids, proteins, and sterols.  Together these components 

constitute the functional membranes observed in biology.  The aggregation of these 

components into the formation of a membrane is largely driven by the hydrophobic effect, which 

is the known effect of nonpolar molecules in an aqueous environment to naturally aggregate to 

limit their surface area exposure to surrounding water molecules.  Lipids are amphiphilic 

molecules which contain a nonpolar tailgroup and a polar headgroup, which spontaneously form 

lipid bilayers to limit unfavorable interactions between lipid tail groups and the surrounding 

aqueous environment.  While lipid bilayers were originally thought to form a passive matrix for 

holding the protein components of biological membranes, it is now understood that lipids 

influence organization and events at the cellular membrane [1, 2].  
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Lipidomic studies have identified thousands of unique naturally occurring lipids 

incorporated into cellular membranes [3].  While all lipids are amphiphilic in nature, there is 

great structural diversity among naturally occurring lipids.  These lipids contain various 

headgroups and tailgroups of numerous lengths and levels of saturation.  An example of the 

utility of this lipid diversity is exemplified by two common lipid types, phosphatidylcholines and 

phosphatidylserines.  These lipids are structurally different in that phosphatidylcholines contain 

zwitterionic headgroups, which overall carry no net charge, while phosphotidylserines contain 

negatively charged headgroups.  Phosphatidylcholines are found within both leaflets of cell 

membranes, while phosphotidylserines are typically located on the inner leaflet of cell 

membranes in healthy cells.  Phosphotidylserines begin to populate the outer leaflet of cell 

membranes following cellular apoptosis.  When phosphotidylserines are presented on the outer 

surface of a cell, the cell is detected and degraded by macrophages [4].  Therefore, this 

example demonstrates how various lipid components can be utilized for signaling on the cell 

surface.  Table 1.1 demonstrates some of the structural diversity observed within naturally 

occurring biological membranes. This table also shows the percent composition of lipids with 

commonly occurring headgroups including phosphatidylcholine (PC), phosphatidylethanolamine  

Table 1.1 - Lipid Composition of Plasma and Subcellular Membranes 

   
Phospholipid Percentage 

  

 
PC PE PS PI PA CL LGP  SM  

Rectal Gland Plasma Membrane 50.4 35.5 8.4 <1 
   

5.7 

Brush border membrane 33.3 35.6 7.4 8.2 1.2 
 

4.1 10.3 

Cholinergic receptor membranes 37 40.6 17 
 

<1 
 

<1 <1 

Plasma Membrane 39 23 9 8 1 1 2 16 

Microsomes 40 35 1 5 
 

18 1 1 

Mitochondria 58 22 2 10 1 1 11 1 

Lysosomes 40 14 2 5 1 1 7 20 

Nuclear Membrane 55 13 3 10 2 4 3 3 

Gogli membrane 50 20 6 12 <1 1 3 8 

Sarcoplasmic reticulum 72 13.5 1.8 8.7 <1 <1 
 

1 
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(PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), cardiolipin (CL), 

lysoglycerophospholipid (LGP) and sphingomyelin (SM) from various types of membranes [5].  

Table. 1.1 shows how the lipid composition of plasma and subcellular membranes from different 

biological sources varies significantly [5].  Through this abundant diversity of lipids, cells are 

capable of fine tuning their membrane structure and functional properties. 

Given the importance of the biological membrane, it has been the focus of countless 

studies, all of which cannot be recounted within the scope of this dissertation.  One of the key 

studies which has helped shape the current understanding of membrane structure and function 

was the introduction of the fluid mosaic model of the lipid membrane.  As described by Singer 

and Nicolson in 1972, this model described the lipid bilayer containing various proteins and 

other membrane components, which were free to move laterally within the membrane, shown in 

Fig. 1.1 [6].  This structural fluidity within the membrane is vital for cellular transport and 

recognition.  Following these studies the heterogeneous nature of membranes begun to be 

elucidated through several studies of model membranes.  Various imaging techniques have 

demonstrated the formation of regions, termed domains, within the membrane which are 

enriched in certain membrane components while excluding others.  Examples of the formation 

and imaging of these domains are recounted in several reviews [7-9].  The formation of these 

domains is not surprising, considering the complex mixture of lipids, proteins, and sterols which 

compose a biological membrane.   

When considering the diverse array of molecular species comprising a biological membrane, 

it becomes evident that these complex matrices make it difficult to elucidate the functional role 

of individual molecular species within the membrane.  Within a unique system the possible 

number of phases that may coexist is described by the Gibbs’ Phase Rule:  

         Eq. 1.1 
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where P describes the number of coexisting phases in equilibrium, C is the number of 

components, and F described degrees of freedom within the system.  Therefore, given the 

abundant diversity of lipids, proteins, and sterols within biological membranes the possible 

phase complexity within the membrane becomes exceedingly high.   In order to probe the 

functional role of individual biological components that comprise these membranes there is the 

need study them in simpler and more controlled systems.  Thus, there has been a long standing 

history of utilizing model membranes to elucidate the structural and functional roles of individual 

membrane components. 

 

Figure 1.1 –The fluid mosaic model of membrane structure proposes that the proteins and other 

membrane components are free to move laterally within a sea of lipids which comprises the biological 

membrane.  

 

1.2 - Model Membranes  

 Model membranes can be fabricated through several well established techniques, 

including Langmuir-Blodgett (LB) deposition, Langmuir-Schaffer (LS) deposition, vesicle 

formation and fusion, and self-assembled monolayers (SAMs), all of which allow for control of 
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membrane composition.  This control allows specific components of the membrane to be probed 

individually and more accurately than in biological systems.  Thus, model membranes have 

been used extensively to elucidate the physical, chemical, and biological effect of membrane 

components. 

 Each of these techniques offers unique advantages for various research applications.  

For example, the Langmuir-Blodgett method not only allows a monolayer to be transferred to a 

solid substrate, but allows for control of thermodynamic parameters through temperature and 

surface pressure control during deposition.  Other methods, such as vesicle fusion, also allow 

for the transfer of membranes to solid substrate.  Vesicle fusion results in the transfer of a 

bilayer to a substrate resulting in a more relevant membrane model for many applications.  

Preparation of model membranes will be discussed in further detail in Chapter 2. 

 

1.3- Studies of Biological Membranes 

While the presence of domains within model membranes has been well established, 

there are proposed nanometric structures within biological membranes which have been difficult 

to probe.  These domains, called lipid rafts, are proposed to be nanometric condensed domains 

within biological membranes, which are highly enriched in cholesterol.  They are implicated in 

trafficking membrane proteins and cellular signaling, among other functions [10, 11].  Thus, the 

formation of lipid rafts in biological system is thought to contribute to complex structure of 

natural membranes which can regulate both transport and signaling across the cellular barrier.   

Early evidence for possible lipid raft formation was reported as 

glycosylphosphatidylinositol (GPI)-anchored proteins were found to partition within membranes 

and form complexes [12, 13].  In 1997, Simons and Ikonen presented evidence for the formation 

of lipid rafts enriched in sphingolipids and cholesterol [1].  These domains were discovered by 
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their resistance to the detergent Triton x-100, and they provided evidence for the selective 

transport of proteins and intracellular signaling through lipid domain formation.  These 

membrane heterogeneities became known as detergent resistant membranes (DRMs), which 

had been synonymous with the term lipid raft for many years.  Further studies of DRM’s found 

receptor proteins within these fractions leading to the conclusion that lipid rafts were specialized 

membrane domains associated in signaling events [14-17].  A schematic representation of the 

proposed lipid raft is shown in Fig. 1.2.    

However, one issue which has caused considerable skepticism toward the lipid raft 

theory is related to difficulties visualizing raft formation in biological systems.    In model 

systems, domains within lipid films can be generated on the microscopic scale and stabilized for 

long periods of time to allow them to be accurately measured [18].  However, in biological 

systems lipid rafts are proposed to exist on the nanometric scale on a timescale from tens to 

hundreds of milliseconds [19].  Thus, the dynamic nature and diminutive size of these domains 

have caused their existence and potential function to be highly debated[1, 10, 11, 18, 20, 21]. 

While obviously a valuable tool, the use of detergent extraction methods to isolate raft 

components has also contributed to some of the skepticism toward the lipid raft theory[11].  

Several studies have used detergent resistance as the main criterion for raft associated activity 

of membrane components [22, 23]. Other methods identified raft components by treating 

membranes with cyclodextrin, which results in cholesterol depletion and lateral protein 

immobilization [24, 25].  Therefore, it is possible that these may have led to erroneous 

conclusions regarding the membrane components which contribute to raft formation.  Thus, 

while it is presently common to not consider all DRMs as functional lipid rafts, in general lipid 

rafts exhibit detergent resistance. Given the significant biological implications of lipid rafts there 

have been significant research efforts toward further understanding their formation and 

composition.  
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Figure 1.2 – An artistic rendering of a lipid raft within a lipid bilayer is provided above.  Within the bilayer 

condensed nanometric domains enriched in cholesterol and sphingomyelin, shown in orange, are capable 

of protein trafficking and affecting intracellular signaling.  

 

1.4 - Methods for Membrane Interrogation 

 The biological significance and vast complexity exhibited by natural membranes has 

promoted significant research efforts of these structures for several decades utilizing a vast 

array of traditional techniques.  These techniques encompass several imaging methods, such 

as fluorescence microscopy, atomic force microscopy (AFM) and electron microscopy (EM) as 

well as non-imaging methods, including nuclear magnetic resonance (NMR), calorimetry, and X-

ray diffraction.  Each of these techniques has proven useful for probing structural features of 

biological and model membranes.  However, each method is not without its unique 

disadvantages as well.   
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For instance, electron microscopy provides far superior resolution relative to opitcal 

imaging techniques.   The use of EM has provided several interesting findings regarding the 

structure and partitioning of various components within membranes [26-28].  A representative 

image from an EM study of model membranes containing ganglioside GM1, a minor natural 

membrane component, which has been labeled with cholera toxin is shown in Fig. 1.3 [26].  The 

resolution provided by EM allows GM1/cholera toxin partitioning within the membrane to be 

examined.  Unfortunately, a drawback to using EM is that the samples cannot be imaged at 

biological conditions.  These samples are required to be placed in a vacuum and often times 

require staining.  This detracts from the ability to relate findings made from EM studies to 

functioning biological systems. 

 

Figure 1.3 – A freeze-etch micrograph of a liposome containing DEPC/DPPC (1:1) doped with 1.0 mol% 

GM1 and label with cholera toxin demonstrates that the GM1/cholera toxin partitions within gel phases 

(left, E) and exclude from liquid crystalline phase (right, F) within the film at a magnification of 130000x. 

Figure used with permission from Ref. [26]. 
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Non-imaging techniques have also provided an important tool for probing membrane 

structure.  As an example, x-ray diffraction measurements are often used to measure lipid tail 

in-plane ordering [29, 30].  Non-imaging methods are, however, somewhat limited by the 

inherent difficultly of monitoring the small structural perturbations of trace components within 

membranes.  This limitation is due to the nature of the ensemble average approach of probing 

membrane structure.  In the case of diffraction measurements, structural perturbations which do 

not induce changes in acyl-tail ordering within the film are not detected.   

 

 

 

Figure 1.4 – Fluorescence images of LB monolayers of DPPC / DOPC / cholesterol (1:1:0.1 mol%) 

containing a fluorescence lipid analog.  The film on the left contains Texas Red – DHPE which marks the 

expanded (more fluid) phases within the monolayer.  On the right, the film contains a BODIPY-linked 

cholesterol analog which partitions into and marks the condensed phases with the membrane.  [Image 

collected by Brittney DeWitt, unpublished data] 

 

Fluorescence microscopy, one of the most popular approaches for membrane studies, 

offers the ability to image live cells under biological conditions with a variety spectroscopic 

techniques.   These studies have been particularly useful as numerous fluorescent lipid dyes 

have been identified which are known to partition preferentially into different membrane phase 
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[31].  Phase partitioning of lipid dyes within model membrane is demonstrated in Fig. 1.4.  

Several studies have been performed to identify how the microstructure within model 

membranes is influenced by membrane composition and environmental stress [32-34].  These 

studies typically monitor the evolution of phase structure within the membrane as the membrane 

is systematically perturbed.  The role in membrane structure and function of various membrane 

components have been studied using this versatile technique.   

As discussed, fluorescence microscopy has been tremendously useful for measuring 

structure and dynamics of microdomains within biological and model membranes.  However, the 

major drawback associated with optical imaging approaches is limited resolution.  The 

diffraction limit of light restricts the structural features which can be resolved to ~λ/2, or 

approximately 200 nm.  While this resolution has been sufficient for several studies of 

membrane structure, it is highly restrictive when probing for nanometric domains, such as those 

associated with lipid rafts.   

As such, several new imaging approaches with superior resolution capabilities have 

begun to be employed to further examine membrane heterogeneity.  These include imaging 

techniques such as near field scanning optical microscopy (NSOM) which provides optical and 

topographical sub-diffraction limited resolution [35-38].  Additionally, super-resolution techniques 

such as stimulated emission depletion (STED) nanoscopy [39] and single molecule approaches 

including stochastic optical reconstruction microscopy (STORM) [40, 41] and photoactivated 

localization microscopy (PALM) [42] can provide 20-30nm spatial resolution of membrane 

components within the cellular membrane.  Studies utilizing these methods have begun to 

provide further evidence which supports the lipid raft hypothesis.  For instance, STED studies 

have shown that GPI-anchored proteins can become temporally trapped within ~20nm regions 

within cellular membranes, thereby providing substantial evidence for raft formation in biological 

systems [39]. 
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Even before these new super resolution techniques became available numerous studies 

had been directed toward elucidating the function of lipid rafts within cellular membranes.  Many 

of these studies suggested that lipid rafts sequester and traffic signaling proteins within the 

membrane giving them a significant biological role in intracellular communication [12-17].  For 

instance, there was early evidence which demonstrated that lipid rafts may play a role in T-cell 

receptor (TCR) signaling based on the findings that cross-linked GPI-anchored proteins, which 

do not span the entire membrane, could still simulate signaling [12].  Several further studies 

have supported these findings which suggest nanometric lipid heterogeneities are involved in 

TCR signaling [17, 43].  Furthermore, lipid raft formation is also implicated in protein trafficking 

and endocytosis.  For example, these studies have found that transport vesicles were more 

selectively enriched in putative raft components, such as sterols and sphingolipids [44]. 

Additionally, certain membrane components which are associated with lipid rafts, such as 

ganglioside GM1, are well known receptors for toxins.  Studies of these systems have 

suggested that a high density of receptors is required for multivalent toxins to bind and undergo 

endocytosis [45].  Therefore, as these studies and many others provide mounting evidence for 

lipid raft formation in biological systems, considerable interest remains as to how individual 

molecular species contribute to raft formation and stability within biological membranes. 

 

1.5 - Motivation and Dissertation Overview  

As previously discussed, there has been a longstanding and continued interest in the 

structural and functional role of individual membrane components and the biological membrane 

as a whole.  These highly heterogeneous and dynamic structures have proven difficult to fully 

understand.  While, numerous minor membrane components, such ganglioside GM1, have 

been implicated in raft formation, the findings regarding the full role of each component in raft 
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formation remain unresolved [32, 46, 47].  As single molecule approaches have proven to be a 

powerful tool for membrane structural investigations, this dissertation will present a molecular 

level imaging approach for measuring the orientation of lipid species within membranes which is 

capable of probing the structural effects of minor membrane components.   

In addition to molecular level structural measurements of lipid films, this dissertation will 

also explore the utility of model membranes in biosensor applications.  The ability to control 

composition and surface density provided by membrane deposition techniques permit the 

opportunity to functionalize biosensor surfaces in a measured manner.  Applications of model 

membranes incorporating elements for analyte detection and membranes containing PEGylated 

lipids for limiting nonspecific absorption will be discussed.  Furthermore, preliminary studies of 

single molecule orientations of antibodies will be explored for improving immobilization protocols 

for traditional immunoassays. 

 Chapter 2 will outline and discuss the instrumental methods used to perform the work 

presented in this dissertation and those relevant to membrane studies.  In particular, the 

methods for creating model membranes, including Langmuir-Blodgett (LB) deposition, 

Langmuir-Schaffer (LS) deposition, and vesicle fusion, will be discussed.  Traditional methods 

for membrane investigations will be reviewed, with a focus on bulk fluorescence microscopy.  

The approach for elucidating the three dimensional orientation of single fluorophores with 

defocused single molecule fluorescence imaging will be thoroughly addressed.  Finally, the 

chapter will conclude with a brief overview of previous studies of single molecule orientations 

studies.  

 The use of acyl-linked fluorescent lipid analogs for studies of membrane structure will be 

the subject of Chapter 3.  Specifically, this study will address the effect of fluorophore position 

along the acyl lipid tail of fluorescent lipid analogs in terms of their sensitivity to surrounding lipid 
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order.  Through this study, an optimal probe of membrane order was identified for use in future 

studies.  Additionally, this chapter will introduce the factors proposed to contribute to the 

insertion geometry of the fluorophore within the lipid matrix.  

 Chapter 3 and previous studies have demonstrated the utility of the single molecule 

approach for probing molecular level structure changes within model membranes [48-52].  

These studies have validated the use of acyl-linked fluorescent lipid analogs for measuring 

structural perturbations within membranes due to surface pressure changes, membrane 

additives, and changes in ambient humidity [48-52].  Thus, Chapter 4 will utilize this method to 

evaluate the structural influence of a minor biological membrane component, ganglioside GM1 

(GM1), within model membranes of DPPC.  GM1 is a particularly interesting natural membrane 

component, typically comprising less than 0.1% of the total lipid content of a cellular 

membrane[53].  It is not only implicated in the formation lipid rafts, but it is also a known 

receptor for the bacterial toxin, cholera toxin [54].   Additionally, GM1 is known to have some 

unique physical properties within model membranes.  For example, films comprised of only 

GM1 are completely fluid at all surface pressures [32].  However, in mixed membranes 

containing condensed phases, GM1 preferentially partitions within those phases which are more 

condensed at certain concentrations [32, 46, 47].  This obviously peculiar and interesting 

membrane component has been the subject of many membrane studies.  Several of these have 

identified GM1 as being capable of significantly modulating microdomain structure within model 

films [32, 46, 47].  However, these studies observe this effect at unnaturally high GM1 

concentrations.  Therefore, the study discussed in Chapter 4 utilizes the single molecule 

approach to probe membrane order and determine the influence of GM1 at biologically relevant 

concentrations where bulk techniques are less informative. 

 Chapter 5 will introduce concepts for the application of synthetic membranes as 

functional coatings for label-free biosensors.  In the past, there have been several examples for 
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utilizing self-assembled monolayers for various biosensing applications [55, 56].  These films 

offer the ability to incorporate antigen capture materials with the films for specific analyte 

detection.    Langmuir films have been less popular, but are highly controllable in terms of 

composition and surface density and, thus, provide some potential advantages.  The study 

presented in Chapter 5 utilizes bilayer membranes containing ganglioside GM1 to capture 

cholera toxin on the surface of a label-free biosensor platform.  Within this section, the label-

free, whispering gallery mode (WGM) biosensing platform will be briefly explained.   The WGM 

platform was used to perform a GM1/cholera toxin binding study from which the binding 

constant was measured.   

 Chapter 6 will explore more advanced applications of model membranes in biosensing, 

as well as single molecule orientation measurement applications in biosensing.  Traditionally, 

two of the primary issues plaguing label-free biosensors are loss of antibody activity and 

nonspecific binding.  Antibody activity loss commonly occurs in immunoassays as a result of 

antibody immobilization [57-59].  One reason these antibodies become inactive is that they are 

immobilized with the active site of the antibody hidden from the sample matrix.  To address this 

issue, Chapter 6 provides preliminary studies of single antibody orientations, which are intended 

to assist in correlating antibody orientation to binding efficiency.  Additionally, a synthetic 

membrane approach for limiting nonspecific binding on label-free biosensors will be presented.     

 A summary of the findings from these studies along with future directions for these 

projects will conclude this dissertation in Chapter 7. 
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Chapter 2: Methods and Instrumentation for Membrane Investigations 

 

2.1 - Introduction 

 This chapter will review the methods for the fabrication of model membranes and the 

instrumental methods utilized to perform the studies within this dissertation. First, methods for 

monolayer and bilayer membrane fabrication and transfer to solid substrates will be discussed. 

Second, an introduction to bulk fluorescence microscopy techniques for evaluating the 

microstructure within model membranes will be provided.  While bulk fluorescent techniques 

have a proven track record of providing important findings regarding membrane structure and 

dynamics under biological conditions; these techniques are restricted in their information 

content due to limited spatial resolution.  As discussed in Chapter 1, new microscopy 

techniques, such as STED, STORM, and PALM, provide promising alternative approaches to 

membrane investigation through superior resolution and by tracking individual molecules within 

the membrane.  This has provided motivation for the development a single molecule approach 

allowing for orientation measurements of individual molecules within membranes. 

 

2.2 – Membrane fabrication methods 

 The most fundamental structure of the cellular membrane is formed by a bilayer of lipid 

molecules.  As such, there are several well-established methods which can be employed to 

reliably generate model lipid membranes for research purposes.  The ability to form natural and 

model membranes is a result of the amphiphilic nature of lipid species in a surrounding aqueous 

environment. 

Lipid molecules are amphipathic in structure, containing a hydrophilic headgroup and a 

hydrophobic tailgroup.  Typically, the lipid headgroup is composed of a phosphate, an amine, or 
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an alcohol, while the tailgroup is composed of long hydrocarbon chain.  The formation of a lipid 

bilayer is naturally driven by the hydrophobic effect mostly due to entropic contributions [1].  The 

insertion of a hydrophobic lipid tailgroup within surrounding water molecules has an associated 

free energy cost.  In order to accommodate the hydrocarbon structure within water, the 

hydrogen bonding network within the water must be rebuilt around the hydrocarbon chain, 

essentially forming a cage.  The formation of these cages limits the freedom of hydrogen 

bonding networks forming within the water, which is entropically unfavorable.  Additionally, the 

polar headgroups of lipid molecules can contribute to the aqueous hydrogen bonding network, 

which is enthalpically favorable.  Therefore, lipid molecules in an aqueous environment 

spontaneous orient the polar headgroups toward aqueous phases and tailgroups away from 

aqueous phases.  Thus, it is the amphipathic nature of lipid molecules in an aqueous 

environment which induces the spontaneous formation of lipid monolayers, bilayers, liposomes, 

and vesicles.  

 Investigations of the controlled formation of model membranes can be traced back 

nearly 100 years to the work of Irving Langmuir.  In 1917, Langmuir published findings of 

hydrophobic molecules effects on surface tension [2].  In this publication he utilized a device, 

now known as a Langmuir trough, which contained a water bath, a movable barrier, and 

pressure sensor.  As others had previously shown, amphipathic molecules dispersed on the 

water bath become trapped at the air-water interface.  With the trough, Langmuir was able to 

show that these trapped lipid molecules could be compressed with a movable barrier and that 

the surface tension of the liquid would decrease.  He theorized that these films constituted a 

single layer of molecules which oriented hydrophobic tail groups of amphipathic molecules away 

from the water interface.  In 1932, Dr. Langmuir was awarded the Noble Prize in chemistry for 

his contributions based on this work.  In 1934, Katharine Blodgett demonstrated that these 

monolayer films could be controllably transferred onto a solid substrate by slowly moving the 
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substrate through the air-water interface [3, 4].  This process is illustrated in Fig 2.1 as the lipid 

molecules trapped at an air-water interface are deposited onto a glass slide.   This technique, 

now known as Langmuir-Blodgett transfer, continues to be used extensively to create 

monolayer and multilayer films that mimic biological membranes. 

 

 

Figure 2.1 – Langmuir-Blodgett deposition of lipid molecules on to a glass substrate is illustrated above.  

Lipid molecules trapped at the air-water interface on the trough are transferred to the substrate by pulling 

it slowly through the water sub-phase while maintaining a constant surface pressure with a movable 

barrier. 

 

 Over the years the instrumentation for creating Langmuir-Blodgett (LB) films has 

advanced, however the principle components from Langmuir’s original device have remained 

unchanged.  Figure 2.2 illustrates a modern Langmuir-Blodgett trough for transferring lipids 

onto a solid substrate.  The LB trough contains a water bath held in a polytetrafluoroethylene 
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Figure 2.2 – The Langmuir-Blodgett (LB) trough is commonly used to generate model lipid films.  The key 

components include a PTFE lined exterior for holding a water bath, a movable barrier, a dipper 

mechanism, and a Wilhelmy plate pressure sensor.  The barrier position is controlled by a computer 

which works in a feedback loop with the pressure sensor for maintaining surface pressure control.  

 

 (PTFE) container, a motorized movable barrier, Wilhelmy plate pressure sensor, and a dipping 

mechanism.  For typical hydrophilic substrates, such as glass, the substrate should be lowered 

into the water prior to dispersing lipids onto the trough.  Lipid molecules are dispersed on the 

water in a volatile solvent, which is allowed to evaporate.  The lipid molecules trapped at the air-

water interface can be compressed with the barrier to a desired surface pressure, which is 

measured by the Wilhelmy plate sensor.  The monolayer formed on the air-water interface can 

then be deposited onto a solid substrate by slowly pulling it through the air-water interface while 

maintaining a constant surface pressure.  Surface pressure is described by: 

         Eq. 2.1 

where surface pressure (Π) is the difference of  the surface tension of the subphase (Y0) in the 

absence of a monolayer and the surface tension of monolayer present (Y). 
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Prior to the deposition of a lipid film onto a substrate, it is routine to anneal the film by 

subjecting it an isotherm cycle, where the film is slowly compressed and expanded with the 

movable barrier.  During these isotherm cycles, the surface pressure is monitored by a Wilhelmy 

plate pressure sensor.  The measured change in surface pressure for a typical membrane lipid, 

DPPC, during an isotherm cycle is shown in Fig. 2.3.  The isotherm shown in Fig 2.3 

demonstrates that DPPC undergoes phase transitions which can be observed by the plateau 

region in the pressure-area isotherm occurring at approximately 7 mN/m.  At surface pressures 

below this region, each lipid molecule at the air-water interface experiences freedom of motion 

and orientation, in what is termed the liquid expanded (LE) phase.  As the barrier is compressed 

the lipid molecules undergo several phase transitions as the area per molecule is decreased 

and freedom of motion and orientation of each lipid is restricted [5, 6].  At surface pressures 

above the plateau region, the lipid molecules are ordered with their acyl tail oriented away from 

the water interface.  This ordered state is termed the liquid condensed (LC) phase.  At 

intermediate surface pressures along the plateau region of the pressure-area isotherm these LE 

and LC phases coexist and can be measured by a variety of techniques.  Additionally, there are 

other membrane phases accessible at very high surface pressures, which are not shown in Fig. 

2.3.  At these high surface pressures, lipid films transition to the solid condensed (SC) state.  

Eventually the membrane will collapse by folding and/or fracturing if enough pressure is applied 

and the membrane can no longer fit all of the membrane components within the compressed 

film  [7, 8].  A monolayer can be transferred to a substrate at any of these measured surface 

pressures by maintaining a constant surface pressure through computer feedback control as the 

substrate is drawn through the air-water interface.  Langmuir and Langmuir-Blodgett films have 

proven enormously useful for creating controllable lipid films for scientific studies.  These films 

are simple to fabricate and film composition, temperature, and surface pressure can be easily 

controlled.  Given these attributes, LB films have been widely employed to study membrane 

structure.   
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Figure 2.3 – A pressure-area isotherm of DPPC monolayer.  As the area per molecule is reduced the lipid 

molecules undergo a phase change from liquid expanded (LE) to liquid condensed (LC) with an 

intermediate region of phase coexistence (LC/LE) between the two extremes. 

 

Methods have also been developed to fabricate bilayer membranes, which are a more 

accurate mimic of the cellular bilayer.  One method for bilayer formation is Langmuir-Schaffer 

(LS) transfer, which is an extension of the LB technique [9, 10].   This method uses a 

hydrophobic substrate to transfer lipids from a Langmuir trough to a substrate in a tail-down 

geometry relative to the substrate.  To create a lipid bilayer using the LS method, an LB 

monolayer is first formed on a substrate as discussed above.  This deposited LB monolayer is 

oriented in a head-down geometry relative the substrate, as shown in Fig. 2.2.  With the 

attached LB film, this surface is hydrophobic as the lipid tailgroups are oriented away from the 

substrate. The substrate is rotated such that the hydrophobic surface is directed toward the 

trough air-water interface.  The hydrophobic surface is then lightly touched with another 

monolayer on the air-water interface, such that the tailgroups of each monolayer are in contact.  
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The substrate is gently lifted off the water surface transferring a second layer of lipids to the 

substrate and forming a bilayer. 

Another method for transferring bilayers onto solid substrates uses the formation of lipid 

vesicles in solution.  For the purposes of this work we will only be concerned with those 

methods for the formation of bilayers on solid substrates.  Vesicle fusion is one method often 

used for bilayer formation on a substrate [11-13].  In this method, lipid multilamellar vesicles are 

first formed from dried lipids hydrated with an aqueous medium.  These mutli-walled vesicles 

are then sonicated to form small unilamellar vesicles (SUVs), which can be fused to hydrophilic 

surfaces at elevated temperatures to form a lipid bilayer.   

Each of these membrane fabrication methods have been employed in investigations of 

membrane structure utilizing the single molecule orientation approach [14-17].  In this 

dissertation, the single molecule studies presented in Chapters 3 and 4 utilize the LB method for 

monolayer generation.  Previous studies of single molecule orientations have demonstrated that 

the packing density and structure within monolayer membranes deposited at the equivalent 

surface pressure measured in bilayers provide a more realistic mimic of model bilayer 

membrane structure [16].  Thus, the study of biological membrane components’ effect on 

membrane structure presented in Chapter 4 are performed on monolayers deposited at 23 

mN/m, the measured equivalent surface pressure in bilayers from previous single molecule 

studies.  The LS method is used extensively in Chapters 5 and 6 to create controlled bilayers for 

biosensing applications.  

 

2.3 – Fluorescence microscopy 

 Fluorescence microscopy is one of the most useful and versatile techniques for 

membrane investigations.  This technique measures light emitted from fluorescent lipid analogs 
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within membranes.  This technique is flexible as biological or model samples can be imaged 

under biological conditions on an air-water interface or when immobilized on a solid substrate.  

Furthermore, numerous fluorescence based techniques have been developed, which have 

proven useful for membrane studies.  These techniques include fluorescent lifetime (FLIM) [18, 

19], fluorescence recovery after photobleaching (FRAP) [20], fluorescence resonance energy 

transfer (FRET) [19, 21, 22], fluorescence polarization [23, 24], time-resolved fluorescence [25], 

and spectroscopy measurements [26].   

Fluorescence microscopy is employed in several of the studies in the following chapters 

to elucidate the structure of model membranes given its broad utility and ease of use.  However, 

the main disadvantage of optical techniques is limited resolution.  As first theorized by Ernst 

Abbe in 1873, there is a limit to the spot size which light can focused through a lens[27].  For a 

particular wavelength of light, this spot size is limited by the numerical aperture of the lens, as 

described by: 

  
 

        
  Eq - 2.1 

where the diameter of the spot size, d, is a function of the wavelength of light, λ, and the 

numerical aperture (NA) of the objective, which is described by the refractive index of the 

objective (n) and the half-angle of the maximum cone for light entering or exiting the objective 

(θ).  At the spot which the light is focused, a diffraction pattern is generated, known as the Airy 

disk pattern, which is shown in Fig. 2.4 [28].  Therefore, the resolution capability of an optical 

lens is limited by the inability to accurately identify two such spots in close proximately to one 

another.  It is generally accepted that in order to resolve two spots they must be separated by a 

distance, known as the Rayleigh criterion, equal to or greater than the diameter of an individual 

spot or approximately λ/2 [29].  As shown in the center of Fig. 2.4, overlapping spots in an 

image can be resolved when they are separated by a sufficient distance.  When the distance 
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between these spots is less than λ/2, as shown on the right in Fig. 2.4, each spot cannot be 

individually resolved.  So, even with a perfect lens, resolution for visible light microscopy is 

limited to approximately 200 nm.  The example images shown in Fig. 2.4 have an excellent 

signal-to-noise ratio, and thus the Rayleigh criterion approximation of ~λ/2 is valid.  However, in 

images where signal-to-noise ratio is low the distance required to sufficiently resolves two spots 

in an images may be considerably greater than λ/2.   

 

Figure 2.4 – Above left is an illustration of the diffraction pattern formed from point source of light being 

focused onto an imaging plane.  The resulting diffraction pattern, known as an Airy disc pattern, has a 

central maximum intensity distribution surrounded by concentric rings of successively decreasing 

intensity.  Each spot must be separated by a distance equal or greater than the Rayleigh criterion, or 

~λ/2, in order to resolve each spot, as shown in the middle.  Spots separated by a distance less than the 

Rayleigh criterion cannot be resolved, as shown on the right.  

 

While the fluorescence approach has been a popular tool for membrane investigations, 

several alternative imaging techniques with superior resolution capabilities have provided further 

insight into membrane structure.  An example of ganglioside GM1/cholera toxin partitioning with 

a membrane as studied by EM was shown Chapter 1 [30].  However, EM techniques require 

that samples be examined under vacuum and often require staining, which detracts from the 

biological relevance of these studies.  Other techniques, such as AFM, have shown that there 

are resolvable submicron domains within model membrane bilayers which are beyond the 

resolution of traditional optical techniques [31, 32].  However, these AFM studies typically rely 

upon topography measurements which lack chemical specificity.  Super-resolution fluorescence 

techniques, including near field scanning optical microscopy (NSOM) [31, 33-35] and stimulated 
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emission depletion (STED) [36, 37] microscopy have also been employed in studies of 

membrane structure.  NSOM and STED have allowed for optical measurements of membranes 

with optical resolution nearly an order of magnitude beyond the diffraction limit.  However, these 

techniques are also not without their disadvantages. Similar to other fluorescence techniques, 

STED requires significant dye concentrations which can perturb the structure within membrane 

films.  NSOM, like other scanning probe techniques, is limited in terms of time resolution and 

difficult to implement with biological samples.  While each of these techniques has offered 

valuable insight in membrane studies, each technique, with the exception of NSOM, provides as 

ensemble-averaged view of membrane structure.   

This has motivated the development of single molecule approaches for structural studies 

in membranes.  By monitoring individual molecules the information content provided reveals 

molecular level detail, which can be hidden in bulk measurements.  For example, single-particle 

tracking (SPT) techniques have provided access to information on the mobility of individual 

molecules within a membrane [38, 39].  This has allowed distinct components within the 

membranes to be measured individually and identified based on their unique diffusion constant 

within the film.  Prior to these SPT techniques, fluorescence recovery after photobleaching 

(FRAP) was used to determine lateral mobility within membranes yielding an ensemble-

averaged diffusion constant [40].  Other single molecule techniques such as PALM and STORM 

have further demonstrate the utility of single molecule approaches for tracking protein density, 

spatial organization, and the presence of protein clusters in membranes [41-43].  Clearly, these 

single molecule approaches allow molecular level heterogeneities to be probed more accurately 

than ensemble-averaged measurements.  As such, this has motivated the development of 

advanced imaging methodologies which allow three-dimensional structural information from 

individual molecules to be extracted. 
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2.4 Defocused Fluorescence Imaging of Single Molecule Orientations 

 Single molecule fluorescence measurements require that light emitted from a single 

fluorophore be captured by a sensitive photodetector.   This has been made possible with the 

advent of high numerical aperture (NA) objectives and modern optical detectors.  High NA 

objectives are capable of accepting light entering the objective at higher angles and thus 

capture more light emitted from the sample.  Additionally, sensitive photodetectors, such as 

EMCCDs, provide high quantum efficiency and low noise, which allow the fluorescence 

emission from single molecules to be detected and spatially resolved.  The fluorescence 

emission for individual fluorescent lipid analogs doped into a model membrane is demonstrated 

in Fig. 2.5.  The ability to measure single molecule emission has led to the advancement of 

imaging techniques for extracting the three-dimensional orientation of individual molecules 

through defocused imaging, which is discussed below. 

In order to understand how the three-dimensional orientation of an individual molecule can be 

measured from a defocused image, first consider the emission dipole of a fluorophore.  The 

emission dipole of a single fluorophore typically lies along the long axis of the conjugated bond 

system of the molecule as shown in Fig. 2.6.  For example, the BODIPY fluorophore, which is 

employed in studies discussed in Chapters 3 and 4, has been shown to have a ~13º difference 

between absorption and emission dipoles [44].  In free space, the fluorescence emission from 

an individual fluorophore occurs in a sin2 pattern about the emission dipole[28].  This pattern 

becomes distorted if the emitting fluorophore is brought near an interface of higher refractive 

index [45-47], as shown in Fig. 2.6.  The light entering this interface does so at various angles 

dependent upon the orientation of the emission dipole relative to the surface, as shown in Fig. 

2.7.  Therefore, the light coupled into the collection optics of a microscope from an individual 

fluorophore has an angle dependency based upon on its emission dipole orientation relative to  
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Figure 2.5 – The fluorescence emission from individual molecules of a fluorescent lipid analog, BODIPY-

PC, doped at trace levels into a monolayer of DPPC deposited at 30 mN/m can be clearly resolved with a 

sufficient signal-to-noise ratio. 

 

 

Figure 2.6 – Above is a schematic representation of the fluorescence emission from a single molecule.  

As shown on the left, the emission dipole (blue line) lies approximately along the long axis of the 

fluorophore.  In free space the emission pattern from a single fluorophore is in a sin
2
 pattern about the 

emission dipole, as shown in the center.  When a fluorophore is near an interface of higher refractive 

index, the emission pattern of light passing through that interface becomes distorted, as shown on the 

right.   
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Figure 2.7 – When near an interface of higher refractive index, light from an individual fluorophore is 

coupled into the interface a various angles dependent upon the orientation of the fluorophore relative to 

the interface.  Examples of two extreme cases are illustrated above. When the emission dipole (blue line) 

is parallel to the interface, light couples into the interface at low angles, as shown on the left.  When the 

emission dipole is perpendicular to the interface, light couples into the interface at high angles, as shown 

on the right.   

 

the imaging surface. This phenomenon allows the orientation of individual molecules to be 

measured through an imaging method.   

While this coupling angle phenomenon will be useful for imaging single molecule 

orientations, it is important to note that modern microscope objectives are corrected for 

problems caused by multiple coupling angles in traditional images.  In typical microscopy optics, 

it is desirable that light emanating from a single point in the sample plane be focused to a single 

point on the imaging plane regardless of the angle with which it enters the microscope objective.  

When an objective is not corrected for this coupling angle issue, the objective is said to have 

spherical aberrations.  An objective which has spherical aberrations does not effectively focus 

light entering the optics train at various angles from a point on the sample plane to a single point 

on the imaging plane, as shown in Fig. 2.8 [27].  Traditional fluorescent samples imaged with an 

objective with spherical aberrations will appear blurry.  Therefore, while it is obviously 

advantageous to correct for spherical aberrations in traditional imaging applications, spherical  
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Figure 2.8 – The ray diagram above illustrates how spherical aberrations can be utilized to create unique 

emission patterns for individual molecules imaged from the same sample plane.  Shown on the left, an 

aberration-free lens focuses light coupled into the lens at various angles from the sample plane to a 

single point on the imaging plane.  This results in each individual molecule appearing as a two-

dimensional Gaussian bright spot, as shown in the left image.  Shown on the right, a lens which has not 

been corrected for spherical aberrations focuses light coupled into the lens at various angles from the 

sample plane to multiple imaging planes.  When capturing an image from a single imaging plane, as 

shown, light is focused dependent upon the angle at which it enters the objective.  Imaging single 

molecules with these uncorrected optics results in a unique emission pattern at the selected imaging 

plane for each molecule within the sample, as shown in the right image. 

 

aberrations can be exploited to allow for the imaging of single molecule orientation.  Spherical 

aberrations can be introduced to the optics train of a microscope by slightly defocusing the 
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objective (~500nm) [15, 46].   Creating spherical aberrations in single molecule images causes 

the light entering the objective at various angles from each molecule to be focused to a unique 

imaging plane. This results in distinctive emission patterns at the selected imaging plane for 

each molecule.   Figure 2.8 demonstrates how spherical aberrations are utilized to generate 

unique emission patterns for single molecules. 

The emission patterns generated by defocused imaging of single molecule fluorescence 

can be analyzed to determine the three-dimensional orientation of each fluorophore’s emission 

dipole relative to the sample surface.  Orientation analysis of single molecule emission patterns 

is achieved through comparison of measured emission patterns with a library of emission 

patterns created in a MATLAB simulation[48].  This simulation utilizes an equation which 

describes the diffraction of light through a lens in the presence of spherical aberrations, as 

shown in Eq. 2.2: 
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 Eq 2.2 

Where the intensity pattern is described in Cartesian coordinates by the intensity pattern of the 

dipole emission pattern in polar coordinates I(θ,Φ) using the polar angle (Φ) and azimuthal 

angle (θ) of the emission dipole relative to the surface, as shown in Fig 2.9, J0 is the zeroth 

order Bessel function, k describes the wave vector magnitude, a is the limiting aperture of the 

optical system, p incorporates the non-ideality of optics, and opd(p) is the optical path length 

difference between light travelling through the center and outer edge of the objective described 

as a function of p [48, 49]. Within this equation and MATLAB simulation the optical parameters 

of the defocused imaging experiment of single molecule fluorescence emission can be defined.   

Parameters including objective magnification and numerical aperture are known and held 

constant while defocus distance and orientation parameters are adjusted to fit each measured 

emission pattern.  An advantage of employing this technique in studies of supported 
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membranes is that each of the fluorophores within the film is confined to a single z-plane (or 

defocus distance).  This not only allows each of the fluorophores within the film to be imaged 

simultaneously, but it allows the defocus depth to be accurately measured with a piezoelectric 

focusing collar attached to the objective.   Thus, this eliminates one of the unknown variables 

used to simulate single molecule emission patterns and only adjustable parameters become the 

polar (Φ) and azimuthal (θ) angles, which are used to define to orientation of the emission 

dipole in three-dimensional space.     Figure 2.9 illustrates how these angles are used to define 

to orientation of the emission dipole in three-dimensional space relative the sample surface in 

the simulated images.  With the orientation of each emission dipole being controlled within the 

simulation, a library of simulated emission patterns can be created.  Each measured emission 

pattern is compared to this library in order to extract the orientation of the emission dipole for 

each fluorophore within the sample (±5º), as demonstrated in Fig. 2.10.  

 

Figure 2.9 – The three-dimensional orientation of each emission dipole is defined in relation to the 

imaging surface (the X-Y plane) by two angles, the polar angle (Φ) and the azimuthal angle (θ). 
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Figure 2.10 – The three-dimensional orientation of single molecules is measured by comparison of 

measured emission pattern from defocused single molecule images with simulated emission patterns 

generated in MATLAB. 

 

The defocused imaging method described above permits the measurement of molecular 

orientation for single molecules of all orientations within a sample.  Therefore, it is imperative 

that the method of excitation chosen be capable of exciting all molecular orientations as well.  

An epi-fluorescence configuration is one of the most common methods of excitation for standard 

fluorescence measurements.  However, this configuration is limited in terms of the capability to 
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excite molecules with their absorption dipoles oriented parallel to the direction of the 

propagating light.  Therefore, an epi-fluorescence configuration is inadequate for single 

molecule orientation imaging.  To address this issue, evanescent field excitation by total internal 

reflection (TIR) with p-polarized light can be utilized.  

A non-propagating, exponentially decaying, evanescence wave is generated at an 

interface where light undergoes total internal reflection [28].  The optical phenomenon of 

refraction which occurs at the interface of two mediums of differing refractive indices is 

described by Snell’s Law: 

     

     
  

  

  
   Eq. 2.3 

where n is the refractive index of each medium and θ is the angle of light from the interface 

normal in each medium.  As described by Snell’s law and shown in Fig. 2.11, light traveling in a 

high refractive index medium (n1) will be bent away from the normal as it crosses an interface 

into a lower refractive index medium (n2).  As shown in Fig. 2.11, at low angles of incidence the 

majority of light is refracted away from the normal in the incident medium (n2), while a fraction of 

the light is reflected within the initial medium (n1).  If angle of incidence is increased beyond the 

critical angle, the light will be totally internally reflected within the high refractive index medium.  

Snell’s law describes the critical angle: 

             
  

  
  Eq. 2.4 

where n1 is greater than n2.  At the point on the interface where total internal reflection occurs, 

an evanescent wave is produced which penetrates into the lower refractive index medium.  Not 

only is this evanescent field capable of exciting molecules near the interface in the lower 

refractive index medium, but it can excite all molecular orientations when p-polarized light is 
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used [45, 46].  P-polarized light has the electric field component of the electromagnetic wave 

oriented perpendicular to the interface.  Upon total internal reflection, E-field component arcs 

through the interface into lower refractive index medium, which allows all molecular orientations 

to be excited.      

 

Figure 2.11 – The diagram above illustrates the phenomenon of optical refraction of light traveling in a 

water medium incident on an air interface.  Light traveling in a high refractive index medium incident on 

an interface of lower refractive is bent away from the interface normal.  At angles less than the critical 

angle, most of the light is refracted, while a small fraction of the light is reflected within the initial medium.  

At angles beyond the critical, the incident light experiences total internal refection. 

 

The advent of single molecule detection and spectroscopy in solid phases began in 1989 

with the work of Moerner and Kador [50].  Since this time, other groups have furthered single 

molecule measurements with a technique, termed polarized total internal reflection fluorescence 

microscopy (P-TRIFM), for measuring the single molecule orientation of fluorophores.  Hellen 
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and Alexrod revealed using a fixed-power dipole model for fluorophore to calculate emission 

distortion through a dielectric interface resulted in an angle-dependent intensity at the imaging 

plane as a function of fluorophore orientation and distance from the interface [47].  Bartko and 

Dickson demonstrated this technique for measuring the orientation of individual fluorophores 

within polymer films [45, 46].  Further single molecule orientation studies, also called defocused 

orientation and position imaging (DOPI), demonstrated the orientation measurement of F-actin 

[51, 52] and a cellular motor protein, myosin V [53].  Together these studies provided evidence 

that the single molecule orientation technique could provide a valuable tool for molecular level 

structural measurements in biological systems.  As such, several of the studies discussed in this 

dissertation utilize this molecular approach to study the structure of model membranes and 

immobilized antibodies.   

Recently, the single molecule orientation approach has been applied to studies of lipid 

structure in model membranes[14-16].  This approach utilizes model membranes doped with a 

trace amount of a fluorescent lipid analog which can be imaged to report back molecular level 

structure within the membrane.  The approach for defocused imaging of single molecules is 

particularly apt for probing these systems as the thin lipid films deposited onto glass substrates 

confine the fluorescent lipids analogs being measured to a single z-dimension in the imaging 

plane.  By limiting the molecules being measured to a single z-plane not only can each molecule 

be imaged simultaneously, but defocus distance is consistent for each molecule.  Therefore, 

analysis of the imaged emission dipole pattern is simplified considerably as defocus distance is 

known, and the distance is the same for each molecule in the sample.  This has made model 

membranes an excellent model system to explore the utility of single molecule orientations for 

structural studies of biological systems.   

Initial single molecule orientation studies of membrane structure have provided several 

interesting findings.  These studies have demonstrated the utility of acyl-label fluorescent lipid 
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analogs over headgroup labeled probes for structural measurements in membranes [15].  These 

findings affirmed that the acyl-label probe orientation was augmented by lipid packing density 

while headgroup-label probes with fluorophores external to the hydrophobic membrane region 

were insensitive to lipid tail packing[15].    Additionally, these studies have proven that 

orientation measurements of acyl-labeled probes in monolayer and bilayer membranes are 

capable of reporting molecular level structure perturbations induced by changes in surface 

pressure, sterol concentration, and relative humidity[14-16].  Through these studies the 

equivalent surface pressure in bilayers was determined, which is a valuable tool for monolayer 

studies as bilayers exists in a tension-free state [16].  Furthermore, time-lapsed studies of single 

molecule orientations have demonstrated that the dynamic nature of lipids within membranes 

can also be measured with this technique [14].  Clearly, these studies have provided a 

foundation for further single molecule structural measurements in membranes.   

 

2.5 - Conclusion 

Several of the studies described in the following chapters build upon the previous single 

molecule work in membranes. The study described in Chapter 3 tests the sensitivity of a series 

of acyl-labeled fluorescent lipid analogs to determine the optimal probe structure for orientation 

measurements in membranes.  In Chapter 4, this optimal single molecule probe is utilized to 

elucidate the structural influence of a minor membrane component, ganglioside GM1, within LB 

monolayers.  Through this study, single molecule structural measurements proved to be a 

valuable tool as structural perturbations within the membrane, typically not observed by bulk 

techniques, were able to be probed.  Moreover, the single molecule approach is expanded upon 

in Chapter 6 to explore the orientation of immobilized proteins.  These studies report the 

preliminary findings from immobilized antibody orientation measurements for improving antibody 

binding efficiency in immunoassay applications.  
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Chapter 3: Sensitivity of Single Molecule Probes to Membrane Structure 

 

3.1 - Introduction 

The view of biological membranes and their functional role in cellular processes 

continues to evolve as new approaches are developed to probe these intricate structures.  

Biomembranes are composed of a complex mixture of lipids, proteins, sterols, and other 

species which combine to create highly heterogeneous and dynamic systems [1-5].  This often 

makes it difficult to directly link structural changes with membrane constituents, which has 

motivated the long historical development of model systems that mimic the natural cellular 

barrier.  These simplified systems offer a high degree of control over important thermodynamic 

and compositional parameters and have been essential in understanding natural membranes 

and developing and validating new tools for examining biological systems.   

Fluorescence microscopy is one of the most widely used approaches for probing 

structural and dynamic attributes of both model and natural membranes.  A wide variety of 

fluorescent lipid analogs have been developed that readily insert into the macroscopic lipid 

assembly and often partition into particular domains, thus enabling heterogeneous structural 

features to be delineated.  This approach has been used extensively to probe specific 

environments within lipid monolayers and bilayers, characterize phase structure, probe models 

of lipid rafts, and study the dynamics and fluidity of lipid membranes [6-9].  While fluorescence 

based analysis of membranes has been extensively developed and utilized, interpretation of the 

results and comparisons between studies is often complicated by the lack of detailed knowledge 

of probe/lipid interactions.  For example, measured diffusion constants of the same dye within 

the same lipid system can vary by orders of magnitude, the assignment of dye partitioning within 

localized domains is often contradictory, and even the same fluorescent probe can alter its 
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domain partitioning preference as a function of the lipid system composition [9-14].  This has 

renewed interest in understanding and controlling how probes insert into their target system.  

There has been a considerable effort to design fluorescent probes capable of sensing 

the hydrophobic regions of membranes by positioning the fluorophore within the lipid acyl tails.  

For example, 1,6-diphenyl-1,3,5-hexatriene (DPH) has an elongated structure which is expected 

to insert along lipid acyl tails and has been widely used to probe order in the lipid tail region [15, 

16].  However, anisotropy measurements by Levine et al. have shown that DPH does not 

consistently insert as expected along lipid acyl tails but also inserts parallel to the membrane 

plane [17].   

Similar efforts have led to the development of lipid analogs incorporating the BODIPY 

fluorophore [18, 19].  BODIPY probes are conceptually attractive for investigating the 

hydrophobic region of lipid membranes since they are less hydrophilic than other probes and 

have no net charge.  BODIPY probes also exhibit excellent fluorescent properties with high 

extinction coefficients, near unity quantum yields, and favorable photostability properties [20, 

21].  In order to examine the incorporation of this fluorophore within the structure of lipid 

membranes, several studies have examined insertion properties of BODIPY lipid analogs 

located at incrementally longer regions of the acyl tail [22-25]. 

Utilizing parallax analysis of fluorescence quenching, Kaiser and London have shown 

that while the average depth of the BODIPY fluorophore within the membrane is dependent on 

its position along the acyl tail, the BODIPY fluorophore also exhibits a broad distribution of 

locations within the membrane [24].  These results suggest that while the location of the 

BODIPY marker within the membrane generally tracks its location along the acyl chain of the 

probe, a significant population of fluorophores wrap back towards the headgroups and interact 

with the hydrophilic region of the membrane.  Quenching studies in giant vesicles, moreover, 
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found that essentially all of the BODIPY probes in the tailgroup looped back around to interact 

with the headgroups of the membrane, regardless of their location along the tailgroup [25].   

Clearly, the insertion geometry of BODIPY fluorescent membrane probes into lipid 

systems is complicated and requires further exploration using complementary techniques.  

Recently, we have shown that single molecule fluorescence measurements can characterize 

the orientation of individual fluorescent lipid probes doped into lipid membranes [26-31].  Using 

polarized total internal fluorescence microscopy (P-TIRFM), the three-dimensional orientation of 

fluorescent lipid analogs doped into films at trace levels can be characterized by emission 

pattern mapping.  Using an acyl chain linked BODIPY-C4C9-PC probe, we have shown that 

these measurements are sensitive to membrane structure at the single molecule level.  

Variations in membrane structure induced by surface pressure changes, relative humidity, or 

additives such as cholesterol can all be tracked through changes in single molecule probe 

orientation [26-28, 32].  Moreover, these studies revealed a distinctive bimodal insertion 

geometry for the BODIPY-C4C9-PC probe, consistent with previous bulk studies of probe 

orientations in membranes.   

Here we extend those studies to characterize the insertion geometry for a range of 

BODIPY lipid analogs in lipid films.  In this study, the single molecule orientation distributions of 

six BODIPY fluorescent probes in DPPC Langmuir-Blodgett (LB) monolayers are examined [33].  

The BODIPY location in the acyl tail group is varied and analogs containing both 

phosphocholine (PC) and fatty acid (FA) headgroups are compared.  These measurements are 

used to characterize how these probes insert and orient within DPPC monolayers and how their 

orientation changes with surface pressure.  These studies reveal a general trend towards 

bimodal insertion geometries for BODIPY containing analogs. All six analogs reorient in 

response to changes in membrane surface pressure.  The sensitivity to membrane surface 

pressure, however, is probe dependent and subject to the specific location of the BODIPY probe 



48 
 

in the acyl tail and identity of the headgroup.  These results, therefore, provide new insights into 

BODIPY containing probe insertion within membranes at the molecular level, which is important 

for interpreting results from bulk studies using these probes.  The trends also provide guidance 

for the development of probes with increased sensitivity to changes in their surrounding lipid 

matrix.  Together, these measurements illustrate the utility of single molecule fluorescence 

measurements for understanding the complicated and highly heterogeneous interactions that 

are indicative of membrane systems. 

 

3.2 - Materials and Methods 

Dipalmitoylphosphatidylcholine (DPPC) (Avanti Polar Lipids, Alabaster, AL) was 

obtained at >99% purity and used without further purification.  Fluorescent lipid analogs 2-(4,4-

difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-

3-phosphocholine (BODIPY-C5-PC) (D-3803), 2-(5-butyl-4,4-difluoro-4-bora-3a,4a-diaza-s-

indacene-3-nonanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY-C4,C9-PC) (B-

3794), 2-(4,4-difluoro-5,7-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-

hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY-C12-PC) (D-3792), 4,4-difluoro-5,7-

dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoic acid (BODIPY-C5-FA) (D-3834), 5-butyl-

4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-3-nonanoic acid (BODIPY-C4,C9-FA) (B-3824), 4,4-

difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (BODIPY-C12-FA) (D-

3822) (Invitrogen Corporation, Carlsbad, CA) were used as received. 

Lipid monolayers were prepared from 1 mg/ml stock solutions of DPPC dissolved in 

chloroform and doped with ~10-8 mol % of the appropriate reporter dye.  The solutions were 

dispersed on a subphase of 18 MΩ water in a Langmuir–Blodgett trough (Type 611, Nima 

Technology, Coventry, England).  The chloroform was allowed to evaporate for 15 minutes prior 
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to beginning compression cycles.  Each monolayer was subjected to two compression and 

expansion cycles up to a surface pressure of 40 mN/m. Compression and expansion rates were 

100 cm2/min and 80 cm2/min, respectively.  Each monolayer was then compressed to a 

particular target pressure and held at that pressure for 10 minutes.  The monolayer was then 

transferred to a Piranha-cleaned glass coverslip in a headgroup down geometry at a dipping 

speed of 5 mm/min.  All monolayers were transferred and studied at 22 oC.  

Monolayer films were imaged using a total internal reflection fluorescence microscope 

(TIRF-M) (Olympus IX71, Center Valley, PA) equipped with a 100x, 1.45 NA objective 

(Achromat, Olympus).  The 514nm line form an argon ion laser (Coherent Innova 90, Santa 

Clara, CA) was directed through half-wave and quarter-wave plates (Newport, Irvine , CA) to 

select for p-polarized excitation before being coupled into the microscope.  Excitation was 

directed through the objective with the optics defocused ~500nm and fluorescence was 

collected, filtered, and imaged on a cooled CCD camera (Cascade 650, Roper Scientific, 

Tuscon, AZ).  Image collection was controlled with Slidebook software (Version 4.2.0.3, 

Intelligent Imaging Innovations, Denver, CO) and analyzed with MATLAB (Natick, MA). 

 

3.3 - Results and Discussion 

To expand the capabilities of the single molecule orientation approach and explore how 

probe orientations reflect membrane properties, here we analyze the single molecule 

orientations of a series of BODIPY-linked fluorescent lipid analogs doped into DPPC 

monolayers.  The structures of DPPC and each of the fluorescent lipid analogs studied are 

displayed in Fig. 3.1.  Each probe incorporates a BODIPY fluorescent marker within the acyl tail 

region of the lipid analog and is unique in terms of its fluorophore position along the acyl chain 
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or headgroup type.  These studies, therefore, will help establish the role of probe position and 

headgroup identity on insertion geometry in model membranes.   

 

Figure 3.1:  Chemical structures for DPPC and the six BODIPY fluorescent lipid analogs studied.  As 
shown by the structures, the BODIPY probe location in the acyl tail group is systematically varied and 
analogs containing both phosphocholine (PC) and fatty acid (FA) headgroups are compared in this study.   

 

The emission dipole of the BODIPY marker lies approximately along the long axis of the 

fluorophore [20].  As discussed in Chapter 2, defocused P-TIRFM measurements enable 

characterization of the three-dimensional orientation of the emission dipoles from individual 
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fluorescent lipid analogs doped into lipid membranes.  These measurements, therefore, provide 

a direct visualization into the probe insertion geometry and can be used to track changes in the 

surrounding lipid matrix.   

Each fluorescent marker was doped into DPPC monolayers at trace levels, compressed 

to the desired surface pressure on a Langmuir-Blodgett (LB) trough, and transferred to a glass 

coverslip for analysis.  Deposition surface pressures ranged from 3 to 40 mN/m; which span 

DPPC phase transitions from the predominantly liquid expanded (LE) phase, through the liquid 

expanded (LE)/liquid condensed (LC) coexistence region, to the predominantly liquid 

condensed (LC) phase.  At low surface pressures, the DPPC monolayer is predominantly in the 

LE state which is characterized by a large area per lipid (> 80 Ǻ2 / molecule at 20oC), randomly 

oriented tailgroups, and reduced packing between the headgroups.  As the available area per 

molecule is reduced by compressing the membrane, the LC phase appears with tighter lipid 

packing (< 60 Ǻ2 / molecule at 20oC), ordered acyl tails oriented away from the interface, and 

close packing of the lipid headgroups.   

To demonstrate the utility of defocused fluorescence imaging for determining single 

molecule orientations, emission pattern mapping of the BODIPY fluorophore is illustrated in Fig. 

3.2.  The figure displays examples of experimentally measured emission patterns observed for a 

range of BODIPY orientations.  Each example is compared with simulated emission patterns 

using the approach described in Chapter 2, where the only adjustable parameters in the 

simulation are the polar (φ) and azimuthal (θ) angles of the BODIPY emission dipole and 

defocus distance [26].  The extracted emission dipole orientations are shown schematically in 

Fig. 3.2.   
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Figure 3.2:  (Left) Representative single molecule emission patterns measured using defocused 
polarized total internal fluorescence microscopy.  (Center) Simulated emission patterns used to 
characterize the polar (φ) and azimuthal (θ) angles of the BODIPY probe emission dipole.  (Right) 
Schematic representations of the emission dipole orientations determined from the simulated emission 
patterns.   

 

By comparing measured single molecule emission patterns with simulated results, 

orientation histograms are constructed to characterize the insertion geometry for each 

fluorescent marker shown in Fig. 3.1.  In particular, the polar (φ) angle or tilt angle defines the 
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extent of BODIPY tilt away from the surface normal and is used to describe the effective 

ordering of the BODIPY probe within the acyl tails of the DPPC monolayer as a function of 

surface pressure. 

Figure 3.3 shows representative defocused single molecule fluorescence images of 

BODIPY-C4C9-PC doped at ~10-8 mol % into DPPC monolayers deposited at increasing surface 

pressures.  Analysis of the single molecule emission patterns enables quantification of each 

individual orientation which is shown schematically in the center panels of Fig. 3.3.  The polar 

(φ) or tilt angle of each emission feature is compiled to create tilt angle population histograms 

for each surface pressure as shown in the bottom panel of Fig. 3.3.   

As previous single molecule studies have shown, molecular orientations of BODIPY-

C4,C9-PC doped into DPPC films track changes in membrane ordering.  Interestingly, consistent 

with the results shown in Fig. 3.3, these measurements reveal a bimodal distribution of 

orientations for BODIPY-C4,C9-PC doped into DPPC at all surface pressures studied.  

Significant populations of BODIPY-C4,C9-PC molecules were found to orient either normal (φ ≤ 

10º) or parallel (φ ≥ 81º) to the membrane plane, with little population observed in the 

intermediate orientations.  As shown in Fig. 3.3, as the surface pressure is increased, the 

population shifts towards the surface normal orientation with a concomitant decrease in the 

parallel orientation.   

The bimodal distribution seen in Fig. 3.3 is consistent with a mechanism in which the 

lipid analog can insert into the DPPC membrane in an extended configuration with the BODIPY 

probe aligned along the lipid tails and a conformation in which the fluorophore wraps back to 

interact with the lipid headgroups.  These configurations would lead to the normal oriented and 

parallel oriented populations, respectively.  This is consistent with fluorescence quenching 
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Figure 3.3:  (Top panels) Representative defocused single molecule fluorescence images of BODIPY-
C4C9-PC doped at ~10

-8
 mol % into DPPC monolayers deposited at 3, 25, and 40mN/m.  (Center panels) 

Schematics showing the single molecule orientations determined from simulating the single molecule 
fluorescence features measured in the top images.  (Bottom panels) Polar (φ) or tilt angle histograms for 
BODIPY probes in DPPC monoalyers transferred at the surface pressure indicated.  Each histogram 
summarizes hundreds of individual tilt angles measured using the single molecule emission patterns 
collected at each film condition.  The bimodal tilt distributions reveal large populations of BODIPY probes 
oriented normal (φ ≤ 10

o
) and parallel (φ ≥ 81

o
) to the membrane plane which shifts toward normal 

oriented probes as surface pressure increases.   
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studies which found that the BODIPY probes tend to associate with the lipid headgroups even in 

condensed membranes [18, 24].  While BODIPY is often described as a hydrophobic marker, 

distributed charge density within the ring system and charged resonance structures contribute to 

the observed hydrophilic nature of the BODIPY probe and its tendency to associate with 

membrane headgroups.   

As shown in Fig. 3.3, the proportion of BODIPY-C4C9-PC probes oriented normal to the 

membrane plane (φ ≤ 10º) increases with increasing surface pressure.  The bimodal orientation 

distribution and trend towards increased ordered abundance at higher surface pressure is 

observed for all the BODIPY probes studied.  Figure 3.4 summarizes the single molecule 

orientation measurements for C5, C4C9, and C12 BODIPY-PC and -FA probes in DPPC 

monolayers deposited at 3, 25, and 40 mN/m.  For clarity, only the fraction of probes oriented 

normal to the membrane plane are plotted as a function of monolayer surface pressure in Fig. 

3.4.  Each point in Fig. 3.4 is extracted from single molecule population histograms such as that 

shown in Fig. 3.3, containing at least 450 molecules characterized from 3 different films.  These 

plots clearly show that as the molecular area is reduced by compressing the monolayer to 

higher surface pressures, the ordered abundance for each probe studied increases linearly.    

As shown in Fig. 3.4, the sensitivity with which each probe responds to increasing 

surface pressure, however, is dependent on head group type and BODIPY position along the 

acyl tail.  Interestingly, the trends observed between BODIPY position and corresponding 

sensitivity to increasing surface pressure are not the same for PC and FA probes.  The 

BODIPY-C4C9-PC probe exhibits the greatest sensitivity to changes in surface pressure 

compared to the other BODIPY-PC probes, while BODIPY-C12-FA shows the greatest sensitivity 

among the fatty acid probes examined.  In addition, similar length PC and FA probes show 

statistically different sensitivities to surface pressure.  The C5 and C4C9 FA analogs, for 

example, exhibit lower sensitivities to surface pressure compared with their PC counterparts, 
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while only the C12 FA analog exhibits higher sensitivity to surface pressure than its PC 

equivalent.    

 

Figure 3.4:  Comparisons of the normalized population of normal oriented probes (φ  10
o
) as a function 

of DPPC surface pressure for the BODIPY probes shown in Fig. 3.1.  Trends in the normal oriented 
BODIPY probes with (A) PC headgroups, (B) FA headgroups, and (C) all the probes studied are plotted 
as a function of surface pressure.  (D-F) The populations of normal oriented probes versus surface 
pressure are plotted for lipid analogs that differ in headgroup but place the BODIPY probe in comparable 
positions along the acyl chain.   

 

Several contributing factors may influence how the BODIPY probes insert into the 

membrane and thus influence their sensitivity to the changing lipid environment as the surface 

pressure is increased.  The bimodal orientation distributions observed for all the BODIPY 

probes studied here is consistent with a general insertion model in which BODIPY probes 

aligned along the acyl chains lead to the normal oriented population (φ ≤ 10º) while probes 
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wrapped back towards the lipid headgroups give rise to the parallel oriented group (φ ≥ 81º).  In 

general, as surface pressure is increased and the area per lipid is reduced, the rise in normal 

oriented probes is consistent with an increasing population of BODIPY probes aligned along the 

acyl chains.  Two primary factors, therefore, contribute to the probe insertion geometry; the 

order of the surrounding DPPC acyl tails and the probe proximity to the polar headgroups.   

Before discussing the trends observed in Fig. 3.4, it is instructive to consider how the 

different headgroups affect the BODIPY location for similar length probes.  Previous studies 

have shown that the position of fatty acid probes within membranes is strongly linked to pH [24, 

34].  Upon protonation and deprotonation, fatty acids can change depths within the membrane 

of up ~3 Ǻ.  Given this, the fatty acid BODIPY analogs shown in Fig. 3.1 are expected to sit 

deeper within the DPPC headgroups, or closer to glass substrate, than their PC counterparts, 

pulling the acyl attached BODIPY probe several angstroms closer to the surrounding lipid 

headgroups.  As a first approximation, therefore, one would expect the relative probe depth of 

the BODIPY probes in the membrane to follow the general trend BODIPY-C5-FA < BODIPY-C5-

PC < BODIPY-C4C9-FA < BODIPY-C4C9-PC < BODIPY-C12-FA < BODIPY-C12-PC.  

Order within the surrounding DPPC acyl tails is necessary to induce order in the 

BODIPY probe and thus increase the abundance of φ ≤ 10º emission patterns.  Evidence for 

this mechanism is provided by the trend that all PC and FA probes generally show an increase 

in ordered abundance with increasing surface pressure.  NMR and molecular dynamics 

simulations show that the orientational freedom at each carbon along the acyl chain in a DPPC 

membrane is dependent on its distance from the headgroup [35, 36].  These methods suggest 

that toward the end of the acyl tail (at approximately carbon 12) order begins to decrease rapidly 

with increasing distance from the headgroup, even at high surface pressures.  Therefore, a lipid 

analog which places the fluorescent marker towards the end of the acyl tails in the monolayer 

will exhibit a decrease in ordered abundance compared to shorter probes due to a lack of 
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rigidity from the surrounding acyl chains.  In Fig. 3.4, for example, the BODIPY-C12-PC probe is 

much less sensitive to changes in membrane surface pressure than the shorter BODIPY-C4C9-

PC probe.  For the FA probes, however, the trend is complicated.  The trends in Fig. 3.4 reveal 

that the BODIPY-C12-FA probe is marginally more sensitive to surface pressure than the shorter 

BODIPY-C4C9-FA probe which is the reverse from that observed with the PC probes.  However, 

because FA probes sit deeper in the headgroups and pull the BODIPY probes several 

Ångstroms closer to the headgroups, these probes in practice place the BODIPY group in 

ordered regions of the acyl tails as discussed below. 

The second factor considered to influence BODIPY insertion geometry is probe-

headgroup electrostatic attraction given the charged resonance structures of the BODIPY 

probe.  Probes located closer to the phosphocholine headgroups are more affected by this 

attraction and will have a greater resistance to orient along the acyl tails.  Thus, probes linked 

with shorter acyl tails, such as the C5 probes, are expected to exhibit lower sensitivity to acyl tail 

ordering with surface pressure since the BODIPY probe experiences stronger headgroup 

association.  In Fig. 3.4, both the BODIPY-C5-PC and BODIPY-C5-FA probes exhibit the least 

sensitivity to changes in membrane surface pressure, consistent with this mechanism.   

In general, the trends observed in Fig. 3.4 suggest that fluorescent lipid analogs with 

probes located closer to the headgroups exhibit progressively lower sensitivities due to 

increased electrostatic attraction to the headgroup region, while probes located near the 

terminal end of the acyl chains show reduced sensitivities due to the of lack acyl chain order in 

this region.  Thus, these effects suggest that lipid analogs can be optimally tuned by judicious 

placement of the BODIPY probe along the acyl tail to maximize its orientation sensitivity to the 

surrounding membrane structure.  Clearly, the data in Fig. 3.4 shows that the BODIPY-C4C9-PC 

probe experiences the greatest sensitivity to changes in the membrane surface pressure.  This 

suggests that its BODIPY probe is positioned such that it minimizes the electrostatic interactions 
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with the lipid headgroups while keeping it in the ordered region of the acyl tails.  Because the FA 

probes sit deeper in the headgroups, the trends observed in Fig. 3.4 suggest that probe lengths 

between BODIPY-C4C9-FA and BODIPY-C12-FA would maximize their sensitivity to the 

surrounding lipid matrix.  The slight difference in sensitivities observed for comparable PC and 

FA probes in Fig. 3.4 is consistent with trends expected given the different depths at which the 

headgroups reside in the membrane.  This also indicates that the extra acyl chain of the PC 

probes has little effect on probe insertion or reorientation with surface pressure.  The studies 

presented here, therefore, suggest that bimodal insertion geometries for BODIPY lipid analogs 

are a general feature of this probe and the BODIPY position can be tuned to maximize their 

sensitivity to the surrounding lipid matrix.   

The findings from this study and previous studies of acyl-linked BODIPY probe location 

in membranes reveal a bimodal distribution of BODIPY probe orientations/locations have 

implications on several studies of diffusion within membranes.  Fluorescence recovery after 

photobleaching (FRAP) [37], single-particle tracking (SPT) [38, 39], and stimulated emission 

depletion (STED) [40] studies have often attributed anomalous diffusion of the same dye within 

membrane systems to the dye diffusing through more or less condensed regions within the 

membrane.  However, one must now consider whether differences in diffusion rates are not the 

effect of differently oriented fluorescent probes.  Therefore, single molecule orientation studies 

may be able to provide a method for elucidating the relationship between single molecule 

structure and diffusion rate within membranes. 

 

3.4 - Conclusions 

Defocused polarized TIRF-M measurements were used to characterize the tilt angles of 

BODIPY containing fluorescent lipid analogs doped into DPPC monolayers.  A total of six 
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analogs are studied where the location of the BODIPY probe is varied along the acyl chain.  

Analogs with PC and FA headgroups are also compared with BODIPY probes located at 

comparable locations in the acyl tail.  Each probe was doped into LB films of DPPC at ~10-8 mol 

% and their single molecule orientations characterized over a range of surface pressures.  For 

all probes studied, the single molecule tilt angle histograms reveal a predominately bimodal 

population distribution with probes oriented normal and parallel to the membrane plane.  The 

bimodal tilt distribution is consistent with other studies that have shown BODIPY probes interact 

with both the acyl tails and lipid headgroups.  The single molecule measurements reported here 

for a range of BODIPY probes suggest this is a general feature of membrane insertion for these 

lipid analogs.  As the surface pressure of the film is increased, the population shifts from parallel 

to normal oriented probes for all the BODIPY analogs studied.  The sensitivity to surface 

pressure, however, is shown to strongly depend on BODIPY location within the acyl tails and 

identity of the headgroup.  The single molecule measurements suggest that analog structures 

which minimize BODIPY/lipid headgroup interactions while placing the BODIPY probe within 

structured regions of the acyl chains provides the optimal sensitivity to membrane surface 

pressure.  Of the fluorescent lipid analogs studied here, the BODIPY-C4C9-PC probe 

demonstrated the highest sensitivity to membrane surface pressure changes.  These results 

show that single molecule orientation measurements can help unravel the complicated 

interactions between fluorescent lipid probes and their surrounding membrane environments 

and provides a new tool for studying membrane structure and heterogeneity at the molecular 

level.  

This chapter has been adapted in part from previously published work: Armendariz, K. 

P., H. A. Huckabay, P. W. Livanec, and R. C. Dunn. 2012. Single molecule probes of membrane 

structure: Orientation of BODIPY probes in DPPC as a function of probe structure. Analyst 

137:1402-1408. 
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Chapter 4: Ganglioside Influence on Phospholipid Films Investigated with Single 

Molecule Fluorescence Measurements 

 

4.1 - Introduction 

Understanding the functional roles of lipids in biological membranes has continued to 

evolve since the introduction of the fluid mosaic model in 1972 [1].  Far from being passive 

matrices that simply support membrane constituents, lipids now appear to provide active roles in 

organizing and modulating events at the cellular membrane.  One of the more intriguing and 

enigmatic roles that has emerged from these studies involves the formation of nanometric lipid 

domains termed lipid rafts [2, 3].  These small, dynamic domains represent compositional 

heterogeneities in the membrane that are thought to be important in signaling and 

organizational processes [4, 5].   

The formation of domains in complex mixtures, such as those found in biomembranes, is 

neither surprising nor unexpected.  Characterizing their physical, chemical, and biological 

properties, however, has proven daunting in natural membranes given the complexity of the 

system and often lack of clear controls.  Moreover, the small size and dynamic nature of lipid 

rafts makes them difficult to probe directly in intact membranes, which has led to some 

controversy in the literature [5-7].  These challenges have led to the widespread use of model 

membranes where specific interactions can be probed in highly controlled environments [8, 9].  

These studies have proven invaluable for understanding how putative raft components interact 

in various lipid environments and in identifying key interactions that modify membrane structure.  

For example, these studies have characterized the formation of domains in lipid membranes 

[10, 11], elucidated the effect of cholesterol on membrane fluidity [12], and characterized the 

complex partitioning of lipid raft components [13].  For the latter, studies involving ganglioside 
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GM1, a putative raft component, illustrates the complexity that can be encountered even in 

simple membrane mixtures [14-21]. 

GM1 is part of a larger class of glycolipids found predominantly in the outer leaflet of 

animal cell membranes.  GM1 is a member of the ganglioside family whose members contain 

oligosaccharides with one or more sialic acid residues, giving them a net negative charge.  Over 

100 gangliosides have been identified in vertebrate cells and their incorporation into membranes 

appears ubiquitous [22].  While they represent only a minor component in most cells, they are 

enriched in neuronal membranes where they can comprise 2 to 10% of the total lipid content 

[23, 24].  Among other functions, they appear to play roles in cell recognition, signal 

transduction, and as receptors for viruses and toxins [25-28].  Ganglioside GM1, for example, is 

a cell-surface receptor for cholera toxin, the bacterial toxin which leads to the incapacitating 

diarrhea of cholera.   

GM1 is anchored in the external leaflet of cellular bilayers through its hydrophobic 

ceramide group while its bulky oligosaccharide region is exposed to the extracellular milieu.  

Structural diversity within the ceramide group has recently been shown to influence how GM1 

traffics cholera toxin from the plasma membrane to the endoplasmic reticulum, illustrating the 

complex structure/function relationships associated with GM1 [29].  This complexity is also 

manifest in model membrane studies which have revealed complex partitioning of GM1 between 

lipid phases [14-21]. 

Atomic force microscopy (AFM) studies of model membranes have shown that GM1 

partitions into condensed domains at low GM1 concentrations [14-19].  In Langmuir-Blodgett 

(LB) mixed monolayers of DOPC and DPPC, for example, the addition of GM1 (0.2 mol% to 1 

mol%) leads to the formation of nanometric domains within condensed regions of the film [18].  

As the GM1 concentration is increased to 4 mol%, the number of these domains increases 
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accompanied by the formation of elongated domains along the condensed phase boundaries.  

These studies also identified small domains in the expanded membrane regions at higher GM1 

concentrations.   

Studies on more complicated mixtures have found essentially the same trends.  AFM 

studies on supported membranes of sphingomyelin, DOPC, and cholesterol found evidence for 

GM1 partitioning into condensed domains rich in cholesterol and sphingomyelin [15].  As GM1 

was increased to 5 mol%, additional GM1 rich condensed microdomains were observed in the 

expanded regions of the films.  These and related studies largely agree that GM1 segregates 

into condensed domains at low mole percentages and experiences expanded phase partitioning 

at higher concentrations.   

Isotherm and X-ray diffraction studies have shown that pure GM1 monolayers remain 

fluid at all surface pressures, which is attributed to the bulky charged headgroup of GM1 [14, 

30].  Even when the GM1 headgroups are tightly packed at high surface pressures, there 

remains sufficient freedom for the acyl tails to adopt disordered configurations.  These 

observations raise intriguing questions regarding the mechanism that drives GM1 to partition 

within condensed domains in mixed membranes.  In mixed monolayers with the zwitterionic lipid 

DPPC, for example, GM1 has a condensing effect on the monolayer at low mole percentages 

[14].  Fluorescence studies of phase partitioning have found a gradual growth in the liquid 

condensed (LC) domains with increasing [GM1] from 10 mol% to 25 mol%.  Interestingly, as the 

GM1 component is increased above 25 mol%, the fluorescence measurements revealed a 

reversal in the trend.  At the higher GM1 levels, the LC domains gradually diminish as the film 

becomes expanded, eventually becoming purely liquid expanded (LE) at high GM1 

concentration.  The transition from condensing to expanding effect observed at 25 mol% was 

interpreted as reflecting a stoichiometric interaction between GM1 and DPPC that leads to an 
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optimal packing in the membrane.  Once the GM1 component exceeds this stoichiometric limit, 

additional GM1 expands the membrane.   

These measurements reveal the complicated influence that GM1 can have on 

membrane structure.  Due to experimental constraints, however, most studies have focused on 

relatively high GM1 concentrations, which are not reflective of the typically low levels found in 

most natural membranes.  The phase structure observed in fluorescence measurements at low 

GM1 levels, for instance, is ill-defined which limits the amount of useful information that can be 

extracted from these measurements.  This places a practical limit of ~5 mol% GM1 in these 

studies.  Recently, we have shown that single molecule fluorescence measurements can 

provide a complementary view into membrane structure [31-36].  These studies characterize the 

orientation of acyl-linked-BODIPY fluorescent lipid analogs doped into membranes at trace 

levels which have been shown to be sensitive to the surrounding lipid matrix.   These 

measurements have been used to characterize changes in membrane structure due to surface 

pressure, the addition of additives such as cholesterol, and ambient humidity levels [31-34].  

Here we use this approach to probe changes in DPPC structure at the molecular level with the 

addition of GM1.  Within this study the optimal BODIPY probe in terms of sensitivity, BODIPY-

PC (or BODIPY-C4C9-PC from Chapter 3), is employed. 

Single molecule fluorescence measurements on Langmuir-Blodgett (LB) mixed 

monolayers of DPPC and GM1 are studied over the GM1 concentration range of 0.05 mol% to 

100 mol%.  The low concentration range is several orders of magnitude lower than previous 

fluorescence studies of GM1 influence and reveals significant changes occur in the monolayers 

even at these low levels.  At the higher concentration range, the single molecule measurements 

of membrane structure reveal complicated trends with GM1 that are consistent with previous 

bulk studies in model systems [14, 15, 18].  The trends observed from 0.05 mol% to 0.10 mol% 

GM1 in DPPC suggest that GM1 partitions into the expanded phase at low concentrations and 
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only above 0.10 mol% begins to partition into the condensed regions as observed previously.  

Thus, the single molecule orientation measurements presented here offer new insight into the 

complex phase partitioning of GM1 at the low concentrations typically observed in most 

biological cell types. 

 

4.2 - Materials and Methods 

Dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylserine (DPPS), and 

ganglioside GM1 (GM1) (Avanti Polar Lipids, Alabaster, AL) were obtained at >99% purity and 

used without further purification.  Lipid stock solutions of DPPC were prepared at 1 mg/mL in 

chloroform. Stock solutions containing DPPS or GM1 were prepared at 1 mg/mL in a 65:35 

volume mixture of chloroform and methanol.  The fluorescent lipid analog 2-(5-butyl-4,4-difluoro-

4-bora-3a,4a-diaza-s-indacene-3-nonanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine 

(BODIPY-PC) (Invitrogen Corporation, Carlsbad, CA) was diluted in methanol to obtain 

appropriate working concentrations.  The chemical structures for the lipids employed in this 

study are shown in Fig. 4.1.   

Lipid monolayers prepared for bulk fluorescence studies were doped with 0.5 mol% 

BODIPY-PC dye, while monolayers prepared for single molecule measurements were doped 

with ~10-8 mol% of the reporter dye.  Approximately 50 µL of the appropriate lipid solution was 

dispersed on an 18MΩ water subphase in a Langmuir-Blodgett trough (Type 611, Nima 

Technology, Coventry, England).  The solvent was allowed to evaporate for at least 15 min prior 

to initiating compression/expansion cycles to anneal the film.  Each monolayer was subjected to 

two compression/expansion cycles between surface pressures of 40 mN/m and 10 mN/m.  The 

barrier rate during these cycles was held at 100 cm2/min.  Following the last expansion, the 

monolayers were compressed to the desired target pressure and held for 10 min prior to 

transfer onto a solid substrate.  Monolayers were transferred on to Piranha-cleaned glass 
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coverslips in a headgroup down arrangement using a dipping velocity of 5 mm/min.  All 

monolayers were transferred and imaged at 22°C. 

 

 

Figure 4.1 - Chemical structures for DPPC, DPPS, ganglioside GM1, and the fluorescent lipid analog, BODIPY-

PC. 

 

 
Monolayers were imaged with a total internal reflection microscope (TIRF-M) (Olympus 

IX71, Olympus, Center Valley, PA) equipped with a 100x, 1.45 NA objective (Achromat, 

Olympus, Center Valley, PA) for single molecule imaging, and a 60x, 1.45 NA (Achromat, 

Olympus) objective for bulk fluorescence imaging.  P-polarized excitation was generated at the 
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sample by directing the 514nm line from an argon ion laser (Coherent Innova 90, Coherent Inc., 

Santa Clara, CA) through half-wave and quarter-wave plates (Newport, Irvine, CA).  Bulk  and 

single molecule fluorescence images were collected in an epi-illumination configuration with a 

cooled CCD camera (Retiga 1300, Q Imaging, Surrey, BC, Canada).  Single molecule 

orientation measurements were collected with the optics defocused ~500 nm using a piezo 

focusing collar (Mad City Labs Inc., Madison, WI) on the objective.  The defocus distance was 

consistent with single molecule emission pattern simulations using MATLAB (Mathworks, 

Natick, MA).  The TIRF angle was controlled by positioning the excitation light in the back 

aperture of the objective to achieve an incident angle just greater than the critical angle of 41.4°.  

Image collection was controlled using Slidebook software (Intelligent Imaging Innovations, 

Denver, CO) with 500 ms integrations and no binning used in the single molecule captures.  

Bulk fluorescence and single molecule images were analyzed in ImageJ (U.S. National 

Institutes of Health, Bethesda, MD) and MATLAB (Mathworks, Natick, MA), respectively, as 

discussed elsewhere.[31] 

In this work, we report the measured tilt angles of the individual BODIPY-PC molecules 

doped into supported monolayers containing DPPC, GM1, and/or DPPS.  Each monolayer 

condition was studied at multiple areas of at least 3 separate films, and N represents the total 

number of single molecule orientations measured at each monolayer condition.  The following 

monolayer conditions are included in this study: pure DPPC monolayers deposited at 7 mN/m 

(N= 324), 23 mN/m (N= 363), and 40 mN/m (N= 418); pure GM1 monolayers deposited at 7 

mN/m (N= 258), 23 mN/m (N= 375), and 40 mN/m (N= 328); mixed monolayers of DPPC/GM1 

deposited at 23 mN/m containing 0 (N= 363), 0.05 (N= 594), 0.1 (N= 865), 0.5 (N= 1013), 1 (N= 

512), 5 (N= 980), 10 (N= 1312), 15 (N= 960), 20 (N= 653), 33 (N= 926), 50 (N= 605) and 100 

(N= 375) mol % GM1; and mixed monolayers of DPPC/DPPS deposited at 23 mN/m containing 

0 (N= 363), 0.05 (N= 603), 0.1 (N= 623), 1 (N= 638), 5 (N= 386), 20 (N= 764) mol % DPPS. 
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4.3 - Results and Discussion 

The macroscopic membrane structure of DPPC monolayers doped with increasing 

amounts of GM1 was characterized using fluorescence microscopy with the results shown in 

Fig. 4.2.  The DPPC/GM1 monolayers were doped with 0.5 mol% of the fluorescent lipid analog 

BODIPY-PC and transferred onto glass substrates at a surface pressure of 23 mN/m using the 

LB technique.  This surface pressure has previously been found to mimic the effective surface 

pressure of bilayers, although higher surface pressures have also been reported [32].  The 

bright areas of the monolayers shown in Fig. 4.2 denote liquid expanded (LE) phase regions of 

the membrane that incorporate the BODIPY-PC probe while the dark areas reflect liquid 

condensed (LC) domains.  In agreement with previous studies, the series of images shown in 

Fig. 4.2 reveal a striking evolution in monolayer structure as the GM1 concentration is increased 

from 0 to 60 mol% [14]. 

At low GM1 levels (<5 mol%), the dark LC domains are relatively irregular in shape and 

lack boundary definition.  At approximately 5 mol% GM1, the LC domains take on a distinctive 

shape and the LC and LE phases become clearly defined, with sharp borders marking the 

transitions between the phases.  As seen previously, as the mol% of GM1 is increased the 

percent LC area of the monolayer steadily increases up to approximately 20 mol% GM1.  Above 

this concentration, additional GM1 leads to the steady reduction in LC domain size and increase 

in the expanded regions of the membrane.  The trends observed in Fig. 4.2 are quantified in 

Fig. 4.3 which plots the percent area of the LC phase as a function of GM1 concentration.   

As shown in Fig. 4.3, the percent area coverage of LC phase in the DPPC/GM1 mixture 

increases up to 20 mol% GM1, after which the percent area steadily decreases as more GM1 

is added.  Previous studies have found similar trends and suggest that GM1 initially partitions  
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Figure 4.2 - Fluorescence images of DPPC monolayers containing the indicated concentration of GM1.  Monolayers 

were doped with 0.5 mol% of the fluorescent lipid analog BODIPY-PC and transferred onto a glass substrate at a 

surface pressure of 23 mN/m using the Langmuir-Blodgett technique.  The liquid condensed (LC) phases exclude 

the BODIPY-PC probe and appear dark, while the liquid expanded (LE) phases incorporate the dye and appear 

bright.  The scale bar is 30 μm. 

 

 

into the condensed regions of membranes at low mole percentages [18].  Molecular area 

measurements suggest DPPC and GM1 mix stoichiometrically in these condensed domains, 

forming complexes with reduced area compared to the sum of the individual components [14].  

Increasing GM1 concentration beyond the optimal packing ratio leads to GM1 appearing in the 

LE phase leading to increasingly expanded films above ~20 mol% GM1.  The results shown in 

Figs. 4.2 and 4.3, therefore, are consistent with previously observed trends.   
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Figure 4.3 - Plot of the percent coverage of liquid condensed (LC) phase as a function of [GM1], extracted from the 

fluorescence images shown in Fig. 4.2.  The data points represent 0, 0.1, 0.5, 1, 5, 10, 15, 20, 30, 40, 50, and 60 

mol% GM1 in DPPC. 

 

As illustrated in Fig. 4.2, fluorescence microscopy is useful in visualizing and 

characterizing macroscopic phase separation in supported lipid monolayers of DPPC and GM1 

when GM1 concentrations are above 5 mol%.  These approaches, therefore, can add insight 

into the role of GM1 in biological systems such as neuronal membranes where the GM1 

component is highly enriched and can reach levels as high as 2 to 10 mol% [23].  For the 

majority of biological membranes, however, gangliosides represent only a minor fraction of the 

membrane composition which raises intriguing questions about their role in modifying 

membrane structure at low abundance [24].  As shown in Fig. 4.2, fluorescence microscopy 

measurements become less informative at GM1 concentrations less than 5 mol% as the 

macroscopic phase structure and effects of GM1 on film properties become less well defined.   
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Previously, we have shown that single molecule fluorescence measurements can 

provide new insight into membrane properties [31-34].  These measurements track changes in 

the orientation of fluorescent lipid analogs doped into films at trace levels and have been shown 

to be sensitive to changes in film surface pressure and the presence of additives [31-34].  These 

single molecule fluorescence measurements use defocused polarized total internal fluorescence 

microscopy (PTIRF-M) to excite and image fluorescent probes doped into lipid membranes at 

10-8 mol%.  As an example, Fig. 4.4 compares defocused single molecule PTIRF-M images of 

BODIPY-PC doped into pure monolayers of DPPC and GM1.  Monolayers transferred onto 

glass substrates at low ( = 7 mN/m) and high ( = 40 mN/m) surface pressures using the LB 

technique are compared.   

As discussed elsewhere, the single molecule emission patterns observed in the 

defocused PTIRF-M images reflect the three-dimensional orientation of the probe emission 

dipole in the lipid matrix [31].  Emission dipoles oriented normal to the membrane plane, for 

example, lead to donut-like emission features while dipoles oriented in the membrane plane 

appear as elliptical features with wings.  In Fig. 4.4, for instance, an evolution in the single 

molecule emission patterns from predominantly elliptical with wings to doughnut-like is observed 

for DPPC in going from low to high pressure, respectively.  The BOPIDY-PC probe shown in 

Fig. 4.1 has an acyl-linked fluorophore and anisotropy studies have shown that the emission 

dipole lies approximately along the long axis of the conjugated ring system [37].  The location of 

the fluorophore in the tail region makes its orientation sensitive to the structure of the 

surrounding lipid matrix.  As the surface pressure of DPPC is increased, therefore, more 

doughnut-like emission features are observed as BODIPY-PC tails adopt an elongated 

conformation.   

The results for DPPC can be contrasted with single molecule orientation measurements 

of BODIPY-PC doped into monolayers of GM1.  The fluorescence images shown in Fig. 4.4 
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reveal little change in the single molecule emission patterns with surface pressure for BODIPY-

PC doped into GM1 monolayers.  Qualitatively, the lack of donut-like emission features 

 

Figure 4.4 - Representative defocused TIRF-M single molecule fluorescence images of pure DPPC and GM1 LB 

monolayers doped with ~10
-8

 mol% BODIPY-PC and transferred at 7 mN/m and 40 mN/m.  Each bright feature 

represents the fluorescence from a single BODIPY-PC dye molecule and has a distinctive emission pattern reflective 

of its orientation within the film.  Fluorescent probes with emission dipoles lying in the plane of the film appear as 

elliptical structures with wings while those oriented perpendicular to the membrane plane exhibit doughnut like 

structures.  For DPPC, a significant change in BODIPY-PC orientation with surface pressure is observed while 

orientations within GM1 films remain qualitatively the same with surface pressure.  The scale bar is 2 μm. 

 

suggests that most emission dipoles lie in the membrane plane.  The similarity between the 

images collected at low and high surface pressure indicates that surface pressure has little 

effect on the BODIPY-PC probe orientation in GM1 films.  This is consistent with previous 

measurements showing GM1 films remain expanded over the surface pressures studied.  
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The emission patterns, such as those shown in Fig. 4.4, can be analyzed to extract both 

the polar ( ) and azimuthal (θ) angles for each emission dipole in the image. This orientation 

information is used to populate histograms of the polar ( ) or tilt angle of the emission dipole 

with respect to the membrane normal.  Previous studies have shown that the tilt angle of 

BODIPY-PC within supported lipid monolayers is a sensitive probe of the surrounding 

membrane environment.  Tilt angle histograms for BODIPY-PC in monolayers of pure DPPC 

and pure GM1 at the surface pressures studied in Fig. 4.4 are compared in Fig. 4.5.    

 

Figure 4.5 – Tilt angle histograms for BODIPY-PC doped into monolayers of DPPC and GM1 transferred at 7 

mN/m and 40 mN/m.  Single molecule emission patterns, such as those shown in Fig. 4.4, are modeled to extract the 

BODIPY-PC emission dipole tilt angle with respect to the membrane normal to populate each histogram.  At each 

surface pressure studied, more than 250 individual molecules were measured from at least 3 separate monolayers.  

The ordered abundance or population oriented normal to the surface normal         at each surface pressure is 

extracted and plotted as a function of surface pressure.  The ordered abundance in DPPC increases with surface 

pressure while ordered abundance in GM1 remains low at all surface pressures, reflecting its expanded state.   
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For BODIPY-PC in DPPC, Fig. 4.5 reveals a bimodal distribution of probes 

predominantly oriented either normal (       or parallel (       to the membrane plane, 

with only a small fraction occupying intermediate tilt angles.  Increasing the surface pressure 

leads to a shift in population from parallel to normal oriented probes, with little change in the 

intermediate tilt population.  The reduced area per lipid at higher surface pressures in DPPC 

favors an elongated acyl chain configuration leading to normal oriented emission features.  By 

tracking the proportion of BODIPY-PC probes oriented normal (       to the membrane 

plane, known henceforth as the ordered abundance, changes in the molecular level structure of 

the monolayer can be characterized for DPPC.  The ordered abundance plotted in Fig. 4.5 

shows an increasing trend with surface pressure.  This approach has been used previously to 

probe DPPC membranes as a function of relative humidity, the addition of additives such as 

cholesterol, and membrane surface pressure [31-34].   

The results for GM1 show markedly different results.  The tilt angle histograms show that 

the vast majority of the BODIPY-PC probes are oriented with their emission dipole lying in the 

plane of the film.  Moreover, the tilt angle histograms measured at the surface pressures for 

GM1 are statistically indistinguishable, indicating that changes in monolayer surface pressure 

have little effect on BODIPY-PC orientation.  As mentioned earlier, these measurements are 

consistent with bulk studies that have shown that GM1 films remain expanded at all surface 

pressures [30]. 

The results summarized in Figs. 4.4 and 4.5 show that single molecule measurements 

of membrane order lead to dramatically different trends for films of DPPC and GM1 as a 

function of surface pressure.  To probe the effects of GM1 on DPPC, similar measurements 

were carried out in mixed monolayers doped with ~10-8 mol% BODIPY-PC.  Single molecule 

defocused P-TIRFM studies of DPPC/GM1 monolayers as a function of [GM1] were measured 

on monolayers transferred at 23 mN/m.  At each GM1 concentration, single molecule emission 
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patterns were measured and modeled to extract the tilt angles of the BODIPY-PC probe.  As 

shown in Fig. 4.4, the ordered abundance or proportion of probes oriented normal (       to 

the membrane plane provides a useful metric for tracking changes in film structure.  Therefore, 

Fig. 4.6 plots the ordered abundance extracted from tilt angle histograms of BODIPY-PC in 

DPPC/GM1 monolayers as a function of GM1 concentration.  Each point in Fig. 4.6 represents 

the ordered abundance extracted from the measured tilt angle of at least 350 individual 

molecules from least 3 separate films. 

Figure 4.6 reveals a complicated trend in BODIPY-PC orientation with increasing GM1 

levels.  A sharp decrease in the single molecule ordered abundance is observed immediately 

upon the addition of GM1 to DPPC.  The ordered abundance drops from 30% in pure DPPC to 

just over 10% with the addition of 0.1 mol% GM1.  As GM1 levels increase, however, this trend 

reverses.  As shown in Fig. 4.6, the ordered abundance increases to 24% with the addition of 

0.5 mol% GM1 and continues to rise back to 30% at 15 mol% GM1.  This value is 

approximately the same as that measured in pure DPPC containing no GM1 at this surface 

pressure.  As GM1 levels increase above 15 mol%, however, the single molecule ordered 

abundance again decreases towards a final value of 3% observed in pure GM1 monolayers 

transferred at 23 mN/m.   

Comparing the trends observed in Figs. 4.3 and 4.6 reveals close agreement between 

the single molecule orientation measurements and bulk fluorescence measurements of film 

structure when GM1 levels are greater than 5 mol%.  Both trends reflect increasing film order as 

GM1 levels rise from 5 to 15 mol% GM1.  The single molecule measurements and ensemble 

fluorescence studies also sense the reversal in film order above approximately 20 mol% GM1, 

as increasingly more GM1 levels expand the film.  At low GM1 levels, however, the single 

molecule orientation measurements reflect changes in film structure that are not apparent in the 
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bulk fluorescence measurements.  This distinction is significant since GM1 is usually present at 

low levels in most biological membranes.   

 

 

Figure 4.6 – Plot of the BODIPY-PC single molecule ordered abundance versus mol% GM1 in DPPC monolayers 

transferred at 23 mN/m.  The ordered abundance was quantified using the procedure outlined in Figs. 4.4 and 4.5.  

The data points represent 0, 0.05, 0.1, 0.5, 1, 5, 10, 15, 20, 33, 50, and 100 mol% GM1 in DPPC and are plotted on a 

log scale for clarity in the low mole percent region.  Each point was extracted from tilt angle histograms including at 

least 350 individual molecules, measured from multiple areas of at least 3 films to ensure representative 

measurements.   

 

Figure 4.6 reveals the profound effect the addition of GM1 has on the molecular 

orientation of BODIPY-PC in DPPC films even when added at trace amounts. While bulk 

fluorescence measurements reveal no significant change in macroscopic membrane structure at 

low mol% GM1, single molecule orientation measurements reveal substantial changes occur in 

the molecular level structure of the film upon the addition of trace amounts of GM1.  As shown 
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in Fig. 4.6, the addition of just 0.05 mol% GM1 causes a 10% drop in the single molecule 

ordered abundance.  This drops another 10% as the GM1 content is increased to 0.1 mol%.  

These results suggest that even small additions of GM1 to DPPC can lead to significant 

structural changes in the film which are reflected in the single molecule orientation 

measurements, but hidden in bulk fluorescence measurements.   

Previous single orientation studies have shown that BODIPY-PC orientation in lipid 

monolayers is influenced by the surrounding lipid acyl chain ordering and electrostatic 

interactions between the fluorophore and the lipid headgroups [34].  GM1 is a glycosphingolipid, 

containing neutral sugars and a single negatively charged sialic acid residue in the headgroup.  

This charge contributes to the electrostatic potential of the membrane and can influence the 

orientation of nearby BODIPY-PC probe molecules through electrostatic interaction [38].  To 

confirm that nearby charged headgroups can alter BODIPY-PC orientation, studies in mixed 

monolayers of DPPC and negatively charged DPPS were conducted.  As shown in Fig. 4.1, 

DPPS contains a negatively charged serine group but is otherwise structurally similar to DPPC.   

Single molecule orientation measurements of mixed monolayers of DPPC and DPPS 

were carried out as a function of DPPS.  As in the GM1 studies, the monolayers were doped 

with 10-8 mol% BODIPY-PC and transferred at 23 mN/m.  As before, the single molecule 

emission patterns were imaged and analyzed to create tilt angle histograms, from which the 

ordered abundance was extracted and plotted as shown in Fig. 4.7.  As seen in Fig. 4.7, the 

single molecule ordered abundance immediately drops upon the addition of small mole 

percentages of DPPS to the DPPC film.  The ordered abundance drops from ~30% in pure 

DPPC to ~10% upon the addition of just 0.1 mol% DPPS, similar to trends observed with the 

addition of GM1.  Unlike the GM1 results, however, the ordered abundance levels off and 

remains roughly constant as the concentration of DPPS is increased further.  
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Figure 4.7 – Plot of the BODIPY-PC single molecule ordered abundance versus mol% DPPS in DPPC monolayers.  

All monolayers were transferred at 23 mN/m and the data points represent 0, 0.05, 0.1, 1, 5, and 20 mol% DPPS in 

DPPC.  Each point was extracted from tilt angle histograms including at least 350 individual molecules, measured 

from multiple areas of at least 3 films to ensure representative measurements. 

 

The results shown in Fig. 4.7 suggest that the negatively charged headgroups of DPPS 

can influence the orientation of nearby BODIPY-PC probes in the mixed monolayer, leading to 

decreased abundance of normal oriented probes.  The addition of either DPPS or GM1 to 

DPPC causes a similarly sharp decrease in ordered abundance at low concentrations, 

suggesting a general mechanism based on favorable electrostatic interactions between the 

BODIPY-PC fluorophore and the negatively charged headgroups.  The sharp decrease may 

also reflect a disruption in acyl chain packing.  However, given the similarity in response to the 

addition of DPPS and GM1 at low concentrations, an electrostatic mechanism is favored.  Given 

the propensity of BODIPY-PC to partition into the expanded phase and proximity required for 
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GM1 to influence BODIPY-PC orientation, these results further suggest that GM1 partitions into 

expanded membrane regions at low concentrations.   

At higher concentrations, a significant divergence is observed when comparing the 

effects that GM1 and DPPS have on the BODIPY-PC probe.  Figure 4.7 shows that the ordered 

abundance reaches a minimum at ~0.1 mol% DPPS and remains level as more DPPS is added 

to DPPC.  Previous reports have shown that DPPC and DPPS are miscible in the absence of 

calcium ions [39].  The leveling of ordered abundance with increasing DPPS concentration 

reflects a saturation of its effect on the BODIPY-PC probe.  The results for GM1 shown in Fig. 

4.5, however, reveal a more complicated evolution in probe orientation.   

As GM1 concentration is increased from 0.1 to 15 mol%, the single molecule ordered 

abundance increases to a maximum value equal to pure DPPC films at this surface pressure.  

This is consistent with a mechanism where GM1 moves from the expanded phase to condensed 

domains where it packs tightly with condensed phase DPPC.  This segregates GM1 from the 

expanded phase where the BODIPY-PC probe resides, thus leading to the recovery in normal 

oriented probes.  As GM1 concentration is increased above 20 mol%, the single molecule 

ordered abundance again decreases as GM1 begins partitioning back into the expanded 

regions of the film, where it can interact with the BODIPY-PC probe.  This is consistent with 

previous fluorescence studies and results such as those shown in Figs. 4.2 and 4.3 [14].  

The single molecule measurements presented here add new insight into the influence 

that GM1 has on membrane structure at the low GM1 concentrations found in most biological 

membranes.  The significant influence that GM1 has on the BODIPY-PC probe orientation at 

low GM1 concentration suggests there is a close proximity between the two, placing GM1 in the 

expanded regions of the membrane.  Given previous observations of stoichiometric interactions 

between GM1 and DPPC, this may reflect the formation of small GM1/DPPC condensed 
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domains in the expanded membrane regions of the film [14].  It is interesting to note that AFM 

studies have also found evidence for GM1 rich domains in the expanded domains of model 

membranes [15, 18].  While not conforming to the working definition of a lipid raft due to the lack 

of cholesterol, these structures may nonetheless provide organizational or signaling platforms in 

cellular membranes.  These measurements also help illustrate the utility of single molecule 

orientation measurements for providing new complementary views into membrane structure.  

  

4.4 - Conclusion  

Single molecule fluorescence measurements of the fluorescent lipid analog BODIPY-PC 

are used to probe the effects of GM1 in monolayers of DPPC.  Defocused TIRF-M 

measurements lead to distinct single molecule fluorescence emission patterns which reflect the 

three-dimensional orientation of each BODIPY-PC probe molecule doped into the film.  As 

shown previously, extracting the tilt angle of the emission dipole with respect to the membrane 

normal provides a sensitive marker for structural changes taking place in the lipid film.  Using 

this approach, we track the effects of GM1 on LB monolayers of DPPC from 0.05 mol% to 100 

mol% GM1.  Above 5 mol% GM1, the single molecule measurements closely track trends seen 

in bulk measurements of membrane structure.  At low GM1 levels, however, the single molecule 

measurements reveal dramatic changes in film properties that are hidden in bulk fluorescence 

measurements.  Large changes are observed in the single molecule tilt histograms with the 

addition of just 0.05 mol% GM1 to the DPPC monolayer.  Control studies using DPPS suggest 

that electrostatic interactions between the charged headgroup of GM1 and BODIPY-PC probe 

play an important role in influencing the measured tilt of the emission dipole.  These 

measurements suggest that GM1 initially partitions into the expanded phase, in close proximity 

to the BODIPY-PC probe where it influences the tilt angle distribution.  As GM1 levels increase, 

GM1 partitions into condensed domains leading to a recovery in the BODIPY-PC tilt angle 
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distribution as GM1 is segregated away from the probe in the membrane.  Finally at high GM1 

levels, GM1 appears in the expanded phase again and eventually leads to homogenously fluid 

membranes. The significant influence that GM1 exerts at low levels is interesting since it is only 

a minor component in most biological membranes.  The formation of small, GM1 rich domains in 

the expanded phase is also intriguing given the evolving view of the importance of small 

membrane domains in cellular organization and signaling.  Single molecule orientation 

measurements, therefore, provide a promising new tool for probing these enigmatic structures. 

 

This chapter has been adapted in part from previously published work: Armendariz, K. 

P., and R. C. Dunn. 2013. Ganglioside influence on phospholipid films investigated with single 

molecule fluorescence measurements. J. Phys. Chem. B 117:7959-7966. 
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Chapter 5 – Integrating Model Membranes in Applications for Label-free 

Whispering Gallery Mode Biosensors 

 

5.1 - Introduction 

 As discussed in previous chapters, biological membranes form the selective barrier 

which separate cells from their surroundings.  Several of the components which are integrated 

within these membranes interact with the extracellular environment to allow for cellular 

signaling, molecular transport, and cell adhesion. In fact, a large percentage of modern 

medicines are targeted to interact with membrane bound proteins [1].  The role of these 

membrane components to bind specific extracellular targets has motivated the use of 

membrane coatings in biosensor applications.   

While Chapters 3 and 4 were focused on elucidating the structure of model membranes 

in order to understand the function of membranes components in biological systems, this 

chapter will utilize membranes and the components bound within them for biosensing 

applications.  Not only are model membranes capable of incorporating specific components 

which can be used for antigen capture, but the composition of each coating can be highly 

controlled, as discussed in Chapter 2.  Several groups have already demonstrated the utility of 

membrane coatings in surface plasmon resonance (SPR) biosenors [2, 3].  These studies 

typically employ self-assembled monolayers (SAMs), which are easily formed on the gold 

sensing surface in SPR [3].  These SAMs have proven useful by demonstrating that membrane 

films can be used to incorporate capture materials for specific analyte detection [2, 4].  

Furthermore, SPR studies have shown that SAMs can also be utilized to reduce nonspecific 

adsorption on the sensor surface [3].  While these findings have been important and SAMs can 

be attached to several types of surfaces, they are, however, limited in terms of control of 
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packing density within the film.  While Langmuir films allow facile control of lipid surface density 

through control of surface pressure at the time of film deposition, there are many factors, some 

of which that are not easy controlled, which influence the formation and packing density of films 

made using the SAM technique.  These factors include solvent type, adsorbate structure, 

concentration, and purity, and substrate surface charge and cleanliness [5].  Thus, the number 

of factors which influence SAM structure make controlled studies of packing density within these 

films a daunting task relative to the LB/LS technique.  In this chapter we will address the use of 

LB/LS bilayers as a selective coating for hydrophilic biosensor surfaces.  The importance of 

controlled packing density within the membrane afforded by LB/LS techniques will be more 

important in the biosensor study presented in Chapter 6.   

Recently, whispering gallery mode (WGM) resonators have become a popular new tool 

within the biosensing community.  These devices resonantly confine light at unique wavelengths 

within circular glass cavities through continuous total internal reflection.  Similar to SPR, the 

resonant wavelength of a WGM cavity is dependent upon refractive index of the surrounding 

medium.  Changes to the surrounding refractive index caused by binding events on the 

resonator surface can be detected through changes in the observed resonant wavelength.  

Using this phenomenon WGM resonators have begun to be employed as label-free detection 

method for biomolecule detection.  The study presented below demonstrates the use of a 

selective membrane bilayer deposited using the LB/LS method to detect a bacterial toxin.  

However, we will first begin with a more thorough discussion of WGM biosensor properties, 

performance metrics, and challenges facing employment of these sensors as routine screening 

device for biomolecules. 
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5.2 - Whispering Gallery Mode Biosensors 

Whispering gallery mode resonators are small dielectric structures that confine light via 

continuous total internal reflection.  Light evanescently coupled into WGM resonators can be 

efficiently trapped when the wavelength of light is an integer multiple of the distance 

circumnavigated around the resonator [6-9].  Under these conditions, constructive interference 

leads to WGM resonances given by: 

   
       

 
   Eq. 5.1 

where λr is the resonant wavelength, r is the radius of the resonator, neff is the effective 

refractive index, and m is an integer that indexes the mode number [7, 8].   

The small size and high quality factors (Q-factors) of WGM resonators have led to 

widespread studies in both fundamental and applied applications.  These attributes seem 

especially well-suited for sensing applications where their small footprint and large Q-factor 

naturally lend themselves to the developments taking place in miniaturized detection platforms 

[6, 9, 10].  Sensing applications with whispering gallery mode resonators take advantage of the 

link between effective refractive index and resonant wavelength as shown in Eq. 5.1 [9-12].  

Binding of target analytes to recognition elements on the resonator surface can alter the 

effective refractive index, leading to a shift in the WGM resonant wavelength [12-14].  This 

provides a sensitive, label-free approach for sensing which has been used to detect and 

quantify protein and nucleic acid biomarkers of disease [12-16]. 

Whispering gallery mode biosensing platforms are predominantly built around either high 

index glass microsphere resonators or microfabricated planar ring resonators [17-20].  The 

former uses commercially available or easily fabricated microspheres while the latter is 

produced on-chip using standard microfabrication techniques [17, 18].  Microfabricated planar 
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ring resonators have demonstrated multiplexing capabilities and are easily incorporated with the 

fluidics necessary for sample handling and delivery [21].  Microsphere resonators, on the other 

hand, have historically suffered by comparison in these metrics but offer superior optical 

characteristics [22].  Microspheres are formed from melts which yield exquisitely smooth 

surfaces, leading to Q-factors which can be orders of magnitude larger than other resonator 

designs [7, 19, 23].  Large Q-factors translate into long effective path lengths which improves 

both the sensitivity and limits of detection, both of which are obviously desirable in sensing 

applications [9, 24].  Moreover, microspheres are inexpensive, commercially available, and are 

offered in a range of sizes and materials.   

For sensing, therefore, it is highly desirable to combine the multiplexing and fluidics 

capabilities of microring resonators with the optical properties of microsphere resonators.  

Recently, a fluorescence imaging approach has been reported that enables the WGM 

resonances from each microsphere in a field of resonators to be simultaneously measured [12, 

16].  This enables large scale multiplexing which removes one of the barriers listed above when 

using microspheres in sensing applications.   

In this approach, light is coupled into a large number of microspheres using the 

evanescent field created from total internal reflectance in a Dove prism.  Each microsphere is 

labeled with the same fluorescent dye, which acts as marker signaling when a particular 

resonator comes into resonance.  As the excitation wavelength from a tunable diode laser is 

scanned, a ring of enhanced fluorescence is observed around a microsphere when a WGM 

resonance is reached.  This enables the WGM resonance from each sphere in a large field of 

view to be simultaneously measured using fluorescence imaging [12, 16].  

 A potential issue, when using fluorescence readout for the detection with WGM 

resonances, is the potential adverse effect of the fluorophores on Q-factor.  The optimal Q-
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factor attainable for an individual sphere is limited by a number of factors which results in light 

losses from the resonator cavity.  As shown in Eq. 5.2, these factors include light loses due 

bending losses (Qrad), scattering losses (Qs.s), and losses due to the absorption of surface 

contaminates (Qcont) and the resonator cavity itself (Qrad).  Therefore, adding fluorescent material 

to the resonator surface which absorbs light from the resonator can effectively limit the potential 

Q and lower the sensitivity of the sensor. While the fluorescent readout scheme has been 

advantageous for increasing the multiplex capabilities of the WGM approach, it is important to 

measure and potentially limit the adverse effect of fluorophore absorbace on the resonator 

surface.  Therefore, within this study we test the performance of resonators coated in 

membranes of known dye concentration to assess effect of fluorophore absorbance on Q-factor. 

        
       

         
         

    Eq. 5.2 

The fluorescence readout approach enables easily multiplexed WGM detection; 

however, developing sensing platforms remains problematic due to challenges associated with 

immobilizing microspheres.  Typical biosensing assays require multiple fluid exchanges or 

mixing steps which can perturb spheres resting on a substrate through gravity alone.  This 

creates problems since the resonant wavelength of a resonator is linked to the axis around 

which the WGM resonates [8, 10, 25].  Any change in the WGM path around the sphere due to 

reorientations on the substrate, therefore, can shift the resonant wavelength and nullify an 

assay.   

Immobilizing microsphere resonators on a substrate, however, presents challenges for 

WGM sensing since the circumference of the sphere supporting the resonance must remain 

pristine.  The fluorescence imaging scheme enabling large scale multiplexing mentioned above 

requires that light be launched into spheres from a common substrate.  This precludes 

embedding the spheres in adhesives or other films that would disrupt the coupling of light 
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around the sphere.  As shown in Fig. 5.1, we have demonstrated that spheres can be loaded 

into microfabricated arrays of wells to hold them in place.  However, this methodology turns out 

to be problematic in practice.  First, the poor monodispersity of spheres complicates matching 

well size with sphere dimensions for stable immobilization.  Additionally, each of these of these 

spheres should be manually loaded into each well to ensure sphere immobilization, which 

detracts from the ease of use of this method.  Finally, the most problematic issue arises from 

complications associated with efficiently coupling light into the immobilized spheres.  It is very 

difficult to load arrays with spheres such that they are both tightly held and in good contact with 

the substrate, which is necessary for efficient coupling of light into the resonator through 

evanescent field excitation.   

 

Figure 5.1 – Microfabricated PDMS wells are used to immobilize and label 53  m glass microspheres.  

 

Here we report a method for immobilizing microsphere resonators on glass substrates 

adapted from a calcium-assisted glass-to-glass bonding method developed for microfluidic glass 

chip fabrication [26].  The method creates a stable contact between the high index glass 

microsphere resonators and a glass substrate, enabling efficient coupling of light into the 

immobilized microspheres.  Measurement of resonator Q-factors confirms that the 

immobilization method does not degrade the WGM resonance or greatly perturb the interface 
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between the sphere and the substrate.  With these microresonators sufficiently immobilized, 

lipid bilayers were transferred onto the substrate bound microspheres using a combination of 

the Langmuir-Blodgett (LB) and Langmuir Schaeffer (LS) techniques.  Lipid bilayers of DOPC 

were doped with 5 mol% ganglioside GM1 (GM1) transferred to the substrate using a sequential 

transfer method where each leaflet was deposited at 25 mN/m.  As discussed in Chapter 4, 

GM1 binds cholera toxin, the oligomeric protein secreted by Vibrio cholera which causes the 

dehabilitating diarrhea associated with cholera [27].  Here we demonstrate the sensing 

capabilities of the bilayer draped over immobilized microspheres by tracking changes in their 

WGM resonant wavelength upon the addition of cholera toxin.  Analysis of the resulting binding 

curves yields a measured Kd of 1.5 x 10-11, consistent with literature values, and a detection limit 

of 3.3 pM [28, 29].  In addition to establishing the analyte binding capabilities of this approach, 

we utilize the compositional control afforded by membrane deposition techniques to analyze to 

effect of fluorophore absorption on Q-factor.  Through these studies the reported bonding 

scheme and subsequent bilayer application are shown not to perturb the optical properties of 

the resonators while immobilizing them sufficiently onto the substrate for assay development 

and implementation.   Additionally, reducing the fluorophore concentration on the resonator 

surface is shown to improve resonator Q-factors by nearly five-fold. 

 

5.3 - Methods and Materials 

5.3.1 -  Microsphere Immobilization 

High refractive index (n = 1.9), barium titanate (BaTiO3) glass microspheres (45 µm 

diameter, Mo-Sci, Rolla, MO) were cleaned in a 5% Contrad solution.  The spheres were rinsed 

in an ethanol/water (30/70 v/v) solution and stored in absolute ethanol.  Spheres were 

exchanged into an aqueous PBS solution prior to use.  A glass bonding solution was prepared  
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Figure 5.2 – Schematic of the calcium-assisted procedure for immobilizing WGM microsphere resonators 

to a glass substrate.  A drop containing 0.125% (v/v) Alconox and 0.125% (v/v) calcium acetate solution 

is placed along with a cluster of microspheres onto a clean glass substrate.  The sample is then placed in 

a 50°C oven for 20 minutes.  Evaporation of the solvent leaves a salt residue which is removed by 

bathing in deionized water overnight at room temperature, leaving a clean glass substrate with 

microspheres bound to the surface. 

 

with 0.125% w/v calcium acetate (Fisher Scientific, Hampton, NH) and 0.125% w/v powdered 

detergent (Alconox Inc., White Plains, NY) in nanopure H2O.  As shown in Fig.5.2, 

approximately 100 uL of the bonding solution was placed on a clean glass cover slip (Fisher 

Scientific, Pittsburg, PA) and allowed to deprotonate the glass surface for ~5 minutes.  

Approximately 5 µL of the clean microspheres in PBS solution were transferred to the sample 
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slide and allowed to dry for 20 minutes at 50°C.  The sample slide was washed thoroughly with 

nanopure H2O to remove any unbound spheres and excess salts from the surface prior to 

monolayer transfer.  

 

5.3.2 -  Lipid Transfer 

Dioleoylphosphatidylcholine (DOPC) and ganglioside GM1 (GM1) were obtained at 

>99% purity (Avanti Polar Lipids, Alabaster, AL) and used without further purification.  The 

fluorescent lipid probe, Texas-Red dihexadecanoyl-sn-glycero-3-phosphoethanolamine (TR-

DHPE) (Life Technologies, Carlsbad, CA), was diluted in methanol to obtain appropriate 

working concentrations.  DOPC/GM1 (95:5 mol%) solutions were prepared at 1 mg/mL 

concentrations in a 65:35 volume mixture of chloroform and methanol.  Lipid mixtures prepared 

for WGM assays were further doped with 0.25 mol% TR-DHPE to enable WGM fluorescence 

imaging for the cholera toxin assay.  Each lipid solution was doped with the appropriate TR-

DHPE concentration for the dye study.  Approximately 50 µL of the appropriate lipid solution 

was dispersed on a 18MΩ water subphase in a Langmuir-Blodgett trough (Type 611, Nima 

Technology, Coventry, England).  The solvent was allowed to evaporate for at least 15 min prior 

to initiating compression/expansion cycles to anneal the film.  Each monolayer was subjected to 

two compression/expansion cycles between surface pressures of 10 mN/m and 40 mN/m with 

the barrier rate held constant at 100 cm2/min.  Following the last expansion, the monolayers 

were compressed to 25 mN/m and held for 10 min prior to transfer onto the substrate.  Bilayers 

were transferred on to the immobilized glass microspheres at dipping velocity of 1 mm/min by 

the Langmuir-Blodgett/Langmuir-Schaeffer method resulting Y-type bilayers.  All bilayers were 

transferred and imaged at 22°C. 
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5.3.3 -  Assay Preparation 

 Prepared glass cover slips were fit into the custom flow cell.  Refractive index matching fluid 

(n=1.514 immersion oil, Olympus, Center Valley, PA) was used between the prism surface and 

sample slide.  A syringe pump (Harvard apparatus, Holliston, MA) was used to fill the flow cell 

chamber with a PBS solution (MP Biomedicals, Solon, OH).  A second syringe pump and fluidic 

controller (Warner Instrument Corp., Hamden, CT) was used to inject aliquots of purified 

recombinant cholera toxin beta labeled with A555 (CTxB-A555) (Molecular Probes, Eugene, 

OR) into the flow chamber.  Each injection was allowed in incubate in the flow chamber for 5 

minutes before being flushed with PBS and imaged.  

 

5.3.4 -  TIR Fluorescence imaging     

Fluorescence imaging assays of cholera toxin binding to supported bilayers of 

DOPC/GM1 utilized CTxB-A555 (Molecular Probes).  Binding of the CTxB-A555 to the lipid 

bilayer was imaged with an inverted microscope (Olympus IX71) equipped with a 60x PlanAPO 

objective (1.45 NA, Olympus).  The 514 nm line from an argon ion laser (Innova 90, Coherent 

Inc., Santa Clara, CA) was coupled into the microscope through the objective using a total 

internal reflection illumination configuration.  Emission from the bound CTxB-A555 was collected 

with the same objective, filtered to remove the excitation light (Chroma), and imaged onto a 

cooled CCD (Coolsnap K4).  Image collection was controlled with Slidebook software (Intelligent 

Imaging Innovations).   

 

5.3.5 -  WGM Fluorescence Imaging 

The tunable output from a Vortex II TLB-6900 external cavity diode laser (New Focus, 

Santa Clara, CA) was directed into a Dove prism (Edmund Optics, Barrington, NJ), on which the 
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sample was mounted.  Total internal reflection at the substrate interface creates an evanescent 

field, which was used to launch light into the immobilized microspheres.  At a WGM resonance, 

an enhanced ring of fluorescence from TR-DHPE was observed from the microspheres, which 

were imaged from above.  The fluorescence was collected through a 10X UMPlanFL (0.3 NA) 

objective (Olympus, Center Valley, PA), filtered to remove the residual excitation (Chroma, 

Bellows Falls, VT), and imaged onto a cooled CCD camera (Coolsnap K4, Roper Scientific, 

Tuscon, AZ).  A LabView program controlled scanning of the laser system, which was 

synchronized with Slidebook image collection software (Intelligent Imaging Innovations, Denver, 

CO).   

 

5.4 - Results and Discussion 

5.4.1 – WGM Cholera Toxin Binding Assay with LB/LS Bilayer Coated Spheres 

High index barium titanate (BaTiO3) microspheres were bonded to glass substrates 

using the steps outlined schematically in Fig. 5.2.  A glass substrate was first rubbed with a 

slurry of basic detergent (Alconox) containing 8.0 mM Ca2+.  The spheres were then deposited 

on the glass substrate and incubated at 50oC for approximately 20 minutes until dry.  The 

spheres, now bonded to the substrate, were incubated in 18 MΩ water overnight to remove the 

residual salts and unbound spheres from the substrate surface.   

Conceptually, one can envision the divalent calcium ion as acting as a bridge between 

the negatively charged surface groups on the microspheres and substrate, thus leading to 

stable bond formation [26].  However, as the original report showed, a more complicated 

mechanism is almost certainly needed since other divalent cations do not lead to bond 

formation.  Regardless of the mechanism, this approach does successfully immobilize BaTiO3 

spheres on the glass substrate.  The bonding scheme outlined in Fig. 5.2 uses a lower 
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temperature, which was found in the original study to lead to reversible bond formation.  

However, as will be shown, this gentler bonding method is more than sufficient to immobilize 

spheres for the assay employed in this report.  Additionally, this immobilization method can be 

used to adhere dye functionalized spheres without loss of dye function.  This is advantageous 

for the WGM imaging approach which uses fluorescence to detect sphere resonances.   

Another advantage of the microsphere bonding scheme results from the flexibility 

inherent in this approach when designing assays.  Immobilizing microsphere resonators onto a 

substrate opens new opportunities for functionalizing the resonators using techniques that are 

not compatible for use with free spheres.  For example, Langmuir-Blodgett (LB) and related 

techniques offer extraordinary capabilities for creating highly ordered films on substrate 

surfaces.  These techniques provide exquisite layer-by-layer control over film properties such as 

composition, packing, and constituent orientation which has generated interest in using this 

control to tailor assay properties [30, 31].  As illustrated in Fig. 5.3, the LB method involves the 

transfer of films from an air-water interface onto a substrate surface using a dipping method.  As 

suggested in Fig. 5.3, here we show that the bonded spheres are sufficiently immobilized to 

withstand LB film transfer, thus creating new opportunities for assay development using 

microsphere resonators.   

To confirm that the immobilization procedure does not interfere with or degrade WGM 

resonances of the microspheres, fluorescence imaging experiments were first performed using 

LB films doped with a fluorescent marker.  For these experiments, immobilized microspheres 

were coated with a DOPC bilayer containing 0.25 mol% TR-DHPE, transferred using the LB/LS 

method.  The fluorescent lipid analog, TR-DHPE, was added to act as a fluorescent reporter of 

the WGM resonances.  The immobilized spheres were mounted on a Dove prism, as shown in 

Fig. 5.4, where light from a tunable diode laser experiences total internal reflection at the 
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Figure 5.3 – Schematic of the Langmuir-Blodgett trough used to transfer lipid films onto a substrate.  A 

50 uL aliquot of the lipid solution is dispersed on the water subphase and a moving barrier compresses 

the film to the desired surface pressure.  A glass substrate with bonded microspheres is slowly pulled 

through the air-water interface, transferring a lipid monolayer onto the substrate surface.  For these 

experiments, a second monolayer is transferred onto the first using the Langmuir-Schaffer technique, 

creating a bilayer as shown schematically in the right panel.   

 

sample interface.  As the wavelength of the diode laser was scanned, the associated 

evanescent field launches light into the immobilized spheres.  WGM resonances are detected 

as an enhanced ring of fluorescence around the particular microsphere resonator, which is 

detected from above using fluorescence imaging.  The fluorescence was collected and imaged 

onto a CCD camera as shown in Fig. 5.4.   

Figure 5.5 shows a typical series of fluorescence images taken on the same field of 

microspheres as the excitation wavelength from the tunable diode laser is scanned.  These 

spheres have been immobilized onto the substrate surface using the scheme in Fig. 5.1 and 

exhibit bright fluorescence rings indicative of WGM resonances.  The excitation spectrum for 

each resonator can be extracted from a series of fluorescence images collected as a function of 

excitation wavelength.  A typical excitation spectrum is shown in Fig. 5.5.  The Q-factor 

calculated from this spectrum is 1.0 x 105 which is comparable to measured Q-factors for 
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spheres resting on substrates through gravity alone.  This demonstrates that the immobilization 

process has little effect on the quality of the WGM resonance.   

 

 

Figure 5.4 – Schematic of the instrumentation used for the fluorescence imaging of WGM resonances.  

Light from a tunable diode laser is directed through a Dove prism, which creates an evanescent field at 

the substrate interface.  The evanescent field couples light into the immobilized microspheres and WGM 

resonances are detected through fluorescence imaging of a dye marker located on their surface.  As the 

excitation wavelength is tuned, an enhanced ring of fluorescence is observed around the spheres as a 

WGM resonance is reached.  The fluorescence is collected and imaged onto a CCD camera.   
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Having shown that the immobilization procedure does not degrade resonator optical 

properties, the utility of membrane coated microspheres for bioassay development was 

explored.  Bioassays require rapid fluid exchanges and the immobilized resonators need to 

maintain both close contact with the substrate surface and not reorient during these processes.  

To test the stability of the immobilized microspheres during rapid fluid exchanges, the flow cell 

in Fig. 5.6 was fabricated.   

The glass substrate supporting the immobilized microspheres rests on a rigid bottom 

plate that is notched to accept the Dove prism.  An aluminum flow cell body that contains the 

solution inlet and outlet ports is sandwiched between the sample substrate and top coverslip 

using two silicone o-rings to form a water tight seal.  The thickness of the flow cell body dictates 

the dead volume of the cell which is 500 uL.  Screws connect a rigid top cover with the bottom 

PMMA plate and compress the o-rings.  An image of the assembled flow cell is shown in Fig. 

5.6.   

Studies using the flow cell shown in Fig. 5.6 indicate that the immobilized spheres 

remain stable at all flow rates studied (up to a maximum flow of 3 mL/min).  This demonstrates 

that the bonding method described above results in resonators compatible with assay fluidics.  

As shown above, the resonator immobilization scheme does not degrade resonator optical 

properties while rigidly holding the spheres on the substrate surface under high flow rates.  This 

approach, therefore, removes a significant barrier encountered when integrating microsphere 

resonators with the fluidics necessary for assay development using the WGM imaging method. 
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Figure 5.5 – (top) Representative fluorescence images of 45 µm spheres extracted from a series of 

images taken as the wavelength of the diode laser is scanned between 632.93 nm and 633.10 nm.  The 

arrow denotes a sphere that undergoes a large change in fluorescence, indicating a WGM resonance 

near 632.99 nm.  (bottom) Excitation spectrum of the WGM resonance for the indicated sphere, extracted 

from the series of fluorescence images by integrating the emission from the sphere in each image.   
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Figure 5.6 – (left) Schematic of the flow cell used for fluidic exchange and WGM imaging.  The bottom 

cover accepts the Dove prism used to launch light into the small resonators which are imaged from above 

through the transparent window.  An image of the flow cell is shown on the right.   

 

To illustrate this new capability, lipid films containing the ganglioside GM1 were 

transferred onto immobilized microsphere resonators to detect the presence of cholera toxin 

(CTx) using WGM imaging.  CTx is secreted by Vibrio cholera and leads to the debilitating 

diarrhea associated with cholera infection.  CTx is a 85 kDa protein containing one active alpha 

subunit and five binding beta subunits which bind GM1, an acidic glycosphingolipid found 

ubiquitously in the outer leaflet of cellular membranes [27].  The high affinity of CTx beta subunit 

(CTxB), a 11.4 kDa protein, for GM1 is considered a model for protein-sugar interactions with 

measured Kd values ranging from nanomolar to picomolar depending on the particular system 

studied [29].  In this approach a 57 kDa non-toxic pentameric CTxB fluorescently labeled with 

Alexa 555 (CTxB-A555) was detected.  

A monolayer of DOPC containing 5 mol% GM1 was transferred onto a 

microsphere/substrate platform at a surface pressure of 25 mN/m using the LB method.  A 
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second monolayer at the same surface pressure and composition was deposited on the first 

using the Langmuir Schaeffer (LS) method, creating a bilayer covering the entire surface area of 

the substrate.  At this surface pressure, both GM1 and the dye marker distribute 

homogeneously in the DOPC lipid film matrix.  To confirm that the membranes incorporating 

GM1 were capable of CTxB binding, bulk fluorescence imaging of the bilayers were measured 

following the addition of fluorescently labeled CTxB-A555.   

Figure 5.7 presents fluorescence images of a DOPC/GM1 bilayer following increasing 

additions of CTxB-A555.  The images are taken in the same region of the bilayer, which was 

allowed to react with the indicated dose of CTxB-A555 for 5 minutes, flushed with PBS buffer, 

and imaged.  As seen in Fig. 5.7, exposure of the bilayer to increasing aliquots of CTxB-A555 

leads to increased fluorescence intensity, as CTxB-A555 binds to the GM1.  Control studies 

using substrates coated with pure DOPC bilayers, lacking GM1, exhibited constant fluorescence 

signals over the same CTxB-A555 dosing levels.  This suggests that the increase in 

fluorescence observed arises from specific interactions between GM1 and the CTxB-A555. 

Having confirmed that CTxB-A555 specifically binds to the GM1 in the transferred 

membranes, studies were carried out to explore the WGM response of the membrane coated 

microspheres.  For this study, TR-DHPE was incorporated into the lipid bilayer at 0.25 mol% to 

provide a fluorescence marker for the WGM imaging.  To ensure consistency with the bulk   

fluorescence studies, the fluorescently labeled CTxB-A555 was also used in these binding 

studies.  However, long pass filters were inserted to remove any residual fluorescence from the 

A555 marker.  Using the WGM fluorescence imaging approach outlined in Fig. 5.4, WGM 

excitation spectra were collected as a function of CTxB-A555 dose. Figure 5.8 shows a typical 
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Figure 5.7 – Bulk fluorescence assay of the binding of fluorescently labeled CTxB (CTxB-A555) to 

DOPC/GM1 bilayers transferred onto a glass substrate at 25 mN/m.  Fluorescence images of the same 

region of the bilayer are shown following incubation with (A) 27.6 pM CTxB-A555 and (B) 110 pM CTxB-

A555.  The increase in fluorescence indicates specific binding of CTxB-A555 at GM1 sites in the bilayer.  

Control studies of bilayers composed of DOPC but lacking GM1 (not shown) do not show any significant 

fluorescence after incubation with CTxB-A555.   

 

series of WGM excitation spectra collected as a function of CTxB-A555 concentration.  Prior to 

the addition of CTxB-A555, this particular microsphere resonator had a WGM resonance 

centered at 632.98 nm with a Q-factor of 1.0 x 105.   With the addition of 2.8 pM CTxB-A555, the 

peak red-shifts 6.33 pm as CTxB-A555 binds to the GM1/DOPC bilayer on the sphere surface 

which changes the effective refractive index around the resonator (Eq. 1).   The peak continues 

to red shift as additional CTxB-A555 is added as shown in Fig. 5.8.   

The results in Fig. 5.8 are summarized by the binding curve shown in Fig. 5.9.  Figure 

5.9 plots the WGM resonance shifts as a function of CTxB-A555 concentration, exhibiting the 

classic binding curve shape expected.  The binding curve saturates at approximately 4.0 x 10-11 

M CTxB-A555 and fitting the curve yields a measured Kd value of 1.5 x 10-11. This value is in the 

range of the reported values (7.3 x 10-10 to 4.6 x 10-12) measured using surface plasmon 

resonance [28, 29].   
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Figure 5.8 – Representative WGM excitation spectra extracted from the same microsphere resonator at 

four different CTxB-A555 concentrations.  Specific binding of CTxB-A555 to the GM1 containing bilayer 

coated around the microsphere, changes the effective refractive index and shifts the WGM resonance.   
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Figure 5.9 – CTxB-A555 binding curves measured by tracking shifts in the WGM resonance with CTxB-

A555 concentration.  For resonators coated with DOPC bilayers incorporating GM1 (red squares) the 

binding curve shows a saturation response with a detection limit of 3.3 pM.  This is compared with control 

studies using spheres coated with pure DOPC bilayers (blue triangles), which show negligible shifts with 

CTxB-A555 addition.  The inset shows a log plot of the data from which a Kd of 1.5 x 10
-11

 is calculated, 

which is consistent with literature values.   

 

These measurements show that microspheres can be efficiently immobilized on glass 

substrates using the calcium bonding method with no loss in optical performance.  The spheres 

remain stable under fluid exchange and the bond is sufficiently strong to enable lipid film 

transfer onto their surface using the LB/LS technique.  Using bilayers incorporating GM1 

transferred onto the spheres, we show that WGM fluorescence imaging measurements can 

quantify CTxB-A555 binding with picomolar detection limits.  These studies, therefore, illustrate 
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the utility of the calcium bonding approach for integrating high-Q microsphere resonators with 

the fluidics necessary for assay development.  The simple immobilization procedure does not 

require expensive equipment or elaborate fabrication processes, thus making the approach 

generally applicable.  This, therefore, removes a significant barrier for the development of 

sensitive, multiplexed biosensors using the superior optical properties of high-Q microsphere 

resonators.   

 

5.4.2 – Assessment of Dye Loading Influence on WGM Resonator Performance 

Model membranes as coatings for WGM resonators can not only serve as a matrix for 

capture material in biosensing applications, but also can provide a tool for fundamental 

investigations of resonator performance.  As shown in Eq. 5.2, there are several factors which 

can contribute to the loss of light from the resonant cavity.  Introducing a fluorescent dye to the 

resonant surface provides a useful mechanism for imaging WGM resonances.  However, as 

these fluorophores absorb energy from the resonant cavity, they potentially limit Q-factor and 

resonator performance.  The compositional control provided by model membrane techniques 

allows each immobilized sphere on the glass substrate to be reliably coated with a film of known 

dye concentration.  Therefore, with this method we can assess the effect of fluorophore 

absorbance on resonator performance.   

Similar to the binding assay studies, glass microspheres were immobilized on a glass 

substrate with the calcium bonding method described in Fig. 5.2.  A DOPC monolayer doped 

with a known dye concentration was then deposited by LB transfer the substrate.  The WGM 

excitation spectrum of at least 20 microspheres coated with each dye concentration were then 

measured using the method outlined in Fig. 5.5. From these spectra, the Q-factor of each 

sphere was measured and tabulated in Fig. 5.10.   
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Figure 5.10 – Q-factor dependence of WGM resonators coated in lipid film containing a fluorescent dye is 

shown as a function of dye concentration within the film.  By reducing the dye, the average and maximum 

attainable Q-factor is increased.  

 

Figure 5.10 shows that as the dye concentration is reduced from 10 mol% TR-DHPE to 

0.25 mol% TR-DHPE the average and highest attainable Q-factor increases.  Decreasing the 

dye concentration on the resonator surface, reduces losses of light from the absorbing dye on 

the surfare.  This leads to improved Q-factors and improved performance in sensing 

applications.  At TR-DHPE concentrations below 0.25% reliably measuring excitation spectra 

from these bound microspheres became exceedingly difficult due to lack of signal.  Factors 

influencing Q-factor value have previously been described: 
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  Eq. 5.3 

 

where the intrinsic Q-factor (Q0) of a resonator is a function of the refractive index of the sphere 

(ns), linear attenuation of light in the cavity (α), and the resonant wavelength of light (λ) [32].  

While there is considerable noise in the measurements shown in Fig 5.10, it is evident from the 

data that as expected reducing absorption of surface bound molecules through lowing bound 

dye content resulted in improved Q-factor.  As seen in the data set in Fig. 5.10 it is difficult to 

distinguish whether Q-factor responds linearly with dye concentration.  However, as shown in 

Eq 5.3, Q-factor is inversely proportional to linear attenuation. Therefore, future WGM imaging 

applications which employ fluorescence as a readout mechanism should limit dye coverage of 

microspheres in order to conserve resonator performance.   

 

5.6 - Conclusion 

High index glass microspheres were immobilized onto glass substrates using a calcium-

assisted bonding method.  The bonding method was shown not to degrade the optical 

properties of the immobilized resonators which was confirmed through characterization of 

resonator Q-factors.  The immobilized resonators were stable over the flow rates necessary for 

assay development and amenable to lipid film transfer using the Langmuir-Blodgett and 

Langmuir-Schaeffer methods.  Bilayers transferred on to immobilized spheres using the 

sequential transfer of monolayers of DOPC doped with 5 mol% GM1 were fabricated to detect 

CTxB-A555 which binds to GM1.  CTxB-A555 binding to GM1 was characterized by measuring 

shifts in the WGM resonance.  Analysis of the resulting binding curves yields a measured Kd of 

1.5 x 10-11 which is consistent with previous SPR measurements.  The measured detection limit 

of 3.3 pM is competitive with other approaches and the small size of the microspheres reduces 
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the detection footprint and amount of material needed.  The calcium bonding method, therefore, 

is shown to lead to stably immobilized resonators that are compatible with the fluidics necessary 

for assay development.  This removes a significant barrier for integrating microsphere 

resonators with assay fluidics for WGM detection.  Additionally, membrane coated microspheres 

allowed for an assessment of fluorescent dye effect on resonator performance demonstrating 

that dye usage should be limited in order to minimize the adverse effect it has on Q-factor and 

sensing performance.  With the superior optical properties of these bound microspheres there 

are several new opportunities for cost effective assay development and deployment.   

 

This chapter has been adapted in part from previously published work: Kim, D. C., K. P. 

Armendariz, and R. C. Dunn. 2013. Integration of microsphere resonators with bioassay fluidics 

for whispering gallery mode imaging. Analyst 138:3189-3195. 
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Chapter 6: Improving label-free biosensor assay metrics through addressing 

antibody orientation and decreasing nonspecific adsorption 

 

6.1 - Introduction 

 Recently there has been an increasing interest in the scientific community to develop 

improved and more versatile biosensing platforms for a broad range of applications.  These 

applications range from medical diagnostics [1, 2] and drug discovery [3] to environmental 

monitoring[4] and remote sensing for chemical and biological warfare agents [5, 6].  The 

majority of biosensing formats employ an antigen capture material bound to a substrate which 

transduces antigen binding into a measurable signal.  There are numerous types of capture 

materials, such as antibodies [7, 8], nucleic acids [9-11], and imprinted polymers [12]. Of these, 

immunoassays, which employ antibodies as the capture material, are perhaps the most 

prevalent and well-studied biosensing systems.   Immunoassays are routinely deployed for use 

in clinical diagnostics, therapeutic drug monitoring, and drug discovery [3, 4, 7, 13].  Label-free 

biosensing platforms, such as surface plasmon resonance (SPR) [14, 15], quartz crystal 

microbalances (QCM) [16], and whispering gallery mode (WGM) resonators [8, 17, 18], have 

further expanded the viability of immunoassay techniques by eliminating the requirement of 

analyte labeling for detection and quantification.    

However, label-free immunoassays are not without their disadvantages.  First, 

antibodies often lose their activity and fail to bind the target analyte once they are immobilized 

on a substrate [7, 19, 20].  As such, there has been significant research effort directed toward 

improving antibody immobilization protocols to promote a higher percentage of active antibodies 

following immobilization.  Second, it is imperative to suppress nonspecific absorption of proteins 

and other biological material to the surface of label-free sensors [21].  While nonspecific 
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adsorption is an issue for all immunoassay platforms, it is particularly important for label-free 

techniques as all binding events to the sensor surface are detected.  Again, to address this 

issue, numerous studies have been dedicated to developing methods which can reduce 

nonspecific binding to sensor surfaces.  In this chapter, we report two methods to address each 

of the issues separately.  

 

6.1.1 – Immobilized Antibody Activity 

The most common techniques for antibody immobilization can be broadly grouped in to 

three categories including physical adsorption, covalent binding, and affinity-based interactions 

[19, 20, 22].  An overview of these immobilization methods is provided in Table 6.1, where 

several of the common techniques and their important attributes are highlighted. 

 

Table 6.1 - Antibody Immobilization Chemistries   Table adapted from  Ref. #[22] 

Immobilization 
Chemistry 

Surface 
Chemistry 

Attachment Site Advantages Disadvantages 

 
Polystyrene 

   

 
Polyacrylamide Hydrophobic Interactions 

  
Adsorption Poly-L-lysine Electrostatic Interactions Ease of Use Random orientations 

 
Amino Hydrogen Bonding 

  

 
Agarose 

   

 
Maleimide Thiol 

  

 
Hydrazine Cardohydrate Stable binding 

Can require antibody 
pretreatment 

Covalent Binding Succinimidyl ester 

 
Simple immobilization 

 

 
Epoxide Primary Amine 

 

Random orientations 
possible 

 
Aldehyde 

   

 

Protein A or G Fc region 

  

 
Streptavidin Biotin 

 
Low specificity 

 
Nickel 

 

Directed orientations Antibody migration 

Affinity Based Copper Histidine Tag 
  

 
Nickel-nitrilotriacetic acid 

  

Specific for certain 
antibody classes 

 
Glutathione Gst Tag 
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Traditionally, the issue of antibody inactivity upon immobilization has been studied with 

binding capacity assays, which assume increased binding capacity is the result of producing 

sensors with a greater density of active antibodies.  While binding capacity measurements are a 

useful tool for comparing different immobilization protocols, they do not provide insight as to why 

certain protocols produce more efficient binding surfaces.  This is complicated by the fact that 

there are several factors, such as antibody orientation and denaturation, which contribute to 

antibody inactivity on a surface [3, 7, 20, 22].  Figure 6.1 illustrates these issues.  Antibody 

orientation is a typical consideration as it is clearly advantageous to direct the binding region of 

the antibody toward the sample matrix rather than the immobilization substrate.  While antibody 

orientation is obviously important, it is also essential to prevent the antibodies from becoming 

denatured once bound to the surface.  This most often occurs through nonspecific adsorption of 

the antibody to the sensor substrate.   

 

 

Figure 6.1 – A schematic diagram of antibodies immobilized on a solid substrate is shown above.  Each 

antibody consists of two heavy chains and two light chains shown in red and blue, respectively.  The two 

antigen binding regions of each antibody are highlighted above within the Fab region of each antibody.  

Antibody immobilization to a substrate is shown in the idealized manner in (A), where the antigen binding 

regions are directed toward the sample matrix.  Antibody activity can be hindered following immobilization 

when the antibody is oriented such that the antigen binding region is hidden from the sample matrix, as 

shown in (B).  Antibody activity can also be inhibited due to denaturation of the antibody following 

immobilization, as depicted in (C) and (D). 

 



121 
 

Physical adsorption is one of the most routine and easily implemented methods for 

antibody immobilization.  In fact, the majority of 96-well plate ELISA platforms utilize this method 

as antibodies readily adsorb to the polystyrene wells [7, 19, 23].  However, physical adsorption 

is an inherently random process and offers no control over immobilized antibody orientation.  

Moreover, the immobilization of the antibodies to the surface is primarily driven by hydrophobic 

interactions, which can result in antibody denaturation as well as desorption under certain 

conditions.  This leads to low binding efficiency of antibodies immobilized through nonspecific 

adsorption, which is typically reported at ~10% [7, 19, 20, 24].  Therefore, physical adsorption 

protocols are usually not considered for high performance biosensing platforms, which are 

pursuing low detection limits through highly active sensor surfaces. 

Therefore, there are several immobilization protocols which attempt to selectively direct 

the Fab region, or antigen binding region, of the antibody toward the sample matrix and away 

from the substrate surface.  Both covalent attachment and affinity binding methods offer some 

degree of orientation control for antibody immobilization [20, 22].  However, these techniques 

are not always reliable when trying to design a general protocol which can properly orient 

antibodies of various classes.  As shown in Table 6.1, covalent methods can result in random 

antibody orientations when multiple attachment sites are available within the amino acid 

sequence [25].  Also, affinity based methods are only applicable for certain antibody classes 

and can suffer from long term stability issues [20].   Therefore, it would be advantageous to 

supplement binding capacity measurements with a technique which can provide information 

which can relate antibody structure and orientation to function for the evaluation of antibody 

immobilization protocols.  As such, the defocused imaging approach for measuring single 

molecule orientations discussed in previous chapters offers a unique opportunity to supplement 

current techniques and provide further insight regarding this particular issue.  
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6.1.2 – Methods for Investigating Immobilized Antibody Activity and Orientation 

Given the popularity of immunoassay-based approaches for biosensing applications, 

there have been several studies directed toward measuring antibody activity and orientation.  As 

mentioned above, antibody binding capacity assays are a common method for comparing 

various immobilization protocols.  This method compares the sensor response from analyte of 

interest binding immobilized antibodies on the sensor surface, which have been adhered 

through different attachment strategies [25-27].  These tests are simple to perform, however, no 

direct information regarding antibody orientation is provided.  Therefore, other methods are 

utilized to gain insight regarding the orientation of immobilized antibodies. 

Previous methods which have been employed to measure antibody orientations include 

neutron reflection [28-30], atomic force microscopy (AFM) [29, 31], and time-of-flight secondary 

ion mass spectrometry (TOF-SIMS) [32].  Studies employing neutron reflection have been used 

to measure the density of protein on a surface as a function of distance from the surface [29-

31].  This density information is then used to infer the absolute orientation of immobilized 

antibodies.  There are several drawbacks with this approach, however.  These measurements 

are difficult and costly to perform.  TOF-SIMS studies have been employed to examine the 

exposed amino acids on sensor surfaces [32].  These residues are compared to the known 

amino acids sequence of the immobilized antibody in order to infer antibody orientation.  This 

approach has demonstrated the potential to directly observe antibody orientation in dry 

samples.  However, the TOF-SIMS method is not applicable to samples in solution, which 

detracts from its value.  Furthermore, both neutron reflection and TOF-SIMS techniques provide 

an ensemble average view of antibody structure, which may mask heterogeneities within the 

bound protein layer.  AFM studies have been used to provide topographical measurements of 

surface-bound proteins to approximate the antibody orientations [29, 31].  This method provides 

the advantage of sufficient resolution to allow for the measurement of individual proteins.  
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However, AFM measurements have shown that protein orientations can be distorted by tip-

protein interactions [31].  Moreover, these measurements are difficult to perform on samples in 

solution and suffer from relatively low throughput [29].  Therefore, while these approaches can 

infer or provide approximate antibody orientations, it is evident that new methods are needed to 

directly measure antibody orientations in solution. 

 

6.1.3 – Single Antibody Orientations via Defocused Single Molecule Imaging 

The method for single molecule orientation measurements via defocused fluorescence 

imaging discussed in previous chapters provides a promising new tool for evaluating antibody 

orientation for various immobilization protocols.  This technique provides several attributes 

which will be advantageous for evaluating immobilization strategies for antibodies.  The 

defocused single molecule fluorescence method is compatible with dry samples as well as 

samples is in solution [33].   Additionally, this method provides orientation measurements of 

individual molecules within the sample, which allows the heterogeneous structure of the sample 

to be observed [33-38].  The fundamental method for measuring the single orientation is 

thoroughly discussed in Chapter 2 and, thus, not reiterated here.    While this approach will 

prove to be a promising new tool for evaluating antibody orientation, there are several issues 

which must be addressed in order to develop a useful test system for antibodies.  

Similar to the studies of molecular orientations within membranes, a critical requirement 

for antibody measurements will be the identification of a useful single molecule fluorescent 

probe.  For membrane studies, utilizing a fluorescent lipid analog with the fluorophore located 

along the acyl tail proved to be a sensitive marker of membrane order [35, 36].  However, the 

development of a suitable single antibody probe has been more challenging.  The most 

important and problematic issue for developing a single antibody probe is the need to rigidly 
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attach a fluorescent marker to the antibody of interest.  Without rigid dye attachment to the 

antibody scaffold, single molecule measurements of dye orientation cannot be correlated to 

antibody orientation and are, thus, inconsequential.  Methods to achieve rigid dye attachment to 

antibodies are discussed below. 

It would seem that the most straight-forward method for creating a fluorescent antibody 

marker for these studies would be to covalently link a small molecule dye to the antibody.  There 

are numerous dyes and labeling protocols for antibody labeling;  however, most of these 

methods result in single site attachment of dye to the antibody [39].  With only a single site of 

attachment, the bound dye will experience some orientational freedom relative to the antibody. 

Therefore, covalent methods without bidentate attachment of the fluorescence probe are not 

considered candidates for these single molecule experiments.   

While the majority of covalent attachment methods result in single-site dye attachment, 

there have been dyes developed which attach rigidly to specific sites along protein sequences.  

Biarsenical-tertacysteine probes, commonly known as FlAsH and ReAsH tags, form stable 

complexes with unique amino sequences [40, 41].  These probes have been valuable for 

several studies, such as, fluorescence resonance energy transfer (FRET) [42] and 

chromophore-assisted light inactivation (CALI) [43, 44] experiments.  The target amino acid 

sequence (Cys – Cys- Pro – Gly – Cys – Cys), called a tretracysteine tag (TC-tag), rarely 

appears in endogenous proteins and can be genetically inserted within a protein of interest as a 

site for dye attachment [41].  The FlAsH/ReAsH probes utilize the high-affinity interaction of 

arsenic for the thiol groups within these cysteine residues.  An advantage provided by these 

probes is that they are only fluorescent once bound to the TC-tag, thereby significantly reducing 

the issue of background fluorescence from unbound probes [41].  The binding scheme for 

FlAsH/ReAsH probes is shown in Fig 6.2. 
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In general, these FlAsH/ReAsH tags provide tremendous promise for labeling genetically 

engineered proteins for single molecule orientation investigations.  Unfortunately, these tags are 

less useful for labeling antibodies.  Antibodies are complex glycoproteins, which are transcribed 

from several exons within the genome[45].  As shown in Fig 6.3, each antibody is composed of 

a pair of heavy chains consisting of three constant domains (CH1, CH2, CH3) and a variable 

domain (VH1) and a light chain consisting of a constant domain (CL) and variable domain (VL).  

Significant diversity in antibody structure is required for immune response to bind various 

antigens within biological systems.  Much of the diversity is derived from the fact that genes 

encoding for the various parts of each of the variable domains are contained on different gene 

exons[45].  Further diversity is gained from combining different variable regions with various 

constant regions, mixing various heavy and light chains, and somatic mutation[45].  In total 

there are ~1010 possible combinations for antibody structure and each B-cell, which is 

responsible for immune response, only expresses a single unique antibody on its surface[7].   

 

Figure 6.2 - Biarsenical-tertacysteine probes, such as FlAsH shown above, form stable complexes with 

genetically engineered amino acids sequences, called a tretracysteine tag (TC-tag).  The target TC-tag 

(Cys – Cys- Pro – Gly – Cys – Cys) is relatively rare in endogenous proteins, making it useful to targeting 

a specific protein in a complex matrix. Upon binding the TC-tag the FlAsH probe becomes fluorescent.   
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Therefore, it becomes difficult to identify the exons responsible for creating a particular 

antibody.  It would be even more difficult to attempt genetically alter the genes responsible for a 

particular antibody in order to accept a FlAsH/ReAsH tag.  While genetic engineering of 

antibody fragments for research and pharmaceutical purposes has been increasing recently, 

engineering full antibodies has remained a challenge [46-48].  Therefore, as a general scheme 

for investigating antibody orientations with FlAsH/ReAsH tags appears to be of limited utility.   

 

Figure 6.3 - The schematic structure of an IgG antibody is depicted above.  The antibody is composed of 

a pair of heavy chains and a pair of light chains shown in red and blue, respectively.  Each chain consists 

of constant (C) and variable (V) regions as shown above.  The antigen binding region, or Fab region, 

consists of one heavy and one light chain, while the crystallizable region, or Fc region, consists of two 

heavy chains. 

 

 Fortunately, an alternative approach for generating label antibodies for single molecule 

orientation measurements using antibodies raised with specificity against fluorescence dyes has 

substantial promise.  These antibodies treat the fluorescent dye as an antigen and bind them 

rigidly within the antigen binding site of the antibody [49-51].  While these antibodies provide 

rigid attachment of dye, this attachment often comes at the cost fluorescence quenching due to 

collisional quenching, static quenching, or a combination of both [52].  Collisional quenching 
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occurs due to the dissipation of excitation energy upon collisions, while static quenching occurs 

as the result of the ground state fluorophore forming a non-fluorescent complex with a 

quencher.  Many antibody dye pairs have high reported quenching rates of 90% or greater [49].  

Therefore, an antibody/dye pair with significantly lower quenching rates will be required to 

attempt single molecule fluorescence measurements.  Thus, an anti-fluorescein IgG antibody, 4-

4-20, with the fluorescein analog, fluo-3, with a lower reported quenching rate, ~32%, will be 

investigated as a model system for antibody orientation measurements [49]. 

 The 4-4-20 antibody offers several other advantages as model system for preliminary 

investigation of antibody orientations.  This particular antibody has been well studied and a 

crystal structure of the Fab region of 4-4-20 with bound fluorescein has been reported and is 

available in the Protein Data Bank (PDB ID: 1FLR) [48, 53-58].  This crystal structure with 

bound fluorescein, shown in Fig. 6.4, allows the orientation of the Fab region to be extrapolated 

from the measurable dye orientation [53].  While the 4-4-20 antibody has been shown to quench 

fluorescein fluorescence by ~93% [49], this antibody demonstrates cross reactivity with 

fluorescein analogs [54, 56].  As mentioned above, the fluo-3 analog of fluorescein, shown in 

Fig. 6.5, has lower reported quenching when bound to the 4-4-20 antibody at ~32% [49].  Thus, 

we have begun preliminary investigations of antibody orientations using the 4-4-20/fluo-3 

complex as a model system. 

 

6.1.4 – Limiting Nonspecific Binding in Label-free Biosensor Assays 

 Considering that many of the label-free techniques discussed above are being designed 

for clinical diagnostic applications, it is apparent that these techniques will be required to 

perform in complicated biological matrices, such as whole blood, serum, and urine.  These 

types of sample matrices can contain high concentrations of proteins, nucleic acids, and salts;  
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Figure 6.4 – The crystal structure of the Fab fragment IgG antibody 4-4-20 with bound fluorescein is 

shown above (PDB ID: 1FLR) [53].  Within the ribbon view, the heavy chain is displayed in blue, the light 

chain in yellow, and the bound fluorescein dye in red. 

 

 

Figure 6.5 – The structure fluo-3, a fluorescein analog, is provided above. 
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furthermore, these concentrations can complicate specific analyte detection.  Considering that 

label-free techniques provide a response to any binding event to the sensor surface, it is 

imperative to reduce undesired binding events.  In complicated biological matrices this can 

become a daunting task.  As such, several protocols and blocking methods have been 

developed to reduce nonspecific binding events to biosensor surfaces.   

One of the most common blocking methods pretreats the sensor surfaces with Bovine 

Serum Albumin (BSA), a well-known, sticky protein [59].  The goal of this technique is to 

populate the sites on the sensor surface where nonspecific adsorption can occur prior to 

exposing the sensor to the sample matrix.  More complicated protein mixtures are commercially 

available and have been shown in some studies to be more efficient at reducing nonspecific 

absorption [59].  Another promising alternative for reducing nonspecific adsorption on sensor 

surfaces utilizes polyethylene glycol (PEG) polymer coatings.  Several studies have 

demonstrated that these PEG polymers can be used to create self-assembled monolayers 

(SAMs), which have been shown to reduce nonspecific binding to sensor surfaces [60, 61].   

While these self-assembled PEG monolayers have proven to be a valuable tool for 

reducing nonspecific adsorption in label-free biosensing applications, the SAM method of 

creating monolayers offers less control in terms of packing density of membrane components 

relative to Langmuir-Blodgett (LB) / Langmuir-Schaffer (LS) methods [62].  Therefore, it would 

be advantageous to utilize LB/LS methods for depositing PEG coatings on a sensor surface to 

determine the optimal packing density of PEG monomers needed for reducing nonspecific 

binding in a controlled system.  Fortunately, with the growing interest in PEG coatings, there are 

now synthetic lipid analogs that are commercially available which have been modified to 

incorporate a PEG polymer [63].  Therefore, here we report the initial findings of LB/LS 

deposition of these PEGylated lipids for reducing nonspecific adsorption.  The chemical 

structure of the PEGylated lipid employed in these studies is shown in Fig. 6.6. 
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Figure 6.6 – The chemical structure of DPSE-PEG2000 (DSPE-PEG), a PEG functionalized lipid, is 

shown above. 

 

6.2 – Materials and Methods  

 

6.2.1 – 4-4-20 Antibody / Fluo-3 Preparation and Immobilization 

  Monoclonal antibody 4-4-20 (Life Technologies, Grand Island, NY) and Fluo-3 (Life 

Technologies) were obtained and used without further purification.  Excess Fluo-3 was 

complexed to the 4-4-20 antibody by incubation in PBS buffer for 2 hours at room temperature.  

Unbound fluo-3 was then filtered by dialysis using a 3 kD molecular weight cut off filter (Thermo 

Scientific, Rockford, IL).  Dialysis was repeated until fluorescence could no longer be observed 

in the dialysate.  The purified 4-4-20/Fluo-3 complex was then immobilized to glass cover slips 

for single molecule orientation analysis.  Immobilization protocols included nonspecific 

adsorption and attachment through Protein A affinity.  Nonspecific adsorption was achieved by 

incubation of the 4-4-20/Fluo-3 complex with the substrate for 2 hours.  Protein A attachment 

was achieved by pretreatment of the substrate with Protein A (Thermo Scientific, Waltham, MA) 

for 2 hours, washing, and incubation with antibody/dye complex for an hour.  All immobilization 

procedures were carried out at room temperature.  
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6.2.2 – Single Antibody Orientation Measurements via Defocused Imaging  

Immobilized 4-4-20/Fluo-3 complexes were imaged using a total internal reflection 

fluorescence microscope (TIRF-M) (Olympus IX71, Center Valley, PA) equipped with a 100x, 

1.45 NA objective (Achromat, Olympus).  The 514nm line from an argon ion laser (Coherent 

Innova 90, Santa Clara, CA) was directed through half-wave and quarter-wave plates (Newport, 

Irvine, CA) to select for p-polarized excitation before being coupled into the microscope.  

Excitation was directed through the objective with the optics defocused ~500nm and 

fluorescence was collected, filtered, and imaged on a cooled CCD camera (Retiga 1300, Q 

Imaging, Surrey, BC, Canada).  Image collection was controlled with Slidebook software 

(Version 4.2.0.3, Intelligent Imaging Innovations, Denver, CO).  For both dry samples and 

samples in PBS solution, individual captures were integrated over 200 ms.  The resulting single 

molecule emission patterns were analyzed with MATLAB (Natick, MA). 

 

6.2.3 – PEGylated Bilayers Generated via LB/LS Deposition 

Dipalmitoylphosphatidyethanolamine (DPPE), Dioleoylphosphatidylcholine (DOPC), 

Distearoylphosphoethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-PEG), 

Distearoylphosphoethanolamine-N-[poly(ethylene glycol)2000-N'-carboxyfluorescein] (DSPE-

PEG-fl) ) (Avanti Polar Lipids, Alabaster, AL) were obtained at >99% purity and used without 

further purification.  Each lipid and lipid analog was diluted in 50/50 (v/v) methanol/chloroform to 

obtain appropriate working concentrations, ~1mg/ml.  For monolayer fluorescence studies, 

DOPC/PEG-2000 solutions were prepared at the required molar ratio and doped with 0.5% 

PEG-2000-fl.  For bilayers utilized in the fluorescence and WGM assays, DPPE monolayers 

were first deposited to the glass substrate by LB deposition at 35 mN/m.  A subsequent 
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monolayer containing DOPC/PEG-2000 was deposited to this substrate via LS deposition at 30 

mN/m to create Y-type bilayers. 

Monolayers were created in a Langmuir-Blodgett (LB) trough (Type 611, Nima 

Technology, Coventry, England) by dispersing approximately 50 µL of the appropriate lipid 

solution on an 18MΩ water subphase.  The solvent was allowed to evaporate for at least 15 min 

prior to initiating compression/expansion cycles to anneal the film.  Each monolayer was 

subjected to two compression/expansion cycles between surface pressures of 35 mN/m and 2 

mN/m.  The barrier rate during these cycles was held at 100 cm2/min.  Following the last 

expansion, the monolayers were compressed to the desired target pressure and held for 10 

min prior to transfer onto a solid substrate.  LB monolayers were transferred onto clean slides 

and glass slides with immobilized glass microsphere in a headgroup down arrangement using a 

dipping velocity of 5 mm/min.  LS monolayers were transferred to DPPE coated slides by lightly 

contacting the substrate to a subsequent DOPC/PEG-2000 monolayer at approximately a 5º 

angle.  The substrate was then slowly lifted from the water interface at a dipping velocity of 3 

mm/min.  All monolayers were transferred and imaged at 22 °C. 

 

6.2.4 – Microsphere Immobilization  

High refractive index (n = 1.9), barium titanate (BaTiO3) glass microspheres (53 µm 

diameter, Mo-Sci, Rolla, MO) were cleaned in a 5% Contrad solution.  The spheres were rinsed 

in an ethanol/water (30/70 v/v) solution, then a PBS solution, and stored in PBS until use.  A 

glass bonding solution was prepared with 0.125% w/v calcium acetate (Fisher Scientific, 

Hampton, NH) and 0.125% w/v powdered detergent (Alconox Inc., White Plains, NY) in 

nanopure H2O.  Approximately 100 uL of the bonding solution was placed on a clean glass 

cover slip (Fisher Scientific, Hampton, NH) and allowed to deprotonate the glass surface for ~5 

minutes.  Approximately 5 µL of the clean microspheres in PBS solution were transferred to the 
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sample slide and allowed to dry for 20 minutes at 50 °C.  The sample slide was washed 

thoroughly with nanopure H2O to remove any unbound spheres and excess salts from the 

surface. 

 

6.2.5 – Fluorescence Imaging  

Fluorescence imaging of the microstructure within DOPC/PEG-2000/PEG-2000-fl 

monolayers was acquired with an inverted microscope (Olympus IX71) equipped with a 100x 

PlanAPO objective (1.45 NA, Olympus).  The 514 nm line from an argon ion laser (Innova 90, 

Coherent Inc.) was coupled into the microscope through the objective using a total internal 

reflection illumination configuration.  Emission from the fluorescent lipid analog DSPE-

PEG2000-fl was collected with the same 100x objective and imaged on a cooled CCD camera 

(Coolsnap K4, Roper Scientific, Tuscon, AZ).  Image collection with 200ms integration time was 

controlled with Slidebook software (Intelligent Imaging Innovations). 

Imaging for the fluorescence binding assays was completed on an inverted microscope 

(Zeiss axiovert135TV, Thornwood, NY) equipped with a 10x UMPlanFL objective (Olympus).  

The 488 nm and 647 nm line from a krypton/argon ion laser (Innova 70 spectrum, Coherent Inc., 

Santa Clara. CA) was directed through a dove prism to achieve evanescent wave excitation at 

the sample surface.  Fluorescence from the sample was collected by the objective viewing 

through the dove prism, filtered at the appropriate wavelength (488LP/647LP, Chroma), and 

collected on a cooled CCD (Coolsnap K4).  Image collection with 250 ms integration time was 

controlled with Slidebook software (Intelligent Imaging Innovations).  The power density of the 

excitation spot on the sample surface was held constant by using a constant illumination 

intensity at each wavelength and a micromanipulator controlled focusing lens. 
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6.2.6 – Fluorescence Binding Assays 

 Investigations of specific binding and nonspecific adsorption to glass surfaces were 

accomplished utilizing fluorescently labeled streptavidin-Alexa633 (SA-633, Life Technologies) 

and BSA-Alexa488 (BSA-488, Life Technologies), respectively.  Immobilized glass 

microspheres on glass slides were treated with various lipid coatings produced by the LB/LS 

method discussed in Section 6.2.3. Each sample was contained within a rubber gasket (Grace 

Bio-Labs, Bend, OR) adhered to the slide and incubated in 800ul of PBS buffer.  Each sample 

was then incubated with 20 ul of 0.1 mg/ml SA-633 and 50 ul of 0.1 mg/ml BSA-488 for 15 

minutes.  The samples were then washed 3 times with 800ul of PBS buffer.  Simultaneous 

binding of SA-633 and BSA-488 were measured by their fluorescence intensity.  At least 3 

background images and 5 images after the washing procedure were collected from various 

locations containing microspheres on the sample surface.  Data analysis was performed in 

Photoshop CS3, where the average intensity of microspheres within the illumination area was 

calculated at each wavelength.  

  

6.2.7 – WGM Assays of Serum Proteins 

Barium-titinate glass microspheres with a 53 um diameter were obtained from Mo-Sci 

Corp. (Rolla, MO). These spheres were functionalized with Alexa-633 succinimidyl ester 

(Invitrogen, Carlsbad, CA).  StartingBlock blocking solution was obtained from Thermo Scientific 

(Rockford, IL). Human Ab serum, PBS, and all other reagents were obtained from Fisher 

Scientific (Hampton, NH), unless otherwise noted.  

Glass microspheres were prepared for use in WGM assays by soaking in a 10% 

Contrad-70 solution in nanopure water for one hour.  These spheres were triply rinsed with 

nanopure, then incubated in 30% hydrogen peroxide solution for one hour. These spheres were 
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then rinsed with nanopure water, ethanol, and toluene, then tumbled overnight in 6% APTES in 

toluene to form an amine terminated surface.  The spheres were then washed with toluene, 

ethanol, and PBS buffer.  To attach the Alexa-633 fluorescent dye to the spheres, samples were 

subsequently tumbled for 2 hr in 6% glutaraldehyde solution in PBS and triply rinsed with PBS, 

then incubated overnight with Alexa-633 succinimidyl ester to covalently link the dye to the 

sensor surface.  These spheres were washed with PBS and refrigerated until used. 

Functionalized glass microspheres were immobilized to glass slide using the calcium 

bonding procedure outline above in Section 6.2.4.  These glass substrates were then subjected 

to various surface treatments for blocking nonspecific adsorption.  For PEG coatings, 

PEGylated lipid bilayers were deposited onto the surface using the LB/LS technique outlined 

above in Section 6.2.3.  These samples were then enclosed in perfusion chambers (Grace Bio-

Labs, Bend, OR) and incubated in PBS.  For protein incubation methods, each sample was 

enclosed in a perfusion chamber and incubated in 10% of appropriate protein solution in PBS 

for 1 hour.  These samples were then washed thoroughly with PBS.   

WGM measurements were performed with a tunable Vortex II TLB-6900 external cavity 

diode laser (New Focus, Santa Clara, CA).  Laser excitation was directed into a Dove prism 

(Edmund Optics, Barrington, NJ), on which the sample was mounted.  Total internal reflection at 

the substrate interface creates an evanescent field, which was used to launch light into the 

immobilized microspheres.  At a WGM resonance, an enhanced ring of fluorescence from 

Alexa-633 was observed from the microspheres, which were imaged from above.  The 

fluorescence was collected through a 10X UMPlanFL (0.3 NA) objective (Olympus), filtered 

(Chroma), and imaged onto a cooled CCD camera (Coolsnap K4).  A LabView program 

controlled scanning of the laser system, which was synchronized with Slidebook image 

collection software (Intelligent Imaging Innovations).   
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Serum protein nonspecific adsorption to these prepared samples was quantified by 

WGM resonance shift upon subjecting each sample to increasing serum concentrations.   WGM 

resonances from spheres within each sample were recorded prior to the first injection.  After a 

10 minute incubation period following each serum injection, the WGM resonance spectra were 

acquired again for each sphere.  Data analysis of the WGM response to nonspecific adsorption 

was performed using LabView (National Instruments Corp., Austin, TX) and Origin 6 (Microcal 

Software Inc., Northampton, MA) software. 

 

6.3 – Results and Discussion 

 

6.3.1 – Single Antibody Orientations 

 In previous studies we have validated the use of single molecule orientation 

measurements via defocused single molecule imaging for investigations of membrane 

structure[33-38].  These studies have demonstrated that measurements with acyl-linked 

fluorescent lipid analogs can elucidate structural perturbations within the membrane at the 

molecular level.   While these have been valuable for contributing to the understanding of 

membrane structure, here we seek to utilize the single molecule orientation approach to 

investigate the orientation of antibodies bound to a solid substrate.  The orientation of 

immobilized antibodies is of great interest due to the prevalence of immunoassay techniques 

which suffer loss of sensitivity due to inactive antibodies.  Therefore, here we present 

preliminary findings of a model test system for investigating antibody orientations with single 

molecule orientation measurements via defocused fluorescence imaging. 

For the development of a model test system for investigating antibody orientations we 

employed a fluorescein analog, Fluo-3, bound to monoclonal antibody 4-4-20.   The 4-4-20 
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antibody was raised with specificity for fluorescein; however, it also experiences affinity for 

fluorescein analogs, such as Fluo-3 [49, 54, 56].  When bound to the 4-4-20 antibody, 

fluorescein experiences quenching rates greater than 90% [49].  Achieving single molecule 

fluorescence measurements with this dye complex is, thus unrealistic.  Therefore, Fluo-3 was 

employed for these studies due to its significantly lower quenching rates upon complexing with 

4-4-20 and its compatibility with single molecule imaging [49] .   

The 4-4-20/Fluo-3 complex was allowed to bind in PBS buffer and then purified by 

dialysis.  This complex was then immobilized to glass coverslips by physical adsorption and 

through affinity to Protein A.  Following immobilization, the incubation solution was removed and 

the samples were imaged using the defocused TIRF approach described in detail in Chapter 2.  

A representative image of the defocused emission patterns observed when imaging the 4-4-

20/Fluo-3 complex is shown in Fig. 6.6. Orientation measurements of this complex in both dry 

and wet samples were obtained and are discussed below. 

 

Figure 6.6 – A representative defocused single molecule fluorescence image of purified 4-4-20/Fluo-3 is 

shown above.  Even when bound to the antibody, fluorescence from individual Fluo-3 molecules can be 

observed with sufficient a signal to noise ratio to allow for orientation measurements.  
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Initial studies of 4-4-20/Fluo-3 orientation on glass substrates were performed on dried 

samples.  Within this study, the molecular orientation of 4-4-20/Fluo-3 immobilized through 

nonspecific adsorption and Protein A were compared.  The single molecule emission pattern 

mapping methods discussed in Chapter 2 were utilized to measure the three-dimensional 

orientation of each molecule observed within each image.  A histogram compiling the observed 

polar angle (Φ) from each 4-4-20/Fluo-3 complex observed within these samples is shown in 

Fig. 6.7. 

 

Figure 6.7 – A tilt angle histogram of the observed molecular orientations of dry 4-4-20/Fluo-3 complexes 

measured by defocused fluorescence imaging is shown above.  As shown in the schematic illustration on 

the right, physical adsorption and Protein A immobilization strategies are compared.  While correlation of 

total antibody or Fab region orientation to observed Fluo-3 orientation is speculative with these 

preliminary results, the data above does suggest that there is a statistical difference in the 4-4-20/Fluo-3 

complex orientation with each immobilization protocol.   Orientation measurements of at least 300 

individual molecules for 3 separate samples using each immobilization protocol were used to populate the 

histogram above. 
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 The results displayed in Fig. 6.7 should be should be interpreted cautiously given the 

following considerations.  First, while the 4-4-20/Fluo-3 complex can be utilized to correlate 

orientational changes of the antibody, the observed tilt angle of the Fluo-3 emission dipole 

orientation should not be used to determine the absolute orientation of the overall antibody or 

Fab fragment.  While the 4-4-20/fluorescein system has been studied extensively and crystal 

structure of this bound complex has been reported, as shown in Fig. 6.4, a crystal structure for 

the 4-4-20/Fluo-3 complex has not been reported[53].  Although the reduced quenching 

efficiency is a major positive attribute of the 4-4-20/Fluo-3 complex, this reduction in quenching 

efficiency also suggests Fluo-3 maybe bind differently within the 4-4-20 antibody.  Therefore, 

even though it is assumed that Fluo-3 and fluorescein bind in a similar manner to the 4-4-20 

antibody, a crystal structure is needed to support this assumption.  Second, more robust 

purification methods should be employed to ensure each observed emission pattern is from a 

bound 4-4-20/Fluo-3 complex.  Finally, similar to alternative methods for investigating antibody 

orientations, measurements of dried samples are less relevant than samples in solution for 

immunoassay applications.      

Albeit with these considerations, there are still interesting conclusions to be drawn from 

the results shown in Fig. 6.7.  Shown in the tilt angle histogram is a statistically relevant 

deviation in upright oriented fluorophores.  While, we hesitate to suggest that this represents a 

greater abundance of 4-4-20/Fluo-3 complexes with outward facing Fab regions when 

immobilized though Protein A attachment, we are confident these results suggest there is a 

measurable difference in orientation of 4-4-20/Fluo-3 complex when immobilized by these two 

procedures.   

Even though dried samples are less relevant for immunoassay applications, utilizing dry 

samples is advantageous in terms of imaging defocused emission patterns.  The refractive 

index difference between the glass substrate and the sample matrix affects the single molecule 
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fluorescence coupling angle through the sample interface and into the objective.  As detailed in 

Chapter 2, it is through deviations in this fluorescence coupling angle through the sample 

interface that allow single molecule orientations to be measured.  Reducing this refractive index 

difference by placing the sample in solution requires that a greater defocus distance is used to 

effectively image single molecule emission patterns.  This has two adverse effects for imaging 

single molecule orientations.  First, increasing the defocusing distance results is spreading the 

emission pattern from a single molecule over a greater area on the imaging plane.  This reduces 

the signal-to-noise ratio and can make emission pattern mapping more difficult.  Second, 

through numerous experimental measurements of single molecule orientations in membranes 

and of 4-4-20/Fluo-3, we have found that acceptable defocus distance for single molecule 

orientations is polar angle (Φ) dependent.  For dry samples, the acceptable defocus distance for 

molecular orientations of polar angles at the two extremes (Φ = 0º and 90º) overlap significantly, 

thereby easing demands on the imaging system.  Unfortunately, in under-water samples, which 

require greater defocus distances, the overlapping acceptable defocus distance is much 

smaller.  This makes acquiring images which capture emission patterns of all molecular 

orientations within a sample significantly more difficult.   

 In spite of the increased imaging difficulty, we were able demonstrate the single 

molecule orientations of 4-4-20/Fluo-3 complexes in solution, as shown in Fig. 6.8.  By 

capturing time-lapsed defocused images of 4-4-20/Fluo-3 complexes bound through Protein A 

we were able to observe the dynamic motion of these complexes.  As shown in Fig. 6.8, the 

rotation of a single complex can be observed in the upper left (A) of the series of images.  Also 

observed within these images were a static complex (D) and a complex with dynamics on a 

faster time than the image integration time (B).   
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Figure 6.8 – Images from a time-lapse capture of defocused emission patterns from 4-4-20/Fluo-3 

immobilized to a glass substrate through Protein A attachment in an underwater sample are shown 

above.  Each capture was completed with a 200ms integration and 100 ms dead time. Within this series 

of images, the dynamic motion of a single 4-4-20/Fluo-3 complex can be observed in (A).  Additionally, a 

complex which is moving on a faster time scale than the integration rate and photobleaching can be 

observed in (B) and (C), respectively.  Finally, a static single molecule in the bottom right of the image can 

be observed in (D).   

 

As with the orientation measurements of dry samples, we hesitate to correlate the 

observed Fluo-3 orientation to overall antibody or Fab fragment orientation when using the 4-4-

20/Fluo-3 system.  As such, we cannot yet reliably conclude which observed molecular 

orientations will correspond to increased antibody activity.    We hypothesize that it may be the 

dynamic molecules such as those observed in Fig. 6.8, which have the freedom to explore 

greater dimensional space within the sample matrix may be the most effective at binding their 

target analyte.  Thus, the results presented in Figs. 6.7 and 6.8 provide promise for utilizing 
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defocused single molecule orientation for studies of antibodies on solid substrates.  The ability 

to not only observe molecular orientations of 4-4-20/Fluo-3 in samples in solution, but also to 

measure the dynamic nature of the molecule make this approach a promising new alternative 

for investigating the relationship between antibody orientation and binding affinity.   

 

6.3.2 – PEGylated LB/LS Bilayers for Reduced Nonspecific Adsorption in Biosensors 

 Several previous studies of self-assembled monolayers (SAMs) have demonstrated the 

use of membrane films as a coating for biosensors for the specific analyte detection and 

reducing nonspecific absorption [60-62, 64].  The SAM approach is valuable for coating 

biosensor surfaces because it can easily deposit monolayers to several types of surfaces with 

high control of monolayer composition [61].  With these attributes, studies employing 

polyethylene glycol (PEG) SAMs on biosensor surfaces report significantly reduced nonspecific 

binding to these surfaces when a high surface density of PEG is achieved to create a polymer 

brush [61, 65].   

The reduction in nonspecific adsorption of these PEG films is attributed to the formation 

of a water cushion between the surface and the sample matrix.   This water cushion is formed 

due to PEG containing repetitive hydrogen bond acceptors within its polymer chain.  Non-

specific adsorption, which is driven by surface-protein attraction, is essentially avoided by 

incurring an osmotic penalty for inserting a protein within the PEG monomers [66].  With these 

reports there has been considerable interest to achieve an optimal PEG coating for blocking 

nonspecific adsorption by altering the PEG polymer brush though augmenting the PEG chain 

length and concentration within SAMs [65, 67].  However, it seems clear that control of packing 

density within the PEG polymer brush is a key attribute for limiting nonspecific adsorption.  
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While the self-assembled method for monolayer production has several positive attributes, 

control of monomer surface density in SAMs is limited.  

 In the study discussed in Chapter 5, we demonstrated the use of lipid bilayers deposited 

by the LB/LS method for the specific detection of Cholera toxin with label-free WGM biosensors 

[68].  With PEG functionalized lipid analogs (PEGylated lipids) now being commercially 

available, here we report the use LB/LS deposition methods to easily control packing density of 

PEG monomers within lipid film coatings for sensors surfaces.   

Initial studies of membrane structure were performed using fluorescence microscopy in 

order to ensure uniform and complete surface coverage of the PEG polymer which is required 

for blocking nonspecific adsorption. A series of DOPC/DSPE-PEG LB monolayers doped with 

0.5% of a fluorescent PEGylated lipid analog, DSPE-PEG-fl, were deposited on to glass 

substrates at 30 mN/m and imaged with an inverted fluorescence microscope.  Representative 

images of monolayers containing various DSPE-PEG concentrations in DOPC are shown in 

Fig. 6.9.  As shown in Fig 6.9, monolayers containing ≤25 mol% DSPE-PEG exhibit relatively 

uniform coverage of DSPE-PEG-fl within the monolayer.  The formation of microdomains 

lacking PEG with these monolayers can begin to be observed at 33 mol% DSPE-PEG and more 

clearly observed at 50 mol% DSPE-PEG.  It should also be noted, there are small bright regions 

within the monolayer containing 5 mol% DSPE-PEG, which suggests some aggregation of the 

DSPE-PEG-fl dye within the monolayer.  Fluorescent images of PEGylated bilayers were also 

acquired to ensure the monolayer microstructure structure observed in Fig 6.9 was maintained 

in bilayer films.  These bilayers images confirmed similar structure to that displayed in the 

monolayers shown in Fig. 6.9. 
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Previous studies of SAMs suggest there is a minimum PEG monomer concentration 

required to reduce nonspecific adsorption [69].  These findings correspond with the concept that 

the formation of polymer brush of PEG monomers is required for effective blocking of protein  

 

 

Figure 6.9 – Fluorescence images of DOPC/DSPE-PEG monolayers doped with 0.5% DSPE-PEG-fl 

deposited at 30 mN/m by LB transfer to glass slides are shown above.  The formation of microscopic 

domain phases becomes apparent at DSPE-PEG concentrations ≥33 mol%. Each image was captured 

over a 200 ms integration period with 100x magnification.  The scale for each image is ~130x130 μm. 
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adsorption to a surface.   Thus, a minimum concentration of DSPE-PEG is also expected to be 

required for blocking with LB/LS bilayers as well.  Also, as suggested from the images shown in 

Fig. 6.9, at higher concentrations of DSPE-PEG the formation of microscopic membrane 

domains result in nonuniform coverage of PEG monomers on the substrate.  Therefore, this 

data suggests that there will be an optimal concentration of DSPE-PEG in the outer leaflet of 

LB/LS bilayers deposited at 30 mN/m for reducing nonspecific adsorption.    

As discussed above, bilayers deposited onto glass slides were created by first 

depositing a DPPE monolayer with the LB method.  DPPE was employed for the bottom 

monolayer in order to create a stable and reproducible hydrophobic film on the glass substrate.  

A subsequent monolayer containing DOPC/DSPE-PEG was then applied to this substrate with 

the LS method to create a lipid bilayer.  Bilayers created with this procedure were applied to 

glass substrates with immobilized microsphere resonators in order to test nonspecific adsorption 

of proteins to sensor surfaces. 

Initial tests of specific and nonspecific binding of proteins to bilayer coated microspheres 

were completed using fluorescence imaging of labeled streptavidin and bovine serum albumin, 

respectively.  Each of these proteins was purchased labeled with Alexa series dyes which are 

easily spectrally separated.  The absorption and emission spectra of the fluorescent labels 

employed in this study, Alexa-488 and Alexa-633, are shown in Fig. 6.10 [70]. Thus, bovine 

serum albumin labeled with Alexa-488 (BSA-488) and streptavidin labeled with Alexa-633 (SA-

633) were employed to measure nonspecific adsorption and specific binding to biotin, 

respectively.    

Each lipid coated slide with immobilized glass microspheres was incubated in PBS 

buffer spiked with 5.9 μg/ml BSA-488 and 2.4 μg/ml SA-633 for 15 minutes.  Each slide was then  
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Figure 6.10 – Absorption and emission spectra of Alexa-488 and Alexa-633 are shown with 488 nm 

(above) and 647 nm (below) excitation lines.   
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rinsed with PBS in triplicate and imaged with total internal reflection fluorescence microscopy.  

Total internal reflection evanescent wave excitation was employed to excite fluorophores bound 

the sample surface while limiting background fluorescence from the bulk solution.   Each sample 

was imaged with both 488 nm and 647 nm excitation lines from an Ar/Kr ion laser to separately 

quantify BSA-488 and SA-633 bound to the surface.  The fluorescence response from bound 

fluorophores was performed by measuring the average intensity from at least 10 microspheres 

from several different areas on the sample surface.  BSA-488 and SA-633 protein binding to 

these immobilized glass microspheres quantified by fluorescence intensity is shown in Fig. 6.11.  

DOPC and DOPC/DSPE-PEG bilayers were utilized to compare nonspecific binding of BSA to 

the slide surface.  Additionally, a bilayer containing biotin labeled lipid analog, DSPE-PEG-

biotin, was used to demonstrate that while PEG can be utilized to reduce nonspecific 

adsorption, specific binding through affinity-based interactions can be maintained with these 

bilayer coatings.  

The results displayed in Fig. 6.11 demonstrate the reduction of nonspecific adsorption to 

glass microspheres coated in bilayers containing DSPE-PEG as measured by fluorescence 

intensity of BSA-488.  These results also suggest there is an optimal packing density, or 

concentration of PEG monomers deposited at 30mN/m, near 10% DSPE-PEG for maximum 

blocking of nonspecific adsorption.   This agrees with the findings from the fluorescence studies 

of PEG surface coverage, shown in Fig. 6.9.  The fluorescence binding assay, shown in Fig. 

6.11, reveals that nonspecific adsorption of BSA is reduced for 10 mol% DSPE-PEG bilayers 

relative to 25% DSPE-PEG bilayers.  Indications for reduced nonspecific binding in the surface 

coverage fluorescence measurement are not evident until domain phases are clearly seen at 

≥33% DSPE-PEG.  This discrepancy is likely do to the resolution limits of optical microscopy.  It 

is possible the initial formation of these domains occur at DSPE-PEG concentrations <33 mol% 

but are not resolvable by optical microscopy. In addition to monitoring nonspecific  
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Figure 6.11 – The fluorescence response due to binding of labeled streptavidin and BSA to the glass 

microspheres coated with various lipid bilayers is shown above.  The striped bar of each color represents 

the pre-incubation response and the solid bar of each color represents the fluorescence response after 

incubation and washing.  Specific binding was monitored utilizing streptavidin-Alexa-633 (SA-633) which 

has affinity biotin labeled surfaces.  Nonspecific protein adsorption was examined with bovine serum 

albumin-Alexa-488 (BSA-488).  As shown is Fig. 6.10, these dyes are separately excited with 488 nm 

and 647 nm Kr/Ar laser lines and easily spectrally separated.  Each sample was incubated with 2.4 μg/ml 

SA-633 and 5.9 μg/ml BSA-488 for 15 minutes then washed in triplicate.  Multiple fluorescence images 

were acquired with both excitation lines prior to and following incubation with SA-633 and BSA-488.  The 

average fluorescence intensity from at least 10 separate spheres for each sample type is shown above 

with the standard deviation displayed in the error bars.   
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adsorption with BSA-488, these fluorescence binding assays utilized SA-633 to measure 

specific binding of streptavidin to biotinylated surfaces.  As shown in Fig. 6.11, all bilayers 

lacking a biotin-linked lipid analog resulted in a negligible fluorescence response.  In contrast, 

bilayers containing 10 mol% DSPE-PEG-biotin demonstrated a clear response from specific 

binding of SA-633.  Therefore, this data demonstrates the utility of PEGylated bilayers for 

reducing nonspecific adsorption of proteins to glass surface while maintaining the specific 

binding capabilities required for coatings in biosensor applications.   

 In order to further examine the potential of DSPE-PEG bilayer coatings for reducing 

nonspecific adsorption in label-free biosensors, a series of WGM microsphere resonators were 

treated with standard and PEGylated lipid blocking protocols then incubated with increasing 

concentrations of serum proteins.  Several traditional methods and PEGylated lipid methods for 

reducing nonspecific adsorption were compared.  These methods include no pretreatment, pre-

incubation with Starting block solution, pre-incubation with serum, coating with a DPPC bilayer, 

coating with a 1% DSPE-PEG in DOPC bilayer, coating with a 5% DSPE-PEG in DOPC bilayer, 

coating with a 10% DSPE-PEG in DOPC bilayer, and coating with a 25% DSPE-PEG in DOPC 

bilayer.  The resulting binding curve of serum protein to these treated glass surfaces measured 

by WGM resonance response is shown in Fig. 6.12.  The data displayed in Fig. 6.12 represents 

the average response from at least 4 WGM resonators for each type of surface treatment with 

the standard deviation displayed with the error bars.  For clarity, the same data is displayed in 

Fig. 6.13, where bilayer blocking methods are compared in the upper graph and traditional 

methods are compared to the optimal bilayer method compared in the lower graph. 

As discussed in Chapter 5, WGM resonators are label-free refractive index sensors 

which function through the continuous total internal reflection of discrete wavelengths of light in 

a circular dielectric medium.   Light evanescently coupled into these WGM resonators can be 
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efficiently trapped when the wavelength of light is an integer multiple of the distance 

circumnavigated around the resonator [2, 17, 71-74].  Under these conditions, constructive 

interference leads to WGM resonances given by: 

   
       

 
   Eq. 6.1 

where λr is the resonant wavelength, r is the radius of the resonator, neff is the effective 

refractive index, and m is an integer that indexes the mode number [72, 73].  The key 

relationship which is exploited for sensing purposes is the dependence of the resonant 

wavelength on the effective refractive index at the resonator surface.  Due to this relationship, 

binding events resulting in changes in local refractive index can be detected through measuring 

shifts in the WGM resonant wavelength.   

For bioassays, binding events of proteins and other biological material to the sensor 

increases the local refractive at resonator surface and shifts the resonant wavelength to longer 

wavelengths.  However, it should be noted that increasing protein concentration results in a 

corresponding increase of the refractive index of the bulk solution as well.  Therefore, the WGM 

response data presented in Figs. 6.12 and 6.13 is plotted as a function of the bulk refractive 

index due to increasing serum protein concentration.  As expected, each sample of microsphere 

resonators responds to increasing bulk refractive index changes through a shift to longer 

resonant wavelengths.  Furthermore, this data shows that the WGM response of unblocked 

microspheres and several of the treated microspheres is non-linear with respect to bulk 

refractive index changes.  The drastic initial shifts in WGM resonant wavelength observed for 

these samples is, therefore, explained by nonspecific adsorption of protein to resonator surfaces 

resulting in local refractive index changes as opposed to bulk refractive index changes.  Thus, 
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the data displayed in Fig 6.12 reveals a clear reduction in serum protein nonspecific adsorption 

for several of the blocking protocols employed in this study relative to untreated samples.   

 

 

Figure 6.12 – Binding curves of nonspecific adsorption of serum proteins to glass surfaces are measured 

with WGM microspheres resonators.  Several protocols for reducing nonspecific adsorption are compared 

including unblocked (black squares, N=9), pre-incubation with Starting block solution (red circles, N=9), 

pre-incubation with serum (upward green triangles, N=4), DPPC bilayer coating (downward blue triangles, 

N=7), 1% DSPE-PEG in DOPC bilayer coating (teal diamonds, N=6), 5% DSPE-PEG in DOPC bilayer 

coating (leftward pink triangles, N=12), 10% DSPE-PEG in DOPC bilayer coating (rightward orange 

triangle, N=8), and 25% DSPE-PEG in DOPC bilayer coating (gold circles, N=9).  These results 

demonstrate bilayers containing ~5% PEG are the optimal coating tested for reducing nonspecific 

adsorption in biosensing applications. 
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Figure 6.13 – Assays of WGM response to the presence of human serum proteins.  For clarity the 

binding curves shown in Fig. 6.12 are categorized above.  A comparison of PEGylated bilayer methods 

(top) demonstrates the 5% DSPE-PEG in DOPC at 30 mN/m results in the greatest reduction of 

nonspecific adsorption of serum proteins.  Furthermore, this PEGylated bilayer is also shown to reduce 

nonspecific binding to WGM resonators more effectively than traditional blocking methods (bottom). 
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 As shown in Fig. 6.13 (top), various LB/LS bilayer lipid coatings for blocking nonspecific 

adsorption of serum proteins are compared.  As mentioned above, each of the WGM resonators 

responses to increases in bulk refractive index through shifts to longer resonant wavelengths 

regardless of surface treatment.  However, WGM responses from resonators with certain bilayer 

coating suggest evidence of greater nonspecific adsorption to serum proteins to the sensor 

surfaces than others.  For example, WGM sensors with DPPC and DOPC/DSPE-PEG (75:25) 

bilayer coatings indicate a significantly greater response to refractive index increases than 

WGM sensors with DOPC/DSPE-PEG (95:5) and DOPC/DSPE-PEG (90:10) bilayer coatings.  

Evidence of nonspecific binding in these WGM sensors with DPPC and DOPC/DSPE-PEG 

(75:25) bilayer coatings is suggested by the non-linear and greater overall response of WGM 

sensors.  With these criteria, the data displayed in Fig. 6.13 (top) suggests DOPC/DSPE-PEG 

(95:5) is the optimal bilayer composition tested for reducing nonspecific adsorption for WGM 

glass microspheres.   

 Figure 6.13 (bottom) compares the optimal LB/LS bilayer coating, DOPC/DSPE-PEG 

(95:5) at 30 mN/m, to traditional methods for blocking nonspecific adsorption.  From the WGM 

response to increasing serum concentrations, the PEGylated bilayer coating demonstrates a 

significantly greater reduction in nonspecific adsorption of serum proteins to WGM sensor 

surfaces.  Again, this can be observed through the non-linear and greater overall response of 

WGM sensors pretreated with StartingBlock and serum protein solutions. Therefore, these 

results further illustrate the potential of PEG coatings for limiting nonspecific adsorption, which is 

a vital attribute for label-free biosensor approaches. 
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Conclusions 

 With the increasing popularly of label-free biosensors approaches for various research 

applications, there has been further interest to develop more efficient sensing surfaces.  For 

immunoassay approaches this translates to developing immobilization protocols which maintain 

antibody activity upon immobilization to sensor surfaces.  An additional requirement which is 

vital for label-free sensors, in particular, is to simultaneously reduce nonspecific adsorption to 

these sensor surfaces in order to ensure specific detection of the analyte of interest. Therefore, 

here we have presented several studies to further address these problematical issues.   

Antibody orientation has long been of interest for immunoassay techniques as antibody 

activity can be inhibited if the active site of the antibody is hidden from the sample matrix.  

Therefore, various immobilization protocols have been developed to promote active antibody 

orientations.  Unfortunately, there is a lack of techniques which can provide accurate 

measurements of immobilized antibody orientation which can be related to antibody activity at 

relevant sample conditions.  Therefore, here the preliminary findings from a single molecule 

fluorescence approach for measuring antibody orientation are presented.  While the 4-4-

20/Fluo-3 model system requires further modification and control studies to allow for the 

correlation of fluorophore to antibody orientation, the findings from these studies demonstrate 

the potential utility of the defocused single molecule imaging approach for measuring antibody 

orientations in relevant sample conditions.  These studies have shown a difference in observed 

orientations for antibodies immobilized through physical adsorption and Protein A affinity in dry 

samples.  Additionally, these studies have demonstrated the ability to measure antibody 

orientations of samples in buffer, which is significantly more relevant for bioassay applications.  

Furthermore, the ability to observe immobilized antibodies in buffer has also allowed us to 

capture the dynamic motion of these antibodies with time-lapsed imaging.  Therefore, the 
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defocused single molecule imaging approach should be a promising tool for further investigation 

of immobilized antibody orientations and activity. 

Nonspecific adsorption in another common obstacle faced by immunoassay techniques, 

and is a particularly important issue for label-free biosensors.  The primary of advantage 

provided by label-free biosensors is that the attachment of a label is not required for analyte 

detection.  However, this attribute is also related to one of the most difficult challenges faced by 

label-free approaches.  Any binding event, specific or not, can elicit a response from the label-

free sensor.  Therefore, it is imperative to promote specific binding interactions while eliminating 

nonspecific ones.   The largest culprit in terms of nonspecific binding events is a result of 

nonspecific adsorption of proteins to the sensor surface.  As such, numerous blocking protocols 

have been developed and tested to reduce nonspecific absorption.  One of the more promising 

approaches has utilized self-assembled PEG polymer coatings.  Other approached have shown 

that packing density of PEG monomers within these coatings to be a crucial variable which can 

augment the blocking efficiency of these coatings.  While packing density within the PEG 

polymers is difficult to control with self-assembled monolayer methods, Langmuir deposition 

methods provide simple control of monomer surface density though surface pressure control 

during deposition.  

 Therefore, here we have presented a method for creating controllable PEG coating for 

biosensor surfaces by LB/LS bilayer deposition of PEGylated lipid conjugates.  Uniform surface 

coverage of the PEG coatings was confirmed with fluorescence imaging studies of membrane 

microstructure.   Fluorescence binding assays were utilized to simultaneously tests specific and 

nonspecific binding to bilayer treated sensors with labeled proteins.   Finally, WGM assays of 

nonspecific adsorption of serum proteins were used to evaluate various membrane and 

traditional methods for blocking nonspecific adsorption.  These results suggest there is an 

optimal packing density of PEG monomer for blocking nonspecific adsorption which can be 
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achieved with a DOPC/DSPE-PEG (95:5) bilayer deposited at 30 mM/m.  In conclusion, the 

LB/LS method provides considerable promise for creating optimized PEG coating for label-free 

sensor applications. 
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Chapter 7 – Future Directions 

 

7.1 – Introduction 

 As shown in chapters 3 and 4 and previous studies of single molecule orientations, acyl-

linked fluorescent lipid analogs have proven to be a useful tool for investigating molecular level 

structure in model membranes.   These studies have demonstrated that this technique can 

elucidate structural perturbations due to changes in surface pressure, the addition of additives 

such as cholesterol and ganglioside GM1, and ambient humidity levels[1-6]. The study in 

Chapter 4 presents evidence for the formation of nanometric domains resembling lipid rafts in 

binary DPPC/GM1 monolayers.  It would be advantageous to employ more complex and more 

accurate raft model systems.  Additionally, the study of these complex lipid raft model systems 

would be aided by utilizing a fluorescent lipid analog which can report structural perturbations 

from within condensed membrane regions.  In addition to studies of membrane structure, single 

molecule orientation studies of antibody measurements would be improved with further studies 

of the 4-4-20/Fluo-3 complex.  Once optimized, this antibody system would be able to be 

implemented to assess the relationship between antibody orientation and binding efficiency for 

various immobilization chemistries. 

 In addition to these single molecule structure studies, further advancements of lipid 

coatings for sensor surfaces could provide several advantages.  As established in chapters 5 

and 6, Langmuir-Blodgett/Langmuir-Schaffer (LB/LS) lipid membranes demonstrated the ability 

to incorporate recognition elements for the specific detection of analytes[7].  Furthermore, lipid 

bilayers containing polyethylene glycol (PEG) functionalized lipids have been shown to reduce 

nonspecific binding to sensor surfaces.  Therefore, combining these attributes provides 

tremendous promise for the development of a general blocking protocol which can 
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simultaneously reduce nonspecific binding and incorporate detection elements of the users’ 

choosing.  

 

7.2 – Lipid Raft Models and New Single Molecule Probes 

 The results from single molecule studies of DPPC/GM1 monolayers in Chapter 4 

suggest the formation of nanometric domains, which cannot be resolved by bulk fluorescence 

microscopy.  Ultimately, these findings suggest the need for further investigation of membrane 

systems which more accurately model lipid rafts.  Traditionally, models of lipid rafts employ lipid 

mixtures containing cholesterol and sphingolipids, as these lipid components are enriched in 

detergent resistant membrane fractions[8, 9].  Therefore, single molecule orientation studies of 

lipid structure should be implemented with model membrane systems which contain biologically 

relevant concentrations of major membrane components, such as DPPC, DOPC, cholesterol, 

and sphingomyelin.   While further single molecule orientation studies of more complicated lipid 

mixtures should provide greater understanding of membrane molecular level structure, it is 

important to gradually build up the complexity of these model systems in order to understand 

the structural influence of each membrane component.  Therefore, our previous single molecule 

studies of cholesterol and GM1 influence on DPPC membrane structure provides a foundation 

for studying these more complicated lipid raft models[1, 5].  In addition to investigating more 

complex models of lipid rafts, it would be informative to utilize lipid raft models which include raft 

proteins, such as T-cell antigen receptors or glycosylphosphatidylinositol (GPI) anchored 

proteins.  These models would provide insight as to whether the protein components of lipid 

rafts affect lipid structure throughout the membrane.   
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While more accurate lipid raft models will be an important part of understanding raft 

formation and structure, it is also important to consider the lipid probe employed to study these 

systems.  As discussed in previous chapters, acyl-linked fluorescent lipid analogs have proven 

to be a useful tool for investigations of lipid structure within model membranes[1-6].  Similar to 

the majority of fluorescent lipid analogs, these probes preferentially partition with expanded, or 

more fluid, membrane phases.  However, with the considerable interest in probing lipid raft 

structure, it would be advantageous to employ a single molecule probe which partitions within 

these condensed membrane regions.  A probe partitioning with these condensed regions would 

offer greater sensitivity to raft formation as well as report structural perturbations from within 

lipid rafts.  While, most fluorescent lipid analogs partition with expanded lipid phases, there are 

reports of a cholesterol analog with an attached BODIPY fluorophore that exhibits condensed 

phase partitioning[10].  The structure of the cholesterol-BODIPY probe is shown in Fig. 7.1.  

Condensed phase partitioning of this cholesterol-BODIPY probe is demonstrated by comparison 

to a well-known expanded phase lipid probe, Texas Red - dihexadecanoyl-

phosphoethanolamine (TR-DHPE), shown in Fig 7.2.  Therefore, a condensed phase probe for 

future single molecule orientation studies may be able to provide insight for a greater 

understanding of how individual raft components affect lipid raft formation and structure.   
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. 

Figure 7.1 – Chemical structure of a fluorescent cholesterol analog, cholesterol-BODIPY.  This particular 

fluorescent lipid analog exhibits preferential partitioning for condensed lipid phases[11].  

 

 

 

Figure 7.2 – Fluorescence images of LB monolayers of DPPC / DOPC / cholesterol (1:1:0.1 mol%) 

containing a particular fluorescent lipid analog.  The film on the left contains Texas Red – DHPE which 

marks the expanded (more fluid) phases within the monolayer.  On the right, the film contains a BODIPY-

linked cholesterol analog, shown in Fig 7.1, which partitions into condensed phases within the 

membrane. [Image captured by Brittany DeWitt, unpublished data] 
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7.3 – Antibody Orientations and Immobilization Strategies 

 As addressed in Chapter 6, there are several improvements and control studies needed 

in order to reliably correlate single molecule fluorescence emission patterns to overall antibody 

or Fab fragment orientation.  The most relevant study needed is a crystal structure 

determination of the 4-4-20/Fluo-3 complex in order to allow for direct measurements of 

antibody orientations.  With this information further single molecule orientation studies of 

immobilization protocols will be able to elucidate the link between antibody orientation and 

binding efficiency.  Utilizing this system, traditional and new antibody immobilization protocols 

can be evaluated.   

A recently developed immobilization which shows promise utilizes a conserved 

nucleotide binding site (NBS) in the Fab region on all antibody isotypes.  This site, shown in Fig. 

7.3, exhibits a low μM affinity for indole-3-butyric acid, which can be covalently cross-linked to 

the NBS through exposure to UV light[12].  Previous studies utilizing this immobilization 

procedure have demonstrated higher antibody activity and improved antigen detection 

efficiency[12].  Further studies of immobilization strategies utilizing this binding site may provide 

a general protocol for improved immunoassay performance. 

There has been some past interest to employ Langmuir deposition techniques to control 

antibody orientations on substrates[13, 14]. However, a routine protocol promoting 

advantageous antibody orientations is currently unavailable.  Using the NBS may provide a site 

of attachment for antibodies and lipid analogs.  Covalently linking an antibody to a lipid analog 

would then provide a test system for orienting antibodies on sensor surfaces utilizing the control 

of surface density afforded by Langmuir deposition techniques.  Therefore, we feel the 

development of lipid analog functionalized with indole-3-butyric acid would offer an exciting new 

tool for creating oriented antibody surfaces. 
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Figure 7.3 – The structure of the nucleotide binding site (NBS) within the Fab region of all antibody 

isotypes is shown above in A.  This site has a low μM affinity for indole-3-butyric acid.  By functionalizing 

a substrate with indole-3-butyric acid through a PEG linker, as shown in B, antibodies can be bound the 

substrate.  These antibodies can then be covalently linked to substrate through this site by exposure to 

UV light.  Figure used with permission from Ref #[12]. 

 

7.4 – Developing a General Protocol for Label-Free Sensor Coatings 

 The lipid coated sensor studies discussed in Chapters 5 and 6 have proved that LB/LS 

bilayer coatings are useful for both the specific detection of analytes and reducing nonspecific 

adsorption of serum proteins with PEGylated lipids.  The natural extension from these studies is 

the development of a general protocol for sensor functionalization that incorporates both 

attributes afforded by bilayer coatings.    

A general protocol can be accomplished with biotin terminated PEGylated lipids and 

streptavidin linked antibodies.  As illustrated by the studies in Chapter 6, DOPC/DSPE-PEG 

bilayers deposited at 30 mN/m demonstrated a significant reduction in nonspecific adsorption of 
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serum proteins.  Additionally, the fluorescence binding study within Chapter 6 demonstrated that 

specific binding to LB/LS PEGylated surfaces can be maintained.  A scheme for specific 

detection of various analytes is illustrated in Fig. 7.4.  In this scheme, biotin terminated 

PEGylated lipids are employed to both reduce nonspecific adsorption and provide a site for 

specific attachment of streptavidin.  For detecting a specific analyte of interest, streptavidin 

linked antibodies are bound to the surface through biotin/streptavidin linkage.  Commercially 

available labeling kits for streptavidin linkage allow any monoclonal antibody to be modified to 

specifically attach to the biotin terminated PEG surfaces[15].  With this scheme, the analyte of 

interest can be selectively detected by employing a monoclonal antibody with specificity for the 

analyte of interest.   

The PEGylated lipid approach of generating active sensor surfaces discussed above 

provides other potential benefits as well.  The approach outlined in Fig. 7.4, would allow label-

free biosensors to not only measure analyte binding but also quantify antibody loading on 

sensor surfaces.  This would provide an in situ tool for measuring the binding capacity of the 

attached antibodies.  A further advantage potentially provided by this approach is reduced 

antibody denaturation upon immobilization.  As discussed in Chapter 6, the two main reasons 

for loss of antibody activity upon immobilization are improper antibody orientation and 

denaturation[16-19].  Considering the main positive attribute provided by the PEGylated lipid 

approach is a reduction in nonspecific adsorption of proteins to the sensor surface, nonspecific 

adsorption resulting in antibody denaturation should also be reduced by this approach.  

Precedence for this approach has been previously reported through the use of a polymer 

coating to improve antibody activity[20].  Furthermore, this study demonstrated the use of 

Protein A on top to these polymer surface to properly orient antibodies toward the sample matrix 

and further increase antibody activity.   Therefore, we feel the use of PEGylated lipid surfaces 

provides tremendous promise as coatings for future label-free biosensing applications. 
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Figure 7.3 – A general detection platform for reducing nonspecific adsorption and specific analyte 
detection for label-free biosensors.  Monoclonal antibodies (mAbs) are covalently bound to streptavidin 
(SA), then incubated with the sensor surface which is coated in a biotin terminated PEG bilayer.  
Antibody/streptavidin complexes bound to the surface through biotin affinity are then used to specifically 
bind the analyte of interest. 
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