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Abstract  

Spatial regulation of cell division in bacteria occurs at the stage of Z ring formation, a 

cytoskeletal element that bacterial cells employ for assembly of the cell division machinery. In the model 

organism Escherichia coli, spatial regulation of Z ring formation is dependent on two partially redundant 

negative regulatory systems, the Min system, which prevents Z ring formation near the cell poles, and 

Nucleoid Occlusion (NO), which prevents Z ring formation over the nucleoid. The effector of the Min 

system, MinC, prevents assembly of the Z ring in its vicinity by antagonizing FtsZ polymerization and 

membrane attachment, the two essential activities required for FtsZ to assemble into the Z ring. Previous 

studies have shown that the effector of the NO system, SlmA, is a DNA associated FtsZ inhibitor that is 

activated by binding to a SlmA binding sequence (SBS). The SlmA binding site on FtsZ has not been 

identified and how SBS bound SlmA prevents FtsZ assembly into the Z ring in its vicinity is 

controversial. In this study, we show that SBS bound SlmA acts in a similar manner to MinC, 

antagonizing FtsZ polymerization and membrane attachment. 

In the first part of this thesis, two FtsZ mutants were isolated that are resistant to de-localized 

SBS bound SlmA, which has been shown to block Z ring formation throughout the cell and cause cell 

death. By characterizing these two FtsZ mutants, we found that SBS activated SlmA antagonizes FtsZ 

polymerization and the efficacy of SlmA to antagonize FtsZ polymerization depends upon the length of 

the DNA molecule containing the SBS.  The longer the bound SBS DNA molecule (14-30 bp), the more 

efficiently SlmA disassembles FtsZ polymers; SlmA bound to the shorter SBS DNA molecule is missing 

several DNA contacts likely explaining the weaker impact on FtsZ polymerization. Even though the 

isolated ftsZ mutations conferred resistance to the action of SlmA in vivo and in vitro, they did not disrupt 

FtsZ-SlmA binding. One of the ftsZ mutations increased the bundling of FtsZ polymers in vitro, 

indicating that it provides resistance to SlmA by increasing FtsZ lateral interactions.  The other ftsZ 

mutation alters a residue in the H7 helix of FtsZ.  This helix mediates the conformational change between 
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the two sub-domains of FtsZ during assembly suggesting that SBS bound SlmA antagonizes FtsZ 

polymerization by reversing this conformational change and that the mutation is resistant to this affect.   

In the second part of the project, we found that SlmA binds to FtsZ largely through the conserved 

C-terminal tail of FtsZ, a region critical for FtsZ-ZipA and FtsZ-FtsA interactions and therefore 

attachment of FtsZ filaments to the membrane. More importantly, we found that SlmA requires the 

presence of the conserved C-terminal tail of FtsZ to disassemble FtsZ polymers. As the conserved C-

terminal tail of FtsZ is not required for FtsZ polymerization, this unexpected finding suggests that SlmA 

binding to the FtsZ tail allows it to bind to a secondary site in the globular domain of FtsZ to antagonize 

FtsZ polymerization. This two binding site model is consistent with the observation that SlmA forms a 

sandwich like complex with FtsZ truncations lacking the conserved C-terminal tail and our finding that 

ftsZ mutations in the globular domain of FtsZ confer resistance to the action of SlmA. Collectively, our 

results suggest that SlmA antagonizes Z ring formation in its vicinity in at least two ways: first, SBS 

bound SlmA competes with ZipA and FtsA for the conserved C-terminal tail of FtsZ preventing 

membrane attachment of FtsZ filaments; and, second, the binding to the conserved C-terminal tail of FtsZ 

brings the SBS-SlmA complexes close to FtsZ filaments such that SlmA can actively disassemble FtsZ 

polymers by reversing the conformational change occurring upon FtsZ assembly.  

ZipA and FtsA promote Z ring assembly by tethering FtsZ filaments to the membrane through the 

conserved FtsZ tail. In contrast, MinC and SlmA promote Z ring disassembly by binding the tail because 

they also have an antagonistic effect on FtsZ polymers.  Competition for the FtsZ tail between Z ring 

promoting factors and Z ring disassembling factors may be an important way to regulate Z ring formation. 

The remarkable similarity between MinC and SlmA also indicates that antagonizing FtsZ polymerization 

and FtsZ filaments membrane attachment simultaneously may be a universal mechanism for FtsZ spatial 

regulators to antagonize Z ring formation in their vicinity.   
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Chapter I: Introduction 

Bacterial cell division 

One of the three statements of the cell theory developed by Theodor Schwann, Matthias Jakob 

Schleiden and Rudolf Virchow in 1893 is that “New cells are created by old cells dividing into two”. This 

holds true for all living cells from the three domains of life, Archaea, Bacteria and Eukarya, even though 

cells do not always divide in the same way. Eukaryotic cells divide by processes known as “mitosis” or 

“meiosis”, while archaeal and bacterial cells usually divide through a process called “binary fission”, in 

which a septum is placed at a position called the division site in a cell to separate it into two daughter 

cells (Fig. 1). Central to this process is that each daughter cell receives an intact copy of the genome and 

other necessary components required for viability and functionality. Thus, this simple process has to be 

well coordinated with cell growth, chromosome duplication and segregation to avoid aberrant division. 

Furthermore, to separate the two daughter cells safely, a concerted action from the cytoplasm, 

cytoplasmic membrane to the peptidoglycan layer (as well as the outer membrane in the case of Gram-

negative bacteria) is required.  

Studies of bacterial cell division date back to the 1960s when a collection of Escherichia coli 

mutants were found to be specifically affected in the process of septation. These mutants are 

thermosensitive and form septum-less long filaments with normally distributed nucleoids when shifted to 

the non-permissive temperature (Hirota et al., 1968; Van De Putte et al., 1964). Characterization of these 

mutants and similar mutants isolated later led to the identification of a number of genes (designated fts, 

filamentation temperature sensitive) that are essential for bacterial cell division. However, due to their 

small size and lack of suitable genetic and imaging tools, it was not clear what roles these genes play in 

the process of division. For the same reason, division machinery analogous to the contractile ring used by 

eukaryotic cells was not observed during division in bacteria. Therefore, the cell division process was 

almost a black box until the 1980s when several important discoveries were made: 1) the ftsZ gene was  
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Fig. 1. Cell cycle and cell division in bacteria. A new born cell starts a new round of the cell division 

cycle by increasing its size and replicating and segregating the chromosome. Once chromosome 

segregation has reached about two third of the chromosome, the cells initiate division by forming the Z 

ring underneath the cytoplasmic membrane. The Z ring functions as a scaffold for the assembly of the 

complete cell division machinery (the divisome), which consists of many proteins involved in cell wall 

remodeling and membrane invagination. Once assembly of the divisome is completed, constriction starts 

generating two daughter cells, each with a copy of the chromosome. 
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identified and shown to be required for the earliest known step of septation (Begg and Donachie, 1985; 

Lutkenhaus et al., 1980; Taschner et al., 1988); 2) the level of FtsZ dictates the division frequency (Bi and 

Lutkenhaus, 1990b; Ward and Lutkenhaus, 1985); and 3) FtsZ is likely to be the target of two division 

inhibitors (Bi and Lutkenhaus, 1990a, c; de Boer et al., 1990; Lutkenhaus et al., 1986; Lutkenhaus, 1983; 

Maguin et al., 1986), SulA, which is induced in response to DNA damage (Huisman and D'Ari, 1981), 

and MinCD, which prevents cell division at the cell poles (de Boer et al., 1989). Employment of immuno-

electron microscopy to study FtsZ localization led to the hallmark discovery that FtsZ self-assembles into 

a ring like structure, the Z ring, at the division site in E. coli (Bi and Lutkenhaus, 1991). Later analysis of 

FtsZ localization in other microorganisms, such as Bacillus subtilis and Caulobacter cresentus revealed 

the presence of the Z ring (Quardokus et al., 1996; Wang and Lutkenhaus, 1993), suggesting that it may 

be in all bacterial species. Studies of division inhibitors SulA, MinCD as well as others also revealed that 

most division regulatory pathways target FtsZ and regulate cell division at the stage of Z ring formation 

(Bernhardt and de Boer, 2005; Bi and Lutkenhaus, 1993; Thanbichler and Shapiro, 2006). The discovery 

of the Z ring also made it possible to define whether a protein is a component of the division machinery or 

a regulator of division. This discovery also led to the realization that bacteria, like larger eukaryotic cells, 

have dynamic internal structures to organize cellular events in time and space. 

Studies of bacterial division have been primarily carried out in Escherichia coli, Bacillus subtilis 

and Caulobacter cresentus, but recently have been extended to many other bacteria. The picture emerging 

from these investigations is that the division process is highly organized and can be artificially divided 

into at least three steps (de Boer, 2010; Lutkenhaus et al., 2012)(Fig. 2). First, formation of the Z ring 

occurs underneath the cytoplasmic membrane through the aid of membrane-associated proteins. Second, 

the remaining cell division proteins are recruited to the Z ring to form the complete cell division 

machinery or divisome. Third, the divisome is activated to form the septum to separate the two daughter 

cells. A comparison of these bacteria has revealed the basic components of the division machinery that 
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are essential for viability and conserved in bacteria. However, except for these core components, the other 

parts of the divisome vary among bacteria, although in most cases they are functionally analogous. 

 In E. coli, more than two dozen proteins have been identified to be components of the divisome 

and the list is still growing. Dependency studies indicate that these division proteins localize to the Z ring 

in a linear hierarchy, but several of these proteins have been shown to exist in complexes even when they 

are not associated with the Z ring (Goehring et al., 2005; Lutkenhaus et al., 2012). Even though we do not 

understand the exact function of most of these proteins, they could participate in any one of the three 

steps mentioned above. Formation of the Z ring requires the presence of either one of the two membrane 

tethering proteins, ZipA and FtsA (Pichoff and Lutkenhaus, 2002). Both of them bind to the conserved C-

terminal tail of FtsZ and thus bring the FtsZ polymers to the membrane (Din et al., 1998; Haney et al., 

2001; Liu et al., 1999; Ma and Margolin, 1999; Mosyak et al., 2000; Szwedziak et al., 2012; Wang et al., 

1997). Either one of them is sufficient for Z ring formation, but Z rings formed with only ZipA or FtsA 

are not capable of recruiting downstream cell division proteins (Hale and de Boer, 2002; Pichoff and 

Lutkenhaus, 2002), suggesting that they are also important for the second step.  

During the first step, a number of FtsZ associated proteins (Zaps), including ZapA, ZapC and 

ZapD, are also recruited to the Z ring (Durand-Heredia et al., 2012; Durand-Heredia et al., 2011; Gueiros-

Filho and Losick, 2002; Hale et al., 2011). These proteins are not essential for Z ring formation or later 

steps, but deletion of any one of them can lead to formation of “looser” Z rings and a delay in cell 

division. Deletion of two or all of the Zaps results in more dramatic delay in cell division, suggesting they 

work synergistically to promote the integrity of the Z ring. In vitro studies showed that all these Zap 

proteins can bundle or crosslink FtsZ proto-filaments, consistent with the “looser” Z ring phenotype 

observed in the deletion mutants. The bacterial actin homolog MreB, which is important for bacterial cell 

elongation and cell shape maintenance, is also recruited to the Z ring through a direct interaction with 

FtsZ (Fenton and Gerdes, 2013), but its role in division is not clear. It is proposed that the MreB-FtsZ  
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Fig. 2. Assembly of the Z ring and maturation of the divisome in E. coli. FtsZ first polymerizes into 

filaments (FtsZ [n]) which are tethered to the membrane by ZipA and FtsA, which leads to the formation 

of the Z ring.  Although not absolutely required, several FtsZ interacting proteins named ZapA, ZapC and 

ZapD are recruited to the Z ring to promote the integrity of the Z ring (ZapB localizes to the Z ring 

through interaction with ZapA). The bacterial actin homolog, MreB, which organizes lateral cell wall 

biosynthesis, is also recruited to the Z ring by direct interaction with FtsZ. After an apparent lag, the other 

Fts proteins, including FtsEX, FtsK, FtsQLB, FtsW, FtsI and FtsN localize to the Z ring in a linear order. 

Arrival of FtsN triggers the start of constriction of the divisome, leading to synthesis of the septal 

peptidoglycan by PBP1b, its activator LpoB, and FtsI. Separation of the two daughter cells requires 

another set of proteins that split the septal cross wall and coordinate the invagination of the two 

membranes with cell wall synthesis. These include AmiB and AmiC, their activators EnvC and NlpD, 

respectively and the Tol-Pal complex.  
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interaction transfers the cell-wall biosynthetic enzymes from the lateral wall to the divisome (Fenton and 

Gerdes, 2013), allowing cells to synthesize the septum. Even though MreB localizes early, the septum is 

not synthesized until the completion of the divisome assembly, suggesting the existence of temporal 

regulation of the transfer. 

The second step occurs with an apparent lag after Z ring formation. The reason for this delay is 

not clear, but presumably allows more time for the cell to elongate/enlarge and segregate the chromosome 

before the last step. Also not clear is how the late cell division proteins are recruited to the Z ring, FtsA 

seems to play an important role as it interacts with many of the late division proteins and many ftsA 

alleles allow deletion of zipA (Busiek et al., 2012; Corbin et al., 2004; Geissler et al., 2003; Karimova et 

al., 2005; Pichoff et al., 2012), which is normally essential for recruitment of these proteins. Proteins 

recruited to the Z ring in this step include FtsEX, FtsK, FtsQLB, FtsW, FtsI and FtsN (Addinall et al., 

1997; Buddelmeijer et al., 1998; Buddelmeijer and Beckwith, 2004; Schmidt et al., 2004; Wang et al., 

1998; Wang and Lutkenhaus, 1998).  

FtsE and FtsX constitute an ATP-binding cassette transporter: FtsX encodes the membrane 

component and FtsE encodes the ATPase(Schmidt et al., 2004). In medium of low osmotic strength, such 

as LB without NaCl, cells lacking FtsEX form smooth filaments with normally distributed Z rings which 

lack FtsK and other late cell division proteins(Schmidt et al., 2004). However, this division defect can be 

easily rescued by growing the cells at high osmotic conditions or overproduction of other division 

proteins (FtsZ, FtsN, or FtsP) (Reddy, 2007) such that the function of FtsEX in division has been obscure 

for a long time. Recently, it was shown that FtsEX recruits EnvC, an activator of a septal peptidoglycan 

amidase (AmiB), to the Z ring and regulates the amidase activation via EnvC and requiring ATP 

hydrolysis by FtsE (Yang et al., 2011). Thus, FtsEX couples amidase activity in the periplasm with the 

contraction of the Z ring in the cytoplasm.  
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FtsK is DNA translocase with a membrane domain containing four transmembrane spanning 

segments fused to the DNA translocase domain by a long linker (Begg et al., 1995). When located at the 

septum, this protein is able to translocate DNA away from the septum due to specific DNA sequence 

(KOPS) distributed throughout the chromosome, which give directionality to the movement of the DNA 

(Bigot et al., 2005). However, this DNA translocase activity is not necessary for division as the four 

transmembrane segments are able to complement the division defect of ftsK knock out cells (Wang and 

Lutkenhaus, 1998). An apparent function of FtsK is the recruitment of downstream division proteins, but 

it can also be bypassed under certain conditions (Chen and Beckwith, 2001; Geissler and Margolin, 

2005), raising a question about its exact function in division.  

FtsQ, FtsL and FtsB are membrane proteins with a single transmembrane segment and a large 

periplasmic domain (Goehring et al., 2005). They localize to the Z ring simultaneously and form a 

complex even when they are not at the Z ring (Goehring et al., 2005). None of the three has known 

enzymactic activity, but they are believed to function as a link between the Z ring and the peptidoglycan 

biosynthetic machinery.  

FtsW is an essential division protein with 10 predicted transmembrane segments and belongs to 

the SEADS (shape, elongation, division and sporulation) family. Recently, FtsW has been shown to be a 

transporter of the lipid-linked peptidoglycan precursors (Lipid II flippase) (Mohammadi et al., 2011). As 

FtsW localizes to the division site, it may be dedicated for Lipid II flipping during septation, while its 

orthologue RodA may be dedicated for Lipid II transport across the membrane during cell elongation 

(Mohammadi et al., 2011).  

FtsI (PBP3) is a peptidoglycan transpeptidase dedicated for septation and it is believed that its 

activity is stimulated by presence of FtsN (Gerding et al., 2009; Goehring et al., 2005), the last essential 

division protein to arrive at the ring and a trigger for septation. FtsN is a bitopic protein with a short 

cytoplasmic region connected to a larger periplasmic region by a single transmembrane domain (Dai et 



10 
 

al., 1993). The most conserved region of FtsN lies at the C-terminus (SPOR domain) and binds a form of 

peptidoglycan which is only present at the septum (Gerding et al., 2009). However, this domain is not 

essential, and a short fragment in the periplasm contains the essential function in division. Even though 

not essential, the cytoplasmic domain and transmembrane segment of FtsN increase the efficiency of the 

essential domain to complement (Gerding et al., 2009), presumably due to the interaction of the 

cytoplasmic domain with FtsA. FtsN is also required for the recruitment of a number of downstream 

proteins involved in cell wall biosynthesis whose functions are partially redundant (Lutkenhaus et al., 

2012). It is unlikely that this recruitment is dependent on direct interaction with FtsN, but may rely on a 

specific form of peptidoglycan synthesized after FtsN triggers septation.  

Upon arrival of FtsN, the third step is triggered leading to the synthesis of the septum and 

splitting of the two daughter cells. This step is under complex topological control so that cell wall 

degrading enzymes work in concert with cell wall synthesizing enzymes. FtsN signals the completion of 

divisiome assembly and activates FtsI. Along with PBP1b, FtsI starts to synthesize septal specific 

peptidoglycan which in turn leads to recruitment of additional proteins that metabolize the peptidoglycan 

and invaginate the outer membrane (Lutkenhaus et al., 2012). In E. coli, three additional proteins localize 

to the septum by a conserved SPOR domain which recognizes septal specific peptidoglycan (Gerding et 

al., 2009). The localization of the SPOR domain containing proteins at the septum depends on the 

essential domain of FtsN as well as peptidoglycan amidase activity, suggesting that this septal specific 

peptidoglycan consists of glycan strands that have been metabolized by the amidases (Gerding et al., 

2009).  

Amidases are peptidoglycan hydrolyases that remove the stem peptide from the glycan strand and 

thus break cross-links in the peptideglycan network.  E. coli contains three amidases, AmiA, AmiB and 

AmiC, all of which contain a LytC type amidase domains and are important for cell separation (Uehara 

and Bernhardt, 2011). The working mechanism of these amidases has been revealed recently by elegant 
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genetic and biochemical studies. In the absence of an activator, the active site of these cell separation 

amidases is occluded by a conserved alpha helix thus suppressing their activity by an autoinhibition 

mechanism (Yang et al., 2012). Binding of a cognate activator removes the inhibitory alpha helix from 

the active site such that the active site is exposed and allowed to bind to peptidoglycan (Yang et al., 

2012).  The activity of these amidases overlap and the presence of any one of them ensures survival, 

however, they normally execute their functions in different locations. AmiB and AmiC primarily localize 

to the septum while AmiA localizes throughout the cell (Peters et al., 2011). To separate the two daughter 

cells at the right time, the activation of these amidases is coupled with the assembly of the cytokinetic 

ring. As mentioned above, the FtsEX ABC transporter and EnvC localize to the Z ring early, but they 

only switch on AmiB after FtsN has triggered septation (Yang et al., 2011). AmiC and its cognate 

activator NlpD both require FtsN for septa localization (Uehara and Bernhardt, 2011). Even though AmiA 

does not localize to the septum, it can also be stimulated to split septal peptidoglycan by the localized 

EnvC in the absence of AmiB and AmiC. Separation of the two daughter cells also requires a concerted 

invagination of the outer membrane during septal peptidoglycan synthesis. The trans-envelope Tol-Pal 

complex has been shown to localize to the septum and is believed to play an important role in the timely 

and efficient constriction of the outer membrane (Gerding et al., 2007). Lastly, the invaginated membrane 

has to be fused at the end of constriction. So far, no protein has been shown to execute such a function, 

but the transmembrane segments of FtsK are believed to play a role (Fleming et al., 2010). It is very likely 

the transmembrane segments of the other division proteins also participate in membrane fusion.  

In E. coli and B. subtilis, new Z rings start to assemble at the quarter positions to initiate another 

division cycle before the completion of the ongoing constrictions under some conditions. However, in C. 

cresentus FtsZ, and probably also other components of the divisome, are retained at the new pole until the 

arrivial of the spatial regulator MipZ (Quardokus et al., 1996; Thanbichler and Shapiro, 2006), which 

dislodges it and drives it to midcell. In other slow growing bacteria like Agrobacterium the components of 

the divisome are retained at the new pole to direct the growth of the cell until signals arise to initiate 



12 
 

another division cycle (Zupan et al., 2013). Despite these differences, once the Z ring assembles, the 

following steps are pretty much the same as in E. coli, and the principles underlying the maturation of the 

divisome and septation can be applied to any bacteria.  

FtsZ 

FtsZ is required for division in most bacteria, chloroplasts in plant cells and many archaea. It 

assembles into the Z ring under the membrane at the center of the cell (sometimes asymmetrically for 

certain bacteria) and then functions as a scaffold for the assembly of the divisome (Erickson et al., 2010). 

FtsZ is also believed to be the force generator during septation. Because of its importance in division, 

FtsZ has been studied extensively and many interesting properties of FtsZ have been revealed.   

One of the most astounding findings about FtsZ is that it is similar to eukaryotic tubulin in many 

ways despite limited sequence identity (Lowe and Amos, 1998; Nogales et al., 1998a; Nogales et al., 

1998b) (Fig. 3A). Overall the amino acid sequence identity between FtsZ and tubulin is less than 10%, 

but motifs required for GTP binding and hydrolysis are highly conserved (Erickson, 2007). Both of them 

contain the FtsZ/tubulin signature loop (GGGTG[S/T]G), which is required for GTP binding, and the 

synergy loop (NxDxx[D/E]), which is required for GTP hydrolysis. Furthermore, FtsZ and tubulin 

hydrolyze GTP using a similar mechanism. GTP is bound on one end of an FtsZ/tubulin (the + end) 

subunit with the aid of the FtsZ/tubulin signature loop. When FtsZ/tubulin assembles into filaments, the 

GTPase catalytic site is formed with the addition of the synergy loop from the incoming subunit (Michie 

and Lowe, 2006). Thus, the GTPase activity of FtsZ/tubulin is coupled to polymerization. In addition, the 

structures of the monomer and filament of FtsZ are similar to those of tubulin (Elsen et al., 2012; Li et al., 

2013; Lowe and Amos, 1998; Matsui et al., 2012; Nogales et al., 1998b) , suggesting that they are 

evolutionarily related. 

FtsZ from any bacterial species or from chloroplast and archaea has the same arrangement of 

domains: a conserved globular domain and a conserved C-terminal tail connected by a linker region 
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(Erickson et al., 2010) (Fig. 3B). The globular domain of FtsZ is responsible for FtsZ polymerization and 

is separated by the H7 helix into two subdomains, which can be expressed separately and fold 

independently (Oliva et al., 2004; Osawa and Erickson, 2005). The N terminal sub-domain contains the 

GTP binding site and the entire lower side of the interface of the longitudinal proto-filament bond. The C-

terminal sub-domain contains the synergy loop (T7 loop) and the upper side of the interface between 

subunits in the filaments. The two sub-domains undergo prominent rotation as FtsZ assembles into 

filaments. It is believed that the H7 helix transmits the conformational change from the N terminal to the 

C terminal sub-domain when assembly or disassembly occurs (Elsen et al., 2012).  

The linker shows no sequence conservation and is generally considered to be intrinsically 

disordered.  Two recent studies confirmed this and found that the linker of E. coli FtsZ and B. subtilis 

FtsZ could be replaced by other sequences of similar length as long as the inserted sequence is 

intrinsically disordered (Buske and Levin, 2013; Gardner et al., 2013). The length of the linker is 

normally about 50 amino acids for most bacterial FtsZs, but some have an extraordinary long linker, for 

example, the linker region of C. cresentus FtsZ is about 179 amino acids. In E. coli and B. subtilis, the 

linker has to be within a certain length to complement (Buske and Levin, 2013; Gardner et al., 2013), but 

the reason for this requirement is not clear. Evidence shows that the linker is not necessary for 

polymerization in vitro or Z ring formation in vivo. Thus, it has been proposed that the linker functions as 

a stiff entropic spring linking the proto-filaments to the membrane while simultaneously allowing FtsZ to 

interact with itself and modulatory proteins (Buske and Levin, 2013; Gardner et al., 2013).  

Similar to the linker, the conserved C-terminal tail of FtsZ is not necessary for polymerization in 

vitro (Wang et al., 1997), but it is absolutely required for Z ring formation in vivo because it is the 

primary binding site for the membrane anchors of FtsZ (ZipA and FtsA in E. coli, FtsA, SepF and EzrA 

in B. subtilis) (Krol et al., 2012; Mosyak et al., 2000; Singh et al., 2007, 2008; Szwedziak et al., 2012). 

Several other division proteins also bind to the tail of FtsZ, such as ZapD, MinC and ClpX  
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Fig. 3. A) The structure of FtsZ and the α/β tubulin heterodimer. The signature loop (GGGTG [S/T] G) 

and the synergy loop (NxDxx [D/E]) shared by FtsZ (PDB #2VAW) and α/β tubulin (PDB # 1 TUB) are 

colored in blue and magenta, respectively. The signature loop is required for GTP (colored cyan) binding 

and the synergy loop is required for GTP hydrolysis. B) Domain arrangement of FtsZ (PDB #2VAW) 

with linker region and the conserved C terminal tail. GDP is colored red, the N terminal and C terminal 

sub-domains of the globular domain of FtsZ are colored green and cyan respectively. The H7 helix 

connecting the two sub-domains is colored blue and the instrinsic disordered linker is colored magenta.  

The C terminal tail of FtsZ that binds to many FtsZ interacting proteins is an -helix at the end of the 

linker region.  
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(Camberg et al., 2009; Durand-Heredia et al., 2012; Shen and Lutkenhaus, 2009). The sequence of the 

FtsZ tail is highly conserved across bacterial species, consistent with its importance for Z ring formation 

and regulation.  

In the presence of GTP, FtsZ polymerizes into dynamic filaments that are structurally similar to 

the proto-filaments in a microtubule formed by eukaryotic tubulin (Lowe and Amos, 1999; Mukherjee 

and Lutkenhaus, 1998a). Depending on the buffer conditions, the FtsZ filaments readily associate into 

bigger structures such as bundles or sheets, but there is controversy about the nature of lateral bonds 

between the filaments. Under conditions that mimic the physiological situation, the filaments are single-

stranded with about 30 subunits on average (Chen and Erickson, 2009). Assembly results in GTP 

hydrolysis, converting FtsZ-GTP to FtsZ-GDP (Mukherjee and Lutkenhaus, 1998a; Yu and Margolin, 

1997). Therefore, FtsZ filaments assembled with GTP are actually an array of FtsZ-GDP and FtsZ-GTP 

molecules.  The half life time of subunit exchange in an FtsZ filament is about 10 s (Chen and Erickson, 

2009), but how disassembly of filaments occurs is not clear. FtsZ can also assemble into filaments with 

GDP, but it does it much more weakly than with GTP (Erickson et al., 1996; Mukherjee and Lutkenhaus, 

1994). Addition of GDP strongly destabilizes FtsZ polymers formed with GTP, suggesting that the role of 

GTP in FtsZ assembly is to provide a way for destabilizing the polymers following hydrolysis. Consistent 

with this idea, FtsZ filaments formed with a non-hydrolyzable GTP analog GMPCPP are stable (Lu et al., 

2000).  

An enduring enigma about FtsZ assembly is that it displays a critical concentration of 1 μM, 

remarkably similar to tubulin, even though it assembles into a single-stranded filament with features of 

cooperative assembly (Chen and Erickson, 2005; Mukherjee and Lutkenhaus, 1998a). Three different 

groups suggest that this cooperative behavior of FtsZ could be explained by having FtsZ exist in two 

different states, an assembly incompetent state and an assembly competent state (Dajkovic et al., 2008b; 

Huecas et al., 2008; Miraldi et al., 2008) (Fig. 4). Below the critical concentration, the amount of  
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Fig. 4. Straight and curved conformation of the FtsZ filament. Structure comparison of FtsZ in the 

assembly competent form (Staphylococcus aureus FtsZ-GDP-PC190723, PDB # 3VOB, colored green) 

and assembly incompetent form (Bacillus subtilis FtsZ-GDP, PDB # 2RHL, colored magenta) as well as 

the straight and curved FtsZ filament. PC190723 is colored gray, GDP is colored yellow in the assembly 

competent form but red in the assembly incompetent form. Note that the guanine in the GDP molecule is 

more twisted in the assembly incompetent form compared to that in the assembly competent form. The C-

terminal sub-domain of FtsZ is also pushed away from the H7 helix by the PC190723 molecule in the 

assembly competent form. The straight FtsZ filament is built with the FtsZ-GDP-PC190723 structure 

while the curved FtsZ filament comes from Mycobacterium tuberculosis FtsZ-GDP (PDB #4KWE). The 

H10 helix which forms the bottom interface in FtsZ filament is colored blue while the T7 loop is colored 

magenta. The T3 loop required to stabilize FtsZ straight filaments is colored brown and in the curved 

structure the T3 loop no longer contacts the T7 loop, generating the curvature.  
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assembly competent FtsZ molecules is too low to interact with each other to assemble; above the critical 

concentration, the level of assembly competent FtsZ interacts productively, producing filaments.  

Consistent with this model, the structure of FtsZ with GDP, representing the assembly incompetent form, 

shows dramatic conformational differences to that of FtsZ with GDP and an inhibitor (FtsZ-PC190723-

GDP), representing the assembly competent form (Elsen et al., 2012; Matsui et al., 2012). Prominently, in 

the FtsZ-PC190723-GDP complex, the entire C terminal sub-domain rotates away from the H7 helix, 

creating a groove for PC190723 to bind. At the same time, the entire H7 helix rotates down one helical 

turn relative to the N terminal sub-domain, allowing the T7 loop to make contacts with the GTP binding 

site of the adjacent subunit. This conformational change induced by PC190273 switches the assembly 

incompetent FtsZ to the assembly competent form (Elsen et al., 2012; Matsui et al., 2012).  

FtsZ filaments display different degrees of curvature depending on the nucleotide (Lu et al., 

2000). With GDP, the filaments are highly curved with a diameter about 24 nm. With GTP, the filaments 

are straight, but accumulating evidence suggests that the FtsZ-GTP filaments also have an intermediate 

curvature. This intermediate curvature is not dependent on GTP hydrolysis as FtsZ filaments formed with 

non-hydrolyzable GTP analog also exhibit such a curvature (Mingorance et al., 2005). However, the 

strong curvature associated with FtsZ-GDP filaments is believed to stem from GTP hydrolysis. 

Comparison of FtsZ structure in a straight filament with that of highly curved filaments supports such a 

model (Fig. 4). In the straight filament, the T3 loop is stabilized by the GTP ɣ-phosphate in a compact 

state and interacts extensively with the T7 loop of the top subunit, stabilizing the filaments in the straight 

conformation(Li et al., 2013). However, in the curved filaments the T3 loop adopts a relaxed 

conformation due to the absence of ɣ-phosphate and loses contacts with the T7 loop of the top subunit. 

This lost in contacts between subunits results in the weakening of longitudinal interactions between 

adjacent subunits, resulting in a hinge-opening motion that pivots around one side of the intersubunit 

interface (Li et al., 2013). This hydrolysis mediated straight-to-curved conformational change is believed 

to facilitate turnover as well as to generate mechanical force for cell division. In support of this 
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hypothesis, in vitro reconstitution of the division process in liposomes with a simplified division 

machinery containing only FtsZ and FtsA found that only GTP, and not GMPCPP (a nonhydrolyzable 

GTP analog) could promote successful division (Osawa and Erickson, 2013). 

Z ring 

Using immunoelectron microscopy to visualize FtsZ localization in E. coli cells, Bi and 

Lutkenhaus made the hallmark discovery that FtsZ localizes as a ring-like structure (the Z ring) associated 

with constriction sites (Bi and Lutkenhaus, 1991). Subsequent employment of immunofluorescence 

microscopy confirmed the Z ring and found that Z rings were present at the centers of almost all cells, not 

just the dividing ones (Addinall et al., 1996; Levin and Losick, 1996). This suggests that FtsZ assembles 

into the Z ring very early in the cell cycle and remains assembled for most of the cell cycle.  Nowadays, 

the most commonly used technique to visualize Z rings is green fluorescence protein (GFP) fusions (Ma 

et al., 1996). Even though GFP-FtsZ is not fully functional, if expressed at less than 25% of the 

chromosomal level, it works as a dilute label of WT FtsZ without causing any observable defects in 

division (Inoue et al., 2009). Not just FtsZ, but any component of the divisome can be tagged with GFP 

and localizes as a band at the midcell. Detailed examination of the localization of GFP-FtsZ in living cells 

revealed that FtsZ initially assembles as loosely organized helices at the midcell before eventually 

coalescing into a sharp ring (Inoue et al., 2009). This transition is largely dependent on FtsZ itself, but the 

Zap proteins are believed to facilitate this transition as deletion of any one of them results in the formation 

of “looser” Z rings (Buss et al., 2013; Durand-Heredia et al., 2011). As a Z ring constricts, it disassembles 

with FtsZ helices emanating from the constricting ring.  

GFP fusion labeling also makes it possible to quantify the amount of FtsZ in the Z ring versus 

that in the cytoplasmic pool. It is estimated that only 30 to 40% of the FtsZ molecules in the cell are in the 

Z ring (Anderson et al., 2004; Geissler et al., 2007). This suggests that the amount of FtsZ outside of the 

ring is much higher than the critical concentration of 1 μM, but FtsZ filaments outside of the Z ring are  
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Fig. 5. Formation of the Z ring occurs in two steps. First, FtsZ polymerizes into head to tail linear 

filaments, through its globular domain. Second, FtsZ filaments are tethered to the membrane by ZipA and 

FtsA, both of which bind to the conserved C-terminal tail of FtsZ. Note that the FtsZ tail adopts different 

conformations when bound to ZipA versus FtsA. Both ZipA and FtsA are tethered to the membrane by 

their own membrane binding domains connected to the main body of the protein by a flexible linker.  
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not readily observed, indicating that cytoplasmic FtsZ either exists as monomers or as short oligomers 

that turnover too fast to be seen. In agreement with this, studies of fluorescence recovery after 

photobleaching (FRAP) showed that the subunits in the Z rings are turning over rapidly with a half life 

time of 10 s (Erickson et al., 2010; Stricker et al., 2002). It is amazing that Z rings remain at the division 

site for at least 80% of the cell cycle but the FtsZ molecules in the ring have such a short half-life. 

 To form a Z ring, FtsZ has to polymerize into filaments and be attached to the membrane (Fig. 

5). It is very likely these activities occur simultaneously, but to simplify the assembly process, we 

artificially separate them into two steps. It is well accepted that Z rings consist of FtsZ filaments, but it is 

not clear how the FtsZ filaments are organized into a ring-like structure. Overexpression of FtsZ results in 

the formation of extra Z rings at other positions rather than a thickening of the existing midcell Z ring, 

suggesting that the Z ring has a defined structure (Bi and Lutkenhaus, 1990b; Quardokus et al., 2001; 

Weart and Levin, 2003; Yu and Margolin, 1999). However, efforts to visualize the Z ring by electron 

microscopy have been unsuccessful due to the dense cytoplasm of bacterial cells. Two different models 

have been proposed for the organization of FtsZ filaments in the Z ring (Erickson et al., 2010). In one 

model, Z rings are composed of short FtsZ filaments arranged in a discontinuous manner without strong 

lateral interactions. In the other model, short FtsZ filaments are annealed into a long continuous filament 

encircling the midcell two to three times with strong lateral interactions. Studies from super resolution 

microscopy favor the first model. In one study, the Z ring of E. coli appears to be composed of a loose 

bundle of FtsZ filaments running in both longitudinal and radial directions (Fu et al., 2010). In another 

study, FtsZ was found to be distributed heterogeneously with apparent gaps in the Z ring of both B. 

subtilis and S. aureus, suggesting a “bean on a string” like model (Strauss et al., 2012). However, in vitro 

reconstitution of Z rings using FtsZ containing a membrane targeting sequence on membrane tubules 

showed that the reconstituted Z rings appear as a ribbon of filaments packed side by side with virtually no 

space between the filaments (Milam et al., 2012), in support of the second model. It could be envisioned 
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that the debate about the structure of the Z ring is going to last until new evidence is provided for either 

model.  

Membrane attachment of FtsZ filaments relies on the interaction of the conserved C-terminal tail 

with membrane anchors (Fig 5). In E. coli, the presence of either one of the two membrane-associated 

proteins, ZipA and FtsA, is sufficient to form a Z ring at the membrane, but both proteins are required to 

recruit the late cell division proteins to form the complete divisome (Pichoff and Lutkenhaus, 2002). ZipA 

has a transmembrane segment attached by a long flexible linker to the FtsZ binding domain and FtsA 

binds to the membrane through a C terminal amphipathic helix that is connected to the main body of FtsA 

by a linker (Hale and de Boer, 1997; Pichoff and Lutkenhaus, 2005). Even though both proteins bind to 

the conserved C-terminal tail of FtsZ, genetic analysis of their interactions with FtsZ suggests that they 

interact with the tail differently (Haney et al., 2001). This was confirmed by the crystal structures of ZipA 

and FtsA in complex with the C terminal tail of FtsZ (Mosyak et al., 2000; Szwedziak et al., 2012). In the 

ZipA-Ztail complex, the tail occupies a hydrophobic cavity in ZipA and binds as an extended β-strand 

followed by an α helix, while in the FtsA-Ztail complex, the tail forms salt bridges with FtsA and appears 

as two short α helixes (Mosyak et al., 2000; Szwedziak et al., 2012). This difference suggests that tail of 

FtsZ cannot bind to ZipA and FtsA simultaneously. FtsA is a bacterial actin and forms actin-like proto-

filaments, thus it has been proposed that the Z ring may be tethered to the membrane by an FtsA-ring 

made of FtsA polymers (Szwedziak et al., 2012).  

The C-terminal tail of FtsZ is highly conserved even in bacteria without ZipA and FtsA, 

suggesting that functionally analogous membrane anchors must exist to perform the same task as ZipA 

and FtsA. Indeed, in B. subtilis, SepF which binds to membrane through an amphipathic helix, and EzrA, 

which has a topology similar to ZipA, bind to the tail of FtsZ (Krol et al., 2012; Singh et al., 2007, 2008). 

Deletion of FtsA or SepF impairs Z ring formation, but deletion of EzrA results in the formation of extra 

Z rings at the poles rather than a delay in Z ring formation, suggesting that it has additional roles at the Z 
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ring besides attaching FtsZ filaments to the membrane (Levin et al., 1999). The fact that different bacteria 

employ distinct membrane anchors for Z ring formation indicates that formation of a Z ring is largely a 

self-organization of membrane tethered FtsZ filaments. This concept is reinforced by the successful 

reconstitution of Z rings in vitro using FtsZ containing a membrane targeting sequence (MTS) and 

phospholipid tubules (Osawa et al., 2008). As FtsZ with a MTS is sufficient to form Z rings at the 

membrane, it is surprising that bacteria do not evolve an FtsZ with MTS but instead rely on membrane 

anchors that bind to its conserved tail.  One possible explanation is that having an additional protein 

provides an extra step for regulation, which appears to be a targeting step for FtsZ spatial regulators. But 

more importantly, this arrangement allows the cell to coordinate the invagination of the cytoplasm with its 

cell envelope. Invagination of the cell envelope requires a concerted action through the cytoplasmic 

membrane to the peptidoglycan layer, and the membrane anchors provide a platform for assembly of the 

complex to execute this function. Consistent with this, FtsA has been showed to interact with many of the 

membrane associated late cell division proteins involved in cell wall remodeling (Karimova et al., 2005).  

FtsZ binds to membrane anchors with very high affinity, but peptide representing the FtsZ tail 

displays very weak binding affinity for membrane anchors. For example, ZipA binds full length FtsZ with 

a Kd of about 200 nM, but its affinity for a 17 amino acid peptide with the sequence of the tail of FtsZ is 

about 20 μM (Haney et al., 2001; Mosyak et al., 2000). Similarly, full length FtsZ binds to EzrA with a 

Kd about 4.3 μM, but a 17 amino acid FtsZ tail peptide only binds EzrA weakly, with a Kd about 100 μM 

(Singh et al., 2007). One explanation for this 100-fold difference in affinity is that the tail adopts a 

slightly different conformation when attached with the rest of the protein, which binds ZipA/EzrA better. 

Another more likely possibility is that there is a secondary binding site in the main body of FtsZ, which 

can bind cooperatively to ZipA/EzrA when the tail is bound.   

 Cell division regulation in bacteria 
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A fundamental question in bacterial cell division is how division is coordinated with bacterial cell 

growth, DNA replication and chromosome segregation. Studies from E. coli, B. subtilis and C. cresentus 

suggest that cell division is coupled with growth rate and under strict spatial and temporal regulation. 

Studies in these bacteria also reveal that cell division regulators target FtsZ directly and control cell 

division at the stage of Z ring formation, the first step of cell division.  

Growth rate regulation of Z ring formation 

Bacteria have a remarkable ability to adjust their cell size with growth rate and nutrient 

availability. For example, fast growing cells of E. coli and B. subtilis are 25% to 30% longer/larger than 

their slow growing counterparts (Hill et al., 2012; Lu and Kleckner, 1994; Weart et al., 2007). This ability 

to adjust cell size with nutrient status stems from the ability to modulate maturation of the Z ring 

according to the nutrient status. Both E. coli and B. subtilis encode metabolic sensors (OpgH for E. coli 

and UgtP for B. subtilis) that can delay cell division under nutrient rich conditions (Hill et al., 2013; 

Weart et al., 2007) (Fig. 6). Both OpgH and UgtP are FtsZ inhibitors that sense UDP-glucose, the level of 

which indicates the nutrient availability of the cell. OpgH localizes to the Z ring in nutrient-rich 

conditions in a UDP-glucose independent manner, but only delays cell division in the presence of UDP-

glucose (Hill et al., 2013). Under nutrient-poor conditions, UDP-glucose is less abundant and OpgH is not 

localized to the Z ring such that Z ring matures earlier and cells are smaller. However, in a rich medium, 

OpgH is activated by UDP-glucose so that it can bind to FtsZ and delay the maturation of the Z ring (Hill 

et al., 2013).  Slightly different, UgtP localizes to the Z ring under nutrient rich conditions in a UDP-

glucose dependent manner (Weart et al., 2007). UgtP tends to oligomerize, but UDP-glucose reduces its 

potential to oligomerize and increases its affinity for FtsZ such that it can localize to the Z ring and delay 

cell division in rich medium (Chien et al., 2012).  

Although both OpgH and UgtP antagonize FtsZ polymerization, they act by different mechanism. 

OpgH increases the critical concentration of FtsZ for GTP hydrolysis, suggesting that it antagonizes FtsZ  
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Fig. 6. Growth rate regulation of Z ring formation in E. coli and B. subtilis. Under nutrient poor 

conditions, the level of UDP-glucose is low and OpgH (E. coli) and UgtP (B. subtilis) are inactive and 

FtsZ can assemble into the Z ring at the future division site at a smaller cell size. Under nutrient rich 

conditions, accumulation of UDP-glucose leads to the activation of OpgH and UgtP, which antagonize 

FtsZ polymerization by sequestering FtsZ molecules and severing the FtsZ polymers, respectively. As a 

result the cells have to grow to a larger size for enough FtsZ molecules to accumulate to overcome the 

inhibition by OpgH and UgtP. 
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assembly by sequestration (Hill et al., 2013). In contrast, UgtP is thought to antagonize FtsZ 

polymerization by inhibiting single-filament formation (Chien et al., 2012). The exact working 

mechanisms of OpgH and UgtP still require further study, but the usage of UDP-glucose as a proxy for 

nutrient status to activate division inhibitors in two distantly related bacteria suggest that linking central 

metabolism with maturation of the cytokinetic machinery by “moonlighting” enzymes may be a widely 

conserved mechanism to control cell size in bacteria.  

Spatial and temporal regulation of Z ring formation 

Spatial and temporal regulation of cell division has been extensively studied in three divergent 

rod-shape bacteria, E. coli, B subtilis and C. cresentus, all of which divide near the middle of the long axis 

of the cell (Lutkenhaus et al., 2012). Both E. coli and B. subtilis employ two partially redundant negative 

regulatory systems to ensure Z ring forms precisely at midcell: Min (Minicell) and NO (nucleoid 

occlusion)  (Lutkenhaus, 2007) (Fig. 7). Deletion of the Min system results in the formation of the Z ring 

at the cell poles and thus minicell formation (de Boer et al., 1989). In contrast, deletion of the NO system 

does not have any observable effect in exponential cells but leads to Z ring assembly over the nucleoids 

when the DNA replication initiator DnaA is depleted (Bernhardt and de Boer, 2005; Wu and Errington, 

2004). Deletion of both the Min and NO systems leads to assembly of aberrant FtsZ structures throughout 

the cell which cannot mature into functional Z rings. Thus, cells become filamentous and die in the 

absence of both the Min and NO systems (Bernhardt and de Boer, 2005; Wu and Errington, 2004).  

C. cresentus does not encode the effectors of the Min and NO systems found in E. coli and B. 

subtilis, but employs a protein called MipZ to ensure Z rings form at midcell (Thanbichler and Shapiro, 

2006) (Fig. 7). MipZ is an essential gene and depletion results in the formation of aberrant FtsZ structures 

throughout the cell and cell filamentation, a phenotype similar to the deletion of Min and NO in E. coli 

and B. subtilis (Thanbichler and Shapiro, 2006).  



30 
 

A theme emerging from studies of these FtsZ spatial regulators is that spatial regulation of Z ring 

formation is negatively controlled and Z rings assemble in the area of least FtsZ inhibition (Lutkenhaus, 

2007). Recent studies, however, of the bacteria Streptomyces coelicolor and Myxococcus xanthus, which 

lack the known negative regulatory systems found in E. coli, B subtilis and C. cresentus, indicate that Z 

ring formation in these bacteria is positively regulated (Treuner-Lange et al., 2013; Willemse et al., 2011).  

While the mechanism of the effectors of positive regulatory systems is largely unknown, the mechanisms 

of the negative regulators have been studied in vivo and in vitro. These negative regulators form gradients 

that originate from the cell pole or regions occupied by the origin region of the chromosome that extend 

toward midcell where their concentration is lowest (Lutkenhaus, 2007). Two of the three known spatial 

regulators have been characterized in vitro, MinC and MipZ, act in a similar manner to prevent Z ring 

formation by antagonizing FtsZ polymerization (Hu et al., 1999; Thanbichler and Shapiro, 2006). MinC 

also binds to the conserved C-terminal tail of FtsZ, competing with its binding to membrane anchors that 

promote Z ring formation (Shen and Lutkenhaus, 2009). Since formation of Z rings requires FtsZ 

polymerization and membrane attachment, the MinC mechanism suggests that targeting negative 

regulators to the conserved C-terminal tail of FtsZ might be the most efficient way to prevent Z ring 

formation.  

Min system 

The Min system prevents Z ring formation near the cell poles through the spatial regulation of the 

FtsZ assembly antagonist MinC (Lutkenhaus, 2007). MinC contains two domains, an N terminal domain 

and a C terminal domain, both of which can bind to FtsZ (Hu and Lutkenhaus, 2000; Shiomi and 

Margolin, 2007). MinD, a membrane associated ATPase, binds to the C terminal domain of MinC, 

recruiting MinC to the membrane and enhancing MinC’s activity to bind to the conserved C terminal tail 

of FtsZ (de Boer et al., 1991; Johnson et al., 2002; Shen and Lutkenhaus, 2009). This binding to the tail of 

FtsZ, on the one hand reduces the tail binding to membrane anchors (in E. coli, FtsA and ZipA), and on  
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Fig. 7. Spatial regulation of Z ring formation. In E. coli and B. subtilis, Z ring formation is limited to 

midcell by the Min system and Nucleoid occlusion (NO). NO is mediated by SlmA in E. coli and by Noc 

in B. subtilis. Both SlmA and Noc bind to their specific DNA sequences (SBSs/NBSs, SlmA binding 

sequences/Noc binding sequences) that are mainly distributed in the origin 2/3 of the chromosome. In 

newborn cells the organization of the chromosome causes SlmA or Noc to be relatively homogeneous on 

the nucleoid which blocks Z ring formation over the nucleoid. As chromosome segregation moves the 

origin of replication toward the poles, SlmA or Noc forms a gradient on the nucleoid that originates from 

the origin of replication and extends toward midcell such where the SlmA/Noc concentration is lowest. 

The Min system prevents Z ring formation near the cell poles. MinC and MinD form a complex at the 

membrane that antagonizes FtsZ polymerization and membrane attachment by Z ring promotoing 

proteins. In E. coli MinCD is spatially regulated by MinE, which in complex with MinD continuously 

oscillates from one pole to the other such that the average concentration of MinCD is lowest at midcell 

and highest at the cell poles. In B. subtilis, MinCD is retained at the cell poles by binding to MinJ, which 

is anchored at the pole by the membrane curvature sensing protein DivIVA. In constricting cells, MinCD 

is recruited to the nascent septa by MinJ and DivIVA. In C. cresentus, Z ring positioning is regulated by 

MipZ, which forms a gradient on the nucleoid. The gradient orginates from its partner ParB which binds 

to specific DNA sequences near the origin of replication which is anchored to the stalked pole by PopZ. 

As chromosome segregation starts, one of the two origin-ParB complexes stays at the stalked pole while 

the other migrates to the opposite pole such that MipZ forms a bipolar gradient emanating from its partner 

ParB. FtsZ released from the opposite pole by the arriving MipZ migrates to midcell to assemble into the 

Z ring along with newly synthesized FtsZ.  
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the other hand positions the N terminal domain of MinC close to the FtsZ filaments so that it can break 

FtsZ filaments at the interface of two subunits following GTP hydrolysis (Shen and Lutkenhaus, 2010) 

(Fig. 8). Working together, the C-terminal and N-terminal domains of MinC compete with positive 

factors and prevent FtsZ polymerization, the two critical activities required for Z ring formation.  

The activity of MinCD is directed towards the poles of the cell. In E. coli, and most Gram-

negative bacteria, MinCD are topologically regulated by MinE, which undergoes a coupled oscillation 

along with MinCD between the poles of the cell (Fu et al., 2001; Hale et al., 2001; Hu and Lutkenhaus, 

1999; Raskin and de Boer, 1999b) (Fig. 7). The oscillation of MinC causes its time-averaged 

concentration to be highest at the cell poles and lowest at midcell, where the Z ring forms. Deletion of 

MinE disrupts the oscillation and leads to an even distribution of MinCD on the membrane, which blocks 

Z ring formation all over the cell (Bi and Lutkenhaus, 1993; de Boer et al., 1989; Hu and Lutkenhaus, 

1999; Pichoff and Lutkenhaus, 2001; Raskin and de Boer, 1999a). Deletion of MinC leads to formation of 

Z rings at the cell poles but does not affect the oscillation of MinDE, suggesting that MinC is just a 

passenger in this oscillation (Hu and Lutkenhaus, 1999; Raskin and de Boer, 1999a, b). Consistent with 

this, MinD and MinE are able to self-organize into waves on a lipid bilayer in vitro, with the MinE wave 

chasing the MinD wave (Loose et al., 2008). The details of MinDE driven oscillation has been studied 

and modeled extensively. MinE is a dimer and an activator of the membrane bound MinD ATPase (Hu 

and Lutkenhaus, 2001). When MinE encounters MinD, MinE undergoes a conformational change so that 

it can bind to MinD and the membrane at the same time (Park et al., 2011). This active form of MinE 

stimulates the ATPase activity of MinD, causing release of MinD, and thus MinC from the membrane. 

Since MinE is transiently bound to the membrane after it knocks MinD off the membrane, it is either 

released from the membrane or it can swing to another MinD.  This Tarzan of the Jungle like movement 

of MinE between membrane bound MinDs within a geometrical confined environment such as a cell, is 

necessary for a robust oscillation (Park et al., 2011; Schweizer et al., 2012).  
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In contrast to E. coli, B. subtilis generates a static gradient of MinCD that extends from the pole 

to midcell by anchoring MinCD to areas of membrane curvature by a protein called DivIVA (Marston et 

al., 1998) (Fig. 7). This anchoring also requires an intermediary designated MinJ that bridges DivIVA and 

MinD (Bramkamp et al., 2008; Patrick and Kearns, 2008). DivIVA localizes to the incipient septum as 

well as cell poles, where membrane curvature is the highest (Eswaramoorthy et al., 2011). As constriction 

is initiated, DivIVA is quickly recruited to the constriction site, forming a ring like structure on each side 

of the constriction. This DivIVA ring, further recruits MinCD through MinJ to prevent FtsZ released from 

the constricting Z ring from reforming a ring at the newly forming poles (Gregory et al., 2008). As 

septation is completed MinCD is retained at the poles by interaction with DivIVA and MinJ. 

MipZ gradient formation  

Unlike E. coli and B. subtilis, in which chromosome segregation and cell division can occur 

independently of each other, these two events are tightly coupled in C. cresentus as disruption of either 

event results in impairment of the other. MipZ is key factor that couples these two events (Thanbichler 

and Shapiro, 2006). It forms a bipolar gradient in predivisional cells dependent on the bipolarly localized 

ParB (Fig. 7), a component of the origin of replication segregation machinery that recognizes a cluster of 

centromere-like sites located near the origin. ParB is anchored at one cell pole along with the origin of 

replication. As DNA replication starts, one of the two duplicated origins is segregated to the other pole by 

ParB and ParA, a MinD like ATPase (Bowman et al., 2008). MipZ monomers are recruited to poles of the 

cell by interaction with ParB, where ParB promotes its dimerization (Kiekebusch et al., 2012). MipZ 

dimers, the form that antagonizes FtsZ assembly, diffuse away from ParB and bind nonspecifically to the 

DNA. This binding is transient as the intrinsic ATPase of MipZ causes its release from the DNA. 

Repeated cycling of MipZ between the bound ParB and the DNA leads to the formation of a gradient of 

MipZ that originates from ParB and extends toward the cell center (Kiekebusch et al., 2012). Duplication 

and segregation of the origin leads to a bipolar gradient of MipZ with the low point near midcell where  
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Fig. 8. Current model for how MinCD antagonizes FtsZ assembly into the Z ring. The C terminal domain 

of MinC binds to the conserved C-terminal tail of FtsZ. This binding reduces the FtsZ tail binding to the 

membrane anchors ZipA and FtsA, interfering with FtsZ membrane attachment, and positions the N 

terminal domain of MinC close to the FtsZ filaments such that it can antagonize FtsZ polymerization by 

binding to the interface between FtsZ subunits.  
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the Z ring forms (Thanbichler and Shapiro, 2006). The interplay among ParB, MipZ and FtsZ thus links 

chromosome segregation and cell division together. A defect in chromosome segregation results in the 

failure to form a bipolar MipZ gradient, whereas a division block results in the failure to form new poles; 

the ParB-origin complex cannot be anchored and a MipZ bipolar gradient is not formed, which in turn 

block blocks cell division.  

Nucleoid Occlusion 

Early studies of division site positioning in E. coli found that divisions rarely occur over the 

nucleoid in cells with DNA replication or segregation defects. These findings led to the nucleoid 

occlusion model (NO system) in which the nucleoid negatively controls the positioning of the division 

site (Mulder and Woldringh, 1989; Woldringh et al., 1990). According to this model, all positions along 

the cell length are competent for cell division, but cell division is prevented at positions occupied by 

nuceloids. As nucleoid segregation nears completion, this nucleoid-mediated inhibition is released, 

allowing division to occur between the nucleoids.  Support for this model came from examining Z ring 

positioning in chromosome partition mutants; Z rings formed in nucleoid free regions but were occluded 

over the nucleoids in filamentous cells with unsegregated nucleoids (Yu and Margolin, 1999).  

Effectors of the NO system in E. coli and B. subtilis have been identified, as SlmA and Noc 

respectively (Bernhardt and de Boer, 2005; Wu and Errington, 2004). SlmA is a TetR family DNA 

binding protein, while Noc is ParB like DNA binding protein. Even though these two proteins share no 

sequence homology or structural similarity, they act in a remarkably similar manner. Both proteins 

associate with the nucleoid through DNA binding domains that recognize specific DNA sequences 

(NBS/SBS, Noc binding site/SlmA binding site) that are enriched in origin-proximal regions of the 

chromosome (Bernhardt and de Boer, 2005; Cho et al., 2011; Tonthat et al., 2011; Wu and Errington, 

2004; Wu et al., 2009). As the chromosome is replicated, Noc/SlmA associated with the two origins is 

segregated away from midcell and an inhibitor free zone is generated where the Z ring forms. Thus, 
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segregation of the origin and the surrounding NBS/SBS sites imparts spatial and temporal regulation of 

Noc and SlmA. Introduction of NBS/SBS sites in the terminus region of the chromosome, which occupies 

the middle of the cell, delays cell division significantly (Cho et al., 2011; Wu et al., 2009). If binding sites 

are introduced on multicopy plasmids (which are randomly distributed in the cytoplasm) division is 

inhibited because the division inhibitors NBS-Noc/SBS-SlmA are delocalized from their normal 

chromosomal location (Cho et al., 2011; Wu et al., 2009). Thus, the NO systems seem ideally suited to 

couple chromosome segregation to formation of the Z ring. The target for Noc in B. subtilis is currently 

unknown, but SlmA inhibits Z-ring formation over the DNA by a direct interaction with FtsZ (Bernhardt 

and de Boer, 2005).  

SlmA mediated NO 

             SlmA was identified as a synthetic lethal knockout with the min deletion, but elimination 

of SlmA had no division defect in exponential growing cells (Bernhardt and de Boer, 2005), presumably 

because of the dominant role of the Min system in positioning the Z ring. However, when the DNA 

replication initiator DnaA is depleted in the absence of SlmA, division occurs on top of the nonreplicating 

nucleoid confirming the NO function of SlmA (Bernhardt and de Boer, 2005). Like other TetR family 

proteins, SlmA can be divided into two domains, a small conserved N-terminal domain (1-53) containing 

a canonical HTH motif and a less conserved large C-terminal domain (54-198) (Bernhardt and de Boer, 

2005; Tonthat et al., 2011). The N-terminal domain is responsible for DNA binding and the large C-

terminal domain nucleoid occupied by the origin region of the chromosome. In newborn cells with a 

single nucleoid and the origin at midcell, the GFP signal localizes as a cloud over the nucleoid. As the cell 

cycle proceeds, the duplicated origins segregate and the GFP-SlmA becomes bilobed (Bernhardt and de 

Boer, 2005). This dynamic localization of GFP-SlmA correlates with the timing of Z ring formation at 

midcell.  
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Fig. 9. Location of SlmA binding sites (SBS) and comparison SlmA structures with or without SBS DNA 

(PDB#3NXC and #4GCL). A) Cicular diagram of the E. coli chromosome with approximate locations of 

SBSs shown as blue lines. Green, red, dark- and light-orange colored regions represent the Ori, Ter, Left 

and Right macrodomains of the chromosome. B) Sequence logo of the consensus SlmA binding sequence 

is shown below the circular diagram of the chromosome. C) SlmA forms a homodimer in the absence of 

SBS DNA but forms an oriented dimer-of-dimer in the presence of SBS DNA. Arrows point to the 

residues that are important for DNA binding (T33A, colored as cyan) and interaction with FtsZ (F65, 

R73, L94, G97, R101 and N102, colored as yellow). Binding to DNA causes movement of the DNA 

binding domain such that F65 is no longer occluded.  
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 A single substitution in the HTH motif, SlmA-T33A, abolishes DNA binding and renders SlmA 

defective in NO (Cho et al., 2011). Initial analysis indicated that the SlmA-T33A mutant is defective in 

self-interaction and interaction with FtsZ, suggesting that SlmA may exist as monomers and the role of 

SBS DNA is to promote dimerization. Consistent with this, SlmA was monmeric at low concentrations 

but formed dimers at high concentrations (Cho et al., 2011). However, SlmA was subsequenstly 

crystallized without DNA and was a dimer with a highly hydrophobic dimer interface, arguing that SlmA 

exists as dimers in the absence of SBS DNA (Tonthat et al., 2011). Nonetheless, overproduction of SlmA-

T33A still blocks Z ring formation but is much less effcieint, indicating that in the absence of DNA 

binding SlmA interacts weakly with FtsZ (Cho et al., 2011). 

Inhibition of FtsZ polymerization by SBS-SlmA requires the GTPase activity of FtsZ as a 

catalytic mutant of FtsZ, FtsZ-D212N, is resistant to the activity of SBS-SlmA (Cho et al., 2011). 

Consistent with this, SBS-SlmA is able to pull down FtsZ-D212N filaments but not filaments formed 

with wild type FtsZ (Cho et al., 2011). SBS-SlmA was also found to increase the GTPase activity of FtsZ, 

suggesting that it stimulates FtsZ-GDP formation within the polymers to promote the breakdown of the 

FtsZ proto-filaments (Cho et al., 2011). Therefore, it is believed that once bound to SBS DNA, SlmA 

induces breaks in FtsZ filaments at positions where the GTP has been hydrolyzed to GDP in a manner 

similar to that proposed for MinC (Cho et al., 2011).  

Examining the effect of SlmA on FtsZ polymerization with or without SBS DNA showed that 

SBS bound SlmA disassembles FtsZ proto-filaments about 40 fold more efficiently than DNA free SlmA, 

indicating that SBS binding activates SlmA to antagonize FtsZ polymerization (Cho et al., 2011). A 

number of substitutions, F65I/A, R73D, L94Q, G97D, R101D and N102S, of SlmA eliminate or reduce 

FtsZ binding and the ability of SlmA to antagonize FtsZ polymerization (Cho and Bernhardt, 2013). 

These residues likely constitue the binding site for FtsZ. Intriguingly, all of these residues cluster in a 

region of SlmA, which in the DNA-free SlmA structure is partially occluded by the DNA binding  
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Fig. 10. Current models for FtsZ regulation by SlmA. SlmA forms oriented dimer-of-dimer on SBS DNA, 

which can spread to the adjacent DNA (for simplicity, spreading is not shown). In one model, the SBS 

bound SlmA is activated to interact with FtsZ and sever the FtsZ polymers at interfaces where the GTP 

has been hydrolyzed to GDP. In the other model, SBS bound SlmA does not antagonize FtsZ 

polymerization but sequesters FtsZ polymers to the SlmA-DNA complex such that fewer FtsZ polymers 

would be on the membrane for Z ring formation.  

  



43 
 

 

 

 

 

 

 

 

 

 

 



44 
 

domains (Cho and Bernhardt, 2013; Tonthat et al., 2013) (Fig. 9C). Thus, the binding to an SBS is 

proposed to stabilize SlmA in a conformation with a fully exposed FtsZ binding site so that it can bind 

FtsZ (Cho and Bernhardt, 2013).  

SlmA forms an oriented dimer of dimers on the SBS DNA (Tonthat et al., 2013). Formation of 

the SlmA dimer of dimers requires only the consensus SBS sequence GTgAGtaCTcAC, but if longer 

SBS DNA molecules are used, additional contacts with nucleotides outside of the consensus sequence are 

observed (Tonthat et al., 2013). In addition, SlmA dimers spread on the DNA. Comparison of the DNA 

free and the SBS DNA bound SlmA structures indeed shows dramatic conformational differences in the 

SlmA dimers (Tonthat et al., 2013). Insertion of the DNA binding domain of SlmA into the groove of the 

DNA molecule results in the exposure of the region that is predicted to be the binding site for FtsZ, which 

is occluded in the DNA-free structure. Thus, in addition to regulating SlmA spatially, SBS binding 

activates SlmA by stabilizing a conformation that interacts with FtsZ. The role of SlmA dimer-of-dimers 

on the SBS and possibly further oligomerization on the DNA in vivo is unknown. 

Although this group originally found that SlmA bound to the SBS affected FtsZ polymerization 

by forcing the FtsZ proto-filaments into some short anti-parallel higher order structures, they more 

recently found that SBS-SlmA does not affect FtsZ proto-filament formation (Tonthat et al., 2011; 

Tonthat et al., 2013). They also found that SBS-SlmA does not affect the GTPase activity of FtsZ 

(Tonthat et al., 2013). Furthermore, SAXS analysis of an SBS-SlmA-FtsZ complex showed that four FtsZ 

molecules associated with the SlmA dimer of dimers on their lateral side rather than the regions that 

would form the longitudinal interface in proto-filaments, suggesting these associated FtsZ molecules are 

likely able to polymerize (Tonthat et al., 2013).  It was proposed that SBS bound SlmA prevents Z ring 

formation over the nucleoid by sequestration of proto-filaments on the DNA and inhibiting their further 

gtowth and lateral interactions to form a Z ring (Tonthat et al., 2013). 
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In this thesis, I studied the interaction between SlmA and FtsZ and tried to understand the 

molecular mechanism by which SlmA inhibits Z ring formation. Using a genetic approach, I isolated FtsZ 

mutants that are resistant to the NO function of SlmA. Analysis of these FtsZ mutants suggests that 

although they are resistant to the action of SlmA, they are not directly involved in SlmA binding. SlmA 

bound to the SBS DNA indeed antagonizes FtsZ protofilament formation and the different observations 

by the above two groups are likely due to the different SBS DNA molecules used in their studies. 

Unexpectedly, we found that SlmA binds to the conserved C-terminal tail of FtsZ and inhibition of FtsZ 

polymerization by SlmA requires the presence of FtsZ tail. As the conserved C terminal tail of FtsZ is not 

involved in polymerization and the resistant mutations reside in the globular domain of FtsZ, our data 

thus suggest that SBS-SlmA binds to the C-terminal tail of FtsZ and this binding stimulates its binding to 

a secondary binding site in the globular domain of FtsZ, allowing it to break the FtsZ filaments. 

Therefore, SlmA, similar to MinC, prevents Z ring formation by antagonizing FtsZ polymerization and 

membrane attachment simultaneously. This similarity between MinC and SlmA suggest that competing 

with membrane anchors and breaking the FtsZ filaments might be a universal mechanism for FtsZ spatial 

regulators.  
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Chapter II: Materials and Methods 

Bacterial strains, plasmids and growth conditions 

Strains and plasmids used in this study are listed in Tables 1 and 2, respectively. Cells were 

grown in LB medium at 37°C unless otherwise indicated. When needed, antibiotics were used at the 

following concentrations: ampicillin= 100 µg/ml; spectinomycin= 25 µg/ml; kanamycin= 25 µg/ml; 

tetracycline= 25 µg/ml; and chloramphenicol= 20 µg/ml. 

The strain PS1603 (W3110 slmA::cat) was generated by S. Pichoff (unpublished) in which most 

of the slmA coding sequence was replaced by the cat gene expressing chloramphenicol resistance.  

The ∆min∆slmA double mutant strain DU5 (W3110 min::kan, slmA::cat) was generated by P1 

transducing slmA::cat (from PS1603) into the strain W3110 min::kan. Chloramphenicol and kanamycin 

resistant transductants were selected at 42°C.  

Strain DU11 (W3110 ftsZ0 slmA<frt> recA::Tn10)/pKD3C was constructed in several steps. First 

strain S3 (W3110 leu::Tn10) was transduced with P1 grown on TB85 (MG1655, slmA::kan) (Bernhardt 

and de Boer, 2005) and kanamycin resistant transductants were selected. The purified transuductant was 

named DU8 (W3110 leu::Tn10 slmA::kan) and transformed with plasmid pCP20 by selecting ampicillin 

resistance at 30°C. The transformants were then streaked on LB plates with tetracycline and incubated at 

42°C to get rid of the kan gene and plasmid pCP20. The resultant strain was named DU9 (W3110 

leu::Tn10 slmA<frt>) and tested by PCR using primers flanking the deleted region to confirm that the 

kan gene had been removed. Plasmid pKD3C was then transformed into DU9 and a purified transformant 

DU9/pKD3C was transduced with P1 grown on PB143 (leu+ ftsZ0 recA::Tn10) by selecting for Leu+ at 

30° on M9 minimum medium. The resultant transductants were checked for temperature sensitivity and 

tetracycline resistance and the desired transductants (DU10/pKD3C) should have a genotype leu+ ftsZ0 

slmA<frt> with plasmid pKD3C providing FtsZ. Finally, the recA::Tn10 allele from PB143 was 

transduced into DU10/pKD3C by selecting for tetracycline resistance on LB plate at 30°C.  
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Table 1. Strains used in this study 

Strain  Description   Source/reference  

JS238 

BTH101 

 

W3110 

WM1033 

PS106 

PS1603 

S3 

S4 

S7/pKD3C 

DU5 

DU11/pKD3C 

SD110 

SD139 

SD140 

SD160 

SD161 

SD162 

SD163 

SD164 

SD165 

SD167 

SD170 

SD171 

MC1061 malPp::lacIq srlC::Tn10 recA1 

F- cya-99, araD139 galE15 galK16 rpsL1 (StrR) 
hsdR2 mcrA1 mcrB1 

  

F- λ- rph-1 INV(rrnD, rrnE)  

MG1655, parC281::Tn10 

W3110 leu::Tn10 ftsZ84 

W3110 slmA::cat 

W3110 leu::Tn10 

W3110 leu::Tn10 min::kan 

W3110 ftsZ0 slmA<frt> recA::Tn10 

W3110 leu::Tn10 min::kan slmA::cat 

W3110 ftsZ0 slmA<frt> recA::Tn10 

W3110 leu::Tn10 slmA::cat 

W3110 parC281::Tn10 

W3110 parC281::Tn10 slmA::cat 

W3110 leu::Tn10 ftsZ-K190V 

W3110 leu::Tn10 ftsZ-K190V slmA::cat 

W3110 leu::Tn10 ftsZ-K190V min::kan 

W3110 leu::Tn10 ftsZ-D86N 

W3110 leu::Tn10 ftsZ-K190V&D86N 

W3110 leu::Tn10 ftsZ-D86N slmA::cat 

W3110 leu::Tn10 ftsZ-D86N min::kan 

W3110 parC281::Tn10 ftsZ-K190V 

W3110 parC281::Tn10 ftsZ-D86N 

Lab collection 

(Karimova et al., 1998) 

 

Lab collection 

Margonlin, w (unpublished) 

Lab collection 

Lab collection 

(Shen and Lutkenhaus, 2009) 

(Shen and Lutkenhaus, 2009) 

(Shen and Lutkenhaus, 2009) 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 
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Table 2. Plasmids used in this study 

Plasmid  Description   Source/reference  

pKD3C 

pSD128 

pSD133 

pUC18K 

p2SBSK 

pQE80-slmA 

pKNT25 

pUT18 

pZT25 

pZT18 

pSlmA-T25 

pSlmA-T18 

pBANG112 

pBANG59 

pBS31 

pSD119 

pSD198 

pSEB160 

pSUMO-SlmA 

pGB2 (repATS), ftsZ+, Camr 

pEXT22, Ptac::slmA Spcr (with AGGAGG 
binding site) 

pEXT22, Ptac::slmA, Spcr 

pUC18, Kanr 

pUC18, with SBS12-SBS17 Kanr 

pQE80, Plac::6×his-slmA, Ampr 

Plac::T25, Kanr 

Plac::T18, Ampr 

pKNT25, Plac::ftsZ-T25, Kanr 

pUT18, Plac::ftsZ-T18, Ampr 

pKNT25, Plac::slmA-T25, Kanr 

pUT18, Plac:;slmA-T18, Ampr 

pACYC, ftsZ+, AmPr 

pEXT22, Ptac::minC/minD, Spcr 

pDSW208, Ptrc::sulA, Ampr 

pBAD18, Plac::6×his-ftsZ, Ampr 

pQE80, Plac::zipA185-328, Ampr 

pBAD18, Plac::ftsZ, Ampr 

pE-SUMO,PT7::his-SUMO-SlmA, Amp 

(Dai and Lutkenhaus, 1991) 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

(Shen and Lutkenhaus, 2009) 

(Shen and Lutkenhaus, 2009) 

(Shen and Lutkenhaus, 2010) 

This study 

This study 

Pichoff, S 

This study 
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Table 3. FtsZ mutants used in this study 

FtsZ alleles Complementation Resistance to 
SBS-SlmA 

Resistance to 
MinCD 

Interaction with 
SBS-SlmA in 
vitro 

Source  

WT YES NO NO YES Collection 
K190I YES YES NO  This study 
K190V YES YES NO YES This study 
K190L YES YES   This study 
K190A YES YES   This study 
K190N YES YES   This study 
K190E YES YES   This study 
K190W YES YES   This study 
K190R YES NO   This study 
D86N YES YES NO YES This study 
D86V YES NO   This study 
D86K YES YES   This study 
D86N& K190V YES (≥37 °C) YES   This study 
L270V YES NO YES (MinCND)  (Shen and 

Lutkenhaus, 
2009, 2010) 

R271G YES NO YES (MinCND)  
E276D YES NO YES (MinCND)  
N280D YES NO YES (MinCND)  
D373E YES NO YES (MinCcD)  
I374V YES NO YES (MinCcD)  
I374M NO    This study 
I374F YES (∆min or 

∆slmA) 
NO   This study 

I374L NO    This study 
I374Y NO    This study 
I374W NO    This study 
I374K NO   NO This study 
A376P YES NO YES (MinCcD)  (Shen and 

Lutkenhaus, 
2009) 

L378E NO   NO This study 
L378V YES (∆min or 

∆slmA) 
 YES (MinCcD)  (Shen and 

Lutkenhaus, 
2009) K380M YES YES YES (MinCcD) YES (Weaker) 

320 NO   NO This study 
360 NO   NO This study 
 

Blank indicates not determined.   
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Table 4. SlmA mutants used in this study 

SlmA alleles DNA Binding FtsZ binding complementation Source  
WT YES YES YES Collection  
T33A NO YES NO (Cho et al., 2011) 
F65A YES NO NO (Cho and 

Bernhardt, 2013) R73D YES NO NO 
N102A YES (disassociate 

faster) 
ND NO This study 

V174F YES 
(nonspecifically) 

ND NO This study 

 

ND: Not determined 

N102A binds SBS but it disassociates much faster than WT SlmA 

V174F cannot distinguish SBS from nonspecific DNA.   
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The resultant transductants were checked for UV sensitivity to confirm the inactivation of recA and the 

transductant was named DU11 (W3110 leu+ ftsZ0 slmA<frt> recA::Tn10)/pKD3C.  

Strain SD139 and SD140 were constructed by transducing the parCTS allele from WM1033 

(MG1655, parC281::Tn10) into strains W3110 and PS1603 respectively. The parCTS allele was linked to 

a Tn10 and tetracycline resistant transductants obtained at 30°C were checked for the TS phenotype at 

42°C.  

Strains SD160, SD163 and SD164 were constructed similarly by replacing the ftsZ84 allele on the 

chromosome of the parental strain PS106 with the ftsZ-K190V, ftsZ-D86N or ftsZ-K190V&D86N alleles 

using the lambda RED system (Datsenko and Wanner, 2000). The PCR products of ftsZ fragments 

containing K190V, D86N or K190V&D86N mutations were electroporated into PS106/pKD46 induced 

with 0.04% arabinose for 3 hours at 30°C. The recombinants were selected on LB plates without salt at 

42°C.  8 recombinants from the plates were randomly selected and then transformed with plasmid 

pSD133 and p2SBSK to check resistance to delocalized SBS bound SlmA. Recombinants resistant to 

SBS-SlmA were then checked for the presence of ftsZ-K190V, D86N or ftsZ-K190V&D86N by PCR and 

sequencing.  

SD161 and SD165 were constructed simply by introduction of the slmA::cat allele from PS1603 

into strain SD160 and SD163 through P1 transduction. Similarly, strain SD162 and SD167 were created 

by P1 transduction to introduce the min::kan allele from S4 into strain SD160 and SD163.  

Strains SD170 and SD171 were created in two steps. The first step was to remove the leu::Tn10 

marker from SD160 and SD163 by transduction with P1 grown on PB143 (leu+ ftsZ0 recA::Tn10) and 

then selecting for Leu+ transductants at 37°C on M9 minimum medium. The colonies grown up were 

tested for tetracycline sensitivity and resistance to SlmA in the presence of the multicopy plasmid 

p2SBSK (carryies two SBS sites). The positive colonies were named SD168 and SD169 and then used as 

template for PCR to amplify the ftsZ gene and sequencing to make sure the colonies retained the K190V 
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or D86N mutation. The second step was to introduce the parCTS allele into SD168 and SD169 obtained 

from the first step. We transduced SD168 and SD169 with P1 grown on WM1033 (parCTS-Tn10) and 

selected for tetracycline resistance transductants at 30°. The colonies obtained were purified and tested for 

temperature sensitivity at 42°C and were named SD170 and SD171. 

pUC18K was constructed by replacing the bla gene in pUC18 with kan.  To do this, an XhoI site 

was first introduced into pUC18 (pUC18blaX) at the end of bla, using primers XhoI-5’: 5’-

GTAACTGTCAGACCAAGTCTCGAGATATATACTTTAGATTG-3’ and XhoI-3’: 5’-

CAATCTAAAGTATATATCTCGAGACTTGGTCTGACAGTTAC-3’. The aph coding sequence from 

pKNT25 was amplified by using primers Kan-5’-SspI: 5’-

CAGTAATATTCTGATCAAGAGACAGGATGAG-3’ and Kan-3’-XhoI: 5’-

CAGTCTCGAGCATTTCGAACCCCAGAG-3’. The PCR product was digested with SspI and XhoI and 

cloned into the same sites in puC18blaX (XhoI) to generate pUC18K. A derivative of pUC18K was made 

by introducing a fragment containing SBS12 and SBS17 to create p2SBSK. This fragment was obtained 

by PCR using primers SBS12-F-HindIII: 5’-

GCATAAGCTTGCGAAGTGAACGCTAACTCACATCTAACAATGCGCTCATCG-3’ and SBS17-R-

EcoRI: 5’-GCATGAATTCCGTTAGTGACCATTTACTTACTCAGGACGGGTGTGGTCGCCATG-3’. 

The resulting PCR fragment contains a segment of pBR322 sandwiched between the SBS12 and SBS17 

sites, and was digested with EcoRI and HindIII and ligated into pUC18K cut with same enzymes.  

Plasmid pSEB160 was created by S. Pichoff by inserting an SstI/HindIII digested fragment 

containing ftsZ into pBAD18 cut with the same enzymes (unpublished data). pSEB160 derivatives 

containing ftsZ-360, ftsZ-K190V, ftsZ-D86N, ftsZ-I374K and ftsZ-L378M were generated by site-directed 

mutagenesis.  

Plasmid pSD119 was created by replacing the ftsZ coding sequence of pSEB160 with sequence 

encoding 6× His tagged ftsZ ampflied from pSEB160 using primers His-FtsZ-SstI: 5’-
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TTCGAGCTCAGGCGACAGGCACAAATCGGAGAGAAATATGCATCACCATCACCATCACTTT

GAACCAATGGAACTTACC-3’ and His-FtsZ-HindIII: 5’-

GCCAAAACAGAAGCTTCCTCGAAACCCAAATTCCAGTCAATTC-3’. The amplified fragment was 

digested with SstI and HindIII and ligated to pSEB160 digested with the same enzymes. pSD119 

derivatives for 6× His-ftsZ-320 and 6× His-ftsZ-360 expression were created by site directed mutagenesis 

by addition of two stop codons after codons FtsZ320 and FtsZ360. Primers used are FtsZ320: 5’-

GGCATGGACAAACGTTGATAAATCACTCTGGTGACC-3’ and FtsZ360: 5’-

GCTAAAGTCGTGAATGACTGATAACCGCAAACTGCGAAAG-3’.  

The plasmid pSD128 was constructed by inserting an EcoRI and HindIII fragment containing the 

slmA coding sequence into the EcoRI and HindIII double digested pBANG59. The slmA containing 

fragment was amplified from chromosomal DNA using primers slmA-5’-EcoRI: 5’-

AGTGAATTCTTTCAGGAGGATAATGTAACATGGCAGAAAAACAAACTG-3’ and slmA-3’-

HindIII: 5’-GCGAAGCTTTTGGCGTTTAAAGAAACTC-3’. The ribosome binding site for slmA 

translation was changed to the consensus sequence –AGGAGG- through this approach. The pSD128 

derivatives containing different mutations were constructed by site-directed mutagenesis.  

Plasmid pSD133 containing slmA with its own ribosome binding site is otherwise similar to 

pSD128 and was constructed in a similar manner, but the slmA containing fragment was amplified from 

chromosomal DNA using different primer pairs: slmA-For: 5’-

CGTGAATTCCGCCTGGCAAGTGCTTA-3’ and slmA-3’-HindIII.  

The plasmid pQE80-slmA was created by ligation of a BamHI-PstI fragment containing the slmA 

coding sequence and pQE80 (Qiagen) cut with the same enzymes. The fragment was amplified from 

chromosomal DNA using primers 5’-6×his-slmA: 5’-GTGGATCCGCAGAAAAACAAACTGCG-3’ and 

ttk-PstI-3’: 5’-GAAACTGCAGCGGCGTCATATTACTGC-3’. Site-directed mutagenesis was used to 

introduce different slmA mutations into pQE80-slmA to obtain various derivatives.  
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The plasmid pSD198 was created by ligation of a BamHI-HindIII fragment containing the zipA185-

328 coding sequence and pQE80 (Qiagen) cut with the same enzymes. The fragment was amplified from 

chromosomal DNA using primers zipA185-5’-BamHI: 5’- 

GACTGGATCCGATAAACCGAAGCGCAAAG -3’ and zipA-3’-HindIII: 5’- 

GACTAAGCTTGGTTCGAAGAGGAGTTAAT-3’.  

Plasmids pSlmA-T25 and pSlmA-T18 were constructed by inserting a BamHI/HindIII cut 

fragment containing the slmA coding sequence into the vectors pKNT25 and pUT18, respectively, cut 

with the same enzymes. The fragment was amplified from chromosomal DNA using the primer pair 

slmA-BTHN-BamHI: 5’- GTCGGATCCTGCAACTGTGCCGCAAT-3’ and slmA-BTHN-HindIII: 5’- 

TGTAAGCTTGGCAGAAAAACAAACTG-3’. Derivatives of pSlmA-T25 and pSlmA-T18 containing 

slmA mutations were created by site-directed mutagenesis. Plasmids pZT25 and pZT18 were made by 

inserting a BamH1/HindIII fragment containing the ftsZ coding sequence into pKNT25 and pUT18, 

respectively. Derivatives of these plasmids containing various slmA mutations or ftsZ mutations were 

created by site-directed mutagenesis. 

Plasmid pSUMO-SlmA was constructed by ligation of a BsaI-XbaI fragment containg the slmA 

coding sequence and pE-SUMO-amp (LiferSensors) cut with the same enzyme. The fragment was 

amplified from plasmid pSD133 using primers slmA-SUMO-F: 5’-

ACGTGGTCTCGAGGTGCAGAAAAACAAACTGCGAAAAG-3’ and SlmA-SUMO-R: 5’-

CAGTTCTAGAGTCATCCGGCGTCATATTAC-3’.  

Creation of the functional FtsZ mutant libraries and selection for SBS-SlmA resistant ftsZ 

mutations 

The procedure was carried out as previously described for selection of MinCD resistant FtsZ 

mutants (Shen and Lutkenhaus, 2009). PCR random mutagengesis was used to introduce random 

mutations into the coding region of ftsZ gene using pBANG112 as the template and primers: 5’- 
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GCCTCAGGCGACAGGCACAAATCGGAGAG and 5’-

GCTGCAGATATTCGATATCACGCATGAAAC. The purified PCR fragments were then digested with 

EcoRI and EagI and ligated into pBANG112 digested with the same enzymes. The ligation product was 

then electroporated into DU11/pKD3C and transformants selected at 42°C on LB plates with ampicillin. 

All colonies that grew up were pooled together and part of the pooled culture was subjected to plasmid 

extraction to make a stock of the FtsZ mutant library.  To select for the SBS-SlmA resistant FtsZ mutants, 

the rest of the pooled cells was transformed with plasmid pSD133 and p2SBSK and colonies resistant to 

delocalized SBS-SlmA were selected with 20 μM IPTG at 30°C on plates containing ampicillin, 

spectinomycin and kanamycin. Plasmids were isolated from the colonies that grew up and the ftsZ gene in 

the plasmids was sequenced to identify the mutations.  

Bacterial two hybrid assay 

To detect SlmA-FtsZ and SlmA-SlmA interactions, appropriate plasmid pairs encoding FtsZ-T18 

and SlmA-T25 or FtsZ-T18 and SlmA-T25 or their variants were co-transformed into BTH101. Single 

colonies were resuspended in 1 ml LB medium and 3 μl of each aliquot was spotted on LB plates 

containing 100 μg/ml ampicillin, 25 μg/ml kanamycin, 40 μg/ml X-gal and 250 μM IPTG. Plates were 

incubated at 30°C for 36 hours before analysis. 

Protein purification 

His-SlmA and its variants containing different mutations were expressed and purified from 

JS238/pQE80-slmA and its derivatives following the protocol used to purify 6×his-ZapA (Dajkovic et al., 

2008b).  An overnight culture of each strain grown in LB with ampicillin (100 μg/ml) and glucose (0.2%) 

was diluted 1:100 into 1 L fresh LB medium supplemented with ampicillin (100 μg/ml) and incubated at 

37°C until OD540 reached about 0.4. IPTG was then added to the culture to a final concentration of 1 mM 

and incubated at 37°C for another 3 hours. Cells were collected by centrifugation, washed with 10 mM 

Tris-HCl (pH 7.9), and frozen at -80°C until used. On the day of purification, the cells were thawed and 
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resuspended in 20 ml lysis buffer (20 mM Tris-HCl [pH7.9], 70 mM NaCl and 20 mM imidazole) and 

passed through the French press twice (10,000 psi). The lysates were then centrifuged at 12,000 rpm for 

15 min at 4°C to remove cell debris. The supernatants were removed and loaded onto pre-equilibrated Ni-

NTA resin (Qiagen). The column was washed once with high salt wash buffer (20 mM Tris-HCl [pH 7.9], 

500 mM NaCl and 20 mM imidazole). It was washed again with the same buffer except the imidazole 

concentration was increased to 50 mM.  The bound protein was eluted with elution buffer (20 mM Tris-

HCl [pH 7.9], 500 mM NaCl and 250 mM imidazole). The peak fractions were dialyzed against the 

storage buffer (25 mM Tris-HCl [pH 7.9], 200 mM KCl, 1 mM EDTA and 10% glycerol) overnight and 

stored at -80°C until use.  

The untagged version of SlmA was expressed and purified from BL21 (λDE3)/pLysS cells 

containing pSUMO-SlmA. Purification of the H-SUMO-SlmA fusion protein was similar to purification 

of the 6×his-SlmA. After dialysis, the H-SUMO tag was cleaved with purified 6×His-tagged SUMO 

protease (Ulp1) for 1 hour at 30°C in the protein storage buffer (25 mM Tris-HCl [pH 7.9], 200 mM KCl, 

1 mM EDTA and 10% glycerol) with 1 mM DTT. The released tag and protease were removed by 

passing it through the pre-equilibrated Ni-NTA resin. Untagged SlmA was collected in the flow through, 

concentrated and stored at -80°C.  

N-terminal 6×His-tagged FtsZ-FL, FtsZ320 and FtsZ360 were purified from JS238 cells 

containing plasmids pSD119, pSD119-Z320 or pSD119-Z360 respectively. An overnight culture of each 

strain grown in LB with ampicillin (100 μg/ml) and glucose (0.2%) was diluted 1:100 into 1 L fresh LB 

medium supplemented with ampicillin (100 μg/ml) and incubated at 37°C until OD540 reached about 0.4. 

Arabinose was then added to the culture to a final concentration of 0.2% and incubated at 37°C for 

another 3 hours. Cells were collected by centrifugation, washed with 10 mM Tris-HCl (pH 7.9), and 

frozen at -80°C until used. The subsequent procedures were similar to purification of 6×his-SlmA.  
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Induction of wild type FtsZ, FtsZ-K190V and FtsZ-D86N was similar to induction of 6×His-

tagged FtsZ-FL in JS328 cells containing pSEB160, pSEB160-360, pSEB160-K190V, pSEB160-D86N, 

pSEB160-I374K and pSEB160-L378E respectively. After collecting the cells, FtsZ-WT, FtsZ-K190V and 

FtsZ-D86N as well as the other mutant proteins were purified according to the procedure described 

previously (Mukherjee and Lutkenhaus, 1998b; Shen and Lutkenhaus, 2009).  

FtsZ polymerization and Electron Microscopy 

FtsZ polymerization reactions were in FtsZ Pol buffer (50 mM HEPES-NaOH [pH 8.0], 200 mM 

KCl and 10 mM MgCl2). The SBS17 fragment (30 bp) and SlmA or SlmA mutants were mixed together 

in a separate tube and incubated at room temperature for 10 minutes before addition to the polymerization 

reactions. Unless specified, the SlmA used was His tagged SlmA. The SBS17 probe used here was 

prepared by annealing two un-labeled complementary 30 base oligonucleotides SBS17-F and SBS17-R. 

FtsZ was added to a final concentration of 2 μM in a 50 μl reaction containing pre-formed SBS17-SlmA, 

or SBS17 alone, or SlmA or just DNA binding buffer. After 5 min incubation, GTP or GMPCPP was 

added to a final concentration of 1 mM and incubation at room temperature continued for another 5 min 

before the samples were loaded onto grids. 15 μl of 1% uranyl acetate was spotted on the grid for 1 min 

and blotted away. The grids were air-dried and imaged on a JEOL-JEM-1400 transmission electron 

microscope. 

The co-sedimentation assay was performed similarly as above except that the protein 

concentrations were 5 μM. After the addition of GMPCPP, the reactions were subjected to 

ultracentrifugation at 80,000 rpm for 15 min at 25°C in TLA100.2 rotor and a Beckman TL-100 

centrifgue. Supernatants and pellets were then analyzed by SDS-PAGE. 

Biolayer interferometry assays 

The assays were performed in 250 μl of 1× FtsZ polymerization buffer (50 mM HEPES-NaOH 

[pH 8.0], 200 mM KCl, 10 mM MgCl2) with the BLItzTM system (FortéBio) at room temperature. The 
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biotinylated SBS17 probe was prepared by annealing two complementary 30 base oligonucleotides, the 

biotinylated-SBS17-F and SBS17-R. FtsZ and SlmA proteins were diluted in 1× FtsZ polymerization 

buffer before the test. To measure the binding affinity of SlmA variants for the biotinylated SBS17 probe, 

streptavidin-coated biosensors tips were equilibrated with 1× FtsZ polymerization buffer to establish a 

baseline prior to bionylated SBS17 immobilization. 250 μL of 1× FtsZ polymerization buffer containing 

50 nM biotinylated SBS17 was incubated with the biosensor tips with shaking at 2,200 rpm for 5 minutes. 

After the immobilization, the biosensor tips were washed with 1× FtsZ polymerization buffer for 10 

seconds. Association of SlmA-WT or SlmA mutants to the biosensors was monitored for 2 minutes in 250 

μl 1× FtsZ polymerization buffer containing 4 μM SlmA with agitation at 2,200 r.p.m. Dissociation was 

initiated by dipping the biotinylated SBS17-SlmA coated biosensor tips into 250 μl of 1× FtsZ 

polymerization buffer, and the process was monitored continuously for 2 minutes while agitating at 2,200 

rpm. Data were obtained automatically by the BLItzTM User Software version and were subsequently 

analyzed by global fitting using the GraphPad Prism 5 software.  

Binding of FtsZ to the biotinylated-SBS17-SlmA complex was performed similarly as above. 

After association of SlmA-WT or SlmA mutant to the biotinylated SBS17 coated biosensor tips, the tips 

were washed with 250 μl of 1× FtsZ polymerization buffer for 10 seconds. FtsZ was preincubated with 1 

mM GDP for 5 minutes before the SBS17-SlmA complex coated biosensor tips were dipped into the 

solution. ZipA185-328 was added at different concentrations with GDP in the test to see whether it 

blocked FtsZ binding to SBS-bound SlmA. Association was monitored for 1 minute in 250 μl of 1× FtsZ 

polymerization buffer containing 4 μM FtsZ with agitation at 2,200 rpm followed by dissociation in the 

same buffer without FtsZ for 2 minutes. Data were collected and analyzed with Graphpad Prism 5.  

Binding of FtsZ tail peptide Ztail-WT, Ztail-I374K or Ztail-L378E to the biotinylated-SBS17-

SlmA complex was performed similarly as above. After association of SlmA-WT or SlmA mutant to the 

biotinylated SBS17 coated biosensor tips, the tips were washed with 250 μl of 1× FtsZ polymerization 



59 
 

buffer for 10 seconds and then dipped into the solution containing different concentrations of FtsZ tail 

peptides. Association was monitored for 1 minute with agitation at 2,200 rpm followed by dissociation in 

the same buffer without peptide for 2 minutes. Data were collected and analyzed by Graphpad Prism 5.  

In a reciprocal approach, 6×His-tagged FtsZ-FL, FtsZ320 or FtsZ360 was immobilized at the 

surface of Ni-NTA biosensors and untagged SlmA preincubated with or without SBS DNA was tested for 

binding to 6×His-tagged FtsZ variants. In these assays, 250 μL of 1× FtsZ polymerization buffer 

containing 1 μM 6×His-tagged FtsZ varients was incubated with the biosensor tips with shaking at 2,200 

r.p.m for 5 minutes. After the immobilization, the biosensor tips were washed with 1× FtsZ 

polymerization buffer for 10 seconds. Association of untagged SlmA preincubated with or without SBS 

DNA to the biosensors was monitored for 2 minutes in 250 μl 1× FtsZ polymerization buffer with 

agitation at 2,200 r.p.m. To test if Ztail peptides competed with FtsZ for binding, different concentrations 

of Ztail-WT or its mutant versions were preincubated with untagged SlmA in the presence of SBS DNA 

for 5 minutes. Dissociation was initiated by dipping the FtsZ-SBS-SlmA coated biosensor tips into 250 μl 

of 1× FtsZ polymerization buffer, and the process was monitored continuously for 2 minutes while 

agitating at 2,200 r.p.m. Data were generated automatically by the BLItzTM User Software version and 

were subsequently analyzed by global fitting using the GraphPad Prism 5 software.  

Western blot 

Overnight cultures of PS1603 (W3110 slmA::cat) containing pSD133 expressing various slmA 

mutants were diluted 100 fold in LB medium supplemented with appropriate antibiotics without or with 5 

μM IPTG, 10 μM or 100 μM IPTG. W3110 and PS1603 were run in the second and third lanes as 

controls. The cultures were grown at 30°C until the OD600 reached about 0.4. At this time 1 ml from each 

culture was spun down and the pellet resuspended in 100 μl sample buffer, heated for 5 min, and 10 μl 

from each sample was then loaded onto the gel for analysis.  
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Continuous GTPase assay 

GTPase activities of wild type FtsZ, FtsZ-K190V and FtsZ-D86N were calculated using the 

NADH coupled enzymatic assay (Ingerman and Nunnari, 2005). The reactions were carried out at room 

temperature in 200 μl volume using the FtsZ polymerization buffer (50mM HEPES-NaOH [pH 8.0], 200 

mM KCl, 10 mM MgCl2), plus 1 mM PEP-K, 0.5 mM NADH, 5 μL PK/LDH and 0.5 mM GTP. FtsZ or 

various mutants were added to a final concentration of 2.5 μM. NADH depletion is directly proportional 

to GTP hydrolysis, thus the reactions were continuously monitored for NADH absorbance at 340 nm for 

30 minutes. The data was collected and then plotted using the Prism 5.0 software, and the reaction rates 

were calculated using the Beer-Lambert law (A= ε×c×l). 

  



61 
 

Chapter III: Study of FtsZ mutants resistant to the NO function of SlmA suggests that 
SlmA antagonizes FtsZ polymerization by interfering with the communication between the 
N and C terminal sub-domains of FtsZ 

Abstract 

Spatiotemporal regulation of Z ring formation is necessary to prevent aberrant cell division in 

bacteria. In E. coli, the nuceloid occlusion (NO) protein SlmA contributes to the coordination of cell 

division with chromosome segregation by blocking Z ring formation over the nucleoid. Recent studies 

have shown that SlmA oligomerizes on specific DNA sequences (SBSs) in the chromosome and the SBS 

bound SlmA affects FtsZ assembly. However, how SBS bound SlmA affects FtsZ assembly is 

controversial; one model suggests that SBS-SlmA severs FtsZ proto-filaments and another suggests that 

SlmA sequesters FtsZ filaments to the SBS-SlmA complexes. Here, we report the isolation and 

characterization of two FtsZ mutants, FtsZ-K190V and FtsZ-D86N, which are resistant to the NO 

function of SlmA. By analyzing these two mutants, we found that SBS-SlmA indeed antagonizes FtsZ 

polymerization and our mutants are resistant to the action of SlmA. One of the mutants, FtsZ-D86N, 

likely confers resistance to SlmA by increasing the lateral interaction of FtsZ proto-filaments. The second 

mutation FtsZ-K190V locates in the H7 Helix of FtsZ, which has been showed to undergo dramatic 

conformational changes upon nucleotide exchange and to be important for the communication between 

the two sub-domains of FtsZ. The positive charge of K190 appears to be critical for sensitivity of SlmA 

but not for FtsZ-SlmA binding. Our data suggest that SlmA takes advantage of the positive charge of 

K190 to antagonize FtsZ polymerization by affecting the conformational change occurred upon FtsZ 

assembly.  
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Introduction  

As mentioned in chapter I, the nucleoid occlusion protein SlmA of E.coli coordinates cell division 

and chromosome segregation by directly blocking Z ring formation over the nucleoid (Bernhardt and de 

Boer, 2005). Accumulated evidences show that this inhibition of Z ring formation relies on two 

interactions, SlmA-DNA interaction and SlmA-FtsZ interaction, which are mediated by the N terminal 

and C terminal domains of SlmA respectively (Cho and Bernhardt, 2013; Cho et al., 2011). Disruption of 

either one of the two interactions renders the cells deficient in NO (Cho and Bernhardt, 2013; Cho et al., 

2011). 

The N terminal domain of SlmA forms a canonical HTH motif found in every TetR family 

protein (Tonthat et al., 2011). When dimerized, the two HTH motifs function as two arms of a SlmA 

dimer that insert into the grooves of DNA and lock the SlmA dimer on DNA (Tonthat et al., 2013).  

Residues important for SlmA DNA binding have been revealed by the structures of SlmA in complex 

with its specific DNA binding sequence (SBS) (Tonthat et al., 2013). Notably, SlmA-T33A abolishes the 

DNA binding activity of SlmA and renders it defective in NO (Cho et al., 2011). Comparison of the 

DNA-free and DNA-bound SlmA structures showed that dramatic conformational changes occur upon 

SlmA binding to DNA (Tonthat et al., 2013). The region between the DNA binding and dimerization 

domains (residues 103-125) displays various degree of flexibility in the DNA-free forms, but this region 

adopts a rigid conformation in the DNA bound SlmA dimer (Tonthat et al., 2013).  Another region that 

shows significant change is the the predicted FtsZ binding region. This region is partially occluded by the 

DNA binding domain of SlmA in the DNA-free structure, but it is fully exposed in the DNA-bound form 

(Cho and Bernhardt, 2013; Tonthat et al., 2013). Interestingly, SlmA forms an oriented dimer-of-dimers 

on DNA molecules containing the SBS consensus sequence (GTgAGtaCTcAC), similar to another TetR 

family protein QacR which also binds DNA as an oriented dimer-of-dimers (Schumacher et al., 2002; 

Tonthat et al., 2013). However, different than QacR, these SlmA dimer-of-dimers can spread on the 
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DNA. Formation of SlmA dimer-of-dimers and spreading on the DNA are believed to be critical for 

SlmA to prevent Z ring formation in vivo, but direct evidence is missing so far. The E. coli chromosome 

contains about 24 to 52 SlmA binding sites which are mainly distributed in the origin proximal region of 

the chromosome (Cho et al., 2011; Tonthat et al., 2011). Thus, the activity of SlmA is spatially and 

temporally restricted to the locations occupied by the origin-proximal region of the chromosome, 

allowing Z ring to form once the origin proximal regions are segregated away from the midcell.  

The C-terminal domain of SlmA mediates dimerization and interaction with FtsZ (Bernhardt and 

de Boer, 2005; Cho et al., 2011; Tonthat et al., 2011). Even though studies of the DNA binding mutant 

SlmA-T33A suggest that SlmA may exist as monomers in the absence of SBS DNA, accumulated 

evidences indicate that it forms dimers without binding to SBS DNA and SBS DNA binding serves to 

promote its oligomerization and binding to FtsZ (Cho et al., 2011; Tonthat et al., 2011; Tonthat et al., 

2013). Residues important for FtsZ binding have been revealed by an elegant genetic screen by the 

Bernhardt lab, and include F65, R73, L94, G97, R101 and N102 (Cho and Bernhardt, 2013; Cho et al., 

2011). All these residues, when mutated, reduce or eliminate the SlmA-FtsZ interaction and thus abolish 

the NO function of SlmA. Intriguingly, although SlmA forms a dimer-of-dimers on the SBS DNA, only 

one FtsZ-interaction interface per dimer is required for SlmA to mediate NO (Cho and Bernhardt, 2013).  

In vivo, SlmA associated with DNA blocks FtsZ assembly into the Z ring over the nucleoid until 

chromosome segregation occurs. This spatiotemporal regulation of Z ring formation depends on the 

proper localization of SlmA onto its SBSs. When additional SBSs are provided in a multi-copy plasmid 

that can diffuse randomly inside the cells, SlmA is de-localized to the plasmid and blocks FtsZ assembly 

throughout the cell (Cho et al., 2011). However, at the molecular level, how SBS bound SlmA prevents 

FtsZ to assemble into the Z ring is not clear.  Results from the Bernhardt lab suggest that when bound 

with SBS DNA, SlmA stimulates the GTP hydrolysis of FtsZ and disassembles FtsZ proto-filaments (Cho 

et al., 2011). As SBS-SlmA induced disassembly of FtsZ proto-filaments requires the GTPase activity of 
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FtsZ, it has been proposed that SBS-SlmA breaks the FtsZ filaments at position where GTP has been 

hydrolyzed to GDP (Cho et al., 2011). This mechanism is similar to the N terminal domain of MinC, 

which also prevents Z ring formation (FtsZ polymerization) (Shen and Lutkenhaus, 2010). However, 

SlmA was observed to have no impact on FtsZ GTPase activity and proto-filament formation by the 

Schumacher group, which proposed that SlmA prevents Z ring formation by sequestration of FtsZ proto-

filaments onto the SlmA-DNA complexes that are unable to support Z ring formation (Tonthat et al., 

2013). Here, we tried to understand the SlmA-FtsZ interaction by studying FtsZ mutants resistant to the 

NO function of SlmA in vivo. Our data showed that SBS bound SlmA indeed disassembles FtsZ proto-

filaments, consistent with the Bernhardt group. In addition, analysis of the FtsZ mutants suggests that 

SlmA antagonizes FtsZ polymerization by affecting the conformational change during FtsZ assembly. 

Results 

Overexpression of SlmA blocks cell divison and condenses the chromosome 

Opposing models have been proposed for how SlmA acts on FtsZ to prevent its assembly into the 

Z ring. However, the SlmA-interaction interface on FtsZ has not been identified, hindering our 

understanding of SlmA-FtsZ interaction. As SlmA overexpression blocks cell division and causes cell 

death by recruiting FtsZ to the nucleoids (Bernhardt and de Boer, 2005), we tried to screen for FtsZ 

mutants that were resistant to SlmA overexpression mediated killing, reasoning that ftsZ mutations 

disrupting the FtsZ-SlmA interaction should rescue the cells from SlmA overexpression. However, we 

were unable to isolate any SlmA resistant FtsZ mutant. Using SlmA-R73 as a control, we found that 

overexpression of this mutant also blocked colony formation on plates due to severe chromosome 

condensation (Fig. 11), which had been indicated by previous studies (Cho et al., 2011).  This 

chromosome condensation is due to the DNA binding activity of SlmA as combining the T33A mutation 

and R73D mutations eliminated the DNA condensation effect (data not shown). Overexpression of the 

DNA binding mutant SlmA-T33A only led to cell division block (Fig 11). This result explained the 
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difficulty of obtaining FtsZ mutants resistant to SlmA overexpression because FtsZ mutants resistant to 

the division inhibitory activity of SlmA would die of chromosome condensation. Interestingly, we did not 

observe chromosome condensation by SlmA-WT overexpression unless the protein was expressed at 

extremely high level, suggesting that either the cell division block caused by SlmA dominates over the 

chromosome condensation effect or FtsZ counteracts the effect SlmA has on condensation. 

Isolation of FtsZ mutants resistant to de-localized SBS-SlmA 

De-localization of SBS-SlmA by providing the cells with extra copies of SBSs in a randomly 

distributed plasmid also leads to severe cell division block and cell death by blocking Z ring formation 

throughout the cells (Fig. 13A) (Cho et al., 2011). In contrast to overexpression, this killing does not 

require dramatic overexpression of SlmA, as shown in Fig. 12A. 10 μM IPTG was enough to block 

colony formation of a strain expressing SlmA from plasmid pSD133 (Ptac::slmA, note that the pSD128 

used above expressed a much higher level of SlmA because the original ribosome binding site for SlmA 

was changed to the consensus AGGAGG) and containing extra copies of SBS in a multi-copy plasmid 

(p2SBSK, pUC18K with SBS12 and SBS17). Western blot showed that at this IPTG concentration, SlmA 

was overexpressed about 4 fold (Fig. 12D). This killing by SlmA depended upon the SlmA-DNA 

interaction and SlmA-FtsZ interaction as disruption of either one of these two interactions by known slmA 

mutations rescued growth, as shown here (Fig 12A) and by previous studies (Cho and Bernhardt, 2013). 

In theory, mutations in ftsZ that disrupt the FtsZ-SlmA interaction should also rescue the cells. Therefore, 

we decided to screen for FtsZ mutants under these conditions. We first created a functional FtsZ mutant 

library by PCR random mutagenesis over the coding region of FtsZ using the plasmid pBANG112 in the 

strain DU11/pKD3C [W3110 ftsZ0 recA::Tn10 slmA<frt>/pKD3C ftsZ+](Fig. 13B). pBANG112 has been 

reported to produce about the chromosomal amount of FtsZ (Shen and Lutkenhaus, 2009). The resultant 

strain DU11/pBANG112M (M stands for mutant library) was transformed with plasmid p2SBSK and  
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Fig. 11. Overexpression of SlmA blocks cell division and condenses the chromosome. A) A spot test to 

test the toxicity of overexpression of SlmA and various mutants. pSD128 (Ptac::slmA) or its derivatives 

containing the T33A or R73D mutations was transformed into the ∆slmA strain PS1603 (W3110 

slmA::cat). Single colonies were picked in LB, serially diluted ten fold and 3 μl of each dilution was 

spotted on plates containing spetinomycin and chloramphenicol with or without IPTG and incubated at 

37°C overnight.  B) DAPI staining of PS1603 cells expressing slmA alleles from pSD128.  Overnight 

cultures of the strains containing the plasmids were diluted 100 times in LB supplemented with antibiotics 

and incubated at 37°C. At OD540 0.3, the cultures were diluted 10 fold in fresh LB medium with 40 μM 

IPTG. Cultures were incubated for an additional 2 hours at 37°C and DAPI (final concentration 200 

ng/ml) added to the culture 20 min before imaging. 
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Fig. 12. De-localized SlmA blocks cell division without dramatic overexpression of SlmA. A)  Spot test 

to check the response of SlmA variants to mislocalized SBSs (contained on a multicopy plasmid). The 

method was similar to Figure 11A. The plasmid pSD133 (Ptac::slmA) and its derivatives in combination 

with pUC18K (Vector) or p2SBSK (2xSBS) were transformed into PS1603 (W3110 slmA::cat). The 

plates were incubated at 30°C for 20 hours with or without IPTG as indicated. B) Morphology of cells 

expressing SlmA or SlmA mutants in the presence of pUC18K or p2SBSK from Figure 12A. Cells from 

the spots at the indicated IPTG concentrations from Figure 12A were resuspended in 200 μL LB medium 

and examined by phase microscopy. C and D) Western blot to compare the protein level of SlmA mutants 

and to determine the SlmA level at different concentration of IPTG. Overnight cultures of PS1603 

(W3110 slmA::cat) containing pSD133 expressing various slmA mutants were diluted 100 fold in LB 

medium supplemented with appropriate antibiotics without or with 5 μM IPTG, 10 μM IPTG or 40 μM 

IPTG.  W3110 and PS1603 were run in the second and third lanes as controls. The cultures were 

grown at 30°C until the OD540 reached about 0.4. At this time 1 ml from each culture was spun down and 

resuspended in 100 μl sample buffer, heated for 5 min, and 10 μl from each sample or its dilutions was 

then loaded onto the gel for analysis.  
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pSD133 and survivors selected in the presence of 20 μM IPTG (cells with wild type FtsZ would be unable 

to form colonies at 10 μM IPTG). Plasmids were isolated from the survivors and subjected to sequencing 

to identify ftsZ mutations.  

Sequence analysis revealed that most of these SlmA resistant FtsZ mutants contained one amino 

acid substitution at the H7 helix that connects the two sub-domains of FtsZ (ftsZ-K190I, Fig 13C&D). 

Some of the ftsZ- K190I containing mutants had additional amino acid substitutions, but when these 

mutations were introduced into pBANG112, no resistance to SlmA was observed (data not shown). 

Therefore, these mutations were discarded. Another mutation ftsZ-D86N locating at the H3 helix also 

appeared twice as a double mutant ftsZ-D86N&G95D and a triple mutant ftsZ-D86N&S246Y&M344I (Fig 

13D). Later analysis showed that the resistance was mainly due to D86N. Both ftsZ-K190I and ftsZ-D86N 

mutations, when introduced into pBANG112, complemented the ftsZ depletion strain DU11/pKD3C at 

42°C, 37°C or 30°C, although both seemed to cause a twisted-septum phenotype at or below 37°C (data 

not shown).  

Since ftsZ-K190I and ftsZ-D86N affected division morpholgy, we substituted ftsZ-K190 and ftsZ-

D86 with other amino acids to see whether we could obtain mutants that retain resistance to SlmA but 

with normal division function. For ftsZ-K190, changing it to Ala, Leu, Glu, Asp, Trp and Val all 

conferred some resistance to SlmA in the presence of extra copies of SBS, but only K190V showed 

similar resistance as ftsZ-K190I and displayed better morphology (Fig 13C). Interestingly, ftsZ-K190R did 

not show any resistance to SlmA in the presence of the extra copies of SBS, suggesting that the positive 

charge at this position is important for the sensitivity to SBS-SlmA. Changing D86 to Lys also reduced 

the sensitivity to SBS-SlmA, but the FtsZ-D86K mutant displayed a more severely twisted septum (Fig 

13C and data not shown).  Substitution of D86 to Val did not provide any resistance to SlmA.  Since 

FtsZ-K190V and FtsZ-D86N showed the most resistance to SlmA in the presence of extra copies of SBS 

with the least affect on septal morphology, they were chosen for further study.  
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Fig. 13. Mutations in two different regions of FtsZ confer resistance to de-localized SlmA. A) Principles 

of screening for FtsZ mutants that are resisant to the de-localized SBS-SlmA. SlmA dimer-of-dimers 

(orange ovals) localized to specific loci on the nucleoid do not affect Z ring formation at the midcell such 

that cell division and growth are not inhibited. However, in the presence of a multicopy plasmid that 

carries SBS, SlmA dimer-of-dimers are delocalized to the plasmids. These delocalized SBS-SlmA blocks 

Z ring formation throughout the cell, resulting in cell filamentation and inhibition of growth on LB plates. 

This cell death depends on the interaction of SlmA with DNA and FtsZ as elimination of DNA binding by 

T33A mutation or elimination of interaction with FtsZ by R73D mutation allow cells survive in the 

presence of extra copies of SBS in the plasmid. Mutations on FtsZ that disrupt FtsZ-SlmA interaction 

should also allow cells survive regardless of the delocalized SBS-SlmA. B) Steps to screen for the SlmA 

resistant FtsZ mutants. C) A spot test of the resistance of FtsZ mutants to the de-localized SBS-SlmA. 

Plasmids pSD133 (Ptac::slmA) and p2SBSK (pUC18 with 2SBS sites) were introduced into the ftsZ- 

strain DU11 (ftsZ0 slmA<frt> recA::Tn10) complemented with pBANG112 or its derivatives containing 

different ftsZ alleles. One colony of each resultant strain was resuspended in 1ml LB medium, serially 

diluted by 10 and 3 μl from each dilution was spotted on LB plates containing various concentrations of 

IPTG and supplemented with ampicillin, spectinomycin and kanamycin. The plates were incubated at 

30°C for 30 hours before being photographed. pUC18K was used as control for resistance to the 

overproduction of SlmA. D.) Locations of the ftsZ mutations that showed resistance to delocalized SBS-

SlmA. The structure of the FtsZ monomer from Pseudomonas (PDB# 1OFU) is shown and the residues 

corresponding to those mutated in E. coli are indicated. FtsZ-K190 (A190 in Pseudomonas) is in blue and 

FtsZ-D86 in red.  
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Fig. 14. Characterization of FtsZ-K190V, FtsZ-D86N and FtsZ-K190V&D86N mutant strains. A) 

Morphology of the FtsZ mutant strains growing at different temperatures. Overnight cultures of the 

indicated strains grown at 42°C were diluted 100 times in LB supplemented with antibiotics and 

incubated at 42°C. At OD540 = 0.3, the cultures were diluted 10 fold in fresh LB medium, split into three 

parts, and grown at 42°C, 37°C and 30°C for an additional 2 hours before imaging. B) FtsZ-

K190V&D86N double mutant does not confer more resistance to de-localized SBS-SlmA than the single 

mutants. Plasmids pSD133 (Ptac::slmA) and p2SBSK (pUC18 with 2SBS sites) were introduced into the 

FtsZ mutant strains containing different ftsZ alleles. One colony of each strain was resuspended in 1 ml 

LB medium, serially diluted by 10 and 3 μl from each dilution was spotted on LB plates containing 

various concentration of IPTG and supplemented with spectinomycin and kanamycin. The plates were 

incubated at 37°C for 30 hours before being photographed. 
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Characterization of FtsZ-K190V and FtsZ-D86N  

To further characterize the ftsZ-K190V and ftsZ-D86N mutations, we first introduced them into 

the chromosome at their native locus by the lambda RED recombineering system (Datsenko and Wanner, 

2000). The resultant strains SD160 (leu::Tn10 ftsZ-K190V) and SD163 (leu::Tn10 ftsZ-D86N) did not 

show any significant difference to the wild type strain in growth rate (data not shown). However, the 

morphology of the mutant cells varied with temperature. At 42°C and 37°C, both SD160 and SD163 cells 

looked similar to wild type cells. However, as the temperature decreased to 30°C, some of the SD160 

cells seemed to have a twisted septum while a large population of SD163 showed the twisted septum 

morphology (Fig. 14A). Further inactivation of slmA to create SD161 (leu::Tn10 ftsZ-K190V slmA::cat) 

or SD165 (leu::Tn10 ftsZ-D86N slmA::cat) did not result in any new phenotype. Combining K190V and 

D86N in the plasmid pBANG112 severely affected its ability to complement the FtsZ null strain (data not 

shown), but  SD164 carrying these two mutations in the chromosome (leu::Tn10 ftsZ-K190V&D86N) 

grew at 42°C and 37°C but not 30°C due to formation of twisted septa and swollen middle zone (Fig. 

14A). Sicne the strain did not show an increased resistance to SlmA in the presence of extra copies of 

SBS (Fig. 14B), it was not studied further. 

A reduction in GTPase activity of FtsZ appears to be a common mechanism for resistance to FtsZ 

inhibitors, such as SulA and MinC (Bi and Lutkenhaus, 1990a; Dai et al., 1994; Dajkovic et al., 2008a; 

Dajkovic et al., 2008b). Therefore, we tested whether the resistance conferred by ftsZ-K190V and ftsZ-

D86N are specific for SlmA. As shown in Fig. 15A, ftsZ-K190V and ftsZ-D86N did not show any 

resistance to SulA. However, SD160 (leu::Tn10 ftsZ-K190V) and SD163 (leu::Tn10 ftsZ-D86N) 

expressing MinCD were able to form colonies with higher IPTG concentration compared to the wild type 

strain (Fig. 15B). This better survival seemed to indicate resistance to MinCD, however, SD160 and 

SD163 expressing MinCD were as filamentous as wild type expressing MinCD (Fig. 15C). Thus, the 
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better survival was due to an unknown mechanism rather than specific resistance to the division inhibitory 

activity of MinCD. 

FtsZ-K190V and FtsZ-D86N are resistant to delocalized SBS-SlmA and overpexpression of 

SlmA or SlmA-T33A 

Creation of strains SD161 (leu::Tn10 ftsZ-K190V slmA::cat) and SD165 (leu::Tn10 ftsZ-D86N 

slmA::cat) allowed us to confirm the resistance of K190V and D86N to de-localized SBS-SlmA without 

any contribution from the slightly higher level provided by pBANG112. As shown in Fig. 16A, an ftsZ-

WT strain SD120 (leu::Tn10 slmA::cat) containing the slmA expression plasmid pSD133 and plasmid 

p2SBSK failed to form colonies at or above 10 μM IPTG. However, the mutant strains harboring the 

same pair of plasmids survived at higher concentrations of IPTG. Similar to the result in Fig. 13C, 

SD161/pSD133&p2SBSK, containing the ftsZ-K190V mutation, formed colonies on plates until the IPTG 

concentration reached 100 μM (40× SlmA), at which SlmA with the control plasmid pUC18K blocked 

cell division completely. SD165/pSD133&p2SBSK showed a lower resistance, failing to form colonies at 

20 μM IPTG. Consistent with the spot test, cells of SD120/pSD133&p2SBSK expressing SlmA in the 

presence of extra SBS were highly filamentous even without IPTG induction, while cells of 

SD161/pSD133&p2SBSK and SD165/pSD133&p2SBSK were not filamentous until the IPTG was added 

at 40 μM and 10 μM respectively (30× and 4× SlmA). Thus, these results confirmed that ftsZ-K190V and 

ftsZ-D86N show resistance to the delocalized SBS-SlmA with ftsZ-K190Vbeing more resistant than ftsZ-

D86N.  

In the presence of the control plasmid pUC18K, cells carrying ftsZ-WT were killed by SlmA 

overexpression at IPTG concentration of 100 μM (40× chromosomal level). However, cells of 

SD161/pSD133&pUC18K and SD165/pSD133&pUC18K survived, suggesting that ftsZ-K190V and ftsZ-

D86N provide resistance to SlmA overproduction.  To ensure this was the case, we examined the 

morphology of cells expressing SlmA with the control plasmid pUC18K. As expected, cells of the ftsZ-  
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Fig. 15. FtsZ-K190V and FtsZ-D86N do not confer resistance to SulA or MinCD. A & B) Spot test of the 

resistance of FtsZ-K190V and FtsZ-D86N to SulA and MinCD. Strains containing the indicated ftsZ 

mutations were transformed with the SulA expression plasmid pBS31 or MinCD expression plasmid 

pBANG59. A single colony of each resultant strain was then resuspended in 1 ml LB medium, diluted 

serially by 10 and 3 μl of each dilution was spotted on LB plates supplemented with spectinomycin 

(pBANG59) or ampicillin (pBS31) and various IPTG concentrations. The plates were then incubated at 

37°C overnight before taking pictures. C) Effect of MinCD expression of the morphology of strains 

carrying the indicated ftsZ mutations. Overnight cultures of each of the indicated strains was diluted 100 

fold in LB medium with or without IPTG and then grown at 37°C for 2 hours before photography. 
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Fig. 16. FtsZ-K190V and FtsZ-D86N show resistance to de-localized SBS-SlmA and overproduction of 

SlmA. A) K190V and D86N display significant resistance to SBS-SlmA and SlmA overproduction when 

introduced into the chromosome. A spot test was carried out using the strains SD110 (leu::Tn10 

slmA::cat), SD161 (leu::Tn10 ftsZ-K190V slmA::cat) and SD165 (leu::Tn10 ftsZ-D86N slmA::cat) and 

plasmid pairs pSD133&p2SBSK or pSD133&pUC18K, following the procedure described in Fig. 12A. 

B) Morphology of cells in A) grown in liquid culture with appropriate IPTG concentrations. Overnight 

cultures of the indicated strains were diluted 100× in LB medium supplemented with appropriate 

antibiotics, grown at 30°C for 2 hours and then diluted 10 times and grown for 2 1/2 half hours in the 

presence of IPTG added at the indicated concentrations to induce the expression of SlmA.  
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Fig. 17. FtsZ-K190V and FtsZ-D86N display resistance to overproduction of SlmA-T33A. A) A spot test 

to determine the resistance of FtsZ-K190V and FtsZ-D86N to overproduction of SlmA-T33A. Strains 

SD120, SD161 and SD165 were transformed with plasmid pSD128-T33A and the test was carried out as 

described iin the legend to Fig 12A. B) Morphology of cells in A) growing in liquid LB medium with the 

indicated IPTG concentration. Experiments were performed as in Fig 16B.  
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WT strain SD120 containing the control plasmid pUC18K along with pSD133 became filamentous at 40 

μM IPTG. However, cells of strain SD161/pSD133&pUC18K only became mildly elongated at this IPTG 

concentration, indicating FtsZ-K190V provides resistance to SlmA overxpression. Similar to the results 

with p2SBSK, cells carrying the ftsZ-D86N mutation were more filamentous than cells carrying the ftsZ- 

K190V mutation with pUC18K, but were less filamentous than ftsZ-WT containing cells under the same 

conditions. Therefore, these results indicated that both ftsZ-K190V and ftsZ-D86N reduce the sensitivity to 

overproduction of SlmA even when SlmA is not delocalized by SBSs on a multicopy plasmid.  

SlmA-T33A is a nucleoid occlusion defective mutant because it does not bind DNA (Cho et al., 

2011). However, SlmA-T33A is able to interact with FtsZ in vitro and disrupt Z rings when overproduced 

(Cho et al., 2011). Therefore, we tested whether ftsZ-K190V and ftsZ-D86N provide resistance to 

overproduction of SlmA-T33A. As shown in Fig. 17, ftsZ-WT strain SD120 expressing SlmA-T33A from 

plasmid pSD128-T33A failed to form colonies on plates with 40 μM IPTG or above. However, SD161 

and SD165 expressing SlmA-T33A survived even at 1000 μM IPTG and 100 μM IPTG respectively, 

suggesting that they are resistant to SlmA-T33A overexpression. Microscopy analysis of the cells showed 

that at 100 μM IPTG, cells with wild type FtsZ were homogeneously filamentous, while cells containing 

FtsZ-D86N were less filamentous, consistent with the spot test. Cells from the strains with FtsZ-K190V 

were not elongated, but they tended to have blunt poles and twisted septa (Fig. 17B). Since SlmA-T33A 

cannot bind to DNA, its inhibitory activity on cell division is likely due to effects on FtsZ for 

polymerization, suggesting that ftsZ-K190 and FtsZ-D86 may be directly involved in binding SlmA. 

FtsZ-K190V but not FtsZ-D86N impairs cell division of the min mutant 

SlmA was first identified as a gene synthetic lethal with min deletion because the cells could not 

divide or assemble functional Z-rings (Bernhardt and de Boer, 2005). To further examine ftsZ-K190V and 

ftsZ-D86N, we tested whether either of them was synthetic lethal with the min deletion. We reported 

recently that the ∆min∆slmA double mutant could not grow at temperatures below 37°C, but at 42°C the 
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cells grow well (Shen and Lutkenhaus, 2010). Thus we created strains SD162 (leu::Tn10 ftsZ-K190V 

min::kan) and SD167 (leu::Tn10 ftsZ-D86N min::kan) at 42°C and then monitored their growth upon 

shift to 30°C. As expected, the ∆min∆slmA double mutant DU5 (min::kan slmA::cat) could not form 

single colonies at 30°C on an LB plate, but surprisingly, both SD162 and SD167 were able to grow at 

30°C indicating they were not synthetic lethal with ∆min (Fig 18A). Microscopic analysis of cell 

morphology indicated that cells of SD162 were much longer than the cells of the min deletion strain S4 

(leu::Tn10 min::kan), while cells of SD167 were similar to S4 (Fig. 18B). To quantify the difference 

between them, we measured the average cell lengths of all four strains grown at 42°C and after they were 

shifted to 30°C for two and a half hours. As shown in Fig. 18C, the average cell lengths of all four strains 

were very similar at 42°C.  After growth at 30°C for two and a half hours, the ∆min strain only increased 

slightly in cell length, whereas the ∆min∆slmA double mutant DU5 stop dividing and the average cell 

length increased to 26.8 μm. The average cell length of strain SD162 increased from 6.8 μm to 16.7 μm 

indicating decreased division at 30°C. The cell length of SD167 also increased, but it was similar to that 

of the min deletion strain S4. Taken together, these results indicate that the more resistant ftsZ-K190V is 

synthetic sick with ∆min while the less resistant ftsZ-D86N is not.  

FtsZ-K190V and FtsZ-D86N are resistant to SlmA mediated NO 

SlmA is required to prevent division over unreplicated nucleoids in DnaA depleted cells 

(Bernhardt and de Boer, 2005). Presumably, SlmA is also required for the protection of unsegregated 

chromosomes because Z-rings rarely form over the unsegregated nucleoid in a parCTS mutant at the 

nonpermissive termperature (Yu and Margolin, 1999). To test this, slmA was deleted in the parCTS strain 

SD139 (parCTS-Tn10) to create SD140 (parTTS-Tn10 slmA::cat). Cells of SD139 and SD140 were grown 

in LB medium at 30°C to an OD540 of 0.4, diluted 10-fold and then shifted to 42°C for an hour. DAPI was 

added to the culture before imaging so that septation over the DNA could be visualized. As reported 

previously, most of the SD139 cells were mildly elongated and contained a single nucleoid mass (Fig.  
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Fig. 18. FtsZ-K190V but not FtsZ-D86N is synthetic sick with a min deletion. A) Spot test to examine the 

synthetic lethality of strains S4 (W3110 min::kan), DU5 (W3110 min::kan slmA::cat), SD162 (W3110 

ftsZ-K190V min::kan) and DU167 (W3110 ftsZ-D8N min::kan). A single colony of each strain grown on 

LB plates at 42°C was resuspended in 1 ml LB medium and serially diluted by 10. 3 ul of each dilution 

was then spotted on two LB plates supplemented with kanamycin, one of which was incubated at 42°C 

overnight and the other was incubated at 30°C for 20 hours. B) Morphology of the above strains after 

being shifted to 30°C for 2 and half hours. An overnight culture of each strain grown at 42°C was diluted 

100×in fresh LB medium supplemented with kanamycin. The diluted cultures were then grew at 42°C for 

2 hours, diluted by 10× and split to two parts, one grown at 42°C while the other one was incubated at 

30°C for 2 and half hours. Images of the cells grown at 42°C are not shown.  
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Fig. 19. FtsZ-K190V and FtsZ-D86N redcue SlmA mediated NO protection of unsegregated 

chromosomes. A) DAPI staining of cells of indicated genotypes after being shifted to 42°C for an hour. 

Overnight cell cultures of each strain was diluted 100× in LB medium supplemented with tetracycline and 

grwon at 30°C for ~3 hours until the OD540 reached about 0.4. The culture was then diluted 5× and split 

into two parts, one of which was grown at 30°C and the other was shifted to 42°C for an hour. DAPI was 

added to the culture at a final concentration of 400 ng/ml 20 minutes before imaging. B) Cells in A were 

quantified to calculate the percentage of cells with septa and the percentage of septa over unsegregated 

nucleoids. Data shown are the average of three experiments with more than 200 cells for each.  
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19A). The percentage of cells with septa decreased about 50% compared to those grown at 30°C, 

however, among those cells with septa, 21.7% of them were observed over the DNA. The percentage of 

divisions over the DNA seemed to be high compared to results observed after DnaA depletion. However, 

parCTS mutant is only defective in the last step of segregation so it is likely that the chromosomes are at 

least partially segregated leading to some division. As expected, the percentage of cells with septa was 

much higher in the slmA deleted strain SD140 at non-permissive temperature (67.3%) and more than half 

of the divisions were over the nucleoids (56.8%). Therefore, SlmA mediated nucleoid occlusion was 

required for the prevention of division over the unsegregated chromosomes.  

To further confirm FtsZ-K190V and FtsZ-D86N are resistant to the SlmA mediated nucleoid 

occlusion, we created strain SD170 (parCTS-Tn10 ftsZ-K190V) and SD171 (parCTS-Tn10 ftsZ-D86N) by 

introducing the parCTS alleles into the strains SD168 (ftsZ-K190V) and SD169 (ftsZ-D86N) by P1 

mediated transduction. SD170 and SD171 were subjected to the same treatment as described above and 

divisions over the DNA were counted. Similar to SD140, almost 60% of the SD170 cells were observed 

with septa, and about half of these divisions (50.5%) occurred over the nucleoids at the non-permissive 

temperature. Cells of SD171 also displayed a similar phenotype to SD140 and SD170 when shifted to 

42°C, but the percentage of cells with division (45.8%) and percentage of the division over the nucleoids 

(40.1%) were lower. The percentage of cells with septa for strains SD170 and SD171 seemed to be high 

at 30°C, but that was likely due to the fact they had twisted septa at 30°C. Nonetheless, compared to 

SD139 (parCTS), these results clearly showed that SlmA mediated nuceloid occlusion was less effective 

when ftsZ-K190V or ftsZ-D86N were present.  

FtsZ-K190V and FtsZ-D86N are partially resistant to SBS-SlmA in vitro 

The results above show that FtsZ-K190V and FtsZ-D86N are resistant to SlmA in vivo, so it is 

likely they would be also resistant to the SBS bound SlmA in vitro. However, the impact of SBS bound 

SlmA on FtsZ polymerization is controversial. To test whether our mutants provide resistance to SlmA in 
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vitro, we first had to address the disparity of previous reports. We employed electron microscopy to 

monitor the effect of SBS-SlmA complexes on FtsZ polymerization using the same SBS17-30mer 

(CAAAAGTAAGTAAATGGTCACTAACGTTGA) and buffer as the Bernhardt group (Cho’s buffer:50 

mM PIPES, pH 6.7, 10 mM MgCl2 and 200 mM KCl) and follwed their procedure (Cho et al., 2011).  

Consistent with their observations, SlmA (2 μM) in the presence of SBS17 DNA (2 μM) dramatically 

reduced the amount of FtsZ (2 μM) polymers on the grid, while SlmA alone or the SBS17-30mer alone 

appeared to have no effect on FtsZ polymerization (Fig. 20A). SlmA-R73D, which is defective in SlmA-

FtsZ interaction, had no effect (Fig. 20C). To make sure this antagonizing effect by SBS-SlmA on FtsZ 

assembly was not buffer specific, we performed the reactions two additional buffers: one that we use 

routinely in the lab (DU’s buffer, 50 mM HEPES pH 8.0, 10 mM MgCl2 and 200 mM KCl) and the buffer 

Schumacher group used (50 mM HEPES pH7.7, 100 mM KAcetate and 5 mM MgAcetate). Consistent 

with results with the Bernhardt group buffer, FtsZ polymerization was significantly reduced by SlmA in 

the presence of SBS17-30mer DNA in both buffers (Fig. 20B and data not shown). Again, SlmA or 

SBS17-30Mmer DNA did not affect FtsZ polymerization. Thus, the different observations of the effect of 

SBS bound SlmA on FtsZ polymerization is not due to the difference in buffer components. 

The above results suggest that the different effects on FtsZ assembly by SBS bound SlmA in the 

two studies might be due to the different SBS DNA used for the assays (the Schumacher group used a 

SBS-18mer DNA [CCCAATGTGAGTGCTCAC] containing the consensus sequences at one end of the 

molecule) (Tonthat et al., 2013). The structure of the SlmA-SBS-20mer structure (the consensus sequence 

was centered) showed that SlmA makes two additional base interactions and one additional phosphate 

interaction on each side of the DNA molecule compared to the SlmA-SBS-12mer structure. In agreement 

with this, SlmA displays a higher affinity for SBS-20mer compared to SBS-12mer (Tonthat et al., 2013). 

SlmA was likely not fully activated when bound with the SBS-18mer used in the Schumacher study, due 

to the absence of three contacts on one side of the molecule. To test this idea, we used three shorter SBS 

DNA molecules for the assays. In the presence of a shorter version of SBS17 (SBS17-20mer, 
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GTAAGTAAATGGTCACTAAC) SlmA dramatically reduced the FtsZ filaments in the grid, but it 

worked less efficiently than bound with SBS17-30mer (Fig 20B). When the SBS-18mer and an SBS-

14mer (AGTGAGTACTCACT) were used for the reactions, similar results were observed. This 

reduction in activity with shorter SBS DNA molecules was more obvious in the buffer Schumacher group 

used (data not shown), indicating that SlmA works less well in this buffer. All the three SBS DNA probes 

were able to activate SlmA (His-tag free) to bind to FtsZ (Fig 24D). Taken together, the results suggest 

that when bound with SBS DNA, SlmA appears to antagonize FtsZ protofilament formation and the 

conflicting observations from previous studies are likely due to the use of different SBS DNA molecules 

and buffers.  

We next tested whether our mutants FtsZ-K190V and FtsZ-D86N provide resistance to the 

inhibitory activity of SBS bound SlmA using SBS17-30mer in Du’s buffer. As showed in Fig. 21, 

polymerization of wild type FtsZ was again significantly affected by the addition of SlmA with SBS17-

30mer DNA, only short polymers were occasionally observed. However, the proto-filaments formed by 

FtsZ-K190V were largely unaffected by the addition of SlmA with SBS17-30mer DNA to the reaction, 

although the proto-filaments seemed to be shorter and not as smooth (Fig. 21). Consistent with the low 

resistance to SlmA in vivo, some proto-filaments of FtsZ-D86N were observed in the presence of SlmA 

and SBS17-30mer DNA, but less than FtsZ-K190V (Fig. 21). Polymers formed by wild type FtsZ or the 

FtsZ mutants FtsZ-K190V and FtsZ-D86N were largely not affected by the addition of SlmA or addition 

of the SBS17 DNA (2 μM). Interestingly, although wild type FtsZ and FtsZ-K190V (2 μM) assembled 

into smooth single-stranded filaments, FtsZ-D86N tended to form twin-filaments. At a higher 

concentration of FtsZ-D86N (5 μM), the bundling phenomenon was more dramatic and most of the 

filaments were engaged in multi-stranded polymers consisting of more than four or five proto-filaments 

(data not shown). This concentration dependent bundling was much less dramatic with WT FtsZ or FtsZ-

K190V. These results indicated that although FtsZ-D86N showed some resistance to the action of SBS-

SlmA and this resistance may be due to the tendency of this mutant to bundle.   
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Fig. 20. SlmA is activated by an SBS DNA to antagonize FtsZ polymerization. A) FtsZ polymerization 

with or without the addition of SlmA and SBS17-30mer in Cho’s buffer. Reactions were performed in 50 

μl volume containing FtsZ (2 μM) and GTP (1 mM) with or without the addition of SlmA and SBS17-

30mer DNA (2 μM). Reactions were incubated at room temperature for 5 minutes and then samples were 

spotted onto carbon-coated grids for 1 minute and negatively stained with 1% uranyl acetate and 

visualized by electron microscopy.  B) FtsZ polymerization with or without the addition of SlmA and 

SBS DNA of different lengths in Du’s buffer. Reactions were performed as in A). C) Control showing 

that a SlmA mutant (R73D) defective in SlmA-FtsZ interaction did not affect FtsZ polymerization. 

Reactions were formed as in A) but in Du’s buffer. Scale bar is 100 nm. 
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Fig. 21. Assembly of FtsZ-K190V and FtsZ-D86N is resistant to SlmA in vitro. A. FtsZ polymerization 

reactions were performed in 50 μl volumes containing FtsZ or its mutants (2 μM) and GTP (1 mM) with 

or without the addition of SlmA and SBS17-30mer DNA (2 μM). Reactions were incubated at room 

temperature for 5 minutes and then samples were spotted onto carbon-coated grids for 1 minute, 

negatively stained with 1% uranyl acetate and visualized by electron microscopy. Scale bar is 100 nm 
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K190V and D86N do not affect FtsZ binding to SlmA  

According to the current model for SlmA function, there are two ways for ftsZ mutations to 

confer resistance to SlmA: 1) lower the GTPase activity of FtsZ or 2) disrupt the FtsZ-SlmA interaction. 

The fact that ftsZ-K190V and ftsZ-D86N are sensitive to the division inhibitory activities to MinCD and 

SulA suggest that they should not affect the GTPase of FtsZ dramatically. Indeed, the GTPase activities 

of these two mutants only appeared slightly lower than FtsZ-WT (Table 5, FtsZ-WT 4.6 GTP/FtsZ/Min, 

FtsZ-K190V 4.0 GTP/FtsZ/Min and FtsZ-D86N 3.5 GTP/FtsZ/Min at 50 mM KCl; at 200 mM KCl, the 

turnover rates were calculated to be 9.8, 4.4 and 5.3 GTP/Min/FtsZ for wild type FtsZ, FtsZ-K190V and 

FtsZ-D86N respectively) indicating that they likely provide resistance by other mechanisms.   

To test whether these two mutations disrupt FtsZ-SlmA interaction in vivo, we used bacterial two-

hybrid assay to monitor the interactions between FtsZ and SlmA. We first made sure that the bacterial two 

hybrid assay reports SlmA-SlmA interaction and FtsZ-SlmA interaction by using SlmA mutants defective 

in self-interaction or interaction with FtsZ. Surprisingly, we found that the SlmA-T33A mutant which has 

been reported to be deficient in self-interaction interacted strongly with wild type SlmA as well as other 

SlmA mutants (Fig. 22A). This difference could be due to the way SlmA was fused to the T18 or T25 

domain of adenylate cyclase. In the previous study (before the structure of SlmA was known), T18 and 

T25 were fused to the N terminus of SlmA, which we now know are far away from each other in the 

SlmA dimer (Cho et al., 2011). In our test, T18 or T25 was fused to the C terminal of SlmA, which are 

close to each other when SlmA dimerizes. Thus, the previous test is likely reporting the interaction 

between SlmA dimers when SlmA forms dimer-of-dimers or oligomerizes around the SBS, while our test 

reports SlmA dimerization. The assay also successfully reported SlmA-FtsZ interaction, as SlmA-R73D 

did not show any signal with FtsZ (Fig. 22A). We also tested two other SlmA mutants defective in NO, 

SlmA-N102A and SlmA-V174F (these two mutants were isolated by selecting for SlmA mutants that 

bind DNA but not block cell division, not studied in detail), they also failed to interact with FtsZ.  As 
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showed in Fig. 22B, neither K190V nor D86N affected the interaction of FtsZ with SlmA in the bacterial 

two-hybrid test, indicating that K190 and D86 are not directly involved in binding SlmA.  

Using a GTPase defective FtsZ mutant, FtsZ-D212N, Cho et. al showed that SlmA co-sedimented 

with FtsZ-D212 polymers in the presence of SBS17-30mer DNA (Cho et al., 2011). We reasoned that 

using the non-hydrolyzable GTP analog GMPCPP with wild type FtsZ should be equivalent.  Indeed, as 

shown in Fig. 22C, SlmA (5 μM) co-sedimented with FtsZ-GMPCPP (5 μM) polymers in the presence of 

SBS17-30mer DNA (2 μM) but not without the SBS, in agreement with the idea that SBS binding 

stimulates the interaction between SlmA and FtsZ. As expected, the FtsZ binding mutant, SlmA-R73D 

did not co-sediment with FtsZ-GMPCPP polymers. Note that some SlmA co-sedimented with stable FtsZ 

polymers even in the absence of SBS DNA, which is the background in our assay. If the two FtsZ mutants 

still interact with SlmA, filaments formed with GMPCPP should also recruit SlmA to the pellets in the 

presence of SBS17-30mer DNA. As we expected, SlmA co-sedimented with FtsZ-K190V and FtsZ-

D86N polymers in the presence of SBS17-30mer DNA, but not in its absence, consistent with the 

bacterial two hybrid results. Thus, the resistance of FtsZ-K190V and FtsZ-D86N to SlmA is unlikely due 

to a defect in the direct binding to SlmA.  

Since SlmA associates with the FtsZ polymers formed with GMPCPP in the presence of SBS17-

30mer DNA, we wondered whether such interaction would influence the morphology of FtsZ polymers. 

Therefore, we examined reactions using proteins at 2 μM (at 5 μM, the polymers would be too crowded 

on the grid) but with or without SlmA and the SBS17-30mer DNA by electron microsopy. As shown in 

Fig. 23A, wild type FtsZ formed smooth long filaments with GMPCPP that sometimes tended to bundle 

into 2 stranded filaments. As expected, addition of SlmA alone did not affect the morphology of the 

polymers formed by FtsZ, however, addition of SlmA and SBS17-30mer DNA together altered the 

morphology of the FtsZ-GMPCPP polymers. Large FtsZ-GMPCPP polymer bundles were prevalent on 

the grid, indicating that SBS bound SlmA dimer induces bundling of the FtsZ polymers. This may not be 
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surprising considering that SlmA makes dimer of dimers on the SBS and, therefore, may be able to 

crosslink FtsZ polymers.Also obvious was that these bundles were not like the smooth bundles formed by 

FtsZ alone, but seemed to contain additional structures on top of the filament surfaces. The control, 

SlmA-R73D, which does not interact with FtsZ, did not affect the morphology of FtsZ-GMPCPP 

polymers (Fig. 23A bottom). FtsZ-D86N polymers formed with GMPCPP tended to bundle into 4 or 5 

stranded filaments, in agreement with its preference to bundle observed above. Similar to FtsZ GMPCPP 

polymers, FtsZ-D86N-GMPCPP polymers formed big bundles when SlmA with SBS17-30mer DNA was 

added to the reaction. To our surprise, the effect of SBS bound SlmA on FtsZ-K190V-GMPCPP polymers 

was quite different from that for wild type FtsZ and FtsZ-D86N. The filaments were smoother and the 

large bundles were very rare and short. When SlmA was increased two fold, more FtsZ- K190V bundles 

appeared, but FtsZ-WT formed really large bundles at the same condition (Fig 23B&C). Interestingly, the 

FtsZ-K190V bundles induced by SBS-SlmA appeared to contain complexes sandwiched by straight 

filaments. These results suggest that even though the FtsZ-K190V-GMPCPP polymers recruited SBS-

SlmA to the pellet in the sedimentation assay, they were not as sensitive as FtsZ-WT polymers to the 

SBS-SlmA-induced bundling.  

To further confirm these two FtsZ mutants still interact with SBS-SlmA, we utilized the BLItz 

system to monitor their binding to SBS bound SlmA. The BLItz system is an instrument that allows label-

free analysis of biomolecular interactions based on Bio-Layer Interferometry (BLI). In these assays, 

biotinaylted SBS17-30mer DNA molecules were immobilized on the surface of streptavidin sensors and 

SlmA and FtsZ were added sequentially. Interaction between SlmA and the immobilized SBS17-30mer 

DNA increased the optical thickness of the surface of the biosensor, producing the first wavelength shift. 

Interaction between FtsZ and SBS-bound SlmA further increased the optical thickness, resulting in the 

second wavelength shift. Using this system, we could successfully measure the binding affinity between 

SlmA and SBS17-30mer DNA. As shown in Fig 24A, SlmA and its mutants SlmA-F65A and SlmA- 

R73D bound SBS17-30mer DNA with similar kinetics, and with similar apparent Kds between 60 nM 
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Table 5. GTPase activity of FtsZ mutants measured by the continuous GTPase assay. 

  

FtsZ alleles GTPase activity at 50 mM KCl 

(GTP/Min/FtsZ) 

GTPase activity at 200 mM KCl 

(GTP/Min/FtsZ) 

WT 4.6 9.8 

K190V 4.0 4.4 

D86N 3.5 5.3 
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Fig. 22.  FtsZ-K190V and FtsZ-D86N still associate wtih SlmA. A and B) Bacterial two hybrid assay to 

analyze the interaction between SlmA and FtsZ or FtsZ mutants. Plasmid pairs, as indicated, were co-

transformed into BTH101. Individual colonies were resuspended in 1ml LB medium and spotted on LB 

plates supplemented with Amp, Kan, 40 g/ml X-gal and 250 μM IPTG. Plates were incubated at 30°C 

for 36 hours before taking pictures. C, D and E) SBS17-30mer bound SlmA co-sedimented with stable 

FtsZ polymers formed with GMPCPP. C) Principles of co-sedimentation assay. In the presence of 

GMPCPP (Non hydrolysable GTP analog), FtsZ (black dots) polymerizes into filaments (black ribbons) 

which could be spinned down by centrifugation.  SlmA (Red triangle) interacts with FtsZ, some of the 

SlmA molecules co-sediment with the FtsZ filaments. Polymerization assays were performed as in Fig. 

19 except that the protein concentration was 5 μM and GTP was replaced by GMPCPP. After the 

reactions were incubated at room temperature for 5 minutes, FtsZ polymers were sedimented by 

ultracentrifugation. Proteins in the supernatant and pellett fractions were separated by SDS-PAGE gel.  
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Fig. 23. SBS17-30mer bound SlmA promotes bundling of stable FtsZ polymers. A) Polymerization 

assays were performed as in Fig. 19 except that the protein conentration was 2 μM and GTP was replaced 

by GMPCPP. Note that FtsZ-D86N tends to form larger bundles in the absence of SBS17-30mer and 

SlmA and stable FtsZ-K190V polymers were less prone to forming bundles in the presence of SBS17-

30mer and SlmA. B) and C) comparison of stable FtsZ-WT and FtsZ-K190V polymers after addition of 

SBS17-30mer with SlmA. Note that complexes decorate the FtsZ-K190V bundles. Scale bar is 100 nm. 
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Fig. 24. Biolayer interferometry assay to assess SlmA binding to DNA and FtsZ. A) Streptavidin 

biosensor tips were loaded with 50 nM biotinylated SBS17-30mer for 5 minutes followed by a 10 second 

wash. Association was initiated by moving the SBS17-30mer coated tips to tubes containing 4 μM SlmA 

or SlmA mutants. Two minutes after incubation, the tips with biotinylated SBS17-30mer and SlmA or 

SlmA mutants bound were moved to tubes containing FtsZ polymerization buffer to measure dissociation 

for 2 minutes. The DNA binding mutant SlmA-T33A was used as a control. B) SlmA-WT interacts with 

FtsZ. SBS17-30mer-SlmA complexes were generated as in (A).  The tips were then moved to tubes 

containing 4 μM FtsZ to measure the association for 1 minute and then into buffer lacking FtsZ to follow 

dissociation for 2 minutes (dissociation step is not shown). FtsZ-R73D and FtsZ-F65A, which do not 

interact with SlmA, were used as controls. C) FtsZ-K190V and FtsZ-D86N are not significantly affected 

in FtsZ-SlmA binding. Similar to B), 4 μM FtsZ or FtsZ mutants was included in tubes containing FtsZ 

polymerization buffer to measure the association for 1 minute and then into buffer lacking FtsZ to follow 

dissociation for 2 minutes (dissociation step is not shown). D) SBS DNA bound SlmA (His-tag free) 

binds to 6×His-FtsZ. Ni-NTA biosensor tips were loaded with 1 μM 6×His-FtsZ for 5 minutes followed 

by a 10 second wash. Association was initiated by moving the 6×His-FtsZ coated tips to tubes containing 

SlmA (untagged version, 1 μM) with or without SBS DNA of various lengths (1 μM) preincubated for 10 

minutes.  Two minutes after the incubation, the tips were moved to tubes containing FtsZ polymerization 

buffer to monitor the dissociation for 2 minutes. Data were generated automatically by the BLItzTM 

software and then analyzed by GraphPad Prism 5.0. 
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Table 6. Binding affinities of SlmA and SlmA mutants for biotinylated SBS17-30mer as well as binding 

affinities of SBS bound SlmA for immbolized 6×His-FtsZ. See Fig. 24 and the text for details about the 

reaction conditions to measure the binding affinities. KD of SlmA and its mutants for biotinylated SBS17-

30mer were calculated by equation KD=koff/kon. The binding affinity of SlmA or SBS bound SlmA for 

6×His-FtsZ was calculated similarly and the KD shown is the representative of three independent binding 

experiments. 
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R2 is the coefficient of determination estimating the goodness of a curve fit reported by the 

GraphPad Prism 5.0 s software.  

 

 

   

Binding affinities of SlmA mutants for the biotinylated SBS17-30mer  

 KD (M)  kon [1/(M*s)]  koff (1/s)  R2 * 

SlmA-WT  6.29×10-8  3.24×10+4  2.04×10-3  0.98  

SlmA-F65A  11.44×10-8  2.48×10+4  2.83×10-3  0.98  

FtsZ-R73D  10.63×10-8  2.31×10+4  2.46×10-3  0.98  

SlmA-T33A  No binding  

Binding affinities of SlmA and SBS-SlmA for 6×His-FtsZ  

SlmA  210×10-7  0.71×10+4  14.9×10-2  0.97  

SlmA + SBS17-30mer  2.10×10-7  7.40×10+4  1.55×10-2  0.98  

SlmA + SBS17-20mer  7.89×10-7  1.81×10+4  1.43×10-2  1.0  

SlmA + SBS-18mer  3.09×10-7  2.16×10+4  0.67×10-2  1.0  

SlmA + SBS-14mer  2.06×10-7  2.75×10+4  0.57×10-2  0.98  
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to 120 nM. The SlmA DNA binding mutant SlmA-T33A as expected did not bind to the immobilized 

SBS17-30mer. Addition of FtsZ to SBS17-30mer-SlmA but not to SBS17-30mer-SlmA-R73D/F65A 

resulted in a rapid and strong binding signal, but this binding signal slowly decreased after the binding 

signal reached a plateau, presumably because SlmA slowly dissociates from the DNA (Fig. 24B). 

Therefore, we could not use the binding kinetics to calculate the binding affinity between FtsZ and SBS 

bound SlmA, but we could still use the system to monitor FtsZ mutants binding to SBS17-SlmA. 

Addition of FtsZ-D86N resulted in a similar binding curve as FtsZ-WT, however, addition of FtsZ-

K190V displayed slower binding kinetics (Fig. 24C). Rather than the rapid binding observed with FtsZ-

WT and FtsZ-D86N, which reached a plateau within 15 sec, FtsZ-K190V bound to SBS17-30mer-SlmA 

slowly but reached the same plateau. We were not sure whether this different binding kinetics was due to 

a deficiency in direct binding with SlmA or FtsZ-K190V may exist in a slightly different conformation 

that affects its binding to SlmA indirectly. As FtsZ-K190V interacts with SBS bound SlmA in bacterial 

two-hybrid test and co-sedimentation assay, we considered FtsZ-K190V did not affect FtsZ-SlmA 

binding significantly. 

In a reciprocal approach, we immobilized 6×His tagged FtsZ on Ni-NTA biosensors and 

monitored SBS17-30mer bound SlmA binding to FtsZ. As showed in Fig. 24D, addition of SlmA (His-tag 

free) pre-incubated with SBS17-30mer resulted in rapid and stable binding signal, while addition of SlmA 

alone did not cause any signal. Pre-incubation of SlmA with shorter SBS DNA prolbes also resulted in 

rapid and stalbe binding signal. This stable binding kinetics allowed us to calculate the binding affinity 

between SBS bound SlmA with FtsZ to be between 200 and 800 nM depending on the SBS probes, 

consistent with previous published measurements obtained by other methods (Tonthat et al., 2011). 

Discussion  

Ever since its identification, SlmA has been of great interest because it prevents Z ring formation 

over the nucleoid through direct interaction with FtsZ (Bernhardt and de Boer, 2005). Recent studies have 
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shown that SlmA binds to specific DNA sequences (SBSs) that are restricted to the origin proximal 

region of the chromosome, explaining how SBS bound SlmA is removed from the midcell by 

chromosome segregation (Cho et al., 2011; Tonthat et al., 2011). However, the mechanism by which SBS 

bound SlmA prevents FtsZ from assembling into the Z ring has been controversial. In this study, we 

showed that SlmA bound to SBS DNA antagonizes FtsZ proto-filament formation, consistent with the 

observation of the Bernhardt group (Cho et al., 2011). The efficiency of SlmA to antagonize FtsZ 

polymerization correlates with the length of the bound SBS DNA: the longer the more potent. 

Furthermore, removing the positive charge from K190, a residue located in the H7 helix of FtsZ, and 

substitution of D86 to Asn, a residue in the H3 helix, render FtsZ resistant to the NO function of SlmA. 

Extensive genetic and biochemical characterization of these mutants showed that they confer resistance to 

SlmA by indirect mechanisms rather than directly affecting the binding to SlmA.  

SlmA is a DNA activated FtsZ polymerization antagonist 

SlmA was initially observed to recruit FtsZ to the nucleoid in vivo and promote bundling of FtsZ 

filaments in vitro (Bernhardt and de Boer, 2005), but two recent investigations found that SlmA is an 

antagonist of FtsZ assembly (Cho et al., 2011; Tonthat et al., 2011). In one study, SlmA in the presence of 

a SlmA binding sequence was found to disassemble FtsZ proto-filaments, while in the other study, SBS 

bound SlmA was observed to force FtsZ proto-filaments to grow into some antiparallel structures, which 

may not be suitable for Z ring formation (Cho et al., 2011; Tonthat et al., 2011). Even though these two 

studies disagreed on the mechanism by which activated SlmA prevents the Z ring formation, they both 

reached the same conclusion that SlmA is activated (about 40-fold) by the SlmA binding sequences (Cho 

et al., 2011; Tonthat et al., 2011). However, the controversy was furthered by a subsequent report in 

which SlmA was observed to have no impact on FtsZ proto-filament formation. This latest observation 

conbined with the unexpected finding that SlmA forms an oriented dimer-of-dimers on SBS DNA, which 

may spread on the DNA, led to the hypothesis that SlmA prevents Z ring formation by sequestration of 
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FtsZ filaments onto the SlmA-DNA complexes (Tonthat et al., 2013). The FtsZ proto-filaments on the 

SlmA-DNA run in different directions that would prevent FtsZ filaments from coalescing into a Z ring. 

 

Here, using SBS-DNA molecules of different lengths and performing the reactions in buffers 

used in previous studies, we show that SlmA is indeed a DNA activated FtsZ antagonist. The reason that 

the latest study (Tonthat et al., 2013) observed no impact of SBS-SlmA on FtsZ polymerization is likely 

due to the SBS DNA and the buffer used for the assays. While we rarely observed FtsZ proto-filaments in 

the presence of SlmA and the SBS17-30mer DNA (CAAAAGTAAGTAAATGGTCACTAACGTTGA), 

we observed lots short proto-filaments when shorter SBS DNA, SBS17-20mer 

(GTAAGTAAATGGTCACTAAC), SBS-18mer (CCCAATGTGAGTGCTCAC) and SBS-14mer 

(AGTGAGTACTCACT) were used in the FtsZ polymerization reaction. These results indicate that the 

efficacy of SlmA to antagonize FtsZ polymerization reduces as the bound SBS DNA gets shorter. 

Previous study has showed that SlmA makes three additional contacts on each side of the consensus 

sequence when it is in the middle (TTACGTGAGTACTCACGTAA) of a long seqence compared to a 

12mer SBS DNA with just the consensus sequence (GTGAGTACTCAC) (Tonthat et al., 2013). This 

reduction in contacts results in a 2-3 fold lower binding affinity of SlmA for the 12mer SBS DNA 

compared to that of the longer SBS DNA (TTACGTGAGTACTCACGTAA) (Tonthat et al., 2013), 

explaining the reduced effect on FtsZ polymerization of SlmA in presence of the short SBS DNA. In 

Tonthat’s buffer, although SlmA antagonizes FtsZ polymerization efficiently in the presence of SBS17-

30mer, SlmA had only minor effect on FtsZ polymerization when shorter SBS DNA were used. These 

results suggest that the buffer also contributes to the observation that SlmA has no impact on FtsZ 

polymerization (Tonthat et al., 2013). As previously reported, SlmA in the absence of SBS DNA 

molecules does not influence FtsZ proto-filament formation. Thus, our data is consistent with the 

observation of the Bernhardt group: SBS binding activates SlmA to antagonize FtsZ polymerization (Cho 

et al., 2011). 
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Previous biochemical and genetic tests indicated that SBS DNA binding stimulates SlmA 

dimerization and induces a conformational change in the SlmA dimer to fully expose an occluded FtsZ 

binding site such that it can bind to FtsZ with high affinity (Cho and Bernhardt, 2013). Although it has 

been shown SlmA forms dimers in the absence of SBS DNA, it is not clear why SlmA-T33A fails to self 

interact in the bacterial two hybrid assay used in a previous study (Cho et al., 2011). We show here that 

SlmA-T33A is able to interact with itself as well as other SlmA mutants. The failure to detect the self-

interaction of SlmA in the previous study is due to the fact that the T18 and T25 domains of adenylate 

cyclase were fused to the N terminal domain of SlmA (Cho et al., 2011), which are far away when SlmA 

forms dimers. Our data thus confirm that SlmA exists as dimers and SBS binding activates SlmA by 

inducing a conformational change to the dimer. Structural analysis of SlmA with and without DNA also 

supports such a model. However, the observation from SAXS studies (done at very high protein 

concentrations and without SBS DNA) that SlmA dimer was sandwiched by two FtsZ molecules in the 

absence of SBS DNA and that SlmA forms oriented dimer-of-dimer with SBS DNA led to the assumption 

that the conformational change induced by SBS DNA binding made a minor contribution to FtsZ binding 

(Tonthat et al., 2011; Tonthat et al., 2013).  Using a non-hydrolyzeable GTP analog, GMPCPP, we 

observed co-sedimentation of SlmA with FtsZ-GMPCPP polymers in the presence but not in the absence 

of the SBS17-30mer DNA, indicating that SBS binding is critical for SlmA to bind FtsZ. This result is 

consistent with previous observation that SlmA co-sedimented with polymers formed by the FtsZ 

catalytic mutant FtsZ-D212N in the presence of the SBS17-30mer DNA (Cho et al., 2011). Visualization 

of FtsZ-GMPCPP polymers under electron microscopy showed that addition of SlmA with SBS17-30mer 

DNA induced the formation of large bundles of FtsZ-GMPCPP polymers, but addition of SlmA or 

SBS17-30mer alone had no impact on the FtsZ-GMPCPP polymers. It seems reasonable that these large 

bundles are SlmA bound to the SBS sandwiched between FtsZ polymers. Similar results were also 

observed with shorter SBS DNA. Thus, taken together, our data agrees with the model that SBS DNA 
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binding activates SlmA to bind FtsZ by inducing a conformational change in the dimer to expose the FtsZ 

binding site.   

 

SlmA forms an oriented dimer-of-dimers on the SBS DNA, allowing four FtsZ molecules to bind 

to the SBS at the same time. Thus, it has been proposed that the SlmA dimer-of-dimers force the four 

bound FtsZ proto-filaments to grow in different directions, clash and unable to make lateral interactions 

necessary for Z ring formation (Tonthat et al., 2013). Our finding that SBS bound SlmA promotes the 

bundling of FtsZ stable polymers suggests that this “SlmA induced FtsZ proto-filaments clash” is unlikely 

to happen. Addition of SlmA with SBS17-30mer DNA induces FtsZ-GMPCPP filaments to bundle into 

large structures that are up to several μm long. Small complexes were found on the surfaces, or 

sandwiched between proto-filaments in the bundles, which stand out clearly in the small bundles formed 

by FtsZ-K190V-GMPCPP. Although we do not have direct evidence, these complexes likely represent 

the SBS-SlmA complexes sandwiched between FtsZ filaments. Therefore, in the absence of GTP 

hydrolysis, SBS bound SlmA promotes the bundling of FtsZ proto-filaments rather than inhibit their 

growth by promoting clashing.  

 

Previous SAXS analysis of FtsZ (lacking the C-terminal tail) at the concentration of 1 to 2 mg/ml 

indicated that FtsZ in the presence of GDP self associates in a proto-filament like structure (Tonthat et al., 

2011). However, addition of SlmA without an SBS resulted in a SAXS profile indicative of aggregation-

free SlmA-FtsZ complexes suggesting that SlmA-FtsZ interaction reduced the FtsZ-FtsZ interaction. 

Superimposing the SlmA dimer structure into the SAXS envelope suggested that the SlmA dimer is 

sandwiched by two FtsZ molecules and it was suggested that SlmA interacts with helix 10 of FtsZ 

(Tonthat et al., 2011).  These complexes were observed without an SBS present (and without the FtsZ C-

terminal tail which we show in the next section is necessary for high affinity binding) indicating this may  
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Fig 25. Examinaiton of FtsZ mutants resistant to the N terminal domain of MinC for resistance to de-

localized SlmA. Plasmids pSD133 (Ptac::slmA) and p2SBSK (pUC18 with 2SBS sites) were introduced 

into the ftsZ- strain DU11 (ftsZ0 slmA<frt> recA::Tn10) complemented with pBANG112 or its derivatives 

containing different ftsZ alleles. One colony of each resultant strain was resuspended in 1 ml LB medium, 

serially diluted by 10 and 3 μl from each dilution was spotted on LB plates containing various 

concentration of IPTG and supplemented with ampicillin, spectinomycin and kanamycin. The plates were 

incubated at 30°C for 30 hours before photography. Helix 10 was colored as blue and substitutions of 

residues resistant to the N terminal domain of MinC were colored as green. K190 and D86 were colored 

as yellow and red respectively. 
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Fig. 26. Model for how SlmA antagonizes FtsZ polymerization. FtsZ exists in two different 

conformations, FtsZ-GDP form (assembly incompetent form) and FtsZ-GTP form (assembly competent 

form). Above its critical concentration, FtsZ in the assembly competent form assembles into polymers in 

the presence of GTP. FtsZ polymers undergo hydrolysis to produce FtsZ-GDP, which depolymerizes. The 

two sub-domains of FtsZ as well as H7 helix undergo conformational changes following GTP hydrolysis; 

some of the residues undergoing dramatic change are indicated: R29, D86, N186S and K190 are colored 

orange, red, cyan and magenta respectively; GDP is colored brown. Note the different positions of R29 

and N186 in the two different conformations. PC190723 stablizes FtsZ in the FtsZ-GTP form such that 

FtsZ assembles into polymers without a critical concentration. SlmA takes advantage of the positive 

charge of K190 to stimulate the conformational change that is required for GTP hydrolysis, resulting in 

faster turnover of the FtsZ and breakdown of FtsZ polymers.  

  



121 
 

 

 

 

  



122 
 

be a weak interaction since we have shown that SlmA must be bound to SBS to observed high affinity 

binding to FtsZ.  

 

SlmA binding site on FtsZ 

 

Our data strongly supports the model that SBS associated SlmA prevents Z ring formation over 

the nucleoid by antagonizing FtsZ polymerization. However, the mechanism by which activated SlmA 

antagonizes FtsZ polymerization is not clear. Previous studies showed that activated SlmA stimulates the 

GTPase activity of FtsZ and requires the GTPase of FtsZ to disassemble the FtsZ filaments (Cho et al., 

2011), the latter we confirmed in this study. Thus, it appears that SlmA prevents FtsZ polymerization by 

two actions: stimulating FtsZ-GDP formation within the filaments and severing the FtsZ filaments at 

positions where the GTP has been hydrolyzed to GDP. Such a working mechanism is very similar to the 

proposed mechanism of MinC except that MinC does not stimulate the GTPase activity of FtsZ (Shen and 

Lutkenhaus, 2010). Genetic studies indicated that MinC binds to the α10 helix of FtsZ, most of which is 

hidden when FtsZ is within the filaments (Shen and Lutkenhaus, 2010). Thus, it was proposed that MinC 

can only break FtsZ filaments after the α10 helix is exposed by GTP hydrolysis (Shen and Lutkenhaus, 

2010). Interestingly, SAXS analysis of SlmA-FtsZ or SBS-SlmA-FtsZ complexes indicates that SlmA 

binds to FtsZ around helix 10 (Tonthat et al., 2011; Tonthat et al., 2013).  A spot test of FtsZ mutants 

resistant to the N terminal domain of MinC showed that these mutants were more sensitive to SlmA in the 

presence of extra SBSs in a plasmid rather than resistant (Fig. 25). Therefore, even if the α10 helix is 

involved in SlmA binding, the way it interacts with SlmA is likely different than that of MinC. In 

addition, the fact that SlmA still co-sedimented with the FtsZ-GMPCPP polymers suggests that the α10 

helix is unlikely to be the primary binding site for SlmA because it would not be available in the FtsZ-

GMPCPP polymers. The association of the SBS-SlmA complexes with the FtsZ-GMPCPP polymers 
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suggests that SBS activated SlmA either binds to the tail of FtsZ or binds to the lateral surface of FtsZ 

globular domain exposed in filaments.  

 

The basis of D86N and K190V conferred resistance 

 

FtsZ-D86N shows some resistance to the NO function of SlmA in vivo and some resistance to the 

inhibitory activity of SlmA in vitro. However, it does not seem to affect SlmA binding, suggesting that it 

is not a binding site mutant and it is likely provide resistance to SlmA through by an indirect mechanism.  

Our data suggests that the D86N mutation likely lowers the sensitivity of FtsZ filaments to the activated 

SlmA by promoting the bundling of proto-filaments. At concentrations where FtsZ-WT and FtsZ-K190V 

assemble into single-stranded filaments, FtsZ-D86N tends to form bundles that are 2-3 stranded. The 

bundling of FtsZ-D86N filaments is even more dramatic when assembled with GMPCPP or at low salt 

conditions (50 mM KCl, data not showed). Formation of FtsZ bundles by the FtsZ-D86N can lead to 

SlmA resistance in two ways: masking the SlmA binding site and lowering the GTPase of FtsZ such that 

fewer FtsZ-GDP would be available for SlmA to attack. Although the first possibility is hard to prove, the 

D86N mutation indeed reduces the GTPase activity. Substitution of D86 to Lys also confers resistance to 

SlmA in vivo, and this mutant has been characterized in vivo and in vitro before. In vivo, FtsZ-D86K 

assembles into extensive spirals of three or four turns that extend along the length of the cells rather than 

forming sharp Z rings (Stricker and Erickson, 2003). In vitro, FtsZ-D86K showed a strong tendency to 

assemble into multistranded tubes, suggesting that D86 may be important for the lateral interaction of 

FtsZ (Lu et al., 2001). Mutations of E83 and R85, which are also located α3 helix, have also been shown 

to affect the GTPase activity and assembly of FtsZ, indicating that the α3 helix might be involved in 

lateral interaction (Shin et al., 2013). In addition, proteins or agents that promote bundling of FtsZ proto-

filaments lower the GTPase activity of FtsZ and confer resistance to FtsZ inhibitors. For example, ZapA 

induces bundling of FtsZ proto-filaments, resulting in insensitivity to the action of MinC (Dajkovic et al., 
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2008a). Consistent with this, when we deleted zapA from the chromosome, cells become much more 

sensitive to the killing of SlmA by overproduction or addition of extra SBSs in the plasmid (data not 

shown). Thus, the resistance of FtsZ-86N to SlmA likely stems from its increased tendency to form 

bundles. 

 

FtsZ-K190V shows strong and specific resistance to SlmA in vivo and in vitro, however, it does 

not show a strong defect in SlmA binding. Bacterial two-hybrid tests showed similar interaction of FtsZ-

K190V –SlmA and FtsZ-WT-SlmA. Consistent with this, SBS bound SlmA co-sedimented with the FtsZ-

K190V-GMPCPP polymers, suggesting that if there is any binding defect, it is minor. However, we 

noticed a slight binding defect between FtsZ-K190V and SBS bound SlmA in two situations. First, the 

FtsZ-K190V-GMPCPP polymers are less prone to bundle by addition of SlmA with SBS DNA compared 

to the filaments formed by FtsZ-WT. Second, FtsZ-K190V binds immobilized SBS-SlmA with a slower 

kinetics compared to that of FtsZ-WT or FtsZ-D86N. At present, it is not clear whether this slow binding 

kinetics is responsible for FtsZ-K190V’s resistance to SlmA or just a side effect of the mutation on FtsZ.  

 

Interestingly, K190 is located in the middle of the H7 helix, which mediates the conformational 

change between the two sub-domains of the globular domain of FtsZ (Elsen et al., 2012).  Comparison of 

SaFtsZ-PC190723-GDP structure (represents the FtsZ-GTP conformation) with that of FtsZ-GDP shows 

that the side chain of K190 rotates about 90°. It is not clear whether this rotation is important for FtsZ 

assembly, but it is clear that mutating this residue affects FtsZ function. Mutating K190 to Ala, Leu, Ile, 

Val, Asn, Glu, Trp and Arg did not affect complementation of an FtsZ null strain. However, all of these 

substitutions, except for the K190R mutation, conferred resistance to SlmA, suggesting that the positive 

charge of K190 is critical for SlmA to disassemble the FtsZ polymers. A R191P (R191 corresponds to 

K190 in E. coli) mutation of Staphylococcus aureus FtsZ confers resistance to the FtsZ inhibitor 

PC190723 and renders S. aureus dependent on PC190723 for growth (Haydon et al., 2008). However, in 
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both cases K190/R191 does not appear to be important for binding the inhibitor. The K190V mutation 

only slightly affects the binding kinetics of FtsZ with SlmA, while R191 does not make any contact with 

the PC190723 compound in the SaFtsZ-PC190723-GDP structure. Why mutation of this residue provides 

resistance to two different FtsZ inhibitors? The location of K190/R191 implies that it has to do with the 

communication between the two sub-domains of FtsZ upon assembly/disassembly.  Affecting the 

communication between the two sub-domains of FtsZ can lead to many outcomes, for example, 

stabilization of FtsZ in one conformation that promotes cooperative assembly of FtsZ as in the case of 

PC190723 (Elsen et al., 2012). Disruption of the communication can also lead to disassembly of the FtsZ 

filaments. As K190 appears to be unimportant for SlmA binding, we propose that SlmA bound to another 

site on FtsZ takes advantage of the positive charge of K190 to influence the communication of the two 

sub-domains of FtsZ, which leads to the breakdown of FtsZ polymers. 
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Chapter IV SlmA targets the conserved C-terminal tail of FtsZ 

 

Abstract 

 

In the previous chapter, we showed that SlmA is a specific DNA activated FtsZ polymerization 

antagonist and mutations affecting residues at two different locations in FtsZ provide resistance to SlmA. 

However, as discussed above, these two mutations are not binding site mutations and they confer 

resistance to SlmA by indirect mechanisms rather than disruption of the FtsZ-SlmA interaction. In this 

chapter, we found that the conserved C-terminal tail of FtsZ is the primary binding site of SlmA. Deletion 

of the tail of FtsZ or single substitutions of highly conserved residues in the tail abolished SlmA binding 

and rendered FtsZ resistant to the action of SlmA. Pre-incubation of FtsZ with ZipA, which also binds the 

tail of FtsZ, blocks FtsZ binding to the SBS bound SlmA, suggesting that competition for the conserved 

C-terminal tail of FtsZ between the FtsZ membrane anchors and the negative regulators is important for 

the regulation of the Z ring formation. Combined with previous data, our finding suggests that activated 

SlmA, similar to MinC, acts on FtsZ by two steps: binding to the conserved C-terminal tail and breaking 

the filaments.   
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Introduction  

 

SlmA is a potent division inhibitor in the presence of extra SBS in a multicopy plasmid that 

diffuses randomly inside the cell (Cho et al., 2011). Evidence showed that it blocks cell division by 

preventing Z ring formation through direct interaction with FtsZ (Bernhardt and de Boer, 2005; Cho et al., 

2011). However, how the SBS activated SlmA prevents FtsZ from assembling into the Z ring is not clear. 

There is some evidence suggesting that SlmA oligomerized on the DNA blocks Z ring formation by 

recruiting t FtsZ polymers to the SlmA-DNA complexes (Tonthat et al., 2013), but data from the 

Bernhardt group (Cho et al., 2011) and our lab suggest that it is more likely that SlmA blocks Z ring 

formation by antagonizing FtsZ polymerization. Studies of the SlmA resistant mutant FtsZ-K190V 

indicate that SBS activated SlmA may disassemble the FtsZ polymers by affecting the communication 

between the two sub-domains within the globular domain of FtsZ. However, this mutation does not seem 

to disrupt the FtsZ-SlmA interaction. As the SlmA binding site on FtsZ has not been identified yet, it is 

not clear how SlmA interacts with FtsZ leads to FtsZ disassembly.  

 

Previous studies from the Schumacher lab suggested that the conserved C-terminal tail of FtsZ is 

not necessary for SlmA binding as a truncated derivative of FtsZ, FtsZ360, binds to SBS-SlmA as well as 

wild type FtsZ (Tonthat et al., 2011). The linker region also appears to be unimportant for SlmA binding 

as SAXS analysis showed that FtsZ316-GFP binds to SlmA and forms a sandwich like complex (Tonthat et 

al., 2011). In an attempt to confirm that the linker region and the conserved C-terminal tail of FtsZ are not 

necessary for SlmA binding, we found unexpectedly that the conserved C-terminal tail of FtsZ is 

absolutely required for SlmA binding and susceptibility to the action of SlmA.  Single amino acid 

substitutions or deletion of the conserved C-terminal tail of FtsZ resulted in loss of SlmA binding. 

Furthermore, a 14 amino acids peptide corresponding to the conserved C-terminal tail of FtsZ was 

sufficient to bind SlmA and blocked SlmA binding to FtsZ. ZipA, which tethers FtsZ polymers to the 
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membrane through binding the conserved C-terminal tail of FtsZ, blocks FtsZ binding to SlmA, 

suggesting underestimated competition for the tail of FtsZ in regulation of Z ring formation. Consistent 

with this, we isolated one FtsZ tail mutant that only supported growth in the absence of one of the 

negative regulators, the Min system or SlmA. Although SlmA disassembles FtsZ polymers, its primary 

binding site has nothing to do with polymerization. This paradox suggests that SlmA acts on FtsZ in two 

steps: first, binding to the conserved C-terminal tail of FtsZ, which activates its secondary binding; 

second, breaking the FtsZ polymers through disruption of the communication between the two sub-

domains of FtsZ.  

 

Results  

 

The conserved C-terminal tail of FtsZ is required for SlmA binding and susceptibility to 

SlmA action 

 

Co-sedimentation of stable FtsZ polymers (FtsZ polymer formed with GMPCPP or FtsZ-D212N 

polymers) with SlmA in the presence of SBS DNA showed that SlmA is recruited to FtsZ polymers, 

suggesting that SBS activated SlmA must bind to the surface of the FtsZ polymers because the 

longitudinal interfaces are occluded within the polymers. Consistent with this idea, EM analysis of stable 

FtsZ polymers with SBS DNA and SlmA showed that the FtsZ polymers were decorated by complexes 

that likely represent the SBS-SlmA complexes. Thus, SlmA either binds to the surface of the globular 

domain, or the linker and the conserved C-terminal tail of FtsZ.  However, previous studies have shown 

that the linker and the conserved C-terminal tail of FtsZ are not required for SlmA binding (Tonthat et al., 

2011). To confirm these findings, we purified 6×His tagged FtsZ320 which misses the linker and the 

conserved C-terminal tail, and tested whether it would bind to SlmA in the BLItz system. To our surprise, 

the 6×His-FtsZ320 showed no binding signal with SlmA bound with SBS17-30mer immobilized on the  
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Fig. 27. The conserved C-terminal tail of FtsZ is necessary for SBS-SlmA binding to FtsZ. A) BLItz 

assays to monitor the binding of FtsZ C-terminal truncations to SlmA bound to SBS17-30mer 

immobilized on SA biosensors. Reactions were performed as in Fig. 24B. B) SBS bound SlmA does not 

co-sediment with stable FtsZ-360 polymers formed with GMPCPP. Reactions were performed as in Fig. 

22D. C)  SBS-SlmA promotes bundling of stable FtsZ polymers but not stable FtsZ-360 polymers. 

Reactions were performed as Fig. 23C.  
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Fig. 28. The conserved C-terminal tail of FtsZ is necessary for SlmA to antagonize FtsZ polymerization. 

FtsZ polymerization reactions performed with or without the addition of SlmA bound to SBS17-30mer. 

Reactions were performed in 50 μl volume containing FtsZ (2 μM) and GTP (1 mM) with or without the 

addition of SlmA and SBS17-30mer DNA (2 μM). Reactions were incubated at room temperature for 5 

minutes and then samples were spotted onto carbon-coated grids for 1 minute and negatively stained with 

1% uranyl acetate and visualized by electron microscopy.  
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biosensor (Fig. 27A) suggesting that either the linker region or the conserved C-terminal tail is necessary 

for SlmA binding.  

 

We therefore purified 6×His-FtsZ360 and tested whether it would bind to SlmA. Similar to 

6×His-FtsZ320, 6×His-FtsZ360 did not bind to immobilized SBS17-30mer-SlmA, arguing that the 

conserved C-terminal tail, and not the linker, is required for SlmA binding. To make sure this lack of 

binding signal was not due to the 6×His tag, we further purified FtsZ-360 and monitored its binding to 

SBS17-30mer-SlmA. Consistent with the results with 6×His-FtsZ360, FtsZ-360 showed no binding signal 

with SBS17-30mer-SlmA, while 6×His-FtsZ and FtsZ both bound to SBS17-30mer-SlmA (Figs. 27 and 

29). Thus, the conserved C-terminal tail of FtsZ is likely responsible for FtsZ binding to SlmA.  

 

To further confirm the conserved tail of FtsZ is required for interaction with SlmA, we tested 

whether SBS17-30mer bound SlmA would co-sediment with stable 6×His-FtsZ360 polymers. As shown 

in Fig. 27B, most SlmA stayed in the supernatant fraction and did not co-sediment with 6×His-FtsZ360 

and SBS17-30mer DNA, while SlmA cosedimented with 6×His-FtsZ-FL stable polymers, in agreement 

with the above observations. We also visualized the stable polymers under electron microscopy. As 

shown before, addition of SlmA with SBS17-30mer DNA caused dramatic bundling of the stable 

polymers formed by 6×His-FtsZ-FL, however, the stable 6×His-FtsZ360 polymers were unaffected by the 

addition of SBS with SBS17-30mer DNA (Fig. 27C). Furthermore, we did not observe any decoration on 

the polymers, which was prominent in the samples of 6×His-FtsZ-FL. Therefore, the conserved C-

terminal tail of FtsZ is necessary for SlmA co-sedimentation and the bundling induced by SBS DNA 

bound SlmA. 

 

We further checked whether the conserved C-terminal tail of FtsZ is required for SBS-SlmA 

induced disassembly of FtsZ proto-filaments. As shown in Fig. 28, both 6×His-FtsZ360 and 6×His-FtsZ-
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FL assembled into single and double stranded filaments in the presence or absence of SlmA. However, 

addition of SlmA with SBS17-30mer DNA dramatically reduced the number and length of the 6×His-

FtsZ-FL polymers but had no effect on the 6×His-FtsZ-360 polymers, suggesting that SBS17-30mer 

bound SlmA could not promote the disassembly of FtsZ polymers in the absence of the conserved C-

terminal tail of FtsZ. Taken together, SlmA depends on the conserved C-terminal tail of FtsZ for 

interaction and disassembly of FtsZ polymers. 

 

Single substitutions at the conserved C-terminal tail of FtsZ abolish FtsZ-SlmA interaction 

 

The C-terminal tail of FtsZ (DYLDIPAFLRKQAD) is widely conserved across bacterial species 

and many proteins involved in cell division have been reported to bind to the tail of FtsZ. In E. coli, the 

tail of FtsZ has been suggested or shown to be the binding site for five different proteins, including ZipA, 

FtsA, MinC, ZapD and ClpX (Camberg et al., 2009; Durand-Heredia et al., 2012; Haney et al., 2001; 

Mosyak et al., 2000; Shen and Lutkenhaus, 2009; Szwedziak et al., 2012). For three of them that have 

been characterized in vivo and in vitro (ZipA, FtsA and MinC), FtsZ residues I374 and L378 are critical 

for the interaction (Haney et al., 2001; Shen and Lutkenhaus, 2009). Various substitutions at these two 

residues have also been reported to render FtsZ resistant to the action of MinCC-MinD and to abolish FtsZ 

interaction with ZipA and FtsA (Haney et al., 2001; Shen and Lutkenhaus, 2009). As the tail of FtsZ is 

required for FtsZ-SlmA interaction, it is highly possible that mutations in these two residues would also 

disrupt the FtsZ-SlmA interaction. Therefore, we mutated these two residues to I374K and L378E 

respectively and tested the corresponding mutants interaction with SlmA in the BLItz system. As shown 

in Fig. 29, neither of these two FtsZ mutants generated a binding signal with SlmA bound with SBS17-

30mer immobilized on the biosensor. Thus, I374 and L378 appear to be important for FtsZ-SlmA 

interaction.  

 



135 
 

Fig. 29. Single amino acid substitutions in the FtsZ tail abolish FtsZ-SlmA binding.  Experiments were 

performed as in Fig. 23B. Streptavidin biosensor tips were loaded with 50 nM biotinylated SBS17-30mer 

for 5 minutes followed by a 10 second wash. SBS17-30mer-SlmA complexes were generated by moving 

the SBS17-30mer coated tips to tubes containing 4 μM SlmA. Two minutes after incubation, the tips with 

the biotinylated SBS17-30mer and SlmA bound were washed for 10 seconds and then moved to tubes 

containing FtsZ or its mutants to measure the association for 1 minute.  Dissociation was initiated by 

moving the tips into buffer lacking FtsZ and following dissociation for 2 minutes (dissociation step is not 

shown). 
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SBS activated SlmA disassembles FtsZ polymers, but the conserved C-terminal tail of FtsZ is not 

involved in polymerization, indicating that SlmA has to bind to a secondary site in the globular domain of  

FtsZ to prevent FtsZ assembly. Consistent with this idea, previous SAXS analysis of SlmA-FtsZ316-GFP 

complex showed that a SlmA dimer was sandwiched between two FtsZ316-GFP molecules (Tonthat et 

al., 2011). Although SAXS studies are normally performed with high concentrations of protein, which 

may cause some non-physiological association of proteins, the arrangement of molecules in this complex 

is very similar to that of the SBS-SlmA-FtsZ complex, in which each dimer of SlmA is sandwiched 

bewteeen two FtsZ molecules (Tonthat et al., 2013). Thus, formation of the SlmA-FtsZ316-GFP 

complexes is likely due to the secondary binding between the FtsZ globular domain and SlmA. Thus, we 

tested whether we could detect interaction between FtsZ360 and SBS17-30mer bound SlmA. 

Unfortunately, we did not detect any binding signal between FtsZ360 and SBS17-30mer-SlmA in the 

BLItz system even when FtsZ360 was added at 100 μM. One possibility is that the binding affinity 

between FtsZ360 and SlmA is too low to be picked up by the system, but further investigation is required 

for clear this paradox.  

 

FtsZ tail peptide is sufficient for SlmA binding and blocks SBS-SlmA binding to FtsZ 

 

Peptides corresponding to the C-terminal tail of FtsZ form stable complexes with ZipA and FtsA, 

even though they bind with low affinity (Mosyak et al., 2000; Szwedziak et al., 2012). Therefore, we 

tested whether a synthesized 14 amino acid peptide (Ztail-WT, DYLDIPAFLRKQAD) representing the 

conserved C-terminal tail of E. coli FtsZ would bind to SlmA bound with SBS17-30mer. As shown in 

Fig. 30A, this peptide bound to SBS17-30mer-SlmA in a concentration dependent manner. At 40 μM, 

there was almost no binding signal, however, as the concentration increased, the binding signal increased 

gradually and reached plateau at about 320 μM. Analysis of the binding curves shown that the Kd for 

SBS17-30mer-SlmA was about 81±10 μM, dramatically lower than that of FtsZ (Fig 30B and Table 6).  
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Fig. 30. The FtsZ tail peptide is sufficient for SBS-SlmA binding. A) Experiments were performed as in 

Fig. 23B. Streptavidin biosensor tips were loaded with 50 nM biotinylated SBS17-30mer for 5 minutes 

followed by a 10 second wash. SBS17-30mer-SlmA complexes were generated by moving the SBS17-

30mer coated tips to tubes containing 4 μM SlmA. Two minutes after incubation, the tips with 

biotinylated SBS17-30mer and SlmA bound were washed for 10 seconds and then moved to tubes 

containing FtsZ tail peptide (Ztail-WT) or its mutants to measure the association for 2 minutes.  

Dissociation was initiated by moving the tips into buffer lacking FtsZ and following dissociation for 2 

minutes (dissociation step is not shown). B) A concentration dependent binding curve of FtsZ peptide 

Ztail-WT to SBS17-30mer bound SlmA. The end point binding signals were plotted against the peptide 

concentration. C) FtsZ tail peptide reduces SBS17-30mer bound SlmA binding to 6×His-FtsZ. Ni-NTA 

biosensor tips were loaded with 1 μM 6×His-FtsZ for 5 minutes followed by a 10 second wash. 

Association was initiated by moving the 6×His-FtsZ coated tips to tubes containing SlmA (untagged 

version, 1 μM) with or without the FtsZ tail peptide (Ztail-WT) or its mutants (40 to 160 μM) 

preincubated for 10 minutes.  Two minutes after the incubation, the tips were moved to tubes containing 

FtsZ polymerization buffer to monitor the dissociation for 2 minutes. Data were generated automatically 

by the BLItzTM software and then analyzed by GraphPad Prism 5.0.  
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Fig. 31. ZipA185-328 competes with SBS bound SlmA for the conserved C-terminal tail of FtsZ. 

Experiments were performed as in Fig. 23B. Streptavidin biosensor tips were loaded with 50 nM 

biotinylated SBS17-30mer for 5 minutes followed by a 10 second wash. SBS17-30mer-SlmA complexes 

were generated by moving the SBS17-30mer coated tips to tubes containing 4 μM SlmA. Two minutes 

after incubation, the tips with biotinylated SBS17-30mer and SlmA bound were washed for 10 seconds 

and then moved to tubes containing 4 μM FtsZ preincubated with ZipA185-328 to measure the association 

for 1 minute.  Dissociation was initiated by moving the tips into buffer lacking protein and dissociation 

followed for 2 minutes (dissociation step is not shown). Data were generated automatically by the 

BLItzTM software and then analyzed by GraphPad Prism 5.0.  
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However, this is not unusual because FtsZ tail peptides also display low binding affinity for ZipA (20 

μM) and FtsA (50 μM) (Mosyak et al., 2000; Szwedziak et al., 2012). It is not clear why the full length 

FtsZ binds to these tail binding proteins with a Kd within the nM range while FtsZ tail peptides only bind 

weakly. Consistent with the results above, mutants of the Z tail peptides, Ztail-I374K and Ztail-L378E, 

did not bind to SBS17-30mer-SlmA even at the highest concentration tested 320 μM (Fig 30A). A peptide 

representing the cytoplasmic domain of FtsN also failed to bind SlmA, suggesting that the SlmA binding 

of the Ztail-WT peptide was specific. Thus, the C-terminal 14 amino acids of FtsZ are sufficient for SlmA 

binding.  

 

As the Ztail-WT peptide binds to SlmA, preincubation of SBS bound SlmA with the Ztail-WT 

peptide should block or reduce the binding signal of SlmA with FtsZ because the FtsZ binding site has 

been occupied by the Ttail-WT peptide. To this end, we immobilized 6×His-FtsZ-FL on the surface of 

Ni-NTA biosensors and monitored the binding kinetics of SBS17-30mer-SlmA (His tag free) in the 

presence or absence of Ztail-WT peptide. As shown in Fig. 30C, SBS17-30mer-SlmA bound to 

immobilized 6×His-FtsZ-FL strongly and reached a plateau within 30 sec. Pre-incubation of SBS17-

30mer-SlmA with the Ztail-WT peptide decreased the binding signal in the Ztail-WT concentration 

dependent manner. At 40 μM Ztail-WT peptide, the binding plateau decreased about 20%, while at 160 

μM, the binding signal was reduced about 60%. More importantly, the mutant Ztail-I374K and Ztail-

L378E peptides only slightly affected the binding signal of SBS17-30mer SlmA with 6×His-FtsZ-FL. 

These results confirm that the Z tail peptide specifically competes with full length FtsZ for binding to 

SBS17-30mer-SlmA.  

 

SlmA competes with ZipA for the conserved C-terminal tail of FtsZ 

Previous studies showed that although both ZipA and FtsA bind to the conserved C-terminal tail 

of FtsZ, there are subtle differences in the sequence specificity (Haney et al., 2001; Mosyak et al., 2000; 
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Szwedziak et al., 2012). ZipA interacts with the conserved C-terminal tail of FtsZ largely through 

hydrophobic interactions, while FtsA mainly forms salt bridges (Mosyak et al., 2000; Szwedziak et al., 

2012). Furthermore, the tail adopts different conformations in the ZipA-Ztail and the FtsA-Ztail 

complexes (Mosyak et al., 2000; Szwedziak et al., 2012), suggesting that the tail of FtsZ cannot bind to 

ZipA and FtsA simultaneously. More importantly, MinC, the effector of the Min system, competes in vivo 

with ZipA and FtsA for the tail of FtsZ (Shen and Lutkenhaus, 2009). As SlmA also binds to the 

conserved C-terminal tail of FtsZ, we tested whether it competed for the tail or binds to the tail regardless 

of the presence of the other tail binding proteins. We thus purified ZipA185-328, which binds to FtsZ with 

high affinity, and incubated it with FtsZ to see whether this pre-incubation would block FtsZ binding to 

SBS17-30mer bound SlmA. As shown in Fig. 31, ZipA185-328 blocked FtsZ binding to SlmA bound with 

SBS17-30mer in a concentration dependent manner. At a 1:1 ratio with FtsZ (4 μM), ZipA185-328 reduced 

the the binding signal of FtsZ with SBS17-30mer-SlmA about 30%, at 5:1 ratio, FtsZ shown almost no 

binding with SBS17-30mer-SlmA, suggesting that the FtsZ available to bind SlmA was dramatically 

reduced in the presence of excess ZipA185-328. Thus, these data demonstrate that SlmA competes with 

ZipA for the conserved tail of of FtsZ. 

 

SlmA and MinC bind to the conserved C-terminal tail of FtsZ differently 

 

Shen and Lutkenhaus have isolated some FtsZ tail mutants that support normal division but 

become insensitive to the division inhibitory activity of MinCC-MinD (Shen and Lutkenhaus, 2009). 

These FtsZ mutants, including D373E, I374V, A376P (unpublished data), L378V and K380M, likely 

eliminate or reduce the interaction between FtsZ and MinCC but retain interaction with ZipA and FtsA 

(Shen and Lutkenhaus, 2009).  We would like to test whether these mutants were also insensitive to the 

division inhibitory activity of SlmA in the presence of extra copies of SBS in a plasmid, but we first had 

to make sure that these mutants complement the DU11/pKD3C strain [W3110 ftsZ0 recA::Tn10  
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Fig. 32. FtsZ tail mutants resistant to MinC display differential sensitivity to de-localized SlmA. 

Experiments were done as in Fig. 13. Plasmids pSD133 (Ptac::slmA) and p2SBSK (pUC18 with 2SBS 

sites) were introduced into the ftsZ- strain DU11 (ftsZ0 slmA<frt> recA::Tn10) complemented with 

pBANG112 or its derivatives containing different ftsZ alleles. One colony of each resultant strain was 

resuspended in 1 ml LB medium, serially diluted by 10 and 3 μl from each dilution was then spotted on 

LB plates containing various concentration of IPTG and supplemented with Ampicillin, Spectinomycin 

and Kanamycin. The plates were incubated at 30°C for 30 hours before being photographed.  
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slmA<frt>/pKD3C ftsZ+]. All FtsZ mutants expressed from pBANG112 complemented DU11/pKD3C at 

42°C, but the cells of DU11/pBANG112-L378V were a mixture of filaments and elongated cells. When 

restreaked on plates DU11/pBANG112-L378V cells did not grow at 30°C. Thus, the FtsZ-L378V was not 

tested for SlmA resistance. The I374V mutant which confers complete resistance to MinCC-MinD, 

showed almost no effect on the growth of cells when SlmA was induced, indicating that although SlmA 

and MinC bind to the conserved C-teriminal tail of FtsZ, they interact with the tail in a different manner. 

Among the other three mutants, K380M showed some resistance to SlmA in the presence of extra SBS in 

a plasmid, providing in vivo support of our finding that the conserved C-terminal tail of FtsZ is required 

for SlmA binding.  

 

Regulation of Z ring formation through competition for the conserved C-terminal tail of 

FtsZ 

 

Both SlmA and MinC bind to the conserved C-terminal tail of FtsZ, but genetic screens for SlmA 

or MinC resistant mutants using the same approach generated completely different mutants. For MinC, 

some of the resistant mutations were located in the conserved C-terminal tail and some in the globular 

domain of FtsZ. When a second screen was carried out with MinC C terminal domain, only mutations in 

the tail region were obtained (Shen and Lutkenhaus, 2009).  For SlmA, the resistant mutations K190V 

and D86N are located far away from the tail, raising a question why FtsZ tail mutants did not show up in 

the screen for SlmA resistant mutants. One possibility is that mutants resistant to SlmA were not 

generated by the error prone PCR mutagnesis because this approach normally introduces single 

nucleotide change to a codon, limiting the possible substitutions. Also, K190V dominated the screen even 

though MinC resistant mutants were isolated from the same library indicating there was diversity. 

Another possibility is that SlmA binds to the tail of FtsZ similarly as ZipA or FtsA. Mutations disrupting 
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the FtsZ-SlmA interaction would also destroy the FtsZ-ZipA or FtsZ-FtsA interaction such that the 

mutants would not show up in the screen because they are not viable.  

 

As I374 is critical for FtsZ-SlmA interaction, we mutated it to Met, Leu, Phe, Tyr and Trp by site-

directed mutagenesis to see whether these mutants would support growth and be completely resistant to 

the division inhibition by SlmA. All of these mutants expressed from pBANG112, except I374F, failed to 

complement the DU11(ftsZ0, slmA)/pKD3C strain at 42°C, suggesting that this position has limited 

tolerance for viable substitutions. This appears to be plausible because I374 is highly conserved and 

important for ZipA, FtsA and MinC binding and possibly ZapD and ClpX interaction. Further 

characterization of the I374F mutant found that it was cold sensitive, forming extremely long filaments at 

30 °C (data not shown). This resulst suggested that although I374F was able to support division above 

37°C, it must have some defect in binding the other tail binding proteins.  In agreement with this, I374F 

containing cells were a mixture of filaments and normal cells even at 42°C. This phenotype prompted up 

to test whether this mutant could support division of the wild type strain S18/pKD3C because if I374F 

retains normal interaction with SlmA but has lower binding affinity for ZipA or FtsA, addition of SlmA 

may exacerbate the division defect due to the competition for the FtsZ tail. As shown in Table 4, I374F in 

pBANG112 failed to complement S18/pKD3C at 42°C, suggesting I374F likely still interacts with SlmA 

well. By analogy, if I374F retains interaction with MinC, deletion of MinC from the S18 strain should 

allow the growth of this mutant because more FtsZ would be available to bind ZipA and FtsA. We thus 

tested whether this mutant could complement the min system knockout strain S7/pKD3C. As expected, 

S7 cells carrying I374F grew as well as S7 cells carrying wild type FtsZ at temperatures from 30 to 42°C, 

suggesting I374F interacts with MinC. S7 cells carrying I374F showed no resistance to expression of 

MinCC-MinD confirming I374F still interacts with MinCC (data not shown). The complementation results 

of I374F in different strains implies that competition for the conserved C-terminal tail of FtsZ between the 

FtsZ membrane anchors and the FtsZ negative regulators is critical for Z ring formation and disruption of  
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Table 4. Complementation of an ftsZ null in different strains by FtsZ tail mutants. Plasmid pBANG112 or 

its variants carrying different ftsZ alleles was transformed into strains S18/pKD3C, S7/pKD3C or 

DU11/pKD3C by selection with ampicillin at 42°C. If there were transformants on the plates, single 

colonies were restreaked on plates with ampicillin and grew at 42°C, 37°C and 30°C to determine the 

cold sensitivity of the ftsZ alleles.  
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Strain  Plasmid pBANG112 variants  

FtsZ-WT FtsZ-I374V  FtsZ-I374F  

42°C 37°C 30°C 42°C 37°C 30°C 42°C 37°C 30°C 

S18 

(WT)  

+ + + + + + - ND  ND  

S7 

(min-)  

+ + + + + + + + + 

DU11 

(slmA-)  

+ + + + + + + + -  
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this balance affects Z ring formation and leads to cell death. In other words the weakened interaction 

between I374F and FtsA/ZipA can be compensated for by deleting one of the negative regulators, which 

retains the ability to interact with I374F, reducing the competition for FtsZ and making more available to 

interact with ZipA/FtsA to make a Z ring.  

 

Discussion 

In chapter III, we showed that the nucleoid occlusion protein SlmA actively disassembles FtsZ 

polymers in the presence of SBS DNA molecules longer than 20 bp, suggesting a model in which SlmA 

prevents Z ring formation by antagonizing FtsZ polymerization. However, as the SlmA binding site on 

FtsZ had not been identified, our understanding of SlmA was not complete and it was not clear whether 

the antagonization of FtsZ polymerization observed in vitro has any physiological significance in vivo. 

Here, we show that the conserved C-terminal tail of FtsZ is the primary binding site for SlmA in vitro and 

an FtsZ tail mutant, K380M, provides resistance to SlmA in vivo. We also show that the ability of SlmA 

to disassemble FtsZ polymers depends on upon the tail of FtsZ. As the tail of FtsZ is not required for 

polymerization, our results thus suggest that SlmA acts on FtsZ in two steps: first, SlmA binds to the 

conserved C-terminal tail of FtsZ, activating the FtsZ polymerization inhibitory activity of SlmA; second, 

disassembles FtsZ filaments.  In addition, we show that SlmA competes with ZipA for the conserved C-

terminal tail of FtsZ and isolated FtsZ mutants that only complement FtsZ null strain in the absence of the 

Min system or SlmA, suggesting that competition for the conserved C-terminal tail of FtsZ is critical for 

regulating Z ring formation.  

SlmA binds to the conserved C-terminal tail of FtsZ 

The conserved C-terminal tail of FtsZ was reported to be unnecessary for SlmA binding (Tonthat 

et al., 2011), but we show here that it is the primary binding site for SlmA in vivo and in vitro. In the 

BLItz system, C-terminal FtsZ truncations (FtsZ320 and FtsZ360) with or without the 6×His tag showed 
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no binding to SlmA bound to an SBS17-30mer immobilized on biosensors. Single amino acid 

substitutions of highly conserved residues in the tail of FtsZ (FtsZ-I374K and L378E) also abolished the 

FtsZ-SlmA interaction.  Consistent with these results, a 14 amino acid peptide (Ztail-WT) but not mutant 

forms (Ztail-I374K and Ztail-L378E) bound to SlmA and blocked its binding to FtsZ, suggesting that the 

conserved C-terminal tail of FtsZ is absolutely required for SlmA binding. More importantly, SBS17-

30mer bound SlmA has no effect on dynamic or stable polymers formed by 6×His-FtsZ360, revealing an 

important role for FtsZ tail binding in activating the FtsZ inhibitory activity of SlmA. In agreement with 

this, an FtsZ tail mutant, K380M, provides resistance to SlmA in the presence of extra SBS in a multi- 

copy plasmid. Taken together, our results argue that the conserved C-terminal tail of FtsZ is the primary 

binding site for SlmA and necessary for SlmA to exert its function in vivo.  

 

Tonthat et. al observed that FtsZ360 bound to SBS activated SlmA with nearly wild type binding 

signal (Tonthat et al., 2011), but we observed no binding signal between FtsZ360 with SBS bound SlmA. 

It is not clear why they did not see a defect in FtsZ360 binding to SlmA, however, by using multiple 

approaches we are sure that SlmA binds the tail of FtsZ. One possibility is that the FtsZ360 they used for 

their assays was actually wild type FtsZ. FtsZ truncations without the conserved C-terminal tail are highly 

toxic and difficult to introduce into E. coli strains using vectors with leaky expression. In this study we 

used expression plasmids with the arabinose promoter, which are less leaky than vectors using the lac or 

T7 promoters (data not shown). 

 

In Chapter III we isolated FtsZ mutants (FtsZ-K190V and FtsZ-D86N) resistant to SlmA in the 

presence of extra copies of SBS in a plasmid, but neither of them are FtsZ tail mutants. Using the same 

approach, Shen and Lutkenhaus isolated FtsZ tail mutants resistant to MinCC-MinD (Shen and 

Lutkenhaus, 2009), raising a question why the approach did not lead to the isolation of FtsZ tail mutants 

resistant to SlmA. One possibility is that FtsZ tail mutants abolishing FtsZ-SlmA interaction are not 
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Fig. 33.  A model for SlmA-FtsZ interaction. A) A bipartite binding model for SlmA-FtsZ interaction. 

The binding site for the FtsZ tail (colored brown) is fully exposed upon SlmA binding to the SBS DNA. 

Once the binding site is occupied by the FtsZ tail, SlmA binds to a secondary binding site in the globular 

domain of FtsZ so that it can break the FtsZ polymer. Mutations in D86 (red) and K190 (blue) provide 

resistance to the action of SlmA but do not affect FtsZ-SlmA binding. Note that each subunit of the SlmA 

dimer-of-dimer can bind to an FtsZ molecule, for simplicity only one FtsZ is shown. B) SlmA and MinC 

act in a similar manner to antagonize Z ring formation in their vicinity. First, SlmA and MinC bind to the 

conserved C-terminal tail of FtsZ. Binding to the tail of FtsZ on the one hand reduces the tail binding to 

the Z ring promoting factors, ZipA and FtsA, on the other hand it positions the N terminal domain of 

MinC or the SlmA-DNA complex in proximity to the FtsZ filament; the N terminal domain of MinC or 

SlmA (site has not been identified) breaks FtsZ polymers. Note that the mechanisms for MinC and SlmA 

to break the filaments may be different.  
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viable while FtsZ tail mutants reducing or abolishing FtsZ-MinCC interaction still support cell growth. 

Besides SlmA and MinC, the conserved C-terminal tail of FtsZ has been shown or suggested to be the 

binding sites for ZipA, FtsA, ZapD and ClpX. Accumulated evidence suggest that the FtsZ tail interacts 

with each tail binding protein differently and it can only engage with one tail binding protein at a time.  

For example, the tail interacts with ZipA tail through hydrophobic interactions while it forms salt bridges 

with FtsA (Mosyak et al., 2000; Szwedziak et al., 2012). Our results suggest that the tail also interacts 

with SlmA and MinCC differently, since most MinCC-MinD resistant FtsZ mutants (D373E, I374V, 

A375P, and L378V), display similar sensitivity to SlmA as wild type FtsZ.  However, K380M did confer 

considerable resistance to SlmA providing evidence that the interaction between SlmA and the Z tail is 

important in vivo. Therefore, any perturbation to the sequence of the Z tail likely affects the interaction of 

the tail with many binding partners such that it is difficult to get an FtsZ tail mutant that only abolishes 

the FtsZ-SlmA interaction. It is likely that mutations in the tail of FtsZ disrupting FtsZ-SlmA interaction 

also abolish FtsZ interactions with ZipA or FtsA while mutations disrupting FtsZ-MinCC interactions only 

slightly affect FtsZ interaction with ZipA and FtsA. 

 

FtsZ-SlmA interaction 

 

In the presence of SBS17-30mer, SlmA disassembles wild type FtsZ polymers but has no impact 

on polymers formed by FtsZ360. The primary binding site, the conserved C-terminal tail of FtsZ, is not 

necessary for FtsZ polymerization, so how does SlmA binding to the tail of FtsZ lead to FtsZ polymer 

disassembly? Our result showed that SlmA requires the presence of the conserved C-terminal tail of FtsZ 

to disassemble FtsZ polymers. One possibility is that SlmA binding to the tail transmits a signal to the 

globular domain of FtsZ, leading to GTP hydrolysis and filaments breakdown. However, in between the 

conserved C terminal tail and the globular domain of FtsZ is an intrinsic disordered linker more than 50 
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amino acids long and it is hard to imagine binding to the tail could initiate a signal that could be 

transmitted to the globular domain of FtsZ and lead to FtsZ disassembly. Another possibility is that there 

is a secondary SlmA binding site in the globular domain of FtsZ, which when bound with SlmA results in 

breakdown of FtsZ filaments. The isolation of FtsZ-K190V and FtsZ-D86N, which are located in the 

globular domain of FtsZ and show resistance to SlmA in the presence of extra copies of SBS in a plasmid, 

supports the second hypothesis. SAXS analysis of FtsZ316-GFP with SlmA also suggested that there is 

interaction between the globular domain of FtsZ with SlmA because FtsZ316-GFP and SlmA form a 

sandwich like complex with two FtsZ316-GFP molecules centering on a SlmA dimer (Tonthat et al., 

2011).  We did not detect an interaction between FtsZ360 with SlmA because it may be quite weak. 

Another possibility is that the secondary binding site on SlmA is not available unless the tail occupies the 

first binding site. However, adding the Z tail peptide and FtsZ360 together did not enhance binding (data 

not shown).  

 

The FtsZ interaction interface on SlmA has been revealed by a recent elegant genetic study, and 

includes residues F65, R73, L94, G97, R101 and N102 (Cho and Bernhardt, 2013). All these residues are 

located in a cluster above the DNA binding domain in the SlmA structure. It is possible that these 

residues constitute the binding site for the conserved C-terminal tail of FtsZ as well as the secondary 

binding site for the globular domain of FtsZ (Fig 33A).  Further investigations are required to pinpoint 

which residues are required for binding to the conserved C terminal tail and which residues are important 

for binding to the globular domain of FtsZ.  

 

Formation of the Z ring requires FtsZ polymerizing into filaments of certain length that are 

tethered to the membrane by membrane anchors. Previous studies have shown that MinC prevents Z ring 

formation by competition with FtsA and ZipA for the conserved C-terminal tail of FtsZ and preventing 

FtsZ polymerization (Shen and Lutkenhaus, 2009, 2010). Here, we showed that SlmA also competes for 
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the conserved C terminal tail of FtsZ and antagonizes FtsZ polymerization (Fig 33B). This remarkable 

similarity between MinC and SlmA suggests that competition for the FtsZ tail and prevention of FtsZ 

polymerization may be a common mechanism for FtsZ spatial regulators to ensure Z ring formation does 

not occur at inappropriate places. 

 

Competition for the conserved C-terminal tail of FtsZ is important for Z ring regulation 

 

 In an attempt to isolate an FtsZ tail mutant that still supports normal cell division but provides 

resistance to SlmA, we found one mutant, I374F, which has no resistance to SlmA, but does not support 

cell division unless the Min system or SlmA has been deleted. Further characterization showed that it is 

as sensitive as wild type FtsZ to MinCC-MinD, suggesting that its inability to grow in the presence of the 

Min system and SlmA is due to a defect in interacting with the other tail binding proteins. It is possible 

that this mutant retains normal interaction with SlmA and MinC but interacts less well with ZipA and 

FtsA, both of which are essential for Z ring formation and thus cell survival. MinC and SlmA may 

outcompete ZipA or FtsA for this mutated FtsZ tail such that sufficient FtsZ-I374F filaments are not 

attached to the membrane to form the Z ring in their presence. When the Min system or SlmA is deleted, 

this deficiency may be compensated for by the loss of one of the negative regulators that detaches FtsZ 

polymers from the membrane, such that Z ring is formed. Although further studies are required to confirm 

that this mutant is impaired in interaction with ZipA or FtsA, this unexpected phenotype suggests that 

competition for the tail of FtsZ plays an underestimated role in regulating Z ring formation. In E. coli, the 

conserved C-terminal tail of FtsZ has been shown to be the binding site for many FtsZ binding proteins, 

including ZipA, FtsA, ZapD, MinC, SlmA and ClpX. These proteins could be divided into two different 

classes: proteins that promote Z ring formation (ZipA, FtsA and ZapD) and proteins that promote 

disassembly of Z rings (MinC/SlmA/ClpX).  It is likely that successful Z ring formation requires a 

balance between the positive and negative interactions with the tail of FtsZ and any perturbation of the 
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balance interferes with Z ring formation and leads to cell death as shown for FtsZ-I374F. In B. subtilis, 

similarly, the conserved C-terminal tail of FtsZ has also been shown to be the binding site for many 

proteins, including FtsA, SepF, EzrA and MinC. The first two promote Z ring formation by tethering FtsZ 

filaments to the membrane while EzrA and MinC are negative regulators of FtsZ. It is possible that 

competition for the tail of FtsZ is also important for Z ring formation regulation in B. subtilis.  
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Chapter V Conclusion and discussion 

 

The spatiotemporal regulation of Z ring formation in E. coli is largely dependent on two 

redundant negative regulatory systems, the Min system, which prevents Z ring formation near the cell 

poles and nucleoid occlusion, which prevents Z ring formation over the unsegregated nucleoid 

(Lutkenhaus, 2007). Accumulated evidence suggests that the effector of the Min system, MinC, in 

complex with its activator MinD, antagonizes Z ring formation by competing with FtsA and ZipA for the 

FtsZ tail and inhibiting FtsZ polymerization (Shen and Lutkenhaus, 2009, 2010). Although it has been 

well accepted that the effector of NO, SlmA, antagonizes Z ring formation through direct interaction with 

FtsZ, how its interaction with FtsZ prevents FtsZ from assembling into the Z ring is controversial. In this 

study we isolated FtsZ mutants resistant to the division inhibitory activity of SlmA. Through studies of 

these SlmA resistant FtsZ mutants we confirmed that SlmA prevents FtsZ polymerization, possibly by 

interfering with the communication between the N- and C-terminal sub-domains of the globular domain 

of FtsZ. We further showed that the conserved C-terminal tail of FtsZ is the primary binding site for 

SlmA and SlmA requires the presence of the conserved C-terminal tail of FtsZ to antagonize FtsZ 

polymerization. As the FtsZ tail is not required for FtsZ polymerization, our results therefore suggest that 

SlmA binding to the conserved C-terminal tail of FtsZ activates it to bind to a secondary binding site in 

the globular domain of FtsZ, resulting in the breakdown of FtsZ polymers. The mechanism of SlmA to 

antagonize Z ring formation thus appears to be similar to MinC: competing with FtsA and ZipA for the 

FtsZ tail and inhibiting FtsZ polymerization, the two steps required for the Z ring formation.  

SlmA SBS binding and its NO function 

The ability of SlmA to coordinate the Z ring formation and chromosome segregation depends on 

its interaction with DNA and its interaction with FtsZ. Disruption of either one would render SlmA 

deficient in NO. SlmA-DNA interaction contributes to the NO function of SlmA in two ways. First, the 
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asymmetric distribution of the SlmA binding sites (SBSs, with a consensus sequence of 

[GTgAGtaCTcAC]) in the E. coli chromosome provides a way to regulate the activity of SlmA 

temporally and spatially by the chromosome. There are about 24 to 52 SBSs in the E. coli chromosome, 

but most of them are distributed in the origin-proximal region of the chromosome such that the activity of 

SlmA is restricted to the locations occupied by the origin-proximal region (Cho et al., 2011; Tonthat et 

al., 2011). This asymmetric localization of SlmA allows Z ring formation at the midcell when the origin 

proximal region of chromosome is segregated away but not in new born cells in which the origin 

proximal region of the chromosome locates roughly at the midcell.  

Another function of SlmA-DNA interaction is to activate the SlmA-FtsZ interaction. When SlmA 

is de-localized by mutation that disrupts the SlmA-DNA interaction, dramatic overexpression is required 

for SlmA to block the Z ring formation (Cho et al., 2011). However, in the presence of extra copies of 

SBS in a plasmid, which will delocalize SlmA from the chromosome to random locations occupied by the 

plasmid, SlmA blocks Z ring formation throughout the cell without dramatic overexpression (Cho et al., 

2011), suggesting that SlmA SBS binding significantly increase its Z ring assembly antagonizing activity. 

Consistent with this, SlmA has minimal activity toward FtsZ polymerization in the absence of SBS DNA, 

but it disassembles FtsZ polymers actively in the presence of SBS DNA in vitro (Cho et al., 2011). It has 

been proposed that SBS DNA binding induces a conformational change in the SlmA dimers to fully 

expose its hidden FtsZ binding site such that it can bind to FtsZ with high affinity (Cho and Bernhardt, 

2013). Structural analysis of SlmA with and without SBS DNA supports such a model. However, this 

model was questioned by a recent study, which showed that SlmA forms oriented dimer-of-dimers on 

SBS DNA, and which can spread on the DNA, but has no impact on FtsZ polymerization (Tonthat et al., 

2013).  These unexpected findings led to the assumption that the conformational change induced by SBS 

binding contributes little to the SlmA-FtsZ interaction. Oligomerization of SlmA upon SBS binding thus 

appears to be the main contribution of SlmA SBS binding because SlmA oligomers can sequester FtsZ 

filaments onto the SlmA-DNA complexes.   We found that SlmA binds to FtsZ-GDP with a Kd about 20 
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μM, but the SBS17-30mer bound SlmA binds to FtsZ-GDP with a Kd about 200 nM. This 100 fold 

increase of affinity must be due to the conformational change induced by SBS binding because SlmA can 

form only one dimer-of-dimer on SBS17-30mer. Spreading of SlmA dimer-of-dimers on the DNA may 

further increase the SlmA-FtsZ interaction, but further investigation is required to explore the role of 

spreading.  

Similar to SlmA, Noc coordinates the Z ring formation with chromosome segregation in B. 

subtilis (Wu and Errington, 2004).  Previous studies have shown that Noc also binds to specific DNA 

sequences (NBSs) and spreads onto DNA adjacent to the NBSs (Wu et al., 2009).  Even though the target 

of Noc has not been identified, we speculate that Noc NBS binding must contribute to its NO function 

similarly to SlmA SBS binding: spatiotemporally regulating its function and increasing its affinity for the 

target.   

A bipartite module for SlmA-FtsZ interaction 

Before this study, two different models have been proposed for how SlmA prevents FtsZ 

assembly into the Z ring. One model suggests that SlmA, once activated by its specific DNA sequences, 

prevents Z ring formation by antagonizing FtsZ polymerization, while another model suggests that SlmA 

oligomerized on the DNA sequesters FtsZ filaments onto the SlmA-DNA complexes (Cho et al., 2011; 

Tonthat et al., 2013). We found that SlmA indeed antagonizes FtsZ polymerization, but this inhibitory 

activity of SlmA correlates with the length of the bound SBS DNA molecules. SBS DNA molecules of 14 

bp, 18 bp, 20 bp and 30 bp are able to stimulate SlmA to bind to FtsZ, but the ability of SlmA to prevent 

FtsZ polymerization decreases as the length of bound SBS DNA decreases. SlmA bound to SBS17-30mer 

disassembles FtsZ polymers efficeiently, but SlmA bound to SBS-14mer has less impact on FtsZ 

polymers. Previous studies showed that SlmA makes 6 additional contacts with the SBS-20mer than with 

SBS-12mer, displaying a 2-3 fold higher affinity for the longer SBS DNA (Tonthat et al., 2013). This 

reduced affinity for SlmA and the weaker ability of SlmA to antagonize FtsZ polymerization in Tonthat’s 



161 
 

buffer explains the lack of effect on FtsZ polymerization observed by Schumacher’s group (Tonthat et al., 

2013).   

As discussed above, SBS activated SlmA antagonizes FtsZ polymerization, but our results 

showed that it binds to FtsZ largely through the conserved C-terminal tail of FtsZ, which is not necessary 

for FtsZ polymerization. More importantly, SlmA requires the presence of the FtsZ tail to disassemble 

FtsZ polymers. Although it is possible that SlmA dimer-of-dimers sequesters FtsZ polymers, the fact that 

it bundles FtsZ polymers in the absence of GTP hydrolysis suggest that it is more likely that SlmA binds 

to a secondary binding site in the globular domain of FtsZ to prevent FtsZ polymerization. Either this 

secondary binding site is not available in the stable FtsZ polymers or SlmA binds to it but is not able to 

weaken the FtsZ-FtsZ interaction such that it cannot disassemble the stable FtsZ polymers. Consistent 

with this two binding site model, previous SAXS analysis of SlmA-FtsZ complex and SlmA-FtsZ316-

GFP complex suggest that SlmA binds to the C-terminal sub-domain of the globular domain of FtsZ 

(Tonthat et al., 2011). In support of this model, we have isolated FtsZ mutations (FtsZ-K190V and FtsZ-

D86N) in the globular domain that confer resistance to the action of SlmA in vivo and in vitro. The FtsZ-

K190V mutant is especially interesting in that it locates in the H7 helix of FtsZ and binds to SBS bound 

SlmA with a different kinetics compared to the wild type FtsZ. The H7 helix mediates the conformational 

change between the two sub-domains of the globular domain of FtsZ during assembly (Elsen et al., 2012). 

The side chain of K190 in the FtsZ-GDP structure rotates about 90° compared to that in the FtsZ-GTP 

structure, suggesting that SBS bound SlmA may take advantage of this rotation to disassemble FtsZ 

polymers. In support of this idea, all substitutions of K190, except for K190R, confer resistance to SlmA.  

The FtsZ interaction interface has been revealed by genetic study from the Bernhardt group, it is a 

region partially hidden by the DNA binding domain of SlmA (Cho and Bernhardt, 2013). We propose 

that once activated by SBS DNA, SlmA binds to the conserved C-terminal tail of FtsZ through this region 
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(Fig 33A). Once this region is occupied by the tail of FtsZ, SlmA binds to a secondary site in the globular 

domain of FtsZ and takes advantage of the positive K190 residue to disassemble FtsZ polymers.  

A universal mechanism for FtsZ spatial regulators 

The conserved C-terminal tail of FtsZ has been shown to be the binding site of MinC (Shen and 

Lutkenhaus, 2009). The unexpected finding that SlmA also binds to this tail indicates that the conserved 

C-terminal tail of FtsZ may be an important target for FtsZ spatial regulators. ZipA and FtsA also bind to 

the conserved C-terminal tail of FtsZ, but they promote Z ring formation by tethering FtsZ filaments to 

the membrane (Mosyak et al., 2000; Pichoff and Lutkenhaus, 2002; Szwedziak et al., 2012). MinC and 

SlmA bind to the conserved C-terminal tail of FtsZ, but they prevent Z ring formation in their vicinity. 

Binding to the tail of FtsZ on the one hand positions MinC and SlmA close to the FtsZ filaments so that 

they can attack FtsZ filaments, on the other hand reduces the conserved C-terminal tail of FtsZ binding to 

ZipA and FtsA. In an attempt to isolate FtsZ tail mutants resistant to SlmA, we isolated an FtsZ tail 

mutant (FtsZ-I374F) that only supports cell growth when the Min system or SlmA has been deleted. 

I374F retains normal interaction with MinC and SlmA, but only supports cell division in the absence of 

the Min system or SlmA but not when both are present.  Although additional tests are necessary to prove 

I374F interacts with ZipA or FtsA less well, the phenotypes of I374F suggest that competition for the 

conserved C-terminal tail of FtsZ between the proteins that promote Z ring formation and proteins that 

prevent Z ring formation may be important for Z ring formation regulation.  

Both MinC and SlmA have been proposed to sever FtsZ filaments, but they likely do it in 

different mechanisms (Cho et al., 2011; Shen and Lutkenhaus, 2010). Genetic studies suggest that the N 

terminal domain of MinC binds to the interfaces of two FtsZ subunits to disrupt FtsZ polymerization 

(Shen and Lutkenhaus, 2010), while our results suggest that SlmA disassembles FtsZ polymers by 

affecting the communication between the two sub-domains of FtsZ. Consistent with this, FtsZ mutants 

resistant to the N terminal domain of MinC have no resistance to SlmA and FtsZ mutants resistant to 
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SlmA confer no resistance to MinC. In addition, MinC has no impact on FtsZ GTPase activity, but SlmA 

stimulates the GTPase activity of FtsZ. Despite these differences, the remarkable similarity of these two 

FtsZ inhibitors suggests that competition for the conserved C-terminal tail of FtsZ and inhibition of FtsZ 

polymerization may be a universal mechanism for FtsZ spatial regulators. 
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