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ABSTRACT 

Computer-aided molecular design (CAMD) offers a methodology for rational product design. The CAMD 

procedure consists of pre-design, design and post-design phases. CAMD was used to address two 

bioengineering problems: design of excipients for lyophilized protein formulations and design of ionic 

liquids for use in bioseparations. Protein stability remains a major concern during protein drug 

development. Lyophilization, or freeze-drying, is often sought to improve chemical stability. However, 

lyophilization can result in protein aggregation. Excipients, or additives, are included to stabilize proteins 

in lyophilized formulations. CAMD was used to rationally select or design excipients for lyophilized 

protein formulations. The use of solvents to aid separation is common in chemical processes. Ionic 

liquids offer a class of molecules with tunable properties that can be altered to find optimal solvents for 

a given application. CAMD was used to design ionic liquids for extractive distillation and in situ extractive 

fermentation processes.  

The pre-design phase involves experimental data gathering and problem formulation. When available, 

data was obtained from literature sources. For excipient design, data of percent protein monomer  

remaining post-lyophilization was measured for a variety of protein-excipient combinations. In problem 

formulation, the objective was to minimize the difference between the properties of the designed 

molecule and the target property values. Problem formulations resulted in either mixed-integer linear 

programs (MILPs) or mixed-integer non-linear programs (MINLPs). 

The design phase consists of the forward problem and the reverse problem. In the forward problem, 

linear quantitative structure-property relationships (QSPRs) were developed using connectivity indices. 

Chiral connectivity indices were used for excipient property models to improve fit and incorporate 

three-dimensional structural information. Descriptor selection methods were employed to find models 

that minimized Mallow's Cp statistic, obtaining models with good fit while avoiding overfitting. Cross-
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validation was performed to access predictive capabilities. Model development was also performed to 

develop group contribution models and non-linear QSPRs. A UNIFAC model was developed to predict 

the thermodynamic properties of ionic liquids.  

In the reverse problem of the design phase, molecules were proposed with optimal property values. 

Deterministic methods were used to design ionic liquids entrainers for azeotropic distillation. Tabu 

search, a stochastic optimization method, was applied to both ionic liquid and excipient design to 

provide novel molecular candidates. Tabu search was also compared to a genetic algorithm for CAMD 

applications. Tuning was performed using a test case to determine parameter values for both methods. 

After tuning, both stochastic methods were used with design cases to provide optimal excipient 

stabilizers for lyophilized protein formulations. Results suggested that the genetic algorithm provided a 

faster time to solution while the tabu search provides quality solutions more consistently.  

The post-design phase provides solution analysis and verification. Process simulation was used to 

evaluate the energy requirements of azeotropic separations using designed ionic liquids. Results 

demonstrated that less energy was required than processes using conventional entrainers or ionic 

liquids that were not optimally designed. Molecular simulation was used to guide protein formulation 

design and may prove to be a useful tool in post-design verification. Finally, prediction intervals were 

used for properties predicted from linear QSPRs to quantify the prediction error in the CAMD solutions. 

Overlapping prediction intervals indicate solutions with statistically similar property values. Prediction 

interval analysis showed that tabu search returns many results with statistically similar property values 

in the design of carbohydrate glass formers for lyophilized protein formulations. The best solutions from 

tabu search and the genetic algorithm were shown to be statistically similar for all design cases 

considered. Overall the CAMD method developed here provide a comprehensive framework for the 

design of novel molecules for bioengineering approaches.       
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1.0 INTRODUCTION 

Chemical product design is an important, yet often overlooked, aspect of chemical engineering. 

Traditionally, chemical engineering has focused on process design, yet the aim of any process is to 

manufacture a product of value. The objective of process design is to maximize output and profit while 

minimizing material and energy inputs. Additional factors, such as safety and environmental concerns, 

further constrain the process design. The same design principles can be applied to chemical product 

design, where a molecule requires specific chemical or physical properties for a certain task. Other 

properties can be used as constraints to further ensure the designed product works to the correct 

specifications. Chemical product design has been defined as the process in which needs are determined, 

candidates are generated to meet needs, screening and selection of candidates identifies the best 

candidate and the final candidate is manufactured into a finished product (Cussler and Moggridge 2011). 

The product design problem is often addressed by extensive experimental generate-and-test 

approaches. Such approaches would not be feasible in many process design problems, and thus systems 

engineering and process design developed to identify solutions from a modeling, simulation and 

optimization perspective. Computer-aided molecular design (CAMD) offers a methodology that aims to 

reduce trial-and-error and rationally design and select candidates in chemical product design using 

systems engineering principles. In general, CAMD aims to solve the chemical product design problem by 

determining a molecule or formulation (mixture of molecules) that best matches a set of target 

properties given an assortment of chemical groups (Gani 2004). The advent of engineering approaches 

to biological systems presents many new opportunities for the application and further development of 

computer-aided molecular design.  The work that follows describes the development and use of CAMD 

approaches towards two applications of biological relevance: design of lyophilized protein formulations 

and design of ionic liquid solvents for use in separation of bio-products.  
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1.1 MOTIVATION 

Protein drugs are a fast growing pharmaceutical market. Global spending on biologics, which include 

protein drugs and cell-based therapies, in 2011 was $157Bn and is expected to grow to $200Bn by 2016 

(source: IMS Health, http://www.imshealth.com). In relation to traditional pharmaceutical molecules, 

biologics are gaining market share. Of the top 100 drugs by U.S. sales in the fourth quarter of 2012, 28 

were protein drugs or other biologics (source: IMS Health, http://www.imshealth.com ). Lyophilization, 

or freeze-drying, is a common process used to increase the stability of protein drug products through 

the removal of water. Despite improvements to chemical stability, lyophilization can induce protein 

aggregation. Protein aggregation is undesirable in drug products as it can reduce efficacy, cause 

immunogenicity and/or result in product losses during production. Thus, reduction of protein 

aggregation is a topic of extreme interest and concern in the pharmaceutical industry. The two general 

approaches taken to minimize aggregation are protein engineering and formulation development. The 

work detailed here focuses on use of CAMD for the design of a molecule or set of molecules for inclusion 

in a lyophilized formulation with the aim of minimizing aggregation. 

Another class of molecules receiving increased attention both in research and industry is ionic liquids. 

The number of publications concerning ionic liquids has jumped from less than 100 in 2000 to nearly 

2,500 in 2011 (Ann, Nicholas et al. 2012). Ionic liquids are attractive as environmentally friendly, or 

“green”, solvents due to their extremely low vapor pressure and tunable properties through alteration 

of the cation and anion selected (Marsh, Boxall et al. 2004; Zhao, Xia et al. 2005). Two bio-based 

applications of ionic liquids as solvents are used as the basis for CAMD in this work: ionic liquids as 

entrainers in azeotropic distillation and ionic liquids as extraction media for in situ fermentation 

processes.  
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Distillation is a commonly used unit operation that allows for separation of products based on 

differences in volatility. Azeotropic distillation allows separation of azeotropes through use of an 

entrainer, further increasing the applications of distillation. A major drawback to distillation is the 

energy requirements. Distillation processes are estimated to account for 40% of the entire energy usage 

of the chemical processing industry in North America (U.S. Dept. of Energy 2001). The use of ionic liquids 

as entrainers has shown improvements in energy requirements in comparison to conventional 

entrainers used in azeotropic distillation (Seiler, Jork et al. 2004).  

Fermentation is a common method which utilizes microorganisms for the production of chemicals. 

Substrate/product inhibition and separation of chemical products are two main concerns that reduce 

the efficiency of fermentation processes. By removing the product as it is produced, in situ fermentation 

offers a solution to these concerns. Ionic liquids have been proposed for use as extractive media for in 

situ fermentation processes due to their flexible properties obtained by altering the cation and anion 

used (Gangu, Weatherley et al. 2009). Through CAMD methods, optimal ionic liquids can be identified 

for azeotropic distillation and in situ fermentation resulting in increasingly efficient separation 

processes. 

CAMD provides a methodology for the rational design or selection of molecules for a specific task. 

CAMD methodology consists of a forward and a reverse problem (Venkatasubramanian, Chan et al. 

1994). In the forward problem, property models are developed which relate chemical structure to 

properties of interest. The reverse problem determines a molecular structure which best matches a set 

of target property values and property constraints. The overall design methodology is outlined by Figure 

1.1. 
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Figure 1.1 Computer-aided molecular design methodologyThe forward problem relates molecular 

structure to property values through molecular descriptors. The reverse problem determines the 

molecular descriptor values and hence molecular structure that provides an optimal match to target 

property values.  

 
While much research has been spent on the reverse problem, little effort has been spent on the forward 

problem (Patel, Ng et al. 2009). Many CAMD methods utilize group contribution (GC) property models 

(Gani, Nielsen et al. 1991; Harper and Gani 2000). Group contribution methods describe molecular 

structure as a collection of chemical fragments of groups. The number and type of groups are correlated 

to properties of interest. GC methods generally do not account for the connectivity of the molecule and 

provide a low level of molecular representation (Patel, Ng et al. 2009). The work here largely uses 

connectivity indices to represent molecular structure to provide higher level molecular representation 

and increased accuracy in property modeling. Connectivity indices and other topological indices are 

becoming more widespread in the development of property models for CAMD (Raman and Maranas 

1998; Camarda and Maranas 1999; Siddhaye, Camarda et al. 2000; Lin, Chavali et al. 2005; Eslick, Ye et 

al. 2009; McLeese, Eslick et al. 2010; Roughton, Topp et al. 2012). The following work advances the level 

of molecular representation used in CAMD approaches through the integration of chirality information 

in the calculation of connectivity indices.     



 

5 
 

Descriptor selection is trivial in the development of GC property models as the descriptors needed are 

defined by the types of chemical groups present in the model building set. GC models run the risk of 

over-fitting as a result, potentially leading to poor property prediction. By using connectivity indices, 

descriptor selection techniques become available to ensure the development of models with good fits 

and predictive ability. The work here integrates established statistical techniques for descriptor selection 

with CAMD model development for the first time. Additionally, model cross-validation methods used 

previously in CAMD (Eslick, Ye et al. 2009) are further advanced.   

Given a set of predictive property models, a CAMD solution technique is employed to design or select 

candidate molecules for a given task in the reverse problem. Three main solution approaches have been 

used in CAMD: enumeration techniques, mathematical programming and stochastic optimization (Eljack 

and Eden 2008). Enumeration techniques use a set of chemical groups to generate all chemical 

combinations and then screen the combinations using property targets and constraints. As the number 

of groups and/or the maximum allowable molecule size becomes large, enumeration techniques can 

suffer from combinatorial explosion. Enumeration approaches are also reliant on a predefined chemical 

group set that may preclude the consideration of many novel molecules. Mathematical programming 

poses the CAMD problem as a mixed integer linear program (MILP) or mixed integer nonlinear program 

(MINLP). While solution of a MILP ensures that a globally optimal solution is found, many CAMD 

problems require a MINLP representation. Solution of a MINLP can be computationally expensive and 

does not guarantee that the solution found is the global optimum (Eljack and Eden 2008). Furthermore, 

a global optimum may not be necessary or even meaningful for CAMD approaches due to uncertainties 

in property prediction. CAMD methods which employ stochastic optimization algorithms are iterative 

procedures which aim to find multiple near-optimal or locally optimal solutions. The speed in generation 

of a set of many good candidate molecules makes stochastic optimization approaches attractive for 

CAMD and stochastic approaches are the focus of this work. Genetic algorithm CAMD approaches mimic 
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evolution to refine a population of candidate molecules through a series of generations, until candidates 

are identified that provide the best match to a set of target properties (Venkatasubramanian, Chan et al. 

1994). Tabu search CAMD approaches use a local search to identify candidate molecules while 

maintaining a history of previous solutions (Lin, Chavali et al. 2005). The solution history, stored in tabu 

lists, is used to guide the local search and determine when the search should be expanded to consider 

other, more diverse molecular structures (Lin, Chavali et al. 2005).  While both methods have 

advantages – multiple initial solutions (seed population) in genetic algorithms and memory guided 

search (via tabu lists) in tabu search – the utility of one stochastic method over another for CAMD is not 

established. The work that follows details the development, tuning and comparison of genetic 

algorithms and Tabu search for CAMD to identify the strengths and weaknesses in both approaches. 

Finally, as stochastic methods generate many locally optimal solutions, a comparison method would 

provide a tool to determine the best subset of solutions for further consideration. The work here 

demonstrates a novel application of prediction intervals to provide statistical comparisons of CAMD 

solutions obtained from stochastic solution methods. The prediction interval comparisons are made 

between solutions found using the same method and also between the best solutions found using 

different methods. 

1.2 OVERVIEW 

The following chapter (Section 2) will offer further background into both the lyophilized protein 

formulation and ionic liquid solvent design problems being considered, along with a detailed 

explanation of CAMD methodology and state-of-the-art. In addition to the use of CAMD towards novel 

applications, the work concerned here also presents new approaches for CAMD model development, 

solution and final candidate selection. To design a molecule with target properties, models must exist 

for prediction of the targeted properties. Experimental data is needed for model development. The 
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experimental methods used in the work are detailed in Section 3. Development of reliable property 

models is imperative as the validity of a CAMD solution rests on the predicted properties being accurate. 

The work described in Section 4 details the efforts made to improve property prediction by uniting 

established statistical techniques to model development for CAMD problems. Solution of the CAMD 

problem provides candidate molecules for a given application. The CAMD solution approaches 

presented here are based on optimization frameworks and are detailed in Section 5. Solution of the 

optimization problems are approached through both deterministic and stochastic methods, with the use 

of stochastic methods being emphasized. Additional computational tools have been utilized and are 

detailed in Section 6 (process design) and Section 7 (molecular simulation). Results are presented in 

Section 8 (ionic liquid design) and Section 9 (excipient design). Finally, conclusions and future 

recommendations are given in Section 10.  

For further clarification, nomenclature is given in Appendix A. The procedure used for model 

development is provided in Appendix B. Appendix C provides guidelines for using a previously existing 

CAMD framework while Appendix D provides the source code for a new CAMD framework proposed 

here. Additional interaction parameters for a UNIFAC model developed by this work are available in 

Appendix E. All experimental data obtained by the author are summarized in Appendix F. 
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2.0 BACKGROUND 

CAMD requires a product design problem for solution. Two different problems related to bioengineering 

have been addressed here: design of lyophilized protein formulations to minimize aggregation and 

design of ionic liquids for separation of bio-products. Background on lyophilization and protein 

aggregation is given in Sections 2.1-2.6. Background regarding ionic liquids and their use in separations 

is given in Sections 2.7-2.8. Once a design problem of interest has been identified, property models are 

needed to link key properties for design to molecular structure (the forward problem). Sections 2.9-2.11 

describe model development for both structure-property relationships as well as thermodynamic 

property models. Upon creation of reliable property models, CAMD is used to generate candidates that 

optimally match a given set of target properties (the reverse problem). The CAMD methodology and its 

historical development are detailed in Sections 2.12-2.17. 

LYOPHILIZED PROTEIN FORMULATION DESIGN 

2.1 PROTEINS AS DRUGS 

Proteins are increasingly being considered as therapeutic candidates. Proteins fulfill a multitude of 

biological functions including catalysis, transport and structural support and consequently have been 

indicated in numerous disease states (Leader, Baca et al. 2008). Currently, approved protein drugs are 

available for treatment of a wide range of diseases including diabetes, multiple sclerosis, rheumatoid 

arthritis, cancer and hepatitis (Marshall, Lazar et al. 2003). Compared to traditional small molecule 

pharmaceuticals, protein molecules have increased complexity. 

Proteins are biopolymers comprised of amino acids. The main structure of an amino acid involves an 

amino group and carbonyl group common to all amino acids along with a side group that defines the 

amino acid. There are twenty common amino acids used in the biosynthesis of proteins, which can be 

arranged in classes of non-polar or hydrophobic, polar, acidic and basic amino acids. Two amino acids 
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bond covalently to form a peptide bond between the amide nitrogen of one amino acid and carbonyl 

carbon of another amino acid. The formation of peptide bonds creates the polypeptide backbone which 

is common among all proteins with structural diversity arising from the amino acid side groups. The 

amino acid sequence of the protein is referred to as the primary structure. Proteins do not exist as linear 

molecules but instead fold into a variety of three-dimensional conformations. Structural motifs known 

as -helices and -sheets (pleated sheets) form the secondary structure of a protein. Such motifs are 

formed by hydrogen bonding between the amide hydrogen of one amino acid and the carbonyl oxygen 

of another amino acid. The three-dimensional arrangement of secondary structural elements and 

unfolded regions constitutes the tertiary structure of the protein, which is driven by the amino acid 

sequence (Anfinsen 1972). Minimization of exposed non-polar or hydrophobic surface area and 

formation of intramolecular contacts are two main driving forces in the tertiary structure adopted by a 

protein (Pace, Shirley et al. 1996; Rose, Fleming et al. 2006). Quaternary structure is derived from 

arrangement of single folded polypeptide chains into multi-protein complexes. An overview of the 

structural hierarchy in proteins is given by Figure 2.1. The biological function of proteins is derived from 

protein structure. As a result, preservation of native structure is essential for proper function of 

therapeutic proteins. 
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Figure 2.1 Hierarchy of protein structure Figure adapted from (University of Massachusetts, accessed 1 
June 2013). 

 

When a protein is identified as a therapeutic candidate, a formulation must be developed for 

administration. Due to degradation processes in the body, protein drug products generally require 

injectable routes of administration (intravenous, intramuscular or subcutaneous). Thus the final product 

requires an injectable solution for patient use. Additives, or excipients, are included in the formulation 

to attain desirable properties, including stabilization of the final drug product. Stability is a major 

concern, as many degradation routes exist for proteins. For example, degradation can occur via 

aggregation, deamidation, isomerization, oxidation, glycation, and thioldisulphide exchange (Cleland, 

Langer et al. 1994; Manning, Chou et al. 2010). Degradation not only results in product loss, but also can 

lead to issues in regulatory approval. In most cases, the FDA requires pharmaceutical product 

degradation to be below 10% of the product’s final weight (Cleland, Langer et al. 1994). 
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2.2 LYOPHILIZATION  

For proteins that prove unstable under aqueous conditions, lyophilization is often employed. 

Lyophilization removes water from the formulation by sublimation via a freezing step and then by 

evaporation through primary and secondary drying steps (Cleland, Langer et al. 1994; Costantino and 

Pikal 2004). During the lyophilization process, the protein experiences several temperature and pressure 

changes. By removing water, the mobility of the protein is reduced and stability is improved by 

elimination of many reactions that are facilitated by water. The desired resulting product is an 

amorphous solid with minimal water content (see Figure 2.2). Lyophilization is among the most common 

formulation choices for protein drugs, representing 46% of the biopharmaceuticals approved by the FDA 

through December 2003 (Costantino and Pikal 2004). For administration, lyophilized protein drug 

products are reconstituted and subsequently injected.  

 

Figure 2.2 Vial containing lyophilized protein formulation The resulting formulation is an amorphous 

solid.  

 

Despite improvements to stability, degradation can still occur in lyophilized proteins. Of particular 

interest here is degradation due to protein aggregation, which is an often irreversible self-association 
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resulting in a protein complex (Cleland, Langer et al. 1994; Wang 2005; Wang, Nema et al. 2010). The 

aggregation process can occur due to physical interactions between protein surfaces or can result from 

chemical interactions of the amino acids, forming covalent bonds between proteins (Wang 2005). The 

detection of aggregates is difficult, as the protein complexes may be soluble (Wang 2005). Aggregation 

not only results in product loss and lowered efficacy of the protein drug, but can also lead to severe and 

life threatening immunogenic responses (Rosenberg 2006). One aim of a lyophilized formulation should 

be to minimize aggregation, ensuring the safety and efficacy of the final product. 

2.3 PROTEIN AGGREGATION – MECHANISMS, MEASUREMENT AND PREDICTION 

Protein aggregation is defined as the self-association of monomeric protein leading to the formation of 

multi-protein complexes. Aggregation can be either reversible or irreversible, arising from the formation 

of covalent bonds or through physical interactions (Wang 2005). An example of chemical reaction 

leading to aggregation is the formation of intermolecular disulfide bonds.  Interactions between 

hydrophobic regions of proteins represent a physical pathway that results in aggregation. Protein 

aggregates can either be soluble or insoluble (Wang 2005). Insoluble protein aggregates precipitate out 

of solution. Soluble aggregates are further characterized as visible or sub-visible. An example of visible 

soluble aggregates is provided by Figure 2.3. The formation of visible soluble aggregates results in 

solution turbidity and can be detected through optical methods (Katayama, Nayar et al. 2005). The 

presence of sub-visible aggregates is receiving increasing attention in protein formulation development 

(Carpenter, Randolph et al. 2009).  
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(A)       (B) 

      

Figure 2.3 Solutions containing aggregated protein  (A) The presence of visible aggregates leads to 

turbidity in the solution. (B) Protein aggregates can precipitate out of solution.  

 

The formation of protein aggregates is primarily driving by two factors: colloidal instability and 

conformation instability (Chi, Krishnan et al. 2003). Colloidal instability results in aggregation through 

direct interaction of properly folded proteins. Of special concern for colloidal instability is the exposure 

of hydrophobic surfaces on the protein which may drive aggregation and has been implicated in a 

variety of disease states resulting from protein aggregation (Münch and Bertolotti 2010). The 

mechanism behind colloidal instability is rather straightforward (i.e., direct protein-protein interactions), 

yet the prediction of colloidal instability for any given protein remains a challenge. 

Conformational instability involves a change in native conformation that leads to aggregation. Partial 

unfolding may expose regions of the protein that increase aggregation propensity (Wang 2005).  A 

general pathway for the formation of aggregates is outlined in Figure 2.4. The progression of protein 

from native state to partially unfolded states is driving by the free energy landscape and can result in an 

ensemble of intermediate structures (Gsponer and Vendruscolo 2006). The free energy landscape has 

both entropic and enthalpic contributions. It has been suggested that individual unfolded monomers are 

favorable by increasing entropy while aggregated states are favorable by decreasing enthalpy (Gsponer 
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and Vendruscolo 2006). In many cases, aggregation may be driven through a combination of colloidal 

and conformation instabilities leading to a more complicated set of pathways than that proposed in 

Figure 2.4 (Wang, Nema et al. 2010).  

 

Figure 2.4 Pathway for the formation of aggregates through conformation instability Partial unfolding 

of the native protein lead to aggregation-prone intermediates. The intermediates can aggregate or 

further unfolded. Figure adapted from (Wang 2005). 

  

A variety of experimental techniques exist for the detection and assessment of protein aggregates which 

can be classified as particle-based methods, separation-based methods and indirect methods 

(Engelsman, Garidel et al. 2011). Particle-based methods aim to detect aggregates through identification 

of particles in solution. Separation-based methods aim to separate aggregates from native protein in 

solution through basis of size, following by aggregate detection. Indirect methods often utilize 

spectroscopy methods to detect structural changes that are associated with protein aggregation. 

Overall, experimental techniques either provide qualitative information on protein aggregation or 

quantitative information such as the percentage of protein that is monomeric as opposed to aggregated.  

A summary of some common experimental techniques is provided by Table 2.1. The list provided is by 

means exhaustive and continual work is being performed to both improve existing aggregate detection 

methods as well as develop novel techniques for aggregate detection. 

Native Intermediate Unfolded 

Aggregate 
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Understanding the structural properties of proteins that lead to aggregation is critical to the design of 

safe and effective protein drug products, and an ability to predict aggregation propensity (i.e., the 

likelihood and extent to which a protein will aggregate) with reasonable accuracy would accelerate 

development. Several approaches have been developed to estimate aggregation propensity for a given 

protein, which can classified into two main methods: heuristic-based methods and simulation-based 

methods. 
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Heuristic-based approaches attempt to use prior history on aggregation or causes of aggregation in 

proteins to develop predictors for aggregation propensity. The aim of a heuristic-based approach is to 

relate protein properties to experimental data on protein aggregation, with the end result being a 

predictive model or algorithm that returns aggregation propensity given a measure of protein structure. 

Several algorithms have been developed to predict protein aggregation in solution as a function of 

structural parameters. For example, AGGRESCAN utilizes the intrinsic aggregation propensity of amino 

acids obtained from an experimental aggregation database of mutated β-amyloid peptides (Conchillo-

Sole, de Groot et al. 2007). PASTA predicts the likelihood of amino acid sequences being involved in 

intermolecular β-sheet formation, based on minimization of β-pairing energies (Trovato, Seno et al. 

2007). Zyggregator uses factors such as protein hydrophobicity, electrostatic interactions and 

alternating stretches of polar and non-polar residues to predict aggregation propensity (Tartaglia and 

Vendruscolo 2008). For all of these methods, protein primary structure (amino acid sequence) is used to 

return one or more scoring parameters which are indicative of the propensity of a protein to aggregate. 

For instance, AGGRESCAN returns the number of aggregation prone regions, or “hot spots” in a protein. 

The number of hot spots is then used to qualitatively indicate the likelihood of protein aggregation 

occurring, with a larger number of hot spots corresponding to a higher likelihood. Therefore, a hallmark 

of current methods is qualitative results in the form of aggregation predictors that must be interpreted. 

Simulation-based methods use any of the many available molecular simulation software packages or 

newly-developed tools to investigate interactions between protein molecules or dynamics within a 

single protein molecule. The aim of simulation-based methods is to determine if aggregation is likely to 

happen based on the energetics of protein-protein interactions (Ma and Nussinov 2006). Alternatively, 

simulation-based methods can investigate the dynamics of a single protein molecule to determine if the 

properties of the protein could become amenable to aggregation (Irbäck and Mohanty 2006). For 

example, the spatial aggregation propensity (SAP) algorithm uses molecular simulations to determine 
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the average exposed hydrophobic surface area for a given protein, with larger exposed hydrophobic 

surface areas representing increased aggregation propensity (Chennamsetty, Voynov et al. 2009). In 

general, simulations are more computationally expensive than use of a model or algorithm to predict 

aggregation propensity. Simulations are usually required for every system of interest. Simulation-based 

methods necessitate three-dimensional structure of a protein for determination of aggregation 

propensity and thus require more structural information than the heuristic-based methods described 

previously. Simulation-based approaches offer advantages over current heuristic-based approaches due 

to the ability for qualitative assessments (e.g., free energy calculations of protein-protein interactions) 

and inclusion of formulation conditions via explicit solvent and solute modeling. Recently, hybrid 

approaches have been developed to combine simulation results with heuristic model-based predictions. 

The Developability Index has been constructed for monoclonal antibodies utilizing net charge and SAP 

(Lauer, Agrawal et al. 2012).  Additionally, the osmotic second virial coefficient (B22) has also been used 

to predict protein self-association in aggregation (Chi, Krishnan et al. 2003; Printz, Kalonia et al. 2012), 

though it is based on experimental measurement and not on a priori descriptors of protein structure. 

2.4 APPROACHES TO AGGREGATION MINIMIZATION 

Two basic approaches are taken to minimize protein aggregation in therapeutics: protein engineering 

and formulation development. Protein engineering focuses on modifications to the structure of the 

protein which result in reduced aggregation propensity. Formulation development attempts to minimize 

aggregation through the inclusion of excipients, resulting in a multi-component product. The two 

approaches differ in that protein engineering is focused on the protein molecule itself (active 

compound) while formulation development is concerned with selection of excipient molecules (inactive 

compounds). 
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The basis behind protein engineering is that structure of the protein determines function. Consequently, 

modification of protein structure can offer improvement of certain properties while still maintaining the 

intended therapeutic function. Key properties of interest for protein drugs, and therefore areas for 

desired improvement, include mechanism of action, stability, bioavailability, toxicity or occurrence of 

side effects, ability for production at economically viable scales and dosing/delivery requirements 

(Marshall, Lazar et al. 2003). Table 2.2 provides an overview of the common targets of protein 

engineering approaches. With regards to preventing aggregation, common protein engineering 

strategies include replacement of cysteine residues, replacement of exposed hydrophobic residues, 

charge modification and post-translation modification (Marshall, Lazar et al. 2003). Replacing free 

cysteine residues can prevent aggregation that occurs due to disulfide bond formation and has been 

shown to successfully reduce aggregation for commercially available protein drugs such as Proleukin 

(aldesleukin, produced by Chiron) and Betaseron (interferon beta-1b, produced by Berlex/Chiron) 

(Marshall, Lazar et al. 2003). Yet aggregation can still occur from the scrambling of disulfide bonds 

formed from paired cysteine residues (Wang 2005). Replacement of hydrophobic residues through site-

directed mutagenesis offers an increasingly popular choice for protein engineering, including rational 

protein design. For example, the SAP algorithm has been developed to identify amino acids in antibodies 

with high aggregation propensity as targets for mutagenesis (Chennamsetty, Voynov et al. 2009). SAP 

has also been used with total charge to provide a developability index for monoclonal antibodies (Lauer, 

Agrawal et al. 2012). Protein engineering approaches may improve the stability of lyophilized protein 

drugs or offer sufficient stability improvements such that lyophilization is no longer necessary.  
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Table 2.2 Common protein engineering targets for property improvementTable adapted from 

(Marshall, Lazar et al. 2003).  

Protein Structural Target Desired Improvement 

Exposed hydrophobic residues Solubility 

Binding site Interaction affinity and specificity  

Loops Protease susceptibility 

Core Stability and conformational control 

Linear epitopes Immunogenicity 

Termini Attachment of fusion partners or polyethylene glycol (PEG) 

 

Formulation development assumes a fixed protein molecule and selects excipients to improve the drug 

product properties. Figure 2.5 illustrates the general preformulation and formulation development 

process. Excipients provide a variety of roles in protein drug formulation including solubilizing 

compounds, stabilizers and bulking agents for lyophilized formulations (Costantino and Pikal 2004; 

Strickley 2004). If possible, excipients are added to ensure stability in the aqueous solution, bypassing 

the need for a lyophilized formulation.  For reduction of aggregation, a common strategy is to create 

favorable conditions for the native state of the protein through addition of excipients to prevent 

protein-surface interactions and/or improve conformational stability. Surfactants are employed to 

prevent denaturation and adherence of proteins to the surface of any variety of containers that the 

protein is exposed to during manufacturing and storage, as the surfactants are more likely to bind to the 

surfaces (Chang, Kendrick et al. 1996; Chi, Krishnan et al. 2003). Other excipients, such as sugars, are 

added to improve conformational stability via preferential exclusion (Arakawa and Timasheff 1982). 

According to preferential exclusion, sugars and other weakly interacting excipients are excluded from 

the protein’s surface. The exclusion leads to an increase in free energy that is proportional to the 

protein’s surface area (Arakawa and Timasheff 1982; Timasheff 1998). As a result, a compact form of the 
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protein is energetically more favorable and the native state is preferred to an unfolded or denatured 

state. Excipients that bind with strong affinity to the protein surface can also affect protein stability. 

Excipients that bind to the native state increase conformational stability, while excipients that have an 

affinity for the unfolded state drive denaturation (Chi, Krishnan et al. 2003). Examples of molecules that 

affect protein stability through binding include heme with myoglobin (increased stability) and guanidine 

hydrochloride with proteins in general (decreased stability, denaturation). During formulation 

development, stability concerns may justify the use of lyophilization. 

Several classes of molecules are employed in lyophilized protein formulations including amino acids, 

carbohydrates, polymers and surfactants (Costantino and Pikal 2004). Of special interest are 

carbohydrate excipients, such as sucrose and trehalose, which have been shown repeatedly in literature 

to stabilize lyophilized protein structure (Fung, Darabie et al. 2005; Li, Williams et al. 2008; Sinha, Li et 

al. 2008). Many lyophilized protein formulations utilize simple sugars, disaccharides, oligosaccharides, or 

sugar alcohols as stabilizers (Cleland, Langer et al. 1994). Two main theories have been proposed for 

describing an excipient’s ability to stabilize biomolecules during lyophilization: water replacement and 

vitrification. In the water replacement theory, stabilizing excipients are those that can substitute for 

water in the dried state through hydrogen bonding with the protein (Cleland, Langer et al. 1994). The 

vitrification hypothesis proposes that stabilizing excipients are those that form glasses during 

lyophilization (Crowe, Carpenter et al. 1998). Vitrification is described in more detail in Section 2.4, while 

water-replacement is further addressed in Section 2.5. 
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Figure 2.5 Preformulation and formulation development process diagram Adapted from (Cleland, 

Langer et al. 1994).   
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2.5 VITRIFICATION – GLASS TRANSITIONS IN LYOPHILIZATION 

In general, the glass transition temperature marks the change between a liquid/rubbery state and an 

amorphous solid/glass state. The glass transition temperature can be measured by a variety of methods 

including differential mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) 

(Rahman, Al-Marhubi et al. 2007). Due to the different features used by each method, the exact 

transition temperature measured varies by method (Rahman, Al-Marhubi et al. 2007) or even by 

procedure or data interpretation used for a particular method (Roos 1997). Regardless of method, the 

change in features attributed to the glass transition indicate the point or region where -relaxation 

processes are arrested when cooling a liquid/rubber into a glass (Gangasharan and Murthy 1995). The 

transition is not a true glass-transition as defined for polymers; however, the language used to describe 

the transition noted in sugars is borrowed from literature concerned with polymers. In reality, the glass 

transition of sugars is related to mobility and does not describe a thermodynamic event.   

For carbohydrates, -relaxation involves both structural and dielectric changes. The dielectric changes 

involve the rotation of dipoles resulting in polarization while structural changes arise from local spatial 

reorientations of chemical groups on the molecule (Gangasharan and Murthy 1995). The dielectric and 

structural modes are coupled in carbohydrates, mainly due to the presence of hydroxyl (-OH) groups 

(Gangasharan and Murthy 1995).  The hydroxyl groups are polarizable and also constrain structural 

rearrangements through the need to form hydrogen bonds. Every rearrangement that occurs during -

relaxation requires a hydrogen bond to be broken and then subsequently remade.  The glass transition 

temperature then marks the point when cooling a rubber/liquid at which there is not enough random 

kinetic energy present for the necessary vibrations, reorientations and hydrogen bond shuffling resulting 

in the cessation of -relaxation (Meste, Champion et al. 2002). As the molecule size increases, large 

intermolecular and intramolecular cooperation is needed to make and break hydrogen bonds 
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(Gangasharan and Murthy 1995).  As a result, glass transition temperatures are generally higher in 

trisaccharides as compared to disaccharides and higher in disaccharides as compared to 

monosaccharides. Segmental rotation also occurs during -relaxation. For carbohydrates, ring-chain and 

chair-boat transformations increase the number of modes of relaxation (Gangasharan and Murthy 

1995). Such modes generally require more energy and thus monosaccharides tend to have higher glass 

transition temperatures than sugar alcohols that exist solely in chain conformations due to the lack of a 

carbonyl moiety. 

Often in biological or pharmaceutical contexts, water is present in the system. Water acts as a plasticizer 

and effectively lowers the glass transition temperature. The glass transition temperature for a binary 

mixture is often represented by the Gordon-Taylor expression, given by Equation 2.1 (Meste, Champion 

et al. 2002): 

   
              

      
 

      (Equation 2.1) 

Where      and      represent the pure component glass transition temperature of components 1 and 2, 

   and    represent the weight fractions of components 1 and 2 and   is the Gorbon-Taylor constant 

for the mixture of interest. 

A specific temperature may be reached during cooling of carbohydrate-water mixtures, known as the 

maximally freeze-concentrated glass transition temperature (Tg’), where a glass transition of the solute 

occurs. The solute compound is the carbohydrate excipient and the solvent is water. The result is an 

amorphous solid composed of the carbohydrate and water, where the carbohydrate is at the maximal 

freeze concentration (Cg’) (Roos 1997).  The glass transition temperature of the anhydrous solute is used 

for Tg,1 and the glass transition temperature of water (-135°C) is used for Tg,2 (Roos 1993). By 
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rearrangement of Equation 2.1, the solute concentration (weight fraction) of the maximally freeze 

concentrated matrix (Cg’) can be solved for, as shown in Equation 2.2. 

  
  

 (           
 )

(  
           (           

 ))
 

    (Equation 2.2) 

If the solution is not at the proper or maximal concentration, glass formation occurs sub-Tg’ (Meste, 

Champion et al. 2002). The glass transition of the anhydrous carbohydrate (Tg), the glass transition 

temperature of the maximally freeze-concentrated solute (Tg’) and the maximal freeze concentration 

(Cg’) are all parameters of interest when developing lyophilized protein formulations. 

During lyophilization, a concentrated amorphous glass is produced during the freezing step and a mostly 

water free glass is produced during the drying steps (Costantino and Pikal 2004). Initially, as a solution 

with excipients is cooled, a concentrated supercooled liquid or rubbery state is formed. The melting 

point of ice occurs first and represents the point where ice begins to form in the concentrated rubbery 

phase (Roos 1997). Upon further cooling, the concentrated rubbery phase transitions into a 

concentrated glass phase, marked by the glass transition temperature of the maximally concentrated 

solute (Roos 1997). The ice is removed via sublimation as a vacuum is applied to the system (Costantino 

and Pikal 2004). The amount of water remaining in the maximally freeze-concentrated glass matrix can 

be estimated by Equation 2.2 (Roos 1993; Costantino and Pikal 2004). The lyophilized product 

temperature is then raised and residual water in the maximally freeze-concentrated glass matrix is 

removed during the drying steps.  The phase transitions that occur in a lyophilized formulation are 

summarized in Figure 2.6. 
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Figure 2.6 The phase transitions that occur during the lyophilization process Figure adapted from 

(Roughton, Topp et al. 2012).  

 

Roos suggested that the increase of transition temperatures could be “used in product development to 

improve freeze-drying behavior and stability of dehydrated materials” (1997). A lyophilized product 

must reach a temperature below both the glass transition temperature of the maximally concentrated 

solute and the melting point of ice to ensure minimal water content and glass formation, restricting 

protein mobility. By restricting mobility, the protein’s potential to aggregate is reduced.  An appreciable 

temperature difference between the glass transition temperature of the maximally concentrated solute 

and the melting point of ice is also desired, as the freeze-concentrated solution is annealed between 

these temperatures to ensure maximal solute concentration and minimal water content (Roos 1997). 

The glass transition temperature of the anhydrous solute is important for long-term storage stability as 

well, as lyophilized formulations are usually stored at temperatures at least 50°C below their glass 

transition temperature (Costantino and Pikal 2004). The literature has shown glass transitions to be 

dependent on chemical structure (Slade and Levine 1995), providing motivation for structure-property 

model development. An ideal excipient will form a freeze-concentrate with minimal water content and 

will remain a glass during drying and storage, restricting protein mobility and reducing the potential for 

aggregation.  
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2.6 PROTEIN-EXCIPIENT INTERACTIONS IN THE DRIED STATE 

As water is the key factor in the structure that proteins adopt, dehydration or removal of water is 

predicted to have a large effect on protein structure (Kuntz Jr and Kauzmann 1974). Using a poly-L-lysine 

model, dehydration has been shown to result in loss of hydrogen bonds that are present in solution 

(Prestrelski, Tedeschi et al. 1993). To compensate for the loss of hydrogen bonds, intermolecular 

hydrogen bonds are formed and a -sheet conformation is adopted over the native random coil 

conformation (Prestrelski, Tedeschi et al. 1993). A possible approach to stabilization in the dried state is 

to prevent protein conformational adjustments due to the removal of water. The water replacement 

hypothesis attributes protein stabilization to the replacement of protein-water interactions in aqueous 

solution with protein-excipient interactions in the dried state following lyophilization. 

Addition of so-called stabilizer excipients achieves partial or full preservation of protein native structure. 

In particular, carbohydrate excipients have shown success when used as stabilizers. It has been 

proposed that stabilization arises from a direct effect of the excipient on protein conformation 

(Prestrelski, Tedeschi et al. 1993; Manning, Chou et al. 2010). Infrared spectra results have suggested 

that carbohydrates hydrogen bond with proteins in the dried state and may be a requirement for the 

preservation of lyophilized/dried proteins by carbohydrates (Carpenter and Crowe 1989; Prestrelski, 

Tedeschi et al. 1993). The water-replacement hypothesis postulates that hydrogen bonds form between 

the hydroxyl groups of carbohydrates (see Figure 2.7) and the protein backbone, mimicking the 

hydrogen bonding that occurs between water and the protein backbone. Recent hydrogen-deuterium 

exchange mass spectroscopy experiments support the water-replacement hypothesis, with the results 

showing that certain excipients can reduce deuterium exchange in a site-specific manner (Li, Williams et 

al. 2007; Li, Williams et al. 2008). Reduction of deuterium exchange indicates that the protein backbone 

is protected by the inclusion of stabilizing excipients. Such protection could arise from hydrogen bonding 
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between the protein backbone and excipients. Hydrogen bonding is attributed to reduced deuterium 

exchange (Tsutsui and Wintrode 2007).  

 

Figure 2.7 Hydroxyl groups on sucrose Groups are circled. Hydroxyl groups form hydrogen bonds with 

the protein backbone in dried proteins. Such interaction may have a stabilizing effect on protein 

conformation.  

 

An alternative to the water replacement hypothesis has been proposed recently. Known as the water 

entrapment hypothesis, the hypothesis proposes that water molecules are entrapped between the 

protein surface and sugar matrix in lyophilized solids (Hackel, Zinkevich et al. 2012). Thus the water 

needed to maintain the protein conformation is still available to the protein, with stabilizing excipients 

aiding in the maintenance of the water layer.  Evidence from nuclear magnetic resonance spectroscopy 

(NMR) and molecular dynamics (MD) simulations indicate that there is the formation of sugar-water-

protein structures, indicating that water is maintaining the protein conformation and that the sugar is 

maintaining the hydration layer of the protein (Cottone, Ciccotti et al. 2002; Hackel, Zinkevich et al. 

2012). A combination of both the water replacement hypothesis and the water entrapment hypothesis 

is likely as dehydration can prevent the formation of a fully hydrated layer and NMR and MD results 

both indicate that contacts between the protein surface and sugar matrix are formed (Cottone, Ciccotti 

et al. 2002; Hackel, Zinkevich et al. 2012). While water may still play a role in preservation of native 
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protein structure in the dried state, stabilizers clearly play a role in maintaining protein conformation 

including the formation of some direct protein-excipient interactions.  

IONIC LIQUID SOLVENT DESIGN 

2.7 USE OF SEPARATION MEDIA FOR AZEOTROPIC DISTILLATION AND IN SITU FERMENTATION 

Solvents represent chemicals that are used to solubilize molecules of interest and may or may not be 

present in the final chemical product. Of particular concern here is the use of solvents as mass 

separating agents (MSA). An MSA is a chemical that aids in the separation of two or more compounds of 

interest to high levels of purity. In general, an MSA is not a component of the final chemical product and 

is removed and recycled following separation. Two applications for separation media are azeotropic 

distillation and in situ fermentation. 

Numerous binary azeotropes are encountered in chemical systems (Gmehling 1994). An azeotrope is 

defined as a mixture where the liquid composition is equal to the vapor composition, resulting in a lack 

of driving force for further separation to pure or mostly pure compositions. Separation of azeotropic 

mixtures affects many industrial sectors due to the prevalence of such mixtures, yet separation remains 

a challenging task. Azeotropes may be encountered in the solvent recovery stage following the 

downstream separation of pharmaceutical and/or biochemical processes (Barton 2000; Simoni, 

Chapeaux et al. 2010). Separation of azeotropic mixtures also contributes to many of the separation 

tasks in the petrochemical and chemical industries (Trotta and Miracca 1997). An entrainer can 

selectively interact with one of the components in an azeotrope, allowing the azeotrope to be broken 

and the components separated. An basic process diagram for azeotropic distillation is presented in 

Figure 2.8. A common concern with the design and operation of separation processes is the selection of 

the entrainer. 
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Figure 2.8 Block flow diagram of azeotropic distillation process HC refers to the heavy component, LC 

refers to the light component and E refers to the entrainer.  

 

Industrial processes can utilize fermentation, where microorganisms convert sugars to other chemicals, 

to produce chemicals of interest. A major concern in fermentation processes is separation of product 

from the fermentation broth as downstream separation often requires a high energy input. Additionally, 

product yield is often low in fermentation due to product inhibition. In situ product recovery during 

fermentation offers a means to improve fermentation processes by reducing product inhibition and 

enabling more efficient separations (Gangu, Weatherley et al. 2009). Three main in situ product 

recovery processes exist: volatility-based methods, membrane-based methods and solvent-based 

methods (Huang, Ramaswamy et al. 2008). Solvent-based methods provide a pathway to tunable 

separations based on solvent selection. Major considerations when selecting a solvent include toxicity 

towards fermentation microorganism, immiscibility with water and increased solubility of solute 
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(product) in solvent compared to water (Huang, Ramaswamy et al. 2008; Gangu, Weatherley et al. 

2009). Figure 2.9 presents the basic process diagram for in situ extractive fermentation. 

 

Figure 2.9 Block flow diagram of in situ extractive fermentation P refers to the desired product, B 

refers to the fermentation broth and S refers to the solvent used for extraction.  

 

Increasingly, the environmental impact of solvent selection must be minimized (Kerton 2009). 

Additionally, material and energy inputs need to be minimized to improve process economics. Ionic 

liquids represent a class of molecules that possess many desirable solvent properties and are 

increasingly being considered for industrial applications. For separation processes, an optimal ionic 

liquid solvent can be designed to reduce material and energy inputs and ensure feasible separation or 

extraction.  

2.8 IONIC LIQUIDS AS SEPARATION MEDIA 

Ionic liquids (ILs) have become increasingly attractive options in solvent selection, especially for 

separations. Ionic liquids are defined as salts with melting points below 100°C (Marsh, Boxall et al. 

2004). Due to negligible vapor pressure, environmental concerns are reduced in comparison to many 
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conventional solvents (Marsh, Boxall et al. 2004). Ionic liquids can be recycled in separation processes, 

reducing the material demands and improving the economics (Zhao, Xia et al. 2005). As a class of 

chemicals, ionic liquids are soluble with a wide range of organic compounds (Marsh, Boxall et al. 2004). 

Ionic liquids can be composed of many different cation and anion combinations, resulting in different 

thermophysical properties (Zhao, Xia et al. 2005). The properties of an ionic liquid can be tuned for use 

in a particular application by rational design or selection of the cation, anion, and cation alkyl chain 

length. An example of a commonly studied ionic liquid is shown in Figure 2.10. 

 

 

Figure 2.10 The ionic liquid 1,3-dimethylimidazolium dimethylphosphate (MMIm DMP)  

 

Ionic liquids are promising candidates for entrainers due to their adjustable properties and negligible 

vapor pressure. Extractive distillation processes using ionic liquids as entrainers have be proposed and 

designed for common binary azeotropes, showing reduced energy requirements when compared to 

processes using conventional entrainers (Seiler, Jork et al. 2004). Energy requirements may further be 

reduced through correct selection or design of the ionic liquid entrainer.  

Ionic liquids are a class of molecules that have been shown to exhibit immiscibility with water and high 

organic solute solubility, providing viable candidates for solvents used for in situ fermentation and 

product recovery processes (Gangu, Weatherley et al. 2009). Additionally, toxicity towards the 

fermentation organism can be adjusted through cation and anion selection (Matsumoto, Mochiduki et 
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al. 2004; Gangu, Weatherley et al. 2009). Thus the design of an ionic liquid for in situ fermentation 

processes offers several, often competing, targets for required solvent properties. 

FORWARD PROBLEM 

2.9 DESCRIPTORS USED IN STRUCTURE-PROPERTY MODELS 

The impetus for CAMD is the need for a chemical or formulation to fulfill certain characteristics. Ideally, 

product characteristics can be directly linked to chemical properties. Upon identification of key 

properties, property models are required for the design of molecules matching target properties. 

Properties are linked to molecular structure through molecular descriptors by the generation of 

structure-property models in the forward problem of CAMD. 

The representation of molecule via molecular descriptors that capture relevant information is a key step 

in the forward problem. Many different molecular descriptors have been considered for CAMD:  group 

contribution (GC) methods, graph theoretical approaches (including connectivity indices), three-

dimensional descriptors and other so-called “DRAGON” descriptors (Consonni and Todeschini 2000). In 

addition to the descriptor class chosen, the functional form of the structure-property model must also 

be determined. More treatment to model development is given in Section 2.10.  

Group contribution models have often been used for CAMD methods as they are considered to be 

simple, accurate and predictive (Harper, Gani et al. 1999). However, while GC models are commonly 

applied to solvents, reliability can be a concern for classes of molecules that are inherently larger in size 

(Harper, Gani et al. 1999). For example, carbohydrates can be an order of magnitude larger in molecular 

weight than common organic solvents. Additionally, the types of properties that can be predicted by GC 

methods has commonly been limited to thermophysical properties (Harper, Gani et al. 1999). Properties 

that are dependent on three-dimensional molecular structure are not amenable to GC methods. 
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Graph theoretical methods, especially connectivity indices, have been used in quantitative structure-

property relationship (QSPR) models for a variety of systems including polymers (Camarda and Maranas 

1999; Bicerano 2002) and pharmaceutical compounds (Kier, Hall et al. 1975). In graph theoretical 

methods, a molecular structure is interpreted as a graph where atoms are represented by vertices and 

bonds are represented by edges. Therefore, graph-based approaches capture the two-dimensional 

topology of a molecular structure. Apart from bonding configuration, some graph-based descriptors 

(including valence connectivity indices) capture information pertaining to the electronic configuration of 

a molecule. Descriptors derived from graph theoretical approaches can be calculated with low 

computational effort. In general, graph-based descriptors do not capture three-dimensional or 

conformational information. 

Three-dimensional based descriptors have received increase attention in the development of 3-D 

quantitative structure-activity relationships (QSAR) for prediction of interaction energies for a variety of 

biologically relevant systems (Cheng, Shen et al. 2002). Additionally, use of 3-D QSAR models coupled 

with molecular simulation has proven fruitful in guiding computer-aided drug design efforts (Cheng, 

Shen et al. 2002). A variety of 3-D descriptors can be calculated through use of computational packages 

such as DRAGON (Consonni and Todeschini 2000). The advantage of 3-D descriptors is increased 

information about molecular structure which can help discriminate between stereoisomers. However, 3-

D QSARs are usually limited to very defined molecular spaces and requires large computational effort for 

calculation of necessary descriptors (Golbraikh, Bonchev et al. 2001).  Incorporation of chirality 

information in graph-based topological descriptors has been proposed as a bridge between the efficient 

of graph theoretical methods and the detailed structural information provided by 3-D descriptors 

(Golbraikh, Bonchev et al. 2001). 
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2.10 PROPERTY MODEL DEVELOPMENT 

Development of property models requires a function form. The most basic function form is a linear 

model, which can be determined through use of linear regression. Linear regression (or multiple linear 

regression for multiple dependent variables) essentially utilizes optimization to provide a model with 

maximum fit to the provided data. Equation 2.3 gives the general multiple linear regression model form 

(Wasserman 2004).  

     

(Equation 2.3) 

Where Y is an array of independent, or response, variable values, X is a matrix of dependent variable 

values and  is an array of coefficient values. To maximize fit, coefficients for all dependent variables are 

varied to achieve minimization of the residual sum of the squares (RSS). Equation 2.4 is used to calculate 

RSS (Wasserman 2004). 

    ∑( ̂    )
 

 

   

 

(Equation 2.4) 

Where  ̂  is the predicted value for observation i,    is the observed value for observation i and n is the 

number of observations. Determination of the coefficient values is achieved through matrix inversion of 

Equation 2.3, as given by Equation 2.5 (Wasserman 2004). 

  (   )      

 (Equation 2.5) 
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For functional forms utilizing non-linear model forms, the determination of coefficient values is still 

determined through optimization by minimizing either RSS or another suitable indicate of fit. 

While model development, especially for linear models, is relatively straightforward, the selection of 

descriptors used in the model remains a subject of interest and debate. Model selection aims to choose 

descriptors that maximize fit and minimize variance and prediction errors due to overfitting (Wasserman 

2004). Model selection requires a score to be assigned to each model and also requires a method of 

searching for models with the best score (Wasserman 2004). 

Several methods exist for scoring a model. In nearly all cases, the score is based on the lack of fit provide 

by the model and the number of descriptors used to generate the model. As fit will increase (albeit 

usually at a decreasing rate) with the addition of more descriptors, a trade-off between underfitting and 

overfitting is sought. Several common methods for scoring models include Mallow’s Cp statistic, Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) (Wasserman 2004). Each method 

utilizes slightly different penalties for lack of fit and number of descriptors. For all cases, the model with 

the minimal score is selected. Cross-validation and sensitivity analysis also provide methods of scoring 

and selecting models on the basis of predictive ability and can provide further justification for the 

selection of a model. 

To select a model, a search must be performed for the model with the minimal score. Three methods 

are used to search for models: exhaustive search, forward search and backward search (Wasserman 

2004). Exhaustive search looks at all possible model combinations (number and type of descriptors). 

Therefore, exhaustive search is guaranteed to return the model with the optimal score. For models with 

large data sets and/or descriptor sets, exhaustive search may be too computationally expensive. In such 

cases, forward search or backward search are useful. In forward search, a null model provides the 

starting point. Descriptors are added one by one, selecting the descriptor that provides the lowest score 
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at each step. Once a model size is encountered that cannot provide an improvement in score compared 

to the previous model size, the search is ended and the best model from the previous size is selected. 

Backward search operates in a similar manner with the difference being the initial model is generated 

using all available descriptors. Descriptors are then removed one by one until no further improvement 

can be gained. Backward search is not possible when the number of considered descriptors exceeds the 

number of observations used to develop the model. 

2.11 THERMODYNAMIC PROPERTY MODELING AND PREDICTION 

Thermodynamic property models seek to represent phase equilibria through mathematical means. The 

determination of phase equilibria is paramount in the design of separation processes. Accordingly, 

accurate and predictive models are needed for reliable separation process design. In essence, all phase 

equilibria problems seek to find the solution to Equation 2.6 (Prausnitz, Lichtenthaler et al. 1999). 

  
    

 
 

(Equation 2.6) 

Where  is the chemical potential of species i and and  represent the two phases considered. For the 

work presented here, fluid phases are the phases of interest. For fluid phases, Equation 2.6 can be 

represented in a more useful form for species i, as provided by Equation 2.7 (Prausnitz, Lichtenthaler et 

al. 1999). 

            
  

(Equation 2.7) 

Where    is the fugacity coefficient,    is vapor mole fraction,   is system pressure,    is activity 

coefficient,    is liquid mole fraction and   
  is the fugacity at standard conditions. Of interest to the 
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work here is the determination of the activity coefficient, as provided by activity coefficient models. 

Activity coefficient models provide estimation or prediction of the activity coefficient as a function of 

temperature, pressure and compositon. A variety of activity coefficient models exist with the most 

commonly utilized including Wilson, NRTL and UNIQUAC (Prausnitz, Lichtenthaler et al. 1999). Every 

activity coefficient model is developed with certain assumptions, which can limit applicability. Of 

particular interest for CAMD approaches is the UNIFAC model, a predictive group-contribution based 

extension of UNIQUAC (Fredenslund, Gmehling et al. 1977). The UNIFAC model is given further 

treatment in Section 4.5. 

REVERSE PROBLEM 

2.12 COMPUTER-AIDED MOLECULAR DESIGN (CAMD) OVERVIEW AND PROBLEM FORMULATION 

The reverse problem in CAMD entails the actual design phase, where either known molecular structures 

are selected from a database or novel molecular structures are proposed. In the reverse problem, target 

properties values are set and molecular structures are generated which best match the target 

properties. Property constraints may be employed to guide candidate selection, either during design as 

rigid constraints or after design as screening criteria. The intermediary between structure and property 

are the molecular descriptors used in the property models. As candidates are determined, molecular 

descriptors must be calculated and used in property models to evaluate the suitability of the candidate. 

Thus, a potential limiting factor in CAMD is that molecules can only be designed which are enclosed by 

the chosen descriptor class.  
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Three steps comprise the CAMD procedure (Harper and Gani 2000): 

1. Pre-design step – problem formulation 

2. Design step – model development and solution of problem leading to compound identification 

3. Post-design step – results analysis and screening  

 

Figure 2.11 A general procedure for the solution of the CAMD reverse problem Interplay between the 

main steps of the CAMD methodology is highlighted. Figure adapted from (Gani 2004).  
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The general procedure used for the reverse problem solution and the interplay between the steps of the 

CAMD procedure are illustrated in Figure 2.11. The design step is the dominant step, influencing the 

problem formulation as well as the options for post-design analysis. The methodology concerning the 

actual design step is outlined in Figure 1.1 (see 1.0 Introduction).  

The main concerns with CAMD approaches during the design step are as follows (Gani 2004): 

 How will new molecular structures be generated? 

 How will the molecular structure be represented? 

 What level of structural information is required? 

 How are target properties obtained? 

The problem formulation, solution method used in design and the availability of post-design screening 

methods are impacted by the answers given for the above questions. A general problem formulation is 

given by Equation 2.8 (Camarda and Sunderesan 2005). 

     ∑
 

  
     

 
|     

      
| 

        

      s.t.            

      ( ) 

                                                    

   (       ) 

          

  (       )    

(Equation 2.8) 

Where z is the objective function, which consists of the sum of the absolute differences between 

solution properties (Pm) and target properties (Pm
target) for the set of properties M. Each difference can 

be scaled (via Pm
scale) to place more or less emphasis on the target property, as determined by the 
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molecular properties with the highest priorities. The properties are functions of the molecular structure 

(y), where the structure is provided by the chemical groups (wi) and the adjacency matrix (aijk) of the 

groups. Structural constraints (hc) are employed to ensure solutions are feasible. Molecular structure 

representation may vary according to implementation of CAMD. Additionally, some property models 

may be used as constraints rather than targets. Property models and/or constraints often introduce 

non-linearities, resulting in a mixed-integer non-linear program (MINLP). 

Historically, three main approaches have been used for the solution of CAMD problems (Harper, Gani et 

al. 1999; Eljack and Eden 2008): 

 Enumeration techniques/database search 

 Deterministic optimization/mathematical programming 

 Stochastic optimization/iterative search 

Each approach has seen success in certain applications of CAMD. The approach chosen should be taken 

with consideration towards the advantages and disadvantages of each approach. The three approaches 

are given further attention in the following sections (2.13-2.15). A subset of CAMD involves 

simultaneous product and process design and is detailed in section 2.16. Post-design methods are 

examined in section 2.17. 

2.13 ENUMERATION SOLUTION METHODS 

The first CAMD methods employed relied on enumeration of possible solutions followed by selection of 

molecules that best matched a set of target property values (Gani and Brignole 1983). Enumeration 

solution methods have historically used group contribution property models. The approach of 

enumeration methods is to determine the number and types of functional groups that best satisfy a set 
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of target properties. Given the functional groups determined, molecular structures are identified that 

are comprised of all the functional groups selected.  

A general procedure for CAMD by enumeration follows (Gani, Nielsen et al. 1991): 

1. Preselect the types of groups that will be used to provide solutions. Additionally, the properties 

of interest with set target values must be identified. Rules for the formation of feasible 

compounds from the groups selected must be established. 

2. All chemically feasible molecules are generated. 

3. Solution reduction is performed by property screening. Properties are predicted for the set of 

chemically feasible molecules. Molecules that match the target properties are retained while all 

other solutions are discarded. 

4. Post-design methods such as process simulation are utilized to rank remaining solutions on basis 

of performance index. Screening of secondary properties may also be used to reduce the 

amount of solutions considered. 

Vital to the use of enumeration solution methods is the ability to generate all feasible chemical 

structures. For design cases with large numbers of possible solutions, the generation of all possible 

solutions may prove computationally restrictive. However, for small cases the enumeration approach 

can identify optimal solution. Incorporation of multi-level molecular representation (e.g., higher order 

group contribution methods) provides opportunities for more rigorous property prediction (Harper and 

Gani 2000). 

2.14 DETERMINISTIC SOLUTION METHODS 

Deterministic methods seek to find a global optimum to a mixed-integer linear program (MILP) or 

mixed-integer non-linear program (MINLP) through derivative-based solutions. Use of deterministic 
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methods requires mathematical constraints to effectively limit the search space.  Solution of a MILP is 

almost always performed by branch and bound methods (Edgar, Himmelblau et al. 2001). Often a MINLP 

results from problem formulation. When a MINLP results, the determination of a global optimum is not 

guaranteed. By far, the most commonly used method to solve MINLPs in CAMD utilizes the optimization 

solver DICOPT (http://www.gams.com/dd/docs/solvers/dicopt.pdf), which is available in the 

optimization software GAMS (http://www.gams.com/). 

DICOPT solves MINLPs through the use of outer approximation, which is an iterative process that solves 

two sub-problems each iteration (Duran and Grossmann 1986; Floudas 1995). The first sub-problem is 

the solution of a non-linear program (NLP), which is formed by fixing the integer values of the original 

MINLP problem. Optimization is then performed over the continuous variables, with the provided 

solution being a lower bound to the original MINLP problem (Edgar, Himmelblau et al. 2001). The next 

sub-problem is the solution of a MILP. The continuous variable portion of the objective function is 

replaced with a constant. The constant is constrained to maintain equivalence to the original MINLP 

formulation. Solution of the MILP sub-problem optimizes over both the integer and continuous 

variables, with the provided solution being an upper bound to the original MINLP problem (Edgar, 

Himmelblau et al. 2001). If the problem is convex, the upper and lower bounds will converge to the 

optimal solution for the original MINLP problem in a finite number of iterations (Duran and Grossmann 

1986; Floudas 1995). In addition to outer approximation, other approaches have also been considered 

for solution of MINLPs in CAMD problems, but are not given further treatment here (Sahinidis and 

Tawarmalani 2000; Karunanithi, Achenie et al. 2006). 

2.15 STOCHASTIC SOLUTION METHODS 

Stochastic methods employ iterative processes to determine locally optimal solutions. Depending on the 

method, different rules or moves are used to proceed from one solution to another. Stochastic methods 
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do not require derivatives for solution and are not guaranteed to return the global optimum. Two 

stochastic approaches have featured prominently in CAMD: genetic algorithms and tabu search. They 

are summarized in Table 2.3. In addition to genetic algorithms and tabu search, simulated annealing has 

also been used to solve CAMD problem (Ourique and Silva Telles 1998). 

Table 2.3 Overview of stochastic approaches commonly used in CAMD 

Method Characteristics Advantages Disadvantages 

Genetic 

Algorithm 

(GA) 

Mimics evolution by 

improving a population of 

solutions incrementally over 

several generations 

 Many solutions 

evaluated at 

each generation 

 

 Random moves 

can help to 

escape local 

minima 

 No guarantee that 

moves will be 

significant enough to 

escape local minima 

 

 Storage of many 

current solutions 

may be memory 

intensive 

Tabu 

Search 

Use of previous solutions 

stored in a tabu list to guide 

search for new solutions  

 Random moves 

can help to 

escape local 

minima 

 

 History of 

previous 

solutions further 

helps avoid local 

minima traps 

 May disregard good 

solutions as tabu 

 

 Storage of past 

solutions may be 

memory intensive 

 

Genetic algorithms are search methods that simulate natural progression through evolution (Holland 

1975). Given an initial set of solutions, or seed population, adaptive and reproductive strategies are used 

to advance the solutions (Holland 1975). The classical genetic algorithm is not well suited for 

combinatorial solution spaces, leading to the development of special data structures on an application 

by application basis (B c  199 ). One such application is CAMD, where molecular groups are 

represented by genes, a molecule represents a chromosome and a set of molecules represents the 
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population  (Venkatasubramanian, Chan et al. 1994). Moves mimicking adaptation and reproduction are 

used to alter the population in each iteration or generation. Moves mimicking adaption can be thought 

of as local moves, while reproductive-inspired moves are global moves. The suitability of solutions is 

determined by their fitness, which in turn determines the likelihood of a solution to become a parent 

(Venkatasubramanian, Chan et al. 1994). Parents are used to generate the population for the next 

generation. The search continues until a predetermined number of generations is reached. The search is 

then terminated, returning the solution with the highest fitness.  

Tabu search is a heuristic approach which guides a local search through use of previous solution history 

(Glover 1989; Lin, Chavali et al. 2005). Tabu search relies on recently visited solutions, which are stored 

in a tabu list. Local moves are made to change a previous solution to a new solution. If a new solution is 

too similar to a solution stored in the tabu list, it is deemed tabu and discarded (Glover 1989; Lin, 

Chavali et al. 2005). Similarity is determined by the tabu criterion. In this manner, the search for 

solutions is a constrained search (Glover 1989). The search space is more effectively scanned and local 

minima can be escaped to search for better solutions. If a tabu solution is the best solution yet 

encountered, the tabu criterion can be overridden via aspiration (Glover 1989). After a predetermined 

number of non-improving iterations, the search is terminated and the best solution is returned (Glover 

1989). 

2.16 INTEGRATED PRODUCT-PROCESS DESIGN 

Product and process design employ similar solution methods and are both utilized to improve chemical 

production processes. Consequently the simultaneous design of both product and process has been 

pursued for various applications, especially for separation design (Eden, Jørgensen et al. 2004; 

Roughton, Christian et al. 2012). For separation design, the designed product is often a solvent for use in 

achieving the desired separation. The desired process performance is used to determine molecule 
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property targets and constraints. The properties are in turn used to determine optimal chemical 

structures. In effect, integrated process design involves solving two reverse problems (see Figure 2.12). 

The final solution contains the design variables for the process as well as the molecules that satisfy the 

necessary property targets. By coupling molecular design with process design, process performance can 

be expected to improve as optimal solvents are identified and used in the necessary separations. 

 

 

Figure 2.12 Overview of integrated product and process design Each design process generates 

parameters that are used to constrain the other design problem. Adapted from (Eden, Jørgensen et al. 

2004).  

 

2.17 POST-DESIGN METHODS 

Post-design methods are used in CAMD to further screen the candidates generated in the design phase. 

The simplest post-design method is the use of secondary properties to screen the candidates. Such 

properties may require higher-dimensional  structural information than is utilized during the design 

phase due to computational limitations (Harper and Gani 2000). A more detailed analysis of candidates 

is provided by the use of molecular modeling. A three-dimensional model is generated for a given 

candidate through the use of energy minimization. The end result is a 3-D molecular structure that can 

be used to obtain values for properties that require 3-D structural information (Harper, Gani et al. 1999). 
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An common example is toxicity towards various organisms, which is often predicted via a 3-D QSAR 

(Akamatsu 2002). Experimental verification is needed for final candidate selection and is beginning to be 

implemented in CAMD frameworks (Conte, Gani et al. 2011; Conte, Gani et al. 2012). 
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3.0 EXPERIMENTAL METHODS 

The following chapter describes in detail the experimental plan used in the work as well as all relevant 

experimental methods that were used to generate data for the forward problem. Methods that were 

performed by the author include the experimental procedure used for generation of the data. The 

theory behind hydrogen-deuterium exchange mass spectroscopy is detailed as experimental data 

obtained from the method is used in conjunction with simulations to investigate protein-excipient 

interactions (See Section 7.0). Refer to the references cited for detailed information concerning the 

experimental setup and procedure. 

3.1 EXPERIMENTAL OVERVIEW 

The experiments done by the author were performed to evaluate the effect of excipient selection on 

aggregation following lyophilization. The following methods were performed by the author and all data 

pertaining to the methods were generated by the author for the data set used to generate models 

describing post-lyophilization protein loss as a function of excipient structure: ultraviolet-visible light 

spectrophotometry, size-exclusion chromatography, sodium-dodecyl-sulfate polyacrylamide gel 

electrophoresis and powder x-ray diffraction. Figure 3.1 displays the overall experimental approach. 
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Figure 3.1 Overview of experimental procedure used by author The aim of the experiments was to 

characterize aggregation following lyophilization for several different excipient and protein choices.  

 

Additional experimental results were obtained from literature for use in modeling building for the 

forward problem. The corresponding references contain information concerning the experimental setup 

and procedure. Material procurement, sample preparation and lyophilization for the experiments done 

by the author follow. 

3.1.1 Materials 

The following proteins were considered in the study: -amylase, bovine serum albumin (BSA), 

ovalbumin, ribonuclease A (RNAse A) and soybean trypsin inhibitor. All proteins were acquired from 

Sigma-Aldrich (St. Louis, MO) except trypsin inhibitor, which was obtained from Worthington 

Biochemical Corporation (Lakewood, NJ). Table 3.1 lists key biophysical properties for each protein. 
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Table 3.1 Biophysical descriptors for the proteins considered 

Protein 
PDB 

code 

MW 

(kDa) 
pI 

ASAa 

(Å2) 
fASA

b 
% α 

helix 

% β 

sheet 

# SS 

bonds 

# free 

thiols 

Tm 

(°C) 

Ovalbumin 1ova 44.3 5.19 34237 0.63 30.8 31.3 1 4 76c 

RNase A 5rsa 16.5 8.93 4052 0.60 21 33 4 0 62.5d 

α-amylase 1bli 58 6.33 10480 0.60 26.2 25.6 0 0 102e 

BSA 3v03 66 5.82 35921 0.68 67 0 17 1 59f 

Trypsin 

inhibitor 
1avu 20.1 4.95 4986 0.60 1.4 97.2 2 0 65g 

a – ASA=apolar surface area 
b – fASA = apolar surface area / total surface area 
Melting temperature (Tm) values were obtained from literature: c (Tani, Shirai et al. 1997), d (TAKAHASHI, IRIE et al. 1969),         
e (Duy and Fitter 2005), f (Arakawa and Kita 2000), g (Roychaudhuri, Sarath et al. 2003) 

 

A broad range of readily available molecules for use as excipients were considered, which can be broken 

into the two main classes of amino acids and carbohydrates. The following amino acids and amino acid 

derivatives were considered: N-acetylglycine, N-ethylglycine, glycine-alanine (glu-ala), glycine-glycine 

(gly-gly), glycine-leucine (gly-leu) and glycine-serine (gly-ser). The following carbohydrates and 

carbohydrate derivatives were considered: mannitol, sorbitol, maltitol, glucose, mannose, fructose, 

psicose, 2-deoxyglucose, 2-deoxyribose, xylose, rhamnose, -methylglucopyranoside, trehalose, 

maltose, palatinose, melibiose, raffinose, N-methylglucamine, N-acetylglucosamine and N-

acetylneuraminic acid. All chemicals were acquired from Sigma-Aldrich. While all of the molecules used 

may not have suitable properties for protein formulation, the entire set provides a broad sampling of 

molecular structures which is desirable for model development purposes. 

3.1.2 Sample Preparation 

Protein solutions were prepared by dissolving protein in 20 mM potassium phosphate pH 7.4 buffer to a 

concentration of 2 mg/mL. The protein solution was then dialyzed using Biotech cellulose ester dialysis 

tubing (MWCO 8,000-10,000 Da, Spectrum Laboratories, Rancho Dominguez, CA) against a 20 mM 
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potassium phosphate pH 7.4 buffer at 4°C. Following dialysis, the protein solutions were passed through 

a 20 m syringe filter (Gelman Nylon Acrodisc 13, Sigma-Aldrich). Dialyzed and filtered solutions were 

stored at 4°C for use within 24 hours. 

In a similar manner, excipient solutions were prepared by dissolving excipient in 20 mM potassium 

phosphate pH 7.4 buffer to a concentration of 2 mg/mL.  The excipient solutions were passed through a 

20 m syringe filter and stored at 4°C. 

Formulations were prepared for each protein-excipient pair by mixing equal volumes of protein solution 

and excipient solution to yield a solution with 1 mg/mL protein and 1 mg/mL excipient (1:1 excipient to 

protein weight ratio). Immediately following preparation of a formulation, 400 L of the solution was 

added to a lyophilization vial (Worthington Biochemical Corporation). Vials were prepared in triplicate 

for each protein-excipient pair. After the solution was transferred to the vial, the samples were 

immediately lyophilized. Additional samples of non-lyophilized control solutions were prepared in 

triplicate for each protein-excipient pair using the same procedure. 

3.1.3 Lyophilization 

Each formulation (protein-excipient pair) was lyophilized in triplicate through use of a VirTis adVantage 

Plus lyophilizer (SP Industries, Inc., Gardiner, NY). The following lyophilization cycle was used for all 

samples: shelves were pre-cooled to -2°C (15 minutes), sample freezing at -40°C (50 minutes) was 

performed, primary drying under vacuum (70 mTorr) occurred at -35°C for 10 hours, -20°C for 8 hours,   

-5°C for 6 hours, with secondary drying (100 mTorr) at 10°C for 6 hours, 25°C for 6 hours and 4°C for 30 

minutes (Sophocleous, Zhang et al. 2012). After completion of the lyophilization cycle, samples were 

held at 4°C for no more than 2 hours before reconstitution and subsequent analysis. No attempt was 

made to optimize the lyophilization cycle based on the formulation properties, such as the glass 

transition temperature of the maximally freeze-concentrated solute (Tg’). 
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3.2 ULTRAVIOLET-VISIBLE LIGHT SPECTROPHOTOMETRY (UV-VIS) 

3.2.1 Theory 

UV-Vis is a technique that measures absorbance of light by a molecule at any given wavelength. The 

absorption of light is accompanied by a transition in the molecule from lower energy state to a higher 

energy state, via energy provided by the photon of light (Van Holde, Johnson et al. 2006). The transitions 

typically associated with ultraviolet and visible light absorption are electronic transitions of the valence 

shell electrons, where electrons are excited from an occupied or ground state orbital to an unoccupied 

or excited state orbital (Van Holde, Johnson et al. 2006). Absorption occurs if the energy of the photon 

at a particular wavelength is equal to the difference in energy between the ground state and the excited 

state. The energy absorbed from the photon is usually lost as heat. By comparing the emission of light 

through a sample and a control, differences observed are used to construct the absorption spectra of 

the sample. Chromophores are chemical groups that absorb light at particular wavelengths and thus 

have characteristic absorption spectra (Van Holde, Johnson et al. 2006). 

Proteins contain several chromophores: peptide bond, aromatic residues (phenylalanine, tryptophan 

and tyrosine), prosthetic groups and metal cations (see Figure 3.2). Absorbance due to the peptide bond 

is the strongest observed and occurs around a wavelength of 185-195 nm, depending on the protein’s 

secondary structure (Martin, Sinko et al. 2011). Absorbance from the range of 250-300 nm corresponds 

to absorbance by the aromatic residues in the protein. Prosthetic groups and metal cations may have 

absorbance at varying wavelengths according to the species of interest. Absorbance past 300 nm is 

associated with light scattering (Martin, Sinko et al. 2011). A typical UV-vis spectrum for a protein is 

shown in Figure 3.3. 
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Figure 3.2 Chromophores commonly present in proteins 

 

Absorbance (A) allows calculation of concentration of a species through Beer’s law (Equation 3.1): 

      

(Equation 3.1) 

where   is concentration,   is path length and  is the extinction coefficient. The value of  for proteins is 

estimated from the amino acid sequence (Martin, Sinko et al. 2011). In practice the pure absorbance is 

not usually measured but rather the optical density (O.D.), which is defined as the absorbance plus any 

other extinction processes such as light scattering. 
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Figure 3.3 Typical UV-Vis spectra for a protein The large peak is due to absorbance by the peptide bond. 

The smaller peak arises from absorbance by the aromatic amino acid residues (phenylalanine, 

tryptophan and tyrosine).  

 

Information about protein structure can be obtained through a derivative analysis of the UV-vis spectra, 

focusing on the absorbance due to the aromatic residues (Martin, Sinko et al. 2011). The calculation of 

aggregation index (AI) compares the O.D. values at two different wavelengths (i.e., 280 nm and 350 nm) 

to check for the presence of larger particles or aggregates (Equation 3.2). AI is affected by light 

scattering of particles and increases with larger aggregates (Katayama, Nayar et al. 2005).  

       
     

           
 

 (Equation 3.2) 

 

3.2.2 Experimental Procedure 

UV-visible spectra were obtained for all lyophilized and non-lyophilized samples using an Agilent 8453 

UV-Vis spectrophotometer. For each spectrum, 400 L of sample solution was added to a low volume 
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cuvette. Wavelengths were collected from 200-600 nm using an integration time of 10 seconds and an 

interval of 1 nm. The aggregation index (AI) was calculated for each sample given the optical density 

values at 280 and 350 nm (see Equation 3.2).   

 

3.3 SIZE-EXCLUSION CHROMATOGRAPHY (SEC) 

3.3.1 Theory 

SEC is used to separate molecules on the basis of size and shape (see Figure 3.4). A sample containing 

molecular species of varying sizes is injected upstream of the column. The sample flows through the 

system through use of a mobile phase, which is pumped at a constant rate. The mobile phase often 

contains a buffer to maintain the pH of the sample. The column used in SEC is packed with a porous 

matrix which provides the separation ability. Gel beads comprise the matrix or fixed phase of the 

column, resulting in a cross-linked network of pores (Rosenberg 2005). Separation of molecules is based 

on the size of the pores in the beads, with larger molecules being unable to enter the pores and thus 

eluting at a faster time. Both molecular weight (size) and the three-dimensional conformation (shape) of 

the molecule contribute to a protein’s ability to enter a pore. Adsorption of protein to the column 

matrix is a concern in SEC, preventing protein from eluting in a timely manner if at all. For analysis of 

protein samples, high salt concentrations are used in the mobile phase to curtail protein adsorption to 

the column matrix (Arakawa, Ejima et al. 2010). 

SEC is often coupled with UV-vis spectrophotometry through inclusion of an inline UV detector following 

the SEC column. Determination of UV absorption immediately following elution form the column allows 

for quantitative measurement of the amount of molecules eluting at a given time. UV absorption values 

are either taken at a few specific wavelengths (e.g., 280 nm for proteins) or an entire absorption 
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spectrum can be obtained. Sample volume should be kept minimal to ensure high signal resolution and 

avoid peak broadening (Rosenberg 2005).  

 

Figure 3.4 Overview of size-exclusion chromatography (SEC) Molecules are separated by the column 

based on size, with smaller molecules experiencing a more tortuous path and hence longer times to 

elution. As molecules elute, they are detected using UV absorption. Some molecules may be too large to 

pass through the column and are retained.  

 

The use of SEC in analysis of protein aggregates is common due to the advantages offered by the fast 

analysis time, ability to be performed at high-throughput, the quantitative information on the 

abundance of monomeric and multimeric protein species and the high precision that is obtainable in the 

results (Carpenter, Randolph et al. 2010). However, a need for orthogonal methods for aggregation 

analysis has been established due to numerous concerns including the inability of large aggregates to 

pass through the frit and enter the column, adsorption of aggregates on the column walls and the 

dissociation of aggregates in the column prior to elution (Carpenter, Randolph et al. 2010).  

 

Flow 

Molecules are too large 
 to pass through column 
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3.3.2 Experimental Procedure 

Quantitative aggregation analysis was performed using size exclusion chromatography (SEC) for both 

reconstituted lyophilized and non-lyophilized control samples. SEC was performed using an Agilent 1200 

Series LC system (Agilent Technologies, Santa Clara, CA) with a TSKgel G3000SWxI column (Tosh 

Bioscience LLC, King of Prussia, PA). A mobile phase of 50 mM potassium phosphate pH 7.0 buffer with 

200 mM NaCl was used. The flow rate was set to 0.5 mL/min and UV signals were collected at 215 nm 

and 280 nm. Using the 280 nm signal, peak area was calculated for each chromatogram. The peak area 

was used to determine the percent monomer remaining after lyophilization, assuming that the peak 

area for the non-lyophilized control corresponded to 100% monomer. 

          
                     

                         
 

(Equation 3.3) 

 

3.4 SODIUM-DODECYL-SULFATE POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 

3.4.1 Theory 

Electrophoresis separates molecules on the basis of size and charge. Molecules are separated in a cross-

linked gel network in polyacrylamide gel electrophoresis (PAGE). Pore size is controlled by concentration 

of polyacrylamide with higher concentrations of polyacrylamide leading to smaller pore sizes (Rosenberg 

2005). Commonly, gels are comprised of a stacking gel with low polyacrylamide content where the 

sample is injected and the resolving gel with higher polyacrylamide content where separation occurs 

(Rosenberg 2005). 

Sodium-dodecyl-sulfate (SDS) is a detergent which is used to denature the protein prior to 

electrophoresis. SDS also causes protein to carry an overall net negative charge. Additionally, proteins 

may be treated with reducing agents to eliminate disulfide bonds. After injection of samples, an electric 
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field is applied to the gel which causes the protein to migrate through the gel. The speed of migration is 

proportionally to the molecular weight of the protein (Rosenberg 2005). Following electrophoresis, 

protein is deposited in bands throughout the gel according to its molecular weight. A reference ladder of 

known proteins can be used to provide molecular weight references for comparison. Figure 3.5 provides 

a representative gel following SDS-PAGE. 

 

 

Figure 3.5 Representative gel following SDS-PAGE  The leftmost lane shows a reference ladder. The 

protein used is RNAse A.  

 

Staining following SDS-PAGE allows for visual detection of protein within the gel. SDS-PAGE can be used 

to qualitatively detect the presence of species of different molecular weight, including aggregates. 

Alternatively, quantitative methods such as radio-labeling and autoradiography allow the quantification 

of different protein species or protein size distribution following SDS-PAGE (Rosenberg 2005). 

3.4.2 Experimental Procedure 

Qualitative aggregation analysis was performed using SDS-PAGE for both reconstituted lyophilized and 

non-lyophilized control samples. Samples were divided and mixed with either non-reducing or reducing 
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(containing -mercaptoethanol) loading buffer containing bromophenol blue for staining. Samples were 

vortexed for 10 min and then heated for 5 min at 95°C. Samples were allowed to cool and were then 

loaded into 10% or 12% polyacrylamide gels. Precision Plus Protein Dual Xtra Standards (Bio-Rad, 

Hercules, CA) were used as a reference ladder. SDS-PAGE was performed using a Mini-PROTEAN Tetra 

cell electrophoresis instrument attached to a PowerPac Basic power supply (Bio-Rad). After completion 

of electrophoresis, the gels were removed and stained with Coomassie Brilliant Blue R-250 staining 

solution for 30 min and then destained for approximately 24 hrs on a rocking platform (VWR 

International, Radnor, PA).  

3.5 POWDER X-RAY DIFFRACTION (PXRD) 

3.5.1 Theory 

Powder x-ray diffraction emits x-rays at a powdered solid sample and measures the resulting 

diffraction pattern. X-rays are sent from a source (e.g., x-ray tube) and collide with the sample at a 

specified incident angle (). As the x-rays collide with atoms in the solid, the x-rays are scattered. 

An x-ray detector is used to detect any x-rays that are deflected at an angle of twice the incident 

angle (in reference to the x-ray beam sent from the source), referred to as 2. The detection of x-

rays is represented as the intensity. The incident angle is changed repeatedly to allow detection of 

diffraction patterns across a range of 2 values. A typical PXRD setup is shown in Figure 3.6. 



 

60 
 

 

Figure 3.6 Diagram of typical powder x-ray diffraction setup X-rays are sent from the source (x-ray 

tube) and are reflected back to the detector at an angle referred to as the incident angle (). 2 is equal 

to two times . Figure adapted from (Speakman).  

 

Arrangement of the atoms in a sample produces a characteristic diffraction pattern. Bragg’s law 

describes the conditions that must be satisfied for diffraction to occur at a given incident angle (): 

            

(Equation 3.4) 

Where l is the wavelength of the x-ray and is fixed and dhkl is a characteristic vector defined by the 

crystal geometry. A crystal has repeating units of atomic structure, referred to as unit cells 

(Shackelford 2009). The unit cell represents the maximal symmetric unit in the material and has a 

characteristic shape and size that determines dhkl (Speakman ; Shackelford 2009). The unit cell in a 

crystal has atomic planes which are attributed to the diffraction peaks observed in a sample. As 

the unit cell is repeated, diffraction at the angle incident to the plane occurs frequently resulting in 

a sharp peak with high intensity in the observed diffraction pattern. 

2 
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While pxrd has several applications, the focus here is the use of pxrd to determine whether a sample is 

crystalline or amorphous. On a qualitative basis, a sample can be classified as either largely amorphous 

or largely crystalline based on the overall diffraction pattern observed. Amorphous solids have no long 

range order and thus show no diffraction pattern, instead displaying what is referred to as an 

“amorphous halo” (see Figure 3.7). Crystalline solids are highly ordered and only show diffraction at 

certain wavelengths based on the crystal structure. The resulting diffraction pattern is characterized by a 

few sharp peaks of high intensity (see Figure 3.7). The discernible visual differences in the diffraction 

patterns often allows for a general qualitative classification of either largely amorphous or largely 

crystalline. Quantitatively, pxrd can be used to calculate the percent crystallinity of a sample by dividing 

the intensity of a peak observed in a given sample by the intensity of the peak in a pure crystalline 

control (Clas, Faizer et al. 1995). For multiple peaks, the intensities are summed for both the sample and 

the pure crystalline control and then the ratio is determined. Low percent crystallinity corresponds to a 

sample that is largely amorphous. For small molecule drug development, the exact percent crystallinity 

is often of interest as it relates to bioavailability (Clas, Faizer et al. 1995). However for the experiments 

conducted here, the main concern was whether any given formulation was largely amorphous following 

lyophilization for which a qualitative approach was sufficient. 
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Figure 3.7 Representative x-ray diffraction patterns (A) amorphous material and (B) crystalline material 

showing intensity (<I>) versus 2. Figure adapted from (Speakman).  

 

3.5.2 Experimental Procedure 

Samples for PXRD analysis were prepared similarly to the method stated previously except protein and 

excipient solutions were made to concentrations of 10 mg/mL, yielding formulation concentrations of 5 

mg/mL protein and 5 mg/mL excipient (1:1 excipient to protein weight ratio). The same sample volume 

of 400 L was transferred to the lyophilization vials for each protein-excipient pair. Samples were 

lyophilized using the previously mentioned lyophilization cycle. Following lyophilization, confirmation 

that the samples were amorphous was performed by collecting X-ray diffractograms using a Scintag X2 

- diffractometer (Scintag Inc., Cupertino, CA) equipped with a Cu K anode operating at a wavelength 

of 1.5406 Å.  

Due to the large amount of formulations considered, a smaller subset was selected for PXRD analysis. 

JMP statistical software (SAS, www.jmp.com ) was used to randomly select a minimal number of 
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formulations for analysis such that each protein was selected at least once, each excipient was selected 

at least once and each sugar alcohol excipient was selected at least twice.  20 formulations were 

selected and from the set of 20, 6 were randomly selected to be done in replicate. Only carbohydrate 

excipients were considered. 

3.6 HYDROGEN-DEUTERIUM EXCHANGE MASS SPECTROSCOPY (HX-MS) 

3.6.1 Theory 

Hydrogens bonded to the amide nitrogen (See Figure 3.8) in the protein backbone can exchange with 

deuteriums when exposed to deuterated water (D2O). The reaction can be catalyzed either acid (D3O
+) 

or base (OD-). The exchange rate of the amide hydrogens can occur over a wide range of time, with 

some exchanging in milliseconds and others in days.  

 

Figure 3.8 A peptide bond, which forms between amino acids to construct the protein backbone The 

hydrogen bonded to the amide nitrogen is highlighted in red. The hydrogen participates in exchange 

with deuterium during HX experiments.  

 

The exchange rate is highly dependent on the degree of solvent protection and hydrogen bonding. 

Buried residues or residues with an amide hydrogen that participating in hydrogen bonding are resistant 

to exchange, where surface residue freely exchange hydrogen for deuterium (Tsutsui and Wintrode 

2007). Hydrogen exchange is also impacted by the flexibility of the protein’s conformation, both locally 

and overall. Fluctuations in the protein’s structure allow solvent penetration and subsequent exchange. 

The exchange rate is given by Equation 3.5 (Tsutsui and Wintrode 2007): 
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(Equation 3.5) 

 

Where    is the rate of conformational changes that result in unfolding,     is the rate of 

conformational changes that result in folding,    is the chemical rate of exchange between a hydrogen 

and a deuterium and      is the observed rate of exchange. The overall observed exchange can be 

divided into two regimes: the EX1 regime (   >>    ) and the EX2 regime (    >>   ). In EX1, the 

protein exhibits multiple conformations and slowly interconverts between conformations, allow 

exchange to occur (Tsutsui and Wintrode 2007). The observed exchange rate depends only on the rate 

of unfolding. The EX1 regime is often induced through use of denaturants. More frequently the EX2 

regime is observed, where local conformational changes exposing amide hydrogens may occur multiple 

times before exchange can occur (Tsutsui and Wintrode 2007). The observed rate is therefore mostly 

dependent on the equilibrium of local unfolded and folded states. In regions where local unfolding 

occurs more frequently, more exchange will occur. The observation of local exchange rates gives an 

indication of the stability of the region.  

Exchange at individual residues can be determined with Nuclear Magnetic Resonance (NMR), but the 

approach is limited due to the large protein amounts needed, the size of the protein is restricted, and 

the difficult and time consuming assessment of peaks (Tsutsui and Wintrode 2007). In 1990, mass 

spectroscopy was shown to be a viable tool for the study conformational changes in proteins 

(Chowdhury, Katta et al. 1990). Mass spectroscopy and proteolysis have since been coupled with 

hydrogen/deuterium exchange to provide a medium resolution tool (5-10 residues) for probing the 

structural changes of proteins (Katta, Chait et al. 1991; Tsutsui and Wintrode 2007). An overview of the 

HX-MS experimental procedure is given in Figure 3.9. 
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Figure 3.9 General experimental procedure for HX-MS experiments performed in aqueous solution  

Figure adapted from (Tsutsui and Wintrode 2007).  

 

3.6.2 Use in Lyophilized Solids 

HX-MS has been extended to lyophilized solids as a method to elucidate protein structure and 

formulation effects (Li, Williams et al. 2007; Li, Williams et al. 2007; Li, Williams et al. 2008). Some 

modification to the procedure outlined in Figure 3.9 is required to adapt the process to lyophilized 

solids. Following equilibration in aqueous solution, the protein is lyophilized to produce an amorphous 

solid. Exchange with deuterium is then carried out by exposing the solid to deuterated water vapor. 

Following exchange, the lyophilized protein is reconstituted with quenching and peptic digestion 

following as performed for aqueous samples.  

The results given by HX-MS with lyophilized solids provides site-specific information on interactions 

between protein and the solid environment (Li, Williams et al. 2007). Factors influencing in the solid 

 

Equilibrate in H2O 

H 

D 

Exchange in D
2
O 

D2O buffer 

Quench exchange 
0°C, pH 2.5 

 

Peptic digest 
0°C, pH 2.5 

  

Quench 
buffer 

m/z 

HPLC separation Measure deuterium 
uptake 



 

66 
 

state include relative humidity during exchange, inclusion of salts and inclusion of stabilizing excipients 

(Li, Williams et al. 2007; Li, Williams et al. 2007). HX-MS with lyophilized proteins provides a quantitative 

and site-specific tool for the study of protein-excipient interactions in amorphous solids. 
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4.0 PROPERTY MODEL DEVELOPMENT: THE FORWARD PROBLEM 

CAMD requires accurate and predictive property models for design or selection of candidate molecules. 

For development of property models, molecular descriptors are needed for correlation between 

molecular structure and properties of interest. For example, an overview of the experimental procedure 

and model development steps in the design of lyophilized protein formulation is given by Figure 4.1 with 

the steps relevant to property model development highlighted. 

The property models considered here are classified either as quantitative structure-property 

relationships (QSPRs), group contribution (GC) methods or thermodynamic property models. The 

property models developed here are given in Table 4.1, along with the corresponding descriptor type 

and model type. Additional property models available in literature were used where applicable. 

The types of molecular descriptors used are discussed in Section 4.1. Development of linear QSPRs is 

described in Section 4.2 and development of non-linear QSPRs is described in Section 4.3. Group 

contribution methods are detailed in Section 4.4. Finally, the development of a UNIFAC thermodynamic 

property model for ionic liquids (UNIFAC-IL) is outlined in Section 4.5. 

 

 

 



 

68 
 

 

 

Figure 4.1 Procedure for experimental data acquisition and model development for rational 
lyophilized formulation development The part of the process that describes the model development 

process is detailed in Section 4.0. The experimental procedure is described in Section 3.0. Figure 

adapted from (Roughton, Iyer et al. 2013).  
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Table 4.1 Summary of property models developed for both lyophilized protein formulation design and 
ionic liquid design for use in separations of bio-products 

LYOPHILIZED PROTEIN FORMULATION DESIGN 

Property Descriptors Used Model Type 

Anhydrous glass transition         

temperature (Tg) 
Connectivity indices Linear QSPR 

Freeze-concentrated glass transition 

temperature (Tg’) 
Connectivity indices Linear QSPR 

Maximal concentration in freeze-

concentrated matrix (Cg’) 
Connectivity indices Linear QSPR 

Gordon-Taylor constant (k) Connectivity indices Linear QSPR 

Percent monomer remaining after 

lyophilization (%Monomer; on a 

formulation-by-formulation basis) 

Protein-based descriptors Linear QSPR 

Percent monomer remaining after 

lyophilization (%Monomer; on a 

protein-by-protein basis) 

Chiral connectivity indices 

 
Linear QSPR 

Percent monomer remaining after 

lyophilization (%Monomer; as a 

function of protein and excipient 

choice) 

Chiral connectivity indices 

Protein-based descriptors 
Non-linear QSPR 

IONIC LIQUID DESIGN 

Property Descriptors Used Model Type 

Hildebrand solubility parameter () Group contribution Group contribution method 

Thermal decomposition temperature 

(Td) 
Group contribution Group contribution method 

Partition Coefficient for NDHD (Kx) Connectivity indices Linear QSPR 

Toxicity towards E. coli (EC50) Connectivity indices Linear QSPR 

Activity coefficients () Group contribution UNIFAC thermodynamic model 
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4.1 CALCULATION OF MOLECULAR DESCRIPTORS 

Three classes of molecular descriptors were considered. Group contribution is described in Section 

4.1.1, connectivity indices are discussed in Section 4.1.2 and protein-based descriptors are detailed in 

Section 4.1.3. 

4.1.1 Group Contribution 

Group contribution methods identify common molecular groups, which are then used to build the 

molecule of interest. Group contribution (GC) methods have been utilized successfully to predict many 

physical properties of organic compounds, including boiling point and freezing point (Joback and Reid 

1987). GC approaches have seen success in the prediction of vapor-liquid equilibria (VLE) (Gani, 

Tzouvaras et al. 1989). The UNIFAC method uses group contributions to predict activity coefficients for 

mixtures, which are subsequently used to predict VLE (Fredenslund, Gmehling et al. 1977). 

 

 

Figure 4.2 Example group contributions for (A) ethanol, (B) acetone and (C) benzene Groups used are 

the main groups used in UNIFAC.  

 



 

71 
 

In general, groups are determined by the author of the method and can vary from method to method. 

An example of the groups present in several molecules as defined by UNIFAC is given by Figure 4.2. As 

every chemical group needs to be accounted for, descriptor selection methods (cf. Section 4.2.4) cannot 

be utilized in the development of GC methods. The motivation behind group contributions is that results 

from a limited experimental data set can be applied to other systems with different molecule structures, 

but the same basic molecular groups. One major limitation of GC methods is that they cannot account 

for groups that are not present in the model-building set. GC methods assume that the number of a 

certain group present and the location of groups within a molecule do not affect the observed property 

of the molecule (Prausnitz, Lichtenthaler et al. 1999). This assumption is incorrect; improvement can 

come with the definition of more groups or higher-order groups, albeit with the need for more model 

parameters (Prausnitz, Lichtenthaler et al. 1999; Harper and Gani 2000). Predictions from GC methods 

offer a first approximation for properties (Prausnitz, Lichtenthaler et al. 1999) and are thus useful for 

property screening purposes (Gani, Nielsen et al. 1991). 

4.1.2 Connectivity Indices 

Topological descriptors are a class of molecular descriptors which identify individual atoms and their 

bonding configuration in a molecule. Connectivity indices are a type of topological descriptors first 

proposed by Randic (1975). Later work extended the use of connectivity indices to pharmaceutical 

product property prediction (Kier and Hall 1986) and polymer property prediction (Bicerano 2002). The 

use of connectivity indices have been proposed to describe missing groups for GC models (Gani, Harper 

et al. 2005; Satyanarayana, Abildskov et al. 2009). 

Connectivity indices were chosen as the class of excipient descriptors to be used in model development. 

Connectivity indices were also used for some ionic liquid property models where group contribution did 

not perform with acceptable accuracy. Connectivity indices have utility due to the ability to calculate 
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indices and to store bonding information for any molecular structure proposed, regardless of the 

molecular groups present. Additionally, connectivity indices have seen success in the prediction of 

properties for pharmaceutically relevant systems (Kier, Hall et al. 1975), including carbohydrate 

excipients (Roughton, Topp et al. 2012).  

Connectivity indices (n) describe the two-dimensional atomic and bonding features of a molecule while 

valence connectivity indices (n v) describe the electronic configuration. For calculation of connectivity 

indices, the molecule is represented as a hydrogen-suppressed graph where vertices represent non-

hydrogen atoms and edges represent bonds. The vertex degree i for any vertex i is equal to the number 

of vertices connected to the vertex by an edge and represents the number of non-hydrogen atoms that 

form bonds with the given non-hydrogen atom. The calculation of an n-th order connectivity index is 

giving by Equation 4.1. 

   ∑ (∏
 

  

   

   

)

 

     

   

 

    (Equation 4.1) 

Where Ns is the number of subgraphs of size n. Vertices (atoms) are the subgraph considered for a 

zeroth-order connectivity index,  edges (bonds) are the subgraph considered for a first-order 

connectivity index, paths of two edge-lengths (two bond paths) are the subgraph for a second-order 

connectivity index and so on. For a valence connectivity index, Equation 4.2 is used to determine the 

valence vertex degree i
v and then Equation 3 is used for calculation, replacing i with i

v. 

  
  

     

      
 

(Equation 4.2) 

Where Z is the atomic number, Zv is the number of valence electrons and NH is the number of connected 

hydrogen atoms. Average simple or valence connectivity index values () for a given order are calculated 
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by dividing the simple or valence connectivity index value by the number of subgraphs of the order 

being considered. 

 

Figure 4.3 Comparison of the chiral structures of stereoisomers (A) glucose and (B) mannose The 

hydrogen suppressed graphs derived from glucose and mannose are given for (C) simple connectivity 

index calculations and (D) valence connectivity index calculations. (C) and (D) are representative of the 

topologies of both (A) and (B).  

  

Due to the excipient molecules considered, three-dimensional structure is important. For example, 

glucose and mannose are stereoisomers which have the same two-dimensional representation but 

differ in three-dimensional configuration (see Figure 4.3). By using only simple connectivity indices, the 

two molecules are indistinguishable yet may contribute different to the stability of a given protein in a 

lyophilized formulation. To overcome these limitations, chiral-corrected connectivity indices were 



 

74 
 

considered. For any chiral molecule, the vertex degree i is replaced with either (i + c) for S-

configuration or (i – c) for R-configuration, with c representing the chirality correction factor (Golbraikh, 

Bonchev et al. 2001). In this work, c = 2 has been chosen. Connectivity indices are then calculated as 

described previously, using the chirality-corrected vertex degree values. By accounting for the differing 

chiral atoms, some three-dimensional or conformational information is captured without the need for 

three-dimensional structure determination. 

4.1.3 Protein-Based Descriptors 

Both biophysical properties and predictive descriptors of aggregation propensity were considered for 

protein descriptors. The biophysical descriptors capture basic structural information and innate stability 

information (via Tm) (Takahasi, Irie et al. 1969; Tani, Shirai et al. 1997; Arakawa and Kita 2000; 

Roychaudhuri, Sarath et al. 2003; Duy and Fitter 2005). The biophysical descriptors used along with 

values for each protein are given in Table 4.2. 

Table 4.2 Biophysical descriptors for the proteins considered 

Protein 
PDB 

code 

MW 

(kDa) 
pI 

ASAa 

(Å2) 
fASA

b 
% α 

helix 

% β 

sheet 

# SS 

bonds 

# free 

thiols 

Tm 

(°C) 

Ovalbumin 1ova 44.3 5.19 34237 0.63 30.8 31.3 1 4 76c 

RNAse A 5rsa 16.5 8.93 4052 0.60 21 33 4 0 62.5d 

α-amylase 1bli 58 6.33 10480 0.60 26.2 25.6 0 0 102e 

BSA 3v03 66 5.82 35921 0.68 67 0 17 1 59f 

Trypsin 

inhibitor 
1avu 20.1 4.95 4986 0.60 1.4 97.2 2 0 65g 

a – ASA=apolar surface area 
b – fASA = apolar surface area / total surface area 
Melting temperature (Tm) values were obtained from literature: c (Tani, Shirai et al. 1997), d (TAKAHASHI, IRIE et al. 1969),         
e (Duy and Fitter 2005), f (Arakawa and Kita 2000), g (Roychaudhuri, Sarath et al. 2003) 
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Descriptors calculated from two primary sequence-based methods for the prediction of aggregation 

propensity were also considered: AGGRESCAN (Conchillo-Sole, de Groot et al. 2007) and PASTA (Trovato, 

Chiti et al. 2006; Trovato, Seno et al. 2007). Both methods require only the amino acid sequence and 

offer web-based servers for calculation of all relevant variables (AGGRESCAN: bioinf.uab.es/aggrescan/ 

and PASTA: http://biocomp.bio.unipd.it/pasta/). AGGRESCAN predicts aggregation propensity by 

determining “hot spots” or short amino acid sequences that are likely to be aggregation-prone. PASTA 

predicts aggregation propensity by determining sequences that are likely to induce aggregation through 

the formation of intermolecular -strands. Both methods are primarily concerned with amyloid fibril 

formation. Explanation of the descriptors calculated or derived from these methods is given in Table 4.3. 

Table 4.3 Descriptors obtained and derived from aggregation propensity prediction methods 

AGGRESCAN Descriptor Name Definition 

a3vSA Sequence average amino acid aggregation propensity  

nHS Number of aggregation hot spots 

NnHS nHS normalized by number of residues in protein 

AAT Area of aggregation profile above hot spot threshold 

THSA Total area of aggregation profile comprising hot spots 

TA Total area of aggregation profile 

AATr AAT normalized by number of residues in protein 

THSAr THSA normalized by number of residues in protein 

Na4vSS Sliding window average of amino acid propensity values divided 

by number of amino acids in protein 

PASTA Descriptor Name  

Emin Minimum energy of PASTA pairings 

Eavg Average energy of PASTA pairings 

Lmax Average amino acid pair length of PASTA pairings 

Lavg Maximum amino acid pair length of PASTA pairings 

(E/L)min Minimum ratio of energy to length of PASTA pairings 

(E/L)avg Average ratio of energy to length of PASTA pairings 

# of Peaks Number of peaks in PASTA aggregation profile 

  

 

4.1.4 Principal Component Analysis 
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Principal component analysis (PCA) is a data-reduction technique which replaces an original set of 

variables with a smaller number of principal components, which are calculated through linear 

combinations of the original variables (Maindonald and Braun 2010). Through development of principal 

components, the majority of variance in the data set is captured with a minimal number of variables. In 

this work, PCA was used to visualize the excipient descriptor space. Such visualization is used for the 

discussion of results. PCA was performed using the DAAG package in R (Maindonald and Braun 2010). 

4.2 DEVELOPMENT OF LINEAR QSPRS 

Development of linear QSPRs is comprised of four steps: 

1. Identification of key properties and procurement of experimental property values 

2. Calculation of descriptors and descriptor selection 

3. Linear regression 

4. Cross-validation 

The steps are further detailed in the following sections. 

4.2.1 Glass Transition Properties 

QSPRs were developed for the glass transition temperature of the anhydrous solute, glass transition 

temperature of the maximally concentrated solute, melting point of ice and Gordon-Taylor constant for 

carbohydrates. The experimental data were collected from published literature(Roos 1993). Discussion 

on glass transitions and their importance in lyophilized protein formulations is given in detail in Section 

2.5. 

 

 

4.2.2 Percent Monomer Remaining Following Lyophilization 
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The quantitative measure of aggregation used for property modeling was percent monomer remaining 

following lyophilization. Measurement and calculation of percent monomer is detailed in Section 3.3. 

Linear QSPRs for percent monomer were developed either as a function of protein structure 

(formulation-by-formulation basis) or as a function of excipient structure (protein-by-protein basis). 

Additionally, a non-linear QSPRs for percent monomer was developed as a function of both protein and 

excipient structure (see section 4.3). Protein-based descriptors were used to represent protein structure 

and chiral-corrected connectivity indices were used to represent excipient structure. 

 

4.2.3 Properties for in situ NDHD recovery 

The example case used for in situ product recovery during fermentation is the production of (1R,2S)-1,2-

naphthalene dihydrodiol (NDHD) by Escherichia coli. NDHD is an important intermediate product that 

can be used in synthesis of pharmaceutical intermediates or in synthesis of polymers (Raschke, Meier et 

al. 2001). The reaction producing NDHD that is performed by E. coli is given in Figure 4.4 (Jerina, Daly et 

al. 1971). 

 

Figure 4.4 Oxidation of naphthalene to (1R,2S)-1,2-naphthalene dihydrodiol (NDHD) The reaction is 

catalyzed by the enzyme naphthalene dioxygenase (NDO), which is present in E. coli. The reaction 

requires oxygen (O2) and nicotinamide adenine dinucleotide phosphate (NADPH). Adapted from (Jerina, 

Daly et al. 1971).  
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The key properties of interest when designing an ionic liquid to extract NDHD during fermentation are 

the partition coefficient of NDHD between ionic liquid and water (Kx) and the toxicity of the ionic liquid 

towards E. coli (EC50). Group contribution models proved unable to successfully correlated the 

properties of interest to molecular structures; accordingly, connectivity index QSPRs were used. The 

partition coefficient of NDHD between ionic liquid and water is given by ratio between the mole fraction 

of NDHD in ionic liquid (xIL) over the mole fraction of NDHD in water (xaq), given by Equation 4.3. 

   
   

   
 

(Equation 4.3) 

Toxicity is measured by the half maximal effective concentration (EC50) value, which represents the 

concentration that is effective in killing half of a given community of organisms. For the system 

considered here, EC50 represents the overall toxicity of the ionic liquid towards E. coli. Lower values of 

EC50 represent a more toxic ionic liquid. Experimental values were obtained for partition coefficient 

values of 10 ionic liquids and toxicity values of 12 ionic liquids (Scurto 2012). 

4.2.4 Descriptor selection 

Linear property models were developed relating percent monomer remaining after lyophilization to 

excipient structure on a protein-by-protein basis. Descriptor selection was performed to prevent over-

fitting through use of Mallow’s Cp statistic (see Equation 4.4). Conceptually, Mallow’s Cp statistic is equal 

to the lack of fit plus a penalty for the number of descriptors chosen (Wasserman 2004).  

   ∑(    ̂ )
 

 

   

      

(Equation 4.4) 
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Where    is the observed or experimental value,  ̂  is the predicted value, m is the number of data 

points, p is the number of parameters or descriptors and    is the estimate of the residual variance. The 

value given by    is an unbiased estimate of the variance (Wasserman 2004), shown below: 

   (
 

   
)∑(    ̂ )

 
 

   

 

     (Equation 4.5) 

When comparing models, the model with the minimal value of Cp represents the model that best 

correlates the data without over-fitting. For a given model size (number of descriptors), an exhaustive 

search was performed to select the descriptors that minimized Cp. All model sizes were then compared 

and the model size with the minimal Cp statistic was selected as the final model. Figure 4.5 gives a 

graphical example of the use of Cp in descriptor selection. For linear correlations, the selection results 

given by Cp are equivalent to AIC (Akakie Information Criterion) (Wasserman 2004). Accordingly, 

descriptor selection results may refer to either AIC or Cp, depending on the software package used for 

selection. Descriptor selection was performed using the Leaps package in R (Lumley 2004; Dalgaard 

2008). The general procedure used in R for descriptor selection along with sample code is given in 

Appendix B. 

 

Figure 4.5 Values for Mallow’s Cp statistic versus model size (number of connectivity indices used) The 

lowest value is observed when six connectivity indices are used, indicating the size of the model that 

should be used. Figure adapted from (Roughton, Topp et al. 2012).  
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4.2.5 Cross-Validation 

Once a final model was selected, leave-one-out cross-validation (LOOCV) was performed to evaluate the 

predictive ability of the model.  In LOOCV, one by one, each observation is left out of the data set and 

then the selected descriptors are again correlated to the data set. The resulting model is then used to 

predict the left-out data point. The process is repeated for each fold. Upon completion, the predictions 

are used to calculate the predicted residual sum of the square errors (PRESS) through use of Equation 

4.6 (Quan 1988). 

 

      ∑(    ̂〈 〉)
 

 

   

 

(Equation 4.6) 

where  ̂〈 〉 is the predicted value for the left-out observation and m is the total number of observations. 

The PRESS value is then used to calculate the cross-validation coefficient Q2 (see Equation 4.7).  

     
     

∑ (    ̅)  
   

 

(Equation 4.7) 

where  ̅ is the average value for all data points. Q2 has a maximal value of the model’s R2 value, which 

represents a perfect predictive ability (Quan 1988). When comparing models, smaller R2-Q2 values 

represent better predictive power. In general, Q2 can be calculated for K-fold cross-validation by 

expanding upon Equation 4.6 to yield Equation 4.8. In K-fold cross-validation, K number of folds are 

generated from the original data set. The number of data left-out should be equal for each fold. As K 

decreases, the predictive power of the model is further strained as fewer observations are used to build 

the model. 
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      ∑∑(    ̂〈 〉)
 

 

   

 

   

 

(Equation 4.8) 

where k is the number of folds and n is the number of observations left-out in each fold. The general 

procedure used in R for cross-validation along with sample code is given in Appendix B. 

4.3 DEVELOPMENT OF NON-LINEAR QSPRS 

A non-linear QSPR was used to describe percent monomer remaining after lyophilization as a function of 

both protein and excipient choice. More details concerning percent monomer remaining after 

lyophilization can be found in Section 4.2.2. Development of non-linear QSPRs offer an added layer of 

complexity in comparison to linear QSPR development as a functional form must first be selected, where 

the functional form is assumed in linear QSPR development. Additionally, certain assumptions in the 

development of linear correlations do not hold for non-linear correlations. 

4.3.1 Selection of Functional Forms 

Several functional forms for a model describing protein stability following lyophilization as a function of 

excipient choice and protein choice were considered. Attempts to build a linear model of sufficient 

correlative quality were unsuccessful (results not shown). Non-linear models were considered to better 

correlate the descriptors to the %Monomer values. The final form used is given below: 

          (∑    ) (∑    ) 

(Equation 4.9) 

where  represents excipient descriptors,  represents protein descriptors, and a, b, and c are 

adjustable parameters.   
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The form used for Equation 4.9 was motivated by the enthalpic contribution to the Flory-Huggins model, 

given by Equation 4.10. The Flory-Huggins model has been used previously to describe protein-sugar 

interactions in lyophilized solids (Katayama, Carpenter et al. 2009; Wang, Tchessalov et al. 2009). 

Equation 4.9 emulates the Flory-Huggins interaction parameter (12) through the multiplication of 

excipient structural descriptors and protein structural descriptors. The success of the Flory-Huggins 

functional form of the universal model suggests that direct protein-excipient interactions play a 

significant role in stabilization of the protein during lyophilization for the formulations considered. 

              

(Equation 4.10) 

4.3.2 Parameter Fitting 

A non-linear model was considered for the correlation between percent monomer remaining after 

lyophilization and both excipient and protein descriptors, referred to as the universal model. Parameter 

fitting was performed by minimization of the residual sum of the squares (RSS) between the model and 

experimental data. The minimization was performed as a mixed-integer non-linear program (MINLP), 

resulting in parameter values that were not guaranteed to be globally optimal. However, the 

formulation of the problem as a MINLP is necessary as a non-linear property model is used for the 

universal model. The Excel solver was utilized in solution of the MINLP. 

4.3.3 Parameter Sensitivity 

A parameter sensitivity analysis was used to select descriptors. Given the functional form, all descriptors 

were included. The parameters for each descriptor were determined such that the residual sum of the 

squares (RSS) between the model and experimental data was minimized (see Section 4.3.2). Sensitivity 

(Sx) was then calculated descriptor by descriptor through use of Equation 4.11. 
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(Equation 4.11) 

Where RSS1.1*x represents the sum of the square errors after increasing the parameter value for a given 

descriptor (x) by a factor of 1.1. When Sx is equal to or near one, the descriptor in question had no 

discernible effect on the model outcome. Larger sensitivities suggest a stronger importance on model 

outcome for the descriptor of interest. Sensitivity values were used to guide two rounds of descriptor 

selection. In the first round of descriptor reduction, descriptors with sensitivities approximately equal to 

one were excluded. In the second round of descriptor reduction, the remaining descriptor with the 

lowest sensitivity was excluded from the model and parameter fitting through minimization of RSS was 

redone for the remaining descriptors. If the model performance statistics changed by less than an order 

of magnitude, the descriptor remained excluded; otherwise the descriptor was retained in the final 

model. The procedure was repeated for the descriptor with the next lowest sensitivity value until all 

descriptors had been considered.  

4.3.4 Statistical Verification 

The model performance statistics of interest were the percent average absolute deviation (%AAD) and 

the reduced chi-squared value. The statistics were used for the non-linear model over R2 and Q2 as R2-

based methods are poor indicators of non-linear model performance (Spiess and Neumeyer 2010). 

Furthermore, calculation of R2 assumes that the total sum of squares is equal to the explained sum of 

squares plus the residual sum of squares (TSS = ESS + RSS). The assumption is valid for linear regression 

but does not hold for non-linear regression. The %AAD gives the average deviation between the 

experimental and the predicted values given by the model (see Equation 4.12). %AAD was used to 

evaluate the accuracy of the model. 
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(Equation 4.12) 

The predictive power of the model was evaluated using reduced chi-squared. The reduced chi-squared 

statistic accounts for model variance as well as the number of parameters chosen (see Equation 4.13). 

For each data point, the difference between experimental and predicted is normalized by the 

uncertainty of the experimental measurement (). A value of one indicates that the model provides a 

good fit for the data, as the model variance is equal to the experimental variance (Spiess and Neumeyer 

2010). Order of magnitude differences in reduced chi-squared value suggest that either measurement 

errors are over-estimated (reduced chi-squared < 0.1) or a combination of under-estimated 

measurement errors and incorrect choice of functional form for the model (reduced chi-squared > 10) 

(Spiess and Neumeyer 2010).  

reduced chi-squared   
 

   
∑

(    ̂ )
 

  
 

 
    

 

(Equation 4.13) 

4.4 GROUP CONTRIBUTION METHODS 

For design of IL-based separation processes, group contribution (GC) models for heat capacity (Gardas 

and Coutinho 2008) and density (Valderrama and Robles 2007) were required. A solubility parameter GC 

model was developed for use as a design target and ionic liquid selection criteria. Additionally, a thermal 

decomposition temperature GC model was developed for use in selection of ionic liquid candidates.  

4.4.1 Hildebrand Solubility Parameter 

The Hildebrand solubility parameter is used to predict whether compounds will be miscible (Barton 

1991). Compounds with similar solubility parameter values are more likely to form a miscible solution. 

Solubility is a key parameter for selecting an entrainer, allowing the solubility parameter to be used as a 
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tool for designing or selecting possible candidates.  The cohesive energy density of a compound i (   ) is 

determined by its molar volume (  ) and enthalpy of vaporization (     ). The Hildebrand solubility 

parameter (  ) is defined as the square root of the cohesive energy density, as shown in Equation 4.14. 

    
  

 
 ⁄  (

          

  
)

 
 ⁄

 

  

(Equation 4.14) 

For mixtures, a geometric mean is used to determine the mixture cohesive energy density (Prausnitz, 

Lichtenthaler et al. 1999). The mixture cohesive energy density is then used to determine the volume 

average solubility parameter for the mixture ( ̅), as given by Equation 4.15. 

 ̅  ∑    

 

 

 

   

(Equation 4.15) 

Where the volume fraction for a component in the mixture (  ) is determined from the mole fraction 

(  ) and molar volume (  ), as shown by Equation 4.16. 
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(Equation 4.16) 

In the presented work, a GC model was developed for Hildebrand solubility parameter of ionic liquids. 

Several functional forms were considered (Roughton, White et al. 2011), but a linear GC model was 

determined to be appropriate given the small data set. Known solubility parameter values were used to 

calculate the volume average solubility parameter for azeotropic mixtures of interest.  
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4.4.2 Thermal Decomposition Temperature 

An important consideration of the design or selection of an ionic liquid for a separations process is the 

thermal decomposition temperature. Temperatures under 500°C have been reported to lead to thermal 

decomposition of the alkyl chain substituents of the cation as well as the anion itself (Ohtani, Ishimura 

et al. 2008). Higher temperatures (>500°C) can result in thermal decomposition of the imidazolium ring 

in cations (Ohtani, Ishimura et al. 2008). Imidazolium-based cations generally exhibit higher thermal 

stability than other cation types, such as tetraalkyl ammonium-based cations (Ngo, LeCompte et al. 

2000). Operating temperatures for any process utilizing ionic liquids must be well below the thermal 

degradation onset temperature of the ionic liquids.  

4.4.3 Group Contribution Model Development 

Group contribution models were developed to predict solubility parameters and thermal decomposition 

temperature for ionic liquids to provide a screening tool for selection of ionic liquids for use as 

entrainers. Additionally, group contributions form the basis of the activity coefficient predictions from 

the UNIFAC model (see Section 4.5). The ionic liquids were characterized as alkyl chain groups, cation 

groups, and anion groups. The groups used to develop ionic liquid GC models are given by Table 4.4. 
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Table 4.4 Ionic liquid groups used for GC model development Groups are classified either as alkyl chain 

groups, cation groups or anion groups. The X represents a point of connection with another group. 

Hildebrand solubility parameter and Td = thermal decomposition temperature.  

Alkyl Chain Groups 

Name Structure Models 

CH3 
 

, Td, 

UNIFAC 

CH2 

 

, Td, 

UNIFAC 

O (ether) 
 

 

Isobutyl 

 

Td

Ethylbenzyl 

 

Td
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Cation Groups 

Name Structure Models 

Imidazolium [Im] 

 

, Td, 

UNIFAC 

Pyridinium [Py] 

 

, 

UNIFAC 

Pyrrolidinium [Pyr] 

 

 

Ammonium [N] 

 

, Td, 

UNIFAC 

Phosphonium [P] 

 

 

Sulfonium [S] 
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Anion Groups 

Name Structure Models 

Dimethylphosphate [DMP] 

 

, 

UNIFAC 

Diethylphosphate [DEP] 

 

 

Tetrafluoroborate [BF4] 

 

, Td, 

UNIFAC 

Hexafluorophosphate [PF6] 

 

, Td, 

UNIFAC 

Trifluoroacetate [CF3COO] 

 

, Td, 

UNIFAC 

Trifluoromethanesulfonate 

[CF3SO3] 

 

, Td, 

UNIFAC 
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Bis(trifluoromethylsulfonyl) 

amide [Tf2N] 

 

, Td, 

UNIFAC 

2-(2-methoxyethoxy)ethyl 

sulfate [CH3(OC2H4)2SO4] 

 

, 

UNIFAC 

2-(methoxy)ethyl sulfate 

[CH3OC2H4SO4] 

 

UNIFAC 

2-(ethoxy)ethyl sulfate 

[C2H5OC2H4SO4] 

 

UNIFAC 

Methyl sulfate [CH3SO4] 

 

UNIFAC 

Ethyl sulfate [C2H5SO4] 

 

UNIFAC 

Octyl sulfate [C8H17SO4] 

 

 

Thiocyanate [SCN] 
 

, 

UNIFAC 
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Tosylate [TOS] 

 

 

Chloride [Cl] 
 

, Td, 

UNIFAC 

Bromide [Br] 
 

Td, 

UNIFAC 

Iodide [I] 
 

UNIFAC 

 

Linear models were proposed to predict the solubility parameter and thermal decomposition 

temperature. The function form for prediction of property P is given by Equation 4.17, where    

describes the number of groups of type i,    is the contribution of group i to the overall property value, 

and b is a constant. The contributions from the alkyl chain groups, cation groups, and anion groups are 

summed to give the predicted property value. The function forms used in the UNIFAC model differ and 

are explained in Section 4.5. 

         

                 
         

        
  

  ∑      

           

∑      

      

∑      

     

  

  

      (Equation 4.17) 

Experimental values of ionic liquid solubility parameters were obtained from literature (Marciniak 2010). 

The solubility parameter value can change with temperature, so the model was developed to predict the 

solubility parameter at 298.15 K. Even though a temperature dependence exists, solubility parameter 

often scales linearly for all compounds (Barton 1991). Thus, the GC model developed can be utilized to 
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design or select an ionic liquid for a given azeotrope at any given temperature assuming that the 

difference between the solubility parameter values will be similar at different temperatures. 

Experimental values of thermal decomposition temperature were also obtained from literature (D. 

Holbrey and R. Seddon 1999; Ngo, LeCompte et al. 2000; Visser Ann, Reichert et al. 2002; Awad, Gilman 

et al. 2004; Fredlake, Crosthwaite et al. 2004; Wooster, Johanson et al. 2006; Luo, Huang et al. 2008). 

For both property models, the contributions for each group were determined such that the %AARD 

(percent average absolute relative deviation) between experimental and predicted solubility parameters 

was minimized. The problem was formulated as a linear program (LP) and solved using the CPLEX solver 

in the GAMS optimization software package. The objective function is given by Equation 4.18. 
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 (Equation 4.18) 

To make the problem formulation linear, the absolute value term was transformed into the sum of two 

error terms for each data point (  
    

 ) and additional constraints were added. The resulting 

formulation is given by Equation 4.19. 
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(Equation 4.19) 
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4.5 UNIFAC-IL MODEL DEVELOPMENT 

Design of separations requires the determination of thermodynamic parameters for all components 

involved in the separation. For the design of extractive distillation processes, the activity coefficient is 

needed for the light components, heavy components and the entrainers. A UNIFAC model was 

developed to predict ionic liquid activity coefficients (UNIFAC-IL).  Known UNIFAC parameters were used 

for light and heavy components. 

4.5.1 Theory 

Modeling or prediction of VLE is a key tool needed for the design of separation processes. For the 

examples considered, the pressure was near or at atmosphere and the vapor phase was considered 

ideal. The Poynting correction was neglected and the saturated fugacity coefficients were assumed to be 

unity, also due to low pressure. Due to the extremely low vapor pressure exhibited by ionic liquids, the 

saturation pressure (  
   ) for the ionic liquids was assumed to be zero. As a result, no ionic liquid was 

assumed to be present in the vapor phase. Factoring in the assumptions, total pressure for a ternary 

system containing an ionic liquid is given by Equation 4.20, where components (1) and (2) are not ionic 

liquids. 

        
          

    

              (Equation 4.20) 

Given a known total pressure, the vapor compositions for component (1) or (2) are given by Equation 

4.21. 

   
      

   

 
 

       (Equation 4.21) 
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The UNIFAC model is a method used to predict activity coefficient values (  ). The original UNIFAC model 

has been used in this work, as data was insufficient to use the modified UNIFAC model. The original 

model uses a group contribution concept to calculate activity coefficients of a mixture, which are then 

used to predict VLE (Fredenslund, Gmehling et al. 1977; Lei, Zhang et al. 2009). The activity coefficients 

are calculated from a combinatorial and a residual contribution, as shown by Equation 4.22.  

         
      

  

   

(Equation 4.22) 

The combinatorial contribution, shown in Equation 4.23, is due to the size and shape of the molecule – 

that is the entropic features.   

 

    
               (  

  

  
   (

  

  
)) 

(Equation 4.23) 

Vi and Fi are parameters that are calculated from pure component parameters ri and qi, which represent 

the van der Waals volume and molecular surface area respectively. The molar composition of species i is 

given by xi. The calculation for Vi and Fi are given by Equation 4.24. 

   
  

∑      
 

   
  

∑      
 

(Equation 4.24) 

The pure component parameters ri and qi are the sum of group volume and surface area parameters Rk 

and Qk. Rk and Qk are UNIFAC model parameters and are usually derived from the rules of Bondi (Bondi 
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1964). Calculation of the parameters is given by Equation 4.25, with vk
(i) representing the number of 

groups of type k present in molecule i. 

   ∑  
( )

  

 

 

   ∑  
( )

  

 

 

(Equation 4.25) 

The residual contribution, shown in Equation 4.26, accounts for the interactions between groups – that 

is the enthalpic contribution. 

    
  ∑  

( )

 

[         
( )

] 

(Equation 4.26) 

The group residual activity coefficient is given by k (see Equation 4.27), where k 
(i) represents residual 

activity coefficient of group k in a reference solution containing only molecules of type i.  

       [    (∑     

 

)  ∑(
     

∑       
)

 

] 

(Equation 4.27) 

m is a volume contribution parameter and is dependent on Xm, which is the fraction of group m in the 

given mixture. Calculation of m and Xm is given by Equation 4.28. 
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(Equation 4.28) 
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The interaction parameter nm (see Equation 4.29) is a function of the group interaction parameter anm 

and temperature (T). The group interaction parameter anm is a fitted UNIFAC model parameter with the 

property that anm ≠ amn. 

       ( 
   

 
) 

(Equation 4.29) 

4.5.2 Determination of Groups and Group Parameters 

The ionic liquids were characterized by the same groups as used for the solubility parameter: alkyl chain 

groups, cation groups, and anion groups. Previous attempts to develop a UNIFAC model for ionic liquids 

characterized a cation and anion pair as one group (Lei, Zhang et al. 2009). The UNIFAC-IL model 

presented here treats cations and anion as separate groups, increasing the number of ionic liquid 

combinations and allowing for prediction of thermodynamic behavior with ionic liquids not used in the 

model development data set (Roughton, Christian et al. 2012). The UNIFAC-IL model proposed can 

predict VLE for systems containing ionic liquids that have yet to be synthesized.  

The combinatorial contribution is based on entropic effects and is calculated from group volume and 

surface area parameters. Parameters were determined for the new ionic groups using the following 

procedure: 

1. The rules of Bondi for estimation of molecular volume and surface area were used (Bondi 1964). 

2. For groups that were undefined by the rules of Bondi, values from previous UNIFAC groups were 

used. For example, the volume and surface area parameters for a di-substituted pyridine group 

were assumed to be roughly equal to the volume and surface area parameters for a di-

substituted pyridinium group. 

3. Values for groups still undefined were found in literature using correlations or molecular 

simulation to determine volume and surface area parameters (Lei, Zhang et al. 2009). 
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4.5.3 Determination of Interaction Parameters 

A wide range of experimental data on activity coefficients of various solutes at infinite dilution in ionic 

liquids was collected from previously published work (Heintz, Kulikov et al. 2001; Heintz, Kulikov et al. 

2002; Krummen, Wasserscheid et al. 2002; Letcher, Soko et al. 2003; Letcher, Soko et al. 2003; Eike, 

Brennecke et al. 2004; Kato and Gmehling 2004; Vasiltsova, Verevkin et al. 2004; Heintz, Casás et al. 

2005; Heintz and Verevkin 2005; Kato and Gmehling 2005; Kato and Gmehling 2005; Letcher, Domans a 

et al.  005   etcher, Marcinia  et al.  005  Vasiltsova, Verev in et al.  005  Heintz, Vasiltsova et al.  00   

Heintz, Verev in et al.  00   Doma s a and Marcinia   007  Ge,  ang et al.  007  Domans a and 

Marcinia   00   Doma s a and Marcinia   00   Ge and Wang 2008; Ge, Wang et al. 2008; Shimoyama, 

Hirayama et al. 2008; Yang, Wu et al. 2008). The experimental values were used to obtain UNIFAC group 

binary interaction parameters between the ionic liquid groups and solute groups through regression, 

using the Thermodynamic Modeling Library (TML) within the ICAS software suite (Gani, Hytoft et al. 

1997). The objective function, given by Equation 4.30, was minimized using the VA05AD solver method. 

The method is a compromise between the Newton-Raphson, Steepest Descent and Marquardt 

algorithms for minimizing a sum of squares (HSL 2011). 

     ∑(
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(Equation 4.30) 

Only the unknown interaction parameters between the new ionic liquid groups and existing UNIFAC 

groups were determined. For interactions between existing UNIFAC groups, the current revised UNIFAC 

interaction parameters were used (Wittig, Lohmann et al. 2002). The interaction parameters between 

ionic liquid groups were assumed to be zero, due to the strong interaction and weak dissociation 

between ion pairs (Lei, Zhang et al. 2009) and also to allow more flexibility in the design of the ionic 

liquid.  
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5.0 MOLECULAR DESIGN METHODS: THE REVERSE PROBLEM 

Two main approaches were taken to address the reverse problem of CAMD: deterministic and 

stochastic. Deterministic design was applied to solution of ionic liquid entrainers and is detailed in 

Section 5.1. Tabu search, a stochastic method, was utilized for the design of ionic liquid extractants and 

carbohydrate glass-formers, as described in Section 5.2. Additionally, two stochastic methods (tabu 

search and genetic algorithms) were developed, tuned and compared for the design of carbohydrate 

excipients in lyophilized protein formulations. Development is detailed in Section 5.3, tuning is explained 

in Section 5.4 and the methods of solution comparison are given in Section 5.5.  

5.1 DETERMINISTIC DESIGN OF IONIC LIQUID ENTRAINERS 

Given an azeotropic mixture of interest, a CAMD problem was formulated to design an ionic liquid 

entrainer. The solubility parameter is used as the target property. First, the design stage in the CAMD 

problem selects all ionic liquids that have solubility parameters in a range between the azeotrope 

mixture's solubility parameter and the entrained component's solubility parameter. From the initial 

design step, several ionic liquid candidates can be generated. Next, the candidates are screened based 

on other desirable properties such as melting temperature, thermal decomposition temperature, and 

toxicity. The candidates remaining are then screened using the UNIFAC-IL model to determine how 

much IL is needed to break the desired azeotrope. The candidates requiring minimal ionic liquid 

concentrations are then finally screened based on distillation column energy requirements as 

determined by simulation (see Section 6.0).  

For the examples provided in this work, the property models for the screening of secondary properties 

are not yet available. To provide an illustrative example of the proposed methodology, the initial 

number of design candidates was limited. Only two candidates for each azeotropic mixture were 

selected based on the extremes of the range of solubility parameters that are considered. One ionic 
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liquid was selected based on its match to the azeotropic mixture’s solubility parameter and another was 

selected based on its match to the component that is desired to be entrained. Then, the candidates are 

screened by comparing the amount of ionic liquid needed to break the azeotrope. For the examples 

given, the best possible ionic liquid is not guaranteed to be selected as the entire range of design 

candidates was not considered.   

The optimization problem was formulated as a mixed-integer linear program (MILP) and solved using 

the CPLEX solver in GAMS (CPLEX solution manual, http://www.gams.com/dd/docs/solvers/cplex.pdf). 

Due to the simplicity of the design problem, use of a deterministic method was feasible and chosen to 

ensure global optimality of the solution. The objective function was used to minimize the difference 

between the target solubility parameter (       ) and the predicted solubility parameter of the designed 

ionic liquid (     ). For the examples given, the target is either set to the volume average solubility 

parameter of the mixture at the azeotrope or the solubility parameter of the entrained component. To 

make the problem formulation linear, the absolute value term was transformed into the sum of two 

error terms for each data point (  
    

 ) and additional constraints were added (Ferguson). The 

resulting objective function and constraints are given by Equation 5.1. 

            

    s.t. 

                   

                   

  
    

    

   

(Equation 5.1) 

To ensure a feasible ionic liquid was designed, several structural constraints were added. Many common 

ionic liquids have methyl, ethyl, butyl, hexyl, and octyl alkyl groups on the cation. To determine the 
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number of CH2 groups and ensure that the number matched with common ionic liquids, the following 

constraints were introduced: 

                (   )     (   )     (   )     (   )     (   ) 

      

(Equation 5.2) 

∑ ( )   

 

   

 

   

(Equation 5.3) 

where  ( ) is a binary variable declaring the existence of an alkyl chain. Due to the limited property 

models, only ionic liquids with one alkyl chain on the cation were designed. If desired, Equation 5.3 

could be edited to allow for more than one alkyl chain. To ensure that only one cation and one anion 

were used in the design of the ionic liquid, constraints are given by Equation 5.4. 

∑       ( )   

 

   

 

  

∑       ( )   

 

   

 

  

(Equation 5.4) 

where        ( ) and       ( ) are binary variables declaring the existence of cation i and anion k, 

respectively. The variables n and m represent the number of cation groups and anion groups available 

for design. Once an ionic liquid candidate was chosen, the UNIFAC-IL model was used to verify that the 

azeotrope was broken by the ionic liquid and to ensure that only one liquid phase was present.  
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5.2 USE OF TABU SEARCH IN DESIGN OF IONIC LIQUID EXTRACTANTS AND CARBOHYDRATE GLASS-

FORMERS 

An existing molecular design framework was utilized for the design of ionic liquid extractants and 

carbohydrate glass-formers (Eslick 2009; Eslick, Ye et al. 2009; McLeese, Eslick et al. 2010). Tabu search 

was used to provide locally optimal solutions. The design targets for the two design problems are given 

in Table 5.1. 

Table 5.1 Property targets for molecular design using tabu search The tabu search was performed via a 

modified version of Polymer Designer Pro (Eslick, Ye et al. 2009).  

Ionic Liquid Extractant  

Property Target 

Partition coefficient (Kx) 50 

Toxicity (lnEC50) 4.0 

Carbohydrate Glass-Former  

Property Target 

Glass Transition Temperature of the Anhydrous Solute (Tg) 100°C 

Glass Transition Temperature of the Maximally Freeze-Concentrated Solute (Tg’) -30°C 

Melting Temperature of Ice (Tm’) -25°C 

Concentration of the Maximally Freeze-Concentrated Solute (Cg’) 0.85 

 

The existing molecular design framework was contained in a software package named Polymer Designer 

(PD), written in C++ (Eslick 2009). For each design case, groups were changed to represent groups that 

existed in the data set used to develop the corresponding property models. Design was limited to the 

cation for the ionic liquid extactant case, with the anion set at tris(perfluoroalkyl)trifluorophosphate 

(FAP). The groups used for both design problems are catalogued in Appendix C, along with general 
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guidelines for the use of PD. Additionally, the necessary property models were added to the program. 

The tabu Search algorithm used in PD follows a procedure similar to the tabu Search algorithm 

described in Section 5.3.3.   

While useful for optimal structure determination, several factors necessitated the development of a 

separate software package for design of carbohydrate excipients for lyophilized protein formulations. 

The primary reason was the desire for comparison between tabu Search and genetic algorithms for use 

in CAMD. A molecular representation that would be useful for both stochastic methods was necessary 

for fair comparison. PD was developed with concern for cross-linked polymer systems and thus some 

elements of the code were unnecessary for the design problems considered and added time to solution. 

Additionally, tuning required easily editable parameter values. Any editing done to the source code or 

group database for PD requires the program to be deleted and the code to be recompiled. The steps 

needed for editing and recompiling the PD code are detailed in Appendix C. As the solution methods 

needed to be ran many times for tuning purposes with different parameter values, ultimately the 

existing framework proved too cumbersome. Development of a framework more suited to the desired 

tasks is given in the following section. 

5.3 DEVELOPMENT OF STOCHASTIC DESIGN METHODS FOR CARBOHYDRATE EXCIPIENTS IN 

LYOPHILIZED PROTEIN FORMULATIONS 

A CAMD framework for the design of carbohydrate excipients was developed for use with either tabu 

search or a genetic algorithm. The framework was implemented in Visual Basic for Applications (VBA), 

with Microsoft Excel used as the database for groups used in design. The overall framework is 

diagramed in Figure 5.1. 
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5.3.1 Molecular Representation 

For implementation of the design phase, a representation is needed for the molecular structure that 

allows calculation of relevant descriptors and properties. The molecular representation also needs to 

allow for easy structural modifications to determine new solutions. For the work detailed here, the 

lowest level of molecular representation is given by an array of group numbers. Each number 

corresponds to a database entry which contains the group adjacency matrix, the vertex degree I for 

each non-hydrogen atom in the group, the valence vertex degree i
v for each non-hydrogen atom in the 

group and the number of hydrogens bonded to each non-hydrogen atom in the group. For the design of 

carbohydrate excipients, 9 building block groups were identified from the set of molecules used to 

generate the experimental %Monomer values. From the building blocks groups selected, chiral sub-

groups were identified with 89 total groups available for use (see Table 5.2). Terminal groups were fixed 

as hydroxyl groups. 

 

Figure 5.1 CAMD framework developed to design carbohydrate excipients using either tabu search or 
a genetic algorithm The CAMD module contains the functions needed to build the adjacency matrix 

from the array of groups present in the molecule. See Table 5.3 for more details.   
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Table 5.2 Building block groups and chiral subgroups available for design of new excipient candidates  

Chiral carbons are identified with “*”. Connections to the next group are identified by “X”.  

 

Building Block Group Chemical Formula Group Structure 
Number of Chiral 

Sub-Groups 

1 CH2 

 

N/A 

2 CH2O 

 

2 

3 O 
 

N/A 

4 CO 

 

N/A 

5 C3H6O2 

 

4 

6 C4H6O3 

 

16 
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7 C5H8O4 

 

16 

8 C5H8O3 

 

16 

9 C5H8O4 

 

32 

 

  

By factoring in chirality, there is an order of magnitude increase in the number of groups available for 

selection during the generation of new candidate structures. The increase in the number of groups 

available for selection has a marked impact on the number of possible molecular structure 

combinations, resulting in a combinatorial problem. Figure 5.2 demonstrates how the number of 

possible combinations increases exponentially as the number of groups available for selection increases. 

For the design problem considered, the maximum number of groups selected is set at six as all 

molecules used in the data set can be described by six or fewer of the groups given in Table 5.2. With a 

maximum molecule size of six groups and 89 groups available for selection, 8.66x108 combinations and 
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5.03x1011 permutations exist. Given the number of possible solutions, a rational and effective method is 

needed to quickly identify only the most promising candidates. The stochastic methods utilized in the 

CAMD framework proposed offer a means to eliminate the combinatorial contribution to the design 

problem. 

 

Figure 5.2 Number of possible combinations of groups that would provide solutions to a CAMD 
problem  The number of combinations are a function of the maximum number of groups selected and 

the number of distinct groups available for selection The vertical axis uses a logarithmic scale. 

  

The low-level group representation is used in the stochastic methods, where groups are changed 

according to the rules for each algorithm (see Sections 5.3.3 and 5.3.4 for more details). For property 

calculation, a higher level of detail is needed. The groups are used to construct an adjacency matrix for 

the molecule. Lists containing the vertex degree (I) for each non-hydrogen atom in the molecule, the 

valence vertex degree (i
v) for each non-hydrogen atom in the molecule and the number of hydrogens 

bonded to each non-hydrogen atom in the molecule are also generated. The functions and subroutines 

used to build the molecular representations are detailed in Table 5.3. The source code for the functions 
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and subroutines is given in Appendix D. From the adjacency matrix and the lists, connectivity indices can 

be calculated. 
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Table 5.3 Description of VBA functions and subroutines used for molecular representation Source code 

can be found in Appendix D.  

 

Function Name Argument(s) Resulting Value 

atoms Number of group  Number of atoms in group 

name Number of group 

String containing name of 

worksheet in excel database 

containing group structural 

information 

terminus 

Number of group, number of atom in molecule 

that represents the left-hand terminal atom in 

group 

Number of the atom in the 

molecule that represents the 

right-hand terminal atom in 

group 

Subroutine Name Argument(s) Result of Procedure 

BuildMolecule 

Array containing groups in molecule, array 

containing the vertex degree (I) for each non-

hydrogen atom in the molecule, array containing 

the valence vertex degree (i
v) for each non-

hydrogen atom in the molecule, array containing 

the number of hydrogens bonded to each non-

hydrogen atom in the molecule, array containing 

adjacency matrix 

Adds hydroxyl terminals to 

both the first and last group 

in the molecule. Updates 

adjacency matrix and lists of 

other structural values for 

molecule represented by the 

array containing the groups in 

the molecule 

GetConnectivity 

Array containing the vertex degree (I) for each 

non-hydrogen atom in the molecule, array 

containing the valence vertex degree (i
v) for 

each non-hydrogen atom in the molecule, array 

containing the number of hydrogens bonded to 

each non-hydrogen atom in the molecule, array 

containing adjacency matrix, number of non-

hydrogen atoms in the molecule, array 

containing simple connectivity indices (),array 

containing valence connectivity indices (v), 

array containing average simple connectivity 

indices (),array containing average valence 

connectivity indices (v) 

Updates chiral connectivity 

index values for molecule 

represented by the adjacency 

matrix and lists of other 

structural values 
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5.3.2 Calculation of Chiral Connectivity Indices and Objective Function 

A depth-first search algorithm is used to determine the existence of paths in the adjacency matrix 

ranging from lengths of zero to five (West 2001). The path length information is then used calculate the 

chiral connectivity indices. Both the path search and connectivity index calculation are performed in the 

GetConnectivity subroutine (see Table 5.3 and Appendix D).  The calculated chiral connectivity indices 

are used for property prediction, which is in turn used to calculate the objective function value. The 

objective function is a characteristic CAMD type which describes the sum of the normalized absolute 

differences between target properties and predicted properties (See Section 2.12 and Equation 2.8).  

The objective function used has been modified by the inclusion of a penalty score and is given by 

Equation 5.5. The penalty score is used to disallow final solutions from containing certain group 

combinations that are unfavorable. In particular, the formation of peroxide bonds (O-O) and bonding of 

two ring groups together are prevented through use of the penalty scores. Peroxides are undesired as 

the bond is unstable. A bond between two rings in not wanted as such a bond is not observed in 

carbohydrates. The penalty score is large enough to make objective function values for solutions 

containing such structural features to be much larger in comparison to solutions without said features. 

The penalty function along with the rules for adding and removing groups in each of the stochastic 

design methods (explained further in Sections 5.3.3 and 5.3.4) eliminates the need for explicit structural 

constraints. Additionally, the definition of groups eliminates the need to store the presence of double or 

triple bonds in the adjacency matrix. 
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(Equation 5.5) 

5.3.3 Tabu Search Algorithm 

The tabu search algorithm utilizes solution history to generate locally optimal solutions to the molecular 

design problem. In the following implementation, solutions are given as arrays of groups representing 

the molecular structure. The tabu search algorithm developed is given in Figure 5.3. The tabu search 

begins with a random initial solution which is generated by calling the InitialSolution subroutine (see 

Table 5.4 and Appendix D). The connectivity indices are calculated for the initial solution and used to 

determine the objective function. The solution is set as the current solution and then stored as the initial 

entry in the tabu list. The information stored in the tabu list is comprised of the array of groups 

comprising the molecule and the 0 value for checking to see if a solution is tabu. 

The first iteration then begins by determining the number of neighbors to the current solution. The 

number chosen is a random integer with a value between one and the set maximum number of 

members to evaluate. A neighboring structure is generated through use of the Make_Neighbor function, 

which takes the current solution’s array of groups as an argument and returns a neighboring solution’s 

array of groups (see Appendix D). The Make_Neighbor function randomly selects one of four types of 

local moves to be made to generate the neighboring solution. The types of moves are explained with 

examples in Table 5.4.  
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Figure 5.3 Tabu search algorithm as implemented in the CAMD framework 
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Table 5.4 Moves used to generate neighbors to current solution in tabu search Moves are classified 

either as local or global. Letters are analogous to the group numbers used to represent the molecule in 

the algorithm. The highlighted letter(s) represents the group(s) selected by the move operation.  

 

Local Moves 

Name Description Example 

Swap 
Selects two random groups and switches 

their position in the molecule. 
A-B-C-D  A-D-C-B 

Insert 

Selects two random groups and inserts a 

random group between their positions in 

the molecule.  

A-B-C-D  A-B-A-C-D 

Delete 
Selects one random group and removes 

the group from the molecule. 
A-B-C-D  A-B-D 

Replace 

Selects one random group and replaces the 

group with a new, randomly generated 

group. 

A-B-C-D  A-B-A-D 

Global Moves 

Name Description Example 

InitialSolution 

Completely rebuilds a new solution, 

selecting random groups to comprise the 

molecule. 

A-B-C-D  C-A-A 

 

Following the generation of neighbors, each is checked against the tabu list. A solution is considered 

tabu if it violates the tabu criterion, which is given by Equation 5.6. A solution must pass tabu testing for 

all members on the tabu list to be accepted. If the solution is accepted, the solution becomes the first 

entry in the tabu list and the indices for all other entries in the tabu list are increased by one. Once the 

index of an entry exceeds the maximum size of the tabu list, the entry is removed from the tabu list. 

Therefore stored solutions leave memory on a first-in-first-out basis. The tabu list provides short-term 

solution memory. 
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|                  
                    

 |                 

(Equation 5.6) 

If the solution violates the tabu criterion, the solution’s objective function is chec ed against the best 

known solution. If the new tabu solution has a superior objective function to the best solution found so 

far, the new solution is retained despite its tabu status. The process of allowing violation of tabu criteria 

for good solutions is referred to as aspiration (Glover 1989).  If all of the neighbors are deemed tabu, 

then a global move is used to direct the local search to new region of the solution space. The global 

move used is creation of a new random solution (see Table 5.4). The best non-tabu solution or best 

solution allowed by aspiration is chosen as the current solution. If the new current solution is better 

than any previously encountered solution, the solution is stored as the best solution. Storage of the best 

solution yet encountered provides long-term solution memory. The procedure continues until the 

maximum number of non-improving iterations is reached, where a solution obtained by a non-

improving iteration does not have a better objective function value than the best obtained solution. 

Upon completion, the solution encountered with the best objective function value is returned. 

5.3.4 Genetic Algorithm 

The genetic algorithm mimics evolution to provided locally optimal solutions to the CAMD problem. The 

data structure used for molecular structure is identical to the representation used in the tabu search. 

For the genetic algorithm, the groups are analogous to genes. Each molecule, or member of the 

population, is comprised of a set of genes. Genetic operations (i.e., moves) are used to alter the genes of 

members of the population. Through succession iterations, or generations, optimal genomes are 

determined. The procedure used by the genetic algorithm is detailed in Figure 5.4, with source code 

provided in Appendix D.   
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The search for solutions begins with random generation of members of the population through use of 

the InitialSolution subroutine (see Table 5.4 and Appendix D). The size of the population determines the 

number of solutions that are evaluated and generated during each generation. The fitness is determined 

for each member of the population, where the fitness is given as the inverse of the objective function 

(e.g., when the objective function is minimized, the fitness is maximized).  The fitness is used to 

calculate the probability (as a %) that a member will become a parent for the next generation through 

use of Equation 5.7. A parent is a member which undergoes a move to create a new member. 

           ( )       (
   ( )

∑    ( ) 
   

) 

(Equation 5.7) 

Where Fit(j) represents the fitness of the j-th member of the population of size n. Once the probability is 

determined for a member, a roulette selection is used to determine whether the member will be a 

parent. A random integer between zero and the maximum allowable probability is chosen. If the integer 

is less than the probability calculated for the member, the member is chosen as a parent. Due to the 

semi-random selection, any number of members may become parents but members with higher fitness 

values are more likely to become parents. If no parents are chosen, then two parents are randomly 

selected from the population. The fitness of the selected parents is checked against the fitness of the 

best encountered solution. If the fitness exceeds the best known, the parent is retained in the next 

generation through a rule known as elitist policy (Venkatasubramanian, Chan et al. 1995). 
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Figure 5.4 Genetic algorithm as implemented in the CAMD framework 
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Table 5.5 Moves used to generate offspring to selected parents in the genetic algorithm Moves require 

either one parent or two parents. Letters are analogous to the genes or group numbers used to 

represent the molecule in the algorithm. The highlighted letter(s) represents the gene(s) selected by the 

move operation. Bold font is used in the two parent moves to distinguish groups belonging to the 

second parent.  

One Parent Moves 

Name Description Example 

Hop 
Selects two random genes and switches their 

position in the molecule. 
A-B-C-D  A-D-C-B 

Insert 
Selects two random genes and inserts a random 

gene between their positions in the molecule.  
A-B-C-D  A-B-A-C-D 

Delete 
Selects one random gene and removes the gene 

from the molecule. 
A-B-C-D  A-B-D 

Mutate 
Selects one random gene and replaces the gene 

with a new, randomly generated gene. 
A-B-C-D  A-B-A-D 

Two Parent Moves 

Name Description Example 

Blend 
Combines two parent molecules end to end to 

create one offspring molecule. 
A-B + C-D  A-B-C-D 

Crossover 

Selects a random gene in each parent molecule 

to use as a crossover point, generating two 

offspring molecules. 

A-B-C-D + A-B-C-D   

A-C-D + A-B-B-C-D 

 

New members for the next generation are produced by randomly selecting two parents from the list of 

parents generated through the roulette selection. The parents’ structures (given as group arrays) are 

used as arguments in the Make_Offspring function (see Appendix D). The Make_Offspring randomly 

selects either a one parent move or a two parent move to generate a new member for the next 

generation (see Table 5.5). Each move is analogous to known genetic operations that occur in genomes 

of organisms. Comparison shows that all one parent moves have matching local moves in the tabu 
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search algorithm (see Table 5.4). Following the generation of all new members of the population, the 

next generation begins. The genetic algorithm proceeds for a set number of maximum generations, 

returning the member with the highest fitness from the last generation.  

5.4 TUNING OF STOCHASTIC DESIGN METHODS FOR CARBOHYDRATE EXCIPIENTS IN LYOPHILIZED 

PROTEIN FORMULATIONS 

The objective of tuning is to produce a stochastic design method that efficiently produces high quality 

solutions. Efficiency is measured by the time to solution and quality is measured by the solution’s 

objective function value. Each design method contains several key parameters whose values affect the 

solution search. Tuning provided the rationale behind the values used for the parameter values in each 

design method. During tuning, a parameter was changed while all other values were kept constant. For 

each adjusted parameter value, 100 runs were performed with the objective values and times to 

solution captured for each run. The process was repeated for each parameter of interest. 

From the observations, parameter values were chosen to yield a high percentage of high quality 

solutions (designed molecules with property values within 5% of the target property values) while 

minimizing the time to solution. The parameters tuned for each method are detailed in the following 

subsections. The parameters are not exhaustive for the two stochastic methods considered, but do 

represent the key parameters for the methods as developed here. Different implementations of tabu 

search and genetic algorithms may use slightly different parameters to guide the search for new 

solutions than the parameters presented here. The parameters used here were chosen to allow the best 

comparison possible between the two methods for CAMD applications. 

A simple test case with a known global optimum was used as the test case for tuning. Each algorithm 

was used to generate solutions with a target molecular weight of 342 g/mol. For tuning, penalty 
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functions were not employed in the objective function. The only other difference between the tuning 

and final design runs is the property model that is used, which does not affect the search process and 

only affects the objective function calculated for a given molecular structure. Thus it is expected that the 

tuning results would hold for any other CAMD design case where only the property model is altered. 

5.4.1 Tabu Search Algorithm 

For the tabu search algorithm, four parameters were used for tuning: 

 Maximum number of non-improving iterations – determines how long the search will be 

performed. 

 Maximum number of neighbors evaluated per iteration – determines how many new solutions 

to consider at each iteration. 

 Size of tabu list – determines how many previous solutions are stored in memory. Also effects 

the time spent checking to see if a solution is tabu.  

 Tabu criterion – determines how likely a solution is to be considered tabu.  

The base parameter values are presented in Table 5.6.  

Table 5.6 Parameter values used for the base case during tuning of the tabu search Parameters were 

altered on at a time to observe the effects of the parameter value on solution quality and time to 

solution.  

Parameter Base Value 

Maximum number of non-improving iterations 10 

Maximum number of neighbors evaluated per iteration 2 

Size of tabu list 10 

Tabu criterion 0.5 
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5.4.2 Genetic Algorithm 

For the genetic algorithm, three parameters were used for tuning. The base parameter values are 

presented in Table 5.7: 

 Maximum number of generations – determines how long the search will be performed. 

 Population size – determines how many solutions are considered at each iteration/generation. 

 Maximum allowable probability that member is chosen as parent – determines how likely a 

solution is to be used as a parent to generate new solutions for the next iteration/generation. As 

the value decreases, it becomes more likely that any given solution will be selected as a parent. 

Table 5.7 Parameter values used for the base case during tuning of the genetic algorithm Parameters 

were altered on at a time to observe the effects of the parameter value on solution quality and time to 

solution.  

Parameter Base Value 

Maximum number of generations 10 

Population size 10 

Maximum allowable probability 100 

 

5.5 COMPARISON OF STOCHASTIC DESIGN METHODS FOR CARBOHYDRATE EXCIPIENTS IN 

LYOPHILIZED PROTEIN FORMULATIONS 

From the design methods, many excipient candidates are designed. The value of the objective function 

represents the indicator of solution quality, with the minimal value representing the optimal solution. 

Comparison of objective function values between the candidates generated by tabu Search and the 

genetic algorithm allows for identification of the method that provides the best overall solution as well 

as the method that most consistently provides good solutions (as defined by the percentage of designed 

molecules with property values within 5% of the target property values). However, solely relying on the 
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objective function value may be misleading as many candidates could have statistically similar property 

values to best solution and thus be solutions of equal quality. 

A QSPR’s use lies in predicting a property for a new molecule of interest, represented by the molecular 

descriptors. The resulting predicted value has some error term involved. A novel approach to design 

solution comparison using prediction intervals was utilized. Prediction intervals allow for the error from 

the fitted model as well as any error in a future observation to be quantified (Wasserman 2004). A 

confidence interval only accounts for error in the correlation, so a prediction interval is always larger 

than a confidence interval. A 1 -  prediction interval for a predicted property of interest   is given by 

Equation 5.8. 

      ⁄ √ ̂ (  
 (   )      ) 

    Equation 5.8 

where    ⁄  is the student’s t-test value for the given degrees of freedom,    is the vector of descriptors 

used in the prediction,   
  is the transposed vector of descriptors used in the prediction,   is the matrix 

of descriptors used to build the correlation,    is the transposed matrix of descriptors used to build the 

correlation, and  ̂  is the unbiased estimator of the model variance. 

Given the connectivity indices for a designed carbohydrate excipient, new property values were 

predicted. Using the connectivity index values, R was used to calculate prediction intervals at a 95% level 

(The R Project for Statistical Computing, www.r-project.org). The procedure used in R for calculation of 

prediction intervals along with sample code is given in Appendix B. The prediction intervals were 

included to provide a reasonable range for the expected properties of the designed excipient molecule. 

The prediction intervals were also used to determine if two solutions from the optimal design phase 

were statistically different once the solutions were found using either tabu search or a genetic 

algorithm. When comparing the predicted properties of two designed molecules, overlapping prediction 
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intervals indicate that the solutions are not statistically different. The use of prediction intervals to 

compare solutions represents a novel approach to evaluating solutions generated in computer-aided 

molecular design. 
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6.0 SIMULTANEOUS PRODUCT AND PROCESS DESIGN 

CAMD was linked with separation process design for the simultaneous design of an ionic liquid entrainer 

and azeotropic separation process. Key to the IL-based separation process is the extractive distillation 

column, where the azeotrope is broken. Once a candidate was designed and confirmed to break an 

azeotrope of interest using the UNIFAC-IL model, design of the separation process was performed. The 

extractive distillation column was designed using the driving force method, as detailed in Section 6.1. 

After design of the column, simulations were used to design the ionic liquid recovery unit and to 

determine overall heat duty for the process. The simulation procedure is given in Section 6.2. The overall 

feedback between product and process design is outlined in Figure 6.1. Details concerning the molecular 

design component can be found in Section 5.1. 

 

Figure 6.1 Overall methodology for simultaneous design of ionic liquid entrainers and IL-based 
separation processes Figure is adapted from (Roughton, Christian et al. 2012).  
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6.1 DRIVING FORCE BASED DESIGN 

For separation of a given azeotrope, an extractive distillation column was designed using the driving 

force method. The driving force is defined as the difference between the vapor and liquid composition 

of the light key component (Bek-Pedersen, Gani et al. 2000).  The driving force is used to evaluate the 

feasibility of a proposed separation process, ensuring that the driving force is never zero (Bek-Pedersen, 

Gani et al. 2000). By designing the separation process based upon the maximum driving force, near 

optimal distillation columns can be designed with respect to energy requirements (Gani and Bek-

Pedersen 2000).  

The UNIFAC-IL model was used to generate the driving force for each ternary system consisting of the 

binary azeotrope plus an ionic liquid. The two components comprising the azeotropic mixture were 

defined as the key binary mixture. Product purities of the azeotrope components (on an ionic liquid free 

basis) were specified at ASTM purity standards. The driving force was plotted against the light key 

component mole fraction and the location (Dx) and value (Dy) of the maximum driving force was 

determined for varying ionic liquid compositions. The number of stages (N) were determined by finding 

the minimum number of stages necessary to achieve the desired product specifications, as determined 

by rigorous simulation (detailed in section 2.3.2). As the location of the maximum driving force was 

determined on an ionic liquid free basis, the location was modified using Equation 6.1. The driving force 

profile is only an estimate for the systems considered, as the ionic liquid concentration may vary 

throughout the column. The feed stage location (NF) was determined using Equation 6.2 (Gani and Bek-

Pedersen 2000) with a modification due to one stage being used as the entrainer feed stage. 

   (     )                 

  

(Equation 6.1) 
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   (    )(   ) 

   

(Equation 6.2) 

The original driving force method was proposed for systems with one feed. The proposed distillation 

column consists of a main feed for the azeotropic mixture and an ionic liquid feed at the top of the 

tower. For moderate to high ionic liquid concentrations, scaling of the feed tray location may be 

necessary. The scaling factor (SF) is given by Equation 6.3, where        is the specification for the light 

key distillate mole fraction and       is the specification for the heavy key bottoms mole fraction (Bek-

Pedersen, Gani et al. 2000). Calculation of       and       is performed taking into account the ionic 

liquid present in the column. When SF ≤ 0.01 and    < 0.7, scaling is necessary and Equation 6.4 is used 

to determine the site where the feed stage should be relocated in the column. In the initial 

implementation of driving force based design, the feed stage will always move up the column between a 

minimum of 10% of the total number of trays when scaling is required. By scaling the feed tray location 

through use of Equation 6.4, a more accurate location is determined then by relocating either by 5% or 

10% as proposed by Bek-Pedersen et al. (Bek-Pedersen, Gani et al. 2000). By using the scaled feed tray 

location when the stated conditions are met, a near-optimal column design is achieved with respect to 

overall energy consumption for a column with a main feed and a separate ionic liquid feed.  

   
       

       
 

     

(Equation 6.3) 

            [        (  )] 

   

(Equation 6.4) 
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6.2 AZEOTROPE SEPARATION PROCESS SIMULATION 

ChemCAD (www.chemstations.com) was used for rigorous simulation of the extractive distillation 

processes. The overall process selected for separation of the azeotropic mixtures and  regeneration of 

the ionic liquid has been used successfully in design and simulation of ionic liquid-based separation 

processes (Seiler, Jork et al. 2004). The process, shown in Figure 6.2, consists of a distillation column, 

flash drum, and stripper. The distillation column is used to separate the light key component (1) from 

the heavy key component (2) and the ionic liquid (3). The flash drum and stripper are used to separate 

component (2) and any remaining component (1) from the ionic liquid. The proposed process is 

desirable as it minimizes energy inputs and the stripper uses only air to regenerate the ionic liquid 

entrainer. 

 

Figure 6.2 Proposed ionic liquid-based azeotropic separation process A distillation column is used to 

separate the light (1) and heavy (2) components, which the ionic liquid (3) entraining the heavy 

component. The heavy component is then separated from the ionic liquid by flash distillation and 

stripping.  
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Fixed parameters for the process were chosen to match previous simulation work (Seiler et al., 2004) for 

comparison of results. For both the acetone-methanol and ethanol-water azeotropes, a total feed rate 

of 200 kmol per hour was used. Ionic liquid feed rate, column size, and feed tray location were altered 

to minimize energy consumption of the column. The distillate specifications were set to ASTM standards 

for purity. The azeotropic mixture was fed as a saturated liquid. The ionic liquid was fed at the same 

temperature as the feed. First approximation of the feed stage location was obtained using the driving 

force method as outlined in the previous section. The location was then moved above and below the 

initial stage to ensure that energy use was minimized. The procedure was repeated for varying flow 

rates of ionic liquid until a column configuration and entrainer flow rate that minimized overall energy 

consumption was identified.  The values of the free variables for the entire distillation and entrainer 

regeneration process were determined by the ChemCAD solver such that overall energy requirements 

were minimized, while also satisfying constraints on column size, air flow rate and final product purity of 

the ionic liquid entrainer leaving the column (specified as 99.9% pure on a molar basis). The fixed 

parameters and free process variables are outlined in Table 6.1 for both azeotropic systems.  

Prediction of heat capacity was needed for the ionic liquids in order to accurately calculate the energy 

requirements of the proposed separation processes. Group contribution models from literature were 

used to predict the isobaric heat capacities of the ionic liquids used in the simulations (Gardas and 

Coutinho 2008; Ren, Zhao et al. 2011). Column simulation was performed for both the optimal and non-

optimal ionic liquid entrainers (selected for comparison purposes). The entire process, including 

entrainer regeneration, was performed only for the best ionic liquid candidates. Energy requirements 

for the ethanol-water separation were compared to results found for an ionic liquid known to 

experimentally break the given azeotropes but not designed with CAMD methods (henceforth referred 

to as an experimentally-selected ionic liquid) and also for a conventional entrainer (Seiler, Jork et al. 

2004). 
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Table 6.1 Fixed parameters and free variables for ionic liquid-based extractive distillation processes  

 

Fixed Parameters    

  Acetone-Methanol Ethanol -Water 

Distillation Column    

 Operating pressure [atm] 1.00 1.00 

Column Feed    

 Flow rate [kmol/hr] 200 200 

 x1 0.5 0.7 

 x2 0.5 0.3 

Distillate    

 Flow rate [kmol/hr] 100 140 

 x1 0.995 0.998 

Flash Tank    

 Operating pressure [atm] 0.10 0.10 

Stripper    

 xIL (bottom) 0.999 0.999 

 Air temperature [K] 298.15 298.15 

Free Variables    

Distillation Column    

 Number of stages   

 Feed stage   

 Reflux ratio   

Flash Tank    

 Temperature   

Stripper    

 Number of stages   

 Air flow rate   
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7.0 MOLECULAR SIMULATION FOR DESIGN AND POST-DESIGN STAGES  

Stabilizing additives, or excipients, are often included in lyophilized formulations to reduce aggregation. 

Nonionic surfactants have been shown to bind with weak affinity to proteins (McNally and Hastedt 

2008). Such binding could interact with hydrophobic regions on the protein and limit access to 

aggregation prone “hot spots”.  Nonionic surfactants such as Tween 80 have been shown to decrease 

aggregation in lyophilized protein formulations (Kerwin 2008). However, difficulties can arrise during the 

lyophilization process due to the low glass transition temperatures exhibited by surfactants (McNally 

and Hastedt 2008). A successful formulation using surfactants requires the presence of glass formers, 

such as sugars or polymers. 

Sugar molecules have also been shown to exhibit site-specific effects on proteins during lyophilization 

through use of hydrogen-deuterium exchange mass spectroscopy (Li, Williams et al. 2008), indicating 

that interaction between sugars and proteins occur in the lyophilized state. Such interactions can be 

exploited to provide better coverage of aggregation prone “hot spots” on the protein. By selecting 

excipients that interact preferably with aggregation prone regions, a lyophilized formulation can be 

developed to reduce aggregation.  

In following section, a simulation-guided design approach is utilized to select a sugar and surfactant pair 

that optimally provides the most interaction with an aggregation prone region on the protein 

calmodulin (Protein ID #1CLL, Protein Data Bank via http://www.rcsb.org/pdb/home/home.do). By 

choosing a formulation with maximal protein-excipient interactions, the potential for aggregation is 

reduced. While surfactants may interact more than sugars on a per molecule basis, a sugar was included 

to ensure that a stable glass could be formed. The use of molecular docking simulations to aid in post-

design screening is also proposed. 
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7.1 USE OF AUTODOCK FOR BLIND DOCKING SIMULATIONS 
Molecular simulation results were generated for use in guiding formulation design. The tool used for 

molecular simulation was AutoDock (http://autodock.scripps.edu/), which utilizes blind docking to 

determine regions of protein-ligand interaction with no a priori knowledge of binding site (Huey, Morris 

et al. 2007). AutoDock employs a grid-based approach along with a semiempirical free energy force field 

to identify interaction sites with minimal free energy (Huey, Morris et al. 2007). AutoDock leaves the 

protein as a rigid molecule and only adjusts the ligand conformation. The ligand conformation is 

described by rotation, translation and torsional degrees of freedom (Goodsell, Morris et al. 1996). 

Search for conformations is guided by one of three stochastic optimization methods chosen by the user: 

Monte Carlo simulated annealing, traditional genetic algorithm and Lamarkian genetic algorithm 

(Morris, Goodsell et al. 1998). As all solution methods are stochastic, the conformations returned are 

local optima. The work presented here employs the simulated annealing method. Blind docking has 

proved successful in detecting binding sites on proteins for small molecule drug-like compounds 

(Hetényi and van der Spoel 2006) and peptides (Hetényi and van der Spoel 2002), which encompass the 

size of descriptors considered here.  

7.2 DETERMINATION OF PROTEIN-EXCIPIENT INTERACTIONS 
To predict the amino acids of calmodulin most likely to interact with a given excipient, blind docking 

simulations were performed using AutoDock. Each simulation provided ten docking conformations that 

provided the lowest free energy of the conformations encountered. Five simulations were done for each 

excipient with calmodulin, providing fifty docking conformations total for each excipient. Each 

conformation was analyzed to determine which resides were in contact, through hydrogen bonding, 

with the excipient molecule. An important limitation to note is that the blind docking simulations do not 

consider that the protein is lyophilized but rather employ an implicit solvation model. It follows that the 

approach used for estimating protein-excipient interactions does not take into account any dynamics 
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that may result from the lyophilization process. The approach only provides a first-approximation of 

protein-excipeint interactions that may be present. Docking free energy calculations are therefore not 

instructive to the approach taken and are not utilized. 

The computational results from Autodock were qualitatively compared to experimental hydrogen-

deuterium exchange (HDX) mass spectroscopy experiments using lyophilized formulations of calmodulin 

and either trehalose, sucrose, raffinose, or mannitol (Li, Williams et al. 2008). Regions of the protein that 

are able to freely exchange hydrogen for deuterium are exposed and are not protected by protein-

excipient interactions. Experimentally, the extent of protein-excipient interactions is inversely related to 

deuterium uptake. For comparison between experimental and simulation results, it is expected that 

regions of high protein-excipient interaction identified by simulation should correspond with regions of 

low deuterium uptake experimentally. 

7.3 OPTIMAL SELECTION OF EXCIPIENTS 
Contact information provided by the docking simulations was used to optimally select excipients that 

have the highest number of interactions with aggregation prone “hot spots”. The hot spots were 

predicted using Aggrescan (Conchillo-Sole, de Groot et al. 2007). For each hot spot, a sugar and a 

surfactant molecule were chosen to maximize protein-excipient interactions. For selection purposes, 

whichever excipient had the most interactions with a particular residue was chosen as the best 

candidate. It was assumed that the molecule with the most interactions with a residue would have the 

dominant effect and thus contribute the most to the protection of the residue of interest. At each 

residue in the hot spot, the best sugar candidate and the best surfactant candidate were compared. 

Whichever excipient had the most interactions was selected and the process was repeated for the entire 

hot spot sequence. The sugar-surfactant pair that provided the maximum number of interactions was 

selected as the optimal drug formulation. The formulation of the optimization problem is given in 



 

131 
 

Equation 7.1. The problem is formulated as a MINLP and was solved using the DICOPT solver in GAMS 

(GAMS documentation, http://www.gams.com/).  
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(Equation 7.1) 
 

where i is a residue location, n is the number of residues in the hot spot of interest, j is a specific sugar, 

and k is a specific surfactant. The scorej(i) and scorek(i) are input as parameters based on the results 

from molecular docking. The scores are integer values, but are not explicitly defined as such in GAMS. 

The constraints ensure that the highest interaction score between a sugar and a surfactant is chosen for 

each residue. The constraints provide an interaction score that is summarized below, without the need 

for disjunctive programming: 
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7.4 DOCKING SIMULATION RESULTS 
Docking simulations providing fifty conformations were performed individually for mannitol, trehalose, 

sucrose, raffinose, octyl glucoside, tween 40, and tween 80 with the protein calmodulin. The results for 

the sugars were compared to experimental HDX results. Overall, the docking results compared favorably 

with the HDX results. Regions of high interactions in the docking simulations corresponded to regions 

that were protected from hydrogen/deuterium exchange. The histogram of interactions versus residue 

location is provided in Figure 7.1 for trehalose. Residues that interacted frequently with trehalose match 

well with the shaded regions indicating protection from hydrogen/deuterium exchange.  

Figure 7.2 provides a visual comparison of the regions with high interaction and the regions protected 

from exchange for the trehalose-calmodulin system. From the comparison of the computational and 

experimental results, the docking simulations provide a reasonable prediction of the residues involved in 

protein-excipient interactions and provide a useful tool for selecting excipients for lyophilized protein 

formulations.  
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Figure 7.1 Frequency of amino acid residues of calmodulin in contact with trehalose Results are given 

for 50 docking conformations. The shaded regions indicate amino acids that were protected by 

trehalose in the lyophilized state, as determined by HDX experiments (Li, Williams et al. 2008). Figure 

adapted from (Roughton, Pokphanh et al. 2012). 

  

 

Figure 7.2 Trehalose interaction regions mapped to the surface of calmodulin Blue regions indicate 

residues that interacted with trehalose in more than three conformations. Red regions indicate regions 

that were protected by trehalose in the lyophilized state, as determined by HDX experiments. Purple 

regions are theintersect of the computationally predicted high interaction regions and the 

experimentally determined protected regions. Figure adapted from (Roughton, Pokphanh et al. 2012).  
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7.5 FORMULATION SELECTION FOR MAXIMIZING PROTEIN-EXCIPIENT INTERACTIONS  
Using the docking simulation results and the previously described optimization problem formulation, 

sugar-surfactant pairs were selected for each hot spot region on calmodulin. The hot spots were 

predicted using Aggrescan (Conchillo-Sole, de Groot et al. 2007). Due to the proximity of hot spots 4 and 

5, a formulation was also selected for the combined region. The results are given in Table 7.1. The 

interaction scores provided correspond to the number of interactions exhibited in the docking 

simulations. 

Table 7.1 Sugar-surfactant formulations selected for maximum interaction with hot spot regions Table 

adapted from (Roughton, Pokphanh et al. 2012).  

Hot 

Spot 

Amino 

Acids Sugar Surfactant 

Combined 

Interaction 

Score 

Sugar 

Interaction 

Score 

Surfactant 

Interaction 

Score 

1 15-19 Trehalose Tween 40 24 10 24 

2 33-38 Mannitol Tween 40 13 10 7 

3 67-73 Sucrose Tween 40 17 9 15 

4 99-103 Raffinose Octyl Glucoside 10 7 8 

5 106-111 Raffinose Tween 80 17 11 13 

6 141-145 Raffinose Octyl Glucoside 26 15 26 

4 & 5 99-111 Raffinose Octyl Glucoside 29 18 22 

 

 

The results show that the excipients providing maximal interactions vary from hot spot to hot spot. All 

available excipients were selected at least once. The addition of a sugar provided no additional 

interactions for the formulations selected for hot spots 1 and 6 and thus was not beneficial from a 

protein-excipient interaction standpoint. A sugar would be necessary to ensure a stable glass was 

formed during the lyophilization.  

The procedure outlined above could be used for any number of excipients and proteins to predict 

formulations with maximal protein-excipient interactions. By maximizing protein-excipient interactions, 

the aggregation propensity is reduced and a safer, more effective drug product is produced. The fact 
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that the sugar-surfactant pair providing maximal interactions differed between hotspots highlights the 

complexity of selecting beneficial excipients for a lyophilized protein formulation. 

While the proposed approach may have some application in the design phase of CAMD (as outlined 

above), a potentially more useful application is for post-design review. Following design, promising 

candidates could be further screened using a molecular docking approach to identify candidates with 

benficial protein-excipient interactions. Molecular docking provides a faster screening procedure than 

HDX experiments, which would be especially useful for large candidate lists. Following screening by 

molecular docking, HDX experiments can provide final verification and selection of design candidates. It 

is noted that additional protein-excipient systems have been explored using the molecular simulation 

approach outlined by Anthony I. Pokphanh and Haider S. Tarar at the University of Kansas. The data they 

have collected is not included in the presented work, but also provides good comparison to 

corresponding experimental HDX studies. 
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8.0 RESULTS FOR IONIC LIQUID DESIGN 

The following section contains the modeling and molecular design results for the two ionic liquid design 

examples considered: sections 8.1-8.3 are concerned with entrainer design and sections 8.4-8.5 are 

concerned with extractant design for in situ fermentation.  

The group contribution model for ionic liquid solubility parameter is presented in Section 8.1. The 

acetone-methanol and ethanol-water azeotropes were chosen for evaluation of the CAMD methodology 

for design of ionic liquid entrainers. In addition, the 1-propanol-water, 2-propanol-water, and ethyl 

acetate-ethanol azeotropes were used for evaluation of the UNIFAC-IL predictions in Section 8.2. The 

molecular design results for the ionic liquid entrainer case are presented in Section 8.3 and the 

separation process design results are given in Section 8.4. 

The connectivity index models for both the partition coefficient of NDHD in ionic liquid and ionic liquid 

toxicity are presented in Section 8.5. Design results for ionic liquid extractant design obtained through 

tabu search are discussed in Section 8.6. 

8.1 HILDEBRAND SOLUBILITY PARAMETER GROUP CONTRIBUTION MODEL 

Experimental values for 24 different ionic liquids was used for the development of the  Hildebrand 

solubility parameter GC model (Marciniak 2010). In addition to 3 terms for the alkyl chain groups, 5 

cation and 12 anion groups were used to describe the ionic liquids in the data set. The total number of 

independent variables in the model are 21 (including a constant term), giving 3 degrees of freedom. The 

degrees of freedom are relatively low, which is a consequence of the use of group contribution models 

with small data sets. The developed model (see Equation 4.17) provides a good fit of experimental data 

with a value of 0.34 %AARD between the predicted and experimental solubility parameter values. The 

maximum relative deviation observed was 0.305. The results are shown in Figure 8.1. 
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Figure 8.1 Comparison between experimental and predicted solubility parameter values Predictions 

were made using the group contribution model shown in Table 8.1. Experimental ionic liquid solubility 

values are obtained from (Marciniak 2010). Figure adapted from (Roughton, Christian et al. 2012).  

 

The contributions for each group are given in Table 8.1 Increasing the alkyl chain length decreases the 

overall solubility parameter value, as the value for CH2 groups is negative. Ionic liquids with pyridinium 

cations are usually more hydrophobic than those with imidazolium cations (Papaiconomou, Salminen et 

al. 2007), reflected in the model by the smaller contribution for the pyridinium cation compared to the 

imidazolium cation. In general, the many of the anion contributions are larger in magnitude than the 

commonly encountered imidazolium, pyridinium, and pyrrolidonium cation contributions. For the design 

examples, only imidazolium and pyridinium cations were used as cation choices to ensure that the 

UNIFAC-IL model could be used to predict VLE. The minimum solubility parameter value predicted by 

the model using the design problem’s cation restrictions was 17.8 MPa1/2 for 1-octyl-4-methylpyridinium 

chloride. The maximum solubility parameter value predicted was 32.6 MPa1/2 for 1,3-

dimethylimidazolium tetrafluoroborate.  
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Table 8.1 Group contribution values for ionic liquid Hildebrand solubility parameter model See Table 

4.4 for descriptions of groups. Table is adapted from (Roughton, Christian et al. 2012).  

Ionic Liquid Group Contribution (MPa
1/2

) 

Cation groups    

 Imidazolium (Im) 1.427 

 Pyridinium (Py) 1.355 

 Pyrrolidonium (Pyr) 1.765 

 Phosphonium (P) -13.633 

 Sulfonium (S)  -16.101 

Anion groups   

 Trifluoroacetate (CF3COO) 1.720 

 Thiocyanide (SCN) 1.342 

 Trifluormethane sulfonate (CF3SO3) -0.629 

 2-(2-methoxyethoxy)ethyl sulfate (MDEGSO4) 1.603 

 Octyl sulfate (OcSO4) -0.367 

 Tosylate (TOS) -0.065 

 Bis(trifluoromethylsulfonyl)imide (Tf2N) -2.485 

 Dimethyl phosphate (DMP) 2.918 

 Diethyl phosphate (DEP) 2.120 

 Tetrafluoroborate (BF4) 8.403 

 Hexafluorophosphate (PF6) 6.319 

 Chloride (Cl) -4.000 

Alkyl chain groups   

 CH3 9.094 

 CH2 -0.322 

 CH2O 0.496 

Intercept (constant) 4.547 

 

8.2 UNIFAC-IL MODEL 

8.2.1 UNIFAC-IL Parameters 

Using the previous described procedure, group volume and surface area parameters were defined for all 

ionic liquid groups used in the UNIFAC-IL model. The results are given in Table 8.2. The subgroups for the 

cation are chosen based on the smallest alkyl group present in the cation. For example, 1,3-

dimethylimidazolium is represented by a [MIm] and a CH3 group. 1-octyl-4-methylpyridinium is 

represented by a [MPy] group, a CH3 group, and seven CH2 groups. Group parameters for existing 

UNIFAC groups were not changed.  
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Table 8.2 Volume (Rk) and surface area (Qk) parameters for the UNIFAC-IL model The [MIm] and [MPy] 

subgroups are for the imidazolium and pyridinium cations that contain a methyl group. Table adapted 

from (Roughton, Christian et al. 2012).  

 

Group Subgroup Rk Qk 

[Im] [Im] 1.9471 0.8660 

 [MIm] 2.8482 1.7140 

[Py] [Py] 2.6670 1.5530 

 [MPy] 3.5681 2.4010 

[N] [CH3N] 1.1865 0.9400 

(quad- [C2H5N] 1.8609 1.4800 

substituted) [C3H7N] 2.5353 2.0200 

 [C4H9N] 3.2097 2.5600 

[DMP] [DMP] 3.4127 3.2820 

[BF4] [BF4] 1.7856 1.4940 

[PF6] [PF6] 7.0615 6.5787 

[Tf2N] [Tf2N] 5.7738 4.9320 

[CF3COO] [CF3COO] 3.1773 3.2200 

[CF3SO4] [CF3SO4] 4.0870 3.9160 

[CH3SO4] [CH3SO4] 3.4832 3.7280 

[CH3CH2SO4] [CH3CH2SO4] 4.1576 4.1760 

[CH3OC2H4SO4] [CH3OC2H4SO4] 5.0759 5.3560 

[C2H5OC2H4SO4] [C2H5OC2H4SO4] 5.7503 5.8040 

[CH3(OC2H4)2SO4] [CH3(OC2H4)2SO4] 6.6686 6.9840 

[Br] [Br] 0.9492 0.8320 

[Cl] [Cl] 0.7660 0.7200 

[I] [I] 1.2640 0.9920 

[SCN] [SCN] 1.9446 1.1752 

 

Binary interaction parameters were determined for all ionic groups for which data was available. The 

parameters used to describe the final design candidates in examples provided are given in Table 8.3. The 

entire UNIFAC-IL interaction parameter matrix is available (see Appendix E). Due to lack of measured 

data, not all groups used in the solubility parameter GC model are present in the UNIFAC-IL model and 

the converse is also true.  
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Table 8.3 UNIFAC-IL binary interaction parameters for the groups used for the final design candidates 

in the acetone-methanol and ethanol-water examples The lightly shaded region corresponds to 

UNIFAC groups with previously determined interaction parameters, which are not included here 

(Fredenslund, Gmehling et al. 1977). The full list of UNIFAC-IL binary interaction parameters is 

provided in Appendix E. Table is adapted from (Roughton, Christian et al. 2012).  

 

 CH2 OH CH3OH H2O CH2CO [Im] [Py] [CF3SO3] [DMP] 

CH2 

Previous UNIFAC Groups 

65.08 -24.94 694.19 879.73 

OH -199.99 -147.61 91.85 -33.36 

CH3OH 380.03 841.54 -335.72 -182.43 

H2O -914.38 -666.90 -211.41 -650.60 

CH2CO -266.87 -143.22 443.95 320.25 

[Im] 134.11 737.69 0.05 0.00 438.53 0.00 0.00 0.00 0.00 

[Py] 1269.62 1789.95 -224.11 -0.01 507.94 0.00 0.00 0.00 0.00 

[CF3SO3] -285.94 220.70 350.14 0.00 -191.88 0.00 0.00 0.00 0.00 

[DMP] -326.80 64.06 -211.21 1209.55 -42.56 0.00 0.00 0.00 0.00 

 

8.2.2 UNIFAC-IL Performance for Azeotropic Systems 

To determine the performance of the UNIFAC-IL model for predicting the VLE of ternary systems with 

binary azeotropic mixtures and ionic liquids, UNIFAC-IL predictions were compared to experimental data 

for several systems. While the UNIFAC-IL model could be used for other applications, due to the scope 

of the work only the performance of the model for several common azeotropes was evaluated: acetone-

methanol, 1-propanol-water, 2-propanol-water, ethyl acetate-ethanol, and ethanol-water. Experimental 

ternary VLE data of the listed binary azeotropes with the ionic liquids 1-ethyl-3-methyl trifluoromethane 

sulfonate ([emim][triflate]) and/or 1,3-dimethylimidazolium dimethylphosphate ([mmim][dmp]) were 

used for comparison to UNIFAC-IL predictions (Orchillés, Miguel et al. 2006; Orchillés, Miguel et al. 2007; 
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Orchill s, Miguel et al. 2008; Orchill s, Miguel et al. 2010; Wang, Wang et al. 2010). Figures 8.2-8.7 show 

the comparison between the UNIFAC-IL predictions and experimental data, where component (1) is the 

light component and is listed first in the figure caption.  

 

Figure 8.2 Acetone-methanol-[emim][triflate] x-y diagram at 100 kPa 6.0 mol% ionic liquid is present. 

The dashed line indicates the UNIFAC-IL prediction and the open circles represent experimental data 

(Orchillés, Miguel et al. 2006). 6.84 %AARD was observed between the experimental and predicted 

vapor fractions. Figure adapted from (Roughton, Christian et al. 2012). 

  

 

Figure 8.3 1-propanol-water-[emim][triflate] x-y diagram at 100 kPa 6.0 mol% ionic liquid is present. 

The dashed line indicates the UNIFAC-IL prediction and the open circles represent experimental data 

(Orchill s, Miguel et al. 2008). 10.84 %AARD was observed between the experimental and predicted 

vapor fractions. Figure adapted from (Roughton, Christian et al. 2012). 
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Figure 8.4 Ethyl acetate-ethanol-[emim][triflate] x-y diagram at 100 kPa 6.0 mol% ionic liquid is 

present. The dashed line indicates the UNIFAC-IL prediction and the open circles represent experimental 

data (Orchillés, Miguel et al. 2007). 7.93 %AARD was observed between the experimental and predicted 

vapor fractions. Figure adapted from (Roughton, Christian et al. 2012). 

  

 

Figure 8.5 Ethanol-water-[emim][triflate] x-y diagram at 100 kPa 6.0 mol% ionic liquid is present. The 

dashed line indicates the UNIFAC-IL prediction and the open circles represent experimental data 

(Orchill s, Miguel et al. 2010). 6.45 %AARD was observed between the experimental and predicted 

vapor fractions. Figure adapted from (Roughton, Christian et al. 2012). 
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Figure 8.6 1-propanol-water-[mmim][dmp] P-T diagram x1 = 0.6669 and x2 = 0.2472. The solid line 

indicates the UNIFAC-IL prediction and the open circles represent experimental data (Wang, Wang et al. 

2010). 1.10 %AARD was observed between the experimental and predicted total pressures. Figure 

adapted from (Roughton, Christian et al. 2012).  

 

 

Figure 8.7 2-propanol- water-[mmim][dmp] P-T diagram x1 = 0.6669 and x2 = 0.2472. The solid line 

indicates the UNIFAC-IL prediction and the open circles represent experimental data (Wang, Wang et al. 

2010). 1.34 %AARD was observed between the experimental and predicted total pressures. Figure 

adapted from (Roughton, Christian et al. 2012).  

 

Overall, the UNIFAC-IL model shows good prediction of the experimentally observed VLE. As the 

experimental data used for model evaluation was not used to regress the UNIFAC-IL parameters, 
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agreement between the model and experiments was not assured. The largest AARD between the 

experimental and predicted vapor composition values is observed for the 1-propanol-water-

[emim][triflate] system with a value of 10.84%. The UNIFAC-IL predictions of azeotrope existence and 

location agree very well with the experimental data. Qualitatively, the shapes of the x-y curves are 

similar when comparing the UNIFAC-IL predictions and the experimental data. The P-T predictions 

showed very good agreement with experimental data, with the largest AARD value of 1.34% observed 

for the 2-propanol- water-[mmim][dmp] system. While the comparison to experimental data is limited, 

the results indicate that the UNIFAC-IL model will provide reasonable predictions for the azeotropes 

considered for simultaneous ionic liquid and separation process design. The two ionic liquids present in 

the experimental data are similar (or the same for [mmim][dmp]) to the designed ionic liquids for both 

azeotrope examples, suggesting that the UNIFAC-IL predictions for the designed ionic liquids will be 

reasonably accurate.  

8.3 CAMD RESULTS FOR IONIC LIQUID ENTRAINERS 

Ionic liquid entrainers were designed for use with both the acetone-methanol and ethanol-water 

azeotropes. Candidates were found that either best matched the volume average solubility parameter 

value of each azeotropic mixture or the solubility parameter of the desired entrained component. The 

cation choices were limited to imidazolium and pyridinium to ensure that the designed ionic liquid could 

be used with the UNFAC-IL model. With the groups determined by CAMD, the groups were then 

constructed to make a feasible ionic liquid. The design candidates for the acetone-methanol azeotrope 

were 1-octyl-4-methylpyridinium trifluoromethane sulfonate ([ompy][triflate]) with a solubility 

parameter value of 21.2 MPa1/2 and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) 

with a solubility parameter value of 29.5 MPa1/2. 1,3-dimethylimidazolium dimethylphosphate 

([mmim][dmp]) with a solubility parameter value of 27.1 MPa1/2 and 1,3-dimethylimidazolium 
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tetrafluoroborate ([mmim][BF4]) with a solubility parameter value of 32.6 MPa1/2 were the design 

candidates for the ethanol-water azeotrope.  

The UNIFAC-IL model was used to ensure that the azeotropes were broken by the designed ionic liquids 

and that the correct component was entrained by the ionic liquid. Existence of only one liquid phase was 

confirmed by the UNIFAC-IL model. The UNIFAC-IL model was also used to predict the minimum amount 

of ionic liquid needed to break the azeotrope at 101.325 kPa. The ionic liquid 1-ethyl-3-methyl 

trifluoromethane sulfonate ([emim][triflate]) has been shown experimentally to break both the acetone-

methanol and ethanol-water azeotropes (Orchillés, Miguel et al. 2006; Orchill s, Miguel et al. 2010). 

Based on the predicted solubility parameter, [emim][triflate] would not be designed using the CAMD 

procedure for both azeotropes. The UNIFAC-IL model was used to predict the minimum amount of 

[emim][triflate] needed to break both azeotropes at 101.325 kPa. VLE calculations were used to 

calculate vapor compositions of components for each liquid composition for increasing ionic liquid 

concentrations from no ionic liquid present to the concentration where the azeotrope is just broken, 

defined as the minimum ionic liquid concentration needed to break the azeotrope. The ionic liquid 

composition was increased by 0.01 mol% and calculations were performed at each composition. The 

minimum ionic liquid concentrations required were used to screen the design candidates. For acetone-

methanol, slightly more [emim][triflate] on a mole fraction basis was needed to break the azeotropes 

when compared to the designed ionic liquid [ompy][triflate]. The designed ionic liquid [bmim][PF6] 

required a much higher concentration to break the acetone-methanol azeotrope when compared to the 

other design candidate and was eliminated from further consideration. Approximately the same amount 

of the design candidates [mmim][dmp] and [mmim][BF4] were needed to break the ethanol-water 

azeotrope, so both ionic liquids were keep as entrainer candidates. The experimentally selected ionic 

liquid [emim][triflate] broke the ethanol-water azeotrope at a similar concentration to that of the design 

candidates. The results are summarized in Table 5. To illustrate the performance of the designed ionic 
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liquid candidates and the experimentally selected ionic liquid, Figures 8.8 and 8.9 show the x-y diagrams 

for the acetone-methanol and ethanol-water systems with 10 mol% of each considered ionic liquid 

added. The candidate [ompy][triflate] shows much higher vapor mole fractions than the candidate 

[bmim][PF6] at any given liquid mole fraction, indicating that [ompy][triflate] generates noticeably 

higher driving forces (y1 – x1) for separation. The driving forces generated by [ompy][triflate] are also 

slightly higher than the driving forces generated by the experimentally selected ionic liquid 

[emim][triflate]. For the ethanol-water system, both the candidate ionic liquids and the experimentally 

selected ionic liquid showed similar driving forces. 

 

Figure 8.8 x-y diagram showing the performance of several ionic liquid entrainers on the acetone-
methanol azeotrope at 101.325 kPa The concentration of all ionic liquid entrainers is set a 10 mol%. The 

45 degree line is included to indicate where y1 = x1. Figure adapted from (Roughton, Christian et al. 

2012).  
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Figure 8.9 x-y diagram showing the performance of several ionic liquid entrainers on the ethanol-
water azeotrope at 101.325 kPa The concentration of all ionic liquid entrainers is set a 10 mol%. The 45 

degree line is included to indicate where y1 = x1. Figure adapted from (Roughton, Christian et al. 2012).  

 

By designing the ionic liquid entrainer based on solubility parameter targets and screening based on the 

amount needed to break the azeotrope, ionic liquid candidates were identified that required minimal 

concentrations to break a given azeotrope. By requiring less ionic liquid, material inputs are reduced and 

energy requirements are reduced as less ionic liquid needs to be recovered. The ionic liquid 

[emim][triflate] appears to be a good candidate for breaking the ethanol-water azeotrope but does not 

have a predicted solubility parameter value that lies within the range of solubility parameter values that 

would be considered for the initial design step in the CAMD procedure. Although [emim][triflate] would 

not be chosen through the design process, the designed candidates both break the ethanol-water 

azeotrope with the same or similar minimum concentration. Design of ionic liquids for the example 

systems provided ionic liquid candidates that could break the azeotropes with concentrations less than 

or equal to the concentration of the experimentally selected ionic liquid [emim][triflate].  
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8.4 DESIGN OF IONIC LIQUID-BASED AZEOTROPIC SEPARATION PROCESSES 

Using the outlined procedure and specifications, distillation columns for the azeotrope mixtures were 

designed using both designed ionic liquid candidates and an experimentally selected ionic liquid. At a 

given ionic liquid flow rate, the minimum amount of stages needed to achieve the specified separation 

was determined. The driving force method with the proposed modified scaling was used an initial guess 

for the feed stage. The feed stage was then moved up and down to find the optimal feed stage in terms 

of energy requirements. In all cases, the optimal feed stage was at or near the feed stage proposed by 

the driving force method. The results for the ethanol-water-[mmim][dmp] system are given by Figure 

8.10. The results indicate that use of the driving force method with the new proposed scaling can be 

used to design optimal or near-optimal distillation columns with a main feed and separate ionic liquid 

feed. The driving force method was originally proposed for a distillation column with only one feed. By 

comparing the columns with optimal feed stages at different ionic liquid flow rates, the flow rate and 

column configuration yielding the minimum stages and energy requirements was obtained for each 

system. The results for the ethanol-water-[mmim][dmp] system are given by Figure 8.11. 

From the simulation results, optimal distillation columns in regards to minimal stages required and 

energy inputs were obtained for the methanol-acetone and ethanol-water systems using either 

designed entrainer candidates or an experimentally selected ionic liquid entrainer. The results are 

summarized in Table 8.5.  
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Figure 8.10 Reboiler heat duty as a function of feed stage location for separation of the ethanol-water 
azeotrope using various amounts of [mmim][dmp] as an entrainer The scaled feed stage location 

calculated by the driving force method is circled in the figure for each ionic liquid feed rate. The lines are 

drawn to guide the eyes. Figure adapted from (Roughton, Christian et al. 2012).  

 

Figure 8.11 Reboiler heat duty as a function of ionic liquid flow rate for separation of the ethanol-
water azeotrope using [mmim][dmp] as an entrainer Each point indicates the optimal column 

configuration in terms of energy requirements for the specified ionic liquid flow rate. The line is drawn 

to guide the eyes. Figure adapted from (Roughton, Christian et al. 2012).  
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For both systems, a designed ionic liquid was found to have significant energy savings in comparison to 

the experimentally selected ionic liquid. Based on the column simulation results, the ionic liquid 

candidates with the lowest energy requirements were kept and the other candidates were eliminated. 

The ionic liquid flow rates used in the simulation were selected based on minimizing energy 

requirements, resulting in different flow rates for the different ionic liquids. While the experimentally 

selected ionic liquid used lower flow rates, the energy requirements were higher for both azeotropic 

systems when compared to the final design candidates. For acetone-methanol, use of [ompy][triflate] 

provided the lowest energy requirements and reduced energy consumption by 24.5% (1961 kW) 

compared to the experimentally selected ionic liquid [emim][triflate]. As no other design candidate 

remained, [ompy][triflate] was selected as the final design candidate for the acetone-methanol system. 

Energy requirements for the ethanol-water system were lowest when using [mmim][dmp], reducing 

heat duty by 26.5% (739 kW) when compared to the experimentally selected ionic liquid 

[emim][triflate]. As the column using [mmim][dmp] required less energy than the other design 

candidate [mmim][BF4], [mmim][dmp] was chosen as the final design candidate and [mmim][BF4] was 

eliminated from consideration. Both [ompy][triflate] (Papaiconomou, Salminen et al. 2007) and 

[mmim][dmp] (Wang, Wang et al. 2010) have been previously synthesized and studied.  The structures 

of [ompy][triflate] and [mmim][dmp] are shown in Figure 8.12 and Figure 8.13.  

The column energy requirements were closer in value for the ethanol-water system than the acetone-

methanol system, likely influenced by the fact that [mmim][dmp], [mmim][BF4], and [emim][triflate] 

have similar maximum driving force values at the ionic liquid concentrations used. The minimum 

number of stages needed for the separation was found to be less for the methanol-acetone system 

using the designed ionic liquid than found when using the experimentally selected ionic liquid. The 

experimentally selected ionic liquid was able to achieve separation in one less stage than the final ionic 

liquid design candidate for the ethanol-water system, but the reduced capital cost would not offset the 
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larger energy requirement. Due to the energy savings, the entire process including entrainer 

regeneration was simulated only for the systems using the final design candidate entrainers. The energy 

required for air flow into the stripper was neglected in calculation of the total energy requirements for 

the processes. 

 

 

Figure 8.12 1-octyl-4-methylpyridinium trifluoromethane sulfonate ([ompy][triflate]) With a solubility 

parameter value of 21.2 MPa1/2, the ionic liquid is the final design candidate for the acetone-methanol 

azeotrope.  

 

 

Figure 8.13 1,3-dimethylimidazolium dimethylphosphate ([mmim][dmp])  With a solubility parameter 

value of 27.1 MPa1/2, the ionic liquid is the final design candidate for the ethanol-water azeotrope.  

 

The results for the ethanol-water-[mmim][dmp] system were compared to previously published 

simulation results for ethanol-water separation using a conventional entrainer (1,2-ethanediol) and a 

experimentally selected ionic liquid entrainer (1-ethyl-3-methylimidazolium tetrafluoroborate 

[emim][BF4]) (Seiler, Jork et al. 2004). The results for the experimentally selected ionic liquid are 
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compared to the results for the designed ionic liquid candidates in Table 8.5. The separation process was 

the same as used in the current work and the number of stages in the distillation column was set at 28 

for both the conventional and ionic liquid entrainers. Simulations were performed to calculate energy 

requirements at various entrainer concentrations. The optimal energy requirements were 3917 kW for 

the conventional entrainer and 2963 kW for the ionic liquid (Seiler, Jork et al. 2004). Comparison of the 

separation processes shows an energy savings of 28.8% (1127 kW) when using [mmim][dmp] instead of 

the conventional entrainer and an energy savings of 5.8% (173 kW) when using [mmim][dmp] over an 

experimentally selected ionic liquid. Due to inherent error in the UNIFAC-IL model, the calculated excess 

enthalpies may result in some error in the calculated energy requirements. Use of ionic liquids offers an 

alternative to conventional entrainers which may reduce energy requirements when separating 

azeotropic mixtures. By designing the ionic liquid structure to match a solubility parameter target range 

and further screening candidates by minimum concentration needed to break the azeotrope and column 

energy requirements, energy requirements in the resulting separation and entrainer regeneration 

processes are reduced compared to processes using ionic liquids that were not designed or selected 

using a CAMD procedure.  

8.5 PREDICTION OF RELEVANT PROPERTIES FOR IN SITU EXTRACTIVE FERMENTATION 

The data sets used to generate the models for partition coefficient of NDHD in ionic liquid (Kx) and 

toxicity of ionic liquid towards E. coli (lnEC50) were too small to allow descriptor selection through use of 

Mallow’s Cp. Alternatively, models were compared using the based on R2-Q2 value, with the model 

showing the minimum value being selected. R2-Q2 provides a measure of the difference between the fit 

and the predictive capability. Minimal differences are desired.  
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Figure 8.14 Comparison of correlation coefficient values belong to different model sizes for the 
partition coefficient model (Kx)  

 

For the partition coefficient model, a model size of five showed the smallest R2-Q2 value (0.02) and was 

selected as the final model. The equation for the model is given by Equation 8.1. Four of the five 

descriptors selected describe the cation. All descriptors pass significance testing at a 99% confidence 

level. The model provides an excellent fit to the data and good predictive quality, with R2 = 0.994 and   

Q2 = 0.974.  

                                                           

(Equation 8.1) 

A model size of five was also selected for the toxicity model. Again, four of the five descriptors selected 

describe the cation structure. In comparison to the partition coefficient model, the toxicity model shows 

a much poorer fit (R2 = 0.805). The predictive capability of the model is poor (Q2 = 0.090) and thus use of 

the model for molecular design is questionable. The model is given by Equation 8.2. The use of different 

molecular descriptors and/or a non-linear model form are possible directions to pursue for 

improvement of the toxicity model. 
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(Equation 8.2) 

8.6 CAMD RESULTS FOR IN SITU EXTRACTANTS 

Design was limited to the cation and the anion was fixed to tris(perfluoroalkyl)trifluorophosphate (FAP). 

Furthermore, the cation class was limited to imidazolium based ionic liquids. Due to the questionable 

quality of the toxicity correlation, two different design cases were considered: (A) design with only a 

partition coefficient target and (B) design with both a partition coefficient target and a toxicity target. 

Tabu search was used to generate multiple candidates for both design cases. The top candidates for 

both cases A and B are compared in Figure 8.15. 

 

    

Design Case (A)  Design Case (B)  

Objective function  = 5.48x10
-6

  Objective function  = 0.0022  
MW = 206.3 g/mol  MW = 209.6 g/mol  
lnEC

50
 = 2.67 ± 4.09  lnEC

50
 = 3.82 ± 3.84  

K
x
 = 50.1 ± 22.1  K

x
 = 50.7 ± 23.2  

  

Figure 8.15 The best cation candidates for the design cases (A) and (B) For (A) and (B) the target was   

Kx = 50. Additionally, (B) had a target for lnEC50 = 4. Prediction intervals are given for Kx and lnEC50 values. 

The anion was set to FAP. 

  

As seen from the prediction intervals in Figure 8.15, both design cases yield solutions with statistically 

similar property values and of similar size (i.e., molecular weight). However, the large prediction 

intervals for the lnEC50 values further exemplify the poor predictive quality of the model and the 
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corresponding predictions are likely to be unreliable. Of interest is the observation that the inclusion of 

toxicity as a target prevented any polar groups from being included in the alkyl chain of the cation, 

where polar groups are present when only partition coefficient was used as a target. 
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9.0 RESULTS FOR LYOPHILIZED EXCIPIENT DESIGN 

The following section presents the results for property models developed for CAMD of lyophilized 

excipients. Also included are the tuning and design results for the CAMD methods considered. Two main 

approaches were used to design excipients for lyophilized protein formulations: a vitrification approach 

with optimal glass transition temperatures and an overall reduction of aggregation approach to maintain 

%Monomer at 100% following lyophilization. 

 Section 9.1 presents the model results for various glass transition correlations. The molecular design 

results using tabu search are presented in Section 9.2. The experimental measurements observed for 

protein loss following lyophilization are detailed in Section 9.3. Sections 9.4-9.6 present and discuss the 

results for various post-lyophilization protein loss models. The tuning results for both tabu search and a 

genetic algorithm are given in Section 9.7. Finally, Section 9.8 contains the molecular design results 

using the post-lyophilization protein loss models with the tuned stochastic algorithms. Results are 

compared between optimization methods and also between the proteins included in the formulation. 

9.1 GLASS TRANSITION TEMPERATURE PROPERTY MODELS 

The R statistical program (R-Development-Core-Team 2010) was used for linear regression of the 

desired properties to the connectivity indices of the excipients in the training set. The model data was 

obtained from literature (Roos 1993). The carbohydrate excipients used in the model data set were 

monosaccharides (ribose, xylose, fructose, fucose, glucose, and sorbose), disaccharides (lactose, 

lactulose, melibiose, sucrose, and trehalose), oligosaccharides (raffinose), and sugar alcohols (maltitol, 

sorbitol, and xylitol). The leaps package in R (Lumley 2004) was used to conduct an exhaustive search to 

determine which combination of descriptors provided the lowest Cp value for each number of possible 

descriptors that could be used for the QSPR (ranging from one to twelve). A summary of the QSPRs 
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developed in this work is provided in Table 9.1. The individual QSPRs are further detailed in the 

following subsections. 

Table 9.1 Summary of glass transition-related QSPRs developed Figure adapted from (Roughton, Topp 

et al. 2012).  

QSPR Number of Descriptors Selected R2 

Tg 9 0.998 

Tg’ 6 0.994 

Tm’ 7 0.997 

k  9 0.998 

 

9.1.1 QSPR for Glass Transition Temperature of Anhydrous Solute  

The glass transition temperature of the anhydrous solute provides an indication of the stability of the 

carbohydrate excipient during storage conditions.  In addition to being used as a criterion for storage 

stability, Tg is used in the calculation of the excipient concentration in a maximally freeze-concentrated 

matrix. 

The correlation developed for the Tg of carbohydrate excipients is: 

  (  )                                                             

                                         

      (Equation 9.1) 

Equation 9.1 provides a good fit for the experimental measurements, providing a coefficient of 

determination (R2) value of 0.998. The predicted Tg values are compared to the experimental values 

using a parity plot in Figure 9.1. 
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Figure 9.1 Comparison of measured experimental values to QSPR predicted values for the glass 
transition temperature of the anhydrous solute (Tg)  The y=x line indicates were predicted = 

experimental. Figure adapted from (Roughton, Topp et al. 2012). 

  

9.1.2 QSPR for Glass Transition Temperature of Maximally Concentrated Solute  

In addition to being used as a criterion for ensuring formation of a maximally freeze-concentrated glass 

matrix, the glass transition temperature of the maximally concentrated solute (Tg’) is used in the 

calculation of the excipient concentration in the glass matrix. 

The correlation developed for the Tg’ of carbohydrate excipients is: 

  
 (  )                                                             

(Equation 9.2) 

Equation 9.2 provides a good fit for the experimental measurements, providing an R2 value of 0.994. The 

predicted Tg’ values are compared to the experimental values using a parity plot in Figure 9.2. 
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Figure 9.2 Comparison of measured experimental values to QSPR predicted values for the glass 
transition temperature of the maximally freeze-concentrated solute (Tg’) The y=x line indicates were 

predicted = experimental. Figure adapted from (Roughton, Topp et al. 2012). 

  

9.1.3 QSPR for the Melting Point of Ice  

The melting point of ice represents the onset of ice formation during the freezing part of the 

lyophilization process. The concentrated solution must be annealed between Tg’ and Tm’ to ensure that 

the resulting freeze-concentrated glass matrix is maximally concentrated. 

The correlation developed for the Tm’ of carbohydrate excipients is given below: 

  
 (  )                                                                 

        

 (Equation 9.3) 

Equation 9.3 provides a good fit for the experimental measurements, providing an R2 value of 0.997. The 

predicted Tm’ values are compared to the experimental values using a parity plot in Figure 9.3. 
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Figure 9.3 Comparison of measured experimental values to QSPR predicted values for the melting 
point of ice (Tm’) The y=x line indicates were predicted = experimental. Figure adapted from (Roughton, 

Topp et al. 2012).  

 

9.1.4 QSPR for Gordon-Taylor Constant  

The Gordon-Taylor constant is used in the calculation of the solute concentration from the Gordon-

Taylor equation. The Gordon-Taylor constant for a compound is usually derived from glass transition 

measurements (Roos 1993). It should be noted that through the descriptor selection method, the same 

connectivity indices were found to provide the best model as those used in the model for glass 

transition temperature of the anhydrous solute. 

The developed correlation for the Gordon-Taylor constant of carbohydrate excipients is given below: 

                                                                    

                 

(Equation 9.4) 

Equation 9.4 provides a good fit for the experimental measurements, providing an R2 value of 0.998. The 

predicted k values are compared to the experimental values using a parity plot in Figure 9.4. 
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Figure 9.4 Comparison of measured experimental values to QSPR predicted values for the Gordon-
Taylor constant (k) The y=x line indicates were predicted = experimental. Figure adapted from 

(Roughton, Topp et al. 2012). 

  

9.2 RESULTS FOR OPTIMAL GLASS FORMER DESIGN 

According to vitrification theory, a protein stabilizing excipient should be able to form a glass during 

lyophilization and subsequent storage of the therapeutic product. The glass transition temperature of 

the maximally freeze-concentrated solute and the melting point of ice for a carbohydrate excipient must 

be high enough to be feasibly reached during the lyophilization process. The protein drug product must 

first be annealed at a temperature between Tg’ and Tm and then reduced below Tg’ to yield a maximally 

freeze-concentrated matrix (Roos 1997).  The melting temperature of ice is higher than the glass 

transition temperature of the maximally concentrated solute. The glass transition temperature of the 

anhydrous solute must be sufficiently high such that the carbohydrate remains a glass during storage of 

the protein drug product. A common heuristic is that the storage temperature of an amorphous drug 

formulation should be 50°C below the anhydrous glass transition temperature (Costantino and Pikal 

2004). For a formulation to be stored at room temperature, a Tg of at least 80°C is desired. This criterion 

is very important, as more than 70% of commercial lyophilized products cannot be stored at room 
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temperature and must be refrigerated to maintain stability, complicating the use of the drugs 

(Costantino and Pikal 2004). All three phase transition temperatures are used along with the Gordon-

Taylor constant to determine the excipient concentration (weight fraction) of a maximally freeze-

concentrated matrix, without protein present. A higher excipient concentration corresponds to lower 

residual water in the matrix, which lowers the mobility of the protein and thus reduces the potential for 

aggregation. No target is placed on the actual value of the Gordon-Taylor constant. The Gordon-Taylor 

constant is calculated only for use in subsequent calculation of the excipient concentration in a 

maximally freeze-concentrated matrix. 

Table 9.2 Property values of candidate carbohydrate excipients designed using tabu search Prediction 

intervals for the properties predicted by the QSPR models were calculated at a 95% level. A lower 

objective function score indicates a better match for the target property values. Table is adapted from 

(Roughton, Topp et al. 2012).  

 Property Candidate 1 Candidate 2 Candidate 3 

Tg 100.9±12.7°C 99.8±15.0°C 90.3 ± 20.6°C 

Tg’ -32.6±6.5°C -33.1±6.7°C -31.7±  5.0°C 

Tm’ -24.8±3.2°C -23.7±3.5°C -24.1 ± 4.1°C 

k 6.76± 0.37 6.73 ± 0.44 6.46 ± 0.61 

Cg’ 0.838 0.838 0.845 

MW  373.3 g/mol 373.3 g/mol 373.3 g/mol 

Obj function 0.00800 0.01367 0.01373 

 

The described molecular design framework was employed using the PD program previously used to 

design various molecules, including dental polymers (Eslick, Ye et al. 2009) and ionic liquids (McLeese, 

Eslick et al. 2010).The results for the three best excipient candidates are given in Table 9.2, determined 

by the solutions with the lowest objective function scores. Seven total candidates were generated. Error 
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was calculated using prediction integrals at a 95% level for the property values predicted using the QSPR 

models. The structures of the proposed carbohydrate excipients are given in Figures 9.5-9.7.  

 

Figure 9.5 Optimal carbohydrate excipient candidate 1 proposed by CAMD using tabu search The 

objective function score is 0.00800. Figure adapted from (Roughton, Topp et al. 2012). 

 

Figure 9.6 Optimal carbohydrate excipient candidate 2 proposed by CAMD using tabu search The 

objective function score is 0.01367. Figure adapted from (Roughton, Topp et al. 2012).  
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Figure 9.7 Optimal carbohydrate excipient candidate 3 proposed by CAMD using tabu serach The 

objective function score is 0.01373. Figure adapted from (Roughton, Topp et al. 2012).  

 

The proposed excipients are similar to disaccharide and oligosaccharide molecular topologies. 

Candidates 1, 2, and 3 are isomers. The property values of the proposed excipients show that the 

computationally designed excipient molecules should stabilize protein formulations. Protein mobility 

should be limited due to the high solute concentration of the maximally freeze-concentrated matrix. The 

values for the glass transition temperature of the maximally freeze-concentrated solute and the melting 

point of ice are high enough that they can be reached during lyophilization. Additionally, the gap in the 

two temperatures is large enough to allow for annealing between the two temperatures, ensuring that 

the maximum solute concentration is reached in the freeze-concentrated matrix. The high glass 

transition temperatures of the anhydrous solute are high enough that drying and long term storage 

conditions will not change the desired glass structure of the protein formulation.  

The prediction intervals show that for all three candidates, all four properties predicted by the QSPR 

models have overlapping prediction intervals. Due to the overlapping prediction intervals, the predicted 

property values of all the candidates are not statistically different; all three candidates are valid 

solutions for the optimization problem. Use of tabu search was able to provide several optimal excipient 
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candidates with statistically similar property values, where a deterministic method would have only 

provided one candidate. The prediction intervals for the glass transition temperature of the anhydrous 

solute were large for all three candidates. The large magnitude of the prediction interval is likely due to 

the target value being close to the upper limit of the property data used to build the correlation. 

One should note that since not all possible properties of importance for an excipient have been 

included, these structures should be considered candidates for protein drug excipients, and not finalized 

designs to be immediately utilized.  Since all of the structures designed in this work are similar to 

disaccharides, it is likely that they can be synthesized.  However, further studies would be required to 

ensure that the excipients themselves exhibit sufficient properties to be used in protein drug 

formulations. 

9.3 EXPERIMENTAL RESULTS FOR POST-LYOPHILIZATION PROTEIN LOSS 

Experimental studies were performed in two rounds. The first round was focused on creating a dataset 

for modeling %Monomer as a function of protein structure. Accordingly, a large amount of proteins 

were considered and fewer excipients. The second round was focused on creating a dataset for 

correlation of %Monomer to excipient structure. Therefore, a large amount of excipients were 

considered with a small set of proteins.  

It is noted here that the experiments for the first round were not performed by the author and were 

instead conducted by Lavanya K. Iyer at Purdue University. The methods and procedures used were the 

same as those used by the author and described in Section 3.0. The results and discussion arising from 

the experiments is included as the data was used to build the corresponding models for %Monomer as a 

function of protein structure. 
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9.3.1 Experimental Results for Data Set Concerning Protein Structure 

For the fifteen proteins and five lyophilized formulations studied here, aggregation varied with protein, 

with formulation and with the analytical method used to assess aggregation (see Table F.1, Appendix F). 

The proteins can be grouped according to aggregation tendency. Five proteins (lysozyme, ovalbumin, 

cytochrome C, α-amylase, BSA) showed high aggregation tendency across the formulation types as 

indicated by low (< 80%) recovery of monomeric protein (%Monomer) by SEC, high aggregation index (> 

100) and/or the presence of high molecular weight bands on SDS-PAGE. Six proteins (RNAse A, α-

chymotrypsinogen, ConA, α-lactoglobulin, SOD, trypsin inhibitor) showed low aggregation tendency 

using these metrics, while the remaining four proteins (myoglobin, DNAse I, catalase, b-lactoglobulin) 

showed intermediate aggregation tendency. Greater than 100% recovery of monomeric protein by SEC 

was observed for some samples and could reflect incomplete separation of aggregate from monomeric 

protein or protein unfolding. While the assignment of proteins to these groups is somewhat arbitrary, it 

is clear that the proteins selected show a range of aggregation propensities on lyophilization. The data 

set is therefore suitable for assessing the effects of protein structure on lyophilization-induced 

aggregation within the parameter space defined by their structural descriptors. Note that, since the 

largest protein in the data set (BSA, 66 kD) is considerably smaller than monoclonal antibodies, these 

and other large proteins are not expected to be well-described by the correlations developed here.    

 

With regard to formulation, those containing buffer, sucrose or glycine all produced aggregates 

following lyophilization for some of the proteins studied (see Table F.1, Appendix F). Compared to these 

excipients, urea formulations produced a greater extent of aggregation for a greater number of proteins, 

as expected for this denaturant (see Table F.1, Appendix F). Formulations containing Gdn HCl showed no 

retention of monomeric protein by SEC for 11 of the 15 proteins, and pellets and/or high molecular 

weight bands on SDS-PAGE for 8 of 15. Because the observed extent of aggregation was very high and 
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relatively insensitive to protein structure in Gdn HCl formulations, this formulation was omitted in 

developing correlations. The correlations thus were developed using the four remaining excipients (i.e., 

buffer, sucrose, glycine or urea). 

 

Of the three methods used to assess aggregation (SDS-PAGE, AI, SEC), only AI and SEC were used 

quantitatively; therefore, only results from these two methods can be used to develop quantitative 

correlations with protein structural descriptors. AI values were not considered quantitatively reliable. 

For example, some formulations for proteins such as concanavalin A, cytochrome-c, β-lactoglobulin and 

trypsin inhibitor showed large AI values but had large errors. In other cases, proteins with low AI values 

showed loss of monomeric protein by SEC and formation of a pellet on SDS-PAGE (e.g., catalase in urea, 

Table F.1, Appendix F). This may be due to the formation of insoluble precipitates that settle out of 

solution and are not detected on UV. Furthermore, RNase, lysozyme α–chymotrypsinogen and many 

other proteins did not show significant differences in AI values across formulations. As a result, 

correlations were developed based on the %Monomer as measured by SEC and AI values were not used 

further.  

9.3.2 Experimental Results for Data Set Concerning Excipient Structure 

SEC chromatographs were collected for BSA and RNAse A with all excipients considered and for -

amylase, ovalbumin and trypsin inhibitor for a subset of carbohydrate excipients. Peak areas were used 

to calculate percent monomer remaining after lyophilization (%Monomer).  Values ranged from 88.2 – 

99.8% for -amylase, 82.6 – 95.9% for BSA, 92.5 – 99.6% for ovalbumin, 81.0 – 102.4% for RNAse A and 

86.5 – 101.2% for trypsin inhibitor. All values that exceeded 100% had standard errors of mean (SEM) 

values that indicated the value was not statistically different than 100%, with the exception of rhamnose 

with trypsin inhibitor (111.1 ± 0.8%). Due to the lack of physical meaning and the extreme difference 

(9.9%) between the value for rhamnose and the next highest formulation, the rhamnose-trypsin 
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inhibitor data point was considered an outlier and excluded from the universal model building data set. 

SEC results are summarized in Table F.2 (see Appendix F). 

The excipients showing the best stabilization were glucose with -amylase (99.8 ± 2.5%), -

methylglucopyranoside with BSA (95.9 ± 0.6%), sorbitol with ovalbumin (99.6 ± 0.4%) and with trypsin 

inhibitor (101.2 ± 2.1%) and psicose with RNAse A (102.4 ± 2.6%).  Maltitol, a sugar alcohol, had low 

stability values for all proteins when compared to other excipient choices: 93.5 ± 0.5% for -amylase, 

85.9 ± 2.3% for BSA, 92.5 ± 0.9% for ovalbumin, 86.6 ± 1.0% for RNAse A and 91.2 ± 0.3% for trypsin 

inhibitor. Raffinose provided poor protection for -amylase (91.3 ± 4.1%) and trypsin inhibitor (86.5 ± 

2.2%).  The sugar alcohol mannitol provided poor protection for BSA (82.6 ± 1.1%), RNAse A (85.3 ± 

1.7%) and trypsin inhibitor (88.9 ± 3.5%). There was no consensus best or worst excipient choice. 

SDS-PAGE results provided qualitative verification of the presence of aggregates following lyophilization 

(see Table F.3, Appendix F). As noted in the previous subsection, use of AI as a quantitative tool was not 

pursued.. The presence of aggregates was halted under reducing conditions for ovalbumin with all 

formulations, suggesting that aggregate formation is due at least in part to formation of disulfide 

bridges. All lyophilized formulations evaluated by pxrd showed that the resulting solid was largely 

amorphous (See Figure F.1, Appendix F).  

9.4 POST-LYOPHILIZATION PROTEIN LOSS MODELS: AS A FUNCTION OF PROTEIN STRUCTURE 

Two methods were used to develop correlations relating protein descriptors to percent monomer 

retained following lyophilization: exhaustive search and forward selection. For both methods, the 

descriptor set used to generate correlations for each formulation was comprised of physical descriptors, 

AGGRESCAN descriptors and PASTA descriptors. The following subsections detail and compare the 

results for each method. 
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9.4.1 Exhaustive Search Method 

The exhaustive search method was performed using all available descriptors for each formulation. Good 

fits, as determined by minimum Cp scores, were obtained with model sizes between eight and twelve 

descriptors (see Table 9.3). The descriptors selected for each formulation are listed in Table 9.3, 

together with statistical measures of goodness-of-fit (R2) and predictive power (Q2 and R2-Q2). 

 

Table 9.3 Descriptors selected using an exhaustive search method with model size selected by 
minimizing Cp score Table adapted from (Roughton, Iyer et al. 2013).  

Formulation 

Model 

Size 

Descriptors Selected 

R
2
 Q

2
 R

2
 - Q

2
 Physical AGGRESCAN PASTA 

Buffer
a
 12 

%-helix, %-

sheet, MW, # S-S, 

# free SH, Tm 

a3vSA, THSA 
Emin, Eavg,  

(E/L)min, Peaks 
1.000 0.999 0.001 

Urea 10 
apolar, pI, # S-S, 

Tm 
TA, Na4vSS 

Eavg, Lavg, 

(E/L)min,  (E/L)avg 
0.998 0.976 0.022 

Sucrose 9 
%-sheet, MW, 

pI, Tm 

a3vSA, NnHS, 

THSA, TA 
Peaks 0.999 0.987 0.012 

Glycine 8 
%-helix, %-

sheet 

NnHS, AATr, 

THSAr, Na4vSS 
Eavg, Peaks 0.982 0.805 0.176 

a
Buffer used in the formulation was potassium phosphate buffer (20 mM, pH 7.4) 

 

In general, the descriptors selected differed from formulation to formulation. Across all formulations, 

each descriptor type was selected with similar frequencies: physical descriptors were selected 16 times, 

AGGRESCAN descriptors were selected 12 times and PASTA descriptors were selected 11 times. No 

single descriptor was selected for all formulations. The most commonly selected descriptors were -
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sheet, Tm, Eavg, and Peaks, which were all selected for three of the four formulations. At least one 

descriptor of each type was selected for each formulation. 

 

The correlations for all four formulations had (R2-Q2) < 0.20 and R2 values close to 1, indicating that they 

provide a reasonable tool for predicting the percent retained monomeric protein after lyophilization 

within each formulation type. The correlation for the buffer formulation had the best fit and best 

predictive power, having the highest R2 and Q2 values and the lowest (R2-Q2) values.  The correlation for 

the glycine formulation provided the poorest fit and lowest Q2 value, and also provided the poorest 

predictive power as indicated by the largest (R2-Q2) value. A summary of the regression for the four 

formulations, together with values of the regression coefficients, is presented in Table 9.4.  
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Table 9.4 Correlation results for all four formulations Descriptors were selected via exhaustive search 

with Cp evaluation. Table adapted from (Roughton, Iyer et al. 2013).  

 

Formulation Descriptor Coefficient Value Standard Error (p-value
a)

 

Buffer
b
 

(Intercept) -0.25 0.48 (0.65) 

% -helix -0.37 0.01 *** 

% -sheet -0.17 0.01 ** 

MW -0.53 0.01 *** 

# S-S -0.88 0.02 *** 

# free SH -13.68 0.11 *** 

Tm -0.50 0.01 *** 

a3vSA 155.36 2.70 *** 

THSA -0.07 0.03 (0.13) 

Emin -16.25 0.30 *** 

Eavg 3.27 0.31 ** 

(E/L)min -53.63 0.34 *** 

Peaks 11.23 0.05 *** 

Urea 

(Intercept) 164.10 13.07 *** 

apolar 4.66E-03 1.57E-04 *** 

pI -7.16 0.80 *** 

# S-S 5.85 0.38 *** 

Tm -2.17 0.09 *** 

TA -0.32 0.08 * 

Na4vSS 5.13 0.47 *** 

Eavg 12.53 1.64 ** 

Lavg 6.37 0.59 *** 

(E/L)min -338.10 17.14 *** 

(E/L)avg 260.90 20.63 *** 

Sucrose 

(Intercept) 159.17 2.77 *** 

% -sheet 0.69 0.03 *** 

MW -2.84 0.08 *** 

pI -0.84 0.25 * 

Tm 0.62 0.03 *** 

a3vSA 686.56 17.31 *** 

NnHS -19.03 0.49 *** 

THSA 1.69 0.09 *** 

TA -2.44 0.06 *** 

Peaks 3.89 0.20 *** 

Glycine 

(Intercept) 387.91 19.91 *** 

% -helix -0.65 0.11 *** 

% -sheet -0.53 0.17 * 

NnHS -23.98 1.88 *** 

AATr -2326.82 162.79 *** 

THSAr 2247.68 155.16 *** 

Na4vSS 3.04 0.31 *** 

AvgE 13.64 1.33 *** 

Peaks -3.73 0.60 *** 
a
Significance codes for the p-values are: *** for < 0.001, ** for < 0.01, * for < 0.05 

 b
Buffer used in the formulation was potassium phosphate buffer (20 mM, pH 7.4) 
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9.4.2 Forward Selection Method  

Forward selection was also used to build correlations using all available descriptors. The computational 

package used for forward selection used AIC for descriptor selection; however, AIC yields equivalent 

models to Cp for linear correlations (Wasserman 2004), resulting in no discrepancy between descriptor 

selection between the forward search and exhaustive search methods. Due to the nature of the 

selection method, the final correlations differ in the number of descriptors selected (see Table 9.5). 

Physical descriptors were selected most frequently with this method, accounting for 9 out of the 11 

descriptors selected (see Table 9.5). Only physical descriptors were selected for urea and sucrose 

formulations and four out of the five descriptors selected for the buffer formulation were physical 

descriptors. The most commonly selected descriptor was pI, which was selected first for the buffer and 

sucrose formulations and second for the urea formulation. The early selection of pI indicates that this 

descriptor provides a superior fit to the experimental data for the buffer and sucrose formulations and a 

very good fit for the urea formulation when compared to the other descriptors. 

 

Table 9.5 Descriptors selected using a forward search method with AIC evaluation Numbering 

indicates order in which descriptors were selected. No emphasis indicates physical descriptors and bold 

text indicates AGGRESCAN descriptors. No PASTA descriptors were selected. Table adapted from 

(Roughton, Iyer et al. 2013).  

Formulation 

Descriptors Selected Regression Performance 

1 2 3  5 R
2
 Q

2
 R

2
 - Q

2
 

Buffer
a
 pI Tm %-sheet -helix THSA 0.74 0.16 0.58 

Urea # free SH pI Tm - - 0.54 0.11 0.43 

Sucrose pI %-sheet - - - 0.57 0.19 0.38 

Glycine a3vSA - - - - 0.14 -0.28 0.42 

a
Buffer used in the formulation was potassium phosphate buffer (20 mM, pH 7.4) 
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With forward selection, all of the (R2-Q2) values were large and no correlation provided a good fit to the 

data, as indicated by the low R2 values. The correlation for the buffer formulation had the highest 

number of descriptors and yielded the highest R2 value. However, the predictive power of the 

correlation was unsatisfactory and provided the largest (R2-Q2) value among the four formulations. The 

sucrose formulation provided a slightly higher R2 value than the urea formulation, despite using one less 

descriptor. The correlation for the sucrose formulation had the lowest (R2-Q2) value among the 

correlations generated by forward selection. 

9.4.3 Comparison of methods 

Models generated by exhaustive search were superior to those generated by forward selection, having 

better fits and greater predictive power as indicated by the higher R2, higher Q2 and lower (R2-Q2) values 

(compare Tables 9.3 and 9.5). Forward selection is less computationally expensive when compared to 

exhaustive search. For development with models that involve large sets of possible descriptors, use of 

exhaustive search may be infeasible due to computation requirements. However, the time needed for 

descriptor selection was comparable for both methods using the descriptor set in this model. 

Additionally, the results indicate that use of a forward search is insufficient in developing a predictive 

model with sufficient accuracy. As a result, the forward selection method was not pursued and models 

generated by exhaustive search are emphasized in the results and discussion that follow for the 

%Monomer model as a function of protein structure. Only exhaustive search was used for development 

of the %Monomer model as a function of excipient structure (see Section 9.5). 

9.4.4 Predictive Power of Correlations 

Within a formulation, correlations showed good fits (R2>0.98) and satisfactory predictive power (R2-

Q2<0.2) using the exhaustive search method (see Table 9.3). Parity plots comparing the predicted 
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percentage of monomeric protein to the experimental value are shown in Figure 9.8. Good agreement 

between predicted and actual values is observed for all four formulations, with the greatest deviation 

observed for the glycine formulation. The data for the urea formulation is spread fairly evenly and 

validation resulted in a high Q2 value. For the other formulations, one protein had a substantially lower 

observed and predicted percent monomer values than the other proteins. However, this outlying 

observation resulted in lower Q2 values only for the glycine formulations, as high prediction error was 

found for the outlier when the point was left out during cross-validation. High Q2 values were obtained 

for both the buffer and sucrose formulations, despite the outlier. The results suggest that the 

descriptors selected for the buffer and sucrose formulation are able to account for the structural 

differences in the outlying protein sufficiently, yielding a low prediction error when the protein was left-

out during cross-validation. 

9.4.5 Performance of Individual Descriptor Sets 

The models presented in Tables 9.3-9.5 were generated by pooling all of the available descriptors from 

three descriptor sets: (i) physical descriptors, (ii) AGGRESCAN descriptors, (iii) PASTA descriptors. 

Correlations were also developed for each individual descriptor set in isolation, using the exhaustive 

search method (data not shown). At small model sizes, physical descriptors provided the best fit for the 

buffer, urea and sucrose formulations. The glycine formulation showed similar fits for model sizes of one 

descriptor, regardless of the descriptor set used. At larger model sizes, no single descriptor set could 

provide a fit comparable to that given by pooling all available descriptors.  

 

Overall, physical descriptors performed better across all model sizes than the other individual descriptor 

sets. Thus, while reasonable fits could be obtained using only one descriptor set in isolation (R2≈0.7-0.8; 

data not shown), pooling the descriptors provided better fits (R2≥0.9   Table 9.3). 
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(A)      (B) 

 

      (C)                   (D) 

  

Figure 9.8 Parity plots of experimental percent monomeric protein values (%Monomer) from SEC 
versus predicted %Monomer values Correlations were developed for (A) urea, (B) buffer (potassium 

phosphate 20 mM, pH 7.4), (C) sucrose, and (D) glycine formulations. Figure adapted from (Roughton, 

Iyer et al. 2013).  
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9.4.6 Protein Descriptor Covariance 

The descriptors used in developing the correlations were taken from several different sources without 

regard to possible covariance, either within a given descriptor set or among the pooled descriptors. 

Analysis of covariance was performed to determine which descriptors were correlated strongly with one 

another. Moderate to high covariance (≥|0.7|) was observed for some descriptor pairs ta en from 

different descriptor sets, as expected (see Table 9.6). Within a given descriptor set, AGGRESCAN 

descriptors showed moderate to high covariance (≥|0.7|), as did PASTA descriptors. Some pairs of 

physical descriptors also showed high covariance (e.g., % -helix vs % -sheet). For any given correlation 

developed through multiple linear regression (Tables 9.3 and 9.5), few or no descriptors were selected 

that show moderate to high covariance (≥|0.7|). 

 

9.4.7 Discussion of Model Development Results 

The results presented here demonstrate that, for a given type of formulation, the extent of protein 

aggregation on lyophilization is strongly correlated with both physical and heuristic-based 

computational descriptors of protein structure. The best correlations (see Tables 9.3 and 9.4) were 

achieved using an exhaustive search method and descriptors pooled from the AGGRESCAN and PASTA 

algorithms along with selected physical descriptors (see Tables 4.2 and 4.3, Section 4.1.3). LOOCV 

demonstrated that the resulting correlations were able to provide good predictions of aggregation 

propensity. The results suggest that protein structure determines aggregation propensity during 

lyophilization and can be used for prediction purposes when the formulation components are held 

constant.  
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Table 9.6 Summary of covariance analysis Variable pairs with high degrees of covariance are given. 

Note that |Covariance (X,Y)| = |Covariance(Y,X)|. Table adapted from (Roughton, Iyer et al. 2013).  

  

|          (   )|      |          (   )|      |          (   )|      

(apolar, MW) 

(Lmax, (E/L)avg) 

((E/L)min, (E/L)avg) 

(a3vSA, Emin) 

(a3vSA, Eavg) 

(MW, AAT) 

(AAT, Emin) 

(AAT, Eavg) 

(THSA, Emin) 

(THSA, Eavg) 

(a3vSA, THSA) 

(a3vSA, TA) 

(a3vSA, AATr) 

(TA, AATr) 

(a3vSA, THSAr) 

(NnHS, THSAr) 

(Na4vSS, Emin) 

(Na4vSS, Eavg) 

(Na4vSS, THSA) 

(Na4vSS, TA) 

(Na4vSS, AATr) 

(Na4vSS, THSAr) 

(% -helix, % -sheet) 

(apolar, # free SH) 

(MW, nHS) 

(AAT, nHS) 

(THSA, nHS) 

(Eavg, Emin) 

(Lavg, Lmax) 

(Na4vSS, a3vSA) 

 

Independently, each of the heuristic-based algorithms provided considerably poorer correlations with 

lower predictive power than those built from pooled set of descriptors. The descriptors from both the 

AGGRESCAN and PASTA sets showed high covariance (see Table 9.6). As a result, the amount of 

structural information captured by either method is limited despite the large number of descriptors 
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obtained from both methods. The addition of physical descriptors in the pooled set allows more 

structural features of the protein to be represented and thus provides better fits.  

Descriptors selected varied between formulations and no single protein descriptor could account for the 

extent of aggregation across all formulations. This indicates that, for lyophilized formulations, the 

excipient and its interactions with the protein are important contributors to aggregation. The heuristic-

based algorithms used here do not explicitly include excipient or medium effects. However, the 

heuristic-based algorithms were developed using data from proteins in solution. As both AGGRESCAN 

and PASTA descriptors were frequently selected, the algorithms are shown to be useful in prediction of 

aggregation under lyophilized conditions. 

The most commonly selected descriptors provide insight into the factors contributing to lyophilization-

induced aggregation. In the eight correlations presented in Tables 9.3 and 9.5, pI, % -sheet, and Tm 

were selected five times and were the most commonly selected descriptors. All three have been 

implicated in aggregation induced by colloidal interactions or protein unfolding. The PASTA descriptors 

Peaks and Eavg were selected for three of the four correlations generated by exhaustive search (see 

Table 9.3). Interestingly, the percent monomer increased with increasing Peaks values for the buffer and 

sucrose formulations. While the reason for this is not clear, it may reflect a decrease in the size of each 

aggregation prone region as the number of regions increases. The PASTA descriptor Eavg describes the 

average interaction energies between residue pairings for a given protein, with lower energies indicating 

stronger interactions. As the average energies across all pairings for a protein (Eavg) were more highly 

selected than the pairing resulting in the minimum energy (Emin), the presence of several moderately 

aggregation-prone regions may increase the propensity towards aggregation more than the presence of 

one highly aggregation-prone region. Also, the two descriptors showed a high covariance (0.99), which 

may explain why only one was selected. The descriptors # of free SH and # S-S combined to be selected 
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in four of the eight correlations. The frequent selection of thiol/disulfide related descriptors is not 

surprising, since free thiol groups are reactive and can lead to the formation of disulfide-linked covalent 

aggregates. SDS-PAGE results confirmed that reducible aggregates were observed for proteins 

containing four or more free thiol groups (Table F.1, Appendix F).  

Examination of the descriptors that were not selected is also instructive. Apolar surface area (apolar) 

and fractional apolar surface area (fapolar) were not highly selected. The lack of selection of apolar 

suggests that aggregation during lyophilization is not strongly correlated to total apolar surface area. 

Furthermore, larger percentages of apolar surface area do not appear to affect aggregation as fapolar was 

not chosen for any of the correlations.  

The predictive ability of the correlations is expected to be greatest for proteins whose properties fall 

within the structural space defined by the 15 proteins studied here. Perhaps more importantly, the 

correlations are limited in that the effects of excipients on aggregation are not included quantitatively, 

since the number of excipients tested was small.  

9.5 POST-LYOPHILIZATION PROTEIN LOSS MODELS: AS A FUNCTION OF EXCIPIENT STRUCTURE 

Models were developed to describe %Monomer as a function of excipient structure. During model 

development, several techniques were introduced to further gain insight into the models developed. 

Principle component analysis (PCA) was used to investigate the descriptor space. The impact of using 

chiral connectivity indices versus simple connectivity indices was determined. Finally, K-fold cross-

validation was used in addition to LOOCV to further probe the predictive power of the models presented 

here. 
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9.5.1 Principal Component Analysis and Descriptor Comparison 

Both simple connectivity indices and chiral connectivity indices up to the fifth order were considered for 

use as descriptors for development of the protein-by-protein linear models. PCA was performed using 

the chiral connectivity indices to visualize the descriptor space for the molecules considered (see Figure 

9.9). Two principal components were sufficient to account for 99% of the variance observed in the data 

set, allowing a two dimensional representation of the descriptor space to be sufficient. PCA revealed 

three main clusters of excipient structures roughly correlating with monosaccharides, disaccharides and 

trisaccharides.  

 

Figure 9.9 Principal component analysis of descriptor space for excipients used in study  The “X” 

marker represents N-acetyl-neuraminic acid. Filled in markers represent excipients used for all proteins 

while un-filled markers represent excipients used only with BSA and RNAse A. Descriptors used to 

construct the principal components are connectivity indices up to the fifth order with a chirality 

correction factor of two. 

  

Chirality connectivity indices were able to provide fits with good accuracy (R2 > 0.9) for -amylase, 

ovalbumin and trypsin inhibitor. Simple connectivity indices were unable to provide fits with sufficient 
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accuracy. For BSA and RNAse A, neither class of descriptors was able to yield a model with acceptable 

accuracy. Excipients derived from amino acids were considered for BSA and RNAse A formulations, but 

were not considered for the other proteins.  PCA results suggested that the amino acid based excipients 

were structurally similar to the monosaccharides considered (see Figure 9.9). However, the molecular 

descriptors used do not explicitly account for charge. Amino acids are either charged or zwitterionic at 

the solution conditions used in the study. Separation of the data into two sets (a carbohydrate set and 

amino acid set) provided correlations with increased accuracy when using chiral connectivity indices for 

the carbohydrate data set and when using either type of connectivity indices for the amino acid set (see 

Figure 9.10).  Chiral connectivity indices were used for model development for all carbohydrate data 

sets. As no molecule belonging to the amino acid class contains more than one chiral center and all 

chiral centers are S-configuration, simple connectivity indices were used instead of chiral connectivity 

indices for model development for all amino acid data sets. 

 

Figure 9.10 Comparison of chiral and simple connectivity indices for BSA and RNAse carbohydrate 
models Each point represents the model with the maximum R2 for the given number of descriptors. 

Each model building set contained 20 data points.  
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9.5.2 Correlation and K-Fold Cross-Validation 

With data sets finalized, descriptor selection was used to build linear correlations relating %Monomer to 

excipient structure on a protein-by-protein basis.  Correlations of high accuracy (R2 ≈ 0.99) were 

obtained for all models, indicating that the descriptors considered were able to sufficiently model the 

%Monomer data without over-fitting (See Figures 9.11 and 9.12, Table 9.7). In general, the number of 

descriptors was large compared to the number of data points. Model size is equal to the number of 

descriptors selected plus one as an intercept was used for all models. A model size of 14 was selected 

for the BSA carbohydrate model while a larger model size of 17 was selected for the RNAse A 

carbohydrate model (both datasets contain 20 data points). For the proteins with carbohydrate data 

sets of 12 points, a model size of 8-9 was selected. For the amino acid models, a model size of 4 was 

selected for both BSA and RNAse A (both data sets contain 6 points).  A summary of model parameters is 

given in Table 9.8. 
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Figure 9.11 Parity plots of percent 
monomer remaining after lyophilization as 
a function of carbohydrate excipient choice 

for (A) BSA, (B) RNAse A, (C) -Amylase, (D) 
Ovalbumin and (E) Trypsin Inhibitor 

Predictions were made using the resulting 

correlations from model selection (See 

Table 9.7). Experimental values represent 

the horizontal axis while predicted values 

represent the vertical axis. The y=x line 

indicates a perfect prediction (where 

predicted equals experimental).  
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(A)      (B) 

 

Figure 9.12 Parity plots of percent monomer remaining after lyophilization as a function of amino acid 
excipient choice for (A) BSA and (B) RNAse A Predictions were made using the resulting correlations 

from model selection (See Table 9.7). Experimental values represent the horizontal axis while predicted 

values represent the vertical axis. The y=x line indicates a perfect prediction (where predicted equals 

experimental).  

 

K-fold cross-validation was performed to test the predictive power of the models. As more data is left 

out in each fold, the number of folds (K) generated from the data set decreases and the resulting Q2 is 

expected to decrease. As a rule, a Q2 ≥ 0.  is desired (Golbraikh, Shen et al. 2003). Folds were increased 

in size and Q2 was evaluated until a value was obtained below 0.6 (see Table 9.7). The size of the fold 

obtained at the lowest K value where Q2 ≥ 0.  gives an indication of how much data can be left-out 

while retaining reliable prediction accuracy. Thus the results give an estimation of the minimum number 

of points in a given set of molecules that are required to be known experimentally. Ideally, the number 

would be low so that a small number of data points are sufficient to build a widely applicable predictive 

model.  

For the BSA carbohydrate model, the minimum acceptable number of folds was K=5 (corresponding to a 

fold size of 4 or 20% of the data). The RNAse A model however showed an unacceptable Q2 value for the 
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minimum fold size of 1 (K=20). Inspection of the PRESS scores for each left-out point showed that the 

prediction for N-acetylneuraminic acid was much poorer than all other predictions and was skewing the 

data towards a lower Q2. The point was excluded from the data set and the data set was again 

correlated to %Monomer values. The resulting model provides a similar R2 value to the original (0.999) 

while reducing the number of descriptors needed by two (see Table 9.7).  Prediction ability is improved 

by increasing the minimum fold size from 1 to 2. The amino acids models had minimum fold sizes of 2, 

accounting for 33% of the data. The carbohydrate models for the proteins with smaller data sets had 

minimum fold sizes between 3 – 4, accounting for 25 – 33% of the data. 

Table 9.7 Comparison of model size (including intercept), R2 and Q2 values for final protein-specific 
models selected Q2 values are given for varying sizes of k-fold cross-validation. The number of folds (K) 

indicates how many sets of left-out data were used for the cross-validation. The size of the fold is the 

value in parenthesis. For example, the BSA and RNAse A datasets with K=20 represents leave-one-out 

cross validation.  

 

    Q2 

Protein Data Set Model Size R2 K=20  

(Fold =1) 

K=10  

(2) 

K=5  

(4) 

K=4 

(5) 

BSA Carbohydrates 14 0.989 0.841 0.715 0.712 <0 

RNAse A Carbohydrates 17 0.999 0.591 <0 - - 

RNAse A Carbohydrates* 15 0.999 0.926 0.826 <0 - 

        

    K=6 

(1) 

K=3 

(2) 

K=2 

(3) 

BSA Amino Acids 4 0.995 0.731 0.812 <0 

RNAse A Amino Acids 4 1.000 0.999 0.995 <0 

        

    K=12 

(1) 

K=6 

(2) 

K=4 

(3) 

K=3 

(4) 

-Amylase Carbohydrates 8 0.995 0.934 0.949 0.752 <0 

Ovalbumin Carbohydrates 9 1.000 0.998 0.932 0.904 <0 

Trypsin Inhibitor Carbohydrates 8 0.996 0.961 0.912 0.708 0.874 

*Data set does not include N-acetyl-neuraminic acid 
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9.5.3 Discussion of Model Development Results 

Development of the protein-by-protein models illustrates that protein stability following lyophilization is 

strongly correlated to excipient choice. The need to separate amino acids from carbohydrates indicates 

that while structurally similar to monosaccharaides on the basis of molecular connectivity (see Figure 

9.9), the structural features of the two molecular classes act in different ways to stabilize the protein. 

Additionally, cross-validation revealed that N-acetyl neuraminic acid was the carbohydrate molecule 

with the largest prediction errors. Structural comparisons show that N-acetyl neuraminic acid is similar 

to disaccharides (see Figure 9.9). The descriptors used do not account for charge, which is present in 

amino acids and N-acetylneuraminic acid at the solution conditions considered. Accounting for charge 

may offer a means to unify the carbohydrate and amino acid models into one model and improve 

prediction for carbohydrate molecules containing charges. The improvement of the carbohydrate 

models through use of chiral connectivity indices (see Figure 9.10) indicates that the three-dimensional 

conformation is an important feature of the excipient in the stabilization of the protein. 

The cross-validation analysis suggests that the maximum amount of data acceptable to leave out was 

33%, which suggests the need to take at least 2/3 of the data experimentally in order to build a reliable 

and predictive model. However, the analysis does not suggest a hard and fast rule when developing 

similar models. Indeed, these numbers could likely be improved by rationally designing the test and 

training set (Golbraikh, Shen et al. 2003) and/or focusing the data set to a more restrictive molecular 

class, such as monosaccharides rather than carbohydrates. 
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9.6 POST-LYOPHILIZATION PROTEIN LOSS MODELS: AS A FUNCTION OF BOTH PROTEIN AND 

EXCIPIENT STRUCTURE 

Chiral connectivity indices and all discussed protein descriptors were used as potential descriptors for 

the universal model. Only data for formulations containing carbohydrate excipients were considered, 

resulting in a data set of 73 %Monomer values. The resulting model required a non-linear form, which 

required differences in model development as compared to the linear models described previously. 

9.6.1 Non-Linear Model Development 

Attempts to build a linear model of sufficient correlative quality were unsuccessful (results not shown). 

Non-linear models were considered to better correlate the descriptors to the %Monomer values. 

Several functional forms were considered, with the best form given by Equation 9.5. 

          (∑    ) (∑    ) 

(Equation 9.5) 

where  represents excipient descriptors,  represents protein descriptors, and a, b, and c are 

adjustable parameters.  All descriptors considered were used initially for model development, with 24 

descriptors accounting for excipient structure and 25 descriptors accounting for protein structure. Given 

the parameters determined for each descriptor, a parameter sensitivity analysis was performed to 

identify the parameters that had no impact on the model prediction. In total 13 descriptors were 

identified as having no impact on the model prediction, with two descriptors accounting for excipient 

structure and 11 descriptors accounting for protein structure (see Table 9.9). The descriptors were 

removed and the model parameters were again determined for the scaling constant (c) and the 

remaining 20 excipient and 6 protein descriptors. After one round of descriptor reduction, the model 

%AAD = 2.58% and reduced chi-squared = 3.23 (see Table 9.10 and Figure 9.13).  
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Table 9.9 List of descriptors considered for non-linear model development Descriptors with no impact 

on model performance (sensitivity ≈ 1) are shaded. Descriptors remaining after two rounds of parameter 

reduction are bolded.  

 

Excipient Descriptors Protein Descriptors 

Chiral Connectivity 

Indices 
Chiral Valence 

Connectivity Indices 
Biophysical Descriptors 
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Descriptors 
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Subsequent descriptor reduction guided by sensitivity analysis reduced the number of descriptors to 10, 

with 5 descriptors accounting for the excipient structure and 5 descriptors accounting for the protein 

structure (see Table 9.9). The resulting model is given by Equation 9.6. 

%Monomer = 2.51×10-5  (-2.43χ0 + 6.52χ1 - 3.12χ2 - 94.32ξ1 + 74.04ξ2) (0.029ASA + 19.35%αhelix - 
60.34%βsheet - 71.54MW + 66.38Tm) 

 (Equation 9.6) 
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Table 9.10 Summary statistics of non-protein specific model Model uses the form given by Equation 

9.6. AAD is average absolute deviation and Max AD is the maximum absolute deviation noted.  

 

Statistics 
After First Parameter 

Reduction 

After Second Parameter 

Reduction 

Size of data set 73 73 

Number of parameters 27 11 

Parameters relating to excipient  20 5 

Parameters relating to protien 6 5 

Reduced Chi-squared 3.23 4.45 

AAD 2.58% 3.38% 

Max AD 8.53% 11.83% 

Number of points outside AAD 33 (45%) 33 (45%) 

Number of points outside 2*AAD 8 (11%) 7 (10%) 

 

 

The model performs similarly to the results after the first parameter reduction, with %AAD = 3.38% and 

reduced chi-squared = 4.45 (see Table 9.10 and Figure 9.13). The further reduced model is more 

desirable as there are fewer descriptors needed for calculation, reducing the risk of over-fittting. When 

comparing the models after the first and second rounds of parameter reduction, both models have the 

same number of predicted points that exceed the model %AAD (33 or 45% of the data set). The second 

parameter reduction reduced the number of points that exceeded twice the model %AAD from 8 to 7. 

Predictions that exceeded three times the model %AAD increased from 1 to 2 after the second 

parameter reduction. The resulting model presents sufficient accuracy with reduced risk of over-fitting, 

as evidenced by reduced chi-squared value. The %AAD value of 3.38% observed is of similar value to the 

average experimental standard deviation value of 2.20% observed in %Monomer calculations. Therefore 

the error in the model prediction does not greatly exceed the error that would be encountered in 

experimental measurements.  
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(A)      (B)  

 

Figure 9.13 Parity plots of percent monomer remaining after lyophilization as a function of both 
protein and excipient structure  Predictions were made using results for non-linear model 

development. (A) represents model after first parameter reduction and (B) represents model after 

second parameter reduction. Experimental values represent the horizontal axis while predicted values 

represent the vertical axis. The y=x line indicates a perfect prediction (where predicted equals 

experimental).  

9.6.2 Discussion of Results from Model Development 

Several functional forms for a model describing protein stability following lyophilization as a function of 

excipient choice and protein choice were considered. The final form used is given by Equation 9.6, which 

was motivated by the enthalpic contribution of the Flory-Huggins model, given by Equation 9.7. The 

Flory-Huggins model has been used previously to describe protein-sugar interactions in lyophilized solids 

(Katayama, Carpenter et al. 2009; Wang, Tchessalov et al. 2009). Equation 9.6 emulates the Flory-

Huggins interaction parameter (12) through the multiplication of excipient structural descriptors and 

protein structural descriptors. The success of the Flory-Huggins functional form of the universal model 

suggests that direct protein-excipient interactions may play a significant role in stabilization of the 

protein during lyophilization for the formulations considered. 

              

(Equation 9.7) 
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Parameter sensitivity analysis revealed that all of the descriptors obtained or derived from aggregation 

prediction methods had no significant impact on the model prediction (see Table 9.9).  The results 

suggest that AGGRESCAN and PASTA may not be applicable to aggregation induced by the lyophilization 

process or at least are not the strongest predictors of aggregation in lyophilized systems. Both the 

number of disulfide bridges and the number of free thiols had sensitivity values near unity, indicating 

that intermolecular disulfide bond formation was not a primary cause of aggregation for the proteins 

considered. The SDS-PAGE results support this conclusion as only ovalbumin showed reduction of 

aggregate formation under reducing conditions (see Table F.3, Appendix F). The isoelectric point had a 

sensitivity value of one, suggesting that charge-based associations were not driving forces for 

aggregation in the proteins considered. Both %-helix and %-sheet were descriptors that were 

retained in the final model, indicating that secondary structure was an important factor in protein 

stability following lyophilization. The amount of -helix content increased protein stability while the 

amount of -sheet content reduced protein stability. All excipient descriptors retained in the final model 

were chiral connectivity indices of second order or less, suggesting that the short range connectivity 

(bond paths of 2, bonds, and atoms present) was the most important excipient structural feature in 

regards to protein stability.  

The model presented provides predictions for protein stability following lyophilization as a function of 

excipient choice and protein choice. Limitations on the model exist due to the data set used for 

correlation. Only carbohydrates were considered, so extension to other classes of excipients is not 

expected to provide accurate predictions. Additionally, predictions for proteins with structural features 

that do not lie within the range of the proteins considered are not expected to be accurate. The success 

of the model illustrates that such a model development procedure can be applied to other classes of 

proteins and/or excipients for determination of predictive models for a given data set.  
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9.7 STOCHASTIC OPTIMIZATION TUNING RESULTS 

Tuning of both a tabu search and genetic algorithm was performed to determine their suitability for 

CAMD applications. For fair comparison, both methods used the same molecular representation. For 

each parameter considered, 100 runs were performed for varying parameter values while all other 

parameters were kept constant. Average value of the objective function, average time to solution, 

percentage of runs that matched the target property (hit%) and percentage of runs that were within 5% 

of the target property (close%) were the four measures used to guide tuning. Tuning was performed 

through VBA on a PC with Windows 7 32-bit OS, Intel Core i5-2400 CPU @ 3.10 GHz, and 4.00 GB RAM. 

Results for each stochastic optimization method follow. 

9.7.1 Tabu search tuning results 

For tabu search, four parameters were considered for tuning: the maximum number of non-improving 

iterations, the maximum number of neighbors evaluated per iteration, the size of tabu list and the value 

of tabu criterion (see Section 5.4 for more information on parameters). For each parameter value used 

in tuning, 100 trials were conducted. Figures 9.14-9.17 display the tuning results for each of the 

parameters considered. 

The parameter with the most influence on objective function value and percentage of correct or nearly 

correct solutions was the maximum number of non-improving iterations (see Figure 9.14). The result is 

intuitive, as the longer the search is allowed to be performed the more likely that a very good result will 

be found. As the maximum number of non-improving iterations is increased, the time to solution 

increases linearly (R2 = 0.99, Figure 9.14). Consequently, a trade-off exists between solution quality and 

solution efficiency. From tuning, a value of 100 maximum non-improving iterations was chosen as longer 

searches had minimal effects on solution quality while greatly extending time to solution. 
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(A) 

 

(B) 

 

(C) 

 

Figure 9.14 Tuning results for tabu search with varying maximum number of non-improving iterations  

(A) presents the effect of the parameter on average objective value, with error bars representing 

standard deviation from 100 trials. (B) presents the effect of the parameter on average time to solution 

(seconds), with error bars representing standard deviation from 100 trials. (C) displays the percentage  

of 100 trial solutions that hit the desired property target (hit%) or were within 5% of the desired 

property value (close%) for varying parameter values.   
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(A) 

 

(B) 

 

(C) 

 

Figure 9.15 Tuning results for tabu search with varying maximum number of neighbors considered at 
each iteration (A) presents the effect of the parameter on average objective value, with error bars 

representing standard deviation from 100 trials. (B) presents the effect of the parameter on average 

time to solution (seconds), with error bars representing standard deviation from 100 trials. (C) displays 

the percentage  of 100 trial solutions that hit the desired property target (hit%) or were within 5% of the 

desired property value (close%) for varying parameter values.   
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(A) 

 

(B) 

 

(C) 

 

Figure 9.16 Tuning results for tabu search with varying tabu list length of stored solution (A) presents 

the effect of the parameter on average objective value, with error bars representing standard deviation 

from 100 trials. (B) presents the effect of the parameter on average time to solution (seconds), with 

error bars representing standard deviation from 100 trials. (C) displays the percentage  of 100 trial 

solutions that hit the desired property target (hit%) or were within 5% of the desired property value 

(close%) for varying parameter values.   
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(A) 

 

(B) 

 

(C) 

 

Figure 9.17 Tuning results for tabu search with varying tabu criteria (A) presents the effect of the 

parameter on average objective value, with error bars representing standard deviation from 100 trials. 

(B) presents the effect of the parameter on average time to solution (seconds), with error bars 

representing standard deviation from 100 trials. (C) displays the percentage  of 100 trial solutions that 

hit the desired property target (hit%) or were within 5% of the desired property value (close%) for 

varying parameter values. 
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Increasing the maximum number of neighbors evaluated at each iteration and the tabu criterion also 

lead to linear increases in time to solution (see Figure 9.15b and 9.17b). The time effect from increasing 

the number of neighbors considered follows logically as more time is needed for evaluation and tabu 

checks. The effect of increasing the tabu criterion is caused by placing too much restriction on the 

search. As the tabu criterion becomes larger, it is more likely that a neighboring solution will be deemed 

tabu. If too many solutions are declared tabu, the search will require more global moves and become 

more time-consuming. The maximum number of neighbors was chosen to be four, as a discernible 

increase in correct or nearly correct solutions is noted as the parameter changes from three to four (see 

Figure 9.15c). The variability in average objective function value also noticeably decreases as the 

maximum number of neighbors increase from three to four (see Figure 9.15a). Past four neighbors 

considered, no benefit is gained in solution quality. Tabu criterion had no distinguishable effect on 

solution quality and the base value of 0.5 was retained. The length of the tabu list had minimal effect on 

solution quality and no effect on time to solution. The length of the tabu list was set at 15 as that 

parameter value showed reduced variability in average objective function value (see Figure 9.16). 

9.7.2 Genetic Algorithm Tuning Results 

For the genetic algorithm, three parameters were considered for tuning: the maximum number of 

generations, the size of population in each generation and the maximum probability that a member of 

the population will be chosen as a parent (see Section 5.4 for more information on parameters). For 

each parameter value investigate, 100 trials were performed. Figures 9.18-9.20 display the tuning 

results for each of the parameters considered. 
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(A) 

 

(B) 

 

(C) 

 

Figure 9.18 Tuning results for genetic algorithm with varying maximum number of generations (A) 

presents the effect of the parameter on average objective value, with error bars representing standard 

deviation from 100 trials. (B) presents the effect of the parameter on average time to solution (seconds), 

with error bars representing standard deviation from 100 trials. (C) displays the percentage  of 100 trial 

solutions that hit the desired property target (hit%) or were within 5% of the desired property value 

(close%) for varying parameter values.   
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(A) 

 

(B) 

 

(C) 

 

Figure 9.19 Tuning results for genetic algorithm with population size per generation (A) presents the 

effect of the parameter on average objective value, with error bars representing standard deviation 

from 100 trials. (B) presents the effect of the parameter on average time to solution (seconds), with 

error bars representing standard deviation from 100 trials. (C) displays the percentage  of 100 trial 

solutions that hit the desired property target (hit%) or were within 5% of the desired property value 

(close%) for varying parameter values.   
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(A) 

 

(B) 

 

(C) 

 

Figure 9.20 Tuning results for genetic algorithm with varying maximum probability that a member will 
be selected as a parent (A) presents the effect of the parameter on average objective value, with error 

bars representing standard deviation from 100 trials. (B) presents the effect of the parameter on 

average time to solution (seconds), with error bars representing standard deviation from 100 trials. (C) 

displays the percentage  of 100 trial solutions that hit the desired property target (hit%) or were within 

5% of the desired property value (close%) for varying parameter values. 
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the number of solution evaluations that must be performed. The maximum number of generations was 

set at 25 as further increases result in minimal improvements in solution quality (see Figure 9.18a,c). The 

population size was set at 50 to ensure highest solution quality (see Figure 9.19a,c). Varying maximum 

probability that a member will be selected as a parent had no effect on solution quality or time to 

solution (see Figure 20). The base case value of 100 was retained for the probability value. Overall, the 

effectiveness of the genetic algorithm seems to be most dependent on the seed population. A large 

seed population allows for many local minima to be probed, increasing the probability that a good 

solution will be found. The time spent searching (i.e., number of generations) has an effect, but past a 

certain point the search yields no further improvement.  

9.7.3 Comparison of Solution Methods for Test Case 

Following tuning, the final parameter values were determined and are available in Table 9.11. The 

parameter values were used to evaluate 100 trials of the test case (MW = 342 g/mol) for each solution 

method. The objective function values and times to solution over the trials were compared across 

methods.  

Table 9.11 Final tuned values for tabu search and the genetic algorithm The parameter values shown 

were used for the test case comparison and design cases in Section 9.8.  

 

Tabu Search Genetic Algorithm 

Parameter 
Tuned 

Value 
Parameter 

Tuned 

Value 

Maximum non-improving iterations 100 Maximum number of generations 25 

Maximum neighbors evaluated per iteration 4 Population Size 50 

Tabu list length 15 Maximum reproduction probability 100 

Tabu criterion 0.5   
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(A)  

 

(B) 

 

Figure 9.21 Comparison between objective function values obtained for all 100 trial solutions of the 
test case by (A) tabu search and (B) the genetic algorithm 

 

In Figure 9.21, the objective function values for all 100 trials are compared between the tabu search and 

genetic algorithm. It should be noted that the test case had many possible combinations exist which 

satisfy the target value and thus had many opportunities to find a global optimum. The tabu search 

returned a molecule with the target value 81% of the time and returned a molecule within 5% of the 

target value in all trials.  The genetic algorithm had somewhat lower success, returning a molecule with 

the target value 59% of the time. Yet the genetic algorithm still returned a molecule within 5% of the 

target value in all trials. Additionally, the tabu search had several trials that returned much higher 

objective function values when compared to the all of the trials for the genetic algorithm. So while the 

tabu search has a higher probability of returning a correct solution, it also appears to have a higher 

probability of returning a relatively poor solution when compared to the genetic algorithm. 
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The times to solution for all 100 trials are compared between the tabu search and genetic algorithm in 

Figure 9.22. The genetic algorithm had much less variability in time to solution as compared to tabu 

search. The time to solution is also faster on average for the genetic algorithm. Neither observation is 

surprising as the search effectively restarts during tabu search when a new best solution is identified. 

The amount of restarts is random, leading to variability in time to solution. The tuning results suggest 

that tabu search can return results with better objective function values while the genetic algorithm 

returns results with significantly lower time to solution. To further compare the stochastic methods, 

several design cases are considered in the following section. 

(A)  

 

(B) 

 

Figure 9.22 Comparison between times to solution observed for all 100 trial solutions of the test case 
during (A) tabu search and (B) the genetic algorithm 
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9.8 RESULTS FOR OPTIMAL DESIGN OF STABILIZERS FOR LYOPHILIZED PROTEIN FORMULATIONS 

The tuned stochastic optimization methods presented in Section 9.7 were used in CAMD to obtain 

optimal stabilizing excipient candidates for the property models outline in Section 9.5. The models for 

individual proteins were chosen over the universal model given in Section 9.6 as the %Monomer models 

dependent on excipient show superior fit and predictive capability. Therefore the models are good 

examples to illustrate the ability of the CAMD methods to design excipients that optimally match the 

given target value with low prediction error, as evaluated by prediction intervals. Design was limited to 

carbohydrate excipients. Every design case was subjected to 100 trials. Results are compared across 

stochastic optimization methods and also across proteins. 

9.8.1 Comparison of CAMD Results Obtained by Tabu Search and a Genetic Algorithm 

CAMD was used to generate optimal carbohydrate stabilizers for BSA, RNAse A, -amylase, ovalbumin 

and trypsin inhibitor design cases. Solutions were obtained through use of the tuned stochastic 

optimization methods presented in Section 9.7. The best solutions out of 100 runs of both solution 

methods are displayed for each protein in Figures 9.23-9.27. The use of chirality connectivity indices in 

the models allows chiral information to be determined for the solutions, giving an indication of three-

dimensional structure. A summary of the average objective function values and average times to 

solution for all 100 runs is also presented in the figures. 

For all design cases, the best results obtained from tabu search and the genetic algorithm had prediction 

intervals that overlapped the target property value. Therefore, all of the best candidates returned 

displayed predicted property values that were statistically similar to the desired target property value of 

100% monomer remaining after lyophilization. Additionally, for each design case, the prediction 

intervals for the best tabu search solution overlapped with the prediction intervals for the best genetic 

algorithm solution. Despite returning solutions with objective function values that differed up to two 
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orders of magnitudes, both methods returned statistically similar solutions for all design cases. From the 

basis of target property value returned by the best solution, both stochastic methods perform at a 

similarly high level (i.e., both models return solutions that match the target property). 

From case to case, the magnitude of prediction intervals varied. As the size of prediction intervals is 

related to the expected error in the observed property value, solutions with small prediction intervals 

are desired. Considering the best solutions only, tabu search returned solutions with smaller prediction 

intervals for 3 cases (RNAse A, a-amylase and trypsin inhibitor) and the genetic algorithm returned 

solutions with smaller prediction intervals for 2 cases (BSA and ovalbumin). The magnitude also varied 

from case to case. In particular, the ovalbumin design case had solutions with extremely small prediction 

intervals (see Figure 9.26). The magnitude of prediction intervals increases as the descriptors used in the 

prediction diverge from the descriptor values used to build the predictive model. A quick look at the 

best solutions reveals that many of the structures are quite different from the monosaccharaide, 

disaccharaide, trisaccharaide and sugar alcohol structures used in model development.  An exception 

occurs in the ovalbumin design case. The tabu solution is very similar to maltitol and the genetic 

algorithm solution is very similar to galactitol. Maltitol was used in model development and galactitol is 

a stereoisomer of sorbitol and mannitol, both of which were used in model development. As a result, 

the prediction intervals for both ovalbumin solutions are very small. In general, the prediction intervals 

for all design cases are comparable to the average experimental standard deviation of 2.20%. 
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Figure 9.23 Optimal carbohydrate stabilizer candidates for BSA, as determined by (A) tabu search and 
(B) genetic algorithm The objective function value (obj), time to solution in seconds (t), predicted target 

property value (%Monomer), molecular weight (MW), number of hydrogen-bond donors (HBD), number 

of hydrogen-bond acceptors (HBA) and number of rings present (rings) are listed for the top solution. 

Also listed are the average objective function values, average time to solution values and percentage of 

trials with 5% (close%) of target property for 100 trials. Prediction intervals provide the ± interval for the 

objective function value of the best solution. The standard deviation of 100 trials represents the ± 

interval for the average values over 100 trials.  

 

Tabu Search (A) 

Objective function  = 1.29x10
-6 

 

t = 4.571 sec 

%Monomer = 100.00% ± 4.31% 

MW = 284 g/mol 
HBD = 8 

HBA = 9 

Rings = 1 

Average Obj = 0.00461 ± 0.00534 

Average t = 4.753 ± 1.878 sec 
Close% = 100% 

Genetic Algorithm (B) 

Objective function  = 1.25x10
-4

 

t = 0.265 sec 

%Monomer = 100.01% ± 3.98% 

MW = 390 g/mol 
HBD = 11 

HBA = 13 

Rings = 1 

Average Obj =0.0245 ± 0.1317 

Average t =1.495 ± 1.954 sec 
Close% = 96% 
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Tabu Search (A) 

Objective function  = 1.19x10
-4

 

t = 5.929 sec 

%Monomer = 99.99% ± 3.08% 

MW = 282 g/mol 
HBD = 7 

HBA = 9 

Rings = 1 

Average Obj = 0.00669 ± 0.00917  

Average t = 4.786 ± 1.590 sec 

Close% = 100% 

Genetic Algorithm (B) 

Objective function  = 3.63x10
-5

 

t = 0.265 sec 

%Monomer = 100.00% ± 5.19% 

MW = 344 g/mol 
HBD = 10 

HBA = 11 

Rings = 0 

Average Obj = 0.203 ± 1.005 

Average t = 2.684 ± 3.683 sec 

Close% = 90% 

  

Figure 9.24 Optimal carbohydrate stabilizer candidates for RNAse A, as determined by (A) tabu search 
and (B) genetic algorithm Description of figure values is given in caption for Figure 9.23.  

 

When looking at the quality of solutions over all 100 trials, the tabu search has a better average 

objection function value when compared to the genetic algorithm for all design cases. The objective 

function value has lower variability for the tabu search results compared to the genetic algorithm for all 

design cases, as indicated by the standard deviation values. In addition, the percentage of solutions that 

are within 5% of the target value is 100% for tabu search runs in all design cases while the percentage 

ranges from 90-99% for the genetic algorithm runs. On average, the tabu search can be expected to 

return a solution of higher quality than the genetic algorithm. The results from tuning the test case 

suggest the same conclusion. 
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Tabu Search (A) 

Objective function  = 1.83x10
-5

 

t = 10.187 sec 

%Monomer = 100.00 ± 1.50% 

MW = 240 g/mol 
HBD = 7 

HBA = 8 

Rings = 1 

Average Obj = 0.00153 ± 0.00162 

Average t = 5.240 ± 1.985 sec 
Close% = 100% 

 

Genetic Algorithm (B) 

Objective function  = 3.65x10
-5

 

t = 0.265 sec 

%Monomer = 100.00% ± 1.66% 

MW = 284 g/mol 
HBD = 8 

HBA = 9 

Rings = 1 

Average Obj =0.00536 ± 0.02107 

Average t = 0.384 ± 0.397 sec 
Close% = 99% 

  

Figure 9.25 Optimal carbohydrate stabilizer candidates for -amylase, as determined by (A) tabu 
search and (B) genetic algorithm Description of figure values is given in caption for Figure 9.23.  

 

By method, the times to solution for the best solutions and the average times to solution were 

comparable. Comparing methods, the genetic algorithm is an order of magnitude faster than tabu 

search in determining a solution. The tabu search displays a higher variability in time to solution, as 

indicated by the larger standard deviation values. As noted in the tuning results (see Section 9.7), the 

tabu search effectively restarts when a new best solution is encountered. The number of times this 

occurs is directly proportional to the time to solution. Average time to solution does vary somewhat as 

the design case is varied, which likely indicates that more good solutions exist in the solution space for 

some models as compared to others. If there are higher numbers of good solutions, the probability of 

encountered a good solution is higher and the expected time to solution would be faster. Overall, the 
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results from the design cases agree with the results from the test case that time to solution is faster and 

experiences lower variability with the genetic algorithm as compared to the tabu search. 

 

 

    

 

Tabu Search (A) 

Objective function  = 4.60x10
-5

 

t = 4.982 sec 

%Monomer = 100.00% ± 0.29% 

MW = 342 g/mol 
HBD = 9 

HBA = 11 

Rings = 1 

Average Obj = 0.00186 ± 0.00171 

Average t = 4.930 ± 1.746 sec 

Close% = 100% 

 

Genetic Algorithm (B) 

Objective function  = 3.49x10
-5

 

t = 0.281 sec 

%Monomer = 100.00% ± 0.21% 

MW = 212 g/mol 
HBD = 7 

HBA = 7 

Rings = 0 

Average Obj = 0.0402 ± 0.2923 

Average t = 0.516 ± 0.946 sec 

Close% = 97% 

  

Figure 9.26 Optimal carbohydrate stabilizer candidates for ovalbumin, as determined by (A) tabu 
search and (B) genetic algorithm Description of figure values is given in caption for Figure 9.23.  
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Tabu Search (A) 

Objective function  = 9.98x10
-6

 

t = 5.054 sec 

%Monomer = 100.00 ± 3.42% 

MW = 372 g/mol 
HBD = 10 

HBA = 12 

Rings = 2 

Average Obj = 0.00145 ± 0.00159 

Average t = 5.652 ± 1.924 sec 
Close% = 100% 

 

Genetic Algorithm (B) 

Objective function  = 1.01x10
-4

 

t = 0.390 sec 

%Monomer = 100.00% ± 5.75% 

MW = 330 g/mol 
HBD = 10 

HBA = 10 

Rings = 0 

Average Obj = 0.0231 ± 0.1913 

Average t = 0.430 ± 0.477 sec 
Close% = 99% 

  

Figure 9.27 Optimal carbohydrate stabilizer candidates for trypsin inhibitor, as determined by (A) tabu 
search and (B) genetic algorithm Description of figure values is given in caption for Figure 9.23.  

 

Comparison of the methods demonstrates that tabu search provides solution with higher quality (as 

indicated by the objective function) and the genetic algorithm provides solutions with less computation 

effort (as indicated by the time to solution). It is tempting to select the tabu search method as the better 

stochastic method for CAMD due to higher solution quality, yet the best genetic algorithm solutions are 

statistically comparable to the best tabu search solutions. Additionally, the genetic algorithm on average 

can roughly produce a list of 100 candidates in the time it would take the tabu search to produce a list of 

10 candidates. Therefore, the genetic algorithm is more efficient than the tabu search and equally 

capable of producing high quality results for all design cases. 
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9.8.2 Comparison of CAMD Results as a Function of Protein Included in the Formulation 

A comparison of solutions between each design case (i.e., protein) was performed to determine if 

certain chemical characteristics were preferred by one protein over another. The chemical properties 

used for comparison were molecular weight (MW), number of hydrogen bond donors (HBD), number of 

hydrogen bond acceptors (HBA) and number of rings present (rings). The comparison of average CAMD 

solution properties by protein is given in Figure 9.28. 

Comparison of results indicates that no significant difference in the properties considered exist across 

proteins. The solutions for both stochastic methods average to a monosaccharide (1 ring) with six to 

seven hydrogen bond donors, eight to nine hydrogen bond acceptors and a molecular weight less than 

300 g/mol. The disaccharides sucrose and trehalose are often cited as effective lyoprotectants 

(Schwegman, Hardwick et al. 2005). The average solution property values are lower than the property 

values observed for sucrose and trehalose, which are isomers and have molecular weights of 342 g/mol, 

eight hydrogen bond donors and eleven hydrogen bond donors. Of the best solutions presented in 

Section 9.8.1, only one solution contained two rings (see Figure 9.27a). All other solutions contained 

either one ring or no rings.  
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(A)      (B) 

 

(C)       (D) 

 

Figure 9.28 Comparison across protein models of average chemical information for solutions derived 
by both tabu search and genetic algorithm  The information used for comparison are (A) molecular 

weight (g/mol), (B) number of rings, (C) number of hydrogen bond donors, and (D) number of hydrogen 

bond acceptors. Error bars represent the standard deviation of 100 trials for each case.  

 

The three-dimensional conformation appears to be more important than the chemical properties 

considered for obtaining 100% monomer remaining after lyophilization. By incorporating chiral 

connectivity indices in the %Monomer property models, three-dimensional information is captured. 

Only nine building block groups are used in the determination of all the solutions presented. Yet, the 
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inclusion of chirality information vastly increases the number of possible solutions and is the overriding 

factor in the design of optimal solutions. The models and CAMD results here present the first use of 

chiral connectivity indices in CAMD and the first use of topological descriptors to provide CAMD 

solutions with three-dimensional structural information. It is important to note that the solutions 

provided were not designed using all relevant excipient properties and should therefore not be 

considered final candidates for immediate inclusion in lyophilized protein formulations. However, both 

stochastic methods are able to quickly generate a large list of optimal candidates that can be further 

screened in a post-design phase, which may include any combination of additional property models, 

molecular simulations and experiments that are deemed necessary. The work here provides a starting 

point for the CAMD of excipients with three-dimensional structural information for stabilization of 

lyophilized proteins. 
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10.0 CONCLUSIONS AND FUTURE RECOMMENDATIONS 

The work presented here describes the comprehensive development of CAMD methods with 

applications towards bioengineering, namely the design of ionic liquid media for bioseparations and the 

design of excipients for lyophilized protein formulations. The pre-design approach to CAMD is concerned 

with the determination of systems of interest and the acquisition of data for property of interests. 

Where available, data was collected from literature to build the models developed here. For prediction 

of monomeric protein remaining after lyophilization, the collection of experimental data was required.  

The design phase of CAMD is comprised of two sub-problems. The forward problem is concerned with 

property model development, linking structure to properties of interest. Several approaches novel to 

CAMD were employed to better provide models of sufficient fit and predictive power. Descriptor 

selection was used when applicable to provide models with sufficient fit while avoiding overfitting. 

Exhaustive selection was found to be superior to forward selection when developing models describing 

%Monomer as a function of protein structure. The use of cross-validation has been used previously in 

CAMD (Eslick, Ye et al. 2009), but the approach was furthered here with the use of K-fold validation to 

more significantly probe predictive capability of models describing %Monomer as a function of excipient 

structure. Additionally, the use of Q2 as an indicator of predictive power was illustrated with poor Q2 

values leading to predicted ionic liquid toxicity values with large prediction intervals. Molecular 

descriptors novel to CAMD were used for the models describing %Monomer as a function of excipient 

structure, which provided chirality information to help distinguish between molecules. By using chiral 

connectivity indices, some three-dimensional structural information was captured using only a two-

dimensional molecular representation. 

The reverse problem of the CAMD aims to propose molecular structures that optimally match given 

target property values. Molecular candidates to the ionic liquid and excipient design problems were 
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proposed using a variety of solution approaches. Deterministic methods were used to solve for ionic 

liquid entrainers for separation of azeotropic mixtures. Tabu search, a stochastic method, was used to 

design ionic liquid extractants and excipients with optimal glass forming properties. Novel to the work 

presented here, two stochastic optimization methods (i.e., tabu search and genetic algorithm) were 

tuned for CAMD applications. The stochastic methods were then used to design carbohydrate stabilizers 

for lyophilized protein formulations. Evaluation of the two methods showed that tabu search had longer 

time to solutions but higher solution quality and consistency when compared to the genetic algorithm. 

However when comparing the best solutions from each method, the predicted target values were 

similar as indicated by overlapping prediction intervals. Use of prediction intervals are original to the 

CAMD approaches used here and help to provide a statistical means of comparison between solutions. 

By incorporating chiral connectivity indices in the design of stabilizing excipients, three-dimensional 

structural information for design solutions was provided for the first time in CAMD approaches through 

use of only two-dimensional structural information. 

The post-design of CAMD aims to further screen and establish good candidates for a given application. 

The coupling of product and process design allowed for the design of ionic liquid entrainers and 

azeotropic separation processes with near-optimal performance in terms of energy requirements. Final 

ionic liquid separation process results were shown to require less energy to perform separations than 

systems using entrainers that were not rationally designed. Molecular simulation was investigated as a 

tool to approximate hydrogen-deuterium exchange experiments and gleam information on possible 

protein-excipient interactions. Use of simulation results are likely insufficient to guide design at the 

current state of implementation. A better use of molecular simulation is likely to be as a post-design 

screening tool to further narrow down an excipient candidate list for a given lyophilized protein 

formulation. 
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Moving forward, more property models are needed for the examples considered to better generate a 

list of candidates that would be expected to perform successfully. For example, human toxicity would be 

important for the design of excipients for protein drug formulations. Additionally, several of the design 

solutions are reducing sugars, which would not be acceptable for protein formulations. Rules for group 

addition or improved penalty functions could be employed to prevent reducing sugars from being 

selected as solutions. In several of the design examples, the error in property prediction of %Monomer 

exceeds what would be acceptable from the viewpoint of the biopharmaceutical industry. A multi-

objective optimization problem could be formulated to minimize both differences between target and 

predicted properties along with prediction intervals of predicted properties. Such a problem formulation 

would insure that solutions are returned where confidence in the predicted property values is high. For 

prediction of glass transitions, multiple transitions may occur in a sugar. Improvement to glass transition 

properties could include the prediction of polymorphic systems where multiple transitions would be 

expected to occur. The shift from one-dimensional (e.g., group contribution) and two-dimensional 

descriptors towards three-dimensional or quantum descriptors will likely provide better property 

prediction and more accurate design results in future CAMD applications.  

Tuning of the tabu search and genetic algorithm was performed on a basic level. Future work in tuning 

and increased levels of sophistication in the design algorithms will be useful in improving algorithm 

efficiency and solution quality. For example, mutation rate and crossover rate were randomly selected 

in the genetic algorithm. Further tuning could identify rates that were more useful for CAMD. 

Additionally, the tuning results presented are dependent on the base values of parameters used for 

tuning. It is possible that the base value for a parameter could have such a value that the parameter 

overwhelmed the effects of other parameters. Further investigation into the base parameter values and 

their effect on the final chosen tuned values would be of interest. An especially promising area of 

algorithm development is the parallelization of stochastic optimization methods, which is expected to 
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provide substantial improvements to the computational costs of performing CAMD. As molecular 

complexity increases, the resulting combinatorial search space could warrant the need for vastly reduce 

search times that would be proffered by parallelization. The parallelization of both stochastic solution 

methods would also be of interest from the point of view of a pure scientific curiosity. Combination of 

the design process with a database search offers a promising avenue of future post-design methods. For 

example, a molecule that is design could be used to identify similar molecules in online structure 

databases, such as PubChem. Similarity searches would provide a way to experimentally validate CAMD 

design results without the time and complexity that would result from chemical synthesis of the design 

solutions. Information from experimental validation could be used to further improve property models 

and design methods. Such an integrated experimental-computational CAMD approach would be 

instrumental in the identification of molecule candidates for use in a variety of bioengineering 

applications, including the lyophilized protein formulation design and ionic liquid solvent design cases 

considered here. 
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A. NOMENCLATURE 
 

The meanings of abbreviations and symbols are provided below. Definitions are giving in the order of 

appearance. As much as possible, clarification is also given in the text. 

m, n Size of a set 

i, j ,k Index of a set 

CAMD Computer-aided molecular design 

SAP Spatial aggregation propensity algorithm 

   Glass transition temperature, specifically for an anhydrous solute 

   Gordon-Taylor constant 

   ,    Weight fractions 

  
   Glass transition temperature of the maximally freeze-concentrated solute 

  
   Melting point of ice in the freeze-concentrated solution 

  
   Maximal freeze concentration of solute 

NMR Nuclear magnetic resonance 

GC Group contribution 

Y Response variable 

X, x Dependent variable matrix or array 

 Coefficient vector 

RSS Residual sum of the squares 

 Chemical potential 

    Fugacity coefficient 

    Activity coefficient 

  
   Fugacity at standard conditions 

    Vapor mole fraction 

    Liquid mole fraction 

   Pressure 

  Objective function 

     Property value 

   Representation of molecular structure 

      Adjacency matrix  

    Chemical group 
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    Structural constraint 

   Absorbance 

   Extinction coefficient 

   Concentration 

   Path length 

    Aggregation index 

    Optical density 

          Percent of protein monomer remaining after lyophilization 

SEC Size exclusion chromatography 

SDS-PAGE Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis 

pxrd Powder X-ray diffraction 

 Incident angle 

l Wavelength 

dhkl Characteristic vector defined by crystal geometry 

<I> Intensity 

    Rate constant 

HX-MS Hydrogen-deuterium exchange mass spectroscopy 

 Hildebrand solubility parameter 

Td Thermal decomposition temperature 

Kx Partition Coefficient, specificly for NDHD 

EC50 Half maximal effective concentration 

n Simple connectivity index of n-th order 

n v Valence connectivity index of n-th order 

Ns Number of subgraphs 

i Vertex degree 

i
v Valence vertex degree 

Z Atomic number 

Zv Number of valence electrons 

NH Number of connected hydrogen atoms 

n Average simple connectivity index of n-th order 

n v Average valence connectivity index of n-th order 

a3vSA Sequence average amino acid aggregation propensity  

nHS Number of aggregation hot spots 
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NnHS nHS normalized by number of residues in protein 

AAT Area of aggregation profile above hot spot threshold 

THSA Total area of aggregation profile comprising hot spots 

TA Total area of aggregation profile 

AATr AAT normalized by number of residues in protein 

THSAr THSA normalized by number of residues in protein 

Na4vSS Sliding window average of amino acid propensity values divided by number 
of amino acids in protein 

Emin Minimum energy of PASTA pairings 

Eavg Average energy of PASTA pairings 

Lmax Average amino acid pair length of PASTA pairings 

Lavg Maximum amino acid pair length of PASTA pairings 

(E/L)min Minimum ratio of energy to length of PASTA pairings 

(E/L)avg Average ratio of energy to length of PASTA pairings 

# of Peaks Number of peaks in PASTA aggregation profile 

   Mallow's Cp statistic 

p Number of parameters 

    Variance 

LOOCV Leave-one-out cross-validation 

PRESS Predicted residual sum of the square errors 

Q2 Cross-validation coefficient 

R2 Correlation coefficient 

Sx Sensitivity 

      Percent average absolute deviation 

     Cohesive energy density 

    Molar volume 

       Enthalpy of vaporization 

    Volume fraction 

    Contribution of group 

Rk Group volume parameters 

Qk Surface area parameters 

k Group residual activity coefficient 

m Volume contribution parameter 
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Xm Group fraction parameter 

nm Interaction parameter 

anm Group interaction parameter 

  
    

   Error terms 

 ( )  Binary variable declaring the existence of an alkyl chain 

       ( ) ,       ( ) Binary variables declaring the existence of cation and anion 

   ( )  Fitness of j-th member 

   ⁄   Student’s t-test value 

Dx Location of maximum driving force 

Dy Value of maximum driving force 

N Number of stages 

NF Feed stage location 

SF Scaling factor 
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B. R PROCEDURE FOR MODEL DEVELOPMENT  
 

The following procedure describes the steps used in R to develop linear QSPRs, including descriptor 

selection and cross-validation. The steps needed for calculation of prediction intervals are also given. At 

the end follows an example of code written in R to perform the described tasks. 

1. Open R program 

2. The first time you run the program, you will need to install the leaps package, which is used for 

descriptor selection. Click on Pac ages>Install pac age(s) …  

 
3. Select the CRAN mirror for the download. Choose whichever site you would like and click OK. 
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4. From the Packages selection screen, select leaps and click OK 

 
5. After the installation, the leaps package can be used. The package only needs to be installed 

once. To load the leaps pac age, clic  on Pac ages> oad pac age… and then select the leaps 

package 
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6. After the leaps package has loaded, the csv file containing the descriptor information and value 

that is desired to be correlated should be loaded into R. The column headers in the csv file will 

be used by R as names for the variable. Special characters are usually replaced by “X” and spaces 

are replaced by “.”.  To load the csv file, type the following command: 

 

pick a name = read.csv(file.choose()) 

 

The name for the file is chosen by the user.  A “Select file” window will pop up showing the user 

directory. Navigate to the csv file desired and select the file. Click Open. 

 

 
 

7. To attach the column headers to the variable names in R, type the following command 

 

attach(pick a name) 

 

Using whatever name you had chosen in step 6. To check that the file is loaded correctly and to 

see the variable names that R is using, type 

 

pick a name 

 

Again using the name you had chosen in step 6. The csv file data will then display in R. Note the 

variable names for each column, as they will be used to create the correlation later.  
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8. Next, a text file containing only the descriptor values must be loaded into R as a matrix. The 

matrix will be used for the descriptor selection. The number of columns in the text file must be 

inputted. To load the text file, type the following command: 

 

matrix name = matrix(scan(file.choose()),ncol=number of columns in text file,byrow=TRUE) 

 

Where matrix name is chosen by the user and number of columns in text file is entered as a 

number. 

 

9. After the text file has been read, descriptor selection can be performed. Type the following 

command: 

 

leaps(matrix name,correlated variable,method=c(“r ”),nbest=1,strictly.compatible=FALSE) 

 

Where matrix name is the name chosen in step 8 and correlated variable is the name of the 

dependent variable in the correlation being built. Two methods can be used. r2 choses the set of 

descriptors that maximizes the r2 value. Cp chooses the set of descriptors that minimizes the Cp 

value, which is a measure of the lack of fit plus the number of descriptors used. Different values 

for what nbest is equal to can be selected and will determine how many different 
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correlations/models of each size (# of descriptors) will be reported. For example, nbest=3 would 

report the three best models based upon the method chosen for each model size.  

 

The output will display a matrix showing which descriptor was used for each correlation, as 

indicated by TRUE or FALSE. The score given by the method selected will also be displayed. 

 

 
 

10. Select a desired model/correlation for further analysis. Note the descriptors used in the model. 

Build the correlation in R using the following command: 

 

correlation name.lm <- lm(correlated variable~var1+var2 +…+varX) 

 

Where correlation name is selected by the user, correlated variable is the dependent variable, 

and var1 to varX are the descriptors selected using leaps. X denotes the size of the model (# of 

descriptors).  
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11. The correlation information can be retrieved with the following command: 

 

summary(correlation name.lm) 

 

Where correlation name is the same as chosen in step 10. 

 

 
 

12. To evaluate Q2, you must create a csv file containing only the selected descriptors and 

correlated values. The variable names should remain the same to ensure that the correlation 

can be used for cross-validation. 

13. Cross-validation can then be performed using the following command: 

User-definedName.CVlm <- CVlm(csv file name, correlationName.lm, m=number of folds, plotit=TRUE, 

printit = TRUE) 
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14. The predicted and correlation values of each fold are used to calculate Q2 (via excel). 

15. To calculate the prediction intervals for a prediction, the prediction’s descriptors must be 

entered as a new data frame: 

 

Name of new data frame = data.frame(descriptor1 = xxx, descriptor2 = xxx, …) 

 

16. The following command returns the prediction and the lower and upper interval value: 

predict(correlationName.lm, data frame name, interval=”predict”) 
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An example code to complete the following steps is given below: 

TIfields = read.csv(file.choose()) 

attach(TIfields) 

TImatrix = matrix(scan(file.choose()),ncol=10,byrow=TRUE) 

leaps(TImatrix,TI,method=c("Cp"),nbest=1,strictly.compatible=FALSE) 

TI.lm <- lm(TI~cX4 + cX0A + cX1A + cX1v + cX3v + cX2Av + cX5Av) 

summary(TI.lm) 

TI.CVlm <- CVlm(TIfields, TI.lm, m=11, plotit=TRUE, printit = TRUE) 

TItabu = data.frame(cX4 = 13.98383752, cX0A = 0.832184077, 

      cX1A = 0.603651, cX1v = 10.68623644, cX3v = 8.425098614, 

      cX2Av = 0.261058302, cX5Av = 0.057471174) 

TIga = data.frame(cX4 = 7.903364617, cX0A = 0.846240068, 

      cX1A = 0.587963437, cX1v = 8.383716113, cX3v = 5.856908357, 

      cX2Av = 0.260155783, cX5Av = 0.067981002) 

predict(TI.lm, TItabu, interval="predict") 

predict(TI.lm, TIga, interval="predict") 
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C. POLYMER DESIGNER PROCEDURE  
 

To open the Polymer Designer (pd2) executable, open the terminal in the pd2 Folder 

 Then in the terminal, type:  

    ./pd2 

 

In the program, you need to open a database.  Clic  “Open Database” and then select the database you 

want to use.  

 

To fill in the screen with info, clic  on “select columns”. Some useful columns are Info>Name and 

Descriptors> all the various connectivity indices. Then click Add Rows > Search and select the molecules 

you want to be shown. This can be used to calculate connectivity indices. 

 

To add new correlations, you must do the following 

 Close pd2 

 Open >src>tabu>dp_tabu_01.cpp 

 Scroll about ¾ of the way down and edit the correlations. Chii_# is the unweighted connectivity 

index and xi_# is the weighted connectivity index.  

 Edit the cout information so your correlation values will be outputted 

 If you add any new variables, make sure they are declared in this file 

o Then open >src>tabu>dp_tabu_01.hpp and define them there as well 

 Close both the .cpp and .hpp files 

 In the pd2 directory, delete the make file, pd2 executable file and pd2.pro file 

 Then follow the instructions for installing the program found in (Eslick 2009). 



 

245 
 

To run the tabu search: 

 Go to molecules>polymers>browse 

 Select a starting molecule (such as Tabu BisGMA) and click view 

 In the window that opens, go to the Toolbox and click on the graph tab. Then click Algorithm 

Test and select Tabu test. The search results will display in the terminal. 

To view and save a tabu search solution: 

 In pd2, go to Monomers>Browse>View and select anything 

 Go to the graph tab and select “import” then “yes” 

 Select your solution 

 Rearrange the atoms and bonds to better view your solution 

 Then close the molecule window 

 Go to Monomers>Browse>Add and your molecule should appear. Change the name and add a 

description 

 

To change the groups that will be used to build the tabu search solution: 

 Go to molecules>monomers>edit 

 Select a group from 09 to 18 to view. Only these are used by the program as building blocks. 

 In the molecule viewer, you can edit the bond and atoms. An Atomic # = 0 makes the atom a 

connector. Every group must have at least one connector. 
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IONIC LIQUID GROUPS USED IN POLYMER DESIGNER 
 

Cation Groups 

 

 
 

 
 

 
 

Anion Groups 
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EXCIPIENT GROUPS USED IN POLYMER DESIGNER 
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D. CAMD EXCIPIENT DESIGNER SOURCE CODE  
 

The following code is written in VBA and contains all the code used to design carbohydrate excipient 

molecules for optimal %Monomer values. Modular programming was used with modules devoted to the 

following tasks: Running searches and building molecules, calculating descriptors, calculating properties, 

tabu search and genetic algorithm. In addition to the code provided here, data for each group is needed 

in worksheets. Comments are indicated by an apostrophe (').  

CAMD MODULE CODE 
Public n As Long, n_minusrings As Long 
Public m_max As Long 
Public Declare Function GetTickCount Lib "kernel32.dll" () As Long  'Returns time elapsed since startup in 
miliseconds 
 
Sub RunManyCAMD() 
 
Dim i As Long, j As Long, runs As Long 
Dim mol() As Long, mol_size As Long 
Dim Final_Obj As Double 
Dim t As Long 
 
runs = 100 
 
Range("B2:O101").ClearContents 
 
For i = 1 To runs 
    DoEvents    'Prevent not responding message 
    t = GetTickCount 
    Call CAMD(mol, Final_Obj) 
    mol_size = UBound(mol) 
    Cells(1 + i, 2) = i 
    Cells(1 + i, 3) = Final_Obj 
    Cells(1 + i, 4) = GetTickCount - t  'time elapsed while running code(and inserting i and obj values in 
excel - but that is negligible) 
    Cells(1 + i, 5) = MW(mol) 
    Cells(1 + i, 6) = HBD(mol) 
    Cells(1 + i, 7) = HBA(mol) 
    Cells(1 + i, 8) = Rings(mol) 
    For j = 1 To mol_size 
        Cells(1 + i, 8 + j) = mol(j) 
    Next j 
Next i 
End Sub 
 
Sub CAMD(mol() As Long, Final_Obj As Double)      'argument mol() As Long, Final_Obj As Double 
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Dim m As Long, size As Long 
Dim i As Long, j As Long 
'Dim mol() As Long, Final_Obj As Double   'arguments sometimes 
Dim del() As Long, delv() As Long, nH() As Long 
Dim AdjM() As Long, Chi(0 To 5) As Double, ChiV(0 To 5) As Double 
Dim Chi_Avg(0 To 5) As Double, ChiV_Avg(0 To 5) As Double 
 
m_max = 6 'maximum number of groups in molecule 
n = 89 ' number of groups 
n_minusrings = 9    'number of groups that are non-ring groups, also the first groups by order 
 
'Create test solution -- For debugging 
'Call InitialSolution(mol(), m) 
'm = 5 
'ReDim mol(1 To m) 
'mol(1) = 1 
'mol(2) = 37 
'mol(3) = 3 
'mol(4) = 71 
'mol(5) = 1 
 
 
 
'Create adjacency matrix and vectors to store del and delv values 
'Call BuildMolecule(mol(), del(), delv(), nH(), AdjM(), m, size) 
'Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
'Final_Obj = obj(mol, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
Call RunTabu(mol(), m, del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg(), Final_Obj) 
'Call RunGA(mol(), m, del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg(), Final_Obj) 
'MsgBox "Best solution was MW = " & MW(mol) 
 
End Sub 
 
 
Sub InitialSolution(mol() As Long, m As Long) 
'Build Random Initial Solution 
 
m = Int((m_max - 1 + 1) * Rnd + 1) ' groups in molecule 
 
ReDim mol(1 To m) 'Vector to store types of groups 
 
'Randomly assign groups in the molecule 
For i = 1 To m 
    If i > 1 Then 
        If mol(i - 1) > n_minusriungs Then  'Make sure that you do not fuse two rings together 
            mol(i) = Int((n_minusrings - 1 + 1) * Rnd + 1)  'Limits groups to non-ring groups 
        Else 
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            mol(i) = Int((n - 1 + 1) * Rnd + 1) 'Entire selection of groups available 
        End If 
    Else 
        mol(i) = Int((n - 1 + 1) * Rnd + 1) 'Entire selection of groups available for first group added 
    End If 
Next i 
 
End Sub 
 
Sub BuildMolecule(mol() As Long, del() As Long, delv() As Long, nH() As Long, AdjM() As Long, m As Long, 
size As Long) 
'Creates adjacency matrix, del and delv values for groups selected 
 
Dim i As Long, j As Long, k As Long, jstart As Long, kstart As Long, jlag As Long 
Dim terminal As Long 
 
'Clear old Adjacency Matrix 
Erase AdjM() 
 
'Always will have two terminals 
size = 2 
 
'Calculate number of non-hydrogen atoms in the molecule 
For i = 1 To m 
    size = size + atoms(mol(i)) 
Next i 
 
'Size adjacency matrix and del/delv vectors to proper size 
ReDim AdjM(1 To size, 1 To size) 
ReDim del(1 To size) 
ReDim delv(1 To size) 
ReDim nH(1 To size) 
 
'Set terminals values for del and delv 
'   This sets both terminals to -OH (hydroxyl) groups 
del(1) = 8 
del(size) = 8 
delv(1) = 6 
delv(size) = 6 
nH(1) = 1 
nH(size) = 1 
 
'Set starting indices 
jstart = 2  'used to store starting node for group being added to molecule 
kstart = jstart 
jlag = 1    'used to store terminal node from previous group added to molecule 
 
For i = 1 To m 
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    AdjM(jlag, jstart) = 1  'Connects starting node from new group with terminal node from previous 
group 
    AdjM(jstart, jlag) = 1 
     
    'Obtains del/delv values and connectivity for group selected by accessing workbook 
    For j = jstart To jstart + atoms(mol(i)) - 1 
        del(j) = Worksheets(Name(mol(i))).Cells(3 + (j - jstart), 2).Value 
        delv(j) = Worksheets(Name(mol(i))).Cells(3 + (j - jstart), 3).Value 
        nH(j) = Worksheets(Name(mol(i))).Cells(3 + (j - jstart), 4).Value 
        For k = kstart To kstart + atoms(mol(i)) - 1 
            AdjM(j, k) = Worksheets(Name(mol(i))).Cells(2 + (j - jstart), 6 + (k - jstart)).Value 
        Next k 
    Next j 
     
    'Finds terminal node for group added and node for next group to be added 
    jlag = terminus(mol(i), jstart) 
    jstart = jstart + atoms(mol(i)) 
    kstart = kstart + atoms(mol(i)) 
     
Next i 
 
AdjM(jlag, size) = 1    'Connects terminal node from new group with terminal 
AdjM(size, jlag) = 1 
 
         
 
 
End Sub 
 
Function atoms(molecule_group As Long) As Long 
'Assigns number of atoms in group selected 
 
Select Case molecule_group 
    Case Is = 1 
        atoms = 1 
    Case 2 To 3 
        atoms = 2 
    Case Is = 4 
        atoms = 1 
    Case Is = 5 
        atoms = 2 
    Case 6 To 9 
        atoms = 5 
    Case 10 To 25 
        atoms = 7 
    Case 26 To 41 
        atoms = 9 
    Case 42 To 57 
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        atoms = 8 
    Case 58 To 89 
        atoms = 9 
End Select 
 
End Function 
 
Function Name(molecule_group As Long) As String 
'Assigns name to group selected 
 
Select Case molecule_group 
    Case Is = 1 
        Name = "Group1" 
    Case Is = 2 
        Name = "Group2a" 
    Case Is = 3 
        Name = "Group2b" 
    Case Is = 4 
        Name = "Group3" 
    Case Is = 5 
        Name = "Group4" 
    Case Is = 6 
        Name = "Group5a" 
    Case Is = 7 
        Name = "Group5b" 
    Case Is = 8 
        Name = "Group5c" 
    Case Is = 9 
        Name = "Group5d" 
    Case Is = 10 
        Name = "Group6a" 
    Case Is = 11 
        Name = "Group6b" 
    Case Is = 12 
        Name = "Group6c" 
    Case Is = 13 
        Name = "Group6d" 
    Case Is = 14 
        Name = "Group6e" 
    Case Is = 15 
        Name = "Group6f" 
    Case Is = 16 
        Name = "Group6g" 
    Case Is = 17 
        Name = "Group6h" 
    Case Is = 18 
        Name = "Group6i" 
    Case Is = 19 
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        Name = "Group6j" 
    Case Is = 20 
        Name = "Group6k" 
    Case Is = 21 
        Name = "Group6l" 
    Case Is = 22 
        Name = "Group6m" 
    Case Is = 23 
        Name = "Group6n" 
    Case Is = 24 
        Name = "Group6o" 
    Case Is = 25 
        Name = "Group6p" 
    Case Is = 26 
        Name = "Group7a" 
    Case Is = 27 
        Name = "Group7b" 
    Case Is = 28 
        Name = "Group7c" 
    Case Is = 29 
        Name = "Group7d" 
    Case Is = 30 
        Name = "Group7e" 
    Case Is = 31 
        Name = "Group7f" 
    Case Is = 32 
        Name = "Group7g" 
    Case Is = 33 
        Name = "Group7h" 
    Case Is = 34 
        Name = "Group7i" 
    Case Is = 35 
        Name = "Group7j" 
    Case Is = 36 
        Name = "Group7k" 
    Case Is = 37 
        Name = "Group7l" 
    Case Is = 38 
        Name = "Group7m" 
    Case Is = 39 
        Name = "Group7n" 
    Case Is = 40 
        Name = "Group7o" 
    Case Is = 41 
        Name = "Group7p" 
    Case Is = 42 
        Name = "Group8a" 
    Case Is = 43 
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        Name = "Group8b" 
    Case Is = 44 
        Name = "Group8c" 
    Case Is = 45 
        Name = "Group8d" 
    Case Is = 46 
        Name = "Group8e" 
    Case Is = 47 
        Name = "Group8f" 
    Case Is = 48 
        Name = "Group8g" 
    Case Is = 49 
        Name = "Group8h" 
    Case Is = 50 
        Name = "Group8i" 
    Case Is = 51 
        Name = "Group8j" 
    Case Is = 52 
        Name = "Group8k" 
    Case Is = 53 
        Name = "Group8l" 
    Case Is = 54 
        Name = "Group8m" 
    Case Is = 55 
        Name = "Group8n" 
    Case Is = 56 
        Name = "Group8o" 
    Case Is = 57 
        Name = "Group8p" 
    Case Is = 58 
        Name = "Group9a" 
    Case Is = 59 
        Name = "Group9b" 
    Case Is = 60 
        Name = "Group9c" 
    Case Is = 61 
        Name = "Group9d" 
    Case Is = 62 
        Name = "Group9e" 
    Case Is = 63 
        Name = "Group9f" 
    Case Is = 64 
        Name = "Group9g" 
    Case Is = 65 
        Name = "Group9h" 
    Case Is = 66 
        Name = "Group9i" 
    Case Is = 67 
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        Name = "Group9j" 
    Case Is = 68 
        Name = "Group9k" 
    Case Is = 69 
        Name = "Group9l" 
    Case Is = 70 
        Name = "Group9m" 
    Case Is = 71 
        Name = "Group9n" 
    Case Is = 72 
        Name = "Group9o" 
    Case Is = 73 
        Name = "Group9p" 
    Case Is = 74 
        Name = "Group9q" 
    Case Is = 75 
        Name = "Group9r" 
    Case Is = 76 
        Name = "Group9s" 
    Case Is = 77 
        Name = "Group9t" 
    Case Is = 78 
        Name = "Group9u" 
    Case Is = 79 
        Name = "Group9v" 
    Case Is = 80 
        Name = "Group9w" 
    Case Is = 81 
        Name = "Group9x" 
    Case Is = 82 
        Name = "Group9y" 
    Case Is = 83 
        Name = "Group9z" 
    Case Is = 84 
        Name = "Group9aa" 
    Case Is = 85 
        Name = "Group9ab" 
    Case Is = 86 
        Name = "Group9ac" 
    Case Is = 87 
        Name = "Group9ad" 
    Case Is = 88 
        Name = "Group9ae" 
    Case Is = 89 
        Name = "Group9af" 
End Select 
 
End Function 
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Function terminus(molecule_group As Long, jstart As Long) As String 
'Finds right hand side terminal atom 
 
Select Case molecule_group 
    Case 1 To 9 
        terminus = jstart 
    Case 10 To 89 
        terminus = jstart + atoms(molecule_group) - 1   'Different atom joins to next group than prior group 
End Select 
 
End Function 

PROPERTY MODULE CODE 
Function MW(mol) As Double 
 
Dim sum As Long, size As Long 
Dim i As Long 
 
m = UBound(mol) 
 
sum = 34 
 
For i = 1 To m 
    Select Case mol(i) 
        Case Is = 1 
            sum = sum + 14 
        Case 2 To 3 
            sum = sum + 30 
        Case Is = 4 
            sum = sum + 16 
        Case Is = 5 
            sum = sum + 28 
        Case 6 To 9 
            sum = sum + 3 * 12 + 2 * 16 + 6 * 1 
        Case 10 To 25 
            sum = sum + 4 * 12 + 3 * 16 + 6 
        Case 26 To 41 
            sum = sum + 5 * 12 + 4 * 16 + 8 
        Case 42 To 57 
            sum = sum + 5 * 12 + 3 * 16 + 8 
        Case 58 To 89 
            sum = sum + 5 * 12 + 4 * 16 + 8 
    End Select 
Next i 
 
MW = sum 
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End Function 
Function HBD(mol) As Double 
 
Dim sum As Long, size As Long 
Dim i As Long 
 
m = UBound(mol) 
 
sum = 2 
 
For i = 1 To m 
    Select Case mol(i) 
        Case Is = 1 
            sum = sum + 0 
        Case 2 To 3 
            sum = sum + 1 
        Case Is = 4 
            sum = sum + 0 
        Case Is = 5 
            sum = sum + 0 
        Case 6 To 9 
            sum = sum + 2 
        Case 10 To 25 
            sum = sum + 2 
        Case 26 To 41 
            sum = sum + 3 
        Case 42 To 57 
            sum = sum + 2 
        Case 58 To 89 
            sum = sum + 3 
    End Select 
Next i 
 
HBD = sum 
 
End Function 
Function HBA(mol) As Double 
 
Dim sum As Long, size As Long 
Dim i As Long 
 
m = UBound(mol) 
 
sum = 2 
 
For i = 1 To m 
    Select Case mol(i) 
        Case Is = 1 



 

259 
 

            sum = sum + 0 
        Case 2 To 3 
            sum = sum + 1 
        Case Is = 4 
            sum = sum + 1 
        Case Is = 5 
            sum = sum + 1 
        Case 6 To 9 
            sum = sum + 2 
        Case 10 To 25 
            sum = sum + 3 
        Case 26 To 41 
            sum = sum + 4 
        Case 42 To 57 
            sum = sum + 3 
        Case 58 To 89 
            sum = sum + 4 
    End Select 
Next i 
 
HBA = sum 
 
End Function 
Function Rings(mol) As Double 
 
Dim sum As Long, size As Long 
Dim i As Long 
 
m = UBound(mol) 
 
sum = 0 
 
For i = 1 To m 
    Select Case mol(i) 
        Case Is = 1 
            sum = sum + 0 
        Case 2 To 3 
            sum = sum + 0 
        Case Is = 4 
            sum = sum + 0 
        Case Is = 5 
            sum = sum + 0 
        Case 6 To 9 
            sum = sum + 0 
        Case 10 To 25 
            sum = sum + 1 
        Case 26 To 41 
            sum = sum + 1 
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        Case 42 To 57 
            sum = sum + 1 
        Case 58 To 89 
            sum = sum + 1 
    End Select 
Next i 
 
Rings = sum 
 
End Function 
 
 
Function obj(mol, Chi() As Double, ChiV() As Double, Chi_Avg() As Double, ChiV_Avg() As Double) As 
Double 
 
Dim Prop_MW As Double, Prop_RNA As Double, Prop_BSA As Double, Prop_AA As Double, Prop_Ova As 
Double, Prop_TI As Double 
Dim Target_MW As Double, Target1 As Double, Prop_All As Double 
Dim ASA As Double, ahelix As Double, bsheet As Double, MW_prot As Double, Tm As Double 
'Design Targets 
Target_MW = 342 
Target1 = 1#    '1.64092082073789 
'Target2 = 1#    '-0.99286646595339 
'Protein Properties -- Read from user at later date 
ASA = 4052 
ahelix = 21 
bsheet = 33 
MW_prot = 16.5 
Tm = 62.5 
Penalty = 0 
 
Prop_MW = MW(mol) 
 
Prop_RNA = 12.271 + 0.0637 * Chi(1) + 0.5761 * Chi(3) - 0.1392 * Chi(5) - 18.2244 * Chi_Avg(0) + 3.9332 
* Chi_Avg(2) + _ 
        6.0029 * Chi_Avg(5) + 0.6086 * ChiV(1) - 2.5101 * ChiV(2) + 3.5378 * ChiV(4) - 3.1432 * ChiV(5) + _ 
        36.8323 * ChiV_Avg(2) - 44.3452 * ChiV_Avg(3) - 19.6284 * ChiV_Avg(4) + 13.1564 * ChiV_Avg(5) 
         
Prop_BSA = 5.9445 - 0.279 * Chi(3) - 0.3754 * Chi(5) - 10.0317 * Chi_Avg(0) + 7.5983 * Chi_Avg(1) - 
16.2788 * Chi_Avg(4) + 23.4753 * Chi_Avg(5) + _ 
        0.2149 * ChiV(0) - 0.7594 * ChiV(1) - 0.1974 * ChiV(2) + 2.2207 * ChiV(3) - 0.7265 * ChiV(5) + _ 
        8.4658 * ChiV_Avg(2) - 21.0254 * ChiV_Avg(3) 
         
Prop_AA = 0.6937 - 0.3134 * Chi(3) - 0.1253 * Chi(5) + 1.6912 * Chi_Avg(0) + 5.1275 * Chi_Avg(2) + _ 
        0.8448 * ChiV(3) - 2.3518 * ChiV_Avg(0) - 7.97 * ChiV_Avg(2) 
         
Prop_Ova = 1.1102 - 0.0514 * Chi(2) + 0.5165 * Chi(4) + 1.0148 * Chi_Avg(2) - 7.149 * Chi_Avg(5) - _ 
        1.0949 * ChiV(4) - 0.4271 * ChiV_Avg(0) - 1.4052 * ChiV_Avg(4) + 16.5246 * ChiV_Avg(5) 
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Prop_TI = -6.786 + 0.1362 * Chi(4) + 13.9898 * Chi_Avg(0) - 11.5258 * Chi_Avg(1) + 0.0346 * ChiV(1) - _ 
        0.2911 * ChiV(3) + 16.7938 * ChiV_Avg(2) - 19.2179 * ChiV_Avg(5) 
         
         
Prop_All = 0.0000251 * (-2.43 * Chi(0) + 6.52 * Chi(1) - 3.12 * Chi(2) - 94.32 * Chi_Avg(1) + 74.04 * 
Chi_Avg(2)) * _ 
        (0.029 * ASA + 19.35 * ahelix - 60.34 * bsheet - 71.54 * MW_prot + 66.38 * Tm) 
 
         
'Penalty Function 
For i = 1 To UBound(mol) 
    If mol(1) = 4 Or mol(UBound(mol)) = 4 Then  'Add penalty for O-OH bond 
        Penalty = 1000 
        Exit For 
    End If 
    If i > 1 Then 
        If mol(i - 1) > n_minusrings And mol(i) > n_minusrings Then 'Add penalty if two rings are fused 
together 
            Penalty = 1000 
            Exit For 
        ElseIf mol(i - 1) = 4 And mol(i) = 4 Then   'Add penalty for O-O bond 
            Penalty = 1000 
            Exit For 
        End If 
    End If 
Next i 
    
 
 
obj = Abs(Prop_MW - Target_MW) / Abs(Target_MW) ' + Penalty 
 
End Function 
 
 
 
Function fitness(mol) As Double 
 
Target_MW = 148 
Lower_MW = 0 
Higher_MW = 296 
alpha = 0.001 
 
fitness = Exp(-alpha * (MW(mol) - Target_MW) ^ 2 / (Higher_MW - Lower_MW) ^ 2) 
 
 
End Function 
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Function RNAmonomer(groups As Range) As Double 
 
Dim mol() As Long, m As Long, size As Long, i As Long 
Dim del() As Long, delv() As Long, nH() As Long 
Dim AdjM() As Long, Chi(0 To 5) As Double, ChiV(0 To 5) As Double 
Dim Chi_Avg(0 To 5) As Double, ChiV_Avg(0 To 5) As Double 
 
m = groups.Count 
ReDim mol(1 To m) 
For i = 1 To m 
    mol(i) = groups(i).Value 
Next i 
 
Call BuildMolecule(mol(), del(), delv(), nH(), AdjM(), m, size) 
Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
 
RNAmonomer = 12.271 + 0.0637 * Chi(1) + 0.5761 * Chi(3) - 0.1392 * Chi(5) - 18.2244 * Chi_Avg(0) + 
3.9332 * Chi_Avg(2) + _ 
        6.0029 * Chi_Avg(5) + 0.6086 * ChiV(1) - 2.5101 * ChiV(2) + 3.5378 * ChiV(4) - 3.1432 * ChiV(5) + _ 
        36.8323 * ChiV_Avg(2) - 44.3452 * ChiV_Avg(3) - 19.6284 * ChiV_Avg(4) + 13.1564 * ChiV_Avg(5) 
 
End Function 
 
Function BSAmonomer(groups As Range) As Double 
 
Dim mol() As Long, m As Long, size As Long, i As Long 
Dim del() As Long, delv() As Long, nH() As Long 
Dim AdjM() As Long, Chi(0 To 5) As Double, ChiV(0 To 5) As Double 
Dim Chi_Avg(0 To 5) As Double, ChiV_Avg(0 To 5) As Double 
 
m = groups.Count 
ReDim mol(1 To m) 
For i = 1 To m 
    mol(i) = groups(i).Value 
Next i 
 
Call BuildMolecule(mol(), del(), delv(), nH(), AdjM(), m, size) 
Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
 
BSAmonomer = 5.9445 - 0.279 * Chi(3) - 0.3754 * Chi(5) - 10.0317 * Chi_Avg(0) + 7.5983 * Chi_Avg(1) - 
16.2788 * Chi_Avg(4) + 23.4753 * Chi_Avg(5) + _ 
        0.2149 * ChiV(0) - 0.7594 * ChiV(1) - 0.1974 * ChiV(2) + 2.2207 * ChiV(3) - 0.7265 * ChiV(5) + _ 
        8.4658 * ChiV_Avg(2) - 21.0254 * ChiV_Avg(3) 
 
End Function 
 
Function AAmonomer(groups As Range) As Double 
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Dim mol() As Long, m As Long, size As Long, i As Long 
Dim del() As Long, delv() As Long, nH() As Long 
Dim AdjM() As Long, Chi(0 To 5) As Double, ChiV(0 To 5) As Double 
Dim Chi_Avg(0 To 5) As Double, ChiV_Avg(0 To 5) As Double 
 
m = groups.Count 
ReDim mol(1 To m) 
For i = 1 To m 
    mol(i) = groups(i).Value 
Next i 
 
Call BuildMolecule(mol(), del(), delv(), nH(), AdjM(), m, size) 
Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
 
AAmonomer = 0.6937 - 0.3134 * Chi(3) - 0.1253 * Chi(5) + 1.6912 * Chi_Avg(0) + 5.1275 * Chi_Avg(2) + _ 
        0.8448 * ChiV(3) - 2.3518 * ChiV_Avg(0) - 7.97 * ChiV_Avg(2) 
 
End Function 
 
Function OVAmonomer(groups As Range) As Double 
 
Dim mol() As Long, m As Long, size As Long, i As Long 
Dim del() As Long, delv() As Long, nH() As Long 
Dim AdjM() As Long, Chi(0 To 5) As Double, ChiV(0 To 5) As Double 
Dim Chi_Avg(0 To 5) As Double, ChiV_Avg(0 To 5) As Double 
 
m = groups.Count 
ReDim mol(1 To m) 
For i = 1 To m 
    mol(i) = groups(i).Value 
Next i 
 
Call BuildMolecule(mol(), del(), delv(), nH(), AdjM(), m, size) 
Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
 
OVAmonomer = 1.1102 - 0.0514 * Chi(2) + 0.5165 * Chi(4) + 1.0148 * Chi_Avg(2) - 7.149 * Chi_Avg(5) - _ 
        1.0949 * ChiV(4) - 0.4271 * ChiV_Avg(0) - 1.4052 * ChiV_Avg(4) + 16.5246 * ChiV_Avg(5) 
 
End Function 
 
Function TImonomer(groups As Range) As Double 
 
Dim mol() As Long, m As Long, size As Long, i As Long 
Dim del() As Long, delv() As Long, nH() As Long 
Dim AdjM() As Long, Chi(0 To 5) As Double, ChiV(0 To 5) As Double 
Dim Chi_Avg(0 To 5) As Double, ChiV_Avg(0 To 5) As Double 
 
m = groups.Count 
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ReDim mol(1 To m) 
For i = 1 To m 
    mol(i) = groups(i).Value 
Next i 
 
Call BuildMolecule(mol(), del(), delv(), nH(), AdjM(), m, size) 
Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
 
TImonomer = -6.786 + 0.1362 * Chi(4) + 13.9898 * Chi_Avg(0) - 11.5258 * Chi_Avg(1) + 0.0346 * ChiV(1) 
- _ 
        0.2911 * ChiV(3) + 16.7938 * ChiV_Avg(2) - 19.2179 * ChiV_Avg(5) 
 
End Function 
 
Sub ReturnCI() 
 
Dim mol() As Long, m As Long, size As Long, i As Long, groups As Range 
Dim del() As Long, delv() As Long, nH() As Long 
Dim AdjM() As Long, Chi(0 To 5) As Double, ChiV(0 To 5) As Double 
Dim Chi_Avg(0 To 5) As Double, ChiV_Avg(0 To 5) As Double 
 
Set groups = Application.InputBox("Select groups", Type:=8) 
m = groups.Count 
ReDim mol(1 To m) 
For i = 1 To m 
    mol(i) = groups(i).Value 
Next i 
 
Call BuildMolecule(mol(), del(), delv(), nH(), AdjM(), m, size) 
Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
 
For i = 0 To 5 
    ActiveCell.Offset(0, i) = Chi(i) 
    ActiveCell.Offset(1, i) = ChiV(i) 
    ActiveCell.Offset(2, i) = Chi_Avg(i) 
    ActiveCell.Offset(3, i) = ChiV_Avg(i) 
Next i 
 
End Sub 

CONNECTIVITY INDICES CALCULATOR CODE 
Option Explicit 
 
Sub GetConnectivity(del() As Long, delv() As Long, nH() As Long, AdjM() As Long, m As Long, Chi() As 
Double, ChiV() As Double, _ 
                    Chi_Avg() As Double, ChiV_Avg() As Double) 
 
Dim i As Long, j As Long, k As Long, edgecount As Long 
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Dim path2count() As Double, path2sum As Double, p As Long 
Dim path3count() As Double, path3sum As Double, i3 As Long 
Dim path4count() As Double, path4sum As Double, i4 As Long 
Dim path5count() As Double, path5sum As Double, i5 As Long 
Dim av() As Double, avv() As Double, e() As Double, ev() As Double 
 
'Clear old results 
Erase Chi() 
Erase ChiV() 
Erase Chi_Avg() 
Erase ChiV_Avg() 
 
'ReDim all relevant arrays 
 
ReDim av(1 To m)                            'Array for vertex degrees 
ReDim avv(1 To m)                           'Array for valence vertex degrees 
ReDim path2count(1 To m, 1 To m, 1 To m)    'Array for storing existence of 2-length paths 
ReDim path3count(1 To m, 1 To m)    'Array for storing existence of 3-length paths 
ReDim path4count(1 To m, 1 To m)    'Array for storing existence of 4-length paths 
ReDim path5count(1 To m, 1 To m)    'Array for storing existence of 5-length paths 
 
'Calculate valence vertex degrees 
For i = 1 To m 
    avv(i) = (delv(i) - nH(i)) / (del(i) - delv(i) - 1) + AdjM(i, i) 
Next i 
 
'Calculate vertex degrees and X0 and X0v 
For i = 1 To m 
    For j = 1 To m 
        av(i) = AdjM(i, j) + av(i) 
    Next j 
    If av(i) = 0 Then 
        MsgBox "Disconnected Atom", , "Error" 
        Exit Sub 
    End If 
    Chi(0) = Chi(0) + 1 / (av(i) ^ 0.5) 
    ChiV(0) = ChiV(0) + 1 / (avv(i) ^ 0.5) 
Next i 
 
'Count number of edges 
For i = 2 To m 
    For j = 1 To i - 1 
        If AdjM(i, j) > 0 Then edgecount = edgecount + 1 
    Next j 
Next i 
 
'Dimension array to size of number of edges 
ReDim e(1 To edgecount) 
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ReDim ev(1 To edgecount) 
 
'Calculate edge values and X1 and X1v 
k = 1 
For i = 2 To m 
    For j = 1 To i - 1 
        If AdjM(i, j) > 0 Then 
            e(k) = av(i) * av(j) 
            ev(k) = avv(i) * avv(j) 
            Chi(1) = Chi(1) + 1 / (e(k) ^ 0.5) 
            ChiV(1) = ChiV(1) + 1 / (ev(k) ^ 0.5) 
            k = k + 1 
        End If 
    Next j 
Next i 
 
'Records existence of paths of length 2 
For i = 1 To m 
    For j = 1 To m 
        If j <> i Then 
            If AdjM(i, j) > 0 Then 
                For k = 1 To m 
                    If k <> j And k <> i Then 
                        If AdjM(j, k) > 0 Then 
                            If path2count(k, j, i) > 0 Then 
                                path2count(i, j, k) = 0 
                            Else 
                                path2count(i, j, k) = 1 
                            End If 
                        End If 
                    End If 
                Next k 
            End If 
        End If 
    Next j 
Next i 
 
'Calculate X2 and X2v 
For i = 1 To m 
    For j = 1 To m 
        For k = 1 To m 
            path2sum = path2sum + path2count(i, j, k)           'Count the number of paths of length 2 - Mainly 
for debugging purposes 
            If path2count(i, j, k) > 0 Then 
                Chi(2) = Chi(2) + 1 / ((av(i) * av(j) * av(k)) ^ 0.5) 
                ChiV(2) = ChiV(2) + 1 / ((avv(i) * avv(j) * avv(k)) ^ 0.5) 
            End If 
        Next k 
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    Next j 
Next i 
 
'Check for paths of length 3, 4 and 5 
For i = 1 To m 
    For j = 1 To m 
        If j <> i Then 
            If AdjM(i, j) > 0 Then 
                For k = 1 To m 
                    If k <> j And k <> i Then 
                        If AdjM(j, k) > 0 Then 
                            For i3 = 1 To m 
                                If i3 <> k And i3 <> j And i3 <> i Then 
                                    If AdjM(k, i3) > 0 Then 
                                        If path3count(i3, i) > 0 Then 
                                            path3count(i, i3) = 0                                         ' Avoids double counting paths 
                                        Else 
                                            path3count(i, i3) = 1 
                                            path3sum = path3sum + 1 
                                            Chi(3) = Chi(3) + 1 / ((av(i) * av(j) * av(k) * av(i3)) ^ 0.5) 
                                            ChiV(3) = ChiV(3) + 1 / ((avv(i) * avv(j) * avv(k) * avv(i3)) ^ 0.5) 
                                        End If 
                                        For i4 = 1 To m 
                                            If i4 <> i3 And i4 <> k And i4 <> j And i4 <> i Then 
                                                If AdjM(i3, i4) > 0 Then 
                                                    If path4count(i4, i) > 0 Then 
                                                        path4count(i, i4) = 0 
                                                    Else 
                                                        path4count(i, i4) = 1 
                                                        path4sum = path4sum + 1 
                                                        Chi(4) = Chi(4) + 1 / ((av(i) * av(j) * av(k) * av(i3) * av(i4)) ^ 0.5) 
                                                        ChiV(4) = ChiV(4) + 1 / ((avv(i) * avv(j) * avv(k) * avv(i3) * avv(i4)) ^ 0.5) 
                                                    End If 
                                                    For i5 = 1 To m 
                                                        If i5 <> i3 And i5 <> k And i5 <> j And i5 <> i4 And i5 <> i Then   'i5 cannot 
equal i even if there is a five atom ring -- Paths not walks! 
                                                            If AdjM(i4, i5) > 0 Then 
                                                                If path5count(i5, i) > 0 Then 
                                                                    path5count(i, i5) = 0 
                                                                Else 
                                                                    path5count(i, i5) = 1 
                                                                    path5sum = path5sum + 1 
                                                                    Chi(5) = Chi(5) + 1 / ((av(i) * av(j) * av(k) * av(i3) * av(i4) * av(i5)) ^ 
0.5) 
                                                                    ChiV(5) = ChiV(5) + 1 / ((avv(i) * avv(j) * avv(k) * avv(i3) * avv(i4) * 
avv(i5)) ^ 0.5) 
                                                                End If 
                                                            End If 
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                                                        End If 
                                                    Next i5 
                                                End If 
                                            End If 
                                        Next i4 
                                    End If 
                                End If 
                            Next i3 
                        End If 
                    End If 
                Next k 
            End If 
        End If 
    Next j 
Next i 
                                                                                     
                     
'Calculate XAs 
'Molecule guarenteed to have path of length 2, but need to check if any path length > 2 to avoid 
overflow 
Chi_Avg(0) = Chi(0) / m 
Chi_Avg(1) = Chi(1) / edgecount 
Chi_Avg(2) = Chi(2) / path2sum 
If path3sum <> 0 Then 
    Chi_Avg(3) = Chi(3) / path3sum 
Else 
    Chi_Avg(3) = 0 
End If 
If path4sum <> 0 Then 
    Chi_Avg(4) = Chi(4) / path4sum 
Else 
    Chi_Avg(4) = 0 
End If 
If path5sum <> 0 Then 
    Chi_Avg(5) = Chi(5) / path5sum 
Else 
    Chi_Avg(5) = 0 
End If 
 
ChiV_Avg(0) = ChiV(0) / m 
ChiV_Avg(1) = ChiV(1) / edgecount 
ChiV_Avg(2) = ChiV(2) / path2sum 
If path3sum <> 0 Then 
    ChiV_Avg(3) = ChiV(3) / path3sum 
Else 
    ChiV_Avg(3) = 0 
End If 
If path4sum <> 0 Then 
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    ChiV_Avg(4) = ChiV(4) / path4sum 
Else 
    ChiV_Avg(4) = 0 
End If 
If path5sum <> 0 Then 
    ChiV_Avg(5) = ChiV(5) / path5sum 
Else 
    ChiV_Avg(5) = 0 
End If 
 
 
End Sub 

TABU SEARCH CODE 
ption Explicit 
 
Sub RunTabu(mol() As Long, m As Long, del() As Long, delv() As Long, nH() As Long, AdjM() As Long, size 
As Long, _ 
                    Chi() As Double, ChiV() As Double, Chi_Avg() As Double, ChiV_Avg() As Double, Final_Obj As 
Double) 
                     
 
Dim moves As Long, max_moves As Long, TabuCriterion As Double, Stop_Criterion As Double 
Dim imax As Long, List_size As Long, Tabu_list() As Variant, Tabu_count As Long 
Dim Neighbors() As Molecule, p() As Double 
Dim Best_sol() As Long, Current_sol() As Long, Neighbor_sol() As Long 
Dim Best_obj As Double, Current_obj As Double, Neighbor_obj As Double 
Dim Neighbors_Chi(0 To 5) As Double, Neighbors_ChiV(0 To 5) As Double, Neighbors_Chi_Avg(0 To 5) As 
Double, Neighbors_ChiV_Avg(0 To 5) As Double 
Dim Current_Chi(0 To 5) As Double, Current_ChiV(0 To 5) As Double, Current_Chi_Avg(0 To 5) As 
Double, Current_ChiV_Avg(0 To 5) As Double 
Dim Best_Chi(0 To 5) As Double, Best_ChiV(0 To 5) As Double, Best_Chi_Avg(0 To 5) As Double, 
Best_ChiV_Avg(0 To 5) As Double 
Dim i As Long, j As Long, k As Long, iter As Long 
 
imax = 100#  'Max number of non-improving iterations 
List_size = 15#  'Size of tabu list 
ReDim Tabu_list(1 To List_size, 1 To 2) 'Set length of tabu list. 
'1st column is for molecule groups. 2nd column is for Chi0 values used in tabu check. 
max_moves = 4#  'maximum number of moves to create neighbors 
TabuCriterion = 0.2   'Criterion for making solution Tabu 
Stop_Criterion = 0#     'Criterion for objective function being good enough to stop 
 
'Create random initial solution 
Call InitialSolution(mol(), m) 
 
'Initial solution set as best solution and current solution 
Best_sol = mol      'Stores structure 
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Current_sol = mol   'Stores structure 
Call BuildMolecule(mol, del(), delv(), nH(), AdjM(), m, size) 
Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
For k = 0 To 5 
    Current_Chi(k) = Chi(k) 
    Current_ChiV(k) = ChiV(k) 
    Current_Chi_Avg(k) = Chi_Avg(k) 
    Current_ChiV_Avg(k) = ChiV_Avg(k) 
Next k 
Best_obj = obj(mol, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 'Stores objective value 
Tabu_list(1, 1) = mol 'Put initial solution into tabu list 
Tabu_list(1, 2) = Chi(0) 'Stores Chi0 for tabu solution 
 
'Tabu Search 
Do 
 
DoEvents        'Prevent not responding 
 
 
moves = Int((max_moves - 1 + 1) * Rnd + 1) 'Max number of neighbors evaluated 
ReDim Neighbors(1 To moves) 'initialize array for storing neighbors 
ReDim p(1 To moves) 'initialize array for storing objective function values of neighbors 
 
'Create list of neighbors and neighbor properties 
For j = 1 To moves 
    Neighbors(j).mol = Make_Neighbor(Current_sol, m) 
    Call BuildMolecule(Neighbors(j).mol, del(), delv(), nH(), AdjM(), m, size) 
    Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
    For k = 0 To 5 
        Neighbors(j).Chi(k) = Chi(k) 
        Neighbors(j).ChiV(k) = ChiV(k) 
        Neighbors(j).Chi_Avg(k) = Chi_Avg(k) 
        Neighbors(j).ChiV_Avg(k) = ChiV_Avg(k) 
    Next k 
    p(j) = obj(Neighbors(j).mol(), Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
Next j 
 
Neighbor_obj = p(1) 'Arbitrarily sets first neighbor as best objective function value 
 
'Determine best non-tabu neighbor 
For j = 1 To moves 
    Tabu_count = 0  'Initialize 
    If p(j) <= Neighbor_obj Then 'If objective function of neighbor is better than previous best, replace 
        For i = 1 To List_size  'Check against each member of tabu list 
            If Abs(Neighbors(j).Chi(0) - Tabu_list(i, 2)) > TabuCriterion Then 'Tabu Check 
                Tabu_count = 0 'Solution is not Tabu yet... 
            Else 
                Tabu_count = 1 'Solution is Tabu. Quit checking against Tabu List. 
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                Exit For 
            End If 
        Next i 
        If Tabu_count = 0 Then 'Check to see if solution is tabu. If not, assign solution to surrent solution. 
            Neighbor_sol = Neighbors(j).mol 
            Neighbor_obj = p(j) 
            For k = 0 To 5 
                Neighbors_Chi(k) = Neighbors(j).Chi(k) 
                Neighbors_ChiV(k) = Neighbors(j).ChiV(k) 
                Neighbors_Chi_Avg(k) = Neighbors(j).Chi_Avg(k) 
                Neighbors_ChiV_Avg(k) = Neighbors(j).ChiV_Avg(k) 
            Next k 
        ElseIf p(j) <= Best_obj Then 'Override Tabu Criterion if solution is best yet encountered 
            Neighbor_sol = Neighbors(j).mol 
            Neighbor_obj = p(j) 
            For k = 0 To 5 
                Neighbors_Chi(k) = Neighbors(j).Chi(k) 
                Neighbors_ChiV(k) = Neighbors(j).ChiV(k) 
                Neighbors_Chi_Avg(k) = Neighbors(j).Chi_Avg(k) 
                Neighbors_ChiV_Avg(k) = Neighbors(j).ChiV_Avg(k) 
            Next k 
            If p(j) <= Stop_Criterion Then   'Stop search if you have found best possible/allowable solution 
                Neighbor_sol = Best_sol 
                Neighbor_obj = Best_obj 
                Exit Do 
            End If 
        End If 
    End If 
Next j 
 
'Aspirate if all neighbors are Tabu (i.e., no neighbor solution was found) 
If isArrayEmpty(Neighbor_sol) Then 
    Call InitialSolution(mol(), m)  'Randomly generate a new molecule to be pseudo-neighbor 
    Neighbor_sol = mol 
     
    Call BuildMolecule(mol, del(), delv(), nH(), AdjM(), m, size) 
    Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
    For k = 0 To 5 
        Neighbors_Chi(k) = Chi(k) 
        Neighbors_ChiV(k) = ChiV(k) 
        Neighbors_Chi_Avg(k) = Chi_Avg(k) 
        Neighbors_ChiV_Avg(k) = ChiV_Avg(k) 
    Next k 
    Neighbor_obj = obj(mol, Neighbors_Chi(), Neighbors_ChiV(), Neighbors_Chi_Avg(), 
Neighbors_ChiV_Avg()) 
End If 
 
'Makes best non-tabu neighbor the current solution 
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Current_sol = Neighbor_sol 
Current_obj = Neighbor_obj 
m = UBound(Neighbor_sol) 
For k = 0 To 5 
    Current_Chi(k) = Neighbors_Chi(k) 
    Current_ChiV(k) = Neighbors_ChiV(k) 
    Current_Chi_Avg(k) = Neighbors_Chi_Avg(k) 
    Current_ChiV_Avg(k) = Neighbors_ChiV_Avg(k) 
Next k 
 
Erase Neighbor_sol    'Clears out neighbor solution 
 
'Check current solution against best solution 
If Current_obj < Best_obj Then 
    iter = 0                       'reset count on non-improving iterations 
    Best_obj = Current_obj 
    Best_sol = Current_sol 
    For k = 0 To 5 
        Best_Chi(k) = Current_Chi(k) 
        Best_ChiV(k) = Current_ChiV(k) 
        Best_Chi_Avg(k) = Current_Chi_Avg(k) 
        Best_ChiV_Avg(k) = Current_ChiV_Avg(k) 
    Next k 
Else 
    iter = iter + 1                   'increase count on non-improving iteration 
End If 
 
Call MakeTabuList(Current_sol, Current_Chi(0), Tabu_list(), List_size) 'Add newest solution to tabu list 
     
Loop While iter <= imax 
 
'Records best solution as solution molecule for output 
mol = Best_sol 
m = UBound(mol) 
For k = 0 To 5 
    Chi(k) = Best_Chi(k) 
    ChiV(k) = Best_ChiV(k) 
    Chi_Avg(k) = Best_Chi_Avg(k) 
    ChiV_Avg(k) = Best_ChiV_Avg(k) 
Next k 
Final_Obj = Best_obj 
 
End Sub 
 
Sub MakeTabuList(mol, chi_0, Tabu_list(), List_size As Long) 
'Add new solution to tabu list and delete oldest solution 
 
Dim j As Long 
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For j = List_size To 2 Step -1 
    Tabu_list(j, 1) = Tabu_list(j - 1, 1) 'move all tabu solutions down on the list 
    Tabu_list(j, 2) = Tabu_list(j - 1, 2) 
Next j 
 
Tabu_list(1, 1) = mol 'put newest solution at top of tabu list 
Tabu_list(1, 2) = chi_0 'record Chi0 value for use in future tabu checks 
 
End Sub 
 
Function Swap(mol() As Long, m As Long) 
'Funtion to swap two existing groups 
 
Dim i As Long, j As Long 
Dim old_i As Long, old_j As Long 
 
If m <= 1 Then Exit Function 'exit if molecule is comprised of only one group 
 
' randomly select groups to swap 
i = Int((m - 1 + 1) * Rnd + 1) 
j = Int((m - 1 + 1) * Rnd + 1) 
 
'Stores inital values of i and j 
old_i = mol(i) 
old_j = mol(j) 
 
'Swaps values of i and j 
mol(i) = old_j 
mol(j) = old_i 
 
Swap = mol 'returns new molecule 
 
End Function 
 
Function Insert(mol() As Long, m As Long) 
'Function to insert group into existing molecule 
 
Dim Insertion As Long, old_mol() As Long 
Dim i As Long 
 
If m >= m_max Then Exit Function 
 
ReDim old_mol(1 To m) 'Exits if molecule is at maximum size 
 
'Store old molecule 
For i = 1 To m 
    old_mol(i) = mol(i) 
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Next i 
 
'Grow molecule by one 
m = m + 1 
ReDim mol(1 To m) 
 
Insertion = Int((m - 1 + 1) * Rnd + 1) 'Randomly select insertion point 
 
'Fills in groups prior to insertion 
For i = 1 To Insertion - 1 
    mol(i) = old_mol(i) 
Next i 
 
mol(Insertion) = Int((n - 1 + 1) * Rnd + 1) 'Insert random group at insertion point 
 
'Fills in groups following insertion 
For i = Insertion + 1 To m 
    mol(i) = old_mol(i - 1) 
Next i 
 
Insert = mol 'returns new molecule 
 
End Function 
 
Function Delete(mol() As Long, m As Long) 
'Function to insert group into existing molecule 
 
Dim Deletion As Long, old_mol() As Long 
Dim i As Long 
 
If m <= 1 Then Exit Function 'Exits if molecule only contains one group 
 
ReDim old_mol(1 To m) 
 
'Store old molecule 
For i = 1 To m 
    old_mol(i) = mol(i) 
Next i 
 
'Shrink molecule by one 
m = m - 1 
ReDim mol(1 To m) 
 
Deletion = Int((m - 1 + 1) * Rnd + 1) 'Randomly select deletion point 
 
'Fills in groups prior to deletion 
For i = 1 To Deletion - 1 
    mol(i) = old_mol(i) 
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Next i 
 
'Fills in groups following deletion 
For i = Deletion To m 
    mol(i) = old_mol(i + 1) 
Next i 
 
Delete = mol 'returns new molecule 
 
End Function 
 
Function Mutate(mol() As Long, m As Long) 
 
Dim i As Long 
 
i = Int((m - 1 + 1) * Rnd + 1)  'Randomly select mutation point 
mol(i) = Int((n - 1 + 1) * Rnd + 1) 'Randomly select mutation 
 
Mutate = mol    'returns new molecule 
 
End Function 
 
Function Make_Neighbor(mol() As Long, m As Long) 
'Assigns number of atoms in group selected 
Dim k As Long 
 
If m = 1 Then 
    k = 2   'Make sure you insert to find neighbor if molecule has only one group 
ElseIf m = m_max Then 
    k = 3   'Make sure you delete to find neighbor if molecule has max number of groups 
Else 
    k = Int((4 - 1 + 1) * Rnd + 1) 'Randomly select molecular operator 
End If 
 
Select Case k 
    Case Is = 1 
       Make_Neighbor = Swap(mol, m) 
    Case Is = 2 
       Make_Neighbor = Insert(mol, m) 
    Case Is = 3 
       Make_Neighbor = Delete(mol, m) 
    Case Is = 4 
        Make_Neighbor = Mutate(mol, m) 
End Select 
 
End Function 
 
Public Function isArrayEmpty(parArray As Variant) As Boolean 



 

276 
 

'Returns true if: 
'  - parArray is not an array 
'  - parArray is a dynamic array that has not been initialised (ReDim) 
'  - parArray is a dynamic array has been erased (Erase) 
 
    If IsArray(parArray) = False Then isArrayEmpty = True 
    On Error Resume Next 
    If UBound(parArray) < LBound(parArray) Then 
        isArrayEmpty = True 
        Exit Function 
    Else 
        isArrayEmpty = False 
    End If 
     
End Function 

GENETIC ALGORITHM CODE 
Option Explicit 
 
Sub RunGA(mol() As Long, m As Long, del() As Long, delv() As Long, nH() As Long, AdjM() As Long, size As 
Long, _ 
            Chi() As Double, ChiV() As Double, Chi_Avg() As Double, ChiV_Avg() As Double, Final_Obj As 
Double) 
 
Dim Gen_Max As Long, Pop_Size As Long, Population() As Molecule, p() As Double, Max_Prob As Double 
Dim Best_obj As Double, Best_Member As Long, p_total As Double, Stop_Criterion As Double 
Dim Parents() As Molecule, Parent_selection() As Long, num_parents As Long, prob As Double 
Dim Partner1() As Long, Partner2() As Long 
Dim Parent_1 As Long, Parent_2 As Long, m_1 As Long, m_2 As Long, CX_1 As Long, CX_2 As Long 
Dim i As Long, j As Long, k As Long 
 
 
Gen_Max = 25#  'Maximum numbers of generations 
Pop_Size = 50#  'Population size in each generation 
Max_Prob = 100#   'Maximum probability to sample from for roulette selection 
Stop_Criterion = 100#     'Criterion for objective function being good enough to stop 
ReDim Population(1 To Pop_Size) 'Create array for storing population 
ReDim p(1 To Pop_Size)  'Create array to store fitness values 
i = 0 'Progenitors are zeroth generation 
 
'Seed Population 
For j = 1 To Pop_Size 
    Call InitialSolution(Population(j).mol(), m)    'Randomly generate molecule 
    Call BuildMolecule(Population(j).mol, del(), delv(), nH(), AdjM(), m, size) 
    Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
    For k = 0 To 5 
        Population(j).Chi(k) = Chi(k) 
        Population(j).ChiV(k) = ChiV(k) 
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        Population(j).Chi_Avg(k) = Chi_Avg(k) 
        Population(j).ChiV_Avg(k) = ChiV_Avg(k) 
    Next k 
Next j 
 
' 
'Genetic Algorithm 
' 
Do 
 
DoEvents    'Suppress not responding 
 
'Calculate Fitness 
If obj(Population(1).mol, Population(1).Chi(), Population(1).ChiV(), Population(1).Chi_Avg(), 
Population(1).ChiV_Avg()) = 0 Then 
    p(1) = 1 / (obj(Population(1).mol, Population(1).Chi(), Population(1).ChiV(), Population(1).Chi_Avg(), 
Population(1).ChiV_Avg()) + 0.001) 
Else 
    p(1) = 1 / obj(Population(1).mol, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 'fitness(Population(1).mol) 
End If 
Best_obj = p(1)                 'Set inital member of solution as best member 
Best_Member = 1 
p_total = p(1) 
For j = 2 To Pop_Size 
    If obj(Population(j).mol, Population(j).Chi(), Population(j).ChiV(), Population(j).Chi_Avg(), 
Population(j).ChiV_Avg()) = 0 Then 
        p(j) = 1 / (obj(Population(j).mol, Population(j).Chi(), Population(j).ChiV(), Population(j).Chi_Avg(), 
Population(j).ChiV_Avg()) + 0.001) 
    Else 
        p(j) = 1 / obj(Population(j).mol, Population(j).Chi(), Population(j).ChiV(), Population(j).Chi_Avg(), 
Population(j).ChiV_Avg()) 'fitness(Population(j).mol) 
    End If 
        p_total = p_total + p(j) 
        If p(j) > Best_obj Then     'If current member has better obj than best, replace best with current 
member 
            Best_obj = p(j) 
            Best_Member = j 
        End If 
    Next j 
         
'Termination criteria 
If i >= Gen_Max Or Best_obj > Stop_Criterion Then    'Check if generations have completed or if best 
solution from generation is good enough to stop search 
    mol = Population(Best_Member).mol                'If so, return best solution and exit GA 
    For k = 0 To 5 
        Chi(k) = Population(Best_Member).Chi(k) 
        ChiV(k) = Population(Best_Member).ChiV(k) 
        Chi_Avg(k) = Population(Best_Member).Chi_Avg(k) 
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        ChiV_Avg(k) = Population(Best_Member).ChiV_Avg(k) 
    Next k 
    Final_Obj = obj(mol, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
    Exit Do 
End If 
 
'Select Parents 
num_parents = 0 'no parents selected yet 
Erase Parents() 'erase old parents 
ReDim Parent_selection(1 To Pop_Size)   'Create array for storing parent selection 
k = 1   'counter for number of parents 
For j = 1 To Pop_Size 
    prob = 100 * p(j) / p_total                 'Calculate probability of becoming parent 
    If Int((Max_Prob - 1 + 1) * Rnd + 1) < prob Then 'Roulette selection 
        Parent_selection(j) = 1 
        num_parents = num_parents + 1 
   End If 
Next j 
 
If num_parents = 0 Then     'If no parents selected, randomly choose two members of the population to 
become parents 
    ReDim Parents(1 To 2) 
    Parents(1).mol = Population(Int((Pop_Size - 1 + 1) * Rnd + 1)).mol 
    Parents(2).mol = Population(Int((Pop_Size - 1 + 1) * Rnd + 1)).mol 
Else 
    ReDim Parents(1 To num_parents)    'Dimension array for storing parents 
    k = 1   'counter for number of parents 
    For j = 1 To Pop_Size 
        If Parent_selection(j) = 1 Then 'If memeber is selected as parent, add to parents array 
            Parents(k).mol = Population(j).mol 
            k = k + 1 
        End If 
    Next j 
End If 
    
 
'Reproduction 
For j = 1 To Pop_Size 
    If p(j) >= Best_obj Then    'Elitist Policy 
        Population(j).mol = Population(j).mol 
    Else 
        Erase Partner1 
        Erase Partner2 
        Parent_1 = Int((num_parents - 1 + 1) * Rnd + 1) 
        Parent_2 = Int((num_parents - 1 + 1) * Rnd + 1) 
        m_1 = UBound(Parents(Parent_1).mol) 
        m_2 = UBound(Parents(Parent_2).mol) 
        Partner1 = Parents(Parent_1).mol 
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        Partner2 = Parents(Parent_2).mol 
        Population(j).mol = Make_Offspring(Partner1, Partner2, m_1, m_2, k, CX_1, CX_2) 
        If UBound(Population(j).mol) > m_max Then   'If new member of population is too large, kill off and 
replace with one of its two parents 
            If Int((2 - 1 + 1) * Rnd + 1) = 1 Then 
                Population(j).mol = Partner1 
            Else 
                Population(j).mol = Partner2 
            End If 
        ElseIf k = 5 And j <= (Pop_Size - 1) Then   'If crossover is selected, make sure next offspring is the 
other crossover result 
            j = j + 1 
            Partner1 = Parents(Parent_1).mol 
            Partner2 = Parents(Parent_2).mol 
            m_1 = UBound(Partner1) 
            m_2 = UBound(Partner2) 
            Population(j).mol = Crossover2(Partner1, Partner2, m_1, m_2, CX_1, CX_2) 
        End If 
    End If 
Next j 
 
'Calculate descriptors for next generation 
For j = 1 To Pop_Size 
    m = UBound(Population(j).mol) 
    Call BuildMolecule(Population(j).mol, del(), delv(), nH(), AdjM(), m, size) 
    Call GetConnectivity(del(), delv(), nH(), AdjM(), size, Chi(), ChiV(), Chi_Avg(), ChiV_Avg()) 
    For k = 0 To 5 
        Population(j).Chi(k) = Chi(k) 
        Population(j).ChiV(k) = ChiV(k) 
        Population(j).Chi_Avg(k) = Chi_Avg(k) 
        Population(j).ChiV_Avg(k) = ChiV_Avg(k) 
    Next k 
Next j 
 
 
i = i + 1   'Increase generation 
Erase Parent_selection 
 
Loop 
 
End Sub 
                     
Function Make_Offspring(Partner1() As Long, Partner2() As Long, m1 As Long, m2 As Long, k As Long, 
CX1 As Long, CX2 As Long) 
'Assigns number of atoms in group selected 
 
If m1 = 1 Then 
    k = 2   'Make sure you insert to find neighbor if molecule has only one group 
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ElseIf m1 >= m_max Then 
    k = 3   'Make sure you delete to find neighbor if molecule has max number of groups 
Else 
    k = Int((6 - 1 + 1) * Rnd + 1) 'Randomly select molecular operator 
End If 
 
Select Case k 
    Case Is = 1 
       Make_Offspring = Swap(Partner1, m1) 
    Case Is = 2 
       Make_Offspring = Insert(Partner1, m1) 
    Case Is = 3 
       Make_Offspring = Delete(Partner1, m1) 
    Case Is = 4 
        Make_Offspring = Mutate(Partner1, m1) 
    Case Is = 5 
        Make_Offspring = Crossover1(Partner1, Partner2, m1, m2, CX1, CX2) 
    Case Is = 6 
        Make_Offspring = Blend(Partner1, Partner2, m1, m2) 
End Select 
 
End Function 
 
Function Crossover1(Partner1() As Long, Partner2() As Long, m1 As Long, m2 As Long, CX1 As Long, CX2 
As Long) 
 
Dim i As Long, j As Long, size As Long, mol() As Long 
 
CX1 = Int(((m1 - 1) - 1 + 1) * Rnd + 1) 'Randomly choose crossover points 
CX2 = Int(((m2 - 1) - 1 + 1) * Rnd + 1) 
size = CX1 + (m2 - CX2) 
ReDim mol(1 To size) 
 
For i = 1 To CX1        'Offspring up to CX1 is taken from 1st parent 
    mol(i) = Partner1(i) 
Next i 
 
For j = (CX2 + 1) To m2 'Offspring after CX1 is taken from 2nd parent 
    mol(i) = Partner2(j) 
    i = i + 1 
Next j 
 
Crossover1 = mol 
 
 
End Function 
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Function Crossover2(Partner1() As Long, Partner2() As Long, m1 As Long, m2 As Long, CX1 As Long, CX2 
As Long) 
 
Dim i As Long, j As Long, size As Long, mol() As Long 
 
size = CX2 + (m1 - CX1) 
ReDim mol(1 To size) 
i = 1 
For j = (CX1 + 1) To m1      'Offspring past CX1 is taken from 1st parent 
    mol(i) = Partner1(j) 
    i = i + 1 
Next j 
 
For j = 1 To CX2 'Offspring before CX2 is taken from 2nd parent 
    mol(i) = Partner2(j) 
    i = i + 1 
Next j 
 
Crossover2 = mol 
 
End Function 
 
Function Blend(Partner1() As Long, Partner2() As Long, m1 As Long, m2 As Long) 
'Add two parents together to yield offspring 
 
Dim i As Long, j As Long, size As Long, mol() As Long 
 
size = m1 + m2 
ReDim mol(1 To size) 
 
For i = 1 To m1 
    mol(i) = Partner1(i) 
Next i 
 
For j = 1 To m2 
    mol(i) = Partner2(j) 
    i = i + 1 
Next j 
 
Blend = mol 
 
End Function   
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E. UNIFAC-IL INTERACTION PARAMETERS 
 

Interaction parameters for the UNIFAC-IL model described in Sections 4 and 6 are given. The interaction 

parameters are used in calculation of the activity coefficient for any given binary mixture of interest.  
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F. SUMMARY OF EXPERIMENTAL DATA 
 

Table F.1 summarizes the results obtained by Lavanya K. Iyer at Purdue University and used for model 

development for %Monomer as a function of protein structure (Roughton, Iyer et al. 2013). All other 

figures represent data obtained by the author. 
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Figure F.1 Pxrd results for subset of formulations selected Each panel displays a protein–excipient pair 

selected for analysis. Panels with two X-Ray diffractograms represent formulations that were chosen for 

replication.  
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Table F.2 Experimental SEC results Value in parenthesis indicates standard error of the mean (SEM). 

  

Excipient RNAse A BSA Ovalbumin 
Trypsin 

Inhibitor 
a-Amylase 

Sorbitol 99.3% (1.0%) 91.7% (1.1%) 99.6% (0.4%) 101.2% (2.1%) 98.1% (2.3%) 

Mannitol 85.3% (1.7%) 82.6% (1.1%) 98.8% (0.7%) 88.9% (3.5%) 95.0% (1.2%) 

Maltitol 86.6% (1.0%) 85.9% (2.3%) 92.5% (0.9%) 91.2% (0.3%) 93.5% (0.5%) 

Methyl-

glucamine 
89.3% (0.2%) 94.0% (0.3%) 95.2% (1.1%) 95.5% (0.8%) 97.9% (0.8%) 

Glucose 99.9% (0.5%) 88.8% (0.8%) 98.4% (0.5%) 91.8% (2.1%) 99.8% (2.5%) 

Mannose 85.4% (0.2%) 92.5% (1.4%) 94.8% (0.8%) 94.7% (0.6%) 98.3% (3.6%) 

Methyl-

Glucopyranoside 
89.2% (1.8%) 95.9% (0.6%) 95.3% (0.6%) 96.3% (0.8%) 

88.2% 

(10.0%) 

Xylose 83.0% (1.3%) 90.6% (0.6%) 95.7% (0.6%) 93.0% (0.5%) 94.8% (2.1%) 

Rhamnose 97.0% (1.7%) 85.5% (3.0%) 95.6% (0.1%) 111.1% (0.8%) 92.4% (1.3%) 

Acetyl-

glucosamine 
81.0% (1.7%) 92.8% (0.5%) 94.9% (0.3%) 91.6% (1.0%) 98.7% (1.2%) 

Trehalose 91.5% (0.3%) 89.6% (0.6%) 98.4% (1.1%) 90.4% (0.9%) 92.1% (2.1%) 

Raffinose 92.6% (1.7%) 90.8% (0.4%) 98.1% (0.5%) 86.5% (2.2%) 91.3% (4.1%) 

Psicose 102.4% (2.6%) 95.1% (0.4%)    

Fructose 96.0% (0.4%) 92.3% (1.4%)    

2-deoxy-glucose 97.5% (0.3%) 95.1% (0.7%)    

2-deoxy-ribose 88.5% (0.6%) 93.5% (0.8%)    

Palatinose 98.2% (0.5%) 92.8% (1.6%)    

Melibiose 96.7% (1.9%) 95.1% (0.6%)    

Maltose 95.4% (0.6%) 92.8% (1.3%)    

N-Acetyl-

Neuraminic Acid 
95.5% (0.1%) 94.9% (1.2%)    

Ethyl-glycine 96.9% (0.2%) 92.8% (1.9%)    

n-acetyl-glycine 98.5% (0.4%) 93.1% (2.0%)    

Gly-gly 97.7% (0.6%) 91.6% (0.4%)    

Gly-leu 94.4% (0.6%) 93.4% (0.4%)    

Gly-ser 97.3% (0.9%) 92.5% (0.4%)    

Gly-glu 97.2% (0.6%) 88.6% (0.6%)    
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Table F.3 SDS-PAGE Results under non-reducing and reducing conditions Reducing conditions were not 

used for -amylase as it does not contain cysteine residues. Results for reducing conditions are given in 

parenthesis.  

 

 Excipient RNAse A BSA Ovalbumin Trypsin Inhibitor -Amylase 

Sorbitol 

Dimer + Larger 

Aggregates  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Mannitol 
Dimer  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Maltitol 
Dimer  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Methyl-

glucamine 

Dimer  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Glucose 

Dimer + Larger 

Aggregates  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Mannose 
Dimer  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Methyl-

glucose 

Dimer  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Xylose 
Dimer  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Rhamnose 

Dimer + Larger 

Aggregates  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Acetyl-

glucosamine 

Dimer  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Trehalose 

Dimer + Larger 

Aggregates  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

Raffinose 

Dimer + Larger 

Aggregates  

(Dimer) 

Dimer + Larger 

Aggregates (Dimer + 

Larger Aggregates) 

Large Aggregates (None) 
None 

(None) 

Large 

Aggregates 

 

 


