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Abstract 

The blood brain barrier (BBB) is a key role in delivering medication to the brain; if the drug 

molecules can overcome this obstacle, many brain diseases (i.e., Alzheimer’s, Parkinson’s, 

and brain tumor) can be effectively treated. E-cadherin is important in forming cell-cell 

adhesion in intercellular junctions of the biological barriers (i.e., intestinal mucosa and 

BBB). Cadherin peptides (HAV6 and ADTC5) have been shown to modulate the BBB in the 

cell culture and in in-situ rat brain perfusion models. The hypothesis is that cadherin 

peptides modulate the tight junctions of the BBB by binding to the EC1 domain of E-

cadherin.  Thus, the objective of this project is to determine the dissociation constants (Kds) 

of linear and cyclic cadherin peptides (i.e., HAV- and ADT-peptides) to the expressed EC1 

domain of E-cadherin using circular dichroism (CD) spectroscopy. The data show that the 

cyclic HAVc3 peptide (Kd = 66.7±18.0 nM) has better binding property to the EC1 domain 

than the linear HAV6 peptide (Kd = 120.1±11.9 nM). Cyclic ADTC5 (Kd = 50.2± 11 nM) 

has lower dissociation constant than ADTC1 (Kd = 119.7± 16 nM). Mutation of the valine 

residue in ADTC5 to glutamic acid (ADTC7; Kd = 0.43± 0.050 nM) and threonine (ADTC8; 

Kd = 0.45±0.012) makes the peptides to have 100-fold tighter binding compared to the EC1 

domain. Mutation of the valine residue in ADTC5 to a tyrosine residue (ADTC9; Kd = 

0.038± 0.009) increases binding to the EC1 domain by 1000-fold. Finally, mutation of the 

valine residue to arginine demolishes the activity of ADTC10.  In the future, the activity of 

ADTC9 to modulate the BBB will be compared to ADTC5 in in vitro and in vivo models of 

the BBB. 
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1. Introduction 

The blood brain barrier (BBB) consists of 100 billion capillaries with a combined 

length of about 650 km; the surface area of these capillaries is approximately 20 square 

meters [1]. These capillaries have a dynamic function to both allow and prevent molecules 

from entering the brain [1-3]. Unfortunately, this means that the BBB also limits many 

beneficial medications from accessing the brain to treat diseases such as Alzheimer’s, 

Parkinson’s, brain tumors, and multiple sclerosis. However, the drug molecules are able to 

pass through the BBB using the paracellular and transcellular pathways [1-5]. The 

transcellular pathway is via passive diffusion, passive diffusion modified by efflux pumps, 

or active transport mechanism [3]. The transcellular passive diffusion mechanism engages 

several steps, including partition of the drug into cell membranes followed by entrance into 

the intracellular space. The drug then penetrates cell membranes of the BBB and enters the 

brain tissue. For partitioning into the cell membranes, the physicochemical properties of the 

drug become essential. Some drugs are recognized by efflux pump; although they effectively 

partition to the cell membranes, the efflux pumps expel them from the cell membranes that 

prevent them from crossing the BBB. A fraction of drug molecules cross the BBB using the 

active transport mechanism, which is normally an ATP-energy-dependent process. In 
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contrast, small ions and hydrophilic molecules cross the BBB using the paracellular pathway 

or penetrate via the intercellular pathway. The molecule permeation through the paracellular 

pathway is limited due to the presence of tight junctions (zonula occludens) between the 

opposing membranes of endothelial cells of the BBB [1-4]. Tight junctions are normally 

found in tissues that have absorption functions and impose barricades between the blood and 

other tissues. The tight junctions are connected by several transmembrane proteins, 

including occludins, claudins, and junctional adhesion molecules (JAMs) [6-13]. The 

adherens junctions (zonula adherens) are found underneath the tight junctions and 

desmosomes, which are below the adherens junctions [3, 4]. Calcium-dependent proteins in 

the cadherin family are involved in cell-cell adhesion in the adherens junctions and 

desmosomes [14, 15]. E- and VE-cadherins mediate cell-cell adhesion between the adherens 

junctions of the BBB while desmocollins and desmogleins in the cadherin family form cell-

cell adhesion in the desmosomes [16, 17].  

Cadherins help to hold and connect the cells together; they are also involved in cell 

morphogenesis, embryonic cell growth and separation [18], and cell migration [19]. 

Different cadherins are found in different tissues; for example, N-cadherin is involved in 

synapse formation in the neurons [18] while P-cadherin is found in the placenta [20]. 

Cadherins are transmembrane glycoproteins with extracellular, membrane, and cytoplasmic 
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domains [19]. The extracellular fragments of cadherins can be divided into five EC domains 

(EC-1 to EC-5). Each EC domain has 100–110 amino acid sequences [21]. The cell adhesion 

behavior of cadherin is calcium-dependent, and the removal of calcium eliminates the cell-

cell adhesion activity [22-24]. Calcium ions bind at the inter-repeat domain of the 

extracellular portion of E-cadherin; for example, three calcium ions are found at the inter-

domain between the EC1 and EC2 domains. In the absence of calcium, the EC domain of 

cadherin undergoes a conformational change from a rod-like shape to a globular shape [21].  

Cadherin-mediated cell-cell adhesion is a dynamic and reversible process that allows 

penetration of some molecules through the junctions. Modulation of cadherin interactions 

has been shown to temporarily enhance the permeation of paracellular marker molecules 

(i.e., 14C-mannitol) and an anticancer drug (3H-daunomycin) through the paracellular 

pathway of the in vitro and in vivo models of the BBB [24-26].  Many molecules cannot 

readily pass through the limited pore sizes of the tight junctions, which allow only molecules 

with hydrodynamic radii less than 11 Å to permeate [4]. If a way is found to increase the 

permeation of drug molecules through the tight junctions of the BBB, it may help in 

delivering many drugs to treat brain diseases. Many methods have been investigated to 

modulate the tight junctions for improving paracellular permeation of molecules. EDTA, 

EGTA, and citrate open the tight junctions non-selectively by chelating calcium and enhance 
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passive permeation of molecules through the paracellular pathways of MDCK and Caco-2 

cell monolayers [25]. Palmitoyl carnitine, deoxy- or glycol-cholate, and chitostan have also 

been known to increase the transport of molecules through the BBB [25]. Another method to 

modulate cell-cell adhesion involves inhibiting the protein kinase activity to phosphorylate 

of the cytoplasmic domain of occludin, claudin, and cadherins. Desphosphorylation of the 

intercellular junction proteins results in loosening of cell-cell adhesion due to protein 

translocation of these protein from the cell surface into the cell intracellular compartments 

[4]. However, it is difficult to control dephosphorylation of intercellular junction proteins 

without affecting other proteins as well. Finally, a hypertonic solution of mannitol has been 

used to open the tight junctions and deliver anticancer drugs to treat brain tumors; this 

hypertonic solution presumably causes crenation of the microvessel endothelial cells to 

loosen the tight junctions [27-29]. 

The approach in our laboratory is to temporarily disrupt the cadherin-cadherin 

interactions to increase the openings in the tight junctions for paracellular permeation of 

molecules through the BBB [2, 25]; this disruption is caused by cadherin peptides. The 

peptides were designed from the contact regions of the EC1 domain of E-cadherin  (Table 1) 

[24]. His-Ala-Val (HAV)- and Ala-Asp-Thr (ADT)-peptides (Table 2) were found to 

modulate the intercellular junctions of MDCK and Caco-2 cell monolayers as determined by 
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the change in trans-electrical epithelial resistance  (TEER) values [24, 26]. Compared to 

control peptides and vehicle, HAV6 and ADTC5 peptides increased the paracellular 

permeation of 14C-mannitol through the BBB in an in-situ rat brain perfusion model in a 

concentration-dependent manner [25, 30]. The fluorescence-labeled HAV and ADT-peptides 

decorated the intercellular junction proteins of bovine brain microvessel endothelial cells 

(BBMEC) [16] and MDCK [24] monolayers, indicating that the peptides bind to the 

intercellular junctions proteins. The hypothesis is that HAV- and ADT-peptides modulate 

the intercellular junction by binding to EC domain(s) of cadherins and inhibit cadherin-

cadherin interactions. One way to test this hypothesis is to study the binding properties of the 

peptides to the expressed extracellular domains of E- and VE-cadherins. Previously, NMR 

and CD spectroscopy studies showed that HAV6 peptide binds the EC5 domain of E-

cadherin [31]. However, there is no evidence that the cadherin peptides bind to other EC 

domains (EC1 to EC4) of E-cadherin; the hypothesis is that a cadherin peptide binds to 

different EC domains with different binding constants. Furthermore, there is no direct 

evidence that HAV- and ADT-peptides bind to VE-cadherin and, most likely, a cadherin 

peptide has different binding constants to the EC1 domain of E- and VE-cadherins. In the 

future, the results from this study will be used to design peptides selective to E-cadherin or 

VE-cadherin. 
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The long-term goal of this study is to compare the binding properties of HAV- and 

ADT-peptides to the EC1 domains of E- and VE-cadherins. The short-term goals of this 

project are (a) to express and purify the EC1 domain of E- and VE-cadherins and (b) to 

determine the dissociation constants (Kds) of HAV- and ADT-peptides to the EC1 domain of 

E-cadherin. In this work, we have successfully expressed and purified the EC1 domain E-

cadherin. Although the EC1 domain of VE-cadherin can be expressed, the purification of 

this protein is still difficult. Thus, only binding studies between the EC1 domain of E-

cadherin and cadherin peptides were carried out; these were done using circular dichroism 

(CD) spectroscopy. The results indicated that different peptides bind to EC1 domain of E-

cadherin with different dissociation constants (Kd) and these data will be used in an effort to 

improve the affinity of E-cadherin peptides to E-cadherin over VE-cadherin. 

 

2. Experimental Procedures 

2.1. Cloning EC1 of E- and VE-cadherins cDNA into plasmid pASK-IBA6 

cDNA sequences of E- and VE-cadherins were taken from human epithelial  and 

endothelial cadherin genomes, respectively (Table 1). The genes for EC1 domains of E- and 

VE-cadherins were inserted into pASK-IBA6 plasmid (IBA, Gottingen, Germany) [32]. The 

pASK-IBA6 plasmid has 3681 DNA base pairs (bp); it carries AmpR, f1 origin, and Multi 
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Cloning Sites 1 (MCS 1) gene regions. The MCS 1 region consists of Streptag-I, Factor Xa, 

and EC1 genes. The N-terminus of Streptag-I (WSHPQFEK) was connected to the C-

terminus of the OmpA signal sequence on the pASK-IBA6; the OmpA signal is used to 

direct the fusion of EC1 into the periplasm of the host cells. 

 The 

strep- tag 

sequence was added to provide a single step protein purification using StrepTactin II affinity 

column chromatography.  It has been shown previously that addition of the strep-tag 

sequence does not interfere with the folded structure and function of the EC1 domain of E-

cadherin. The cDNA of pASK-IBA6/EC1 was transformed into DH5α competent cells, and 

the cells were grown on LB agar plates with 100 mg/mL ampicillin at 37oC overnight.  Then, 

the cells were subcultured in 5 mL LB medium containing 100 mg/mL ampicillin and 

Table 1. The protein sequences of the EC1 domains of  

E- and VE-cadherin 

EC1 Domain of E-Cadherin EC1 Domain of VE-Cadherin 

WSHPQFEKIEGRDWVIPPISCPE

NEKGPFPKNLVQIKSNKDKEGK

VFYSITGQGADTPPVGVFIIERE

TGWLKVTEPLDRERIATYTFSH

AVSSNGNAVEDPMEILITVTDQ

NDNKPEFTQEVFKGSVMEGAL

PGTSVMEVTATDADDD 

DWIWNQMHIDEEKNTSLPHHV

GKIKSSVSRKNAKYLLKGEYVG

KVFRVDAETGDVFAIERLDRENI

SEYHLTAVIVDKDTGENLETPSS

FTIKVHDVNDNWPVFTHRLFNA

SVPESSAVGTSVISVTAVDADDP 
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incubated at 37oC overnight to amplify the plasmid DNA; the Qiagen Spin Miniprep Kit 

(Stratagene) was used to isolate the plasmid DNA. 

This plasmid DNA (pASK-IBA6/EC1 DNA) was transformed into BL21 cells using the 

heat shock method. The plasmid (1 µL) was transferred to 50 µL of BL21 cell suspension, 

and mixed by using vortex. To create the heat shock to allow the plasmid DNA to enter the 

cells, the mixture was incubated in the following sequential conditions: (a) ice for 30 min, 

(b) 42oC water bath for 30 sec, and (c) ice for 3 min. 200 µL of SOC medium (1.55 g yeast, 

0.25 mL of 1 M KCl, 0.5 mL of 1 M MgCl2, 0.5 mL of 1 M MgSO4, 1 mL of 1 M glucose in 

distilled H2O) was added into the cells under sterile conditions. The mixture was placed in a 

shaking incubator for 1 h. After 1 h, 50 µL and 150 µL of the BL21 cell aliquot were spread 

separately on two different LB agar plates containing 100 mg/mL ampicillin; this was 

followed by overnight incubation at 37oC. The survival colonies were observed on the plates 

as cells containing the EC1 gene that is resistant to ampicillin. A single colony of BL21 cell 

from LB agar was selected and transferred into 4 × 5 mL of LB medium containing 1000× of 

10 mg/mL ampicillin. The cells were incubated overnight in the orbital shaker at 250 rpm 

and 37oC. These cells were prepared as mini-cultured growth to detect production of the 

EC1 protein. 
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2.2. Overexpression of the EC1 protein  

 The BL21 cells from the mini culture (see above) were added into 4 × 250 mL of the 

LB medium (NaCl 10 g, peptone 10 g, yeast extract 5 g) containing 1000× of 100 mg/mL 

ampicillin.  They were incubated at 37oC in the shaker incubator until the cell mixture 

reached an OD550 (optical density, at wavelength 550) of 0.5–0.6. After this, 25 µL of 

anhydrotetracycline was added to induce protein production followed by incubation for 

another 6 h at 30oC. Then, the cells were harvested and centrifuged at 4,500 rpm for 10 min 

at 4oC. The pellets were isolated and stored at –80 oC until they were used in the next 

process. 

 

 

 

2.3. Purification of recombinant EC1 

For protein isolation, the cell pellets were resuspended at pH 8 in a binding buffer (100 

mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 0.02 % (w/v) NaN3). The cells were lysed with 

a French Press machine three times to release the EC1 protein. Cell debris was removed by 

centrifugation at 21000 × g for 1 h at 4oC, and the supernatant containing the protein was 

collected. The binding buffer was added to the supernatant and it was centrifuged again at 
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4500 rpm for 20 min to equilibrate the protein. 4 mL of the EC1 domain solution was loaded 

into a StrepTactin II chromatography column for affinity purification. The column was 

washed with 10 × column volume (50 ml) of binding buffer to elute all the proteins except 

the EC1 protein. The pure EC1 protein was then eluted from the column with 6 × column 

volume (30 ml) of elution buffer (100 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 0.02 % 

(w/v) NaN3, 2.5 mM DTT, 5 mM desthiobiotin) at pH 8 and collected in several fractions 

[33]. The pure protein fractions were pooled and concentrated using concentrator membrane 

with 10 a kDa MW cutoff (EMD Millipore, Billerica, MA). SDS PAGE was run after 

purification to visualize the pure EC1 protein. 
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2.4. Peptides 

The peptides used to titrate the EC1 domain are shown in Table 2. They were 

synthesized with C-terminal carboxyamide and N-terminal acetyl group using the solid 

phase method with Fmoc-protected amino acids in an automated peptide synthesizer. The 

peptides were cleaved from the resin with trifluoroacetic acid (TFA) in the presence of 

scavengers (i.e., anisol and ethane dithiols (EDT)). The disulfide bond in cyclic peptide was 

formed by air oxidation of the parent linear peptide in sodium bicarbonate buffer at pH 9.0. 

The peptides were then purified using a C18 semi-preparative reversed-phase HPLC column 

Table 2. The amino acid sequences of the modified cyclic peptides and the Kd 

of binding of each peptide to the EC1 domain of E-cadherin  

Peptide Name Sequence Molecular Weight Kd 
(nM) 

Linear HAV6 Ac-SHAVSS-NH2 627.66 120.1±11.9 

Cyclic HAVc3 Ac-CSHAVC-NH2 657 66.7±18.0 

ADTC1 Ac-CADTPPVC-NH2 844 119.7± 16 

ADTC5 Ac-CDTPPVC-NH2 744 50.2± 11 

ADTC7 AC-CDTPPEC-NH2 802.89 0.43± 0.050 

ADTC8 Ac-CDTPPTC-NH2 774.88 0.45±0.012 

ADTC9 Ac-CDTPPYC-NH2 836.95 0.038± 0.009 

ADTC10 Ac-CDTPPRC-NH2 829.96 Not active 
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and the pure fractions were analyzed by analytical HPLC with a C18 column. The pure 

peptides were pooled and lyophilized; the purity of all peptides was higher than 95%. Mass 

spectrometry was used to determine the identity of each peptide. 

 

2.5. Circular Dichroism (CD) 

CD spectrometry was used to evaluate the binding properties of cadherin peptides to the 

EC1 domain of E-cadherin [34]. In this case, the EC1 protein was titrated with different 

concentrations of peptide followed by observing the spectrum of the protein after each 

peptide addition. The spectral changes were plotted against peptide concentrations to 

determine the peptide dissociation constant (Kd). Because the phosphate buffer does not 

interfere with the protein and peptide spectra, the EC1 protein was dialyzed into phosphate 

(KH2PO4) buffer for 1.5 h before CD experiments. Prior to conducting the experiment, the 

CD instrument was equilibrated for 15 min. First, the CD spectra of the EC1 protein at 

different concentrations (i.e., 0.01, 0.005, 0.0025, 0.00125, 0.000625 mM) were scanned. 

The optimal concentration for the binding studies was found to be 0.01 mM, which gives a 

distinct spectrum of the EC1 domain, as observed previously [35, 36]. Then, the EC1 protein 

(500 µL) was titrated with every 5 µL of buffer up to a total addition of buffer of 100 µL; 

this was done to see whether the addition of buffer and the dilution process dramatically 
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affect the EC1 spectra. In every experiment, the contributions of peptide and buffer to the 

spectrum of the EC1 were subtracted to acquire the spectrum of protein during binding.  

As an example, a stock solution of the HAV6 peptide (1.59 µM, 0.001 mg/ml) was 

prepared in phosphate buffer at pH 7.0. After the protein was dialyzed into phosphate buffer, 

500 µL of EC1 was placed in a mini CD cuvette. Then, 5 µL of stock peptide solution was 

added into the protein gradually; after each addition, the solution mixture was equilibrated 

for 15 min prior to collecting the CD spectrum. The peptide solution was added until binding 

saturation was observed as reflected by the lack of change in CD absorption upon further 

peptide addition. A similar procedure was carried out for the titration of EC1 with cHAV3, 

ADTC5, and ADTC1 peptides. Due to high potency of the mutated cyclic peptides 

(ADTC7–ADTC10), a lower concentration stock solution of peptides (0.0001 mg/mL; 

ADTC7 0.125 µM, ADTC8 0.129 µM, ADTC9 0.119 µM, ADTC10 0.120 µM) was used. 

The peptide stock solution was added to the protein every 1–2 µL per addition. The collected 

CD data were converted to a readable Excel data file for processing to subtract the effect of 

buffer and peptide from the collected spectrum. A plot of CD absorption change at 220 nm 

vs. peptide concentration was generated and the Kd of each peptide was calculated using a 

SigmaPlot program.  
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3. Results and Discussion 

3.1. Expression and purification of the EC1 domains of VE- and E-cadherins 

The EC1 domain of VE-cadherin was successfully expressed using BL21 E. coli cells. 

Unfortunately, after elution of the EC1 domain of VE-cadherin from the affinity column 

(StrepTactin II), there were three bands of eluted fractions (Figure 1). The highest molecular 

weight band (Band A, Lanes 2 and 3, Figure 1) was from the phosphorylated EC1 domain, 

as previously found by other investigators. Later, we found that addition of a kinase inhibitor 

during the expression of VE-cadherin suppressed the intensity of the phosphorylated EC1 

domain (data not shown).   



 

B 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The SDS-PAGE of the EC1 domain of VE-cadherin after it was eluted from the 

affinity column chromatography using a StrepTactin-II column. Lane 1: The 

molecular weight markers. Lanes 2 and 3: The eluted EC1 domain of VE-

cadherin at different eluted fractions. Band A is the phosphorylated EC1. Band 

B is the desired EC1 domain. Band C is the enzymatic degradation product of 

the EC1 domain of VE cadherin. 
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Figure 2.  The SDS-PAGE of the EC1 domain of VE-cadherin after addition of a cocktail 

of proteolytic enzyme inhibitors during protein isolation. Lane 1: Molecular 

weight markers. Lane 2: The eluted EC1 domain from the StrapTactin II 

column. Band A is the phosphorylated EC1 domain. Band B is the desired 

EC1 domain of VE-cadherin. 

  

     1               2        

A 

B 
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The middle band (Band B, Figure 1) is the desired EC1 domain while the bottom band (low 

molecular weight band, Band C, Figure 1) is from the degradation product of the EC1 

domain of VE-cadherin. Addition of a cocktail of proteolytic enzyme inhibitors during the 

isolation and purification of the EC1 domain eliminated the lowest band (Band C) as shown 

in Figure 2. However, the phosphorylated EC1 is still present in a small amount.  

Due to the difficulty in purifying the EC1 domain of VE-cadherin, the focus was directed 

into the expression, isolation, and purification of the EC1 domain of E-cadherin. The pure 

EC1 from E-cadherin was used to study the binding between E-cadherin peptides and the 

EC1 domain. The growth of BL21 E. coli cells in LB medium was followed for 11 h, and the 

growth of the cells plateaued after 9 h (Figure 3). The overexpression of the EC1 protein was 

stimulated with anhydrotetracycline at after 2 h of cell incubation in LB medium. Every hour 

the cells were lysed and the protein content was evaluated with SDS-PAGE (Figure 4). 

Before induction, the cells did not produce any EC1 domain (Figure 4, Lanes 2 and 3). After 

induction, there was a time-dependent increase in the production of EC1 between 1 and 5 h 

after induction; the highest intensity was found at 5 h after induction (Figure 4, Lanes 4–8). 

However, beyond 5 h after induction, the amount of protein was the same. Therefore, for 

overproduction of the protein, the cells were harvested 5 h after induction with 

anhydrotetracycline. After the cells were lysed, the protein was purified using a StrepTactin 
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II column. The pure EC1 domain was eluted and concentrated; the purity of the EC1 domain 

protein is shown in Figure 5 as a single band in SDS-PAGE. Unlike the EC1 domain of VE-

cadherin, the EC1 domain of E-cadherin had no enzymatic degradation product.  

  



 

 

 

Figure 3.   The diagram of cell growth of BL21 

550 nm vs. time in hour

cadherin. The maximum growth 
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Figure 

4. The SDS-PAGE of 

The EC1 protein production 1, 2, 3, 4, 5, 6, and 7 h after addition of 

anhydrotetracycline, respectively. There is no production of protein before 

adding the inducer (Lanes 2–3); an abundance of protein was produced after 

induction of protein production at the 2-h time point (Lanes 4–8). After passing 

through the StrepTactin column, all the EC1 was selectively retained in the 

columns and the washing buffer showed no EC1 band (Lanes 9–10). 
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Figure 5. SDS-PAGE of pure EC1 domain of E-cadherin after elution from the affinity 

column (StrepTactin II).  Lane 1: The pure EC1 domain of E-cadherin. Lane 

2: The molecular weight marker. Unlike the EC1 domain of VE-cadherin, the 

EC1 domain of E-cadherin does not show any phosphorylated protein or any 

enzyme degradation product. 
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3.2. Binding studies of E-cadherin peptides with the EC1 Domain of E-cadherins 

The spectra of the EC1 domain at different concentrations show a minimum at 216 nm, 

indicating the presence of a high amount of beta-sheet structure, which is consistent with the 

structure of the EC1 domain (Figure 6). The optimal concentration of the EC1 domain was 

found at 0.01 mM for the binding studies.  The peptide titration experiments were done by 

gradually adding 5 µL (0.1–0.16 µM) of peptide solution up to a total of 50 µL into a 500 µL 

solution of the EC1 domain. Peptide binding to the EC1 domain was monitored by the 

change in CD absorption at 220 nm upon peptide addition. The contribution of peptide and 

buffer to the CD spectrum was subtracted to obtain the final protein spectrum upon 

complexation. The titration of the EC1 domain with buffer solution every 5 µL up to 50 µL 

did not dramatically change the absorption of the protein at 220 nm (Figure 7). In contrast, 

addition of the cyclic HAVc3 peptide dramatically changed the absorption at 220 nm, and 

the change plateaued at high concentrations (Figure 8). The results suggest that the peptide 

binds to the protein and the binding process can be saturated. 
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Figure 6. CD spectra of the EC1 domain of E-cadherin at different concentrations 

(0.000625, 0.00125, 0.0025, 0.005, and 0.01 mM) in phosphate buffer at pH 

7.0. There is a concentration-dependent change in CD spectra of the EC1 

domain, and the best protein concentration for the binding studies is 0.01 mM. 

The spectra of the EC1 domain resemble the previous CD spectrum of the EC1 

domain of E-cadherin investigated in our laboratory.  
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Figure 7. The effect of buffer dilution on the CD absorption of EC1 observed at 220 nm. 

The concentration of the EC1 domain is 0.01 mM in 500 µL phosphate 

(KH2PO4) buffer; the solution was titrated with the same buffer every 5 µL up 

to the addition of 50 µL of buffer. There were very small changes in the 

intensity at 220 nm upon dilution with buffer. 
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Figure 8. An example of the CD absorption changes (Y-axis; millidegree) observed at 

220 nm upon titration of 0.01 mM EC1 domain in 500 µL buffer with 0.001 

mM HAVc3 peptide every 5 µL up to 50 µL. The contribution of the peptide to 

the spectrum was subtracted from the protein spectrum. There is a dramatic 

change of absorption intensity of the EC1 domain at 220 nm upon addition of 5 

to 15 µL of cHAV peptide. There is a plateau in the absorption change beyond 

the addition of 15 µL of peptide, indicating the peptide binding saturation. 

  

-40	

-39	

-38	

-37	

-36	

-35	

-34	

-33	

-32	

0	 10	 20	 30	 40	 50	 60	

In
te
n
si
ty
	(
M
.D
e
g
.)
	

pep de	volume	(uL)	

Series1	



 

A 

 

 

 
 

 

B  

 

 

 

 

 

Figure 9. Plots of the change 

of different concentrations 

HAVc3 peptide (Panel B

peptides to the EC1 domain was 

  

the change in CD intensity of EC1 (0.01 mM) at 220 nm upon addition 

of different concentrations of linear HAV6 peptide (Panel A) and cyclic 

Panel B).  The Kd of the binding between linear and cyclic 

to the EC1 domain was determined by SigmaPlot. 
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The 2D NMR studies showed that HAV6 and ADTC5 peptides bind to the expressed 

15N-labeled EC1 for the E-cadherin. Titration of the 15N-labeled EC1 with HAV6 and 

ADTC5 peptides caused a shift of 1H and 15N resonances of several residues in the EC1 

domain of E-cadherin. Thus, the binding properties of these peptides were also evaluated 

using CD spectroscopy. For the linear HAV6 peptide (1.59 µM), a total volume of 100 µL of 

peptide was added to a 500 µL solution of EC1 to reach binding saturation. The change in 

absorption at 220 nm was observed upon peptide addition; the change was found to be due to 

the conformational change of EC1 upon binding the HAV6 peptide (Figure 9A). The 

estimated Kd of binding of HAV6 peptide to the EC1 domain is 120 ± 11.9 nM (Table 2).  

The cyclic HAVc3 peptide has a Kd of 66.7 ± 18 nM, indicating that the cyclic peptide 

has higher affinity for the EC1 of E-cadherin than does the linear HAV6 peptide (Figure 9B, 

Table 2).  This result is consistent with results from the inhibition of resealing of the 

intercellular junctions of the MDCK cell monolayers (data not shown), and cyclic HAVc3 

peptide is a better inhibitor of intercellular junction resealing than the linear HAV6 peptide. 

This could be due to conformational restriction of the cyclic peptide compared to that of the 

linear peptide. 

Cyclic ADTC5 has greater activity than linear HAV6 peptide in inhibiting the resealing 

of the intercellular junctions of MDCK cell monolayers. In this study, cyclic ADTC5 peptide 
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has a Kd of 50.2±11 nM, which is better than that of the linear HAV6 peptide (Kd = 

120±11.9 mM). The larger cyclic ADTC1 peptide has a higher Kd (119.7±16 nM) than does 

cyclic ADTC5 peptide (Kd = 50.2±11 nM), which supports our previous in vitro study. The 

valine residue in ADTC5 (Ac-CDTPPVC-NH2) has been shown to be important for 

biological activity in modulating the intercellular junctions of MDCK monolayers. 

Therefore, the valine residue in ADTC5 was replaced with the Glu (E), Thr (T), Tyr (Y), and 

Arg (R) residues to give ADTC7, ADTC8, ADTC9, and ADTC10, respectively. Both 

ADTC7 (Kd = 0.43± 0.050 nM) and ADTC8 (Kd = 0.45±0.012 nM) have 100-fold tighter 

binding affinity to the EC1 domain of E-cadherin than does the parent ADTC5 (50.2±11 

nM). The binding study shows that ADTC9 has the best affinity (Kd = 0.038±0.009 nM) to 

the EC1 domain of E-cadherin; it has ten-fold higher affinity than ADTC7 and ADTC8. The 

ADTC10 peptide has no binding affinity for the EC1 domain, which suggest that mutation of 

the valine residue to the lysine residue eliminates the peptide binding affinity to the EC1 

domain. This result reaffirms the importance of the residue at the valine position of cyclic 

ADT peptides. 
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4. Conclusion 

The binding studies using CD spectroscopy confirm the NMR studies showing that 

HAV6 and ADTC5 peptides bind to the EC1 domain of E-cadherin. This study also shows 

that cyclic HAVc3 peptide has a higher binding affinity than does the linear HAV6 peptide, 

which is consistent with the in vitro activity study using MDCK cell monolayers. Binding 

studies of cyclic ADT peptides found that cyclic ADTC9 peptide (Kd = 0.038±0.009 nM) 

has 1000-fold lower Kd than ADTC5 peptide (50.2±11 nM), indicating that mutation of the 

Val residue to the Tyr residue enhances peptide binding. In the future, the concentration-

dependent activity of ADTC9 peptide will be compared to that of ADTC5 using in vitro and 

in vivo BBB models.  
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