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ABSTRACT

Landcover change alters not only the surface landscape but regional carbon

and water cycling. The objective of this study was to assess the potential im-

pacts of landcover change across the Kansas River Basin (KRB) by comparing

local microclimatic impacts and regional scale climate influences. This was

done using a 25-year time series of Normalized Difference Vegetation Index

(NDVI) and precipitation (PPT) data analyzed using multi-resolution infor-

mation theory metrics. Results showed both entropy of PPT and NDVI varied

along a pronounced PPT gradient. The scalewise relative entropy of NDVI

was the most informative at the annual scale, while for PPT the scalewise rela-

tive entropy varied temporally and by landcover type. The relative entropy of

NDVI and PPT as a function of landcover showed there the most information

at the 512-day scale for all landcover types, implying different landcover types

had the same response across the entire KRB. This implies that land use deci-

sions may dramatically alter the local time scales of responses to global climate

change. Additionally, altering land cover (e.g. for biofuel production) may im-

pact ecosystem functioning at local to regional scales and these impacts must

be considered for accurately assessing future implications of climate change.
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Chapter 1

Introduction

Vegetation is a key variable of interaction between the land and atmosphere. Driven

by climate, vegetation is highly sensitive to precipitation and/or temperature, which

depends on the region under consideration (Knapp and Smith, 2001; Bonan et al.,

2002). The central US Great Plains are a leading producer of wheat, sorghum and a

significant amount of corn and soybeans. Production of corn for ethanol can reduce

petroleum use by about 95% on an energetic basis (Farrell et al., 2006). However,

food production and energy needs are competing pressures that alter decisions con-

cerning the type of crops to produce. These landcover changes will have spatially and

temporally varying environmental impacts, such as altering water cycling in this re-

gion. Understanding these impacts is vitally important for quantifying the responses

to climate change in this major agricultural producing region.

For semi-arid regions, such as the central U.S. Great Plains, biosphere-atmosphere

interactions are strongly coupled to climate variability in these water-limited areas

(Bonan et al., 2002). Precipitation is a primary control of vegetation dynamics in

grasslands, and disturbances in both the frequency and timing result in observable

ecosystem responses (Knapp and Smith, 2001; Lauenroth and Dodd, 1979). In ad-
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dition, the structure and productivity of grasslands vary along different spatial and

temporal scales of precipitation. Sala et al. (1988) confirmed the importance of pre-

cipitation in relation to spatial and inter-annual variations in grassland production at

a regional scale. It is known that long-term average precipitation can determine large-

scale ecosystem and species distributions (Woodward, 1987). However, Yang (1998)

showed that the summer and spring precipitation was the dominant climate control

on grassland productivity of the central and northern US Great Plains. Therefore,

the variability in precipitation, across spatial and temporal scales, can strongly influ-

ence ecosystem dynamics (Lotsch et al., 2003), and ecosystems are very susceptible

to climate change induced perturbations. Global circulation models are forecasting

drying in the region due to climate change (Brunsell et al., 2010), thus necessitat-

ing an enhanced understanding of ecosystem feedbacks between local land cover and

regional climate.

The evidence for biotic responses to climate changes can be based on analysis of

satellite data, and the Normalized Difference Vegetation Index (NDVI) is the most

common indicator of terrestrial vegetation productivity (Philippon, 2007; Zhou et al.,

2001). NDVI can be used to evaluate responses of vegetation to climate change be-

cause it is well correlated with the fraction of photosynthetically active radiation

(FPAR) absorbed by plant canopies and thus leaf area, leaf biomass, and potential

photosynthesis (Myneni and Los, 1995). Notaro et al. (2006) also suggested that there

is the largest interannual variability with large anomalies in the relationship between

FPAR and precipitation on the prairie of the central US. Lotsch et al. (2003) used

continental scale precipitation data and NDVI, indicated that variability in precip-

itation at seasonal and longer time scales strongly influence ecosystem dynamics in

arid and semi-arid regions, and illustrated the global extent and sensitivity of ecosys-

tems susceptible to climate change-induced perturbations in precipitation regimes.
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In addition, Wang et al. (2006) used NDVI to show that vegetation can influence cli-

mate variability through land-atmosphere interactions over semi-arid grasslands. In

general, these results indicate there is a complex relationship between vegetation and

precipitation or other climate forcings, which are highly variable in time and space

(Brunsell, 2006).

The conversion of grassland to croplands and pastures has affected the exchanges

of energy, water, and carbon, as well as ecosystem condition and function (Twine

et al., 2004; Lunetta et al., 2006). Not only does the vegetation-precipitation re-

lationship vary in time and space, but it is also influenced by local landcover and

land management strategies. For example, there is a significantly different develop-

ment and spatial distribution of land cover and land use between eastern and western

Kansas: eastern Kansas has a trend toward increasing urbanization and increased

woody encroachment (Heisler et al., 2003), while in the western portion of the state

the dominant land use is agriculture, with a significant portion being irrigated (Ade-

goke et al., 2003). These changes alter not only the surface landscape but also regional

water cycling. Under global warming conditions, the environment may have signifi-

cant responses to these hydrological changes caused by landcover; moreover, feedbacks

between landcover and the water cycle will also be influenced by many other factors

(i.e., urbanization, grazing, cropping, irrigation, etc.) across the region. Predicting

the suitability of different regions to agricultural production will depend upon the

accurate determination of local versus regional controls on the water balance.

In concert with the relationship between precipitation (or other climate forcings)

and vegetation, many studies have used correlation analysis to examine how vegeta-

tion responds to climatic variables (i.e., precipitation , temperature) in different tem-

poral or spatial scales (Yang, L. Yang and J. W. Merchant, 1997; Wang et al., 2001,

2003). However, in order to further characterize the interactions among vegetation
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and climatic variables, it is also important to understand the variability of climatic

variables in the hydrologic and energy cycles. For example, Mishra et al. (2009) em-

ployed an entropy-based investigation to quantify spatial and temporal variability/disorder

of precipitation in Texas. The authors indicated entropy is a desirable approach to

study the variability of precipitation based on the whole to part concept. Moreover,

information theory has been used widely in applications of assessing hydrological vari-

ability, such as the scaling behavior both in space and in time (Koutsoyiannis, 2005).

Brunsell and Young (2008) used the multiscale information theory metrics to exam-

ine the interaction between precipitation forcing events and land surface (NDVI and

surface temperature) response, and concluded this method can determine the relative

impacts of regional climate and local land-atmosphere interactions as a function of

spatial scale.

Our proposed methodology, multiscale information theory metrics, which have

been developed by Brunsell and Young (2008), Brunsell (2010) and Brunsell and

Anderson (2011), is a set of metrics to assess the spatial and temporal variability

of hydrological processes and is able to be applied to land-surface hydrology and

ecology (Brunsell, 2010). As discussed by Stoy et al. (2009) this method can quantify

the appropriate scales for observations and modeling studies. Besides, entropy could

aid in distinguishing different spatial patterns by applying it to hourly precipitation

(Elsner, J., Tsonis, 1993) and improving short-term precipitation forecasts (Silva

et al., 2006). It was also used by Brunsell and Young (2008), who assessed the

spatial and temporal interactions between precipitation, soil moisture and vegetation

dynamics and indicated that the multiscale information theory could address the wide

range of spatial and temporal scales that contribute to the observed data.

Therefore, the motivating objective of this thesis is to examine the relationship

between vegetation productivity and the roles of local land cover type and regional
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climate (i.e., precipitation). Specifically, the major objectives are first, to understand

the temporal dynamics associated with different landcover types as a function of

location along the mean precipitation gradient and, second, to assess to what extent

are different longitudes within the KRB governed by microclimatic impacts (i.e.,

landcover) or climate forcing (i.e., PPT).
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Chapter 2

Study Area and Data Sources

2.1 Study Area

The central US is an area of significant agricultural production, and for this study

we focus on the Kansas River Basin (KRB), which is located in northern Kansas and

extends into southern Nebraska and a portion of eastern Colorado (Figure 2.1). Across

the KRB, there is a profound precipitation gradient extending from dry in the west

(400 mm/yr) to moist in the east (1,000 mm/yr) (Ji and Peters, 2004). The current

ecosystems are highly influenced by local land use management strategies including

balancing the increasing demand of food and biofuel production, which will extend

potential impacts of the environmental changes, both in the native and agricultural

lands. Most parts of the KRB are agricultural and prairie. Short-grass prairie is in the

west, mixed prairie is in the center, and tall-grass prairie is in the east. By landcover

type, croplands (40% of KRB) are primarily located in the central to west, grasslands

(41% of KRB) are distributed primarily in the east, and woodlands or forests (4% of

KRB) are only found as riparian along river valleys in the east (Küchler, 1974). It is

an opportune area to address the questions of ecosystem dynamics changes through



2.2 Data Sources 7

time, because unlike the top corn producing areas, land in the KRB is used for a

wide variety of agricultural uses (i.e., corn, soybean, Conservation Reserve Program

(CRP), grazing, etc.) as well as natural landcover types such as C3 and C4 grassland.

This basin is likely to undergo changes from a significant number of landcover types as

demand for one or two crops (i.e., corn and soy) increases. There are additional uses

competing for land surface area including woody encroachment and urbanization.

2.2 Data Sources

2.2.1 NDVI

Currently, AVHRR is the best historical and the longest record of data for monitoring

vegetation (Twine and Kucharik, 2008; Beck et al., 2011). Twenty-five years (1982–

2006) of AVHRR satellite data was used to examine vegetation dynamics as a function

of land cover types (soybean, corn, and CRP lands, etc.). The Global Inventory

Monitoring Modeling Studies (GIMMS) data set is a maximum 15-day composite

NDVI product at 8-km spatial resolution available for a 26-year period spanning

from 1981 to 2006, derived from AVHRR onboard the afternoon-viewing National

Oceanic and Atmosphere Administration’s (NOAA) satellites series 7, 9, 11, 14, 16

and 17 (Tucker et al., 2005).

2.2.2 Precipitation

Precipitation (PPT) was used as a measure of the regional climate variability because

of the east-west gradient across the KRB (Lokke and Kidman, 1963). The daily pre-

cipitation data is from the US Historical Climate Network (USHCN, (Williams Jr

et al., 2006)). Seventy-six stations across KRB transect were located from 93.5 to
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105.5 W Longitude and 37.5 to 42 N Latitude (Figure 2.1a), and whose length of the

observations records is the same as the period of NDVI (1982–2006). We aggregated

the daily precipitation to 15-day totals in order to match the same temporal reso-

lution of the NDVI data. Instead of comparing an individual station or a group of

stations with the model output, we interpolated the precipitation to the latitudes and

longitudes of these stations using kriging (Brunsell et al., 2010; Logan et al., 2010).

2.2.3 Land Use and Land Cover

Despite variable crop cultivations in the central U.S. over the time period of inter-

est, the total factions remained fairly constant according the USDA (USDA-NASS ,

2013) (e.g., corn varied between 22.1% and 22.6% of the KRB, while wheat varied

between 20.4% and 21.4%) (Foley et al., 2004). In order to assess the distribution of

landcover across the KRB, we used the 24 class, 1-km spatial resolution 2005 Kansas

Land Cover Patterns Level IV map, created by the Kansas Land Use/Land Cover

Mapping Initiative (KARS , 2013). We combined this with the agricultural statistics

and published Green Reports (Green Report , 2013), which defined different land-

cover types from the Advanced Very High Resolution Radiometer (AVHRR) based

NDVI. For our purpose, we focused on specific landcover types, which contributed to

both food and biofuel productions since those are the dominant landcover types. We

aggregated this data to 12 primary landcover types, which are: irrigated corn, non-

irrigated corn, irrigated soybean, non-irrigated soybean, irrigated cropland (including

irrigated sorghum, winter wheat, alfalfa, fallow and double-crop), non-irrigated crop-

land, CRP land, C4 grassland, C3 grassland, woodland, urban, and water (Table

2.1). In addition, this landcover data was resampled to an 8-km grid to match the

resolution of 8-km GIMMS NDVI data by using majority approach in the ArcGIS 9.1

software package (Figure 2.2).
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Figure 2.1 (a) Averaged annual precipitation (mm) in KRB in 1982–2006;
(b) Averaged annual NDVI in 1982–2006. Points illustrate the location of
the USHCN stations.
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Table 2.1 Land cover types, percentage, numbers of pixel and per-pixel
fraction cover (the average of the aggregation from the 1-km grid to the
8-km grid) of the 2005 Kansas Land Cover Patterns Level IV map.

Land Cover Type Percentage (%) Numbers of Pixel Per-Pixel Fraction Cover (%)

Irrigated corn 6.9 213 50

Non-irrigated corn 6.12 189 55

Irrigated soybean 2.46 76 46

Non-irrigated soy bean 5.6 173 52

Irrigated cropland 24.72 763 65

Non-irrigated cropland 5.44 168 49

CRP land 2.5 77 46

C4 grassland 37.75 1165 74

C3 grassland 3.99 123 49

Woodland 2.66 82 45

Urban 1.2 37 55

Water 0.66 20 80

Total 100 3086
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Figure 2.2 Distribution of land cover types in the Kansas River Basin.
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Chapter 3

Methodology

3.1 Wavelet Multi-Resolution Analysis

Wavelet analysis is a technique to view a data series as a function of different spatial

and/or temporal resolutions, and each different resolution can be referred to be “a

level of decomposition”. It allows for quantifying the variance contributed by each

resolution and also determine when (temporally) or where (spatially) the contribution

originates from (Brunsell and Young, 2008). Wavelet analysis has the benefit of taking

both time and frequency into account. This is in comparison with a similar technique

of Fourier transformation, since Fourier transformation only focuses on frequency and

is not capable of characterizing a variable whose frequency content changes in time

(Sifuzzaman et al., 2009). Previous studies such as Brunsell and Gillies (2003) and

Brunsell and Young (2008) have applied wavelet analysis to assess the relationship

between water and energy cycling and vegetation in terms of spatial variability and

distribution. In this study, we followed the method of (Brunsell and Anderson, 2011)

and examined NDVI and PPT to ascertain temporal variabilities of the land surface

and precipitation. We quantified the variability of precipitation and landcover as a

function of temporal scale, and PPT and NDVI signals were compared at each level of
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decomposition. The wavelet transform (W (m,n)) in this study was conducted using

the Daubechies least-symmetric 8 wavelet as a mother wavelet (ψ) to achieve a high

level of localization in both time and frequency domains. This mother wavelet is then

dilated (m) and translated (n) across a time-series f as a function of time t (Kumar

and Foufoula-georgiou, 1997):

W(m, n) = λ
−m
2

0

∫
f(t)ψ(λ−m0 t− nt0)dt (3.1)

where λ0 is the initial scale of decomposition, and the wavelet is defined by:

ψm,n(t) =
1√
λ0m

ψ(
t− nt0λ

m
0

λm0
) (3.2)

The unique capability of wavelet multi-resolution analysis to “zoom-in” allows

the identification of local short, high-frequency signal and low-frequency variability

in a time series. Moreover, like Fourier transformation, windows are also able to look

at different frequency signals: being wide for low-frequency while being narrow for

high-frequency (Lau and Weng, 1995). At each level of decomposition, the original

signal (f (t)) can be reconstructed from the wavelet coefficients Dm,n as:

f(t) =
∞∑

m=−∞

∞∑
n=−∞

Dm,nψm,n(t) (3.3)

Wavelet multi-resolution analysis is a dyadic (powers of two) decomposition in

scale, and we have chosen to conduct nine levels (corresponding to lengths of 2, 4, 8,

16, 32, 64, 128, 256, and 512) based on the length of the time series. By progressively

adding the finer scale details, the original dataset X at scale m can be reconstructed

from the inverse wavelet transform, using fluctuations (X ′) at each point t:

X(t) ≈ Xm(t) +
∑

m≥m0

X ′m(t) (3.4)

In addition, we calculated the wavelet spectra as a function of time scale m to

examine how much each decomposition level contributed to the overall signal, which
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are given by:

E(m) =
1

N

m∑
i=0

|Di,n|2 (3.5)

3.2 Information Theory Metrics

Information theory has been previously used to examine land-atmosphere interactions

(Brunsell and Young, 2008; Brunsell, 2010; Brunsell and Anderson, 2011). Entropy

is a measure of the statistical uncertainty of the random field X as described by the

probability density function (pdf). Lower entropy represents less uncertainty, which

means the amount of information needed to encode the signal is smaller (Shannon

and Weaver, 1949). For this study, Shannon entropy (H) (Shannon, 1948a,b) is used

as a measure of the spatial-temporal variability of precipitation and vegetation, which

is defined as:

H(X) = −
n∑

i=1

p(Xi)log(p(Xi)) (3.6)

where p(Xi) is the probability of variable, X, within an interval, i, of the pdf. The

pdf was estimated by using the density command in the R software package and then

this discrete estimate was used as the probability.

The relative entropy (R(X, Y )) is a measure of the distance between the two

variables X and Y given by the pdfs p and q, respectively, and R(X, Y ) is zero if they

are the same (Cover and Thomas, 1991; Kleeman, 2002). For example, p is the pdf

of NDVI (X), and q is the pdf of PPT (Y ), and relative entropy can measure how

much PPT tells us about NDVI (R(NDV I, PPT )) as well as how much NDVI tells

us about PPT (R(PPT,NDV I)). Relative entropy is defined as:

R(X, Y ) =
∑
i

pilog

(
pi
qi

)
(3.7)

There are two ways for computing the relative entropy for this study. In the first

case, we computed the relative entropy between the original data and a decomposed
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version data from the wavelet multiresolution analysis. This was done to isolate the

relative contributions of these timescales to the overall signal, e.g., computing the

relative entropy between seasonal precipitation and total vegetation (Brunsell, 2010).

Therefore, we explicitly do not want to filter out temporal scales such as the annual

or seasonal scales prior to computing the information theory metrics. Secondly, the

relative entropy was computed between each decomposed scale of precipitation and

NDVI. This part was for assessing how much additional information is necessary to

represent the vegetation when given a particular scale of precipitation, and vice versa.

In order to compute the entropy and relative entropy of precipitation and NDVI,

we first decomposed the time series of precipitation and NDVI signals using the

wavelet multiresolution analysis described on the previous section. At each scale of

decomposition, the pdf of the decomposed time series (X ′m(t)) was calculated and

then used to compute the Shannon entropy and the relative entropy as a function of

temporal scale of decomposition.
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Chapter 4

Results

4.1 General Distribution of Surface-Atmosphere

Interactions Across KRB

Spatial and temporal biosphere-atmosphere interactions, such as fluxes of water and

energy, are strongly coupled to climate variability in grasslands (Lotsch et al., 2003).

Figure 2.1a shows the spatial distribution of averaged precipitation varies from dry in

the west (approximately 400 mm/yr) to more moist in the east (up to 1000 mm/yr).

The distribution in the growing season (June, July and August) was generally the

same as the annual precipitation and the amount was from about 90 mm/yr to 270

mm/yr, which contributed about one third of the annual amount.

Variations in climate factors, such as precipitation, have strong influences on the

variation of NDVI for a given area. Figure 2.1b shows that the spatial distribution

of mean annual NDVI generally corresponds to the precipitation. We also noted that

along the west edge of the KRB, NDVI distribution followed the terrain.

Figure 4.1a and b presents the probability density functions of precipitation and

NDVI, which were estimated using data from all grid points. They were used for
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calculating the entropy and relative entropy of precipitation and NDVI. The informa-

tion theory analysis was applied to examine how the temporal information content

of vegetation and precipitation varied over the KRB. The NDVI had more variance

within the pdf than PPT and resulted in a higher entropy value (H(NDV I)=8.32,

H(PPT )=7.75. The values are the average over the period of analysis and the KRB.).

Figure 4.2c and d shows the spatial distributions of variability for PPT and NDVI

(H(PPT ) and H(NDV I)). The values of H(PPT ) generally are higher in the west

and lower in the east, however H(NDV I) gradually increased to the east across the

basin. The increasing trend of H(NDV I) corresponds to the west-east trend of mean

annual NDVI, which notes the longitudinal change in vegetation is determined by the

dynamics of landcover types.

The maps of the relative entropy between PPT and NDVI are shown in Figure

4.2e and f. R(NDV I, PPT ) illustrates how much additional information is necessary

to represent vegetation by given precipitation; and R(PPT,NDV I) indicates the

reverse. Both relative entropies showed the same general variability, where lower

values exhibited in the west and increased to the east. R(NDV I, PPT ) showed a clear

break at around 100 W longitude, however R(PPT,NDV I) did not have this spatial

trend. This break also demonstrates that the variability of landcover corresponds

to the precipitation gradient, as well as the increase in irrigation presumably in the

western part of the KRB. Besides, the further western part indicates a tightly coupled

relationship between the precipitation and vegetation until the annual amount of PPT

reaches 600 mm/year (around 101 W) and then this relationship decouples as the

amount of PPT increases.

We compared the proposed method and metrics with other traditional statisti-

cal analysis as well. First is the correlation analysis: we examined the relationship

between NDVI and different time lags of PPT by calculating correlation coefficients
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between NDVI of the various periods and corresponding precipitation (e.g., current

period of NDVI and previous period PPT). However, the results did not show any

significant correlation between NDVI-PPT within KRB (−0.1 < r < 0.1, Figure

4.3a). Secondly, we have tested if NDVI and PPT exhibited non-stationarity during

the study period by linear regression analysis. Again the results had a weak relation-

ship between NDVI and PPT (r2 = 0.1), shown in Figure 4.3b with the correlation

between 15-day composited NDVI and 15-day totals PPT over the 25 years.

4.2 Distribution of Landcover Types

In addition to the gradients of vegetation and precipitation across KRB, we examined

the spatial-temporal distributions within each landcover type (Figure 4.4a). In order

to clearly distinguish NDVI values among ten landcover types, we used the maximum

annual NDVI to show the relationship between landcover types and precipitation.

Generally among these landcover types, the maximum NDVI value of each landcover

type was slightly different, while the difference in the annual precipitation for each

landcover type was up to 137 mm. This contrast between NDVI and PPT illustrates

that irrigation management leads to vegetation productivity independent of the larger

scale precipitation gradient. Non-irrigated landcover types are primarily located in

the more mesic eastern region, whereas irrigated land use dominates in the more arid

west.

We examined the variability of the entropy of PPT and NDVI as a function of

landcover type (Figure 4.4b). The variability showed a similar distribution as NDVI

for each landcover type compared with Figure 4.4a, but did not present as much dif-

ference among landcover types with reduced standard deviation of entropy in NDVI

spectra for each type. H(PPT ) slightly varied by landcover as well. We also cal-



4.3 Temporal Structure of Precipitation and Vegetation 18

culated how much of the information in the vegetation distribution was related to

the precipitation variability within each landcover type (Figure 4.4c). Clearly the

R(NDV I, PPT ) values of ten landcover types were all lower than R(PPT,NDV I),

which implies less additional information is needed to represent vegetation by the

given precipitation rather than predict the PPT from the NDVI. Fluctuations of

R(PPT,NDV I) and R(NDV I, PPT ) among all landcover types were also approxi-

mately equal.

4.3 Temporal Structure of Precipitation and Veg-

etation

We calculated the wavelet spectra to quantify how much variance of PPT and NDVI

is contributed by different temporal scales. This was conducted at selected longitudes

along the KRB and as a function of landcover type.

Figure 4.5a shows that for NDVI there were clear variations in the peaks in the

wavelet spectra as a function of longitude. For entire KRB signals, the overall wavelet

variance was highest at 96 W, while the other longitudes showed approximately the

same curves but variances decreased from 98 W to 102 W, which could reflect less

heterogeneity in the western part of region. The dominant time scale (largest peak)

of 96 W was on the scale of 64-day. However, at the other longitudes they did not

exhibit this peak.

Differences in landcover types induce minor variations across longitudes. Due to

managed irrigation, irrigated corn (Figure 4.5c) exhibited almost the same curves

across KRB with a slight peak at the 64-day scale. For C4 grassland (Figure 4.5e),

the peak was at the same scale as the entire basin (64-day) but longitudes exhibited

different order of magnitudes of variance.
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Precipitation within the KRB (Figure 4.5b) showed the dominant time scale was

at the monthly one , which surprising did not vary across longitudes. Moreover, in

this monthly scale, irrigated corn variances were increasing as a function of easterly

position along the gradient (Figure 4.5d). For C4 grassland (Figure 4.5f), there were

also west-east increasing variances though much less distinct (in magnitude) than

irrigated corn.

4.4 Multi-Resolution Entropy Metrics of Precipi-

tation and Vegetation

Next, we conducted a wavelet multi-resolution analysis to calculate the multiscale

entropy for the PPT and NDVI. The general behavior was increasing entropy with

increasing time-scale. The marked increase of NDVI was in the 128-day (seasonal)

scale and slowly went up through longer time-scales. More variance was found up to

the seasonal scale for the entire basin and selected landcover types (irrigated corn and

C4 grassland). Within the seasonal scale for the entire basin (Figure 4.6a), NDVI

spectra showed that there was a decreasing trend from west to east. Irrigated corn

varied more in the east region (96 W) (Figure 4.6c), while C4 grassland in the far

west and east regions exhibited less variation than the central part (Figure 4.6e).

The entropy of PPT had the greatest increasing trend until the 512-day time

scale. This increasing trend was consistent across the entire KRB (Figure 4.6b),

with slight variances at 64-day (bimonthly) and 128-day (seasonal) time scales. The

same distribution was seen in C4 grassland (Figure 4.6f), however few differences

between longitudes were observed, except at the 512-day and 1024-day time scales.

Irrigated corn illustrated more fluctuations among longitudes at shorter time-scales

and then converged at the 512-day scale (Figure 4.6d). In addition, the distribution of
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woodland was a good example to indicate differences between west and east because

of similar behaviors at both 98 W and 96 W, which matched the distributions of

irrigated corn and C4 grassland at the eastern region (not shown).

4.5 Multi-Resolution Relative Entropy of Precipi-

tation and Vegetation

In order to determine how much information is contributed to the total signal of

PPT and NDVI by certain time scales, we calculated the relative entropy between

the original PPT and NDVI and decomposed PPT and NDVI at each individual

scale. For the entire KRB (Figure 4.7a), the relative entropy between NDVI and

its decomposed version showed that higher values and variations across longitudes

were at shorter (monthly and bi-monthly) time scales, while smaller, approximately

constant values were at time scales greater than the 256-day. Similar distributions

of spectra were found in the different landcover types. For irrigated corn (Figure

4.7c), a clear variation of westerly information was seen at the shorter time-scales.

C4 grassland (Figure 4.7e) also showed higher values at the shortest time scales, but

there was no consistent variation with longitude. This implies that at monthly and

bi-monthly scales NDVI contained less information about the total signal of NDVI,

while the annual scale was the one that was contributed the highest amount.

The results of PPT for the entire KRB showed reduced values with increasing time

scale with a particularly high R value at 96 W and 100 W at the bi-monthly scale

(Figure 4.7b). However, different landcover types showed variation across scales in

the multi-scale relative entropy. Irrigated corn (Figure 4.7d) showed relative entropy

values approximately twice as large in eastern region of KRB (96 W) at the 64-day

(bi-monthly) time-scale. The other longitudes varied with different temporal scales,
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with perhaps a slight reduction with increasing time scale. The C4 grassland exhibited

similar variation across longitudes (Figure 4.7f): the eastern part (96 W and 98 W)

exhibited the highest peak at 64-day (bi-monthly) time-scale while the western part

(100 W and 102 W) showed a peak at 128-day (seasonal) time-scale. These peaks

indicated that these scales were particularly less informative in comparison with other

time scales. Generally, the relative entropy for the individual landcover type varied

more at relatively shorter time scales. These results illustrated how different land

cover types from west to east along the precipitation gradient respond to climate

forcing as shown in the results of multi-resolution entropy.

In addition, we also calculated the relative entropy between NDVI and PPT as a

function of scale to examine how informative different time scales of the PPT signal

were at determining the NDVI data and vice versa. The results of R(PPT,NDV I)

showed that the 32-day (monthly) scale was contributed the least information (had

the highest R value). Two distributions were noted across the basin (Figure 4.8a):

(1) at 98 W and 102 W, there were really high R values at the 32-day (monthly) time-

scale and decreased as a function of time scale; (2) two peaks showed at 32-day and

2048-day time-scale, at 96 W and 100 W, respectively. Longitudinal distributions of

irrigated corn (Figure 4.8c) were approximately the same but not consistent at the 64-

day (bi-monthly) time scale and longer time-scales. Irrigated corn also showed slightly

higher R(PPT,NDV I) at the 256-day and 1024-day time scales. C4 grassland looked

similar across the whole basin (Figure 4.8e) with higher values in 32-day (monthly)

and 64-day (bi-monthly) time scales.

The distributions of R(NDV I, PPT ) for the whole KRB were almost the same

as the results of R(PPT,NDV I) (Figure 4.8b), with only reduced values on the

monthly time scale at 98 W and 102 W. With regard to the individual land cover

type, the highest value was at the shortest (monthly) time scale and showed little
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variation across longitude. For irrigated corn (Figure 4.8d), there was clear variation

by longitude (except 96 W) at the seasonal time scale. C4 grassland (Figure 4.8f) was

relatively constant across all time scales but had a slight variation at the bi-monthly

time-scale.
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Figure 4.1 The probability density functions of (a) 15-day totals PPT and
(b) NDVI using the entire record for the calculation of entropy of PPT and
NDVI.
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Figure 4.2 Maps of per-pixel entropy of (c) PPT and (d) NDVI; and per-
pixel relative entropy between (e) PPT and NDVI and (f) NDVI and PPT.
The values of entropy and relative entropy are calculated by using the non-
transformed version of PPT and NDVI.
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Figure 4.3 (a) Twenty-five-year (1982–2006) averaged correlation coeffi-
cients between NDVI and different time lags of PPT; (b) The scatter plot
between 15-day composited GIMMS NDVI and 15-day totals PPT in 25-years
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Figure 4.4 (a) Mean of maximum NDVI and PPT of 1982–2006 as a function
of landcover type; (b) Entropy of PPT and NDVI as a function of landcover
type; (c) Relative entropy between NDVI and PPT for each landcover type.
The values of entropy and relative entropy are calculated by using the non-
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Figure 4.5 Wavelet variances of NDVI (left side) as a function of temporal
scale in (a) entire KRB; (c) irrigated corn; (e) C4 grassland; and PPT (right
side) in (b) whole KRB; (d) irrigated corn; (f) C4 grassland for selected
longitudes: 102 W (green line with star), 100 W (red line with triangle), 98
W (purple line with rectangle) and 96 W (blue line with dot).



4.5 Multi-Resolution Relative Entropy of Precipitation and Vegetation 28

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

NDVI

Time Scale (days)

E
n
tr

o
p
y

32 64 128 256 512 1024 4096

−102
−100
−98
−96

(a)

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

PPT

Time Scale (days)

E
n
tr

o
p
y

32 64 128 256 512 1024 4096

−102
−100
−98
−96

(b)

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

Time Scale (days)

E
n
tr

o
p
y

32 64 128 256 512 1024 4096

−102
−100
−98
−96

(c)

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

Time Scale (days)

E
n
tr

o
p
y

32 64 128 256 512 1024 4096

−102
−100
−98
−96

(d)

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

Time Scale (days)

E
n
tr

o
p
y

32 64 128 256 512 1024 4096

−102
−100
−98
−96

(e)

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

Time Scale (days)

E
n
tr

o
p
y

32 64 128 256 512 1024 4096

−102
−100
−98
−96

(f)

Figure 4.6 Multi-resolution entropy of NDVI (left side) as a function of
temporal scale in (a) entire KRB; (c) irrigated corn; (e) C4 grassland; and
PPT (right side) in (b) whole KRB; (d) irrigated corn; (f) C4 grassland
for selected longitudes: 102 W (green line with star), 100 W (red line with
triangle), 98 W (purple line with rectangle) and 96 W (blue line with dot).
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Figure 4.7 Multi-resolution relative entropy of NDVI (left side) as a function
of temporal scale in (a) entire KRB, (c) irrigated corn, (e) C4 grassland; and
PPT (right side) in (b) whole KRB, (d) irrigated corn, (f) C4 grassland
for selected longitudes: 102 W (green line with star), 100 W (red line with
triangle), 98 W (purple line with rectangle) and 96 W (blue line with dot).
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Figure 4.8 Multi-resolution relative entropy between NDVI and PPT as a
function of temporal scale in (a), (b) entire KRB; (c), (d) irrigated corn; (e),
(f) C4 grassland for selected longitudes: 102 W (green line with star), 100
W (red line with triangle), 98 W (purple line with rectangle) and 96 W (blue
line with dot).
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Chapter 5

Discussion

Climatic controls are the primary influence on grasslands with the possible exception

of irrigation (Lotsch et al., 2003). The relationship between vegetation and climate

variables is generally obvious but is highly variable in time and space. The spatial

distribution of vegetation generally corresponded to the precipitation increase (Figure

2.1).

Compared with the proposed method and metrics, other traditional statistical

analysis like the correlation analysis and linear regression analysis have shown no

significant results. This agrees with a study of the assessment of spatial-temporal

variability of daily precipitation across the continent (Brunsell, 2010), which had al-

most identical spectra across all longitudes and therefore concluded that correlation

may not be a useful metric for assessing the spatial or temporal variability of precipita-

tion. Besides, this non-significant relationship also demonstrated that other factors,

such as soil moisture and soil reflectivity may have an influence on the vegetation

response (Nicholson and Farrar, 1994).

As the information theory metrics used in this study are qualitative rather than

quantitative, and are computed at each time scale from the estimated pdfs, the values
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of entropy and relative entropy are conveniently used to interpret the variability of

precipitation and vegetation.

Entropy metrics can show the spatial gradient of precipitation and vegetation

(Figure 4.2c,d) and moreover be able to assess their temporal/spatial variability. The

higher H(PPT ) was in the western part of KRB, and this high variation could in-

dicate that some extreme events such as drought happened during the study period.

This agrees with a study in Texas (Mishra et al., 2009) where disorder in precipita-

tion amount and a strong spatial gradient of rainfall days might relate to significant

historical drought periods. Since vegetation was largely impacted by precipitation,

lower H(NDV I) in the western KRB indicated only drought tolerant land cover

types (e.g., C4 grassland) could adapt to this varied climate condition; while with

increasing PPT, landcover becomes more diversified to the east. Relative entropy

is another useful means for our study to assess the amount of additional informa-

tion that is needed to represent vegetation given PPT or vice versa. In Figure 4.2d,

different amounts of information of PPT were needed to represent vegetation. The

precipitation and vegetation dynamics were tightly coupled until mean annual PPT

reached approximately 600 mm/year (at 100 W) with decreased coupling occurring

with increased PPT.

One objective of this study was to understand the temporal dynamics associated

with different landcover types as a function of location along the mean precipitation

gradient. Overall, regional precipitation was the main control for vegetation, and can

be a good predictor of vegetation productivity (Knapp and Smith, 2001), shown in

Figure 2.1b. Though vegetation changes all corresponded with the regional precipi-

tation gradient, they showed different levels of tightness with precipitation. (Figure

4.4c). Meanwhile, the impact of varying different landcover types has been clearly

shown in the comparison of entropy of PPT between irrigated corn and C4 grassland
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at 102 W ((Figures 4.6d,f). The results of their different spectra at the bi-monthly

time scale conclude that grassland corresponded to precipitation more than crop-

land in the KRB. However, as we have noted that among landcover types there was

not much difference, so the issue of misclassification in the landcover dataset due

to sub-pixel heterogeneity that could impact our results may need to be considered.

The changes among landcover types in the KRB followed a seasonal cycle (Figure

4.7a,c,e), which was also found by Yang (1998) who concluded that seasonal precip-

itation, not annual rainfall, was the dominant control for vegetation. In addition,

the temporal dynamics of vegetation varied not only by landcover types but also by

location along the precipitation gradient. For natural landcover, such as C4 grassland

and woodland (not shown), changes followed the seasonal cycle, which appeared in

the center of the precipitation gradient. However, no obvious cycle was found in the

moistest (east) area (Figure 4.5e), which may imply less response to climate forcing.

The same results existed in irrigated corn across longitudes (Figure 4.6c). Due to

different microclimatic conditions (i.e., soil moisture, topography, land management,

etc.), the same landcover type in different locations along the precipitation gradient

contained similar amounts of information at different scales. This was also observed

in other landcover classes, e.g., non-irrigated soybean.

Next we examined how different longitudes within the KRB were governed by

microclimatic impacts (i.e., landcover) or climate forcing (i.e., PPT). Vegetation in

the KRB was affected by the local environment as indicated by diverse landcover

types, though PPT was the main control for vegetation. It was evidenced at some

locations in the western portion (shown in a range between 102 W and 100 W) of

the KRB by having relatively same NDVI values (Figure 2.1b), but also an obvious

precipitation gradient (range was from 450 mm to 650 mm). This indicates the

presence of large-scale irrigation, mentioned in the study of the impact of irrigation on
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the U.S. High Plains (Adegoke et al., 2003). Rain-fed corn areas have been converted

to irrigation (about 60% of the total corn producing area) and also show a cooling

effect that causes a decreasing trend in mean and maximum air temperature in the

irrigated region. Furthermore, even though the general west-to-east increasing trend

in vegetation is a function of location along the precipitation gradient, local vegetation

does not always match this distribution. Figure 4.5c has presented the variance of

the mean NDVI of irrigated corn that was approximately the same across the entire

basin, presumably due to the fact that the water deficit is offset by the increase in

irrigation.

The distribution of land cover in KRB clearly indicated the impact of the local

microclimate. Irrigated landcover types i.e., irrigated corn, soybean and cropland

had approximately the same NDVI values (Figure 4.4a), but they were located in

different portions of the KRB; corn was located in the western part of KRB while

soybean was in the central KRB. Based on their locations, soybean generally received

more precipitation, therefore any deficient water support in the western regions for

corn should be from other supplied sources. This was also found in (Figure 4.4c),

where in different level of tightness with PPT varied according to landcover type.

Relatively higher R(NDV I, PPT ) of irrigated corn indicated that the PPT was not

particularly informative of the vegetation dynamics, which must then be determined

by other local factors. However, CRP land exhibited the lowest R(NDV I, PPT ),

implying that the PPT contributed significant information to the total signal of NDVI

(Figure 4.4c) and should be due to other anthropogenic causes.

Human manipulation is another strong forcing on vegetation in KRB. For exam-

ple, removing the water limitation resulted in the same NDVI spectra (Figure 4.6c).

The wavelet variance indicated that the dominant scale for PPT was at monthly

scale, while for NDVI it was at the bi-monthly time-scale (64-day). This might be
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a reflection of the crop rotation strategies in the region. In addition, the relative

entropy of NDVI with its decomposed version in irrigated corn and C4 grassland

consistently had the lowest values at the annual scale, implying that this scale was

the most informative about the vegetation dynamics. These two landcover types had

the same responses to precipitation across the entire basin and, therefore, the climate

forcing for KRB may not be the primary determinant for vegetation productivity

compared with local microclimate factors. Nevertheless on CRP land, which is tak-

ing highly erodible land out of crop production to reduce erosion (Unger, 1999), there

was a smaller amount of precipitation than in other landcover types, lower NDVI is

expected but due to converted strategies it has a higher NDVI.

Meanwhile, land-use conversion may alter the vegetation-precipitation relation-

ship. For instance, if the C4 grassland in KRB is converted to an irrigated corn

field, an obvious west-east covariability with precipitation could be informed by the

relative entropy between NDVI and PPT at the monthly scale (Figure 4.8d,f). This

type of landcover change effect was also suggested by Twine et al. (2004) where the

results from landcover conversion, water and energy balance changes would depend

on season, crop and natural vegetation types, and management. Due to the increasing

demand for food and biofuel, land cover conversion may also impact the decisions of

where and what types of crops are produced.
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Chapter 6

Conclusion

This study demonstrated the variation in vegetation across temporal scale as a func-

tion of landcover types in the KRB. We examined how the different regions in this

basin were governed by microclimatic impacts of land cover type (i.e., landcover

types, land management practices) versus regional climate forcings (i.e., precipita-

tion). We used wavelet multiresolution analysis and information theory metrics to

ascertain the temporal variability of landcover and precipitation over the region for

twenty-five years (1982–2006). Specifically, we have combined the information theory

metrics with the wavelet decomposition to assess variability across time scales. The

wavelet-based information theory approach allows for the comparison of the informa-

tion content of different time-scales of NDVI or PPT (multiscale entropy), and the

assessment of the general contribution of different time scales to the overall NDVI or

PPT signal (multiscale relative entropy).

The general trend in the mean vegetation and precipitation showed an increasing

trend from west to east, indicating an obvious response of vegetation to the dominant

climate forcing in the region. However, it is known that crop management practices,

i.e., the conversion of landcover, crop rotation and irrigation, alter the way vegetation
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responds to climate forcings (Ji and Peters, 2004). Due to the increasing demand for

food and biofuel, these human impacts became another important factor secondary

to the climate forcing.

We have also found that the relationship between NDVI and PPT varied with

different landcover types. Despite the lack of significant results from other traditional

statistic analyses, such as correlation coefficient and linear regression analyses, our

proposed method have shown remarkable results in the relative entropy between NDVI

and PPT (R(NDV I,PPT )). High relative entropy between NDVI and PPT indicated

vegetation (irrigated corn and C4 grassland) were impacted not only by PPT spatial

distribution, but also by other factors, such as irrigation. Further analysis showed

that vegetation in KRB was more governed by this microclimatic impact. The relative

entropy between NDVI and its decomposed version of these two landcover types

indicated that these two landcover types had the same responses (at annual scale)

to regional climatic forcing across KRB. However, the results of PPT showed that

variations were dependent upon landcover types and their spatial locations. This

implies that the regional climate forcing is the primary control on vegetation in this

region, but it is not the only one.

This microclimatic influence can impact the responses to global and regional

climate change. Human manipulations have been able to impact regional climate

change, i.e., in Kansas both natural ecosystem and agricultural use could increase

winter temperature and decrease precipitation in the summer (Brunsell et al., 2010).

In this study, we examined how the landscape was impacted by microclimatic factors

in addition to the climate forcing of precipitation. These spatial-temporal interac-

tions are not only associated with environmental changes but also linked to social

and economic issues. Given the economic importance of grasslands as agricultural

producing areas, it is essential to understand how biosphere-atmosphere interactions
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can potentially mitigate the regional impacts of global climate change.
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Chapter 7

Future Research

This thesis has assessed the temporal dynamics associated with different landcover

types as a function of location along the mean precipitation gradient in the central

plains of the U.S. The findings of this thesis can provide a pathway to future research

topics in areas such as ecology, climatology and environmental studies. Topics could

include the examination of the spatial and temporal shifts in the ecosystem-scale

carbon and water dynamics on Land-Use Land-Cover (LULC), the assessment of the

impacts of climate change over next 100 years, and the integration across multiple

disciplines for achieving environmental sustainability. Some potential subjects are

described in the following:

1) Estimating the impact of surface heterogeneity on water and carbon cycling

at the local, regional and global scales: meteorological station data and certain mea-

surement of vegetation can be used to ascertain how vegetation responds to changes

in microclimatic conditions, and can be extended to examine future trends. By com-

bining with remote sensing records, we can examine the role vegetation plays in the

cycling of water and carbon, and simultaneously account for anthropogenic activities

(i.e., irrigation and urbanization).
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2) Understanding how ecosystems respond to global climate change and predicting

what the feedbacks will be: in order to assess the role of energy and water limitation

on ecosystem functioning, the ratio of evapotranspiration (ET) to potential ET can

be used within catchments to show vegetation-atmosphere interactions. Moreover, for

the purpose of estimating how various ecosystems respond to future climate scenarios

and potential land surface modifications, an ecosystem process model could be used

to predict water and carbon fluxes. Lastly, building climatic scenarios with a global

warming trend can also help predict the frequency and severity of future extreme

climatic events.

3) Interdisciplinary work: the pressing topics concerning the effects of global

warming, reducing greenhouse gas emissions, or achieving sustainability need to be

answered by integrating across different disciplines. To use biofuel as an example -

from an ecosystem-level perspective, the critical question is, “What is the ultimate

influence of biofuel generation and its use on greenhouse gas emissions?” From a so-

cietal perspective, the challenge becomes how best to strike a balance between food

demand and energy production (assuming biofuel remains a competitive alternative

fuel). With sustainability, by integrating across disciplines, we would be better answer

these environmental, economic and societal issues.
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