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ABSTRACT 

Cochlear implants have been an effective treatment for restoring profound 

sensorineural hearing loss to those who do not benefit from traditional hearing aids. 

Advances in surgical technique and electrode design allow for preservation of residual 

hearing. This allows cochlear implant candidacy criteria to expand to those with good 

low frequency hearing and severe high frequency hearing loss above 1000 Hz with poor 

speech discrimination. With a less traumatic surgical approach, low frequency hearing 

can be preserved resulting in combined low frequency auditory perception and mid- to 

high-frequency electric perception resulting in electro-acoustic stimulation (EAS). 

Despite the improvements in cochlear implantation, outcomes continue to vary 

significantly from one user to another. The variance in performance may potentially be 

due to the placement of the electrode within in the cochlea. This study focused on 

performance of patients compared to insertion depth, age, pitch perception and 

electrophysiologic measures. Patients with residual hearing were included and outcome 

measures were measured via speech perception tests. Radiographic imaging confirmed 

insertion depth, and the change in pure tone average was compared to this depth. 

Hearing preservation was further accomplished with two patients who presented 

with residual mid and high frequency hearing. Custom atraumatic electrodes were 

inserted, and hearing was preserved across all frequencies. These cases allowed for 

electric and acoustic pitch matching experiments to be conducted in the same ear 

providing information on where in the cochlear the implant is actually stimulating. 

Several pairs along the cochlea were run between electric and acoustic pitches at varying 

rates of stimulation. Place to pitch mismatch varied depending on the area within the 

cochlea. 
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Lastly, objective measures were used in attempt to determine the variance in 

outcomes. Two main contributing factors govern implant performance, 1) the ability of 

the processor to effectively deliver the electrical signal to the ear, and 2) the patient’s 

ability to process the information. Peripheral mechanisms were analyzed with the 

electric compound action potential and its amplitude growth function. The slope of the 

amplitude growth function was measured at the corresponding electrodes and 

compared to speech discrimination scores. Steeper slopes correlated with increased 

word understanding abilities. For further insight into the health of the cochlea, age 

effects were compared to hearing preservation. The pure tone averages were calculated 

before and after surgery. Pure tone averages following surgery elevated with increased 

age suggesting that the elderly may be at more risk for loss of residual hearing as 

compared to the general population. 
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CHAPTER 1: INTRODUCTION 

Approximately 35 million Americans endure hearing loss, most of which do not 

have profound sensorineural hearing loss (SNHL) (Kochkin, 2009). The most common 

form of hearing loss in adults is high frequency SNHL. This type of loss makes speech 

sounds, particularly consonants, difficult to distinguish, especially in the presence of 

background noise (Gordon-Salant, 2005). Patients are often frustrated with hearing aids 

or do not benefit from them due to poor word understanding abilities. Some studies 

suggest that this makes up more than 60% of the hearing aid population (Kaplan-

Neeman, Muchnik, Hildesheimer, & Henkin, 2012; Kochkin, 2000). Cochlear implants 

were devised as a means to restore sensorineural hearing loss, but in the past were only 

available to those with severe to profound SNHL. These devices have since become the 

most effective treatment for individuals with SNHL loss that do not benefit from 

traditional amplification. Patients with good low frequency hearing and poor high 

frequency hearing with marginal discrimination were initially not considered cochlear 

implant candidates. The exclusion of individuals with this type of hearing loss was due 

to the belief that preservation of residual hearing was not possible and that the brain 

could not reconcile acoustic and electric input (Sohmer, 2007). Histopathologic 

assessments of temporal bones from cochlear implant recipients have shown damage to 

cochlear structures (Handzel, Burgess, & Nadol, 2006; Khan, Handzel, Damian, 

Eddington, & Nadol, 2005) including the basilar membrane, osseous spiral lamina, 

spiral ligament and Reissner’s membrane (Berrettini, Forli, & Passetti, 2008; Chao, 

Burgess, Eddington, & Nadol, 2002; Nadol, Ketten, & Burgess, 1994; Rossi & Bisetti, 

1998). Further studies of the temporal bone demonstrated degeneration of both 

supporting cells and spiral ganglion neurons apical to the tip of an implant when 
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compared to the contralateral, unimplanted side (Khan, Handzel, Damian, et al., 2005). 

Should the implant electrode migrate through the scala media to the scala vestibuli as 

suggested by Finley and colleagues (Finley et al., 2008), the resulting damage may 

result in degeneration of residual functioning portions of the cochlea leading to poorer 

outcomes. Animal studies have suggested reduced spiral ganglion survival after 

sustaining trauma from electrode insertion (Leake, Stakhovskaya, Hradek, & 

Hetherington, 2008). The above findings led many researchers and clinicians to assume 

that preservation of hearing was unfeasible with the use of a cochlear implant. 

To avoid the damage to the cochlea and surrounding structures caused by 

electrode insertion, Lenhardt modified the standard cochleostomy by placing it 

anteriorly to the round window region (Lehnhardt, 1993). The ability to successfully 

manipulate the instrument in the inner ear was then confirmed in animal models 

(Balkany, Hodges, Whitehead, Memari, & Martin, 1994). These modifications not only 

led to advancements in electrode design, but also permitted the expansion of cochlear 

implant candidacy criteria to patients with good, or aid-able, low frequency hearing and 

severe high frequency hearing loss above 1000 Hz with poor speech discrimination 

scores. Pure tone candidacy for hearing preservation cochlear implantation are shown in 

Figure 1.1. 

 

 

 

 

 

Figure 1.1: The shaded region of this 
audiogram represents the thresholds of the 
ideal candidate for hearing preservation 
cochlear implantation. If thresholds in the low 
frequencies are decreased, amplification in 
provided in this frequency region. Some 
patients will present normal hearing 250 to 
1000 Hz and these patients can be treated with 
electrical stimulation of the basal half of the 
cochlea. (Image courtesy of Med-El, Gmbh. 
Innsbruck, Austria. Flex EAS implant and 
DUET sound processor are investigational and 
limited by US law to investigational use). 
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With a less traumatic surgical approach, low frequency hearing can be preserved 

resulting in combined low frequency auditory perception and mid- to high-frequency 

electric perception (O. Adunka, Gstoettner, et al., 2004; O. Adunka, Kiefer, Unkelbach, 

Radeloff, et al., 2004; Gantz et al., 2009; Gantz & Turner, 2003; W. Gstoettner et al., 

2004; W. K. Gstoettner et al., 2008; Kiefer et al., 2004; Kiefer et al., 2005; Turner, 

Gantz, Vidal, Behrens, & Henry, 2004). An example of an EAS insertion is depicted in 

Figure 1.2.  

 

 

 

 

 

 

 

 

This combination of hearing can be achieved it two manners, 1) electro-acoustic 

stimulation (EAS) meaning acoustic and electric hearing in the same ear, and 2) 

bimodal hearing - electric stimulation with acoustic stimulation in the contralateral ear 

(Dorman et al., 2009; Dorman & Gifford, 2010; Dorman, Gifford, Spahr, & McKarns, 

2008; Gifford, Dorman, & Brown, 2010; Gifford, Dorman, McKarns, & Spahr, 2007).  

Importance of Acoustic Low Frequency Hearing 

Low pitch acoustic hearing is required for localization and pitch recognition 

(Francart, Brokx, & Wouters, 2008, 2009; Gantz, Turner, Gfeller, & Lowder, 2005). 

Sound localization is governed by interaural time differences between when the sound 

Figure 1.2: Electroacoustic 
stimulation (EAS) implies insertion 
of an electrode into the basal, 
damaged portion of the cochlea, with 
electric stimulation of the mid- to 
high-frequency spiral ganglion cells. 
Surviving hair cells in the apical 
region of the cochlea the patient with 
acoustic hearing in the low 
frequency domain. As seen in this 
temporal bone specimen, an implant 
electrode has been inserted 
approximately 20 mm to the 1000 
Hz region. Hearing is intact apically 
from this point. 
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reaches each ear. Those changes are detectable when they are about 10 microseconds 

apart, and this process begins to deteriorate with sinusoids above 1500 Hz. In addition, 

the acoustic low frequency hearing entails fine spectral information, which is not 

entirely replicated in the current cochlear implant speech coding strategies. The lack of 

fine spectral resolution results in poor detection in pitch frequency changes and pitch 

patterns (Gantz et al., 2005). 

Hearing preservation with cochlear implantation adds a new dimension to the 

initial understanding of cochlear implantation. I.e., this possibility provides efficient 

access to the inner ear while utilizing the brain’s capability to integrate acoustic and 

electric sound percepts. The addition of low frequency acoustic hearing helps patients to 

maintain localization abilities, understand speech better in the presence of background 

noise and in some, appreciate music (Gantz et al., 2005; Skarzynski et al., 2002; 

Skarzynski, Lorens, Piotrowska, & Anderson, 2007a, 2007b; Skarzynski, Lorens, 

Piotrowska, & Podskarbi-Fayette, 2009; Turner et al., 2004). In addition, atraumatic 

insertion of the implant should allow for the ability to replace the implant several times 

during the life span of the patient and preservation of cochlea neural structures.  

Outcomes of Hearing Preservation and EAS 

In addition to the surgical approach, the design of the electrode is imperative to 

achieve optimal hearing preservation results. The length, diameter and flexibility of the 

electrode must all be taken into consideration (von Ilberg, Baumann, Kiefer, Tillein, & 

Adunka, 2011). Many studies have been conducted showing the feasibility of hearing 

preservation cochlear implantation. Skarzynski and colleagues implanted 10 subjects, all 

of which had significant low frequency hearing. Partial insertion using the Med-El 

Combi 40+ (32 mm electrode) was completed using the soft surgical technique, which 
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allowed for 8 electrodes to be inserted to a depth of approximately 20 mm. All but one 

subject had preserved hearing following surgery and maintained hearing 12 months 

post-operatively (Skarzynski et al., 2002; Skarzynski, Lorens, Piotrowska, & Anderson, 

2006; Skarzynski et al., 2007b; Skarzynski et al., 2009; Skarzynski, Lorens, Piotrowska, 

& Skarzynski, 2010).   

Garcia-Ibanez et. al. (Garcia-Ibanez et al., 2009) also implanted the Nucleus 

Contour Advance with the soft-surgical technique up to depths of 17 mm. Post-

operatively, 36% of the subjects maintained hearing within 10 dB of their pre-operative 

thresholds, and approximately 67% within 20 dB of their pre-operative thresholds. As 

seen from the above studies, hearing preservation is attainable with a variety of 

electrode designs achieving insertion depths to the 1000 Hz region (20 mm) of the 

cochlea.  

Performance with EAS 

 Several studies show that patients listening in the EAS condition perform better 

in background noise and have improved music appreciation as compared to those 

listening with electric stimuli only (Skarzynski et al., 2002; Skarzynski et al., 2007a, 

2007b; Skarzynski et al., 2009; Skarzynski et al., 2010; Turner et al., 2004). Gantz and 

colleagues inserted a 10-mm electrode to demonstrate the feasibility of hearing 

preservation in cochlear implantation. In this initial study, 13 subjects were implanted 

to a depth of 6-10 mm from the cochleostomy (Gantz & Turner, 2003; Turner et al., 

2004). Following implantation, the subjects could recognize familiar melodies more 

accurately than standard cochlear implant users without residual hearing. Furthermore, 

their performance in noise was significantly better than those with traditional implants.  
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James and colleagues implanted 12 patients with the Nucleus Contour Advance™ 

with insertions depths ranging between 17-19 mm. An in-the-ear (ITE) hearing aid was 

fit to the ipsilateral ear to amplify the preserved low frequencies. Speech understanding 

in quiet improved 20% and was accompanied by a 3 dB improvement in signal to noise 

ratio. Subjectively, patients reported an increase in performance with the added acoustic 

stimuli (James et al., 2005).  

Disadvantages of Partial Insertions 

The ideal parameters of hearing preservation surgery continue to be debated. It is 

clear that partial insertions are beneficial; however, is there added benefit with 

stimulation along the entire cochlear partition? A 6 mm insertion achieves high degrees 

of hearing preservation, but does not always optimize speech recognition. Significant 

improvements in hearing outcomes were noted when the subjects received a 10-mm 

implant (Gantz & Turner, 2003; Turner et al., 2004; von Ilberg et al., 2011) and even 

more so with a 16 mm insertion (Lenarz et al., 2009; von Ilberg et al., 2011). With 

limited access to the apical region, the effectiveness of the cochlear implant may be 

reduced in the event of progressive hearing loss or loss of residual hearing. Deeper 

implantation with sequential activation of apical electrodes presents a potential solution 

to this dilemma without the need for re-implantation (O. F. Adunka, Pillsbury, Adunka, 

& Buchman, 2010; Fitzgerald et al., 2008; von Ilberg et al., 2011). Insertions reaching 

18-22 mm provide a broader spectrum of hearing, consequently resulting in more 

speech and pitch information (O. F. Adunka et al., 2010). Electrodes typically extend 

into 1.5 turns of the cochlea, which equates to 18-24 mm. Med-El designs an electrode 

intended for an insertion depth of 31 mm, covering the full length of the average 

cochlea. When fully inserted, the electrode reaches approximately 630o. Spiral ganglion 
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neurites continue to extend to 1000 degrees with an estimated frequency of 58 Hz 

(Boyd, 2011). Software for the cochlear implants allows frequencies to be reallocated to 

the apical end. Studies by Reiss et al, however, suggest that user’s may require a 

significant amount of time to adjust to the frequency shift (Reiss, Gantz, & Turner, 

2008; Reiss, Lowder, Karsten, Turner, & Gantz, 2011).  

Maintaining low frequency acoustic hearing while implanting with complete 

cochlear coverage requires specialized electrodes. Insertions extending beyond 20 mm 

have shown increased cochlear trauma in temporal bone studies (O. Adunka & Kiefer, 

2006). Gstoettner and colleagues (W. Gstoettner et al., 2004) demonstrated that 

reduced trauma is achievable with insertions beyond 20 mm in twenty-one subjects that 

were implanted with Med-El electrodes with depths ranging from 18-24 mm. Hearing 

was preserved in 85.7% of these patients and further showed increased listening 

performance in the EAS condition as compared to the electric only condition. 

Baumgartner and colleagues have documented further support of decreased cochlear 

trauma with deeper insertions. Twenty-three adult subjects with severe to profound 

sensorineural hearing loss were implanted with a specialized flexible 31 mm electrode 

manufactured by Med-El. This electrode features five single contacts in the apical end 

and seven pairs across the remaining portions of the array. Hearing preservation was 

achieved in four cases for up to 12 months. Mean scores for monosyllabic words 

improved from 3% pre-operatively to 54% correct at 12 months. Sentences in noise (+10 

dB signal to noise ratio) also showed significant improvements in understanding with 

mean scores of >10% correct pre-operatively to 57% correct post-operatively 

(Baumgartner et al., 2007). Preservation of hearing with deeper insertions allows for 
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electrode arrays to provide full cochlear coverage while maintaining the integrity of 

neural structures.  

Publications from multicenter studies using atraumatic electrodes and a soft 

surgical technique provide evidence that residual hearing can be salvaged and remain 

stable over time after cochlear implantation. Most studies indicate improved hearing in 

background noise when listening in the EAS condition versus electric stimulation only. 

Review of the results from the U.S. Hybrid trial carried out with the Cochlear Nucleus 

device similarly report stable hearing for a large patient population (Gantz, Turner, & 

Gfeller, 2006). Amongst enhanced hearing in background noise, this study also 

established the potential for patients to centrally alter pitch perception over time. These 

findings open the possibility of improving hearing through implantation as well as 

rehabilitative strategies. Current research is focusing on optimizing the depth of 

implantation, developing customized processing strategies, and enhancing the ability to 

ensure acute and chronic stability of acoustic hearing after implantation.  

As evident in the aforementioned studies, the addition of low frequency acoustic 

input to electric stimulation provides significant benefit in speech understanding, 

particularly in noise. However, outcomes continue to vary among patients with similar 

hearing losses. Perhaps more objective measures should be taken into consideration to 

assess the integrity of the auditory nerves and neural pathways. Electrically evoked 

potentials may exhibit characteristics unique to good performers, which in turn, can 

contribute to understanding the underlying pathways of sound and plasticity of the 

auditory system after extended use of the cochlear implant.  
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Experience at University of Kansas Medical Center 

The Department of Otolarnygology Head and Neck Surgery at the University of 

Kansas Medical Center is currently participating in a clinical trial involving hearing 

preservation and cochlear implantation.  In this trial, the external components consist of 

a hearing aid and a cochlear implant speech processor combined together in one unit. 

The first two participants implanted had similar history, were close in age and 

underwent the same surgery; however, they displayed very different outcomes. Figure 

1.3 summarizes their performance over 12 months. 

 

Results showed an improvement in sentence recognition. Sentence scores are 

depicted in red, while monosyllabic words are shown in blue. The first patient scored 

37% correct with sentences in noise, preoperatively. Scores improved to 84% by 12 

months. Sentence scores for the second patient improved from 36%, preoperatively to 

91% correct at 12 months. CNC scores, however, remained essentially unchanged with 

patient one. Preoperative score was 30%, while the 12-month score was 32%. In 

contrast, patient two showed a significant improvement understanding 84% at 12 

months compared to 38% preoperatively. The variation in scores for these two 

participants led to several questions regarding their difference in performance. When 

Figure 1.3: Results for CNC 
and CUNY scores from the 
first two clinical trial 
patients over the course of 12 
months. 
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analyzing hearing preservation patients, how much is the acoustic hearing influencing 

outcomes? Given the previous discussion regarding electrode length, does the insertion 

depth correlate to loss of hearing? Where along the cochlear partition does stimulation 

occur and does it match with the appropriate frequency place? Are outcomes affected by 

nerve survival, and can we estimate nerve survival to predict outcomes? Beyond the 

periphery, what other factors might play a role in outcomes? Perhaps the elderly 

population is more susceptible to hearing loss following electrode insertions, or 

possibly, central processes are compromised due to dementia influencing speech 

recognition and understanding. It is likely that both peripheral and central processes 

combine to create variation in patient performance. The following series of experiments 

discuss the feasibility of hearing preservation and what we can learn about placement of 

the electrode by analyzing subjective and objective measures.   
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CHAPTER 2: PARTIAL DEAFNESS COCHLEAR IMPLANTATION AT THE 

UNIVERSITY OF KANSAS: TECHNIQUES AND OUTCOMES 

ABSTRACT 

Background: One of the most significant recent advances in cochlear implantation is the 

implantation of patients with residual hearing.   These patients have a down sloping 

sensorineural hearing loss with poor speech discrimination and perform poorly with 

standard amplification. Studies using a variety of different electrode designs have 

demonstrated that it is possible to implant an inner ear and preserve residual hearing.   

Initial studies have demonstrated that a combination of residual acoustic hearing in the 

low frequencies with electrical stimulation in the mid to high frequencies resulted in 

superior hearing performance in background noise.   

Purpose:  The objective of this study was to determine the effect of electrode insertion 

depth on hearing preservation.  Study Sample:  18 patients with mild to severe hearing 

loss in the low frequencies combined with poor word recognition were recruited for the 

study. 

Intervention:  Cochlear implantation 

Data collection and analysis:  Pre and post-operative hearing test, HINT and CNC 

testing.  Data analysis was performed with Kruskal Wallis and Mann Whitney testing. 

Results: In our study of 18 patients implanted with a Med-El Pulsar CI 100 we 

demonstrated the ability to preserve residual hearing with implant insertion depths 

ranging from 20-28 mm, giving us the possibility of near complete cochlear frequency 

coverage with an implant array, while preserving residual hearing. These patients 

performed well both in quiet and in 10 dB SNR conditions.   
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Conclusion: Hearing preservation achievable even with deep implant insertion.  Patients 

performed well in combined acoustic and electric conditions. 

Key Words:  Cochlear implant, hearing preservation, partial deafness cochlear 

implantation, electro acoustic stimulation 

Abbreviations:  Electroacoustic stimulation (EAS), hearing in noise test (HINT), 

Consonant-Nucleus-Consonant test (CNC), signal to noise ratio (SNR).   

Introduction 

It is estimated that more than 31 million Americans are hearing impaired, most 

of whom do not have profound sensorineural hearing loss (SNHL) (Kochkin, 2005). The 

most common form of hearing loss in adults is high frequency SNHL, which makes it 

difficult to distinguish speech sounds, particularly consonants. Hearing function 

deteriorates further in background noise. These patients are often frustrated with 

hearing aids or do not benefit from them due to poor word understanding abilities. 

Cochlear implants have become a useful tool for the treatment and rehabilitation of 

severe to profound hearing losses. Individuals with good low frequency hearing and 

poor high frequency hearing were initially not considered cochlear implant candidates 

as preservation of residual hearing was not thought to be possible due to the trauma 

sustained from electrode insertion (Sohmer, 2007). However, with improved electrode 

designs and surgical technique, indications for cochlear implants have extended to those 

who have essentially good, or aid- able, low frequency hearing and severe high 

frequency loss above 1000 Hz. With a less traumatic surgical approach, low frequency 

hearing can be preserved resulting in low frequency auditory perception and mid to high 

frequency electric perception (O. Adunka, Gstoettner, et al., 2004; O. Adunka, Kiefer, 

Unkelbach, Radeloff, et al., 2004; Gantz et al., 2009; Gantz & Turner, 2003; W. 
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Gstoettner et al., 2004; W. K. Gstoettner et al., 2008; Kiefer et al., 2005; Turner et al., 

2004). Several studies have shown that patients listening in the electro-acoustic 

condition (EAS) perform better in background noise and have improved music 

appreciation as compared to those in the implant only condition (Behr et al., 2007; 

Gantz et al., 2009; Lorens, Polak, Piotrowska, & Skarzynski, 2008; Skarzynski et al., 

2006; Skarzynski et al., 2009; Turner et al., 2004). Gantz et. al., used a short electrode 

to demonstrate the feasibility of hearing preservation in cochlear implantation. 

Traditional long electrode users have shown poor pitch perception as compared to 

normal hearing persons, especially in complex tasks such as music perception. Acoustic 

low frequency hearing is important for pitch and spectral resolution. In this initial study 

13 volunteers were implanted to a depth of 6 to 10 mm from the cochleostomy (Gantz & 

Turner, 2004; Gantz, Turner, & Gfeller, 2004; Gantz et al., 2006). Following 

implantation, their ability to recognize familiar melodies was significantly more accurate 

in comparison to standard cochlear implant users as was performance in speech in 

noise. Another study done by James et. al. showed improved speech recognition in noise 

with the EAS approach. The Nucleus® Contour Advance™ was implanted in 12 patients 

with insertion depths ranging between 17-19 mm. An in-the-ear hearing aid (ITE) was fit 

in the ipsilateral ear to amplify the preserved low frequencies. A 20% improvement with 

speech in quiet along with a 3 dB improvement in signal to noise ratio was observed in 

this study. Subjectively, patients were very satisfied with the bimodal hearing (James et 

al., 2005). Garcia-Ibanez et. al. (2008) implanted the Nucleus® Contour Advance™ up 

to 17 mm for the purpose of preserving residual hearing. They found that hearing 

thresholds were measurable post-operatively in 71-86% of their subjects. Thirty-six 

percent of these patients had preservation of thresholds within 10 dB of their 
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preoperative thresholds and approximately 67% within 20 dB HL of the pre-operative 

thresholds (Garcia-Ibanez et al., 2009). Hearing preservation was thus attainable with a 

variety of different electrode designs with insertion depths to approximately the 1000 

Hz region of the cochlea.   

The purpose of our study was to evaluate the benefits of hearing preservation 

with fully inserted electrodes extending beyond 20 mm. Potential benefits of this 

approach include increasing the frequency coverage of the cochlea while preserving 

residual structure. This condition may be beneficial in terms of ensuring survival of 

neurotrophin producing cells in the cochlear apex and may also preserve balance 

function in the implanted ear. 

Methods 

Surgical Approach: The extended round window approach was used in all cases. 

After performance of a mastoidectomy and facial recess (posterior tympanotomy) 

approach to the middle ear, all bone dust was irrigated out of the wound. Hemostasis 

was obtained and 0.5 cc of decadron 10 mg/ml was applied to the round window niche. 

The bony overhang of the round window niche was then carefully removed with a 1 mm 

diamond burr and the round window clearly visualized by testing the round window 

reflex. For the extended round window approach the bone anterior inferior to the round 

window was removed, keeping the scala tympani endosteum intact. The wound was 

once again irrigated and Healon™ was used to cover the round window and endosteum.  

The endosteum was then opened with a small pick and the implant electrode is carefully 

inserted.  For round window insertion, the implant was inserted through an incision in 

the anterior mid portion of the round window (Fig 2.1).   
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All patients were implanted with Med-El Puslar C100 using either the standard 

(H) or medium (M) electrode arrays. These electrodes have 12 contacts distributed over 

28 or 24 mm respectively. The opening into the scala tympani was sealed with a small 

piece of fascia and the wound closed. Depth of the electrode was confirmed 

radiographically.   

Subjects and Outcomes Measures: A total of eighteen implant, 5 males and 13 

females, candidates with varying degrees of hearing loss were recruited. Ages ranged 

from 26-84 with a mean age 63.17. Thresholds ranged anywhere from normal sloping to 

profound to severe to profound. Word discrimination scores tested via the hearing in 

noise sentence test (HINT) fell within Food and Drug Administration (FDA) or 

Medicare guidelines for implantation in the best-aided condition. FDA guidelines state 

that understanding ability must be less than 50% in the ear to be implanted and no 

better than 60% in the contralateral ear 

(http://www.audiologyonline.com/articles/article_detail.asp?article_id=2272).  

Medicare’s criteria states that speech understanding must be less than 40% bilaterally 

(http://www.audiologyonline.com/articles/article_detail.asp?article_id=2272). The 

Figure 2.1: Surgical approach for 
hearing preservation. Insertion is 
made through the round window. 
Effective round window insertion 
requires a wide facial recess (A). 
The bone of the round window 
niche is then carefully removed 
with a small diamond burr (B). 
After identifying the round 
window through confirmation of 
the round window reflex, the 
round window is covered in 
Healon® and carefully incised (C). 
The electrode is then inserted (D). 
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etiology of the hearing losses for the participants is unknown. Prior to implantation, all 

patients underwent blood testing to screen for autoimmune inner ear disease and had 

an MRI scan to rule out retrocochlear disorder. Lab work was negative for autoimmune 

inner ear disease for all patients. MRIs scans were also negative for cochlear 

malformation or retrocochlear pathology. The participants further denied any family 

history of hearing loss.  

Informed consent was obtained prior to testing, and the University of Kansas 

Medical Center human subjects board approved the protocol. Pure tone thresholds were 

obtained before surgery and 2 weeks post-operatively using insert earphones. An 

example of a pre- and post-audiogram is shown in Figure 2.2.  

 

 

 

 

 

 

 

 

The HINT and consonant-nucleus-consonant (CNC) word tests were 

administered to evaluate word discrimination and word recognition abilities. Sentences 

and words were presented with the patient seated in a sound-treated booth at 0 degrees 

azimuth at 70 dB SPL via recorded voice. The tests were administered in three 

conditions: acoustic only (A), implant only (E), electric plus acoustic (EAS) in the 

ipsilateral (implanted) ear. To ensure the patient was only hearing with electric 

Figure 2.2: Pre- (open circle) and 
post-operative (crossed circles) 
audiogram from a patient with a 
right 24-mm insertion of a Med-El 
electrode, demonstrating 
preservation of hearing. Insertion 
was carried out via a round 
window approach.  
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stimulation, both ears were plugged with an earplug to eliminate any acoustical hearing. 

The ipsilateral earplug was then removed for the EAS condition. A contralateral hearing 

aid was not used in any of the patients to isolate the implanted ear. HINT testing was 

also performed in a +10 dB SNR in the electric and EAS conditions. After the sentences 

or words were presented, the patients were asked to repeat back any words that they 

may have understood and were encouraged to guess if unsure. Scores were based on 

words repeated back correctly in each sentence and divided by the total number of 

words possible.    

Statistics: Outcomes were analyzed by Kruskal Wallis and Mann-Whitney. 

Testing administered using SPSS v. 17.0. Significance was set at p<0.05.  

Results 

Residual hearing was preserved in all 18 patients. The change in pure tone 

averages was calculated using 250, 500 and 750 Hz. This change was graphed as a 

function of insertion depth and is shown in Figure 2.3.  

 

 

 

 

 

 

 

There is no clear relationship between insertion depth and amount of hearing 

preserved indicating that the apical region of the cochlear can be reached without 

compromising hearing thresholds (r2=0.091). The advantage of residual hearing used in 

Figure 2.3: Effect of electrode 
insertion depth on post-operative 
change in hearing. Using a round 
window approach, there was no clear 
relationship between implant insertion 
depth and change in post-operative 
pure-tone average (PTA). The PTA was 
chosen as an outcome measure since all 
of the patients we implanted had 
residual low-frequency hearing. This 
demonstrates that access to the low-to 
mid-frequency region of the cochlea is 
possible with hearing preservation. 
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conjunction with electric stimulation was measured using the HINT test presented in 

quiet and +10 dB SNR as well as CNC word lists. Outcomes for the quiet condition are 

graphed in figure 2.4.  

 

 

 

 

 

 

 

The pre-operative HINT score in quiet had a mean of 24.3% correct. When tested 

in the electric only condition, the mean score improved to 75.3% correct. When 

presented in the acoustic plus electric condition, the mean score was 69.9% correct. This 

represents a significant difference in the aforementioned three conditions (p≤ .001). The 

Mann-Whitney test was then performed to find that there were statistical differences in 

the pre-operative and electric only condition (p ≤.001) as well as the pre-operative and 

EAS conditions (p ≤ .001). There was, however, no statistical difference between the 

electric and EAS conditions (p = .573).   

Patients tested in the +10 dB SNR condition showed pre-operative scores of 

25.7% correct. Mean scores improved to 64.33% correct in the electric only condition, 

and to 65.89% correct in the EAS condition. The Kruskal-Wallis test confirmed a 

significant difference between groups (p = .001). Similar to the electric only condition, 

Mann-Whitney test showed a significant difference between pre-operative scores and 

post-operative HINT in the electric only condition (p = .001) in addition to significant 

Figure 2.4: Post-operative performance in 
quiet. This box plot summarizes the pre-operative 
and post-operative Hearing in Noise Test (HINT) 
scores recorded in 2 conditions: (1) electric only 
and (2) electroacoustic stimulation (EAS). The 
black line represents the median HINT score. The 
boxes represent the 25th through the 75th 
percentile, whereas the lower and upper lines 
represent the standard deviation. Pre-operative 
HINT scores had a median of 19%. Post-operative 
activation of the implant resulted in significant 
improvement in HINT scores for both the electric 
only and EAS conditions. Electric only scores had 
a median of 79.5%, and EAS HINT scores 
averaged 72%. There is no statistical significance 
between the electric only and EAS conditions. 
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differences in pre-operative and post-operative HINT scores in the EAS condition (p ≤ 

.001). There was no statistical significance evident when the two post-operative 

conditions were compared (p = .955) (Fig 2.5).  

 

 

 

 

 

 

 

 

Speech understanding outcomes were also measured using CNC word lists (Fig 

2.6).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Post-operative performance in quiet. 
This box plot summarizes the pre-operative and 
post-operative Hearing in Noise Test (HINT) 
scores when presented in +10 dB signal-to-noise 
ratio. Pre-operative scores demonstrated a 
median of 33%. Post-operative scores were 64% 
and 68% in the electric and electroacoustic 
stimulation (EAS) conditions. The black line 
represents the median HINT in noise score. The 
boxes represent the 25th through the 75th 
percentile, whereas the lower and upper lines 
represent the standard deviation. There was 
statistical significance in pre-operative scores and 
post-operative scores in the electric condition as 
well as in the EAS condition; however, there was 
no statistical difference in the electric and EAS 
conditions. 
 

Figure 2.6: Change in consonant-
nucleus-consonant (CNC) recognition 
after implantation. Pre-operative scores 
had a median of 17% correct. Post-
operative scores improved to a median of 
32% correct in the electric only condition 
and 42% in the electroacoustic stimulation 
(EAS) condition. The black line represents 
the median CNC score. The boxes 
represent the 25th through the 75th 
percentile, whereas the lower and upper 
lines represent the standard deviation. 
There was statistical significance in pre-
operative scores and post-operative scores 
in the electric condition as well as in the 
EAS condition; however, there was no 
statistical difference in the two post-
operative conditions. 
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Pre-operative mean scores were 16.67% correct out of 50 words. Scores improved 

to an average of 38% correct in the electric only condition and to 47.1% in the EAS 

condition. Using the statistical tests mentioned above, results were consistent in that a 

statistical difference was found when comparing pre-operative scores to post-operative 

scores in the two different conditions; 1) electric only (p = .004), 2) EAS (p = .000); 

however, no statistical difference was found when comparing the two post-operative 

CNC scores (p=.193).  

Discussion 

In our group of patients, insertion of a thin electrode array via a round window 

approach was able to achieve hearing preservation. In contrast to other studies, we were 

able to achieve insertions of up to 28 mm with preservation of residual hearing (Fig 2.3). 

In temporal bone studies, insertions that extend beyond 360 degrees (about 20 mm) 

showed increased cochlear trauma (O. Adunka & Kiefer, 2006). This finding was not 

observed in our series of patients since preservation of hearing serves as a proxy for 

evaluation of damage apical to the implant. The primary advantage of deeper 

implantation is the potential to stimulate apical regions of the cochlea should hearing 

deteriorate over time.    

Although short electrodes have been shown to be beneficial for speech 

understanding, deep insertions also have advantages, even for hearing preservation 

candidates. With limited access to the apical regions, the implant may be less effective in 

the event that the residual hearing is lost. Frequency allocations may be reassigned to 

the apical end; however, Reiss et. al. suggests that it may require a significant amount of 

time for the users to adjust to the frequency shift (Reiss et al., 2008; Reiss, Turner, 

Erenberg, & Gantz, 2007).  
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Gstoettner et. al. (2004) found that deeper insertions could be achieved with the 

Med-El electrode arrays. This finding is significant since implantation to 20mm is 

predicted to give patients electrical hearing through the 1000 Hz range, leaving the 

apical, hearing portion of the cochlea intact. Twenty-one patients were implanted with 

insertions depths ranging from 18-24 mm. Hearing was successfully preserved in 85.7% 

of the patients. When compared to the electric-only condition, all patients performed 

better in the EAS condition. A key component to preserving hearing in these cases was 

found to be an atraumatic (“soft”) surgical approach (W. Gstoettner et al., 2004).   

Newer electrode designs have tried to combine thin, atraumatic insertion with 

implantation to at least 20mm (O. Adunka, Kiefer, Unkelbach, Lehnert, & Gstoettner, 

2004). Potentially even deeper insertion into the cochlea with limited damage is 

possible. Baumgartner et. al. implanted 23 adults with a specialized flexible 31 mm 

electrode manufactured by Med-El. The electrode features five single contacts in the 

apical end and seven pairs across the rest of the array. With this design, the apical end is 

much thinner. Hearing preservation was achieved in four cases up to 12 months. 

Improvements were seen with monosyllabic words, as well as hearing in noise (+10 db 

signal to noise ratio) with mean scores of 54% and 57%, respectively (Baumgartner et 

al., 2007). 

Findings from our study indicated a significant improvement in speech 

understanding with the use of a cochlear implant in patients with residual hearing 

compared to their performance with standard hearing aids. Interestingly, the residual 

acoustic hearing did not improve speech discrimination scores significantly over electric 

hearing alone. These results are contrary to the literature that suggests electric acoustic 

hearing is superior to electric hearing alone. It is important to note that there was a 
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large range in scores where some individuals did perform as well in the EAS condition 

as compared to other studies that have been published. Several variables may have 

played a role in speech discrimination. One of which is if the patient was properly fit 

with standard hearing aids and if the ear was properly stimulated prior to surgery. Age 

may have also played a role in that the geriatric population may have more difficulty in 

distinguishing and adjusting to the mixed signals. Our age range was quite large, which 

may have influenced the mean scores.  

Additional theoretical benefits are the potential for preservation of structures 

apical to the implant. Recent temporal bone histopathology studies have demonstrated 

degeneration of both supporting cells and spiral ganglion neurons apical to the tip of an 

implant when compared to the contralateral un-implanted side (Khan, Handzel, 

Damian, et al., 2005). If an implant electrode migrates through the scala media to the 

scala vestibule as suggested by Finley et. al., the resulting inflammation may result in 

degeneration of residual functioning portions of the cochlea and poorer outcomes 

(Finley et al., 2008). Some animal studies also suggested that traumatic insertions 

affected spiral ganglion survival (Leake et al., 2008). Lack of hearing loss with deeper 

insertions suggests that it is possible to maintain the apical structures of the cochlea 

while being able to electrically stimulate very low frequencies.   

Conclusion 

As seen with our data, atraumatic cochlear implantation has shown benefit in 

preserving hearing. Contrary to other studies we have not seen a difference in 

performance of our patients in electric only versus the EAS condition in background 

noise. This is mainly due to our patients’ excellent performance in the electric only 
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condition. Future studies will focus on understanding the physiologic differences that 

affect performance in these different groups. 
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CHAPTER 3: EXPANDING COCHLEAR IMPLANTATION TO PATIENTS 

WITH RESIDUAL MID AND HIGH FREQUENCY HEARING 

Abstract 

Cochlear implantation has long been indicated to restore profound hearing loss 

and is the most effective intervention for patients that do not benefit from standard 

amplification. Recent innovations in implant design and surgical technique have 

expanded allowed implantation with preservation of residual hearing. In these cases the 

goal is shallow to mid depth implantation in order to restore as much hearing as 

possible while preserving apical low frequency acoustic hearing in patients with ski 

slope losses with poor speech discrimination. We report a series of ears with up sloping 

hearing loss deeply implanted with custom thin electrodes in which residual hearing is 

preserved. These patients were poor hearing aid users and required restoration of 

hearing in the low frequencies. This represents a change in the previous practice of 

avoiding implantation of areas of residual hearing. These cases demonstrate the 

feasibility of preservation of acoustic hearing in all frequency regions and represent and 

opportunity to further expand cochlear implantation to novel patient populations.   

Background 

Cochlear implantation was devised and traditionally used as a means to restore 

hearing to individuals with profound hearing loss who could not benefit from hearing 

aids. More recently, there has been a push towards implanting patients with ski slope 

hearing losses while preserving low frequency acoustic hearing. To preserve their 

residual hearing, surgical techniques and cochlear implant electrodes have been devised 

to inflict minimal trauma to the more apical regions of the cochlea where deeper tones 

are processed (Gantz et al., 2009; Podskarbi-Fayette, Pilka, & Skarzynski, 2010; Wilson, 
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2010). These patients are then rehabilitated using acoustic input for the residual low 

frequency hearing and electrical input for the middle to high frequencies. This approach 

represents a significant change in how we treat patients with residual hearing since 

prior to the establishment of these techniques, cochlear implantation resulted in loss of 

all residual hearing in the ear being implanted.   

While cochlear implant patients may perform reasonably well in quiet 

environments, patients using both electric and acoustic signals (EAS) stimulation have 

the advantage in environments with competitive speech. EAS patients are able to 

recognize and suppress the competitive speech by their ability to process lower 

frequency speech.  This condition is referred to as glimpsing (Li & Loizou, 2008). 

Studies have also shown improvements in music appreciation when compared to 

standard CI users. Recently, novel speech processing strategies have shown 

improvements in music perception and increased perception of speech quality 

(Arnoldner et al., 2007; Galindo et al., 2013; Lorens, Zgoda, Obrycka, & Skarzynski, 

2010; Muller et al., 2012). Use of these strategies requires an implant that can stimulate 

the apical third of the cochlea.   

Key components of successful hearing preservation are surgical technique and 

surgeon experience. Hearing preservation can be achieved through a carefully placed 

cochleostomy (Bruce, Bates, Melling, Mawman, & Green, 2011), however the use of a 

round window insertion instead of a cochleostomy appears to be gaining widespread 

acceptance (Roland & Wright, 2006; Roland, Wright, & Isaacson, 2007). Theoretical 

benefits to this approach have been described. Decreased necessity for drilling likely 

lowers acoustic trauma, infection rate, leakage of perilymph, and entrance of bone dust 

into the cochlea. In addition, the round window niche provides ease of sealing the 
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cochleostomy around the electrode. Other techniques described in soft CI surgery 

include deferring the cochleostomy until immediately before electrode insertion, no 

suctioning of perilymph, gentle electrode insertion, and potential use of a lubricant to 

facilitate insertion(O. Adunka, Gstoettner, et al., 2004; O. Adunka, Unkelbach, et al., 

2004). Although these are elegant techniques and provide obvious theoretical limits to 

cochlear damage, they lack evidence for superior outcomes. Rather it seems that 

duration of deafness and patient age may be predictors of success (Turner, Gantz, 

Karsten, Fowler, & Reiss, 2010). Introduction of blood into the cochlear environment is 

another concern during cochlear implant. Intrascalar administration of blood into 

guinea pig ears has been shown to result in both transient and permanent hearing loss 

(Radeloff et al., 2007). 

Application of these techniques has made hearing preservation a feasible 

outcome after cochlear implantation in multiple centers. Initial studies with 20 mm 

insertion depth had an 85% success rate of preserved low frequency hearing in 21 

cochlear implant patients with shallow electrode devices and since then these results 

have been replicated in multiple centers (Baumgartner et al., 2007; W. Gstoettner et al., 

2004; Skarzynski et al., 2002; Skarzynski et al., 2010). Insertion depth appears not to 

increase the incidence of hearing loss (Prentiss, Sykes, & Staecker, 2010; Punte, 

Vermeire, & Van de Heyning, 2010; Usami et al., 2011), opening the possibility of 

preserving hearing in most types of hearing loss. In this paper we report the use of the 

aforementioned techniques to implant a series of ears with rare up-sloping hearing loss. 

These patients had significant residual hearing above 4000 Hz. The goal in these cases 

was to achieve and implantation that could take advantage of fine structure processing 

(FSP) strategies, while preserving sound awareness in the high frequencies.   
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Methods 

Patient selection:  Two patients were identified with up sloping hearing losses 

that met standard implant selection criteria (PTA < 70 dB; SD <60% in better hearing 

ear, <50% in the ear to be implanted). Pre-operative testing included and MRI with 

gadolinium of the brain and internal auditory canals; full pure tone audiometry, and 

testing in best aided condition using HINT, CNC, AZ Bio tests performed in quiet and in 

noise. Post-operative testing using the same test battery was performed at 2 weeks, 3, 6, 

9 and 12 months after implantation.   

Surgical Approach:  The extended round window approach was used in all cases.  

After performance of a mastoidectomy and facial recess (posterior tympanotomy) 

approach to the middle ear, all bone dust was irrigated out of the wound. Hemostasis 

was obtained and 0.5 cc of decadron 10 mg/ml was applied to the round window niche. 

The bony overhang of the round window niche was then carefully removed with a 1 mm 

diamond burr and the round window clearly visualized by testing the round window 

reflex. For the extended round window approach the bone anterior inferior to the round 

window was removed, keeping the scala tympani endosteum intact. The wound was 

once again irrigated and Healon™ was used to cover the round window and endosteum. 

The endosteum was then opened with a small pick and the implant electrode is carefully 

inserted so that the 12th contact is inside the round window membrane (Fig 3.1).  
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All patients were implanted with Med-El Sonata using custom made electrode 

arrays designed for these patients.  These electrodes have 12 contacts distributed over 

26.5 mm in a 31.5 mm long array. The apical 5 electrodes are single contacts with an 

electrode diameter of 0.5 x 0.8 mm. The opening into the scala tympani was sealed with 

a small piece of fascia and the wound closed. All patients underwent intraoperative 

imaging to ensure that there were no hairpin turns or kinks in the array. Depth of the 

electrode was determined by imaging as previously described (Boex et al., 2006). All 

patients were discharged home the same day with oral antibiotics and a 10 day course of 

methylprednisolone. Patients were activated 1 months post op and programmed with 

the FSP speech strategy.   

Results 

Case 1: is a 48-year-old female with a longstanding history of bilateral non-

syndromic hearing loss. There was no family history of hearing loss. Her initial 

audiograms revealed profound up-sloping hearing loss with preservation in her high 

frequencies (Fig 3.2A). Preoperative CNC score in then left ear was 5%, HINT in quiet 

40% and HINT +10dB 0%. She underwent implantation with a custom Mel-El device 

Figure 3.1: Surgical approach for hearing 
preservation implantation.  A wide facial 
recess is drilled exposing the round window 
niche (A, arrow).  It is important to lower the 
facial ridge to the greatest degree possible so 
that the optimal insertion angle for the long 
electrode can be obtained.  Care must also be 
taken to avoid contact with the incus while 
drilling.   Using a 1 mm diamond bur the 
round window niche overhang is removed (B).  
Exposure of the round window is checked by 
palpating the stapes and looking for a round 
window reflex.  This is not seen if there is still 
pseudomembrane over the round window.  
The round window is covered with hyaluronic 
acid (C)  and opened.  This allows the 
insertion of the electrode (D) with minimal 
contamination of the perilymph with blood. 
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with a thin electrode and soft surgery technique. Pre- and post-operative audiograms 

are shown in Fig. 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thresholds remained stable throughout testing.  At six months post implant 

activation HINT scores were 95% in quiet, 85% at +10 dB. CNC scores at six months 

were 90%. Interestingly, addition of a hearing aid in the contralateral ear (bimodal 

condition) did not result in improvements in scores (HINT 90%, HINT + 10dB 85%, 

Figure 3.2:  Pre- and post-operative audiograms for cases 1 and 2. Pre-op pure tone 
thresholds are shown as open circles. Post-operative pure tone thresholds are shown as 
closed circles. As seen in Fig 2A, case 1 demonstrates excellent preservation of pure tone 
thresholds. Post-operative masked bone conduction scores (B) demonstrate several 
suprathreshold responses in the low frequency region. Case 2 pre and post- operative pure 
tone thresholds are seen in C.  There is a 20 dB change in hearing in the low to mid 
frequencies.  This is most likely a conductive hearing loss as demonstrated by the masked 
bone thresholds (D). 
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CNC 85%).  Scores and hearing thresholds have remained stable for 24 months post 

implantation.  Analysis of CT scans (Fig 3) and reconstructed Stenvers view x rays at 1 

year post implantation demonstrate that the electrode position has remained stable at a 

680o insertion angle.   

Case 2:  After long term stable performance with her unilateral implant, the 

patient requested implantation in her contralateral ear. She underwent implantation 

using a similar device in the right ear again using soft surgery technique. Pre- and post-

operative audiograms are shown in Figs 3.2 C and D. Similar to the left ear, the patient 

experienced substantial preservation of hearing across all frequencies. Only 20-15 dB 

loss occurred at frequencies less than 1500 Hz. Based on bone conduction thresholds, 

this appeared to be a conductive loss (2D). For her right implant alone CNC scores at 6 

months were 84%, HINT = 100%; HINT +10 dB=100%. Again using CT temporal bone 

to construct a three-dimensional image implant position was determined.     

Measurements for the right ear show rotational angle of 700 degrees. Figure 3.3 shows 

CT scans of both temporal bones after implant insertion.    

 

 

 

 

 

 

 

 

  

Figure 3.3: Imaging of cases 1 
and 2 using post-operative CT (A-
D) and Stenvers projections based 
on CT data for case 1 (F) and case 
2 (E).   As can be seen on the serial 
CT sections, the electrode contacts 
are distributed throughout the 
length of the cochlea. The 
individual DICOM data was then 
projected as Stenvers views using 
OsiriX software.  These projections 
demonstrate a 680o insertion in 
case 1 (F) and a 700o insertion in 
case 2 (F) 
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Case 3:  Patient presented with a >15 year history of non-syndromic up sloping 

hearing loss. Preoperative CNC test showed a score of 26%; AZ Bio test = 39%. Hearing 

tests at 3 months post implantation demonstrated preservation of hearing with the 

presence of a conductive hearing loss in the low frequencies (Figs 3.4 B,C). Overall 

insertion depth based on estimation from imaging was 700 O (Fig 3.4A).    

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

Hearing preservation cochlear implantation developed from the use of short  

(10mm) electrodes that were implanted in the basal turn of the cochlea so that residual 

low frequency hearing could be preserved (Gantz & Turner, 2003). Several pioneering 

studies in the field demonstrated that 20mm insertions to the 1000 Hz region could be 

performed without sacrificing residual cochlear function (W. K. Gstoettner et al., 2008). 

In all of these cases the electrode array was inserted into the region of the cochlea that 

was devoid of residual hearing. Recent studies have demonstrated that there was no 

relationship between the depth of insertion and hearing preservation if flexible 

Figure 4: The post-operative Stenvers view for case 3 can be seen in A. Full insertion 
of the custom 31.5 mm electrode results in a 700 degree distribution of the electrode 
contacts that are distributed over 28.5 mm of the electrode length. Pre- and post-
operative pure tone thresholds show a 10 -20 dB hearing loss resulting from this 
insertion (B). Measurement of bone conduction thresholds (C), suggests that at least 
for 500- 4000 Hz measurements the postoperative loss is predominantly a conductive 
loss. 
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electrodes and soft surgery techniques were used (Prentiss et al., 2010; Tamir, Ferrary, 

Borel, Sterkers, & Bozorg Grayeli, 2012). Following this logic, deep implantation in 

patients with atypical up sloping hearing loss should be feasible, which is demonstrated 

in the cases described above. An interesting observation in these cases is that that there 

is a 10-20 dB conductive hearing loss across the low frequencies is observed in two of 

the three cases (Figs 2,4). Potential causes could include contact between the implant 

and the ossicular chain versus a mechanical effect of the electrode within the scala 

tympani. We have not observed a similar degree of conductive hearing loss in patients 

implanted for ski slope hearing loss so the later explanation is more likely.   

Use of soft surgery techniques previous described coupled with custom thin 

electrode devises may provide the opportunity to safely preserve hearing in these 

atypical up sloping hearing loss patients. Several key factors have been identified as 

important in consistently achieving hearing preservation. Although hearing 

preservation has been described using the advanced off stylet technique in modiolar 

hugging implants, mechanical studies demonstrate that more flexible electrodes lead to 

lower degrees of insertion trauma (O. Adunka, Kiefer, Unkelbach, Lehnert, et al., 2004; 

Jolly et al., 2010). This is particularly important since there is some evidence that over 

insertion with less flexible electrodes can lead to poorer implant outcomes, even when 

considering electric only conditions (Finley et al., 2008). Therefore when targeting the 

low frequency regions of the inner ear for stimulation, a long and atraumatic electrode is 

required. We used a custom electrode that is based on the Med-El flex design. The apical 

5 electrodes are single contacts that create a flexible atraumatic tip. The basal end to the 

electrode featured extra reinforcement to make it easier to advance into the apical third 

of the cochlea. Other important factors to consider are the surgical approach. We have 
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implanted all of these electrodes via a round window approach. Variability in the 

orientation of the round window and the initial sharp turn the electrode needs to 

navigate the hook region, have been cited as potential disadvantages of using the round 

window as an entry point to the inner ear (Roland & Wright, 2006; Roland et al., 2007). 

A cochleostomy or removal of the bony ridge anterior to the round window has been 

advocated to overcome these obstacles. As with other hearing preservation cases, care 

was taken to avoid blood and bone dust from entering the inner ear. All patients also 

received intraoperative and post-operative steroids since animal studies strongly 

suggest that the use of steroids can mitigate implant related damage (Braun et al., 2011; 

Rajan, Kuthubutheen, Hedne, & Krishnaswamy, 2012).   

Patients with significant residual hearing have previously faced a dilemma; 

implants offered electrical stimulation across all frequencies but at the price of loss of 

residual hearing. These cases may represent a step toward a solution for patients who 

are fearful of losing residual hearing or who want the benefit of acoustic hearing when 

they are not wearing their implant. This situation opens the possibility of implantation 

to a wide range of patients who have significant residual hearing but perform poorly 

with hearing aids. A key to identifying these patients is expanding the use of the 

minimum test battery and raising awareness of audiologists and physicians of current 

implant criteria.  Additionally, deep implantation in up sloping hearing loss allows for 

the opportunity of examining pitch rate/place perception with electric/acoustic hearing 

across multiple frequencies in the same ear. Because the patients experience electrical 

stimulation in areas with acoustic hearing, the electrical stimulation can be precisely 

mapped. Variation in rate of stimulation can then be correlated with perceived pitch and 
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the acoustic residual hearing can be used as a same ear control. Results from these 

studies may provide finer tuning of cochlear implant devices in the future.    
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CHAPTER 4: ADVANTAGES OF DEEP INSERTION COCHLEAR 

IMPLANTATION: A CASE STUDY OF UP-SLOPING HEARING LOSS WITH 

PRESERVED HEARING ACROSS MULTIPLE FREQUENCIES. 

Abstract 

Frequency allocation can potentially be improved by cochlear implants that 

access the apical third of the spiral ganglion. The ultimate goal of stimulating the apical 

end is to provide the maximum amount of spectral information to the user. 

Reconstruction of human temporal bones demonstrates a mismatch between hair cell 

position and spiral ganglion position in the apical third of the cochlea. Frequency 

allocation based on the Greenwood map may be inaccurate. We had the unique 

opportunity to work with a patient who presented with a severe sensorineural hearing 

loss rising to within normal limits and poor speech discrimination scores. The patient 

was implanted with the Med-El Corporation SonataTI100 31 mm electrode. Insertion 

angle reached approximately 700° with preserved hearing across multiple frequencies 

allowing for electric to acoustic pitch comparisons in the same ear.  

Key words: cochlear implant, electroacoustic stimulation, hearing preservation, pitch 

matching, stimulation rate 

Introduction 

Improvements in electrode design and surgical technique allow surgeons to 

accomplish insertions into the cochlea less traumatically to the surrounding structures. 

This is documented with preserved hearing in the lower pitches following implantation. 

Preserving hearing often requires a shorter insertion depth to spare the structures in the 

apical end of the cochlea; however, providing electrical stimulation to the apical end 

may benefit the user as well (Boyd, 2011). Stimulating the apical portion of the cochlea 
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could provide more spectral information to the user, thereby acting more similarly to 

the normal cochlea. Additionally, the stimulation may result in an overall lower-pitched 

sound resulting in a more natural sound quality (Boyd, 2011). Anatomically, the apical 

region of the cochlea differs in that the spiral ganglion cell bodies do not extend beyond 

the second turn (Adamson, Reid, & Davis, 2002; Otte, Schunknecht, & Kerr, 1978). 

When the electrode is placed in the apical region, it stimulates different neurons from 

the rest of the cochlea, which suggests the apical end behaves differently from the basal 

end. To gain further insight into the function and contribution of the apical end 

numerous studies have documented changes in pitch perception with manipulations of 

stimulation parameters using electrical stimulation (Carlyon, Lynch, & Deeks, 2010; 

Vermeire et al., 2008). In addition to the effects on pitch perception due to place of 

stimulation, increases in pulse rate have been shown to result in higher pitch percepts 

up to a few hundred pulses per second across the electrode array. Studies have also 

made comparisons of pitch elicited by electric stimulation to one ear compared to 

acoustic stimulation to the contra-lateral hearing ear (Dorman et al., 2007). In the cases 

of CI recipients without residual hearing, the studies have been restricted to procedures 

providing pitch estimates or scaling procedures that do not provide a measure of the 

overall range of percepts (Boyd, 2011) and in the cases of comparing CI electrical 

stimulation to hearing in the contralateral ear results have been confounded by the 

ability of the subjects to compare the pitch of acoustic signals to the electrical signals of 

the CI.  

This study explored the rare opportunity of examining Pitch Rate/Place 

perception with electric/acoustic hearing across multiple frequencies in the same ear. 
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Subject 

The subject for this investigation met criteria for cochlear implantation under the 

Food Drug & Administration guidelines. Cochlear implantation was performed using a 

MED-EL custom long electrode and a soft-surgery hearing preservation, round window 

technique. An insertion depth of 29mm was achieved as seen with post-operative 

imaging and indicating an insertion angle of 7200. The subject had approximately 18 

months of experience using the implant at the time of testing. Audiometric thresholds, 

pre- and post-implantation are seen in Fig. 4.1.  

 

 

 

 

 

 

 

.  

 

Methods 

Pure tone, acoustical signals were generated in 100 Hz increments for the 

frequency range of 100-8200 Hz. Each tone had an onset and offset ramp of ~5 ms with 

a stimulus duration of 500 ms. Electrical pulse trains of 500 ms at a 60% loudness of 

the dynamic range and using stimulation rates of 100, 200, 300 and 1100 pps were 

loudness balanced to the pure tone(s) that best approximated the pitch elicited by the 

Figure 4.1: Patient’s thresholds are plotted 
before and after surgery. The X represents 
hearing pre-surgery while the black boxes 
show thresholds post-operatively 
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electrical signal. A sequential analysis pitch ranking procedure (Fig 4.2.) was then 

completed.  

 

 

 

 

 

 

 

 

Multiple pairs of electric and acoustic signals were tested simultaneously. Once 

statistical significance was reached on a particular pair, the acoustic signal was then 

adjusted in frequency in order to bracket the pitch percept of the electrical signal. This 

procedure was completed for each data point until a statistical match was found or the 

pitch was bracketed within a 100 Hz range.    

Results 

Decreases in the electrical stimulation rate resulted in decreases in pitch 

perception for each of the electrodes. For this subject, electrode pitch/rate saturation 

appears to occur at around 200 pps for electrodes 5 & 6. For the remaining electrodes, 

pitch/rate saturation appears at or above 300 pps as can be seen in Fig 4.3. 

  

Figure 4.2: The patient is presented with two 
signals in a randomized order and asked to 
indicate which has the higher pitch. This 
continues until a statistically significant 
outcome is achieved. Figure 2 illustrated the 
three possible outcomes. Each trial starts in 
the lower left-hand corner with a response 
noted as either to the right (green signal was 
higher) or upward (red signal was higher). For 
signals that are indistinguishable the 
responses would reach a trajectory falling into 
the yellow area (Bross, 1952). 
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The decreases in pitch with decreasing rate are similar to those found by previous 

studies (Baumann & Nobbe, 2004; Zeng, 2002), however when provided with an 

acoustic match in the same ear, the amount of change in terms of cochlear position was 

much smaller than anticipated. Figure 4.4 shows the changes in pitch perception with 

changes in rate plotted against a log scale mimicking the cochlea. The results show that 

there is fairly close agreement between electrode position in the cochlea and place 

relating to Greenwood’s map at stimulation rates above pitch/rate saturation. In 

addition, changes in pitch percepts due to decreases in stimulation rate are much more 

robust in the apical region of the cochlea. 

Figure 4.3: The effects of stimulation rate on pitch perception graphed for 4 electrode 
pairs. Decreases in rate result in decreased pitch perception. 
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Interestingly, this patient subjectively reported that as stimulation rate was 

decreased on electrodes basal to E4, the sound acquired an increasing “buzzing” sound 

quality as opposed to the apical electrodes that remained tone like with decreases in 

rate. Preliminary testing on some of the apical electrodes revealed that the subject could 

not differentiate electric from acoustic stimulation independent of stimulation rate. 

  

Figure 4.4: The changes in pitch perception with changes in rate are plotted against a log 
scale mimicking the cochlea. The results show that there is fairly close agreement between 
electrode position in the cochlea and place relating to Greenwoods map at stimulation 
rates above pitch/rate saturation. Changes in pitch percepts due to decreases in 
stimulation rate are much more robust in the apical region of the cochlea. 
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Discussion 

This subject presented a unique opportunity to compare both acoustic and 

electric pitch perception in the same ear and across a broad frequency spectrum. The 

results suggest that there is good agreement between Greenwood’s map and electrode 

position within the cochlea as seen previously (Carlyon et al., 2010; Vermeire et al., 

2008). These findings differ from those reported by Dorman et al (2007) and Boex et al 

(2006) when they found that pitch-frequency place veered from the Greenwood map by 

as much as two octaves lower (Boex et al., 2006; Dorman et al., 2007). Furthermore, 

electrodes 1-4 matched at very similar pitches, whereas in our study, the apical 

electrodes match at different frequencies. It should be noted that Dorman et al used a 

fast stimulation rate of 1652 pps, and our study stimulated at 1100 pps (Dorman et al., 

2007). Interestingly, the varying stimulation rates in our study had little effect on pitch 

match in the basal electrodes; however, significant differences were noted in the apical 

electrodes. Reiss and colleagues found similar results with a shorter electrode array in 

which little pitch perception changes were noted with stimulation rates above 800 pps 

(Reiss et al., 2008).   

The acoustic hearing in the same ear as the implant provided a quantifiable 

metric for establishing the size and spread of the perceptual intervals related to place 

and rate of stimulation. These results show that, for this subject, place pitch is the 

primary influence for pitch perception in the cochlear region basal to 1000Hz and that 

both place and temporal cues result in changes of pitch perception in the apical region.  

The subject’s report that electrical stimulation maintained a tone-like percept in the 

basal/mid cochlear regions only when signals were above pitch/rate saturation while 
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changes in rate for the apical region did not adversely affect the tone quality provides 

some insight regarding the viability of temporal cues for different regions of the cochlea.  

This study provides information on the behavior of different areas of the cochlea, 

which can be applied clinically when programming the cochlear implant. Knowing 

where the electrode is stimulating along the cochlea may aid us in aligning the center 

frequencies. Additionally, it may be useful to vary the stimulation rate along the 

different regions of the cochlea considering the pitch perception decreases with 

decreased stimulation rate. Providing a closer relationship between electric stimulation 

and frequency placement could result in better speech understanding and music 

appreciation. However, mapping this patient was performed with the FSP coding 

strategy without manipulating frequency range or stimulation rate. Subjectively, the 

patient reports outstanding speech discrimination and enjoys listening to music. 

Hearing in noise test (HINT) and consonant-nucleus-consonant (CNC) scores also 

reflect excellent performance with scores of 100% and 90%, respectively.  

Although the sound generated by the electrode may be stimulating mismatched 

frequency and placement, the brain may learn to adapt to the misrepresentation of the 

sound (Reiss et al., 2008)(Reiss et al., 2008)(Reiss, et al., 2008)(Reiss, Gantz et al. 

2008). Reiss and colleagues studied the pitch perception of those implanted with a 

shorter electrode (10 mm) and had preserved hearing. In a five-year period, pitch 

sensations through the cochlear implant changed. Patients originally perceiving high 

pitch sensations dropped to lower pitch sensations over time, which the opposite 

occurred for those with lower pitch sensations. Differences occurred mostly between 

500 and 1500 Hz, which is primarily the speech frequency region. Despite insertion 

depth, residual hearing provides added benefit in adapting to spectrally shifted speech 
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(Reiss et al., 2008; Reiss et al., 2007). Additional research may be needed to determine 

if mapping parameters should be manipulated after the patient has reached a plateau in 

performance as defined by speech discrimination scores, or perhaps, manipulations 

should occur in the beginning months to minimize the severity of the shifted speech 

spectrum to provide better speech understanding earlier.  

Conclusion 

Electric place and temporal cues generate different pitch percepts depending on 

the region of the cochlea receiving the stimulation. Electrical stimulation exploiting the 

normal hearing process through the use of a long electrode array that extends deep into 

the cochlea coupled with stimulation strategies that can provide temporal and place cues 

can extend the range of pitch perceptions by cochlear implant recipients.  The 

relationship of the electrode position to the Greenwood map further confounds the 

debate regarding dendritic vs. spiral ganglion cell stimulation as this patient has fairly 

robust survival of both cell populations as suggested by preserved residual hearing. 

Through temporal bone studies, Stakhovskaya, Sridhar, Bonham and Leake (2007) 

found that the spiral ganglion cell bodies do not extend beyond approximately 7200 and 

suggests the Greenwood map place map is 1-2 octaves below the pitch stimulation in the 

upper third of the cochlea. This study indicates that the radial nerve fibers are 

stimulated, as the subject was able to pitch match in agreement to Greenwood’s map in 

the apical region where spiral ganglion cell bodies do not extend.    
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CHAPTER 5: ANALYSIS OF THE ELECTRICALLY EVOKED COMPOUND 

ACTION POTENTIAL AND SPEECH PERCEPTION 

Abstract 

Aim: Although cochlear implants have been an effective treatment to those with severe 

to profound hearing loss, speech perception abilities continue to vary greatly from one 

user to another. This paper analyzes the peripheral mechanisms that may contribute to 

speech understanding by using the electrically evoked compound action potential.   

Methods: Auditory response telemetry was measured on twenty-five implant users. The 

slope of the amplitude growth function was measured for different areas of the electrode 

and compared to 6-month consonant-nucleus-consonant scores. 

Results: Correlations were found between the slopes of mid-frequency region and CNC. 

The most basal and apical electrodes did not correlate with CNC scores. 

Conclusion: ARTs correlate with word recognition depending on placement in the 

cochlea.  

Key Words: Acoustic Response Telemetry; electric compound action potential; cochlear 

implantation; speech perception 

Introduction 

One of the more prominent issues in cochlear implantation is determining the 

wide variability in performance amongst users. Candidates with similar histories and 

implanted with the same device can demonstrate outcomes on both ends of the 

spectrum. One may have very poor speech while the other can understand open-set 

speech (Carlson, Driscoll, Gifford, & McMenomey, 2012). Advances in electrode design 

and surgical technique have allowed for atraumatic insertions, thereby extending the 

cochlear implant candidacy to those with lesser degrees of hearing loss. Despite these 
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changes, outcomes continue to vary greatly from one user to another. There are two 

main contributing factors to implant performance 1) the ability of the processor to 

effectively deliver the electrical signal to the ear, and 2) the patient’s ability to process 

the information (Pfingst et al., 2011). More specifically, factors can be broken down into 

age, duration of deafness, surgical technique and device characteristics (Carlson et al., 

2012; Firszt, Chambers, Rd, & Kraus, 2002; Firszt, Chambers, Kraus, & Reeder, 2002). 

Other potential factors include neuronal survival, electrode positioning and central 

auditory processing abilities (Carlson et al., 2012). Objective measures have become 

more commonly utilized to further understand the neural pathways of the auditory 

nerve and central nervous system (Miller, Brown, Abbas, & Chi, 2008). This paper will 

focus on the peripheral mechanisms that may impact speech perception. The growth 

factor of the electrically evoked compound action potential (eCAP) is analyzed and 

compared to monosyllabic words. The eCAP represents a collective response from 

numerous neurons. It is likely that a steeper slope implies more efficient responses to a 

stimulus. Therefore, we hypothesize that a steeper amplitude growth function will 

correlate with higher consonant-nucleus-consonant (CNC) scores.  

Numerous studies have been able to link the eCAP and/or the electric auditory 

brainstem response (eABR) with the number of surviving neurons in animals. Smith 

and Simmons, 1983, deafened cats and later placed an electrode on the round window to 

record brainstem electrical activity via ABRs. The intensity of the signal (input) was 

graphed against the resulting voltage response (output) to create an input/output 

function. Thresholds for the ABRs were found to be poor predictors of neuronal 

survival; however, at supra-threshold levels, increased input/output functions 

correlated with more spiral ganglion cell survival. ABRs were not measureable in cats 
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with no surviving spiral ganglion cells. Prad0-Guitierrez and colleagues manipulated the 

interphase gap and phase duration in deafened guinea pigs. Both of these manipulations 

correlated with nerve survival (Prado-Guitierrez, Fewster, Heasman, McKay, & 

Shepherd, 2006). In monkeys with cochlear implants, lower thresholds and larger 

dynamic ranges were associated with more neuronal survival (Pfingst, Sutton, Miller, & 

Bohne, 1981) More recently, Earl and Chertoff measured CAPS on gerbils before and 

after nerve-induced damage. Histologically, the eCAP did not correlate with CAP 

thresholds; however, when a mathematical model was applied, strong correlations 

existed between eCAP and nerve fiber density at high stimulus levels (Earl & Chertoff, 

2010). Objective measures have yet to be correlated with neuronal survival in humans 

nor have they been a reliable predictor of speech perception abilities.  

The eCAP provides information regarding the functionality of the electrode, the 

contact between the electrode and the nerve and perhaps placement of the electrode. 

Further clinical uses include programming the speech processor for those users who 

cannot report behaviorally or for children (Miller et al., 2008). There are some 

discrepancies in the literature as to how well eCAPs correlate with threshold levels 

and/or comfort levels. Each of the cochlear implant companies in the United States has 

neural response recording systems to accomplish these tasks.  

Additional information can be collected from eCAP recordings, one of which is 

the amplitude growth function. The eCAP amplitude per electrode is plotted against the 

stimulation current and a slope can be extracted from the graph (Spitzer, Strahl, 

Leander, & Franz, 2011). There appears to be a somewhat linear relationship between 

eCAP amplitude and the number of nerves until a certain point, where saturation 
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occurs.  Furthermore, the recovery function of the eCAP can be analyzed, which offers 

more information regarding the periphery.  

Recordings from electrodes differ depending on placement within the cochlea. 

Brill et. at. studied the eCAP in the Med-El implant and found that the properties can 

differ depending on the region of the cochlear that is stimulated. Sixty-seven patients 

were tested. The amplitude, threshold, slope of the amplitude growth function and 

refractory time were tested and compared at the basal, mid and apical regions of the 

cochlea. They found that the apical end behaves differently than the rest of the cochlea. 

Mean amplitude was significantly larger and thresholds were significantly lower in the 

apical region versus the basal and mid regions. Furthermore, slopes for eCAP growth 

functions were significantly steeper in the apical end versus the basal and mid regions, 

although eCAP amplitudes from the recovery function and the recovery inter-pulse 

intervals showed no significant differences among cochlear regions (Brill et al., 2009).  

Methods 

Twenty-five patients implanted at the University of Kansas Medical Center with 

either the Med-El SonataTI100 or the Concert multi-channel electrode were included. 

Each recipient underwent the “soft-surgical” technique with insertion through the round 

window, and had at least 6 months experience with the device. Auditory response 

telemetry (ART) was recorded via the Maestro software from Med-El, Inc. Pulse trains 

were elicited with a minimum amplitude of 300 current units (cu) and a maximum 

amplitude of 1200 cu. Twenty-five iterations were recorded with a pulse phase duration 

of 30 microseconds. Artifact rejection methods created within the software are 

automatically applied to reduce stimulus artifact. The amplitude for each stimulus is 
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shown individually and the corresponding amplitude growth function was plotted (Fig. 

5.1).  

 

 

 

 

 

 

 

The electrodes were grouped into four groups outlining different areas of the 

cochlea. Group 1 consisted of basal electrodes (10-12); group 2 included mid to basal 

electrodes (7-9); group 3 lower mid region (5-7) and group 4 was the apical electrodes 

(1-4). The amplitude of the response was then plotted against the stimulation current 

resulting in an amplitude growth function, from which the slope can be interpolated. 

Recorded CNC lists were administered at 60 dB SPL with the patient seated at 1 meter 

from a loudspeaker at 0 degrees azimuth. Scores were recorded in percent correct. 

Pearson’s correlations were used to assess the eCAP slope and CNC scores (p<0.05).   

Results 

ARTs were successfully recorded on all 25 patients with measureable amplitude 

growth function slopes. Slopes tended to be steeper in the apical and mid region as 

opposed to the basal end. The slope was plotted as a function of CNC scores. Results 

varied depending on placement within the cochlea. In the most basal and apical group, 

no correlations existed between the slope of the eCAP and CNC score (r = .068, p > 

0.05; r = .18; p > 0.05). However, there was a significant correlation between the two 

mid-region groups (group 2: r = .62, p < 0.05; group 3: r = .52; p < 0.05). Results are 

Figure 5.1: Example of an 
ART recording with the 
corresponding amplitude 
growth function. 
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shown in figure 5.2. Slopes were also compared to hearing in noise test scores. No 

correlations existed with any group of electrodes (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

The debate continues to determine if nerve count is directly correlated to speech 

perception; however, if a correlation exists, the relationship is most likely non-linear 

(Brown & Patuzzi, 2010). In fact, postmortem examination of cochlear implant users 

found that the individuals whose cochleae had the least amount of spiral ganglion cells 

performed the best on monosyllabic word tests (Miller et al., 2008). Human studies 

involving peripheral objective measures and speech perception have yielded mixed 

Figure 5.2: In the most basal and apical group (top left and lower right), no 
correlations existed between the slope of the eCAP and CNC score (r = .068, p > 0.05; 
r = .18; p > 0.05). Significant correlation exists between the two mid-region groups 
(group 2: r = .62, p < 0.05; group 3: r = .52; p < 0.05) depicted in the top right and 
bottom left graphs. 
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results. Speech perception includes additional cognitive variables that bypass the 

auditory periphery. However, results from this study suggest that eCAP slope can 

correlate to speech perception outcomes based on the electrode’s position in the cochlea. 

This is in agreement with a study by Kim and colleagues in which a significant 

correlation between eCAP slope and CNCs were found with the Cochlear Nucleus 

Hybrid implant. This finding was compared to the standard Nucleus CI24M and 

CI24RE. No correlation was noted between the CI24M, and a weak correlation was 

noted with the CI24RE. The stronger correlation with the hybrid implant along with the 

results found from the current study indicate that more intact auditory nerve and 

surrounding structures of the cochlea are correlated with better speech perception 

scores (Kim et al., 2010). Although, the slope of the eCAP may not directly correlate to 

surviving neurons, perhaps it encompasses further information about the health of the 

nerve that may assist with predicting speech outcomes. Choudhury and colleagues 

demonstrated that the use of electrocochleography (ECoG) intraoperatively may help 

determine functionality of the neurons in individuals undergoing cochlear implantation. 

A monopolar probe was placed on the round window of twenty-five subjects. The 

cochlear microphonic, summating potential, compound action potential and auditory 

nerve neurophonic were recorded, each potential representing responses from various 

neural elements within the cochlea. Responses were recordable in twenty-three of the 

twenty-five subjects despite limited hearing (Choudhury et al., 2012). The ability to 

assess cochlear and nerve integrity prior to cochlear implantation could aid in the 

selection and placement of the electrode. Residual neural functionality may also 

determine candidacy for neurotrophin therapy. Delivery of neurotrophins has shown 

improvement in implant function as seen in animal models. Studies demonstrate that 
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delivering electrical current in conjunction with neurotrophin therapy further enhances 

neural survival and improves the functionality of the cochlear implant as shown by 

Shepherd and colleagues (2005). In this experiment, animals sustained induced 

aminoglycoside ototoxicity inducing loss of hair cells and peripheral production of 

neurotrophins. BDNF was delivered to the cochlea in addition to electrical current. 

Implant function was assessed with eABRs. The neurotrophin treated animals showed 

reduced eABR thresholds, which is not the case for the animals treated with delivery of 

perilymph with electrical stimulation alone. Furthermore, spiral ganglion count is 

increased in the neurotrophin treated animals. The idea that the more surviving neural 

elements in the cochlea and cochlear nerve leads to better performance has been widely 

debated; however, studies have been unable to support this idea in humans (Fayad & 

Linthicum, 2006; Khan, Handzel, Burgess, et al., 2005; Nadol & Eddington, 2006). 

Intraoperative monitoring may give way to a hair cell deficit, which could potentially 

benefit from neurotrophin therapy to provoke survival and production of neurons.  

Comparing objective measures from the cochlea, nerve and central auditory system 

across hearing preservation patients and traditional cochlear implant patients may also 

be beneficial in providing further insight into the effects of electrical stimulation on the 

central auditory pathways and changes overtime. Additional studies of the eCAP could 

possibly aid in calculating surviving spiral ganglion cells which is also possible in animal 

studies (Earl & Chertoff, 2010). Variations in score may also occur as speech outcomes 

are measured across the entire electrode array, not from just a portion of the cochlea, 

which can lead to further variations in scores. Objective measures recorded beyond the 

auditory nerve may give further insight into the effects of electrical stimulation on the 

central auditory pathways and changes overtime. Those subjects with more hearing 
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preservation most likely produce more neurotrophins, which in turn, would promote 

spiral ganglion survival. Increasing our understanding of the factors that improve 

speech perception can lead to better rehabilitation strategies or possibly intervention to 

improve spiral ganglion health. 

Conclusion 

The eCAP amplitude growth function correlates with speech perception outcomes 

dependent upon the position of the electrode in the cochlea. Further research is this 

area is needed to understand electric stimuli on the auditory nerve and central nervous 

system with hope to shape more individualized rehabilitation strategies.  
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CHAPTER 6: IS HEARING PRESERVATION COCHLEAR IMPLANTATION 

IN THE ELDERLY DIFFERENT? 

Abstract 

Hearing preservation cochlear implantation has become commonplace and give 

patients who are poor hearing aid candidates but have significant residual hearing an 

opportunity to take part in the hearing world. Hearing preservation cochlear 

implantation has been extended into pediatric populations yet little attention has been 

paid to geriatric implantation. In this paper we review some of the factors that may 

affect hearing preservation in the elderly. In particular we focus on the potential role of 

mitochondria in hearing loss and discuss whether the elderly have similar hearing 

preservation outcomes as the general population. 

Introduction 

The fact that preservation of residual low frequency hearing improved cochlear 

implant (CI) function has been widely described. The elderly represent a population 

where down-sloping hearing losses with poor speech discrimination are common, and 

hence provide the potential to recruit hearing preservation CI candidates. A key 

question is if the elderly have the same outcomes in terms of hearing preservation as 

younger patients. To address this question, we looked at change in hearing after 

implantation as a function of age and then examined the correlation between age and 

change in pure tone average. We also studied cochlear implant outcomes as a function of 

age for hearing preservation patients. We discuss some of the potential causes of 

observed differences between patient populations.    
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Methods 

Subjects and Outcomes Measures: Informed consent was obtained prior to 

testing, and the protocol was approved by the University of Kansas Medical Center 

human subjects board. A total of eighteen patients with residual hearing between 125 

and 500 (5 males and 13 females) were implanted between 2009 and 2011. Ages ranged 

from 26-84 with a mean age 63.17. All candidates fell within Food and Drug 

Administration (FDA) or Medicare guidelines for implantation. Prior to implantation, 

all patients underwent blood testing to screen for autoimmune inner ear disease and 

had an MRI scan to rule out the presence of retrocochlear disease.  

Surgical Approach: The extended round window approach was used in all cases. 

After performance of a mastoidectomy and facial recess (posterior tympanotomy) 

approach to the middle ear, all bone dust was irrigated out of the wound. Hemostasis 

was obtained and 0.5 cc of decadron 10 mg/ml was applied to the round window niche. 

The bony overhang of the round window niche was then carefully removed with a 1 mm 

diamond burr and the round window clearly visualized by testing the round window 

reflex. The wound was once again irrigated and Healon™ was used to cover the round 

window (RW). The RW was then opened with a small pick and the implant electrode is 

carefully inserted. All patients were implanted with Med-El medium (M) electrode 

arrays. Pure tone thresholds were obtained before surgery and 2 weeks post-operatively 

using insert earphones.    

Results 

As seen in Fig 6.1 there was a linear relationship between age at implantation and 

change in hearing in the low frequencies (r2=0.52; p<0.05).    
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When arbitrarily divided at age 65, the average change in hearing for the younger 

patient group (Average age= 46.5) is 13.42 dB and the older patient (average age=74.5) 

group is 19 dB (p=0.12). As seen in the box plot of this data (Fig 6.1), the range of data 

distribution is broader for the older age group, resulting in a large standard deviation.   

Discussion 

The development of reliable approaches for hearing preservation has led to a 

rapid expansion of cochlear implantation to novel patient populations (Skarzynski et al., 

2010). The audiologic configuration that makes the patient a candidate for hearing 

preservation implantation is common in the elderly (Hoffman, Dobie, Ko, Themann, & 

Murphy, 2012). A recent review of cochlear implantation in the older individuals 

suggests that earlier implantation, when patients have less hearing loss may result in 

better hearing outcomes (Lin et al., 2012). Successful expansion of hearing preservation 

implantation into the elderly population thus represents an important goal. 

Overall our data suggest that hearing preservation is feasible in the elderly and 

that on average hearing preservation outcomes are similar to younger patients (Fig 6.2).   

Figure 6.1: Scatter plot of change 
in pure tone average versus age.  
There is a linear relationship 
between the patients’ age at time 
of implantation and degree of 
hearing preservation.  
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  However, when examining the data more closely, the range of hearing loss after 

implantation is higher in older patients and regression analysis does suggest that with 

increasing age, the amount of hearing loss after implantation is increased (Fig 6.1). As 

we have previously reported we did not see any significant differences in implant 

function between our patients based on age (Prentiss et al., 2010), therefore, despite 

slightly increased loss of low frequency hearing, hearing preservation implantation is 

still a valuable intervention. Accumulation of increased patient numbers may allow us to 

divide patients into 10-year cohorts, allowing us better risk stratification based on age.    

The relationship between age and central auditory dysfunction has been well 

documented but little is known about the effects of age on the cochlea’s sensitivity to 

damage. A potential source of age related sensitivity to damage is the function of 

mitochondria within the inner ear. Damage to mitochondrial DNA has been 

documented to occur in all regions of the inner ear with increasing age (Crawley & 

Keithley, 2011; Seidman, Ahmad, & Bai, 2002; Someya & Prolla, 2010; Yamasoba et al., 

2007). The accumulation of mitochondrial DNA damage can lead to sensitivity to 

further stress and subsequent induction of apoptosis (Fariss, Chan, Patel, Van Houten, 

& Orrenius, 2005). This opens the possibility that completely different protective 

Figure 6.2: Box plot of average 
change in hearing for patients age 
less than and greater than 65. 
Younger patients tend to have 
slightly less change in hearing and 
older patients demonstrated a 
wider range in change in residual 
hearing after implantation. This 
was not statistically significant. 
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molecules that stabilize mitochondria could be applied to improve our hearing outcomes 

in the elderly.     

Conclusion 

Hearing preservation cochlear implantation is feasible in the elderly although 

slightly higher rates of hearing loss may be observed compared to younger patients.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



58 

CHAPTER VII: THE EFFECT OF INSERTION DEPTH 

Hearing Preservation is Feasible 

Treatment for severe high-frequency hearing loss has expanded beyond hearing 

aids. Cochlear implants have been an effective treatment for restoration of profound 

sensorineural hearing loss, and are now becoming a successful treatment for those with 

milder degrees of hearing loss. The utilization of less traumatic electrodes and 

innovations in surgical technique allow for preservation of low frequency hearing after 

cochlear implantation. Our studies confirm that hearing preservation can be 

accomplished in a variety of configurations, and further that the change in hearing 

before and after implantation is independent of insertion depth. Updated data is shown 

in figure 7.1. 

 

 

 

 

 

 

 

 

Advantages of Hearing Preservation Cochlear Implantation 

Patients presenting with residual low frequency hearing treated with acoustic and 

electric hearing via a cochlear implant tend to perform better in background noise than 

patients using a hearing aid alone or a cochlear implant alone (Gantz et al., 2009; 

Lorens et al., 2008; Skarzynski et al., 2006; Skarzynski et al., 2009; Turner et al., 

2004); however, there is no account for the variance in performance among users. While 

Figure 7.1: Evaluation of hearing loss versus 
insertion depth for 26 patients implanted 
with Med-El electrodes. Hearing change is 
listed as change in pure-tone average (PTA) 
as patients in this group had only low 
frequency hearing. There was no correlation 
between insertion depth and change in 
hearing with insertions up to 30 mm. 
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our study does not demonstrate significant benefit from acoustic hearing as 

demonstrated in chapter 2, several factors may account for the discrepancies. As 

mentioned previously, sentence tests have since changed to the AzBIO, which is a more 

difficult listening task. Unlike previous sentence in noise tests, the AzBIO provides little 

contextual cues making it more difficult to fill in the word. Our patients scored very high 

with the implant alone, and it was difficult to see a significant improvement when the 

acoustic hearing was added. Furthermore, the tests used in chapter 2 were presented 

with a +10 dB SNR, which may not be adequate in replicating a realistic listening 

setting. Figure 7.2 shows the updated data with AzBio scores in quiet and in noise for 

our hearing preservation patients. 

 

 A           B 

 

 

 

 

The above data suggest that acoustic hearing is beneficial when added to electric 

hearing especially when the contralateral ear is added. This finding could potentially be 

due to the advantages of bilateral stimulation. Twelve month data are not available at 

this time, but may show more pronounced differences when the user has more 

Figure 7.2: Six-month outcome measures with 21 hearing preservation patients. Graph 
A shows the AzBIO pre- and post-operative scores with electric only, electric plus 
acoustic in the same ear and EAS plus the contralateral ear. Graph B shows the same 
information only in a +10 noise condition. The graphs suggest that acoustic hearing does 
supplement electric hearing especially when adding the contralateral ear. 
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experience. Measuring outcomes continue to evolve. Clinics are moving towards more 

complex listening situations and using +5 or + 8 dB SNR. 

Are we stimulating spiral ganglion cell bodies or neurites? 

Implant patients presenting with residual hearing allow us to perform a variety of 

pitch matching experiments. To analyze these we need a clear understanding of cochlear 

anatomy. Placement of the electrode within the cochlea will vary depending on the size 

and length of the cochlea itself. Discrepancies in anatomy may result in increased 

trauma and/or stimulating different areas from one person to the next. Patients may 

have altered pitch percepts, which, ultimately, can influence speech understanding.  

Erixon and colleagues studied seventy-three casts of the human cochlea (Erixon, 

Hogstorp, Wadin, & Rask-Andersen, 2009). Measurements included width, length and 

height of different turns. The cochleae were also divided into quadrants. Quadrants 1 

through 4 comprise the first turn, 5-8, the second turn and 9 -12 constitute the third 

turn, which is depicted in the following figure 7.3. 

 

 

 

 

 

 

 

 

 
Figure 7.3: A: Demonstration of a human cochlear showing the different height and 
lengths of the cochlear turns. B: Demonstration of a human cochlea divided into 12 
quadrants with quadrants 1 to 4 comprise the first turn; 5 to 8, the second; and 9 to 12, the 
third turn. FC represent the facial canal; OW is the oval window and RW is the round 
window. 
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Each cochlea was found to be unique with large differences in measurements. 

The number of quadrants ranged from 8-12 with further discrepancies in the length of 

each turn. From the outer wall, the total length of the cochlea ranged from 38.6 mm to 

45.6 mm with a mean of 42.0 mm (Erixon et al., 2009).  

Jolly et. al performed a meta-analysis of the cochlear duct length. Data was 

collaborated from two studies to include 95 cochlear measurements. The distance from 

the round window to the helicotrema averaged to approximately 31 mm with minimum 

of 25.3 mm and a maximum of 35.5 mm (Jolly et al., 2010). The distribution is shown in 

figure 7.4.  

 

 

 

 

 

 

The human ear hears the same frequency range 20 Hz to 20,000 Hz, regardless 

of the length of the cochlea. Electrodes are not customized for each cochlea, rather they 

are designed for the average cochlear length. This situation can lead to a compressed or 

expanded frequency map (Stakhovskaya, Sridhar, Bonham, & Leake, 2007) and 

ultimately decrease speech perception abilities. A patient with a cochlear duct length of 

24 mm and an electrode insertion depth of 20 mm will have more complete cochlear 

coverage, whereas the same insertion depth for a longer cochlear duct of 36 mm may not 

provide the electrical stimulation in the apical end resulting in different speech and 

sound percepts. Mapping the cochlear implant to match the actual stimulation site of 

Figure 7.4: Distribution of 
cochlear duct length based on 95 
temporal bone studies. The 
distance is measured from the 
round window to the 
heliocotrema. Distances ranges 
from 25.3 to 35.5 mm. 
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the electrodes may lead to increased performance. Figure 7.5 demonstrates the cochlear 

implant array depth compared to cochlear duct length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stimulation site is argued with two different frequency position maps. Pitch 

position of acoustic hearing is defined by Greenwood (Greenwood, 1990) along the 

organ of Corti. The Greenwood function has commonly been used to estimate place of 

electrode stimulation; however Stakhovskaya et. al. offered another theory that the 

electrodes are actually stimulating at the level of the spiral ganglion and derived a map 

of the spiral ganglion cell bodies. This map illustrates that spiral ganglion cell bodies 

stop around 720° and the dendrites extend to the most apical end as seen in figure 7.4 

below. 

Figure 7.5: Schematic of two unrolled cochleae. The first shows a cochlear duct length 
of 26 mm, the second, 36 mm. Both patients have the same speech frequency range 
from 20 Hz to 20000 Hz. The first picture represents a patient with a shorter cochlear 
duct length, and second with and elongated cochlear duct length. If we insert the same 
cochlear implant array in both patients, it stimulates frequencies from 20,000 Hz to 
150Hz in the first patient and from 20,000Hz to 700Hz in the second patient.  
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It is important to note that the places of excitation may have different distances 

to the organ of Corti, altering pitch percepts. The greater the angle of rotation from the 

round window, the more mismatch exists between the frequency range of the organ of 

Corti and the spiral ganglion. This feature is demonstrated in Table 7.1. 

 

 

 

 

 

 

 

 

 

 

Theoretically, the closer the stimulation to the organ of Corti, the closer it should 

match to the correct pitch range. To achieve the best possible outcomes, intracochlear 

 
 

Figure 7.6: A) Schematic drawing of the mismatch between the spiral ganglion cell 
bodies and the organ of Corti. The organ of Corti is depicted by the black solid line 
and extends to approximately 990o. The spiral ganglion cells stop around 720o. B) 
Graph of the absolute distances in mm to reach a certain angle of rotation. 
 

Table 7.1: Mean frequency and frequency ranges of the organ of Corti and 
spiral ganglion cells at certain angle of rotation from the round window. 
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electrode position remains arguable among cochlear implant companies. Cochlear and 

Advanced Bionics design a perimodiolar electrode with the intent to stimulate the spiral 

ganglion cell bodies, whereas Med-El’s electrode involves a longer electrode that is 

designed for positioning along the organ of Corti to stimulate radial nerve fibers 

(Stakhovskaya et al., 2007). 

To test the accuracy of frequency-position functions, pitch-matching experiments 

have been conducted comparing the pitch perception from the cochlear implant to the 

unimplanted contralateral ear with significant residual hearing. With these pitch-

matching experiments, the electrode match in the mid to basal end was significantly 

lower than that of Greenwood’s predictions (Baumann & Nobbe, 2006; Boex et al., 

2006; Dorman et al., 2007). Interestingly, the apical channels were perceived as the 

same pitch. These findings contrast with the findings from our study. As seen in chapter 

4, our data show a fairly close relationship to Greenwood’s map depending on the rate of 

stimulation.  
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Our study is unique in that we were able to pitch-match in the ipsilateral ear, 

however, similarities were noted in that the apical end tends to behave differently than 

Figure 4.4: The changes in pitch perception 
with changes in rate are plotted against a log 
scale mimicking the cochlea. The results show 
that there is fairly close agreement between 
electrode position in the cochlea and place 
relating to Greenwoods map at stimulation rates 
above pitch/rate saturation. Changes in pitch 
percepts due to decreases in stimulation rate are 
much more robust in the apical region of the 
cochlea. 
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the basal end. Reiss et. al. suggests that the placement of the electrode does not 

determine pitch sensations, rather the implant map that is used (Reiss et al., 2008). 

Quite possibly this is linked to the neurophysiology (Baumann & Nobbe, 2006). Studies 

mentioned previously consistently show that pitch percepts occur approximately one 

octave lower than that of Greenwood’s predictions. Perhaps, excitation is occurring at 

the level of the spiral ganglion rather than the organ of Corti (Boex et al., 2006); which 

may explain the place/frequency mismatch.  

In our case study, the implant was positioned along the outer wall and closely 

followed that of Greenwood’s function in the basal end. It is possible that we are 

stimulating two different areas, which can potentially lead to pitch confusion. However, 

when looking at the human histopathology, loss of peripheral nerves is more common 

than loss of spiral ganglion bodies. Nerve fibers from the damaged organ of Corti 

degenerate at a faster rate than the spiral ganglion cell bodies (Fayad & Linthicum, 

2006; Stakhovskaya et al., 2007), suggesting that the spiral ganglion cells and the 

central axons are the stimulated structures by cochlear implants. However, if the rate of 

stimulation is manipulated, our pitch matching data suggest that with variation in rate, 

it is very possible that we are stimulating neurites in the apical end as the neurites 

extend further along the organ of Corti than the spiral ganglion cell bodies.  

eCAP Growth Function and Outcomes 

A potential cause of differing outcomes is the viability and functioning of the 

spiral ganglion cells. Interestingly, the relationship between neural survival and patient 

performance has yet to be established. The eCAP amplitude growth function seen in 

chapter 6 would suggest that neural function indeed correlates with speech 

understanding, again, dependent upon place within the cochlea. The amplitude growth 
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function demonstrates a significantly steeper slope in those with better CNC scores; 

however, only in the mid region of the cochlea. The basal region and the apical region 

showed much weaker responses and shallower slopes.  

 

 

 

 

 

 

 

 

 

 

 

Past histopathology studies have shown that the basal region degenerates much 

faster than the apical end (Nadol et al., 2001), which may explain why eCAPs are absent. 

Perhaps, in the apical end, the electrode is not reaching the appropriate neurons to elicit 

a robust response. These results suggest that the health of the neurons influences 

outcomes; however, temporal bone studies would suggest otherwise. Fayad and 

Linthicum (2006) counted the spiral ganglion cell bodies in the temporal bones of 14 

cochlear implant users. The nerve count was compared to the performance based on 

words and sentence scores, and found to have no correlation (as seen in table 7.2 

below). 

 

 

 

 

Figure 5.2: In the most basal and apical 
group (top left and lower right), no 
correlations existed between the slope of 
the eCAP and CNC score (r = .068, p > 
0.05; r = .18; p > 0.05). Significant 
correlation exists between the two mid-
region groups (group 2: r = .62, p < 0.05; 
group 3: r = .52; p < 0.05) depicted in the 
top right and bottom left graphs. 
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Peripheral processes appear to affect outcomes to some degree. As mentioned 

previously, patients with residual hearing using both electric and acoustic stimulation 

typically perform better than those patients using only electric stimulation. This finding 

could potentially be a result of an increase in neuronal survival.  

Which brings about the question, does patient age affect outcomes? Based on our 

results in chapter 6, the elderly population may be more prone to hearing loss after 

implantation. Updated data in figure 7.7 continues to show a trend for increased hearing 

loss with increasing age. 

 

 

 

 

 

Table 7.2: A) Estimated percentages of neural survival with HC (hair cells), PP (peripheral 
processes/dendrites) and SG (spiral ganglion cells). B) Table of the corresponding implant 
recipients and their performance in word and sentence scores. 

Figure 7.7: Updated distribution 
of the change in PTA versus age. 
Changes in hearing appear to 
increase with age. 
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A common underlying etiology of hearing loss in the elderly is presbycusis, which 

is primarily the progressive dysfunction and aging of the cochlea (Lin et al., 2012). The 

audiologic configuration for presbycusis follows similar criteria for hearing preservation 

candidates of cochlear implantation. Perhaps, the aged cochlea is unable to sustain 

trauma induced by electrode insertion. Nelson and Hinojosa studied 21 temporal bones 

of individuals with presbycusis. Four cochlear elements were examined and counted, the 

outer hair cells, inner hair cells, stria vascularis and spiral ganglion. The number of 

remaining structures for all four elements correlated with the degree of hearing loss 

based on the pure tone average at 500, 1000 and 2000 Hz. The strongest correlation 

existed with the inner and outer hair cells. Interestingly, inner and outer hair cell count 

was not associated with the slope of the hearing loss (Nelson & Hinojosa, 2006). 

Peripherally, poor outcomes may be due to neuronal survival. Shucknecht and 

colleagues classified types of hearing loss based on cochlear health (Schuknecht & 

Gacek, 1993) and are shown in table 7.3. 

 

 

 

 

 

 

 

 

 

Table 7.3: Histopathology of 
different types and configurations 
of hearing loss. Spiral ganglion cell 
loss shows a relationship with poor 
word discrimination scores. 
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Based on the above classification, the spiral ganglion cells contribute most to 

word understanding. The other possibility would be the tremendous central integration 

that is necessary to process acoustic and electric stimuli. Little has been studied on the 

effects of age on cochlear implant outcomes, but it has been well documented the effects 

of age on central auditory processing and memory. We looked at the change in pre- and 

post-operative CNC scores and compared it to the age of the patient. The graph is shown 

in figure 7.8. 

 

 

 

 

 

 

Change in CNC scores do not appear to be affected by age of the patient. Some of the 

largest improvements were seen in the oldest patients. Perhaps, the duration of deafness 

may play a role with this finding. The graph also tells us that age can affect individuals 

differently. Central processing capabilities are dependent upon time, pitch and intensity 

characteristics of the sound (Freigang et al., 2011). The inability to differentiate between 

different signals heavily affects the way sounds are processed. Freigang et. al. comprised 

a test of just noticeable differences (JNDs) between signals, which integrated the 

properties of central auditory processing. Fifty-nine subjects, aged 65-89, were tested 

and compared to a younger group, aged 20-29. Results indicate that the older 

population consistently requires increased JNDs in all three areas, time, pitch and 

intensity (Freigang et al., 2011).  

Figure 7.8: The change in CNC 
scores before and after cochlear 
implantation as a function of age. 
There is no clear relationship 
between age and changes in word 
discrimination abilities. 
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Hearing loss is caused by a number of factors, some of which are unknown. The 

indications for cochlear implantation are dependent upon the benefit gained from 

amplification; however, outcomes will continue to vary upon patients and patient 

populations. The health of the peripheral and central mechanisms will determine the 

outcomes for the individual patient, which at this time cannot be predicted. Further 

studies of objective measures of the auditory pathway, beyond the auditory brainstem, 

may give insight as to how effectively the electric signal will be delivered and interpreted 

in the brain. Other attempts to evaluate outcomes, especially in the elderly, may involve 

tests for dementia or other central processing deficits.  

Conclusion 

As seen in the above studies, electrode placement within the cochlea can have 

differing effects on hearing preservation and outcomes. Hearing preservation can be 

preserved with either short or long electrodes. Insertion depth does not appear to affect 

the damage to the cochlea. Intraoperative monitoring using electrocochleography 

(Choudhury et al., 2012)could potentially guide the surgeon to place the electrode in the 

most optimal position with the least amount of damage. Preserved cochlear structures 

and the addition of low frequency acoustic input to electric stimulation leads to optimal 

speech understanding abilities.   

Cochlear implants have been a successful treatment for many patients who do not 

benefit from traditional amplification; however, outcomes continue to vary. Several 

factors including electrode design, mapping parameters, health of the cochlea and 

health of the recipient must be considered to achieve the optimal outcomes for each 

patient. With differing anatomies and neuronal survival, more customizable coding 

strategies may be warranted. Frequency bands may need to be altered for each electrode 
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to reduce the place/pitch mismatch. Intracochlear position determines what pitch is 

perceived and is dependent upon the rate of stimulation. It may be beneficial to lower 

the rate of stimulation in the apical channels to provide better pitch discrimination.  

The eCAP provides some insight as to how the nerves are responding to electric 

stimulation. Running objective measures in addition to sentence comprehension tasks 

prior to implantation may provide information regarding the health of the cochlea. If we 

can correlate spiral ganglion or hair cell survival with objective measures, it may aid in 

selection of the electrode design to ensure maximal stimulation of the surviving nerves. 

Beyond the cochlear neurons, additional objective measures, including the ABR, middle 

latency responses and late cortical responses may help determine the health of the 

auditory pathway and if sounds are reaching the cortex efficiently. Knowing this 

information prior to implantation could provide better counseling tools and more 

predictable outcomes. 

Cochlear implantation with hearing preservation shows many advantages; 

however, the elderly population may not consistently achieve the same benefits seen in 

younger groups. It is well known that the risk of hearing loss increases with age. Perhaps 

the status of the elderly cochlea is more fragile and less tolerant to trauma induced from 

electrode insertion. Outcomes may tend to vary more with the elderly as central 

processing disorders increase with age. It is necessary to evaluate both the peripheral 

and central processes of a patient in order to provide the best expectation. Objective 

measures can offer more than peripheral health, but also central health. Measuring the 

later auditory potentials of current implant patients and comparing to their speech 

discrimination scores may show some differences in the amplitude or latency of the 

responses. 
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Changes and improvements in electrode design will continue to evolve as will the 

criteria for cochlear implant candidacy. These “givens” will demands more 

understanding of the ear’s and brain’s responses to electric stimulation so that the 

maximal benefit of cochlear implantation can be achieved for the recipients of this 

technology.  
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Abstract

Background:One of the most significant recent advances in cochlear implantation is the implantation of
patients with residual hearing. These patients have a downsloping sensorineural hearing loss with poor

speech discrimination and perform poorly with standard amplification. Studies using a variety of different
electrode designs have demonstrated that it is possible to implant an inner ear and preserve residual

hearing. Initial studies have demonstrated that a combination of residual acoustic hearing in the low fre-
quencies with electrical stimulation in the mid- to high frequencies resulted in superior hearing perform-

ance in background noise.

Purpose: The objective of this study was to determine the effect of electrode insertion depth on hearing

preservation.

Study Sample: Eighteen patients with mild to severe hearing loss in the low frequencies combined with

poor word recognition were recruited for the study.

Intervention: Cochlear implantation.

Data Collection and Analysis: Pre- and postoperative hearing test, Hearing in Noise Test, and con-
sonant–nucleus–consonant testing. Data analysis was performed with Kruskal Wallis andMann-Whitney

testing.

Results: In our study of 18 patients implanted with a Med-El PulsarCI100 we demonstrated the ability to

preserve residual hearing with implant insertion depths ranging from 20 to 28mm, giving us the possibility
of near complete cochlear frequency coverage with an implant array while preserving residual hearing.

These patients performed well both in quiet and in 10 dB signal-to-noise ratio conditions.

Conclusion: Hearing preservation was achievable even with deep implant insertion. Patients performed

well in combined acoustic and electric conditions.

Key Words: Cochlear implant, electroacoustic stimulation, hearing preservation, partial deafness
cochlear implantation

Abbreviations: CNC 5 consonant–nucleus–consonant; EAS 5 electroacoustic stimulation; FDA 5

Food and Drug Administration; HINT 5 Hearing in Noise Test; PTA 5 pure-tone average; SNR 5

signal-to-noise ratio

I
t is estimated that more than 31million Americans

are hearing impaired, most of whom do not have

profound sensorineural hearing loss (Kochkin,
2005). The most common form of hearing loss in adults

is high-frequency sensorineural hearing loss, which

makes it difficult to distinguish speech sounds, partic-

ularly consonants. Their hearing function deteriorates

further in background noise. These patients are often

frustratedwith hearing aids or do not benefit from them
due to poor word-understanding abilities. Cochlear

implants have become a useful tool for the treatment

and rehabilitation of severe to profound hearing losses.
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Those with good low-frequency hearing and poor high-

frequency hearing were initially not considered coch-

lear implant candidates as preservation of residual

hearing was not thought to be possible due to the
trauma sustained from electrode insertion (Sohmer,

2007). However, with improved electrode designs and

surgical technique, indications for cochlear implants

have extended to those who have essentially good,

or aidable, low-frequency hearing and severe high-

frequency loss above 1000Hz. With a less traumatic

surgical approach, low-frequency hearing can be pre-

served, resulting in low-frequency auditory perception
and mid- to high-frequency electric perception (Gantz

and Turner, 2003; Adunka et al, 2004a; Adunka et al,

2004c; Gstoettner et al, 2004; Kiefer et al, 2004; Turner

et al, 2004; Kiefer et al, 2005; Gstoettner et al, 2008;

Gantz et al, 2009).

Several studies have shown that patients listening in

the electroacoustic stimulation (EAS) condition perform

better in background noise and have improved music
appreciation as compared to those in the implant-only

condition (Turner et al, 2004; Skarzynski et al, 2006;

Baumgartner et al, 2007; Behr et al, 2007; Lorens

et al, 2008; Gantz et al, 2009; Skarzynski et al, 2009).

Gantz and colleagues used a short electrode to demon-

strate the feasibility of hearing preservation in cochlear

implantation. Traditional long electrode users have

shown poor pitch perception as compared to normal-
hearing persons, especially in complex tasks such as

music perception. Acoustic low-frequency hearing is

important for pitch and spectral resolution. In this ini-

tial study 13 volunteers were implanted to a depth of 6

to 10mm from the cochleostomy (Gantz and Turner,

2004; Gantz et al, 2004; Gantz et al, 2006). Follow-

ing implantation, their ability to recognize familiar

melodies was significantly more accurate than that of
standard cochlear implant users. Furthermore, they

performed better in speech in noise than the standard

implant users. Another study done by James and col-

leagues showed improved speech recognition in noise

with the EAS approach. The Nucleus Contour

Advance™ was implanted in 12 patients with insertion

depths ranging between 17 and 19mm. An in-the-ear

hearing aid was fit in the ipsilateral ear to amplify
the preserved low frequencies. They measured a 20%

improvement with speech in quiet along with a 3dB im-

provement in signal-to-noise ratio (SNR). Subjectively,

patients were very satisfied with the bimodal hearing

(James et al, 2005). Garcia-Ibanez and colleagues (2009)

implanted the Nucleus Contour Advance up to 17mm

for the purpose of preserving residual hearing. They

found that hearing thresholds were measurable postop-
eratively in 71–86% of their subjects. Thirty-six percent

of these patients had preservation of thresholds within

10dB of their preoperative thresholds, and approxi-

mately 67% had preservation within 20dB HL of the

preoperative thresholds (Garcia-Ibanez et al, 2009).

Hearing preservation was thus attainable with a vari-

ety of different electrode designs with insertion depths

to approximately the 1000Hz region of the cochlea.
The purpose of our study was to evaluate the poten-

tial of deeper-insertion cochlear implantation. Potential

benefits of this approach include increasing the fre-

quency coverage of the cochlea while preserving re-

sidual structure. This may be beneficial in terms of

ensuring survival of neurotrophin-producing cells in

the cochlear apex and may preserve balance function

in the implanted ear.

METHOD

Surgical Approach

The extended round window approach was used in all

cases. After performance of a mastoidectomy and facial

recess (posterior tympanotomy) approach to the middle
ear, all bone dust was irrigated out of the wound. Hemo-

stasis was obtained, and 0.5 cc of Decadron 10mg/ml

was applied to the round window niche. The bony over-

hang of the round window niche was then carefully

removedwith a 1mmdiamond burr, and the round win-

dow was clearly visualized by testing the round window

reflex. For the extended round window approach the

bone anterior inferior to the round window was
removed, keeping the scala tympani endosteum intact.

The wound was once again irrigated, and Healon™was

used to cover the round window and endosteum. The

endosteum was then opened with a small pick, and

the implant electrode was carefully inserted. For round

window insertion, the implant was inserted through an

incision in the anterior midportion of the round window

(Fig. 1). All patients were implanted with Med-El
PuslarCI100 using either the standard (H) or medium

(M) electrode arrays. These electrodes have 12 contacts

distributed over 28 or 24mm, respectively. The opening

into the scala tympani was sealed with a small piece of

fascia, and the woundwas closed. Depth of the electrode

was confirmed radiographically.

Subjects and Outcomes Measures

A total of 18 implant candidates, 5 males and 13

females, with varying degrees of hearing loss were re-

cruited. Ages ranged from 26 to 84, with a mean age

63.17. Thresholds ranged anywhere from normal slop-

ing to profound to severe to profound. Word discrimina-

tion scores tested via the Hearing in Noise Test (HINT)

sentence test fell within Food and Drug Administration
(FDA) or Medicare guidelines for implantation in the

best-aided condition. FDA guidelines state that under-

standing ability must be less than 50% in the ear to be

implanted and no better than 60% in the contralateral
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ear. Medicare’s criteria state that speech understanding

must be less than 40% bilaterally (Huart, 2009). The eti-

ology of the hearing losses for the participants is
unknown. Prior to implantation, all patients underwent

blood testing to screen for autoimmune inner ear disease

and had an MRI scan to rule out retrocochlear losses.

Laboratory work was negative for autoimmune inner

ear disease for all patients.MRI scanswere also negative

for cochlear malformation or retrocochlear pathology.

The participants further denied any family history of

hearing loss.
Informed consent was obtained prior to testing, and

the protocol was approved by the University of Kansas

Medical Center human subjects board. Pure-tone

thresholds were obtained before surgery and two weeks

postoperatively using insert earphones. An example of

a pre and post audiogram is shown in Figure 2.

The HINT and consonant–nucleus–consonant (CNC)

word tests were administered in order to evaluate
word-discrimination and word-recognition abilities.

Sentences and words were presented with the patient

seated in a sound-treated booth at 0 degrees azimuth

at 70 dB SPL via recorded voice. The tests were admin-
istered in three conditions: acoustic only, implant only,

and electric plus acoustic (EAS) in the ipsilateral

(implanted) ear. To ensure that the patient was only

hearingwith electric stimulation, both earswere plugged

with an earplug to eliminate any acoustical hearing.

The ipsilateral earplug was then removed for the EAS

condition. A contralateral hearing aid was not used

in any of the patients in order to isolate the implanted
ear. HINT testing was also performed in a110dB SNR

in the electric and EAS conditions. After the sentences

or words were presented, the patients were asked to

repeat back any words that they may have understood

and were encouraged to guess if unsure. Scores were

based onwords repeated back correctly in each sentence

and divided by the total number of words possible.

Statistics

Outcomes were analyzed by Kruskal Wallis and

Mann-Whitney testing administered using SPSS v.

17.0. Significance was set at p , .05.

RESULTS

Residual hearing was preserved in all 18 patients.

The change in pure-tone averages was calculated

using 250, 500, and 750Hz. This changewas graphed as

a function of insertion depth and is shown in Figure 3.

There is no clear relationship between insertion depth

and amount of hearing preserved, indicating that the

apical region of the cochlea can be reached without com-

promising hearing thresholds (r250.091). The advant-
age of residual hearing used in conjunction with electric

Figure 1. Comparison of standard cochleostomy to round win-
dow insertion of a cochlear implant. For all cochlear implant
approaches, the middle ear is approached via a facial recess
approach/posterior tympanotomy (A). The cochleostomy is placed
anterior to the round window (B). To approach the round window,
the posterior tympanotomy (arrows, C) needs to be significantly
wider. Next the bony overhang over the round window niche is
removed with a 1mm diamond burr, allowing complete visualiza-
tion of the round window (arrow, D). The round window is covered
with a thin layer of hyaluronic acid, and a small slit is made with
an arachnoid knife (E). Finally the electrode is inserted (F), and
the niche is sealed with a tissue graft.

Figure 2. Example audiogram pre (open circle) and post 24mm
implant (crossed circles) performed with a Med-El standard elec-
trode. Insertion was carried out via a round window approach and
had remained stable over 18mo.
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stimulation was measured using the HINT test pre-

sented in quiet and 110dB SNR as well as CNC word
lists. Outcomes for the quiet condition are graphed in

Figure 4. The preoperative HINT score in quiet had a

mean of 24.3% correct. When testing in the electric-only

condition, the mean score improved to 75.3% correct.

When presented in the acoustic plus electric condition,

themean score was 69.9% correct. This represents a sig-
nificant difference in the aforementioned three condi-

tions (p # .001). The Mann-Whitney test was then

performed to find that there were statistical differences

in the preoperative and electric-only conditions (p #

.001) as well as the preoperative and EAS conditions

(p# .001). There was, however, no statistical difference

between the electric and EAS conditions (p5 .573).

Patients tested in the 110dB SNR condition showed
preoperative scores of 25.7% correct. Mean scores

improved to 64.33% correct in the electric-only condi-

tion and to 65.89% correct in the EAS condition. The

Kruskal-Wallis test confirmed a significant difference

between groups (p5 .001). Similar to the electric-only

condition, the Mann-Whitney test showed a significant

difference between preoperative scores and postopera-

tive HINT in the electric-only condition (p5 .001) in
addition to significant differences in preoperative and

postoperative HINT scores in the EAS condition (p #

.001). There was no statistical significance evident

when the two postoperative conditions were compared

(p5 .955; Fig. 5).

Speech understanding outcomes were also measured

using CNC word lists (Fig. 6). Preoperative mean scores

were 16.67% correct out of 50 words. Scores improved to
an average of 38% correct in the electric-only condition

Figure 3. Effect of electrode insertion depth on postoperative
change in hearing. Using a round window insertion approach,
there was no clear relationship between implant insertion depth
and change in postoperative pure-tone average (PTA). The PTA
was chosen as an outcome measure since all of the patients we
implanted had residual low-frequency hearing. This demonstrates
that access to the low- to midfrequency region of the cochlea is pos-
sible with hearing preservation.

Figure 4. Postoperative performance in quiet. This box plot summarizes the preoperative and postoperative Hearing in Noise Test
(HINT) scores recorded in two conditions: (1) electric only and (2) electroacoustic stimulation (EAS). The black line represents the median
HINT score. The boxes represent the 25th through the 75th percentile, whereas the lower and upper lines represent the standard devia-
tion. Preoperative HINT scores had amedian of 19%. Postoperative activation of the implant resulted in significant improvement inHINT
scores for both the electric-only and EAS conditions. Electric-only scores had a median of 79.5%, and EAS HINT scores averaged 72%.
There is no statistical difference between the electric-only and EAS conditions.
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and to 47.1% in the EAS condition. Using the statistical

tests mentioned above, results were consistent in that a

statistical difference was found when comparing preop-

erative scores to postoperative scores in the two different

conditions: (1) electric only, p5 .004; (2) EAS, p5 .000.

However, no statistical difference was found when com-

paring the two postoperative CNC scores (p5 .193).

DISCUSSION

I n our group of patients, insertion of a thin electrode

array via a round window approach was able to

achieve hearing preservation. In contrast to other stud-

ies, we were able to achieve insertions of up to 28mm

with preservation of residual hearing (Fig. 3). In tem-

poral bone studies, insertions that extend beyond
360degrees (about 20mm) showed increased cochlear

trauma (Adunka and Kiefer, 2006). This was not

observed in this series of patients since preservation of

hearing serves as a proxy for evaluation of damage apical

to the implant. One potential advantage of a deeper

implantation is the ability to stimulate apical regions

of the cochlea should hearing deteriorate over time.

Although short electrodes have been shown to be ben-
eficial for speech understanding, deep insertions also

have advantages, even for hearing preservation candi-

dates. With limited access to the apical regions, the

implantmay be less effective in the event that the resid-

ual hearing is lost. Frequency allocations may be reas-

signed to the apical end; however, Reiss and colleagues

(Reiss et al, 2007; Reiss et al, 2008) suggest that it may

require a significant amount of time for the users to

adjust to the frequency shift.

Gstoettner and colleagues (2004) found that deeper

insertions could be achieved with the Med-El electrode

arrays. This is significant since implantation to 20mm

is predicted to give patients electrical hearing through
the 1000Hz range, leaving the apical, hearing portion of

the cochlea intact. Twenty-one patients were implanted

with insertion depths ranging from 18 to 24mm.Hearing

was successfully preserved in 85.7% of the patients. Com-

pared to theelectric-only condition,all patientsperformed

better in the EAS condition. A key component to preserv-

ing hearing in these cases was found to be an atraumatic

(“soft”) surgical approach (Gstoettner et al, 2004).
Newer electrode designs have tried to combine thin,

atraumatic insertion with implantation to at least

20mm (Adunka et al, 2004b). Potentially even deeper

insertion into the cochlea with limited damage is possi-

ble. Baumgartner and colleagues implanted 23 adults

with a specialized flexible 31mm electrode manufac-

tured by Med-El. The electrode features five single con-

tacts in the apical end and seven pairs across the rest of
the array.With this design, the apical end is much thin-

ner. Hearing preservationwas achieved in four cases up

to 12mo. Improvements were seen with monosyllabic

words as well as hearing in noise (110dB SNR), with

mean scores of 54% and 57%, respectively.

Figure 5. Postoperative performance in noise. The box plot summarizes the pre- and postoperative Hearing in Noise Test (HINT) scores
when presented in 110dB signal-to-noise ratio. Preoperative scores demonstrated a median of 33%. Postoperative median scores were
63% and 68% in the electric and electroacoustic stimulation (EAS) conditions, respectively. The black line represents the median HINT
score. The boxes represent the 25th through the 75th percentile, whereas the lower and upper lines represent the standard deviation.
There was statistical significance in preoperative scores and the electric condition and preoperative scores and the EAS condition; how-
ever, there was no statistical difference in the electric and EAS conditions.
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Findings from our study indicated a significant im-

provement in speech understanding with the use of a

cochlear implant in patients with residual hearing com-

pared to their performance with standard hearing aids.

Interestingly, the residual acoustic hearing did not

improve speech discrimination scores significantly over

electric hearing alone. These results are contrary to the
literature that suggests that electric acoustic hearing is

superior to electric hearing alone. It is important to note

that there was a large range in scores whereby some

individuals did perform as well in the EAS condition

as compared to other studies that have been published.

Several variables may have played a role in speech dis-

crimination, for example, whether the patient was prop-

erly fit with standard hearing aids and whether the ear
was properly stimulated prior to surgery. Agemay have

also played a role, in that the geriatric population may

have more difficulty in distinguishing and adjusting to

themixed signals. Our age range was quite large, which

may have influenced the mean scores.

Additional theoretical benefits include the potential

for the preservation of structures apical to the implant.

Recent temporal bone histopathology studies have dem-
onstrated degeneration of both supporting cells and spi-

ral ganglion neurons apical to the tip of an implant

when compared to the contralateral, unimplanted side

(Khan et al, 2005). If an implant electrode migrates

through the scala media to the scala vestibule, as sug-

gested by Finley and colleagues (2008), the resulting

inflammation may result in degeneration of residual

functioning portions of the cochlea and poorer out-

comes. Some animal studies have also suggested that

traumatic insertions affected spiral ganglion survival

(Leake et al, 2008). Lack of hearing loss with deeper

insertions suggests that it is possible to maintain the

apical structures of the cochlea while being able to elec-
trically stimulate very low frequencies.

CONCLUSION

Atraumatic cochlear implantation has shown bene-

fit in preserving hearing. Contrary to other studies

we have not seen a difference in the performance of our

patients in the electric-only versus the EAS condition in
background noise. This is mainly due to our patients’

excellent performance in the electric-only condition.

Future studies will focus on understanding the physio-

logical differences that affect performance in these dif-

ferent groups.
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techniques and cochlear implant electrodes have been 
devised to inflict minimal trauma to the more apical 
regions of the cochlea where deeper tones are proc-
essed.1-3 These patients are then rehabilitated using 
acoustic input for the residual low frequency hearing 
and electrical input for the middle to high frequencies. 
The combined input is referred to as electro acoustic 
stimulation (EAS) and represents a significant change 
in how we approach patients with residual hearing 
since prior to the establishment of these techniques, 
cochlear implantation resulted in loss of all residual 
hearing in the ear being implanted.

While cochlear implant patients may perform rea-
sonably well in quiet environments, patients using EAS 
have the advantage in environments with competitive 
speech. EAS patients are able to recognize and sup-
press the competitive speech by their ability to process 
lower frequency speech sounds. This is referred to as 
glimpsing,4 which has also resulted in better music ap-
preciation as compared to traditional cochlear implant 
(CI) users. Alternate approaches to improving speech 
understanding is the use of novel coding strategies 
such as fine structure speech processing (FSP) which 
have also shown increased perception of speech.5-8 
Use of these strategies requires an implant that can 
stimulate the apical third of the cochlea.

Key components of successful hearing preserva-
tion are surgical technique and surgeon experience. 

Department of Otolaryngology-Head and Neck Surgery 
University of Kansas Medical Center 

Kansas City, KS, USA

OTORINOLARINGOL 2012;68:183-90

B. RODGERS, S. PRENTISS, H. STAECKER

Expanding cochlear implantation to patients  
with residual mid and high frequency hearing

Aim. Cochlear implantation has long been indicated to restore 
profound hearing loss and is the most effective intervention 
for patients who do not benefit from standard amplification. 
Recent innovations in implant design and surgical technique 
have expanded and allowed implantation with preservation 
of residual hearing for those patients with ski-slope hearing 
loss and poor discrimination. In these cases the goal is shal-
low to mid depth implantation in order to restore as much 
hearing as possible while preserving apical low frequency 
acoustic hearing.
Methods. We report a series of ears with up sloping hearing 
loss deeply implanted with custom thin electrodes in which 
residual hearing is preserved. These patients were poor hear-
ing aid users and required restoration of hearing in the low 
frequencies.
Results and conclusion. This represents a change in the previ-
ous practice of avoiding implantation of areas with residual 
hearing. These cases demonstrate the feasibility of preserva-
tion of acoustic hearing in all frequency regions and repre-
sent an opportunity to further expand cochlear implantation 
to novel patient populations.
Key words: Cochlear implantation - Hearing loss - Hearing 
loss, high-frequency.

Cochlear implantation was devised and tradition-
ally used as a means to restore hearing to indi-

viduals with profound hearing loss who could not ben-
efit from hearing aids. More recently, there has been a 
push towards implanting patients with ski slope hear-
ing losses while preserving residual acoustic hearing. 
In order to preserve their residual hearing, surgical 
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Hearing preservation can be achieved through a 
carefully placed cochleostomy,9 however round win-
dow insertion instead of a cochleostomy appears to 
be gaining widespread acceptance.10, 11 Theoretical 
benefits to this approach have been described. De-
creased necessity for drilling likely lowers acoustic 
trauma, infection rate, leakage of perilymph, and en-
trance of bone dust into the cochlea. In addition, the 
round window niche provides ease of sealing the co-
chleostomy around the electrode. Other techniques 
described in soft CI surgery include deferring the 
cochleostomy until immediately before electrode in-
sertion, no suctioning of perilymph, gentle electrode 
insertion, and potential use of a lubricant to facilitate 
insertion.12, 13 Although these are elegant techniques 
and provide obvious theoretical limits to cochlear 
damage, they lack evidence for superior outcomes. 
Rather it seems that duration of deafness and patient 
age may be predictors of success.14 Introduction of 
blood into the cochlear environment is another con-
cern during cochlear implant. Intrascalar administra-
tion of blood into guinea pig ears has been shown to 
result in both transient and permanent hearing loss.15

Application of these techniques has made hearing 
preservation a feasible outcome after cochlear im-
plantation in multiple centers. Initial studies with 20 
mm insertion depth had an 85% success rate of pre-
served low frequency hearing in 21 cochlear implant 
patients with shallow electrode devices and since then 
these results have been replicated in multiple cent-
ers.16-20 Insertion depth appears not to increase the 
incidence of hearing loss,21-23 opening the possibility 
of preserving hearing in most types of hearing loss. 
In this paper we report the use of the aforementioned 
techniques to implant a series of ears with rare up-
sloping hearing loss. These patients had significant 
residual hearing above 4000 Hz. The goal in these 
cases was to achieve an implantation that could take 
advantage of fine structure processing (FSP), while 
preserving sound awareness in the high frequencies.

Materials and methods

Patient selection: Patients were identified with up 
sloping hearing losses that met standard implant se-
lection criteria (PTA>70 dB; SD<60% in better hear-
ing ear, <50% in the ear to be implanted reference). 
Preoperative testing included a MRI with gadolin-
ium of the brain and internal auditory canals; full 

pure tone audiometry, and speech testing in the best 
aided condition using HINT, CNC andAZ Bio tests 
performed in quiet and in noise. Postoperative test-
ing using the same test battery was performed at 3, 6, 
9 and 12 months after implantation.

Surgical approach

The extended round window approach was used 
in all cases. After performance of a mastoidectomy 
and facial recess (posterior tympanotomy) approach 
to the middle ear, all bone dust was irrigated out of 
the wound. Hemostasis was obtained and 0.5 cc of 
decadron 10 mg/mL was applied to the round win-
dow niche. The bony overhang of the round window 
niche was then carefully removed with a 1 mm dia-
mond burr and the round window clearly visualized 
by testing the round window reflex. For the extended 
round window approach, the bone anterior and infe-
rior to the round window was removed, keeping the 
scala tympani endosteum intact. The wound was once 
again irrigated and Healon™ was used to cover the 
round window and endosteum. The endosteum was 
then opened with a small pick and the implant elec-
trode is carefully inserted so that the 12th contact is 
inside the round window membrane (Figure 1). All 
patients were implanted with the MedEl SonataTI100 
using custom made electrode arrays designed for 
these patients. These electrodes have 12 contacts dis-
tributed over 26.5 mm in a 31.5 mm long array. The 
apical 5 electrodes are single contacts with an elec-
trode diameter of 0.5 x 0.8 mm. The opening into the 
scala tympani was sealed with a small piece of fascia 
and the wound closed. All patients underwent intra-
operative imaging to ensure that there were no hairpin 
turns or kinks in the array. Depth of the electrode was 
determined by imaging as previously described.24 All 
patients were discharged the same day with oral an-
tibiotics and a 10 day course of methylprednisolone. 
Patients were activated 1 month post operatively and 
programmed with the FSP speech coding strategy.

Results

Case 1

The patient is a 48-year-old female with a long-
standing history of bilateral non- syndromic hearing 
loss. There was no family history of hearing loss. Her 
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CNC scores at six months were 90%. Interestingly, 
addition of a hearing aid in the contralateral ear (bi-
modal condition) did not result in improvements in 
scores (HINT 90%, HINT + 10dB 85%, CNC 85%). 
Scores and hearing thresholds have remained stable 
for 24 months post implantation. Analysis of CT 
scans (Figure 3) and reconstructed Stenvers view x 
rays at 1 year post implantation demonstrate that the 
electrode position has remained stable at a 680o in-
sertion angle.

initial audiograms revealed profound rising to mod-
erate? up-sloping hearing loss (Figure 2A). Preop-
erative CNC score in then left ear was 5%, HINT in 
quiet 40% and HINT in noise (+10dB SNR) 0%. She 
underwent implantation with a custom Mel-El de-
vice with a thin electrode and soft surgery technique. 
Pre and postoperative audiograms are shown in Fig-
ure 2A, B. Thresholds remained stable throughout 
testing. At six months post implant activation HINT 
scores revealed 95% in quiet and 85% at +10 dB. 

Figure 1.—Surgical approach for hearing preservation implantation. A wide facial recess is drilled exposing the round window niche 
(A, arrow). It is important to lower the facial ridge to the greatest degree possible so that the optimal insertion angle for the long elec-
trode can be obtained. Care must also be taken to avoid contact with the incus while drilling. Using a 1 mm diamond bur the round 
window niche overhang is removed (B). Exposure of the round window is checked by palpating the stapes and looking for a round 
window reflex. This is not seen if there is still pseudomembrane over the round window. The round window is covered with hyaluronic 
acid (C) and opened. This allows the insertion of the electrode (D) with minimal contamination of the perilymph with blood.
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be feasible as demonstrated in the cases described 
above. An interesting observation in these cases is the 
10-20 dB conductive hearing loss across the low fre-
quencies observed in two of the three cases (Figures 
2, 4). Potential causes could include contact between 
the implant and the ossicular chain versus a mechani-
cal effect of the electrode within the scala tympani. 
We have not observed a similar degree of conductive 
hearing loss in patients implanted for ski slope hear-
ing loss so the latter explanation is more likely.

Use of soft surgery techniques previously de-
scribed coupled with custom thin electrode devices 
may provide the opportunity to safely preserve hear-
ing in these atypical up sloping hearing loss patients. 
Several key factors have been identified as important 
in consistently achieving hearing preservation. Al-
though hearing preservation has been described using 
the advanced off stylet technique in modiolar hugging 
implants, mechanical studies demonstrate that more 
flexible electrodes lead to lower degrees of insertion 
trauma.28, 29 This is particularly important since there 
is some evidence that over insertion with less flex-
ible electrodes can lead to poorer implant outcomes, 
even when considering electric only conditions.30 
Therefore, when targeting the low frequency regions 
of the inner ear for stimulation, a long and atraumatic 
electrode is required. We used a custom electrode 
that is based on the Med-El flex design. The apical 5 
electrodes are single contacts that create a flexible at-
raumatic tip. The basal end to the electrode features? 
extra reinforcement to make it easier to advance into 
the apical third of the cochlea. Other important fac-
tors to consider are the surgical approach. We have 
implanted all of these electrodes via an extended? 
Round window approach. Variability in the orienta-
tion of the round window and the initial sharp turn 
the electrode needs to navigate the hook region, have 
been cited as potential disadvantages of using the 
round window as an entry point to the inner ear.10, 11 A 
cochleostomy or removal of the bony ridge anterior to 
the round window have been advocated to overcome 
these obstacles. As with other hearing preservation 
cases, care was taken to avoid blood and bone dust 
from entering the inner ear. All patients also received 
intraoperative and post operative steroids since ani-
mal studies strongly suggest that the use of steroids 
can mitigate implant related damage.31, 32

Patients with significant residual hearing have pre-
viously faced a dilemma; implants offered electrical 
stimulation across all frequencies but at the price of 

Case 2

After long term stable performance with her uni-
lateral implant, the patient requested implantation 
in her contralateral ear. She underwent implantation 
using a similar device in the right ear again using 
soft surgery technique. Pre and postoperative audio-
grams are shown in Figure 2C, D. Similar to the left 
ear, the patient experienced substantial preservation 
of hearing across all frequencies. Only 20-15 dB loss 
occurred at frequencies less than 1500 Hz. Based on 
bone conduction thresholds, this appeared to be a 
conductive loss (Figure 2D). For her right implant 
alone CNC scores at 6 months were 84%, HINT in 
quiet =100%; HINT +10 dB=100%. Again using 
CT temporal bone to construct a three-dimensional 
image implant position was determined. Measure-
ments for the right ear show rotational angle of 700 
degrees. Figure 3 shows CT scans of both temporal 
bones after implant insertion.

Case 3

Patient presented with a >15 year history of non 
syndromic up sloping hearing loss. Preoperative 
CNC test showed a score of 26%; AzBio test =39%. 
Hearing tests at 1 months post implantation demon-
strated preservation of hearing with the presence of a 
conductive hearing loss in the low frequencies (Fig-
ure 4B, C). Overall insertion depth based on estima-
tion from imaging was 700O (Figure 4A).

Discussion and conclusions

Hearing preservation cochlear implantation devel-
oped from the use of short (10 mm) electrodes that 
were implanted in the basal turn of the cochlea in 
attempt to preserve the residual low frequency hear-
ing.25 Several pioneering studies in the field demon-
strated that 20mm insertions to the 1000 Hz region 
could be performed without sacrificing residual co-
chlear function.26 In all of these cases the electrode 
array was inserted into the region of the cochlea that 
was devoid of residual hearing. Recent studies have 
demonstrated that there was no relationship between 
the depth of insertion and hearing preservation if 
flexible electrodes and soft surgery techniques were 
used.21, 27 Following this logic, deep implantation in 
patients with atypical up sloping hearing loss should 
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Figure 2.—Pre and postoperative audiograms for cases 1 and 2. Preoperative pure tone thresholds are shown as open circles. Post 
operative pure tone thesholds are shown as closed circles. As seen in Figure 2A, case 1 demonstrates excellent preservation of pure 
tone thresholds. Post operative masked bone conduction scores (B) demonstrate several suprathreshold responses in the low frequency 
region. Case 2 pre- and postoperative pure tone thresholds are seen in C. There is a 20 dB change in hearing in the low to mid frequen-
cies. This is most likely a conductive hearing loss as demonstrated by the masked bone thresholds (D).
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the patients experience electrical stimulation in areas 
with acoustic hearing, the electrical stimulation can 
be precisely mapped. Variation in rate of stimulation 
can then be correlated with perceived pitch and the 
acoustic residual hearing can be used as a same ear 
control. Results from these studies may provide finer 
tuning of cochlear implant devices in the future.

Riassunto

Ampliamento dell’impianto cocleare in pazienti con resi-
duo uditivo a media e alta frequenza

Obiettivo. Da molto tempo l’impianto cocleare è indi-
cato per ripristinare la sordità grave ed è l’intervento più 

loss of residual hearing. These cases may represent 
a step toward a solution for patients who are fearful 
of losing residual hearing or who want the benefit of 
acoustic hearing when they are not wearing their im-
plant. This opens the possibility of implantation to a 
wide range of patients who have significant residual 
hearing but perform poorly with hearing aids. A key 
to identifying these patients is expanding the use of 
the minimum test battery and raising awareness of au-
diologists and physicians of current implant criteria. 
Additionally, deep implantation in up sloping hear-
ing loss allows for the opportunity of examining pitch 
rate/place perception with electric/acoustic hearing 
across multiple frequencies in the same ear. Because 

Figure 3.—Imaging of cases 1 and 2 using post operative CT (A-D) and Stenvers projections based on CT data for case 1 (F) and case 2 
(E). As can be seen on the serial CT sections, the electrode contacts are distributed throughout the length of the cochlear. The individual 
DICOM data was then projected as Stenvers views using Osirix software. These projections demonstrate a 680o insertion in case 1 (F) 
and a 700o insertion in case 2 (F).
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ahead of print].
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Hamzavi JS. Speech and music perception with the new fine struc-
ture speech coding strategy: preliminary results. Acta Otolaryngol 
2007;127:1298-303.
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ing preservation via a cochleostomy approach and deep insertion 
of a standard length cochlear implant electrode. Otol Neurotol 
2011;32:1444-7.

10. Roland PS, Wright CG, Isaacson B. Cochlear implant electrode in-
sertion: the round window revisited. Laryngoscope 2007;117:1397-
402.

11. Roland PS, Wright CG. Surgical aspects of cochlear implanta-
tion: mechanisms of insertional trauma. Adv Otorhinolaryngol 
2006;64:11-30.

12. Adunka O, Gstoettner W, Hambek M, Unkelbach MH, Radeloff 
A, Kiefer J. Preservation of basal inner ear structures in cochlear 
implantation. ORL J Otorhinolaryngol Relat Spec 2004;66:306- 
12.

13. Adunka O, Unkelbach MH, Mack M, Hambek M, Gstoettner W, 
Kiefer J. Cochlear implantation via the round window membrane 
minimizes trauma to cochlear structures: a histologically controlled 
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efficace per i pazienti che non traggono beneficio dall’am-
plificazione standard. Le recenti innovazioni del design 
dell’impianto e della tecnica chirurgica hanno ampliato e 
consentito l’impianto, con conservazione del residuo udi-
tivo, nei pazienti colpiti da perdita dell’udito in discesa e 
scarsa discriminazione. In questi casi, l’obiettivo è l’im-
pianto a bassa-media profondità, allo scopo di ripristinare 
il più possibile l’udito, preservando l’udito apicale a bassa 
frequenza acustica.

Metodi. Riportiamo una serie di casi, con perdita 
dell’udito crescente, con impianto profondo di elettrodi 
sottili su misura, in cui si è conservato il residuo uditivo. 
questi pazienti erano scarsi utilizzatori di apparecchi acu-
stici e necessitavano del ripristino dell’udito alle basse fre-
quenze.

Risultati e conclusioni. questo trattamento rappresenta 
un cambiamento rispetto alla pratica precedente di evitare 
l’impianto di aree con residuo uditivo. questi casi dimo-
strano la fattibilità di conservazione dell’udito acustico in 
tutte le regioni di frequenza e rappresentano un’opportuni-
tà per ampliare ulteriormente l’impianto cocleare a nuove 
popolazioni di pazienti.
Parole chiave: Impianto cocleare - Udito, perdita - Udi-
to, perdita, alta frequenza.
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INTRODUCTION:  
Numerous studies have documented changes in pitch perception with manipulations of 
stimulation parameters using electrical stimulation (Vermeire, 2008, Carlyon, 2010). In 
addition to the e�ects on pitch perception due to place of stimulation, increases in pulse 
rate have been shown to result in higher pitch percepts up to a few hundred pulses per 
second across the electrode array. Studies have also made comparisons of pitch elicited 
by electric stimulation to one ear compared to acoustic stimulation to the contra-lateral 
hearing ear (Dorman, 2007). In the cases of CI recipients without residual hearing, 
the studies have been restricted to procedures providing pitch estimates or scaling 
procedures that don’t provide a measure of the overall range of percepts. (Boyd, 2011) 
and in the cases of comparing CI electrical stimulation to hearing in the contralateral 
ear results have been confounded by the ability of the subjects to compare the pitch of 
acoustic signals to the electrical signals of the CI. 

This study explored the rare opportunity of examining Pitch Rate/Place perception with 
electric/acoustic hearing across multiple frequencies in the same ear.

DISCUSSION
This subject presented a unique opportunity to compare both acoustic and electric pitch 
perception in the same ear and across a broad frequency spectrum. The results suggest 
that there is good agreement between Greenwood’s map and electrode position within 
the cochlea as seen previously by Vermeire, (2008) and Carlyon (2010). The acoustic 

the size and spread of the perceptual intervals related to place and rate of stimulation. 

perception in the cochlear region basal to 1000 Hz and that both place and temporal 
cues result in changes of pitch perception in the apical region.  The subject’s report that 
electrical stimulation maintained a tone-like percept in the basal/mid cochlear regions 
only when signals were above pitch/rate saturation while changes in rate for the apical 
region did not adversely a�ect the tone quality provides some insight regarding the 
viability of temporal cues for di�erent regions of the cochlea. 

CONCLUSION
Electric place and temporal cues generate di�erent pitch percepts depending on the 
region of the cochlea receiving the stimulation. Electrical stimulation exploiting the normal 
hearing process through the use of  a long electrode array that extends deep into the 
cochlea coupled with stimulation strategies that can provide temporal and place cues 
can extend the range of pitch perceptions by CI recipients. The relationship of the 
electrode position to the Greenwood map further confounds the debate regarding 
dendritic vs. spiral ganglion cell stimulation as this patient has fairly robust survival of 
both cell populations as suggested by preserved residual hearing.   

Dorman M.;Spahr T.;Gi�ord R.;Loiselle L.;McKay S.;Holden T.;Skinner M.;Finley C., “An Electric 
Frequency-to-place Map for a Cochlear Implant Patient with hearing in the Nonimplanted Ear”, J 
Assoc Res Otolaryngol , 8(2), 2007, p. 234-240.

Vermeire K;Nobbe A;Schleich P;Nopp P;Voormolen MH;Van de Heyning PH, “Neural tonotopy in 
cochlear implants: An evaluation in unilateral cochlear implant patients with unilateral deafness and 
tinnitus”, Hear Res , 2008 Sep 12.

Zeng F., “Temporal pitch in electric hearing”, Hear Res , 174, 2002, p. 101-106. 
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SUBJECT 
The subject for this investigation met criteria for CI and underwent cochlear implantation 
using a MED-EL custom long electrode and a soft-surgery hearing preservation, round 
window technique. An insertion depth of 28 mm was achieved as seen with post-
operative imaging and indicating an insertion angle of 7000. Audiometric thresholds,  pre 
and post implantation are seen in Figure 1. 

RESULTS
Decreases in the electrical stimulation rate resulted in decreases in pitch perception 
for each of the electrodes. For this subject, electrode pitch/rate saturation appears to 
occur at around 200 pps for electrodes 5 & 6. For the remaining electrodes, pitch/rate 
saturation appears at or above 300 pps as can be seen in Figure 3.
  
The decreases in pitch with decreasing rate are similar to those found by Baumann 
(2004) and Zeng (2002) however when provided with an acoustic match in the same ear, 
the amount of change in terms of cochlear position was much smaller than anticipated. 
Figure 4 shows the changes in pitch perception with changes in rate plotted against a 
log scale mimicking the cochlea. The results show that there is fairly close agreement 
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Electric to Acoustic Pitch Comparisons in the Same Ear: A patient with CI deep insertion and preserved residual hearing across multiple frequencies.

METHODS
Pure tone signals were generated in 100 Hz increments for the frequency range of 100-
8200 Hz. Each tone had an onset and o�set ramp of ~ 5 ms with a stimulus duration 
of 500 ms.  Electrical pulse trains of 500 ms at a 60% loudness of the dynamic range 
and using stimulation rates of 100, 200, 300 and 1100 pps were loudness balanced to 
the pure tone(s) that best approximated the pitch elicited by the electrical signal. A 
sequential analysis pitch ranking procedure ( Fig 2.) was then completed. Multiple pairs 

was reached on a particular pair, the acoustic signal was then adjusted in frequency in 
order to bracket the pitch percept of the electrical signal. This procedure was completed 
for each data point until a statistical match was found or the pitch was bracketed within 
a 100 Hz range.

The patient is presented with two signals in 
a randomized order and asked to indicate 
which has the higher pitch. This continues until 

Figure 2 illustrates the three possible outcomes. 
Each starts in the lower left-hand corner with 
a response noted as either to the right (green 
signal was higher) or upward (red signal was 
higher). For signals that are indistinguishable the 
responses would reach a trajectory falling into 
the yellow area. (Bross, 1952).

Figure 2

250 Hz 500 Hz 1000 Hz 2000 Hz 3000 Hz 4000 Hz 8000 Hz
Pre-op 75 90 90 80 75 60 45
Post-op 75 90 90 75 70 65 70

Figure 1

between electrode position in the cochlea and place relating to Greenwood’s map 
at stimulation rates above pitch/rate saturation. In addition,  changes in pitch percepts 
due to decreases in stimulation rate 
are much more robust in the apical 
region of the cochlea.
 
Interestingly this patient subjectively 
reported that as stimulation rate 
was decreased on electrodes 
basal to E4, the sound acquired an 
increasing “buzzing  sound ” quality as 
opposed to the apical electrodes that 
remained tone like with decreases in 
rate. Preliminary testing on some of 
the apical electrodes revealed that 
the subject could not di�erentiate 
electric from acoustic stimulation 
independent  of stimulation rate.

Figure 4

Figure 3
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METHODS:

RESULTS:

DISCUSSION:

CONCLUSION:

One of the prominent issues in cochlear implantation is determining the wide 
variability in performance amongst users. Candidates with similar history and 
implanted with the same device can demonstrate outcomes on both ends of the 
spectrum.1 One may perform very poorly, while the other can understand open-set 
speech. Advances in surgical technique and electrode design allow for atraumatic 
insertions; however, the outcomes continue to vary significantly from one user to 
another. Despite age, longevity of deafness, surgical technique and device 
characteristics, more potential factors such as neuronal survival, electrode position 
and central processing abilities may contribute to the variance in speech perception.1 
Objective measures are becoming more widely studied to further understand the 
neural pathways of the auditory nerve and central nervous system.2 Animal studies 
show significant correlations between the slope, amplitude and thresholds of the 
eCAP and spiral ganglion survival.2,3 This is yet to be correlated in humans;2,3 however, 
properties of the eCAP may have a direct relation to the surrounding neurons in the 
periphery to help determine the remarkable differences in speech perception scores. 
In this study, the electric compound action potential (eCAP) was recorded, analyzed 
and compared to speech perception using the consonant-nucleus-consonant (CNC) 
monosyllabic test. We hypothesize that the steeper the slope, the better the CNC 
score.

Twenty-five adults implanted at the University of Kansas Medical Center with either 
the Med-El SonataTI 100 or the Concert multi-channel electrode were included. Each 
recipient underwent the “soft surgical” technique with insertion through the round 
window and has at least six months experience with the device. Auditory response 
telemetry (ART) was recorded on multiple electrodes via the Maestro software from 
Med-El, Inc. The minimum amplitude was 300 cu and the maximum was 1200 cu. 
Twenty-five iterations were recorded with a pulse phase duration of 30 
microseconds. To reduce non-stimulus related artifact, the zero amplitude template4 
was applied to each electrode. The amplitude for each stimulus is shown individually 
and the corresponding amplitude growth function is plotted (Figure 1). The 
electrodes were grouped into four groups outlining different areas of the cochlea. 
Group 1 consisted of basal electrodes (10-12); group 2 included mid to basal 
electrodes (7-9); group 3 lower mid region (5-7) and group 4 was the apical 
electrodes (1-4). Recorded CNC lists were administered at 60 dB SPL with the 
patient seated at 1 meter from a loudspeaker at 0 degrees azimuth. Scores were 
recorded in percent correct. Pearson’s correlations were used to assess the eCAP 
slope and CNC scores (p<0.05).  

In the most basal and apical group, no correlations existed between the slope of the 
eCAP and CNC score (r = .068, p > 0.05; r = .18; p > 0.05) as seen in Figure 2 and 5. 
However, there was a significant correlation between the two mid-region groups 
(group 2: r = .62, p < 0.05; group 3: r = .52; p < 0.05). Results are shown in Figures 3 
and 4.

Uncertainty remains if the nerve count is directly correlated to speech perception, 
and if so, would most likely not relate linearly.2 In fact, postmortem examination of 
cochlear implant users found that cochlea with the least amount of spiral ganglion 
performed the best on the NU-6.5 Speech perception includes additional cognitive 
variables that bypass the auditory periphery. However, results from this study suggest 
that eCAP slope can correlate to speech perception outcomes based on its position 
in the cochlea. This is in agreement with findings from Kim et. al, 2010 in which they 
found a significant correlation between eCAP slope and CNCs with the Cochlear 
Nucleus Hybrid implant. This was compared to the standard Nucleus CI24M and 
CI24RE. No correlation was noted between the CI24M, and a weak correlation was 
noted with the CI24RE. The stronger correlation with the hybrid implant along with 
the results found from the current study indicate that the more intact auditory nerve 
and surrounding structures of the cochlea result in better speech perception. 
Although, the slope of the eCAP may not directly correlate to surviving neurons, 
perhaps it encompasses further information about the health of the nerve that may 
assist with predicting speech outcomes. Additional studies of the eCAP could possibly 
aid in calculating surviving spiral ganglion as seen in other animal studies.6 
Furthermore, speech outcomes are measured across the entire electrode array, not 
just a portion of the cochlea, which can lead to further variations in scores. Objective 
measures recorded beyond the auditory nerve may give further insight into the 
effects of electrical stimulation on the central auditory pathways and changes 
overtime. This could be compared amongst hearing preservation patients and 
traditional users. Those with more hearing preservation most likely produce more 
neurotrophins, which in turn, would lead to increased spiral ganglion survival. 
Increasing our understanding of the factors that improve speech perception can lead 
to better rehabilitation strategies or possibly intervention to improve spiral ganglion 
health.

The eCAP amplitude growth function correlates with speech perception outcomes 
dependent upon position in the cochlea. Further research in this area is needed to 
understand electric stimuli on the auditory nerve and central nervous system with 
hopes to shape more individualized rehabilitation strategies. 
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Abstract:  Hearing preservation cochlear implantation has become commonplace 

and give patients who are poor hearing aid candidates but have significant residual 

hearing an opportunity to take part in the hearing world.  Hearing preservation 

cochlear implantation has been extended into pediatric populations yet little 

attention has been paid to geriatric implantation.  In this presentation we review 

some of the factors that may affect outcomes in the elderly.  In particular we focus 

on the potential role of mitochondria in hearing loss and discuss whether the elderly 

have similar hearing preservation outcomes as the general population. 

 

Introduction:  The recognition that preservation of residual low frequency hearing 

improved cochlear implant (CI) function has been widely described.  Amongst 

potential patient populations, the elderly represent a population where down-

sloping hearing losses with poor speech discrimination are common, and hence are 

a potential population from which potential hearing preservation CI patients may be 

recruited from.  A key question is if the elderly have the same outcomes in terms of 

hearing preservation and outcomes as younger patients.  To examine this we looked 

at change in hearing after implantation as a function of age and then examined the 

correlation between age and change in pure tone average and looked at cochlear 
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implant outcomes as a function of age for hearing preservation patients.  We discuss 

some of the potential causes of observed differences between patient populations.    

Methods:  Subjects and Outcomes Measures: Informed consent was obtained prior 

to testing, and the protocol was approved by the University of Kansas Medical 

Center human subjects board.  A total of eighteen patients with residual hearing 

between 125 and 500 (5 males and 13 females) were implanted between 2009 and 

2011.  Ages ranged from 26-84 with a mean age 63.17. All candidates fell within 

Food and Drug Administration (FDA) or Medicare guidelines for implantation.   

Prior to implantation, all patients underwent blood testing to screen for 

autoimmune inner ear disease and had an MRI scan to rule out the presence of 

retrocochlear disease. Surgical Approach: The extended round window approach 

was used in all cases.  After performance of a mastoidectomy and facial recess 

(posterior tympanotomy) approach to the middle ear, all bone dust was irrigated 

out of the wound.  Hemostasis was obtained and 0.5 cc of decadron 10 mg/ml was 

applied to the round window niche.  The bony overhang of the round window niche 

was then carefully removed with a 1 mm diamond burr and the round window 

clearly visualized by testing the round window reflex.  The wound was once again 

irrigated and Healon™ was used to cover the round window (RW).  The RW was 

then opened with a small pick and the implant electrode is carefully inserted.   All 

patients were implanted with MedEl medium (M) electrode arrays.   Pure tone 

thresholds were obtained before surgery and 2 weeks post-operatively using insert 

earphones.    
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Results:  As seen in Fig 1 there was a linear relationship between age at 

implantation and change in hearing in the low frequencies (r2=0.52; p<0.05).   When 

arbitrarily divided at age 65,  the average change in hearing for the younger patient 

group (Average age= 46.5) is 13.42 dB and the older patient (average age=74.5) 

group is 19 dB (p=0.12).  As seen in the box plot of this data (Fig 2),  the range of 

data distribution is broader for the older age group, resulting in a large standard 

deviation.   

Discussion: The development of reliable approaches for hearing preservation 

cochlear implantation has led to a rapid expansion of cochlear implantation to novel 

patient populations(Skarzynski et al., 2010).    The audiologic configuration that 

makes patient candidates for hearing preservation implantation is common in the 

elderly (Hoffman et al., 2012).   A recent review of cochlear implantation in the 

elderly suggests that earlier implantation, when patients have less hearing loss may 

result in better hearing outcomes(Lin et al., 2012).   Successful expansion of hearing 

preservation implantation into this population thus represents an important goal.  

Overall our data suggest that hearing preservation is feasible in the elderly and that 

on average hearing preservation outcomes are similar to younger patients (Fig 2).  

However, when examining the data more closely, the range of hearing loss after 

implantation is higher in older patients and regression analysis does suggest that 

with increasing age, the amount of hearing loss after implantation is increased (Fig 

1).   As we have previously reported we did not see any significant difference in 

implant function between our patients based on age (Prentiss et al., 2010),  

therefore despite slightly increased loss of low frequency hearing, hearing 
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preservation implantation is still a valuable intervention.  Accumulation of 

increased patient numbers may allow us to divide patients into 10 year cohorts, 

allowing us better risk stratification based on age.    

The relationship between age and central auditory dysfunction have been well 

documented but little is known about the effects of age on the cochlea’s sensitivity 

to damage.    A potential source of age related sensitivity to damage is the function of 

mitochondria within the inner ear.   Damage to mitochondrial DNA has been 

documented to occur in all regions of the inner ear with increasing age (Seidman et 

al., 2002; Yamasoba et al., 2007; Someya and Prolla, 2010; Crawley and Keithley, 

2011).  The accumulation of mitochondrial DNA damage can lead to sensitivity to 

further stress and subsequent induction of apoptosis(Fariss et al., 2005).  This opens 

the possibility that completely different protective molecules that stabilize 

mitochondria could be applied to improve our hearing outcomes in the elderly.     

Conclusion:  Hearing preservation cochlear implantation is feasible in the elderly 

although slightly higher rates of hearing loss may be observed compared to younger 

patients.   
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Figure 1:  Scatter plot of change in pure tone average versus age.  There is a linear 

relationship between the patients age at time of implantation and degree of hearing 

preservation.   

 

Figure 2:  Box plot of average change in hearing for patients age less than and 

greater than 65.  Younger patients tend to have slightly less change in hearing and 

older patients demonstrated a wider range in change in residual hearing after 

implantation.    This was not statistically significant.   
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