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Abstract

Background: Genome architecture is profoundly influenced by transposable elements (TEs), and natural selection
against their harmful effects is a critical factor limiting their spread. Genome defense by the piRNA silencing
pathway also plays a crucial role in limiting TE proliferation. How these two forces jointly determine TE abundance
is not well understood. To shed light on the nature of factors that predict TE success, we test three distinct
hypotheses in the Drosophila genus. First, we determine whether TE abundance and relaxed genome-wide
purifying selection on protein sequences are positively correlated. This serves to test the hypothesis that variation
in TE abundance in the Drosophila genus can be explained by the strength of natural selection, relative to drift,
acting in parallel against mildly deleterious non-synonymous mutations. Second, we test whether increasing TE
abundance is correlated with an increased rate of amino-acid evolution in genes encoding the piRNA machinery,
as might be predicted by an evolutionary arms race model. Third, we test whether increasing TE abundance is
correlated with greater codon bias in genes of the piRNA machinery. This is predicted if increasing TE abundance
selects for increased efficiency in the machinery of genome defense.

Results: Surprisingly, we find neither of the first two hypotheses to be true. Specifically, we found that genome-
wide levels of purifying selection, measured by the ratio of non-synonymous to synonymous substitution rates (ω),
were greater in species with greater TE abundance. In addition, species with greater TE abundance have greater
levels of purifying selection in the piRNA machinery. In contrast, it appears that increasing TE abundance has
primarily driven adaptation in the piRNA machinery by increasing codon bias.

Conclusions: These results indicate that within the Drosophila genus, a historically reduced strength of selection
relative to drift is unlikely to explain patterns of increased TE success across species. Other factors, such as
ecological exposure, are likely to contribute to variation in TE abundances within species. Furthermore, constraints
on the piRNA machinery may temper the evolutionary arms race that would drive increasing rates of evolution at
the amino acid level. In the face of these constraints, selection may act primarily by improving the translational
efficiency of the machinery of genome defense through efficient codon usage.

Background
In sexual species, genetic parasites such as transposable
elements (TEs) can proliferate to the detriment of the
host [1]. Natural selection is widely considered the domi-
nant force limiting TE proliferation [2-4]. The selective
forces limiting TE abundance are thought to act against
three primary consequences of TE proliferation- gene

mutation by TE insertion, chromosomal rearrangement
caused by ectopic recombination among dispersed
copies, and the energetic burden imposed on the host
arising from the costs of replication, transcription and
translation of TE copies. TE insertion alleles often segre-
gate at low frequencies in populations, consistent with
natural selection limiting their increase. However, studies
in recent years have shown that different modes of RNA
silencing also play an important role in constraining TE
proliferation [5-7]. In particular, within the germline of
animals, the piRNA machinery functions as an immune
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system to protect the genome against TE proliferation
[8-10]. TE copies that have inserted into distinct chromo-
somal regions known as piRNA clusters are recognized as
aberrant and their transcripts are directed to the piRNA
biogenesis machinery. In complex with Argonaute pro-
teins, 26 - 31 nt piRNAs use sequence identity to target
transcripts of dispersed TE copies for degradation. In
turn, this generates secondary piRNAs that feed into the
cycle of piRNA biogenesis and TE silencing.
These two forces - natural selection and genome

defense by small RNAs - directly limit TE proliferation,
but in distinct ways. In particular, natural selection will
primarily act to limit the increase of harmful TE insertion
alleles. Conversely, the piRNA machinery will act by
directly limiting the transposition rate, and thus the rate
of production of new insertion alleles. How these forces
jointly determine the rate of TE proliferation is poorly
understood [11]. In fact, the distinction between natural
selection and genome defense as separable forces may be
artificial, since the genome defense machinery is itself the
product of natural selection.
To what degree does the strength of natural selection

explain variation in TE abundance across species? Popula-
tion genetic theory predicts that the strength of selection
relative to genetic drift will be greater in larger populations
[12]. Thus, as indicated by Ohta, mildly deleterious substi-
tutions will fix at a greater rate in smaller populations.
This prediction has been confirmed in a variety of systems
where purifying selection was estimated using the rate
ratio of non-synonymous to synonymous substitution (ω).
Consistent with natural selection acting more strongly
against deleterious non-synonymous substitutions, larger
populations tend to have smaller ω values. For example, in
mammals there is a strong negative correlation between
population size and ω [13]. A large study comparing
branch-specific ω between closely related mainland and
island species found that ω estimates were higher for
island species, likely due to their smaller population size
[14]. This was observed in both vertebrates and inverte-
brates. If variation in TE abundance across species is also
influenced by the strength of selection relative to drift, TE
abundance and genome-wide ω values for protein-coding
genes should be positively correlated. This is because dif-
ferences in population size will modulate the efficacy of
selection against both types of mutation.
This hypothesis, however, relies on several assumptions.

First, it assumes that variation in ω is more strongly
explained by the influence of mildly deleterious substitu-
tions rather than adaptive substitutions. If beneficial muta-
tions are common and much more likely to fix in larger
populations, the negative relationship between ω and
population size will be ameliorated. Studies in Drosophila,
however, have indicated that population size has little
effect on the rate of adaptive fixation [15,16]. Second, it

assumes that the rates of both forms of mutation are inde-
pendent of population size. Among related species, this is
likely for mutations at the nucleotide level, but may be vio-
lated for TE insertions if exposure to TE invasion is
greater in larger populations. Finally, it assumes that the
distribution of fitness effects is similar between TE inser-
tions and non-synonymous mutations and doesn’t con-
sider the non-linear scaling of the probability of fixation of
mildly deleterious alleles with effective population size
[17]. When the product of the effective population size
and deleterious selection coefficient (Nes) is substantially
greater than one, the chance that such a deleterious allele
fixes becomes vanishingly small. Only nearly neutral dele-
terious mutations for which Nes is less than one are
expected to fix. Thus, the degree to which variation in
population size governs the accumulation of deleterious
alleles, such as TE insertions, itself depends on population
size. In organisms with very large population sizes drift
becomes extremely weak, and modest variation in popula-
tion size among related species may only impact the rate
of accumulation of very mildly deleterious alleles with
selection coefficients very close to zero [18]. In this case,
the distribution of fitness effects of mildly deleterious
mutations will be an important factor in determining the
relationship between population size and ω. Setting aside
the effects of beneficial mutations, a negative correlation
will be observed across all population sizes only if there
are a sufficient number of nearly neutral mutations at all
population sizes. If the distribution of fitness effects for
deleterious mutations does not display this characteristic,
modest increases in population size in very large popula-
tions may not always lead to decreased ω. For similar rea-
sons, one might not expect a simple relationship between
TE accumulation and population size when population
sizes are large.
This latter point is highlighted by studies of TE

dynamics yielding contrasting results for different spe-
cies. In Drosophila melanogaster, studies have suggested
that the deterministic forces of selection against TEs
may greatly outweigh genetic drift as a factor [19,20].
D. melanogaster also has a large effective population
size. Thus, modest variation in population size among
species across the genus Drosophila may not be an
important factor contributing to variation in TE abun-
dance. In contrast, studies in vertebrates with much
smaller effective population sizes have shown that
genetic drift can be an important factor contributing to
TE accumulation [21]. For example, the frequency dis-
tribution of TE insertion alleles in the pufferfish is con-
sistent with neutrality [22]. This indicates that variation
in effective population size at these low population sizes
may have a greater impact on the fate of mildly deleter-
ious TE insertions, relative to species with larger popu-
lation sizes such as Drosophila. It also indicates that in

Castillo et al. BMC Evolutionary Biology 2011, 11:258
http://www.biomedcentral.com/1471-2148/11/258

Page 2 of 16



species with larger population sizes, there may only be a
weak correlation between the rate of non-synonymous
substitution and TE abundance. This may explain why,
in one study, after correcting for phylogenetic signal, no
apparent relationship between genomic TE number and
population size was found [23]. Considering these issues,
we aimed to test the simple hypothesis that TE abun-
dance is positively correlated with genome-wide ω
across the Drosophila genus. Rejection of this hypothesis
would support alternative models and provide further
testable hypotheses in the study of TE dynamics in large
populations.
An added level of complexity is the evolutionary

dynamic between TEs and the piRNA machinery. In sev-
eral species of Drosophila, many, but not all, components
of the piRNA machinery show a high rate of adaptive
evolution [24-26]. This has been proposed to arise from
an evolutionary arms race between the host and TEs.
Evolutionary arms races between hosts and parasites
drive cycles of adaptation and counter-adaptation, lead-
ing to increased rates of adaptive evolution in host
immune systems. In the case of TEs, there is likely strong
selection to avoid silencing by the piRNA machinery.
This may select for functions analogous to those
observed in viruses, which have mechanisms that directly
antagonize the machinery of RNA silencing [27,28]. Reci-
procally, natural selection acting on the host likely selects
for changes that counteract these strategies, driving a
high rate of adaptive evolution in the proteins of the
piRNA machinery. But importantly, the classic evolution-
ary arms race is not sufficient to explain all evolutionary
dynamics between host and parasite [29-31]. For exam-
ple, trench warfare may occur when a diversity of para-
sites selects for the maintenance of multiple defense
strategies, thus favoring a mode of balancing selection
[32]. While an evolutionary arms race with TEs is sug-
gested by the high rate of evolution in the piRNA
machinery in some Drosophila species, it is not clear that
increasing TE abundance could drive ever-increasing
levels of amino-acid evolution. Constraint on core func-
tion will eventually pose some limit to rates of amino-
acid evolution. Additionally, with increasing TE abun-
dance, the balance of forces may begin to favor purifying
selection over adaptation. To explore these issues, we test
the simple hypothesis that in the Drosophila genus,
increasing TE abundance drives a higher rate of amino-
acid substitution in the piRNA machinery as measured
by ω.
In this study, we found that genome-wide levels of puri-

fying selection are greater (smaller ω) in Drosophila spe-
cies with higher TE abundance, inconsistent with a model
in which increasing TE abundance and ω are jointly
explained by weaker selection relative to drift. Compared
to control genes, we also find that this observation is more

evident in the piRNA machinery. Strikingly, we find that
TE abundance and levels of codon bias are positively cor-
related in the piRNA machinery but not in control genes
or in the rest of the genome. Rather than an increasing
rate of amino-acid evolution, the primary response of the
piRNA machinery to increasing TE abundance appears to
be through improved codon usage for increased transla-
tional efficiency.

Results
Genome-wide levels of purifying selection and TE
abundance are positively correlated
Using the twelve sequenced Drosophila genomes
(Figure 1a), we determined the relationship between
TE abundance and previous estimates of genome-wide
average ω on terminal branches [33]. TE abundance
was quantified using the total amount of assembled
euchromatin comprised of repeats as determined from
the 12 Drosophila genomes consortium [34]. This measure
captures each of the components of selection considered
important against TEs - gene mutation, ectopic recombi-
nation and metabolic cost. This measure does ignore the
influence of heterochromatic TEs and some species with
low euchromatic content may in fact have many TEs
within the large domains of pericentric heterochromatin.
The converse may also be true. However, it is clear that
the gene rich and highly recombining environment of the
euchromatin makes insertions in this portion of the gen-
ome substantially more harmful. Thus, euchromatic TE
content is likely to serve as the best metric for the selective
burden of TE content on a species. It is also correlated
with the genomic number of TE families (Figure 1b).
Using computationally predicted PILER-DF libraries [35]
as a measure of TE family number, we find that the num-
ber of different TE families within each species’ genome
is a good predictor of total TE abundance (Figure 1b,
p = 0.001).
We found a significant negative correlation between

genomic TE abundance and tip ω estimates (Figure 2a,
p = 0.025). When assessing correlations among species, it
is essential to account for phylogenetic non-independence
[36,37]. This was achieved using the implementation of
Continuous in the BayesTraits package which models evo-
lution of continuous traits on a phylogeny using a general-
ized least-squares approach under Brownian motion
model of evolution. First, we tested whether phylogenetic
correction was needed by testing whether the l scaling
parameter significantly deviated from 0 (hereafter desig-
nated the l test). A l parameter equal to zero indicates
trait evolution can be effectively modeled as if it were on a
star phylogeny. In this case, a phylogenetic correction was
not mandated using a likelihood ratio test (l test, p =
0.99). Nonetheless, we tested whether the correlation was
significant with phylogenetic non-independence taken into
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account. This was performed by testing whether the covar-
iance between the two traits was significantly greater than
zero, assuming no scaling transformation of the phylogeny
(hereafter designated the BayesTraits test). Nonetheless,
after accounting for phylogenetic non-independence, the
negative correlation between genomic TE abundance and
genomic ω estimates remained significant using a likeli-
hood ratio test (BayesTraits test, p = 0.0078). To account
for potential problems with estimating ω over long term-
inal branches, we also evaluated the relationship between
TE abundance and ω estimates only across the D. melano-
gaster subgroup. Considering only D. simulans, D. melano-
gaster, D. yakuba and D. erecta, there is still a negative
relationship between TE abundance and genome-wide ω
(rpearson = -0.60, b = -0.0022), albeit non-significant with
only four data points. Overall, these results indicate that
genomes more encumbered by TEs have had a historically
greater magnitude of purifying selection acting on protein
coding sequences. This is difficult to reconcile with a
model in which TE abundance is largely determined by

the degree to which mildly deleterious alleles are removed
by natural selection within populations.

Increased purifying selection on the piRNA machinery in
species with high TE abundance
Considering the background genome-wide correlation
between TE abundance and levels of purifying selection
on coding sequences, we next determined how the rate
of amino-acid evolution of the piRNA machinery was
shaped by TE abundance (Figure 2b and 2c). The rate of
molecular evolution for eleven known components of the
piRNA machinery and eleven control genes was deter-
mined by estimating ω [38] on the evolutionary paths
leading to all twelve Drosophila species with sequenced
genomes. Path estimates of ω were obtained, rather than
terminal branch estimates, since terminal branch lengths
vary widely between species. Since piRNA genes are
known to evolve quickly, a set of control genes was
selected, matched for a similar rate of evolution as the
piRNA genes. If increasing TE abundance drives a faster
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arms race, we might expect elevated ω on the piRNA
machinery along lineages with greater TE abundance.
However, this was not the case. Without phylogenetic
correction, control genes (p = 0.022) and piRNA genes
(p = 0.0005) both show a negative relationship between
TE abundance and average ω, consistent with the
observed genome-wide negative correlation between TE
abundance and ω. However, both the rpearson and b values
were more negative for the piRNA genes compared to
control genes. Furthermore, for control genes, the l test
indicated that phylogenetic correction was needed (l
test, p = 0.024) and this correlation was not significant
after the correction was made (BayesTraits, p = 0.243). In
contrast, even though the l test indicated no phyloge-
netic correction was needed for the piRNA genes (l test,
p = 0.439), the result was still significant after phylogeny
was taken into account (BayesTraits, p = 0.029)
We then sought to determine if this effect was more evi-

dent in the piRNA machinery due to artifacts of estimating
ω on long branches. We did this by testing whether this
trend was also observed in the more closely related
D. melanogaster group (D. melanogaster, D. simulans,
D. sechellia, D. yakuba and D. erecta). Focusing only on
this set of species, path ω was re-estimated over these
shorter divergence times (Figure 1a). With only five spe-
cies, there is limited power in a single correlation using
average values, so we examined the distribution of correla-
tion coefficients between TE abundance and ω in piRNA
genes relative to the control gene set (Figures 3, 4 and 5).
This served to test whether TE abundance better
explained variation in ω for the piRNA genes, compared
to control genes, across different levels of divergence. The
distribution of correlation coefficients is significantly more
negative for piRNA genes than control genes. This is the
case in the five species within the D. melanogaster group
(Bootstrap test for difference in mean, p < 0.001) and also
all twelve species (Bootstrap test for difference in mean,
p < 0.006). In addition, to compare effect size, we also

tested whether the distribution of b regression coefficients
(measures of slope) were different between piRNA genes
and control genes. b values were more negative for both
the D. melanogaster and 12 species comparison. In the
case of the D. melanogaster comparison, this was signifi-
cant (Mean b: Control genes, 0.007, piRNA genes, -0.016,
p = 0.016, t-test). In the case of the 12 species comparison,
b was 30% steeper for the piRNA machinery, but this
wasn’t significant (Mean b: Control genes, -0.0019, piRNA
genes, -0.0025, p = 0.464, t-test). Thus, we can conclude
that in comparison to the control genes, TE abundance
better explains variation in ω in the piRNA machinery
across different levels of divergence. Moreover, the
strength of the effect of TE abundance on ω is especially
strong when shorter time scales of divergence are
examined.
The above analysis does not account for phylogenetic

non-independence. Given the excess of negative correla-
tion coefficients for piRNA genes compared to control
genes, we next sought to determine whether this excess
would be maintained after accounting for phylogenetic
non-independence. With the small sample size of five spe-
cies in the melanogaster group, phylogenetic correction is
precluded due to low power [39] and we instead focused
solely on all twelve species. After controlling for phyloge-
netic non-independence where mandated, six of the eleven
piRNA genes (Table 1), but none of the control genes
(Table 2), show a significant relationship between ω and
TE abundance, and this enrichment is significant (Fisher’s
exact test, 2-tail, p = 0.012). Thus, even after accounting
for phylogeny, the effect of TE abundance on ω is more
evident in the piRNA machinery than for other quickly
evolving genes.

Observed correlation between TE abundance and
purifying selection in the piRNA machinery is
independent of effects of dS
Variation in ω can be explained by a variety of factors not
directly related to the forces of divergence on protein-
coding function. For example, lower values of ω in the
piRNA machinery of species with greater TE abundance
could be explained by an increased rate of silent substitu-
tion rather than a decreased rate of amino-acid substitu-
tions. To test this, we determined whether either dN or
dS were separately correlated with TE abundance after
accounting for phylogenetic non-independence. Consid-
ering dN alone, seven piRNA genes show a significant
relationship with TE abundance (Table 3). In contrast,
only two piRNA genes show a significant relationship
between dS and TE abundance (Table 4). Of eleven
piRNA genes, only krimper shows a significant relation-
ship between TE abundance and dS, but not dN. Exclud-
ing krimper, there is still a significant enrichment in the
piRNA genes for a negative relationship between TE
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abundance and ω (Fisher’s exact test, 2 tail, p = 0.035).
Thus, we can conclude that variation in dS is not suffi-
cient to explain the excess of significant negative correla-
tions between TE abundance and ω in genes of the
piRNA machinery.

Observed correlation between TE abundance and
purifying selection in the piRNA machinery is
independent of other confounding factors
Several other factors may explain these results. For one,
since we are using raw estimates of ω for correlations, if
piRNA genes tend to be longer, there will be less error in

their estimated values and thus more power to reveal
underlying genome-wide effects. Likewise, interpretation
of ω estimates can be confounded by GC content [40,41].
To tease these factors apart, we performed a multiple lin-
ear regression to determine which variables were contri-
buting to the TE-by-ω interaction seen in the piRNA
machinery but not in the control genes. Phylogenetic
non-independence was accounted for by analyzing inde-
pendent contrast values within a multiple linear regres-
sion framework that specified contrast ω as a function of
contrast TE content, GC content at third positions (GC3)
and protein length. In addition, classification as being
either a piRNA gene or a control gene served as a catego-
rical variable designated ‘gene set’ (Table 5). Consistent
with the observed genome-wide negative correlation

Table 1 Summary of tests of significance for regression
of piRNA gene ω on TE abundance, accounting for
phylogenetic non-independence

Gene LR (for l) p-value BT
p-value

R2 p-value

ago3 1.198 0.2737 NA 0.2221 0.1229

armitage 11.417 7.2759E-4 0.0623 NA NA

aubergine 2.293 0.1299 NA 0.3521 0.0419

cutoff 0 1 NA 0.5046 0.0096

krimper 0 1 NA 0.6579 0.0014

maelstrom 9.952 1.6074E-3 0.2556 NA NA

piwi 15.921 6.6049E-5 0.5259 NA NA

spn-E 11.119 8.5444E-4 0.0142 NA NA

squash 3.649 0.0561 NA 0.4684 0.0141

vasa 4.174 0.0410 0.0165 NA NA

zucchini 11.88 0.0006 0.0704 NA NA

Column two: Likelihood ratio value for testing whether phylogenetic signal
must be accounted for (l ≠ 0). Column three: p-value for testing l = 0.
Column four: p-value for testing non-independence using BayesTraits. Column
five: where phylogenetic corrections were not necessary, the R2 for the raw
correlation. Column six: p-value for significance of raw regression. Significant
p-values are in bold. Genes with a significant effect are italicized.

Table 2 Summary of tests of significance for regression
of control gene ω on TE abundance, accounting for
phylogenetic non-independence

Gene LR (for l) p-value BT
p-value

R2 p-value

CG8222 7.7327 0.0209 0.3091 NA NA

CG7876 1.8889 0.3889 NA 0.2299 0.1147

CG2595 17.1938 0.0002 0.4445 NA NA

CG31605 5.2575 0.07216 NA 0.1121 0.2874

CG31287 6.3365 0.0421 0.5858 NA NA

CG33934 15.5277 0.0004 0.5685 NA NA

CG6898 15.8096 0.0004 0.9784 NA NA

CG15013 19.0398 7.337E-05 0.9916 NA NA

CG4815 0.1274 0.7212 NA 0.3078 0.06118

CG11405 2.8365 0.0921 NA 0.00224 0.8839

CG4259 0 1 NA 0.07935 0.3751

No genes show a significant effect.

Table 3 Summary of test of significance for regression of
piRNA gene dN on TE abundance, accounting for
phylogenetic non-independence

Gene LR (for l) p-value BT
p-value

R2 p-value

ago3 4.84815 0.0276 0.1241 NA NA

armitage 13.7356 0.0002 0.0068 NA NA

aubergine 5.38383 0.0203 0.0045 NA NA

cutoff 5.41623 0.0200 0.0172 NA NA

krimper 0.78252 0.3763 NA 0.00327 0.8397

maelstrom 9.56345 0.0020 0.0491 NA NA

piwi 6.51916 0.0107 0.0182 NA NA

spn-E 13.2482 0.0003 0.0190 NA NA

squash 16.3476 5.272E-05 0.0742 NA NA

vasa 10.3213 0.0013 0.0031 NA NA

zucchini 1.51457 0.2184 NA 0.0001 .5134

Genes with a significant effect are italicized.

Table 4 Summary of test of significance for regression of
piRNA gene dS on TE abundance, accounting for
phylogenetic non-independence

Gene LR (for l) p-value BT
p-value

R2 p-value

ago3 8.8538 0.0029 0.1477 NA NA

armitage 6.6971 0.0096 0.961 NA NA

aubergine 10.7708 0.001 0.0369 NA NA

cutoff 5.8223 0.0158 0.5921 NA NA

krimper 8.9521 0.0027 7.83E-06 NA NA

maelstrom 6.0984 0.0135 0.4427 NA NA

piwi 7.0476 0.0079 0.0863 NA NA

spn-E 10.9271 0.0009 0.3563 NA NA

squash 4.059 0.0439 0.5131 NA NA

vasa 10.3282 0.0013 0.901 NA NA

zucchini 5.5428 0.01859 0.3007 NA NA

Genes with a significant effect are italicized.
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between TE abundance and ω, there was a strong effect
of TE content on contrast ω values (p < 0.001). Further-
more, a significant effect of ‘gene set’ was also found (p =
0.037). Crucially, from this analysis, there was no signifi-
cant effect of GC3 (p = 0.377) or gene length (p = 0.99)
on contrast ω values.
After accounting for these sources of variation, a test for

an effect of TE abundance that is specific to the piRNA
machinery can be performed by determining if there is a
significant interaction between TE abundance and ‘gene
set’. We detected a significant TE-by-’gene set’ interaction
at the 0.1 level (p = 0.085). Since our previous analysis
suggested that correcting for phylogeny was not always
warranted, this conservative framework on contrast values
leads us to conclude that evolution of piRNA machinery
appears especially slowed under increasing TE abundance.
While not significant at the 0.05 level, we can minimally
reject that increasing TE abundance leads to a higher rate
of evolution in the piRNA machinery.

Codon bias: Selection for translational efficiency in the
machinery of genome defense
While we find no evidence of increasing rates of amino-
acid evolution in the piRNA machinery under increasing
TE abundance, we sought to determine whether there
was any influence of TE abundance on levels of codon
bias. This would be expected if increasing TE abundance

demanded higher levels of protein expression for piRNA
genes. First, to account for background genomic effects
on codon bias, we tested whether there was a genome-
wide correlation between TE abundance and codon bias
as measured by the effective number of codons (ENC)
(Figure 6). Across the genome, there appears to be a
mild negative correlation between TE abundance and
codon bias, as seen by higher ENC in species with
higher TE abundance (Figure 6a, p = 0.20; l test, p =
0.0001; BayesTraits, p = 0.596). Importantly, this is lar-
gely explained by the effect of D. willistoni, which is
known to have a relaxed codon bias [42]. Excluding
D. willistoni, there is only a mimimal influence of TE
abundance on codon bias across the genome (rpearson =
0.14, b = 0.01). Examining only the quickly evolving
control genes, the same pattern is observed (Figure 6b,
p = 0.364; l test, p = 0.007; BayesTraits, p = 0.556).
Thus average ENC is minimally influenced by TE abun-
dance, with or without D. willistoni.
Strikingly, the opposite trend is seen in components of

the piRNA machinery. There is a strong negative correla-
tion between average ENC and TE abundance, indicating
that codon bias is increased in the piRNA machinery in
species with increased TE abundance (Figure 6c, p =
0.005; l test, p = 0.026; BayesTraits, p = 0.026). This
effect is also maintained within D. willistoni, which has
high TE abundance but a genome-wide level of relaxed

Table 5 Multiple regression results for contrast values of
ω transformed by the Box-Cox method

Effect DF DF F Value Pr > F

TE 1 216 24.47 < 0.0001

Gene Set 2 20 3.91 0.0367

TE X Gene Set 1 216 2.99 0.0852

GC3 1 216 0.78 0.3766

Length 1 216 0.00 0.9898

Using contrast values controls for phylogenetic non-independence.
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Figure 6 Effective number of codons (ENC) vs. genomic TE abundance for A) genome average obtained from Vicario, Moriyama and
Powell [54](p = 0.20), B) control genes (p = 0.364) and C) piRNA genes (p = 0.005). rp: Pearson’s correlation coefficient. b: regression
coefficient (slope).

Table 6 Multiple regression results for contrast values of
ENC transformed by the Box-Cox method

Effect DF DF F Value Pr > F

TE 1 216 0.45 0.5048

Gene Set 2 20 1.43 0.2623

TE X Gene Set 1 216 4.52 0.0346

Length 1 216 0.00 0.9550

ω 1 216 0.24 0.6222

Using contrast values controls for phylogenetic non-independence.
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codon bias. To account for the effects of phylogeny and
other confounding factors, we performed a separate mul-
tiple linear regression on the transformed contrast ENC
values with TE abundance and gene length as predictive
variables and ‘gene set’ as a categorical variable (Table 6).
We find no significant effect of TE abundance (p =
0.505), ‘gene set’ (p = 0.262) or length (p = .955) alone on
contrast ENC values. However, there is a significant
interaction between TE and ‘gene set’ (p = 0.0346), con-
sistent with findings that TE abundance is correlated
with higher codon bias specifically in the piRNA machin-
ery. We can thus conclude that this observation is not
confounded by phylogeny. Finally, it was important to
determine whether codon bias and ω covaried. This
might be the case if increasing codon bias was correlated
with reduced ω. We considered this unlikely because the
negative correlation of TE abundance and ω in the
piRNA machinery was explained by dN but neither GC3
nor dS. As expected, ω was not a significant predictor of
contrast ENC in the multiple linear regression analysis
(p = 0.622). We can thus conclude that increasing codon
bias and purifying selection are separately correlated with
TE abundance in the piRNA machinery.

Discussion
Why are the genomes of some species minimally impacted
by TEs but the genomes of other species greatly encum-
bered? Decades of work in the population biology of TEs
have indicated that natural selection plays an important
role in limiting their spread. However, it is not clear how
variation in the strength of selection relative to genetic
drift contributes to variation among species. In organisms
with very large population sizes, drift is weak and modest
variation in population size may play little role in deter-
mining variation in TE abundance. Conversely, drift is
strong in species with small population sizes and modest
variation in population size may be an important determi-
nant of variation in TE abundance. A second important
determinant of TE abundance is the machinery of piRNA-
mediated genome defense. The contribution of genome
defense, relative to natural selection, in constraining TE
proliferation in populations is not known. Moreover, the
co-evolutionary dynamics between TEs and host mechan-
isms of genome defense are poorly understood.
To shed light on these issues, we have looked at how

patterns of molecular evolution, genome-wide and
within the piRNA machinery, co-vary with TE abun-
dance across the Drosophila genus. Several results were
surprising. In particular, we found that genome-wide
levels of purifying selection on protein-coding genes are
positively correlated with TE abundance. We also found
that the piRNA machinery becomes especially con-
strained with increasing TE content. But in the face of
this constraint, we also find that the genes of the piRNA

machinery show a positive correlation between codon
bias and TE abundance.

Genome-wide purifying selection on protein-coding
genes and TE abundance
From this analysis we conclude that there is a robust cor-
relation between TE abundance and the magnitude of
genome-wide purifying selection on proteins. These
effects are seen across different scales of divergence and
with different methods for estimating ω across species.
Purifying selection appears correlated with population
size across the genus [43] so this is not expected under a
simple model in which TE success and purifying selec-
tion on protein sequences are both solely explained by
the dynamics of mildly deleterious alleles in populations
of varying size. In this respect, it contrasts with the same
study that found a negative relationship between the
same measure of TE content and average levels of
nucleotide polymorphism [43]. One cause of this discre-
pancy may be that polymorphism, as a measure of cur-
rent population size, may influence bulk TE abundance
in different ways than the historical measure ω. A similar
contrast between the effects of current versus historical
population size on measures of adaptation has recently
been observed in D. miranda and D. pseudoobscura [44].
Our results might be explained under a population size

model if a portion of non-synonymous substitutions were
mildly beneficial. In this scenario TE insertions would be
nearly always harmful and their abundance would largely
be explained by reduced efficacy of selection in smaller
populations. Under this model, increasing levels of ω in
species with low TE abundance would not be driven by
reduced efficacy in removing mildly deleterious non-
synonymous mutations. Rather, they would be driven by
an increasing rate of adaptive substitution within those
populations.
While plausible, this scenario is unlikely to explain these

results for three reasons. First, the rate of adaptive substi-
tution does not seem to vary strongly across the genus
[15,16]. Second, we find no significant correlation between
TE abundance and genome-wide codon bias, also consis-
tent with a previous study that found no significant rela-
tionship between genome-wide ENC and genome-wide
polymorphism [43]. This suggests that across the genus
species with low TE abundance have not experienced an
increase in the strength of natural selection favoring mildly
beneficial alleles such as favored codons (But see [45]
regarding shorter time scales of divergence). Third, this
scenario predicts that populations with small sizes would
have higher TE abundance and this is not the case. For
example, D. grimshawi and D. sechellia are both island
endemics with small populations but very low TE abun-
dance. D. grimshawi is endemic to the Hawaiian islands.
D. sechellia is endemic to the Seychelles archipelago and
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has a population size estimated to be at least 10-fold lower
than D. simulans [46]. In contrast, the two species with
the highest TE abundance, D. ananassae and D. willistoni
have broad distributions and large population sizes.
D. ananassae has the greatest TE abundance of all twelve
species and is widely distributed, with a population diver-
sity estimate measured by θw on the order of 0.009 [47].
This is similar to that observed in D. melanogaster
(European population θw : 0.006, African population θw:
0.013) [48], a species with low TE abundance. Likewise, in
D. willistoni θw = 0.012 [49]. Overall, population size does
not appear to be a good predictor of TE abundance within
the Drosophila genus. Rather, TE success is more likely to
be explained by other factors.
One possibility is that increasing population size in

Drosophila instead leads to a greater rate of TE exposure.
If TE proliferation rates are only weakly affected by
population size, but population exposure rates scale with
the population size, we would expect TE abundance to
be partially determined in a manner opposite to the stan-
dard prediction - within the genus, larger populations
with increased purifying selection on protein-coding
sequences should have higher TE abundance since these
populations are a larger target for TE introduction. If TE
exposure rates largely determine the abundance of TEs
within the genome, we would expect that species with
higher TE abundance also have a higher diversity of dif-
ferent TE families, rather than simply having increased
copy number for a similar number of TE families. This is
in fact the case; we found that the number of different
TE families within each species genome is a strong pre-
dictor of total TE abundance. In fact, D. grimshawi has
only nine identified TE families whereas D. ananassae
has 197. This supports the suggestion that reduced levels
of exposure, as might be experienced by island endemics,
has a strong influence on aggregate TE abundance [34].
This is also consistent with the observation that coloniza-
tion of new environments by Drosophila melanogaster
seems to have coincided with proliferation of LTR ele-
ments, perhaps due to increased exposure [50].

Purifying selection on the piRNA machinery
In addition to the genome-wide correlation between con-
straint on protein-coding sequences and TE abundance,
we find that this trend surprisingly also holds for the
piRNA machinery itself. In fact, the effect is more appar-
ent in the piRNA machinery in three principle ways.
First, across two different scales of divergence, the distri-
bution of correlation coefficients is significantly more
negative in piRNA genes compared to control genes. Sec-
ond, piRNA genes are more likely to have a significant
relationship between TE abundance and ω than control
genes after accounting for phylogeny. Finally, there is a
marginally significant TE by ‘gene set’ interaction that

explains variation in contrast values of ω. In several spe-
cies of Drosophila, the piRNA machinery has been shown
to evolve under a high rate of adaptive evolution. Under
an arms race model of co-evolution, one might expect
that an increasing TE abundance would facilitate an even
higher rate of evolution in the piRNA machinery. Instead,
an increasing level of purifying selection in the piRNA
machinery in species with high TE abundance is evident.
There are several possible explanations for this result.

Clearly, the background genome-wide effect of TE abun-
dance on ω contributes. In fact, there may be no direct
causal relationship between TE abundance and patterns
of constraint on the coding sequences of the piRNA
machinery distinct from the background effect. Rather,
ω in genes of the piRNA machinery may simply be
more susceptible to the underlying demographic factors
that also explain the genome-wide correlation.
However, we cannot rule out the influence of a causa-

tive relationship between TE abundance and enhanced
purifying selection in the piRNA machinery. If so, the
nature of co-evolutionary dynamics make it difficult to
determine whether increased TE abundance would be a
cause or consequence of slower evolution of the piRNA
machinery. In particular, higher TE abundance may be
driven by increasing pleiotropic constraint reducing the
rate of adaptation in the piRNA machinery. Species with
a higher rate of evolution in the piRNA machinery may
have fewer TEs precisely because the piRNA machinery
is more capable of adaptation. While the primary func-
tion of the piRNA machinery appears to be the control of
transposable elements, piRNAs have been found that
function in gene regulation by targeting the 3’ UTRs of
endogenous genes [51]. Constraint on the piRNA
machinery may be greater in species where this function
is more critical. This increased constraint may in turn
limit the ability of the piRNA machinery to adapt under
an arms race model, allowing greater TE proliferation.
Pleiotropic costs can act against the fixation of defense
strategies [52,53] and there may be varying degrees of
pleiotropy constraining the piRNA machinery across the
Drosophila genus. This would indicate that pleiotropic
constraint on genome defense could be a factor contri-
buting to variation in TE abundance across species.
Alternatively, TE abundance and diversity may also

contribute to increased conservation of the piRNA
machinery. This might be the case if genomic TE abun-
dance were driven by extrinsic factors such as exposure
to vectors of horizontal TE transmission. Species with
low TE exposure and burden might show a high rate of
evolution in the piRNA machinery due to the combined
effects of adaptive evolution, as previous studies have
shown, and reduced purifying selection. On the other
hand, increased TE exposure would drive a slower rate of
evolution of the piRNA machinery due to the challenge
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of warding off multiple TE families at the same time. In
contrast to species with few TEs, the piRNA machinery
in species with greater TE abundance would have a
reduced rate of evolution if fewer substitutions were
effectively neutral or if the fixation of adaptive alleles that
confer a benefit against one TE family came at the cost of
defense against another family.
Under any of these scenarios, these results do not indi-

cate that evolutionary arms races have been abetted in
species with higher TE abundance. Because this study
focuses on estimates of ω across whole genes, it does not
account for potential variation in ω values along the gene.
Therefore, while we find that the overall rate of evolution
is reduced in the piRNA machinery of species with higher
TE abundance, it is conceivable that a much higher pro-
portion of non-synonymous substitutions are adaptive in
species with high TE abundance. The conclusion of this
study is that at whatever tempo the arms race may be
occurring, increasing TE abundance is not sufficient to
drive a higher rate of overall amino-acid evolution in the
piRNA machinery and may even constrain adaptation of
the piRNA machinery.

Codon bias in piRNA machinery and TE abundance
If an increased rate of amino-acid evolution in the piRNA
machinery is not apparent in species with greater TE abun-
dance, might the piRNA machinery respond in alternative
ways? This study indicates that an important response is
increased levels of codon bias in the piRNA machinery.
This effect is distinct from the effect on ω for several rea-
sons. First, increased codon bias reduces dS and thus would
act in the opposite direction as the observed decrease of ω
with TE abundance. Second, multiple linear regression
shows that ω is not a significant predictor of contrasts in
codon bias. Third, while significant, the strength of the
effect of TE content on ENC in the piRNA machinery is
mild, thus having limited effect on dS. Overall, it appears
most likely that codon bias in the piRNA machinery has a
distinct relationship with TE content. This suggests that
increasing TE abundance has selected for increased expres-
sion of proteins that comprise the piRNA machinery, rather
than substantial changes in the piRNA machinery itself.

Conclusion
We can conclude that a decrease in the historical
strength of natural selection relative to drift appears unli-
kely to explain higher TE abundance across the genus
Drosophila. In addition, we can conclude that increasing
TE abundance does not drive a faster rate of evolution in
the piRNA machinery in the Drosophila genus. If any-
thing, the rate of evolution is slower. Future studies that
employ denser taxon and population sampling will deter-
mine whether this is due to species specific differences in

the proportion of sites undergoing adaptive or purifying
evolution. Strikingly, selection under high TE abundance
seems to act primarily by increasing the translational effi-
ciency of the piRNA machinery through greater levels of
codon bias. Future studies will be needed to determine
whether there is a corresponding increase of protein
levels of the piRNA machinery in response to greater TE
abundance.
While there is clear evidence for a high rate of adaptive

evolution in the piRNA machinery in some species of
Drosophila, evolutionary arms races are not the only out-
come of host-pathogen interactions. An alternative out-
come may be trench warfare which occurs when a
diversity of parasites selects for the maintenance of multi-
ple defense strategies, thus tempering the rate of adaptive
fixation [32]. The key signature of this alternative outcome
is a signature of balancing selection. Future evolutionary
studies of the piRNA machinery under varying TE load
should yield great insight into the co-evolutionary
dynamics that occur between TEs and their hosts.

Methods
Genome Wide Estimates of TE abundance, ω and Codon
Bias
Previous estimates of TE abundance, ω and codon bias
were used for genome wide calculations. Genomic TE
abundance was estimated as the product of the percent
TE/Repeat in the assembled genome and the assembled
genome size as reported by the 12 Genomes Consortium,
ranging from 3% to 24% of euchromatic content in these
species [34]. This provides a measure of bulk DNA
content comprised of TE/repeat sequences in the
assembled sequence, rather than copy number. We chose
this method to capture the measure of TE abundance that
is most likely to influence host fitness. Ectopic recombina-
tion and the metabolic costs of TE replication, transcrip-
tion and translation are important factors that contribute
to selection against TEs and these will scale with bulk TE/
repeat content in assembled euchromatin. Moreover,
while copy number might serve as a better approximate
measure of the fitness affects due to insertional mutation,
since the distribution of TE element classes does not
widely vary among species [34], bulk repeat content serves
as a good proxy of copy number.
Genome wide estimates of ω were obtained from the

analysis of Heger and Ponting [33] who used a set of
6375 orthologous gene sets. In their analysis, terminal
branch ω estimates were obtained using a model of
PAML [38] that allowed branch-specific ω estimation,
excluding D. sechellia , D. persimilis and D. willistoni.
Genome wide estimates of codon bias, as measured by
the effective number of codons (ENC) were obtained
from the analysis of Vicario, Moriyama and Powell [54].
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piRNA and control gene selection
piRNA genes were defined as genes that code for proteins
involved in piRNA biogenesis and/or composition of the
nuage. These were: Argonaute 3, armitage, aubergine, cut-
off, krimper, maelstrom, piwi, spindle-E, squash, vasa, and
zucchini. Rhino is a protein that is involved in piRNA bio-
genesis but no suitable alignments could be generated
across the genus. For this reason, rhino was not included in
the analysis. Alignments were downloaded from the UCSC
Genome Browser http://hgdownload.cse.ucsc.edu/golden-
Path/dm3/multiz15way/alignments/flyBaseGene.exonNuc.
fa.gz and were manually edited to remove ambiguous bases
and incomplete codons to maintain reading frame. We also
selected a set of control genes that were similar in the dis-
tribution of ω values in aggregate across the Drosophila
phylogeny. This was done to minimize statistical artifacts
that might arise if the mean and variances in the distribu-
tion of ω values differed strongly between the two sets,
especially since piRNA genes are already known to evolve
quickly (see analysis of ω below). Moreover, if piRNA
genes also have more variance in ω than the average pro-
tein coding genes, using a set of genes selected based on
mean ω value alone may introduce bias by favoring the
detection of an effect of TE abundance on piRNA genes
relative to other genes. To deal with this, a control set of
comparison genes was selected with similar mean and var-
iance for ω. Initially, a total of 30 genes with previously
estimated ω values estimated on the D. melanogaster sub-
group [34]ftp://ftp.flybase.net/genomes/12_species_analy-
sis/clark_eisen/paml/ were selected based on similarity of
previously calculated ω values to those from piRNA genes.
Since piRNA genes have already been shown to have signa-
tures of faster evolution, we attempted to avoid polluting
this control set of faster evolving genes with other
unknown piRNA genes by requiring genes in the control
set to have a biological function not one involved in an
RNA mediated process, as indicated in the Flybase gene
summary http://www.flybase.org. Path ω values from the
UCSC Genome Browser alignments were estimated for
each of the 30 initial genes using the codeml free-ratio
branch model as with the piRNA genes (see below). Rather
than simply matching based on mean ω, the control ω dis-
tributions for each gene (without regard to species) were
then iteratively matched to piRNA gene ω distributions by
completing all pairwise comparisons using Cramér Von-
Mises goodness of fit tests. The piRNA-control gene pair
that that returned the largest p-value from the Cramér
Von-Mises test was considered the best match. If two
piRNA genes had the same control gene as their best
match the p-values of the Cramér Von-Mises tests were
compared and the gene pair with the larger p-value was
retained and the next best match was assigned as the pair
for the other gene, until all the piRNA genes were matched
with a control gene. This method acted to make the

distribution (among genes) of ω distributions of the piRNA
and control sets similar. The final control set for chosen
for the twelve species analysis was: CG8222, CG7876,
CG2595, CG31605, CG31287, CG33934, CG6898,
CG15013, CG4815, CG11405, CG4259.
A second control set was chosen for the D. melanogaster

subgroup (D. melanogaster, D. sechellia, D. simulans,
D. yakuba, D. erecta) through the same iterative procedure,
using the original sample of 30 genes. This was performed
because the distribution of ω values differs between the
entire 12 species phylogeny and the D. melanogaster sub-
group. The selected control set for this group was:
CG8348, CG10372, CG8222, CG6898, CG2595, CG33934,
CG4815, CG31605, CG30169, CG4259, CG31287.

ω Estimates Along Evolutionary Paths
ω was estimated using codeml implemented in PAML v
4.3 [38] with a free-ratio branch model. We specifically
used branch models to evaluate ω along evolutionary
paths (denoted the foreground) against the rest of the phy-
logeny (denoted the background) for each gene and each
species in the phylogeny. We define an evolutionary path
as all the branches across a phylogeny that connect a
given extant taxon to common ancestor located at a parti-
cular node. The first set of analyses was informed by a
phylogeny containing the 12 species of Drosophila with
sequenced genomes based on the topology reported by the
12 genomes consortium [34]. For each species, ω was esti-
mated on the branch descendant from either the node
that defines the D. virilis, D. mojavensis and D. grimshawi
clade or the node that defines the clade of remaining spe-
cies. The second set of analyses focused exclusively on the
5 species of the D. melanogaster subgroup and was
informed by a phylogeny of the D. melanogaster subgroup
pruned from the 12 genomes phylogeny. ω estimates were
obtained for the branches connecting to either the node
uniting the D. melanogaster and D. simulans complex or
the node connecting the D. erecta and D. yakuba lineages.
We did not include the internal branch connecting these
nodes in foreground branch estimates.
In each individual path analysis the evolutionary model

used estimated two ω ratios. The first ω ratio (the fore-
ground ω ratio) described evolution along the evolutionary
path of interest while the second (the background ω ratio)
estimated evolution across the rest of the phylogeny. Fore-
ground ω values were retained for subsequent analyses.
This foreground/background approach was chosen for
several reasons. First, path ω values were favored over tip
ω values to reduce the effects of variance on estimated ω
ratios on short tip branches such as those for D. persimilis.
In this analysis, path distances are much more similar
across species than tip distances. Secondly, using this
approach of path ω is fairly conservative for detecting
effects of TE abundance. This is because much of the
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estimate for path ω for a given species is informed by
internal branches whereas the estimates for TE abundance
are tip estimates. The effect of this will be to dampen sig-
nal that arises from any potential correlation between nat-
ural selection acting in present time on piRNA genes and
contemporary TE abundance. Thirdly, while ω estimates
from related species will be jointly determined by shared
internal branches, correcting for phylogenetic non-inde-
pendence deals with this problem.

Phylogenetic analysis of the Correlation Between ω and
Transposable Element Abundance
Standard regressions between ω and Transposable Ele-
ment (TE)/repeat amount were analyzed for each gene
separately and statistical significance was determined
using the R package. Shared ancestry causes phylogenetic
non-independence and statistical analysis of correlations
was also performed accounting for this using the program
Continuous, implemented in BayesTraits ([37] available
from http://www.evolution.rdg.ac.uk.). We did not deter-
mine whether phylogenetic correction was necessary for
analyses involving the D. melanogaster subgroup due to
the inability to generate stable likelihood scores arising
from the parameter richness (compared to the number of
taxa) of the models. We feel that this simplification for the
D. melanogaster subgroup is acceptable due to low power
of comparative methods when taxon sampling is low [39].
Treating both TE amount and ω as continuous traits,

the BayesTraits implementation of Continuous was used
to model the phylogenetic influence on these traits using
a generalized least-squares approach that assumes a
Brownian motion model of evolution [37]. Likelihood
scores of greater magnitude were obtained for a direc-
tional random-walk model compared to a constant-
variance random walk model so directional models were
employed. Directional models were then evaluated in a
likelihood-ratio framework by comparing nested models
that differed by the inclusion of the scaling parameter l,
which reveals whether the phylogeny correctly predicts
the patterns of variance among species for a single trait
and, in the case of two traits, for both simultaneously. In
the first model l was freely estimated, and in the second
model l = 0. A l value of zero models trait evolution on
a star phylogeny and signifies no phylogenetic correction.
The likelihood scores of the two models for each gene
were compared using likelihood ratios (LR). If the LR was
not significant then phylogenetic correction was unneces-
sary. For these correlations the Pearson’s correlation
coefficient was calculated and evaluated for significance
in R. If the LR was significant then we estimated the sig-
nificance of the correlation between the traits using phy-
logenetically independent contrasts [36].
Since trait values for species are contingent on phyloge-

netic history, species trait values are not independent.

However, changes in trait values that occur on different
lineages are. Thus, rather than looking at the correlation
between species trait values, one examines the correlation
between evolutionary changes in trait values inferred on
the phylogeny. This is known as phylogenetically indepen-
dent contrasts analysis, where a contrast refers to the
inferred trait changes that have occurred along a focal
lineage. Using contrast values, standard statistical proce-
dures can be applied. For our independent contrast ana-
lyses we used Continuous in BayesTraits. Several scaling
factors are used in Continuous to parameterize the model
of evolution of the trait on the phylogeny. When each of
these parameters is set to one, the tree topology and
branch lengths are assumed to accurately describe the evo-
lution of the trait. Setting each of the scaling parameters to
one provides results equivalent to standard independent
contrast analyses (Continuous manual, http://www.evolu-
tion.rdg.ac.uk). To test for a significant correlation using
this method, we compared likelihood scores in which the
covariance between TE amount and ω was freely esti-
mated and in the second model the covariance = 0. We
compared likelihood scores of the two models for each
gene using LRs. If the LR of the comparison was signifi-
cant, we concluded there was a significant correlation
between the traits after correcting for phylogenetic rela-
tionships. Correlations between dS and TE amount and
dN and TE amount were also analyzed in the same man-
ner described above.
For this analysis tree topology and branch lengths

were kindly provided by Patrick O’Grady and Sudhir
Kumar:
(((((dsim:0.02120277, dsec:0.02358723):0.02898348,

dmel:0.05989652):0.06713426,(dyak:0.09667234,
dere:0.08942766):0.03200292):0.43736490,
dana:0.60757469):0.11949656,(dpse:0.00957250,
dper:0.01847750):0.51906573,(dwil:0.69140554,
(dgri:0.39516469,(dmoj:0.38155611,
dvir:0.33379389):0.06304531):0.25381446):0.08257927);

Additional statistical analysis
ENC was determined using CodonW. 95% C.I. for the
estimate of mean correlation coefficient were computed
with 10,000 bootstrap estimates of the mean. Tests for
the difference in mean correlation coefficient were
determined by estimating 10,000 bootstrap comparisons
in the mean and determining the probability that the
control means were less than or equal to the piRNA
means. This approach was used due to the violation of
normality for correlation coefficients that are between
-1 and 1.
While Continuous in BayesTraits can test for correla-

tions between two traits, it is difficult to examine the
relationship between multiple different traits. Since other
variables could confound these results, we sought to
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determine whether other variables such as gene length
and GC content at 3rd positions were significant predic-
tor variables of contrast ω that could explain the results
reported. To do this, we performed multiple linear
regression on phylogenetically independent contrast
values estimated using the ape package in R. Before con-
trasts were estimated variables were transformed as
necessary with power transformations to meet normality
assumptions of phylogenetically independent contrast
methods. The power of the transformation was deter-
mined using the Box-Cox method. Contrast values were
then used in multiple linear regression with contrast ω
the dependent variable and contrast TE abundance, gene
length, and GC content as independent variables. Gene
function (piRNA or control) was treated as a categorical
variable. A similar framework was used for ENC. The
coefficients of the linear models were computed using
Maximum Likelihood in SAS with the PROC MIXED
procedure. Even though we did not report mixed models
in this study we used PROC MIXED during the model
selection process and thus used this procedure for
reduced models as the results are equivalent to standard
linear regression procedures.
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