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Abstract

Today, across all major industries gaining insight from data is seen as an essential
part of business. However, while data gathering is becoming inexpensive and relatively
easy, analysis and ultimately deriving knowledge from it is increasingly difficult. In
many cases, there is the problem of too much data such that important insights are
hard to find. The problem is often not lack of data but whether knowledge derived from
it is trustworthy. This means distinguishing “good” from “bad” insights based on factors
such as context and reputation. Still, modeling trust and quality of data is complex
because of the various conditions and relationships in heterogeneous environments.

The new TrustKnowOne framework and architecture developed in this dissertation
addresses these issues by describing an approach to fully incorporate trust and quality of
data with all its aspects into the knowledge derivation process. This is based on Berlin,
an abstract graph model we developed that can be used to model various approaches
to trustworthiness and relationship assessment as well as decision making processes. In
particular, processing, assessment, and evaluation approaches are implemented as graph
expressions that are evaluated on graph components modeling the data.

We have implemented and applied our framework to three complex scenarios using
real data from public data repositories. As part of their evaluation we highlighted how
our approach exhibits both the formalization and flexibility necessary to model each of
the realistic scenarios. The implementation and evaluation of these scenarios confirms

the advantages of the TrustKnowOne framework over current approaches.
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Introduction

In this dissertation “A Framework for Knowledge Derivation Incorporating Trust
and Quality of Data” is introduced. The premise for this research is that existing
approaches to knowledge derivation can be significantly improved by incorporating the
assessments of data quality and trustworthiness.

Chapter 2 discusses the problems associated with current knowledge derivation pro-
cesses. In particular, it highlights our approach and contributions. Context for our
framework is provided in chapter 3 where we discuss related work and research areas.

The basis of our framework consists of an abstract graph model on which graph
expressions are evaluated. This model called Berlin is presented in chapter 4. Chapter 5
discusses in detail how our TrustKnowOne framework is able to incorporate trust and
quality of data aspects into knowledge derivation processes.

The application of our framework to specific scenarios is examined in chapter 6. The
focus lies on showcasing how TrustKnowOne provides a formal and flexible approach
to knowledge derivation in a variety of scenarios. The implementation of these realistic
scenarios is used to confirm our claims concerning the advantages of the TrustKnowOne

framework over the current state of the art.



Our reference implementation of the framework is discussed in chapter 7. In chap-
ter 8 our TrustKnowOne framework is compared and evaluated against representative
frameworks and approaches from literature. The dissertation concludes with chapter 9

that also provides an outlook for future work.



Problem Statement and

Contributions

2.1 Motivation

All data is essentially used to make decisions. In general, these decisions are based
on the assumption that the data itself is valid and useful. However, how do we determine
the quality of this data, is it affected or influenced by other data, and does it change
over time? Furthermore, determining the usefulness of the data is also based on the
level of trust we put into the data source, especially when the data is confidential or
there is a potential conflict-of-interest when reporting the data. Since our decisions are
based on this data we need to understand what is correct and can be trusted, otherwise
we may make wrong decisions.

This research addresses the problem of systematically and formally incorporating
trust and data quality as well as time and other system dynamics into the knowledge

derivation process.



2.2 Approach

We create a new framework called TrustKnowOne where we associate every piece
of data with some model (probabilistic or deterministic) representing data quality and
trustworthiness. Furthermore, we provide formalized means for determining, describing
and combining these models and their parameters as well as functionality to challenge
them. We utilize relationships between pieces of data and data sources to assess trust
and opinions of them. Similar approaches can be found in intrusion detection and
computer and social networks. However, they are often not formalized and lack a com-
prehensive framework that is flexible enough to deal with a wide variety of realistic
scenarios. Moreover, the lack of a formal framework inhibits comparing different pro-
posed techniques.

The following provides an overview of our approach and its benefits.

2.2.1 A Knowledge Derivation Framework

Our TrustKnowOne framework is divided into three components to allow for a lay-
ered approach and increased flexibility. First, knowledge extraction allows us to formalize
a general description of data elements and their context (meta information) as measure-
ments. This knowledge extraction formalization is applicable to many realistic scenarios
as we will demonstrate in chapter 6. Second, knowledge processing deals with taking
these measurements and attaching additional relationship meta information in order to
provide beliefs and opinions about the measurements. Third, the measurements as well
as the beliefs and opinions are then used by the knowledge evaluation component to
make decisions.

One of the advantages of separating knowledge processing and evaluation is that there
may be various approaches to modeling data quality and trust/opinion relationships as

well as various decision engines. Current approaches [31, 54, 63, 65] often combine



the trust modeling aspect with the decision problem they are trying to solve. Doing
so makes the comparison of individual approaches and further improvements to them
difficult.

The separation of functionality into a layered framework as presented here is a nec-
essary step towards gaining a better understanding of the advantages and disadvantages
of current methods. In some cases in literature [31, 54, 63| simply choosing a different
decision engine could yield completely different results but without a framework like the

one developed here it is too difficult to assess the potential improvement.

2.2.2 Formalization of Knowledge Derivation

The framework creates a new formalization approach to combining raw data with
meta information on a local level (e.g., time, space, how it was obtained, security fea-
tures) as well as a global level (context, attestation, expected behavior, history and
ownership data) using an abstract graph model that is suitable to assessing data qual-
ity and trustworthiness. The formalized and flexible nature of our approach allows for
addressing a variety of data types that may be required to support a wide range of
applications as will be confirmed by the application of our framework to several realis-
tic scenarios (chapter 6. For instance, determining the trustworthiness of Smartphone
Apps (section 6.1) requires extensive modeling of heterogeneous entities and relation-

ships which we demonstrate our framework is capable of.

2.2.3 Adaptable Quality and Trust Assessments

Our research derives quality and trust assessments for each measurement based on
a rich set of data and meta information from multiple resources and contexts. This
includes a rigorous process of how to derive confidence in measurements from data by
incorporating and evaluating local meta information, history, expected behavior, global

data, and context information. We provide a modular and extensible approach to incor-



porate a variety of trust and quality assessment techniques using graph expressions. We
demonstrate this using the scenarios discussed in chapter 6: trustworthiness assessments
with heterogeneous entities (section 6.1), complex assessments on individual sensors as
well as groups of sensors (section 6.2), and assessments in dynamic environments (sec-

tion 6.3).

2.2.4 Dynamic Reassessment of Data

Our framework enables the request of additional data or challenge of existing data
when certain confidence thresholds are not reached. This approach supports weighted
decision processes where one part of the system to be analyzed is more critical than oth-
ers as well as time critical ones where the best decision needs to be made given certain
time and context constraints. Furthermore, in contrast to other frameworks the decision
engine is able to utilize both data and additional information such as trust and data
quality assessments when deciding on actions to take. We use an implementation of an
intrusion detection scenario to demonstrate this aspect of our framework (section 6.3).
Here, trustworthiness is based on the evaluation of test messages in a dynamic environ-
ment of hosts. Depending on the confidence of a particular assessments we can adjust

the difficulty as well as the rate of messages that are being sent.

2.2.5 Flexible Decision Processes

The framework incorporates a flexible decision engine which allows for estimat-
ing the trustworthiness of data based on the assessment and confidence of individual
measurements, their meta information, and context. This involves deriving a decision
confidence from the confidence of the measurements and particular data sources. Our
framework provides these trustworthiness assessments so that they can be directly in-
corporated into knowledge derivation and decisions (e.g., performing analysis only on

data above certain trustworthiness levels, discarding low quality data points, etc.). In



order to allow for flexible comparison and evaluation, we formalize decision processes
as graph expressions that can be reused, modified, and extended as shown in the sce-
narios (chapter 6). This ranges from weighting schemes including ratings, reviews, and
permissions (section 6.1) to threshold-based trust classes and incorporating ownership

lineage (section 6.2 to evaluating model vulnerabilities (section 6.3).

2.2.6 Analysis of Data Attacks

Our developed framework is able to handle missing data, data in error, and purpose-
fully modified data (an information attack). The key is that we take into consideration
that there are always inherent operational system impairments present in data that may
not reflect an attack. However, when changes in data become correlated we are able
to detect these patterns and determine the presence of attacks. Because of the formal
nature of our approach using graph expressions we are able to assess the robustness
of the individual techniques and algorithms (i.e., belief engines and decision processes)
against specific attack scenarios. An implementation of an intrusion detection scenario

(section 6.3) is used to demonstrate this aspect.

2.2.7 Application to Diverse Scenarios

As part of the discussion we will highlight how our approach exhibits both the formal-
ization and flexibility necessary to model each of the realistic scenarios. These scenarios
discussed in chapter 6 are used to confirm the advantages of the TrustKnowOne frame-
work over current approaches. We focus our analysis on the following representative
and realistic scenarios. The selected scenarios and their implementations are realistic
in terms of being geographically distributed, exhibiting time dynamics, and consisting
of large and diverse data sets.

First, we discuss how we can evaluate the trustworthiness of Smartphone Apps by

incorporating a variety of relationship and context assessments (section 6.1). We show



that this approach yields a significant improvement over current methods that are based
on basic App attributes [95]. Our data set for this scenario contains a total 11326 Apps,
790940 reviews (651801 with text, 139139 without) as well as 134 different kinds of
permissions captured in July 2012. For this purpose we developed a web crawler to pull
the real and rich App attributes out of Google Play (Android Market). As such, our data
is a diverse representation of realistic data with complex attributes and relationships.

Second, we apply our framework to distributed collaborative sensing in the domain
of radiation detection (section 6.2). Here, we deal with changes in sensor values over
time as well as complex relationships between them. In particular, we combine data
from three data sources amounting to & 2.5 million time stamped data points over the
course of nine months which are geographically distributed across Japan. Two of the
data sets were provided by the International Atomic Energy Agency [75] whereas the
third data set from Safecast [144] represents measurements taken from thousands of
people in a collaborative sensing effort. As such, the Safecast [144] data represents a
challenging data set in terms of correlating related measurements, a common challenge
in collaborative sensing environments. Thus, the measurements captured in the three
data sets provide a realistic basis for evaluating our framework.

Third, intrusion detection provides a dynamic and challenging environment for
knowledge derivation because there exist a wide variety of approaches to determine
trustworthiness of system nodes. We discuss how our framework is able to formalize
one approach [54] in order to be able to compare and evaluate it against a number of
attacks (section 6.3). Our evaluation involves simulation of several dynamic systems
with up to 60 nodes generating ~ 9000 time stamped test messages over 75 days. The
scope of this scenario is realistic for demonstrating the effects of a variety of attacks and

evaluating trust assessment approaches on intrusion detection systems.



2.3 Contributions

The establishment of formal definitions for trust, quality, and other metrics as well as
the manner in which they are derived from individual data elements and measurements
has been mostly ignored in previous research. One intellectual merit of our framework
is the formal description of these metrics using an abstract data and relationship graph
model. For the first time the proposed formalization enables the comparison and eval-
uation of different metrics, algorithms, and approaches proposed in literature. The
research establishes a unique formalized and comprehensive model for trust, reputation,
and opinion approaches that is based on the metrics derived from data. This enables
the analysis and comparison of models in a way that is not currently possible due to dif-
ferences in the definitions of metrics and modeling aspects of the individual approaches
(in particular how data is combined to derive trust, reputation and opinions). Since we
establish a direct link between the metrics and models we can compare and evaluate
the usefulness and impact of individual metrics, data elements, and data sources.

The structure of the framework enables better decision processes because it combines
data and relationships between data with notions of quality, trust, reputation, and
opinions. Furthermore, as demonstrated in this dissertation the developed framework
allows for more realistic modeling of application scenarios since it incorporates context,
history, and expected behavior of data. In particular, with our framework we provide a
method to select the best belief and decision engines among several for specific real world
cases. In addition, the formalization of the entire framework allows direct comparison
of not only current but future approaches to various metrics (e.g., trust, data quality),
models (e.g., trust, reputation, opinions) and decision processes (e.g., trustworthiness
of resources, measurement impact, and usefulness).

The major contributions of this dissertation are:

e A new abstract graph modeling approach that allows the management of hetero-

geneous data with dynamic aspects (e.g., time, location) in a variety of application
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scenarios while inherently incorporating trustworthiness and data quality assess-

ments

e A new formalization approach to describing belief engines and decision processes

in the form of graph expressions

e A new framework for knowledge derivation that provides a flexible and extensible

approach using clearly defined extraction, processing, and evaluation components

e The means to evaluate and compare different belief, trustworthiness, and decision

making techniques in a variety of application scenarios using a formal approach

Today, across all major industries gaining insight from data is seen as an essential
part of business. However, while data gathering is becoming inexpensive and relatively
easy, data analysis and ultimately deriving trustworthy knowledge from it is increasingly
difficult. In many cases, there is the problem of too much data such that important
insights are hard to find. As we discuss in chapter 3, several frameworks have been
developed that deal with large-scale data processing and analysis. Yet, the problem is
often not lack of data but whether the knowledge derived from it is trustworthy. This
means distinguishing “good” insights from “bad” ones based on factors such as context
and reputation. Still, modeling trust and quality of data is complex because of the
variety of conditions and relationships that exist in heterogeneous environments.

Table 2.1 shows how the TrustKnowOne framework provides significant benefits
over existing state-of-the-art frameworks with respect to major aspects of the knowledge
derivation process. A detailed discussion is presented in chapter 8 where the attributes of
the TrustKnowOne framework confirmed through the implementation of three realistic
scenarios are compared to the existing framework’s capabilities.

The research presented in this dissertation addresses these issues by describing an
approach to fully incorporate trust and quality of data with all its aspects into the

knowledge derivation process. Our abstract graph model can be used to model various
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Table 2.1: Comparison of major aspects in knowledge derivation processes

Aspect

heterogeneous systems
dynamic systems

formal representations
quality and trust assessments @
flexibility in approaches )

Q00®O® 1. KnowOne
® O © © © | Hadoop [169, 178]

® O OO O | Pregel [107]

© O OO O | Pegasus [86]

© O OO O | GraphLab [104]
© © OO O | EigenTrust [85]
© © OO O | TrustRank [67]
© © © © O | PowerTrust [187]

® O OO O | Dryad [76]

(O no support @ partial support @ full support

approaches to trustworthiness and relationship assessment as well as decision making
processes. Throughout this dissertation we describe in detail our approaches as well as
compare and evaluate them using a series of realistic application scenarios.

In addition, the TrustKnowOne framework provides the flexibility and performance
necessary for large-scale data processing. In particular, our abstract graph model can be
distributed as well as partitioned using a variety of approaches such that the storage of
data becomes scalable. Furthermore, processing, assessment, and evaluation approaches
are implemented using graph expressions which allows for inherent parallelization and

distributed computation.
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Related Work

The complexity of dealing with heterogeneous and dynamic environments in which
we want to incorporate trustworthiness and data quality assessments means that our
TrustKnowOne framework and graph modeling approaches intersect with a variety of
research areas (figure 3.1). In order to provide an overview, we focus our discussion on

the three major ones:

e Trust assessment and management
e Data modeling, integration, and fusion

e Large-scale data processing

In this section, we will discuss several research topics and frameworks in these areas
as proposed in literature. A detailed comparison and evaluation with respect to our ap-
proaches and in particular the TrustKnowOne framework described in this dissertation

will be performed in a chapter 8.
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Fact Finding and
Data Representation

Trust Assessment
and Management

Reputation Data
Management Lineage

TrustKnowOne

Figure 3.1: Related Work Overview

3.1 Trust Assessment and Management

Gupta and Han [65] provide an overview of current developments as well as chal-
lenges in the field of heterogeneous network-based trust analysis. In particular, the
authors discuss the need for various types of information to be evaluated in terms of
trustworthiness and claims to be verified or dismissed based on that evaluation. They
identified several areas that are especially in need of incorporating trustworthiness.

Here, we discuss the most relevant with regards to our framework, fact finding
which deals with asserting the credibility of facts as well as their sources, reputation
management where trust is incorporating relationships and context, and data lineage

which provides trace information about where data originated and how it was processed.
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3.1.1 Fact Finding and Data Representation

Facts are statements which in the general context is considered to be true. However,
identifying facts in large and complex information systems is a difficult problem. For
example, news outlets may report a story slightly differently by knowingly (e.g., through
subjective opinions) or unknowingly (e.g., inaccuracies) changing facts. If we want to
utilize these facts in order to make decisions it becomes clear that we need to establish
the correctness of information as well as the trustworthiness of sources.

Fact finding in literature [101, 143, 185] is based on three entities that are modeled
as nodes in a graph. Providers are data sources that claim facts about certain objects.
The relationship between the entities can then be described using weighted edges that
provide positive (supporting facts) or negative (opposing facts) reinforcement.

In a homogeneous network, fact and objects types are the same and several basic
schemes such as voting or ranking can be used to determine which facts are best sup-
ported by the data. However, this approach is problematic in heterogeneous networks
because certain facts may be available for one object type but not others, aggregated
facts may be conflicting, and a single provider often describes a variety of different
objects. On the other hand, this variety of data elements and the more complex rela-
tionships they form is the main reason why heterogeneous networks tend to have more
useful information than homogeneous networks [65].

One of the main premises of our framework is its ability to incorporate heterogeneous
data. In particular, our framework utilizes a common abstract data model to address
this. Additionally, basic fact finding approaches only use binary indications of true or
false for facts which are not well suited for most scenarios. We incorporate degrees of
truth where probabilities and confidence assessments are assigned to facts that can then
be used to make decisions.

In addition, one of the disadvantages of using the three entity fact finding model is

that it is often too simplistic and therefore unable to describe realistic complex relation-
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ships. On the contrary, our framework allows for a formalized representation of data
which allows data transformation (i.e., creating derived facts) as well as relationships
which are often more complex (e.g. dependencies, correlations) than simple positive and
negative weights. Another important aspect we address is that data and relationships
are dynamic and may evolve over time which requires complex dynamic models that
incorporate ideas from dynamic Bayesian networks (DBN) [165] and Hidden Markov
Models (HMM) [43, 90]. Basic fact finding approaches ignore this and depend mostly

on Bayesian inference models.

3.1.2 Reputation Management

In heterogeneous environments where data may originate from a variety of sources,
it is important to assess their reputation. This is particularly interesting in sensor net-
works where sensors can be seen as independent agents that provide measurements to a
collection authority (centralized approach) or that form mesh networks and share mea-
surements as well as information about them with each other (distributed approach).
With the growing number of user generated content such as reviews on shopping web-
sites or collaborative radiation measurements using smartphones, effective reputation
and by extension trustworthiness management becomes a necessary component in the
knowledge derivation process.

A survey by Challa and Momani [26] describes a variety of approaches to managing
trust and reputation in different domains. We want to analyze two topics, security and
trust approaches, discussed in the survey in more detail. First, across all domains the
need for security is apparent. This includes secure communication protocols as well as
encryption to protect data. However, security always comes with a cost and in var-
ious environments, especially resource constrained ones, it is difficult to balance the
performance and security needs of applications. Furthermore, security techniques can

not change the fact that data may be inaccurate to begin with due to objective chal-
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lenges (e.g., environmental factors, calibration issues, time variance, etc.) and subjective
challenges (malicious sensor nodes, fabrication of data, impersonation, etc.). Thus, it
becomes necessary to build trust management techniques to deal with and efficiently
handle different trust, reputation, and opinion issues.

Second, Challa and Momani [26] present an overview of the various methodologies
used in the trust management approaches such as weighting, probabilities, Bayesian
networks, game theory, and graph theory. In fact, there exist different approaches for
trust management in a single domain such as sensor networks [54, 71, 80, 102] as well
as there are some approaches that span multiple domains [20, 89]. The problem is that
proper evaluation and comparison becomes difficult because techniques and methodolo-
gies often utilize custom and domain specific data structures as well as protocols that
are hard to adjust.

However, the evolution from basic approaches using linkage of data nodes (see
PageRank [20], HITS [89]) to more advanced ones in peer-to-peer networks (see Eigen-
Trust [85], PowerTrust [187]) has led to a variety of trust management approaches that
have been adapted to other, related domains, e.g., TrustRank [67] for websites, combat-
ing spam in Twitter [98], and secure code execution using commodity computers [122].
In order to improve this process our framework provides a formalization to model trust,
reputation, and opinion techniques as will be confirmed through the implementation of

three real-world scenarios.

3.1.3 Data Lineage

During any kind of data analysis or decision processes, we often encounter the fol-
lowing. We identified “good” data (i.e., accurate, recent, trustworthy, etc.) and may
assume that the source must have been “good” as well. Likewise, we may have found
data points that seem to be “bad” (i.e., high variance, old, not trustworthy, etc.) and

would like to utilize their sources less. In addition, we face the problem that incorpo-
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rating “bad” data into our decision is usually worse than missing some of the “good”
data.

Therefore, it is important to track the origin of data. While this is usually not a
problem in the early stages of data analysis, as the amount of data and the relationships
that are formed grows this becomes increasingly difficult [36, 152]. As such, we need
to enable the ability to trace individual data points at any stage of the knowledge
derivation process which in literature is referred to as providing data lineage.

This means that we need to attach tracing information which includes how data
is utilized throughout the entire knowledge derivation process, from the moment we
capture data through various forms of processing and ultimately to decisions. It is
particularly useful in cases where we have multiple conflicting data points where tracing
information could be essential and help us resolve these conflicts through weighting. The
problem that needs to be addressed is that by the time we perform decision processes
the data has often been preprocessed, transformed or aggregated [36].

An overview of data lineage research is provided by Simmhan et al. [152]. The au-
thors identified several areas of further research. In particular, tracing information is
usually added to data management systems instead of being an integral part of them.
Furthermore, many of the aspects of the data lineage systems discussed such as gran-
ularity, lineage representation, and scalability are domain specific. There is a need for
systems that are flexible enough to be applicable across domains, provide varying levels
of granularity, and store tracing information in a common, well-defined form. While
there has been research in terms of integrating uncertainty into databases and their
query systems [16, 36, 146] our framework provides a general approach that is applica-

ble across domains.
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3.2 Data Modeling, Integration, and Fusion

Data representation and subsequent processing needs to be flexible and extensible.
In order to achieve these goals we need to address formalization which provides the
ability to model different approaches within and across domains, trust and relationship
models that need to be fully integrated into data processing, and metrics that enable

us to evaluate and compare existing and future processes.

3.2.1 Formalization

Various formal approaches have been proposed to overcome problems with managing
heterogeneous data in dynamic (time and location variant) environments. Specifically,
“Protocol Buffers” [60] and “Thrift” [154] allow data to be structured and efficiently
serialized while generating custom interfaces for several programming languages. Still,
the primary goal of these approaches is to provide flexible data structures for specific
application scenarios. As such their use for describing large scale evolving environments
is limited.

The problem of describing data from a variety of sources and combining it is par-
tially addressed by the “Dataset Publishing Language” [62]. However, only one source
format (comma separated value text file) is specified. A more flexible approach is the
“Data Format Description Language” [135] which allows data formats to be formally
described. This formal description works well for structured data but is problematic
for unstructured data such as text. Furthermore, the description of meta information
is often limited and there is no formal approach that defines relationships between data
elements. However, as discussed above, meta information and relationships are impor-
tant for assessing trustworthiness and quality of data. They need to be incorporated
into any formal framework from the beginning instead of added later on.

For sensor networks, researchers [32] proposed a replicated dynamic probabilistic
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model approach where data produced at each sensor and data consumed at every data
collector is modeled probabilistically. The problem is that data collected in such a way
will only be bound by the accuracy of the probabilistic models used and hence we lose
the original raw data and the ability to assess its trustworthiness.

A similar approach [64] is performing a distributed regression in which the sensor
nodes model their local regions and together they fit a global function that represents
the sensor data. The authors [64] also point out that sensors which are close to each
other often show similar readings. Since the data collected by each sensor is modeled,
transmission can be reduced to cases where the actual data read exceeds the predicted
data by a certain threshold. Furthermore, each sensor node is able to detect data
outliers easily because of its local model. Guestrin et al. [64] also point out that in their
modeling approach a single sensor node actually stores the regression coefficients not
just for itself but for the entire network.

The basic problem with these modeling approaches is that the data is only approx-
imated and that adaptive data modeling is necessary [64] to deal with natural changes
in the environment. However, correctly distinguishing between natural model changes
and important events becomes increasingly difficult. Our research provides solutions to
these problems by incorporating exact data and relationships as well as changes over

time and space.

3.2.2 Trust and Relationship Models

The integration of trustworthiness assessments and relationship models into the data
processing component of knowledge derivation is essential. However, there is often a
balance that needs to be found between attaching meta information in order to enable
trust assessments and the need for high performance processing.

Gupta and Han [65] have identified the following trust analysis research problems

and while some of them have been addressed by others [31, 54, 63] we will discuss how
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our framework addresses important ones that remain [129, 176]. Non-cooperative data
sources may or may not provide the useful and trustworthy data that we are looking
for [74, 166] and some data sources provide better trust and relationship assessment
information about one class of data than others (cluster-based fact finding). Further-
more, a piece of data is usually associated with multiple trust and quality assessments
(consensus learning [55]) and individual assessments are often related to multiple data
pieces (generalization of facts).

Our framework identifies these relationships as complex but also extremely valuable
for trust analysis and incorporates them into the knowledge extraction component of
the framework. Note that, in order to reduce the increased complexity that comes with
heterogeneous relationships some approaches have focused on transforming heteroge-
neous information networks back into homogeneous networks [8, 183]. However, the
two techniques that are generally used have several problems. First, one could deter-
mine common attributes that every data pieces contains and only use them thus cutting
off information that is potentially valuable (intersection approach). Second, data ele-
ments could be extended to include other attributes even if they do not have values
for them which leads to both performance and complexity issues (union approach).
Since our framework is capable of dealing with heterogeneous data and relationships
this transformation is unnecessary thereby eliminating the problems that come with the
intersection and union approaches as will be confirmed through the implementation of
the TrustKnowOne framework.

The assessment of trust relationships is necessary in several areas such as sensor
networks [63], intrusion detection [54], and data mining [65]. Several research problems
have been stated in surveys [63, 65] which include assessing the correctness of informa-
tion and trustworthiness of data sources. However, one of the most prevalent issues that
arises in existing approaches is that there is no formal approach to specifying trust and
relationship models such that they can be compared and evaluated. Our framework

presents an approach that allows this formalization through the definition of metrics

20



using expressions that are evaluated on standardized graph components. Specifically,
we provide means to implement algorithms that embody belief engines [124, 127] and

decision processes [134, 153].

3.2.3 Metrics

In order to evaluate and compare approaches we have different options. The most
commonly used one is to evaluate data processing, trust techniques, and decision en-
gines based on common data sets. However, there are several issues with this. First
and foremost, evaluating on common data sets and comparing the performance of re-
sults treats evaluation as black-box testing. Thus, the impact of specific components
such as trust approaches or decision engines cannot be determined. Furthermore, this
option is highly sensitive to implementation, data structures, and the combination of
trustworthiness techniques with decision processes.

As such, it is better to integrate mechanisms to evaluate individual components
separately. This can be seen as white-box testing where performance and complexity
metrics are intrinsic. Our framework implements this approach for various reasons.
First, it enables the evaluation of various trust assessment and relationship models (i.e.,
belief engines) as well as decision processes (i.e., decision engines) separately. Second,
specific combinations of belief engines with decision engines can be compared with each
other which overcomes one of the biggest problems seen in literature where the results
of good trust algorithms are decreased by bad decision engines. Likewise, this allows
us to identify bad belief engines whose results are skewed by good decision processes.
Therefore, implementing measurable aspects into data processing needs to be seen as an
integral part of the entire knowledge derivation process as it enables the performance
evaluation and comparison of different approaches effectively.

In addition, one of the main problems remains the variety of metrics for trust anal-

ysis. For instance, the most commonly used terms trustworthiness, reputation and
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opinion are often defined similarly yet utilized differently in literature [30, 31, 54, 63,
88, 114, 122]. Furthermore, researchers introduce additional complexity by breaking
down terms [23, 52] such as credibility into reputed credibility, surface credibility and
expected credibility. The same complexity issues exist for factors like context, popular-
ity, direct experience and others [58] that influence these trust metrics. How we define
all of these not just by using a textual description but actual data relationships is not
addressed in literature. Therefore, our proposed approach provides a formalized and
data-driven framework for defining trust metrics, how factors affect trust metrics, as

well as the computation of trust metrics.

3.3 Large-scale Data Processing

In general, there are two distinct data processing areas that are related to the re-
search performed in this dissertation: big data which deals with large-scale data pro-
cessing and analysis, and graph frameworks which model processing of data as directed
or undirected graphs. Only recently systems such as GraphLab [104] and Pregel [107]
have been proposed to combine these two areas, that is systems intended to perform
efficient large-scale graph processing in distributed environments. However, with re-
spect to our approach of integrating trust and quality assessments into the knowledge
derivation process, these systems often do not consider relationships, meta information,
and trustworthiness assessments. A third research area deals with the need for flexible
yet efficient large-scale query systems in order to determine relevant data, describe how

it should be processed, and provide mechanisms for evaluation.

3.3.1 Big Data

The area of “big data” refers to both distributed and cloud computing. In particular,

it aims to address several problems that are inherent in trying to derive knowledge from
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large amounts of data. These problems span across a multitude of areas and as such
often require complex solutions such as distributed file storage and bandwidth-efficient
data query systems that are not necessary for smaller data sets.

There are several systems that focus on highly scalable, distributed computing such
as Hadoop [169, 178] and Dryad [76] using various approaches. Hadoop is actually a
collection of several research areas (e.g., distributed file storage, job scheduling, etc.)
that provide an implementation of the MapReduce paradigm [37-39]. The basic idea is
that complex tasks are broken down into sub-tasks with each one mapped in form of key-
value pairs. These mappings can be hierarchical, non-hierarchical, and nested. A list of
these sub-tasks are then reduced with the results being associated with the respective
key. The advantage is that computations can easily be distributed and performed in
parallel. A detailed comparison of MapReduce to parallel database systems is also
provided by Pavlo et al. [123].

Dryad [76] takes a different approach and provides a distributed execution engine
that defines data flows where nodes represent computational processes and egdes com-
munication channels. It automatically deals with the scheduling of tasks in dynamic en-
vironments where resources may become available, unavailable or fail. Similar research
includes Orleans [22] which models computation in terms of distributed components.

While the described systems provide excellent approaches to dealing with large-scale
data processing, they do not integrate trustworthiness approaches and have problems
modeling graph structures and complex data dependencies. Note that this is primarily
because of the focus on scalability and performance. However, while our framework
emphasizes scalability to handle “big data”, it also focuses on aspects of flexibility,
extensibility, and reusability in order to provide mechanisms for trustworthiness and

quality of data assessments as well as decision processes.
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3.3.2 Graph Frameworks

There are various techniques for graph model processing, but all have their limi-
tations [25]. Pregel [107] represents a computational model that is based on message
passing between nodes of a graph. The focus is on sparse graphs and single types
of nodes. Therefore the approach is unsuited for trustworthiness assessments in het-
erogeneous environments that involve meta information and relationships. DEX [109]
describes an approach where data from multiple sources is incorporated into a graph
database querying system, but it does not address distributed processing.

Frameworks that focus on machine learning include GraphLab [104], Distributed
GraphLab [105], and Orleans [22]. In general, their approach is to provide abstrac-
tion layers for algorithms such that distributed processing, parallelism, and scheduling
are taken care of by the respective frameworks. Approaches such as Pegasus [86] and
SCOAL [40] exploit context knowledge (e.g., many graph mining algorithms can be
expressed as matrix multiplications) but are not flexible enough for applications across
different domains. Others are limited to a subset of machine learning areas such as the
correlation of time-stamped events [174] or provide custom implementations for paral-
lel data analysis (Green-Marl [70]). In general, these frameworks often do not address
scenarios with dynamic graphs as there is no easy way to add new data sources, extend
the graph model, or change computational processes.

There have also been extensions built on top of existing large-scale processing frame-
works such as Hadoop. In particular, Mahout [121] and GBASE [87] aim to provide
flexible and generic graph processing approaches. However, using Hadoop as a basis
makes it difficult to overcome its limitation when dealing with heterogeneous data, a
large number of interdependencies, and dynamic graphs. Furthermore, many of the
present graph frameworks focus on dealing with algorithms in homogeneous environ-
ments that can be easily scaled using large-scale processing approaches such as Hadoop

and parallel database systems. The implementation of complex graphical models like
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Bayesian networks [69, 157, 165], Markov models [4, 100, 130], and factor graphs [2, 92]
as well as probabilistic reasoning in graphs [44, 124, 179] remains problematic if the
underlying processing model (e.g., Hadoop) cannot be adapted or exchanged. Our
framework provides extensive flexibility in terms of enabling different input, output,

storage, and processing paradigms.

3.3.3 Query Systems

Efficient query systems are important when it comes to analyzing large amounts of
data. In general the focus is on performance and expressiveness. A number of higher
level query languages exist that run on top of Hadoop [169]. In particular, Pig Latin
[118, 172] is a domain specific language for performing queries in Hadoop. Extensions
have been developed to perform predictive analysis on Twitter [103]. The approach
here is to provide a higher level of abstraction than writing code but more control
than declarative languages such as SQL. However, Hive [170, 173] provides this exact
functionality where SQL-like queries are compiled into MapReduce instructions.

In similar fashion, several higher level query languages such as Dryad LINQ [186] and
SCOPE [24] which use a SQL-like syntax have been developed for Dryad [76]. Note that
other frameworks have proposed integrated solutions (see Green-Marl [70]). However,
unless we choose the same underlying large-scale data processing framework some of
the query systems are not available. In addition, none of these existing query systems
supports any notion of trustworthiness and relationship assessment. As discussed be-
fore there is also no clear distinction between algorithmic modeling in terms of data
processing (i.e., belief engines) and decision processes.

Our approach provides a flexible and scalable query system by modeling queries,
data processing, and decision processes as graph expressions. These graph expressions
utilize relationships (i.e., mathematical, logical, etc.) between data elements that are

clearly defined as will be discussed in chapter 4. This formalizes the overall knowl-

25



edge derivation process and in particular enables evaluation and comparison of different
methodologies. Furthermore, our framework allows these formalizations to be described
in a variety of ways. (e.g., low-level application programming interface (API), extensible

markup language (XML)).

3.4 Chapter Summary

The contribution of this effort is related to a variety of research areas. Here we fo-
cused our discussion on the most relevant ones. First, the main premise of our framework
is to incorporate trust assessments and management into the knowledge derivation pro-
cess. As such, a large part of the effort is related to extending fact finding approaches to
include properties like high accuracy, recency, and usefulness. This is not a trivial task
and becomes even more complex when considering that we need to factor in reputation
management which deals with assessing relationship and data context. Additionally, in
order to provide full transparency we also need to make sure that all components of
our framework fully incorporate data lineage. This means keeping track of where data
comes from and how it is processed.

Second, our framework focuses on flexibility rather than performance to be ap-
plicable to as many application scenarios as possible. Furthermore, we overcome the
common problem in literature of being unable to properly evaluate and compare dif-
ferent approaches through the formalization of trust and relationship models as well as
metrics. Our framework utilizes an abstract graph model on which graph expressions
are evaluated. Approaches for trust, reputation, and opinion (i.e., belief engines) will
be modeled using these expressions. Decision processes such as weighting schemes and
Bayesian inference (i.e., decision engines) are described in similar fashion.

Third, scalability as well as extensibility are becoming more and more important
in the era of large-scale data processing. Therefore, we need to make sure that our

framework meets these requirements to be able to deal with big data problems. In order
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to address this our framework uses a flexible, abstract graph model which allows it to
express complex heterogeneous data and their relationships. This leads us to relate our
approach to various other graph frameworks where data processing is modeled using
directed or undirected graphs. However, one of the biggest problems that often remains
is the ability to provide an scalable and expressive query systems.

This chapter discussed several approaches discussed in related literature. In partic-
ular, it highlighted some of their shortcomings. The main benefit of the TrustKnowOne
framework is that trustworthiness and relationship assessments are directly incorpo-
rated into a flexible and scalable knowledge derivation process. An in-depth evaluation
of our framework and a comparison to existing approaches described here is performed

in chapter 8.
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Berlin - An Abstract Graph

Model for Knowledge Processing

Using Graph Expressions

The foundation of the framework developed here is Berlin, an abstract graph model
on which processing and inference is performed. There are several reasons for using an
abstract graph model. First, describing data in a uniform and standardized manner
allows for a systematic and clear approach to processing. Second, all processing, infer-
ence and decision making can be made using graph operations. Third, dynamic data is
managed simply by the addition or removal of nodes and edges.

We define our graph model as follows. A basic description of a piece of data and
its attributes is an element. A particular element with attribute values is an element
node. Each element node consists of multiple element instances which are timestamped.
In order to be able to deal with dynamic graphs, each piece of information needs to
be associated with a particular time instance. This allows for ordering of values in

time series data. We have several options for achieving this. First, we can designate
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a particular data attribute to be the time instance. Second, if there is no such data
attribute, we can choose the time of import into the graph model as the time instance.
Third, we can specify a certain time independently.

Because element instances may contain only values for specific attributes, an element
node can be seen as a sparse matrix that contains attribute values ordered by time where
values that do not change do not need to be stored. Furthermore, every element node
is uniquely identifiable through an identifier which may be an attribute of the element
node or explicitly assigned. This solves the problem of having to check the entire graph
whenever new information is added.

The connection between two elements is described through a relation which can
be defined implicitly or explicitly and may contain attributes, e.g., weights or location
information. A relation edge connects two element nodes and contains timestamped
relation instances in a similar manner to element instances.

As such, our framework deals with two types of graphs. The element description
graph keeps track of the basic descriptions of elements and relations as well as implicit
meta information (i.e., basic metrics and dimension models). The element instance
graph contains the actual element nodes and relation edges with all their values and
instances.

In order to incorporate local trust aspects for attribute values such as deteriorating
sensor accuracy over time, our approach associates dimension models with individual
attributes. These dimension models express confidence and trust assessments for at-
tributes in a probabilistic or deterministic manner. As such, we evaluate how, among
other dimensions, time and location can affect values in the abstract graph model.

Belief engines representing trust and quality of data assessments as well as deci-
sion processes are implemented using graph ezpressions. These expressions range from
straightforward mathematical computations to complex relationship-based techniques
and can be combined hierarchically to make them flexible and extensible.

In the following sections, we will discuss the use of all of these graph abstractions
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in more detail.

4.1 Graph Components

In this section, we will describe the basic components of our abstract graph model
Berlin. Specifically, we extend basic graph theoretical approaches in order to incorporate

the ability to model trust and relationship assessments.

4.1.1 Elements

name type attributes

Figure 4.1: An element description which includes a uniquely identifiable
name, an id reference, and a list of attributes and their types

FElements represent descriptions of the basic pieces of information that inference is
made upon. They can be thought of as different types or classes defining element node
objects. This means that we are able to deal with heterogeneous data fusion applications,
overcoming limitations of other homogeneous graph models that only consider one type
of node. Each element as shown in figure 4.1 is uniquely identifiable by its name and

contains an id reference and definitions of its attributes in the form of name-type pairs.

Definition 4.1 Attribute

We define an attribute as

a = {name, type, {p1...on}}
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where name is the name of the attribute, type the class of possible at-
tribute values and {¢;...p,} an optional set of dimension models de-

scribing the attribute’s value range, distribution, and constraints.

Our framework provides a flexible type system for these attributes in which a set of
common well-known types is provided but can be easily be extended by custom defini-
tions. Furthermore, we are able to attach time, location, and value dimension models
to attributes. These can be used by the belief engines to determine trustworthiness and

quality aspects of attribute values. Hence, we can formally define an element as follows.

Definition 4.2 Element
Let A = {a,...,anla;.name # aj.name Ya € A} be a set of attributes

then an element is defined as

E = {name,ID, A}

where ID is a function which is able to uniquely identify element nodes

derived from the element E.

Note that we need to specify how individual element nodes derived from an ele-
ment are identified. The reason is that meta data and additional information has to be
correctly correlated throughout the knowledge derivation process. This is especially im-
portant for handling dynamic graphs in our framework where we need to check whether
nodes that are being added already exist in the graph. Note that we provide several
options for performing this identification. It can be done explicitly through a serial id
that is assigned to each new element node or implicitly by having one or a combination

of attributes represent its identity.
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4.1.2 FElement Nodes

name

@1 attributes

@2

@t

Figure 4.2: An element node consisting of a specified id reference and
timestamped attribute value instances

Particular objects in our graph model that contain data values are element nodes.
As shown in figure 4.2 they contain a sparse table of attribute values where each row is

an element instance that is identified by a particular time instance.

Definition 4.3 Attribute-value pair
Let a be an attribute and value the specified value for the attribute, then

their attribute-value pair is defined as:

av = a U {value} = {name, type, {1 ... on}, value}

As we incorporate more information over time the table will grow. However, note
that we only need to store information that changes from one instance to another thus
saving space and inherently making the table sparse.

This sparse table approach has several advantages over creating new nodes for every
element instance. First, it makes time series analysis straightforwards as we keep related
information close together. Second, space complexity is reduced since values that do
not change do not require additional storage space. Third, we do not have to perform
any additional graph operations in order to perform time series analysis and correlation.
Furthermore, it simplifies the management of the abstract graph model since it keeps

the number of nodes and edges in a dynamic graph low (compared to a graph containing
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separate nodes for each element instance).

Note that, element instances may contain additional “non-descriptive” (not previ-
ously described) attributes such as derived information for which values can be added
on-the-fly. This gives our approach more flexibility and leaves room for enhancements

to the graph model in later stages.

Definition 4.4 Non-descriptive attribute-value pair
A “non-descriptive” attribute-value pair is a attribute-value pair without

a specified type and dimension models

av’ = {name,value}

We can combine the previously defined and the “non-descriptive” attribute-value

pairs to define an element instance.

Definition 4.5 Element instance

Let av be a particular attribute-value pair, e.A the set of attributes for
the element node e, and av’ an additional “non-descriptive” attribute of
the element instance, then an element instance is a collection of attribute

values at a specific time instance t defined as

er = {{avy ...avylav € e. A}, {av] ... av],}}

The collection of element instances makes up the sparse table of attribute values.

Definition 4.6 Element instance collection

The collection of element instances can be defined as

ei={er...er}
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where ei(t) = e; acts as a mapping function from a time instance t to the
specific element instance e;. Furthermore, we define the ordered set of

time instances ei; as follows

el = {t() .. .tT‘ti < ti+1}

Note that element nodes are derived from element descriptions. Thus they contain all
possible attributes specified in the respective element and the mandatory id follows from
the description as well (i.e., can be explicit or inferred attribute reference, combination

of attributes, auto generated).

Definition 4.7 Element node

Let E be a particular element, then an element node can be defined as

e=EU{id,ei} = {name,ID, A,id, ei}

where id = ID(ei) is the result of the identification function applied
to all attribute values since the specific identifier of the element node is
either attribute based or explicitly defined and ei the collection of element

instances.

4.1.3 Relations

Two elements are connected if there exists a relation consisting of a defined source
and target element between them as shown in figure 4.3. Because elements may share
more than one relation it is necessary to group or organize them by defining unique
names. Furthermore, we are able to describe more complex relations by attaching

metrics to them. Formally, a relation is:

Definition 4.8 Relation
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_L _T a
source ‘ /I\ target

name type attributes

Figure 4.3: A relation which is defined by a unique name, information
about the two elements that it connects, and a list of attributes and their
types. This may include an optional metric determining existence of the
relation.

Given the set of all element descriptions £ = {E; ... E;} let S,T € E be
source and target element definitions, A a set of attributes, and M an

optional metric, then a relation is defined as
R = {name, S, T, A, M}

In the case where we specify a relation without defining a metric, the derived relation
edges will always exist. In case there is a metric, a relation edge exists only if the metric

evaluates to true and does not exist if it evaluates to false.

Definition 4.9 Relation existence

The relation R always exists if the metric M does not exist since it rep-
resents an optional qualifier of existence for each relation. If a metric M
is specified, then the relation only exists if the application of the metric

to the relation, noted as M(R), yields true.

However, when we describe relations in the knowledge extraction phase of the frame-
work we need to take the following into consideration. Since there is no additional or

meta information available yet, we can define only basic relationships such as equality
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comparisons between attributes (e.g., same owner, same sensor type).

In the knowledge processing stage we have more information available. Therefore,
we can establish two additional types of relationships. First, there are explicit relations
that are defined based on context and meta information (e.g., temperature ranges,
rankings). Second, implicit relations can be derived during knowledge processing by
analyzing the data in the graph model using belief engines. For example, relationships

between element attributes may be discovered using correlation techniques [79, 127, 130].

4.1.4 Relation Edges

-
name ( ) metric
source < target
id — id

@1 @1 @1
@2 @2 @2
@t @t @t

Figure 4.4: A relation edge consisting of a name, the element nodes it
connects which are identifiable by their type, and timestamped attribute
value instances. An optional metric may be attached to allow more complex
relationships to be defined.

Particular instances of relations are relation edges which describe the relationship
between two element nodes. As shown in figure 4.4 the source and the target element
nodes are specified by their id. Note that these element nodes are only valid if the
element type is the same as specified by the relation. Since relations have unique names
this allows us to easily group element node neighbors by “type” (similar, same owner,
etc.) based on the name of a relation. A relation edge also maintains attributes in the
form of a sparse table where each time instance refers to a specific relation instance.
This is similar to the way attribute values are stored in element instances which means

that the relation instances may contain additional “non-descriptive” attributes as well.
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Definition 4.10 Relation instance

Let av be a particular attribute-value pair, r.A the set of attributes for
the relation edge r, and av’ an additional “non-descriptive” attribute of
the relation instance, then an relation instance is a collection of attribute

values at a specific time instance ¢ defined as

re = {{avy ... avylav € . A}, {av] ... av],}}

Thus, the sparse table of attribute values becomes

Definition 4.11 Relation instance collection

The collection of relation instances can be defined as

ri={ri...rr}

where 7i(t) = r; acts as a mapping function from a time instance ¢ to the
specific relation instance ry. Furthermore, we define the ordered set of

time instances ri; as follows

T = {to .. .tT’ti < ti+1}

The collection of relation instances makes up the relation edge. As such, it is derived

from the formal definition of a relation.

Definition 4.12 Relation edge

Let R be a particular relation, then a relation edge can be defined as

r=RU{s,t,ri} = {name, S, T, A, M, s, t,ri}

where s and t are element nodes matching element descriptions S and T

37



respectively and ri the collection of relation instances.

Because of the ability to model dynamic graphs we need to realize that a metric
specifying a particular relationship may yield true for some relation instances and
false for others. In our approach, we keep track of these time and location variant

relationships.

Definition 4.13 Relation edge existence
Let r¢ be the collection of relation instances for the relation edge r and
M (r;) the result of the metric M applied to the relation edge at time ¢

then we say that in general the relation edge exists if

ry € ri|M (r¢) = true

We can utilize this notion of a relationship to allow belief engines to infer properties
such as strength and connectivity in dynamic graphs where relationships may change

over time.

Definition 4.14 Relation edge strength

Let ri be the collection of relation instances for the relation edge r and
M (r;) the result of the metric M applied to the relation edge at time ¢
then the strength of the relation edge is defined as

{r¢|re € ri, M (1) = true}|
|l

T'strength =

In general, we model relationships as edges between two element nodes. This ap-
proach balances the need for relationship detail with efficient computation and modeling
aspects. In particular, by using this approach we are able to incorporate the follow-

ing detailed relationships that would otherwise require more complex solutions (see

figure 4.5).
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Figure 4.5: Relationship types that can be inherently modeled using ele-
ment node to element node definitions.

Element node - element node Two element nodes are related (as connected by a
relation edge) by some definition that incorporates their element types and attribute
values as well as potentially other relations (figure 4.5a). This is the most general type
of relationship and can, for example, be used to determine that two sensors tend to
have similar temperature readings by defining a metric that incorporates both tem-

perature attributes and a specific range (an example of such a metric is discussed in

expression 4.9).
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Attribute - element node A particular attribute of an element node can be related
to another element node (figure 4.5b). For example, if ownership of a sensor is modeled
as an attribute of a sensor element then we could define a relationship “same owner”
between sensors with the same ownership attribute value. Note that this aspect can be
modeled on an element node to element node basis using a metric that determines if the

ownership attributes are the same.

Attribute - attribute Correlations between two attributes are often of interest (fig-
ure 4.5¢). In the case of a sensor, we may be interested to know if there is a relationship
between a sensor’s location and radiation level measurements. Furthermore, attributes
of two different elements, e.g., different sensor types (one measures only temperature
and the other measures only rainfall) can be correlated as well. By using the element
node to element node approach we are able to determine these relationships by defining
metrics that incorporate attribute values from a variety of element nodes at different

levels of detail.

Value - value A specific value may be the result of a sequence of circumstances
(figure 4.5d) such as when sensors tasked with the monitoring of cargo can cause an
event chain of alerts. In this case, it is important to be able to model data provenance
(lineage) which, in our abstract graph model, can be achieved using metrics that take

into consideration attribute values across time instances.

The key here is that inference is primarily made on the element nodes and that
particular relationships types such as attribute - element node, attribute - attribute and
value - value can be seen as describing certain aspects of relationships between element
nodes. Doing so decreases the complexity of the abstract graph model while maintaining

the ability to model complex relationships between various pieces of diverse data.
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4.2 Graph Types

As part of our framework we distinguish between two types of graphs. On the
one hand, the element description graph represents a blueprint of all the elements and
relations that need to be modeled for a specific application scenario. On the other hand,
the element instance graph contains the actual element nodes and relation edges with
their respective data. Note that while both types of graphs can be dynamic, usually only
the element instance graph encounters changes in values, element nodes, and relation

edges.

4.2.1 Element Description Graph

The first step in our framework is the formal description of elements and their
relations that make up the abstract graph model. This information is stored in the

element description graph.

Definition 4.15 Element description graph
Let E be an element, R a relation, M a metric, and ® a dimension model

then the element description graph is defined as

EDG = {{Ey...E;},{Ry... Ry}, {My ... Mg}, {®1...®.}}

4.2.2 Element Instance Graph

Particular values and graph element instances are stored in the element instance
graph. This graph can be augmented and extended as more information becomes avail-

able and is incorporated into the knowledge derivation process.

Definition 4.16 Element instance graph

Let e be an element node, r a relation edge, m a metric instance, and
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a dimension model instance then the element instance graph is

eig={{er...e;}, {ri...r;}, {m1...mp}. {o1...01}}

This element instance graph is fully dynamic where every data value is timestamped

as described earlier.

4.2.3 Graph Transformations

While the topic of graph transformations has been extensively covered by [6, 91, 164],
we briefly discuss one possible approach using our framework here. In particular, a
transformation consists of two main parts, a pattern and a replacement. We can utilize
a set of metrics to determine if a certain part of the graph matches a particular pattern.
Furthermore, since metrics are expressions describing information in a graph we can

apply them to the matched pattern forming a respective replacement sub-graph.

Definition 4.17 Graph transformation
Given the set of all metrics M = {M ... Mg} let P, RE € M be a pattern

and replacement then a transformation can be defined as

T = {P,R}

Note that because metrics can be nested we can essentially replace a pattern with
multiple replacements as well, which means that we can apply a transformation as

follows.

Definition 4.18 Graph transformation application

Let P = {M;...M,} be a pattern consisting of a set of metrics then a
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particular subgraph G matches the pattern if

P(G) = Mi(G)AN--- AN My(G) = true

Let RE = {M;j ... My} be a replacement consisting of a set of metrics
such that

RE(G) = {My(G), ..., Mu(G)|M € RE}

then the transformation T = {P, RE} is applied to the subgraph G as

RE(G) if P(G) = true
T(G) =

G if P(G) = false

In the following, we discuss two possible applications of graph transformations in

our framework.

Elements of Interest Note that while all relevant elements are stored in the element
description graph, instead of considering all elements and relations in a graph for infer-
ence purposes, we may choose to select a subset within a domain or application scenario.
This can be achieved by designating elements of interest and using graph transforma-
tions to convert attributes to elements as well as to fold elements that are not of interest
into attributes. In particular, additional data not of interest to the application can be
treated as an attribute of an element. For example, if we are interested in sensor values
but not ownership, we may relegate owner to be an attribute of the element sensor as
shown in figure 4.6. In addition, if elements have been “reorganized” into elements of

interest, the element instance graph will reflect this as well.

Element Nodes of Interest Furthermore, other subgraphs that can be extracted
by similar graph transformations include time specific graphs (by slicing across groups

of particular instances with a specific time instance) and hierarchical graphs (logical or
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sensor owner sensor

id id id
name type name | type name type
id id name text id id
temperature | number temperature | number
light number light number
pressure [number pressure | number
owner text

Figure 4.6: An example of defining “sensors” as elements of interest and
relegating “owner” elements to attributes using a graph transformation.

physical groupings of element nodes).

4.3 Dimension Models

As discussed above, attributes can be associated with a set of dimension models
describing the attribute’s value range, distribution, and constraints. The purpose of
dimension models is to provide belief engines with information to assess trustworthiness
and data quality on a “local” attribute level. They may be probabilistic (e.g., values
following certain distributions) or deterministic (e.g., at a specific times of the day the
location is “office” and otherwise “home” or “in transit”) as well as time and location
variant. This allows us to model applications where the meaning of values is different
depending on some dimension.

There exist a variety of dimensions such as time, location, and other attribute values
that could affect the trustworthiness assessment of an individual attribute. For instance,
we can assess slowly degrading sensors where the accuracy of measurements taken is
reduced over time dynamically. Within a dimension, we describe particular instances
as contexts, e.g., specific dates for time dimensions and places for location dimensions.

This approach has the advantage that we do not have to rely on static error models.
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Here, we discuss the definition of a dimension model.

Definition 4.19 Dimension model
Let 6 be a specific context within a dimension O then a dimension model

is defined as the mapping function

®(valueld) = ¢

where the value ¥ is derived for the specific attribute value given the

context 6.

In general, we can categorize dimension models into the following types. First,
consider cases where the context is drawn from a finite set of contexts (e.g., specific

locations, sensor types, owners).

Definition 4.20 Discrete dimension model

Let © be the set of contexts @ within a dimension defined as

O =1{6...0,)

then we can define the mapping functions ¢

vi(valueld;) = 9

where the value ¢ is derived for the attribute value given the specific
context #;. One option is to define a discrete dimension model @ g;serete
as the set of such mapping functions and a default function p(value) = ¥

which does not require any context

® = {{o1...0}, 0}
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such that its application to a particular attribute value is defined as

vi(valueld = 0;) if 0 € ©
q)discrete(valuew) =

w(value) otherwise

The other options is to specify a discrete mapping function ¢ in the form
of
p(value|f) =V

where the value ¢ is derived for the specific attribute value given the
discrete context variable #. The discrete dimension model P giserete i
this case is

D giscrete ('Ualue ‘ 9) = w(value ‘ 9)

Second, there are models such as range constraints that are independent of the

context. Our approach is to treat this as a special case of the discrete dimension model.

Definition 4.21 Static dimension model

The special case of a dimension model for an attribute value that does not
depend on any particular context 6 concerns a single mapping function.
Thus, given the general definition of a discrete dimension model @ g;serete

we only need to specify the default function ¢ such that

D 1atic(value) = p(value)

Third, instead of specifying a discrete set of contexts, we can define a continuous
model for all context values. There are two options for doing so. On the one hand, we
can extend the discrete dimension model to include an interpolation (i.e., smoothing or
regression) function which allows us to derive values in between contexts. On the other

hand we can simply ignore discrete contexts and define a specific mapping function that
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incorporates all contexts.

Definition 4.22 Continuous dimension model

Given a discrete dimension model D g;serete We need to carefully define the
range of contexts ©. We require that the set of contexts © be ordered
in the manner 6; < 6;11. This aspect allows us to interpolate between
different contexts for which we require an additional parameter =, the
interpolation (i.e., smoothing or regression) function. Furthermore, the
first element A, and the last element 6, represent boundaries for the range
of the continuous dimension model, i.e., [61,04]. A such, a continuous

dimension model can then be defined as

E(valueld) if 0; <0 <0y
@continuous(valueye) =

p(value) otherwise

If we choose not to base our continuous dimension model off a discrete
dimension model then we must define the mapping function ¢ in the form
of

p(value|d) =9

where the value ¢ is derived for the specific attribute value given the con-
tinuous context variable 6. The continuous dimension model P.ontinuous

is then defined as

D continuous (value | ‘9) = QO(’UGZU@ ‘ 9)

In the following, we focus our discussion on some of the major dimensions and
provide example dimension models accordingly. Note that since the static dimension

models are independent of the particular context we provide a separate example here.
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Figure 4.7: The confidence in a temperature measurement based on a
specified range of valid temperatures, i.e., Tnin = 20 and Tyee = 90

Static Constraint This reflects the most general case where trustworthiness aspects
are “local” but do not change over time and are not dependent on other context. An
example would be to constrain the range of valid temperature measurements as shown
in figure 4.7 which we could define as follows.

Let T} be the minimum and 7,,,,; the maximum temperature a particular sensor
is designed for then the confidence (from 0% to 100%) in the temperature range can be

defined in terms of the default function ¢

0% if value < Thuin

p(value) = §100%  if Tynin < value < Thaz

0% if value > Trae

where value represents a particular attribute value. Note that in this case there is no
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Figure 4.8: The accuracy of a sensor’s measurements based on the number
of days deployed

context 6 necessary.

4.3.1 Time

The accuracy and by extension trustworthiness of an attribute value may depend
on the time context at which it is evaluated. Here, we choose as an example a sensor

scenario and describe several use cases for particular time dimension models.

Discrete Time We can model a sensor with slowly degrading accuracy using a dis-
crete dimension model. For example, consider sensors that report temperature values
once a day. Furthermore, let us assume the quality of the sensors is low such that each
day their accuracy decreases by 5%. This means that on the first day accuracy is 100%
and 0% on the 21st day and beyond (figure 4.8).
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Hence, the set of contexts © can be defined as the number of days deployed
©={0;=0,00=1,...09 =19}
where the mapping functions ¢ follow the pattern
wi(valueld;) = 100% — 5% x 6;

accordingly. We then express the default function for the remainder of the days as

e(value) = 0%.

Continuous Time As the number of contexts to be modeled grows it is often a better
approach to choose a continuous dimension model. For example, if we wanted to extend
the simple accuracy model from above to be able to determine accuracy for particular
temperature values gathered throughout a day instead of only daily (figure 4.9).

This would require us to specify a large number of contexts and mapping functions.
Here, we use the continuous dimension model that solves the problem by defining a

mapping function ¢ for a continuous context variable 6

0
e(value|l) = max (O%, 100% — 5% x 6()><6()><24>

where 6 represents the time a sensor has been deployed in seconds.

4.3.2 Location

The location of sensors has a direct impact on the accuracy of measurements. For

instance, consider a radiation detection sensor as will be discussed in section 6.2.

Discrete Location In order to be able to compare radiation levels of two sensors

we need to establish common measurement parameters. Safecast [144] (as used in
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Figure 4.9: The accuracy of a sensor’s measurements based on a slowly
degrading continuous function

section 6.2) discusses the problem of inaccuracies based on the height of the sensor
during measurements. In particular, radiation levels are different at various heights.
For instance, Safecast [144] suggests 1m above the ground instead of ground level to
determine radiation levels. Furthermore, there are differences depending on whether
measurements are taken inside or outside of buildings.

Hence, let the set of contexts © represent the approximate height in meters at which

the sensor took measurements

© ={60; =0m, 0, = Im}

then we can define the following mapping functions ¢ to determine accuracy of the
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Figure 4.10: The accuracy of a sensor’s measurements based on the ap-
proximate height in meters

measurements

1 (value|y) = 50%

pa(valuelfz) = 100%

accordingly. We then express the default function for other possible heights as ¢(value) =

25%. The resulting discrete dimension model is shown in figure 4.10

Continuous Location Some sensors are very sensitive to environmental factors.
While many stationary sensors can be calibrated in a way that reduces noise from
these factors, mobile sensors need to continuously adapt. Therefore, the accuracy of
measurements of mobile sensors should carefully evaluated. Here, assume that we are

tracking cargo that is transported by rail (a scenario described in [53, 93, 94]). We could
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Figure 4.11: The accuracy of a sensor’s location based on the estimated
distance from tracks

define a location accuracy assessment by determining how far measurements coordinates
are from train tracks (figure 4.11).
In this case we would employ a continuous dimension model with a context variable

0 representing measurement coordinates such as

(value|d) = maz (0%, 100% — 1% x distance from tracks in meters)

4.3.3 Value

Dimensions other than time and location can be chosen as well. For example, the
trustworthiness of a particular attribute may depend on other related attributes. In the

following we give some examples for this case.
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Discrete Value There exist various sensor types with a variety of advantages and
disadvantages. Furthermore, sensors are often deployed by different entities for appli-
cation specific scenarios. Here, we want to model the level of confidence we have in a
particular sensor’s measurements based on the owner.

Let © represent several potential owners

© = {6, = government, 6, = public, 03 = private}

and define confidence as a set of the following mapping functions ¢

o1 (value|fy) = 90%
pa(value|f2) = 50%

w3 (valuelbs) = 70%

Furthermore, let the default function for all other owners be ¢(value) = 50%. The
resulting discrete dimension model represents an example of a deterministic model for
“local” trust assessment.

If we are interested in assessing confidence in temperature measurements and have
other information available such as a basic description of the conditions (e.g., sunny,
cloudy, rainy, snowing), we can express this confidence using a fuzzy approach [15, 126,
141]. As such, we associate every weather condition with a particular temperature range
model (see figure 4.12).

Hence, we could define the context © as the set of possible weather conditions

© = {0, = snowing, 02 = rainy, 03 = cloudy, 04 = sunny}
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Figure 4.12: The confidence in a temperature measurement based on the
observed condition

and the mapping functions ¢

w1(value|0y) = Nyatio(value|20)
2 (value|2) = Nyaiio(value|40)
w3(value|ls) = Nyatio(value|60)

w4(valuelly) = Nyatio(value|80)

where Nyqiio(value|p) is the ratio of probability densities

N (s|p, 15)

Nratio('l)alue‘/l) = W
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Figure 4.13: An example of a temperature cycle that can be used to model
temperature confidence using a dimension model

of the Normal distribution defined as

1 _(@=w)?
2

N(alp, 0?) =

o2

Continuous Value Context can be very useful in determining trustworthiness. An-
other example would be knowing something about the temperature cycle in a given
region. The measurements of a sensor should roughly reflect a daily pattern such as the
one shown in figure 4.13.

In particular, it should be cooler during the night than it is during the day. Hence
we can compare actual temperature measurements against expected ones in order to
determine confidence. Here, we would use a continuous dimension model with a context

variable 0 for the expected temperature during a particular time of day and define a
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continuous mapping function ¢ similar to

e(value|d) = max (0%, 100% — 1% x difference to expected temperature in degrees)

4.4 Graph Expressions

Given elements, element nodes, relations and relation edges in the abstract graph
model described above, we can perform a variety of computations on them. We call
these computations graph expressions. During the knowledge extraction phase, we do
not have additional meta information which means that graph expressions can only
perform a limited number of actions. However, they can be used to describe relationships
between elements using comparison operations. For example, we are able to define a
graph expression that limits the source and target to be sensor elements and checks
whether both of the owner attributes are the same.

In the knowledge processing phase, we are able to include specific values, context,
dimensions, relationships and external information which allows the graph expressions
to become far more powerful. This means that we are able to specify ranges (e.g.,
temperatures, critical values, etc.) and incorporate time or location specific information
(e.g., trends using time series analysis, no received heartbeat from sensor in 5 mins,
sensor is within 1km of other sensors, etc.) as well as meta data (e.g., rankings, third-
party assessments, etc.). Furthermore, utilizing graph expressions we are able to perform
various aspects of data transformations such as conversion (e.g., smoothing, scaling),
combination (e.g., aggregation) and filtering (e.g., outlier detection).

In order to maintain flexibility and reusability, we identify graph expressions by a
unique name that can be referenced throughout the entire knowledge derivation process.
A metric formally represents a computable value derived from the abstract graph model
which consists of an expression tree and one or more graph references on which the

expression is evaluated on. These references may refer to any of the graph components

o7



described above. Here, we discuss the parts that make up graph expressions and provide

formal definitions for them.

4.4.1 Expressions

The most basic computational aspects within our framework can be captured using

expressions. For example, determining whether two attribute values are the same is rep-

resented by the equal expression. These expressions include basic mathematical, logical,

and comparison functionality that do not require context or additional information. In

our framework, more complex expressions are defined as model expressions.

In order to achieve computational flexibility while allowing a formal definition of in-

dividual metrics, we define expression trees which describe the necessary computations.

expression
| expression | metric | reference | value _

Figure 4.14: An expression tree node consisting of any number of optional
child elements such as expressions, metrics, references, values and model

exTPressions

As such, an expression may have any number of child elements (figure 4.14):

other expressions representing a basic computation
metric references to enable reusable computational definitions

references to another graph components such as particular element nodes or lists

thereof

specific values which can be used for constants, scenario parameters, and critical

values

model expression references that enable the incorporation of more complex belief

engines and trust assessments
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Hence, we define an expression as follows.

Definition 4.23 Expression
Let m be a metric, ref a reference to a graph component, v a specific
value and mexp a model expression then an expression exp is recursively

defined as the collection

exp = {{expy ...expr},{mi...my},

{refi...refx},{vi...vn},{mexp; ... mexpr}}

The key here is that by formalizing every expression we can reduce the number of
ambiguous or biased interpretations of trustworthiness assessment approaches suggested
in literature. Furthermore, this allows us to analytically evaluate the impact of param-
eter choices in trust models as part of our framework as we can adjust elements of the
expression tree while keeping the rest unchanged.

An expression consists of a particular tree structure where all child nodes are fully
specified. As such, all tree nodes need to be fully resolved which means that they refer

to specific expressions, metrics, references, values and model expressions. In particular,

e cxpressions refer to specific operations such as addition, summation, etc.
o referenced metrics consist of fully defined expression trees

e references are resolved to particular element nodes and relation edges or described

as relative such as the source and target element nodes of a relation edge

e model expressions have all their parameters specified

In order to describe expression trees we introduce the following graphical represen-

tation.
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Expression 4.1 Expression

We represent an exzpression as’

name O

where name is the type of expression (e.g., add, subtract, equal, etc.).
Note that since there are a variety of operations with a different number
of operands we choose the following convention

binary list operation

unary

o b ST

where expressions are operations which are performed on the particular

child expressions (i.e., unary operation evaluates a, binary operation eval-
uates a and b, etc.). A special type of the basic expression is a constraint.
We can use it to limit the types of element nodes and relation edges by
their unique type name. For example, this can be used to restrict the
application of an expression to only the sensor type. We note this special

expression as

Q

is name type

where name refers to a particular element or relation name.

4.4.2 Values

For every computation there may be values necessary that need to be incorpo-
rated. For instance, many formulas require constants, function factors, and probability

distributions critical values. Furthermore, our framework facilitates the analysis and

Note that expressions always have some graphical representation which we will not denote by a

separate figure number. A list of the expressions is part of the table of contents.
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simulation of a variety of scenarios. Specifically, in our approach expressions are able to
include system parameters which are defined by simulation configurations (e.g., weights,
model expression parameters) such that the same scenario can be evaluated in a variety

of ways using a different parameters.

Definition 4.24 Value

A walue is a term that can be used within an expression tree. There are
two types of values, constants that do not change (e.g., factors, scales,
mathematical constants) and system parameters that depend on the con-

figuration of a particular scenario.
Within our graphical representation we express these concepts as follows.

Expression 4.2 Value

We represent a constant value as

O

value

where value is the term of the constant. On the other hand, system

parameters are specified as

&

name

where name refers to a scenario configuration variable which actual value
will be determined during a particular simulation run. Note that both of

these values are usually leaf nodes in the expression trees.

We are now at a point where we can define a variety of basic computations such as
expressing formulas. Here, we briefly discuss how the FEuclidean distance between two
points in a two dimension coordinate system could be modeled using only expressions

and values.
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Expression 4.3 Euclidean distance

The Euclidean distance between two points is defined as

distance = \/(xl — 562)2 + (y1 — 92)2

where z1 and y; are the coordinates for the first point and xo and yy for
the second one. Since there are only basic computations involved the ez-
pression tree is a direct representation of the mathematical computations
required for the solution.

square root

add

power power

subtract subtract

x] x2 Y1 Y2

4.4.3 References

In order to incorporate components of the graph model into expressions trees we need
to specify what can be referenced and how. In particular, element nodes and relation
edges contain attribute values that we need to be able to refer to because they form the
value basis of our trustworthiness assessments. Furthermore, there are cases when we
need to distinguish between what a reference applies to. For instance, an expression that
yields related graph components of a particular element node could yield the connected

element node or relation edges.

Definition 4.25 Reference

We define reference as an item that expresses the notion of a particular
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graph component. This component could be a particular attribute of an
element node or relation edge. However, a reference can also express a
specific subset or list of element nodes and relation edges. Furthermore,
we utilize reference to distinguish between the source and target nodes
of a relation edge. As such, since we apply an expression tree to graph
components a reference represents the variable part that is different de-

pending on the actual graph component.
In terms of a graphical representation, we introduce the following.

Expression 4.4 Reference

We represent a reference as
-

where name is the particular graph component referred to. For attributes
of graph components we need to distinguish between several cases. First,
we need to be able to reference the most recent attribute value. Second,
for certain computations it is necessary to deal with the entire time series
of attribute values. Third, in order to uniquely identify a particular graph

component we have to be able to relate to its derived id attribute.

O O O

attribute attribute series id

In order to express a subset of graph components we can use a list refer-

ence
name list O

where name could represent a subset or list of graph components. Fur-
thermore, since relation edges consist of two element nodes we need to be
able to distinguish between in expression trees. As discussed earlier, our

approach is to refer to one as the source and the other as the target node.
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source node O target node O

Together with the expressions and values discussed above we can formalize compu-
tations that depend on graph components and attributes thereof. As an example, we

showcase the conversion of the temperature attribute for a particular sensor.

Expression 4.5 Temperature conversion

We can convert degrees Celcius to Fahrenheit using the following formula.
9

where C is the temperature in degrees Celcius to be converted. Apply-
ing this conversion formula to a particular sensor element node with a

temperature attribute is then represented as

add Q

multiply ¢ O
32
C divide

temperature series

9.0 5.0

which would convert all values in the temperature attribute time series

accordingly.

4.4.4 Model Expressions

In order to provide flexibility for implementing complex belief engines and decision
processes our framework provides model expressions. These can be use within an ex-
pression tree to model complex algorithms and approaches that require parameters. In
particular, without model expressions complex expressions would require specific imple-

mentations for each parameter value. This is clearly not feasible.
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inputs outputs

name value name value
value value
expression expression
name value
value
parameters
expression

Figure 4.15: A model expression consisting of a unique name and sets of
inputs and outputs as well as model parameters. Note that all values could
be specified as either value or expression.

Definition 4.26 Model expression
Let I = {i1...in} be a set of inputs, O = {01...0,} a set of outputs,
and P = {p;1...px} a set of parameters where each i, o, and p could be a

particular value or an expression then a model expression is defined as

mexp = {name, 1,0, P}

where name is a unique identifier such that the model expression can be
properly referenced in expression trees. Here, we include all potential
inputs and outputs in the sets. However, this does not mean that give
a specific set of parameters all inputs are used and all outputs will be
created by the model expression. The mapping from inputs to outputs is

based on the parameters.

Note that the distinction between expressions and model expressions allows us to
define flexible and reusable models that can be applied in various application scenarios.

Model expressions can be graphically represented as follows.

Expression 4.6 Model expression
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We represent a model expression as
name .

where name is the unique identifier for a specific model expression. We
follow the same convention that we use for the expressions such that
child nodes of the model expression represent input. However, in order to
specify parameters and differentiate them from inputs we label the edges
accordingly. Hence, model expressions follow the format

name

Ll J.”gggg .!.

value expression

where the edge labels p; ... pg lead to parameters and the inputs 41 ...,
do not contain an edge label. Note that both can be specified as values

or expressitons.

We can utilize model expressions to describe complex algorithms and approaches that
require parameters. Here we show an example of incorporating a probability distribution

into an expression tree to model the relative likelihood of a particular temperature value.

Expression 4.7 Temperature likelihood
Let the expected temperature follow a Normal distribution where the

probability density is defined as

1 _(z=p)?

N(al, 02) =
oV 2w

The model expression requires a set of parameters, in particular, mean,

standard deviation, and type. Here, the type refers to the probability
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density function but others are possible (e.g., cumulative distribution

function, sample, etc.).

Gaussian
standardDeviation type
mean
O O O
70 pdf temperature
10 €

Note that the Gaussian model expression follows the convention described
above where parameters are marked with edge labels and the inputs are
not. The e shown in the mean erpression represents the possibility of

including system parameters in a variety of graph expressions.

4.4.5 Metrics

A metric represents a computable value that can be derived from the abstract graph
model by evaluating an expression on a particular graph component. These metrics
are referenced by a unique name and can be utilized in other expressions as discussed

above.

reference

‘ name H reference | ‘ name reference

| reference
expression ‘ expression ‘ reference

Figure 4.16: A metric consisting of a uniquely identifiable name, an ez-
pression and one or more references.

As shown in figure 4.16 metrics can be applied to single element nodes or relation
edges as well as lists of them. It is important to note that specific metrics only exist

if they are applicable. Therefore, when a metric is applied to a graph component it
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will only yield a result if all components of the expression can be evaluated on it. For
instance, if we try to determine the average temperature over the last 24 hours but the
sensor being evaluated has no measurements in the time period it would not result in
a metric. An advantage of this approach is that the metric acts as both a filter (exists
only if prerequisites are fulfilled) and processing instruction (compute a value based on
the information referenced in the expression) at the same time thus simplifying query
processing.

Using the flexible definitions of expression trees we are able to derive computable
values from graph components which we refer to as metrics. It could be argued that
the notion of metrics could be incorporated into expressions. However, the purpose of
an expression is to define computational processes much like formulas whereas a metric

embodies the application of expressions on various graph components.

Definition 4.27 Metric
Let ref be a reference to a graph component and exp an expression then

a metric is defined as

m = {name, exp,{refi,...,refi}}

where name is the unique identifier of the metrics, exp the root of the ex-
pression tree, and refi, ..., refi the referenced graph components the ez-
pression is applied to. Assuch, m(refi,...,refi) = {exp(refi)...exp(refi)}
is the application of the metric on the references performed by evaluating

the expression on each individually.
The graphical representation includes the expression and the references accordingly.

Expression 4.8 Metric

We represent a metric as
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wame Q)

where name uniquely identifies the metric within our framework. There
are several ways we represent the application of an expression to a par-
ticular graph component. The main difference is between the application
of an expression on a element node and a relation edge where we need to
specify source and target nodes.

target node

reference

apply to apply to

name reference name

reference

expression expression source node

Furthermore, references can be single graph components as well as lists
of graph components which are represented as

apply to
name name list

expression

where the name of the list needs to be specified (e.g., all sensor element

nodes).

With all graph expressions formally defined we will show some examples of how

metrics are fully specified and utilized within the framework.

Expression 4.9 Similar temperature metric
The process of determining whether two sensors have similar temperatures

based on a threshold temperature difference can be defined as

true if abs(t; — to) < threshold
similar temperature =

false otherwise
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where t; and ¢ are two temperatures accordingly. We model the metric
using a combination of expressions, values, and references and apply it to

a relation edge consisting of two sensor element nodes as

target node

Sensor
apply to

similar temperature
Sensor

less or equal source node

absolute value {t}

threshold

subtract

source node target node

temperature temperature

where the temperature difference threshold is modeled as a system pa-

rameter. This allows the metric to be as flexible and reusable as possible.

We can then utilize this metric in a variety of ways. For instance, given a particular
sensor we can determine all related sensors based on whether or not they have a similar

temperature.

Expression 4.10 Similar temperature neighbors metric

In order to determine related element nodes we can use the neighbors
model expression. It takes two parameters. First, an include expression
that filters existing relationships based on whether the specified expression
yields true. Second, an evaluating expression which is applied to the
remaining graph components that were not filtered out. Here, we express
a metric that when applied to a sensor element node gives a list of ids for
the related neighbor element node for which the relation edge determined

a similar temperature.
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apply to

similar temperature neighbors Sensor

Neighbors

evaluatingExpression includeExpression

ElementNode RelationEdge

id similar temperature

4.5 Chapter Summary

In this chapter, we presented our approach to modeling heterogeneous data as well
as belief engines and trustworthiness assessments using an abstract graph model called
Berlin. Specifically, we discussed how to formalize data and express it in terms of
flexible and extensible graph components. These graph components consist of elements
and relations which provide the descriptions for data used in our framework. The actual
data is then stored and processed in element nodes and relation edges that keep track
of values in terms of time instances.

This leads to two different types of graphs. First, the element description graph
contains elements and relations but no actual data. Second, the element instance graph
contains data instances in the form of element nodes and relation edges. Furthermore,
we discussed how we can utilize graph expressions to transform the graphs such that
they model particular application scenarios better by specifying elements and element
nodes of interest.

Attributes can be associated associated with dimension models that enable to mod-
eling of “local” trust aspects such as accuracy and confidence. Dimension models may
be probabilistic or deterministic representations of trustworthiness. They depend on the
context within a dimension such as days within the time dimension or particular areas
within the location dimension. Note that, while time and location variant dimension

models are most prevalent, we show that dimension models are flexible enough to model
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other dimensions as well (e.g., ownership, set of weather conditions, etc.).
Implementations for knowledge processing that incorporate belief engines and knowl-
edge evaluation through decision processes are formally modeled using graph expres-
sions. These expressions are evaluated on graph components which forms the basis for
the knowledge processing and knowledge evaluation phases of our framework. We use
metrics to express computable values that apply specific expressions to a single or a set
of graph components. These expressions are organized in a recursive tree hierarchy that
may include other expressions (i.e., basic computations like add, subtract, and count),
model expressions (i.e., complex computations that require parameters), references (i.e.,
to graph components), values (i.e., constants or system parameters, and metrics (i.e.,

named references to other expression trees).
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The TrustKnowOne Framework
for Incorporating Trust
and Quality of Data into

Knowledge Derivation

Most decision processes operate by evaluating available information and deriving
knowledge or insight from it. While this seems straightforward, in reality we face a
variety of problems which make knowledge derivation and decision making complex and
difficult.

In particular, decisions are often influenced by factors such as past experience with
similar or related problems. This causes decision processes to exhibit subjective rather
than objective and reproducible behaviors. Furthermore, depending on the situation
or context, given the same information different decisions could be made. Constraints

also impact decision processes. Specifically, there are always resource constraints which
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Figure 5.1: Knowledge Derivation framework

require trade-offs. A classic example of this is the need to balance time (i.e., speed,
performance) and space complexity (i.e., storage space, memory, network bandwidth,
etc.) found in almost all applications that require extensive computational power.

It is important to realize that decisions are based on the assumption that the data
we are evaluating is useful and trustworthy. Data quality refers to properties such as
accuracy, completeness, validity, and timeliness which are often assumed to be inherent
[84, 117, 133, 175]. However, these assumptions may not be correct and as such could
have a dramatic impact on decisions being made. Furthermore, pieces of data are
often related or dependent on each other. We need to consider these dependencies,
correlations, and trust relationships between data elements. Trustworthiness represents
the perceived level of confidence we have that a particular data source is collaborative
and behaves according to specification [31, 33, 54, 63, 88, 114, 122, 184]. The problem is
that determining trustworthiness is hard for reasons such as dependencies between pieces
of data, changes in data and resources over time, and resources potentially conspiring
with each other [17, 57, 114].

The TrustKnowOne framework presented as part of this dissertation addresses these
issues as will be described in this chapter. The main focus of our framework is to provide
a formalization of approaches to quantify trust and data quality aspects throughout the
knowledge derivation process and provide a variety of confidence and trustworthiness

assessments for decisions. Figure 5.1 shows an overview of the main components of our
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layered framework.

5.1 Architectural Principles

In order to fully utilize available knowledge for making decisions, we present a layered
architecture with models for various aspects of trust and quality of data. We will discuss
how among others things, context, expected behavior, and relationships of data can be
incorporated to improve knowledge derivation and to allow for better decisions to be
made. In this section, we present an overview of the framework components and discuss
the architectural design principles governing our framework.

At the core, we deal with three different entities that form the basis for decisions:
data, data quality, and trust. Here the term data refers to the structured or unstruc-
tured information we gather from various sources. To achieve our goal of improving
knowledge derivation several challenges must be addressed. Data may be incomplete
or inaccurate, or even worse, someone might have intentionally altered it, i.e., attacked
the data. For some of these problems there are solutions (e.g., digital signatures to
prevent modification) while for others there are not (e.g., how do we know we received
all data?). A further complication is the fact that decisions must usually be made in a
finite amount of time which means we often need to make a decision before all data has
been obtained. The point is that we need to account for these factors when we process
and utilize data.

To overcome these challenges it is critical to determine the quality of data using
auxiliary knowledge such as the information source, historical data, and location infor-
mation. Hence, quality is not something that is absolute but rather relative, changing
over time, and dependent on our knowledge of the context at a particular point in
time. Furthermore, data quality and data trustworthiness are two distinct things. We
may determine that the quality of data is high enough (e.g., based on evaluating the

context and the dimension models), but it might come from an untrustworthy source.
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Sometimes, low quality data that we can trust might prove to be more useful in our
decision making process than perceived high quality data that may be tampered with
some probability. A premise of the our approach is that the combination of the data
itself, its perceived quality, and the trust we put into it and its source will allow us to
make better decisions.

Decision making processes vary in complexity depending on the application scenario.
The reason is that there are essentially two components, the approach on how a decision
is made (decision engine) and the techniques used to process the data and its context
on which the decisions are based (belief engines). Note that our approach makes this
important distinction which is often ignored in literature. Furthermore, we enhance the
overall decision making process by incorporating perceived quality and trust of data into
these belief and decision engines. While this increases the complexity of the framework,
it has the advantage of making the framework more flexible and useful. In particular,
with the same data being available, we can employ different decision methods ranging
from simple (e.g. voting, ranking) to the more complex ones (e.g. Bayesian inference
[44, 69, 100, 126, 128, 158], Dempster-Shafer theory [59, 108, 147, 148, 155], weighting
schemes [63, 108, 113, 146, 182]) to arrive at a decision. In addition, the separation
allows us to evaluate multiple belief and decision engines in order to determine the best
possible decision given all available knowledge. Based on this evaluation process we can
improve on our decision making process in the future.

To address the complex problems described above we break down our framework
into three layers or phases. Each of the phases represents a model of a specific set of

tasks that need to be accomplished throughout the knowledge derivation process.
e The knowledge extraction phase models data sources and their integration

e The knowledge processing phase models data processes and incorporating quality

and trust relationship aspects

e The knowledge evaluation phase models decision making processes
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The focus of these models lies on the development of measurable factors that can
be used to determine the effectiveness and performance of different techniques and
approaches given certain application scenarios. These factors are especially important
for evaluating how these models are affected by knowledge attacks that attempt to
modify data, belief engines, and decisions processes.

Our approach to provide a formalization of the entire knowledge derivation process
and incorporate data quality and trust aspects is based on the abstract graph model
Berlin discussed in chapter 4. In particular, we model every piece of information as a
graph component in order to allow for a flexible, standardized, modifiable, and interop-
erable data management foundation of the framework. Furthermore, data processing
approaches, quality and trust assessments in terms of belief engines, and decision pro-
cesses are also represented by graph expressions. As such, our TrustKnowOne frame-
work provides a formal and flexible approach to knowledge derivation where each layer
addresses specific aspects of the overall process.

Knowledge extraction models the task of formally describing how data is transformed
from data source into graph components of the abstract graph model. In addition, it
considers meta information and context in order to provide “local” quality and trust
assessments. The resulting abstract graph model and these assessments serve as input
to the knowledge processing component where we incorporate more complex quality and
trust assessments that take into consideration context and relationships. Specifically, we
evaluate “global” meta information that depends on aspects such as scenario specifics
(e.g., temperature ranges, dangerous radiation levels) and trust relationships (e.g., sen-
sors in the same location should have similar measurements). Knowledge evaluation
has access to all knowledge modeled in the first two phases. The knowledge evaluation
phase then models decision making as decision processes that are also represented by
graph expressions.

Note that this separation of “local” and “global” information is important for several

reasons. First, it clearly separates what type of context is incorporated in the knowledge
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extraction and knowledge processing components. Second, the process of transforming
data from data sources into graph components needs to be very specific due to constraints
(i.e., type, format). By incorporating “local” assessment into this transformation we are
able to derive meta information in a more meaningful manner. Third, complex quality
and trust assessments should not depend on how data is incorporated into application
scenarios. In particular, our framework provides an abstract graph model as the basis
on which these assessments are derived in terms of belief engines. This avoids imple-
menting techniques that depend on subjective interpretations of the raw data. Finally,
while there exist various quality and trust assessment approaches it is often difficult
to improve them or apply them to a different application scenario. In our framework,
approaches modeled as belief engines are represented by formal graph expression defi-
nitions. Because they are all evaluated on the formal abstract graph model provided by
knowledge extraction component it makes it easy to modify, exchange, and reuse them
in a various scenarios and not just the application scenario they were originally defined
for.

An important benefit of the TrustKnowOne framework is the separation of the pro-
cess of performing quality and trust assessments from the process of making decisions.
Current trust assessment approaches often combine these two which makes their evalua-
tion, comparison, and improvement difficult. Furthermore, our framework allows for fast
prototyping of new approaches as well as evaluating them against existing approaches
because of the formalized nature of the abstract graph model. Another problem seen
in existing literature results from the coupling of assessment approaches with decision
processes. By merging the two, you become tied to particular approaches which may
result in a good assessment technique being paired with sub-optimal decision making
or vice versa. Instead, our framework decouples belief engines from decision processes.
This allows for the evaluation of various combinations of assessment and decision mak-
ing approaches as well as a more detailed analysis to find the optimal pair resulting in

an overall better knowledge derivation processes.
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In general, our framework derives multiple decision options for every scenario. These
decisions include representations of confidence and trustworthiness assessments. Specifi-
cally, the framework provides an assessment of how confident it is in a particular decision
given the knowledge derived from data as well as “local” and “global” assessments of
the knowledge utilized in arriving at the decision. Furthermore, based on user de-
fined thresholds (e.g., in case confidence in a decision it deemed to low) the knowledge
evaluation component can either try to incorporate additional data by requesting it
from knowledge extraction or attempt to improve existing assessments by reevaluating
knowledge and context.

An additional benefit of the TrustKnowOne framework lies in its ability to analyze
and evaluate knowledge attack scenarios. Because our framework incorporates trust
and quality of data as well as formalizes knowledge derivation, we are able to assess
the impact of attacks on data and meta information. For instance, malicious nodes in
sensor networks could provide incorrect measurements (i.e., attacks data) and collab-
orate in an attempt to give other malicious nodes higher trustworthiness (i.e., attacks
meta information). We can evaluate the robustness of trust assessment approaches and
decision processes using several techniques. First, we can simulate scenarios with in-
creasing levels of particular attack activity (e.g., percentage of data compromised) and
compare the assessment results of the trust approaches to a baseline. Second, since
attacks materialize themselves in terms of changes in data and context we are able to
define graph expressions capable of determining the existence of these changes.

In the following sections, we discuss in detail the three components of the framework.

5.2 Knowledge Extraction

The first of the three stages of our TrustKnowOne framework is knowledge extraction.
While this phase is the most straightforward one should not overlook its importance.

Data is often captured in order to be utilized as a basis for decision processes. However,
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when dealing with data we often face problems such as what kind of data is available
or what format is my original data in and does it need to be converted or transformed?
These questions can often be trivially answered if the amount of the data and conse-
quently the amount of knowledge derived from that data is small. However, the need
for a framework like the one developed here arises when we have to deal with large and
complex data as is the case in the radiation detection scenario discussed in section 6.2.

In order to address issues with managing dynamic heterogeneous data, we developed
a framework that is capable of dealing with the various aspects of data modeling and in
particular knowledge extraction from data. Our framework provides a common abstract
data model based on graph theory with nodes representing elements of the data model
and edges the relationships between them as described in chapter 4. Hence, this graph-
ical data representation is able to store information and allows for knowledge extraction
through the definition of patterns that can be matched onto the data graph.

As a first step in the overall knowledge derivation process, we need to clearly define
how data and meta information about the data can be incorporated into our framework.
For this purpose the knowledge extraction component utilizes data adapters which are
responsible for extracting knowledge from data sources as well as providing the frame-
work with the information necessary to assess its trustworthiness and quality. It is
important to note that at the knowledge extraction stage only “local” meta information
is available. In particular, aspects such as context and expected behavior used to assess
quality and trustworthiness are limited to considering meta information about individ-
ual data elements and sources but not their relationships to each other. This clearly
distinguishes the knowledge extraction stage from the knowledge processing stage.

The main purpose knowledge extraction is the extraction of data elements from the
data source and their transformation into equivalent graph components. This compo-
nent also performs “local” assessments by incorporating “local” context and expected
behavior through the use of dimension models and “local” belief engines. The input to

the knowledge extraction component consists of information about the raw data as well
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as its data sources. The result of the knowledge extraction phase is the data modeled
as graph components as well as “local” quality and trust assessments of data and their
sources.

To keep knowledge extraction flexible and abstract we want to be able to incorpo-
rate the implementation of a variety of algorithms and techniques. Hence, we discuss
the following aspects of the knowledge extraction component in detail throughout this

section.

e Providing a formal description of data elements, data sources and their mapping

onto graph components

e Formally describing “local” quality and trust assessments in terms of dimension

models and belief engines
e Maintaining flexibility for a variety of data acquisition approaches

e Providing the ability of incorporate structured and unstructured data into the

knowledge derivation process
e Incorporating dynamic context such as time and location into trust assessments

e Including data lineage by keeping track of how knowledge was derived from a

particular data source as well as how it is processed

e Determining the cost associated with data acquisition and transformation thereby

enabling evaluation and comparison

5.2.1 Knowledge Extraction: Architecture

Approaches such as [51, 62, 135] describe data and relations between data elements.
However, as discussed in chapter 3, they all lack the comprehensiveness to include var-
ious aspects of knowledge derivation necessary such as trust relationships, local value

models, as well as time and location dynamics. Furthermore, one of the goals of our
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Figure 5.2: Data element definition from data source via adapter

approach is to enable the combination of data with meta information such as context,
expected behavior, the process of how it was obtained, and security features (e.g, certifi-
cates, signatures) to further improve quality and trust assessments. Hence, we provide
a formal approach that enables the modeling of data and knowledge derivation in a
flexible and extensible way.

A key aspect of our approach is maintaining flexibility by enabling the addition of
new data and data formats. Therefore, we introduce a data element that represents
the notion of a basic piece of data and its context. This data element may have any
number of attributes. In order to become part of the data model, we define adapters
that capture the particular data and provide a common abstract view of it in terms of
graph components (see chapter 4). This part of the process is shown in figure 5.2.

As part of the knowledge extraction component we need to define the following.
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Data Elements The type of information which is being used in our framework needs
to be formally defined in terms of graph components. This means that data will be de-
scribed by a combination of elements and relations each with their respective attributes.
In addition, meta information such as “local” context, known expected behavior, and
known value constraints is incorporated in dimension models and associated with graph

components.

Data Sources We treat data sources as providers of information in its most basic
form. As such, they may provide values, “local” relationship information, as well as
context for graph components. Since there exist a multitude of data formats it is im-
portant to note that our framework does not provide implementations for each one of
them. Instead, our framework designates this task to be addressed by scenario specific
adapters. However, the key point to keep in mind here is that the main task of the
knowledge extraction component is to provide a unified and formalized representation
of information relevant to application scenarios in terms of the abstract graph model

discussed in chapter 4.

Knowledge Extraction Mapping With both descriptions available (data and data
source), the knowledge extraction phase comes down to establishing mappings from the
data source to the respective graph components in our abstract graph model. This task is
performed by adapters whose implementation can range from simple mappings of values
to more complex transformations and extraction approaches. Note that our framework
provides flexibility in this regard as extracted values can be transformed as part of the
knowledge extraction phase or by utilizing belief engines during the knowledge processing

phase which we will discuss later.

Consider the following example where temperature measurements are captured by
a set of sensors in a custom binary format. Let us assume we are only interested in

analyzing historical information for temperature trends. Hence, all time series temper-
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ature measurements are provided to us in a single file. First, we describe a new graph
component that contains time series information of temperatures. Seconds, we model
the format of the data stored in the file. Third, the transformational mapping is imple-
mented as the adapter which is defined specifically for this binary format and provides
an abstract view of the temperature values that were captured.

Many real work scenarios require an online (dynamic) as opposed to offline (static)
knowledge derivation process because of changes in data and relationships that need
to be incorporated in real time. As such, our framework and in particular the abstract
graph model supports the dynamic definition and extension of graph components as well
as adding, modifying, and removing data modeled as element nodes and relation edges.
By providing this dynamic graph model, we are able to address a variety of application
scenarios in which data and relationship structures are constantly changing as will be
shown in chapter 6. The advantage of our framework is that after this initial knowledge
extraction phase we are able to utilize data in a flexible and common manner within
our abstract graph model.

The second key task of the knowledge extraction component deals with performing
“local” quality and trustworthiness assessments. As the process of extracting knowledge
is only an early step in knowledge derivation, we only have limited information available.
While specific context such as possible temperature value ranges for sensors are available,
more complex relationships such as comparing sensors based on temperature similarity
requires additional “global” context. The main approach in this phase is to assess data
on a “local” level with no complex “global” context such as similarity ranges, distribution
parameters, and scenario specific meta information.

In our framework, there are two options for performing these “local” assessments.
First, we can associate graph components with dimension models that provide context
specific to the type, origin, and value range of data. Second, basic belief engines which
are discussed in more detail in the knowledge processing phase can be used to provide

aspects such as expected behavior assessments (based on analyzing time series infor-
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mation) and comparative information (e.g. same sensor location, lower temperature).
Note that everything that requires some sort of parameter requires “global” context and

thus needs to be part of the knowledge processing component.

5.2.2 Knowledge Extraction: Data Acquisition

Our framework supports a variety of data acquisition models. Here, data acquisition
refers to the process of making data available in the form of data sources. There are
two major types to consider. First, the most common knowledge derivation process
requires only a static data source where data and meta information made available does
not change. This makes knowledge extraction a one-time process. Second, in the case
where data changes within a data source, the acquisition and thus knowledge extraction
needs to be dynamic. Specifically, whenever new data becomes available, we allow
it to be incorporated into the abstract graph model (push approach). Furthermore,
there are cases, such as low confidence in trustworthiness assessments or decisions,
where we may require additional information to be acquired by the data source (e.g.,
sensor, monitoring process) (pull approach). These are important factors in making the
framework presented here flexible and extensible.

Note that a specific use case for dynamic data acquisition involves multi-agent sys-
tems that perform work independently of each other. This allows the framework to
be utilized in application scenarios such as mobile applications, sensor networks, and

intrusion detection systems which are discussed in detail in chapter 6.

5.2.3 Knowledge Extraction: Data Integration

The knowledge extraction component needs to be able to deal with structured and
unstructured data. While structured data may be mapped into graph components more
efficiently, our framework provide the means to effectively incorporate unstructured

data as well. In particular, we acknowledge the fact that data may be incomplete and
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incorrect. For instance, data collected by sensor networks is often clearly defined. How-
ever, free text such as reviews of mobile applications (as discussed in section 6.1), travel
experiences, and medical information often do not adhere to a specific structure but
rather consist of a subset of a large corpus of possible terms (i.e., look and feel, perfor-
mance, permissions; hotels, flights, food; medications, symptoms, diagnoses). Having
to completely define all these terms is impractical.

As such, our abstract graph model supports “non-descriptive” attributes to be dy-
namically added to graph components (chapter 4). This aspect makes our approach
flexible and extensible as will be demonstrated in various scenarios (chapter 6). Specifi-
cally, it allows the framework to model a data warehouse approach where “raw” unstruc-
tured data can be stored using a limited set of attributes and features can be derived
from them as part of belief engines during the knowledge processing stage. It should be
noted that for standardization and compatibility reasons, the focus should remain on
formalizing as much of the data and data sources as possible.

Since our abstract graph model approach provides a flexible solution to managing
heterogeneous data, TrustKnowOne is able to overcome issues that arise from data
integration and information fusion. For instance, we can model various sensor types
with different attributes without having to choose between modeling only common or
all possible attributes (see chapter 3). Furthermore, information fusion is performed
by formalized belief engines during the knowledge processing phase. This allows for a
better approach as meta information such as context and “local” relationships can be

incorporated into the knowledge derivation process.

5.2.4 Knowledge Extraction: Time and Location Dynamic

Data

One aspect that is considered secondary in many data processing frameworks (chap-

ter 3) is the fact that data and context is often dependent on some dimension such
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as time or location. Take for instance the case where a temperature sensor’s accuracy
slowly degrades over time. Furthermore, the possible range of temperature values may
be impacted by the location of the sensor. Our framework enables the formalization of
dimension models that can be associated with graph components to model the impact
of dimensions such as time and location. This provides a more realistic approach to

evaluating data and assessing its quality and trustworthiness.

5.2.5 Knowledge Extraction: Data Lineage

We can group and organize various data elements into data sets by using tags.
The term tag here loosely refers to any type of grouping. This may be ordering data
elements by location or time but it could also be used to create logical groupings such
as correlations or dependencies.

Figure 5.3 shows that data elements can form relationships at various degrees of
abstraction. Specifically, data elements can be associated with particular data sets

which are provided by data sources. For example, a set of sensors provides temperature
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measurements. These measurements can be grouped into location data sets by some
weather monitoring authority. Note that in general, data will be organized hierarchically
as shown in Figure 5.3 because this allows clear levels of abstraction. However, since
the relationship between pieces of data can be quite complex, knowledge can also be
derived by combining data in non-hierarchical fashion.

All of this means that, providing data lineage is often a complex process. Neverthe-
less, our approach incorporates lineage throughout the knowledge derivation process by
associating data with the context of where it originated and how it has been processed.
As part of the knowledge extraction stage, data is automatically tagged by adding an
additional source attribute to each graph component. Because knowledge processing as
well as knowledge evaluation is formalized using graph expressions that are evaluated on
the graph components provided by the knowledge extraction component, our framework

enables the tracing of data lineage and processing.

5.2.6 Knowledge Extraction: Cost Assessments

One of the focus areas of TrustKnowOne is the trustworthiness assessment of data
sources. For this purpose, our framework maintains meta information about these
sources throughout the knowledge derivation process. First, we can associate data
sources with certain data acquisition costs. Here, cost reflects aspects such as timeliness,
completeness, and accuracy. Second, we need to incorporate the cost of the process of
adapting data from data sources into equivalent graph components performed by the
adapters. Third, while the process of “local” assessments is usually performed in parallel
with the transformation of data into graph components we need to account for it. Thus,
the total knowledge acquisition cost is thus a sum of the raw data acquisition costs, the

necessary transformations into graph components, and performing “local” assessments.
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COStnowledgeestraction = COStacquisition + COStirans formation -+ COStL

Incorporating these cost factors into the knowledge derivation process has several
advantages. First, one may have a variety of options available to acquire the necessary
knowledge in order to come up with a decision for particular scenarios. Our frame-
work provides a formal mechanism for determining the cost of each of these options
and as such enables evaluation, optimization, and comparison. Second, sometimes it is
necessary for decisions to be made even with incomplete data (i.e., not all data being
available) due to time or resource constraints. By providing a cost context for data
and data sources we can incorporate data based on the best value or highest quality.
Third, in dynamic scenarios where over time more data is incorporated into the knowl-
edge derivation process, it is important to evaluate cost factors as well. Specifically, our
framework (i.e., knowledge evaluation component) allows for additional data collection
or reevaluation of existing data if certain confidence criteria are not met (figure 5.1).
This reinforcement learning [83, 163] approach of ezploration and exploitation is inher-
ently cost-based since the decision of which steps to take depends on the ratio of their

expected return compared to the costs.

The output of the knowledge extraction phase is the data modeled as graph compo-
nents as well as “local” quality and trust assessments of data and their sources. This

becomes the input to the knowledge processing phase.

5.3 Knowledge Processing
When processing information we often encounter questions such as

e Are certain data pieces correlated?
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e How can one derive knowledge from individual pieces of data?
e Does the combination of multiple pieces of data lead to more knowledge?

In our framework, the knowledge processing component provides way of answering
these questions by formalizing data processing as well as quality and trustworthiness as-
sessments. In particular, we use various techniques to transform data modeled as graph
components and determine aspects such as perceived data quality and trustworthiness.
The abstract graph model discussed in chapter 4 provides a flexible and extensible ap-
proach to describing algorithms and techniques for knowledge processing.

The knowledge processing component provides the ability for processing graph com-
ponents using metrics represented by graph expressions. Furthermore, in this stage, we
incorporate “global” meta information such as expected behavior, history, and other
context to derive additional quality and trust assessments. The knowledge and “local”
assessments derived from knowledge extraction are taken to the knowledge processing
component. The result of the knowledge processing phase is that the graph model is
now augmented with the “processed knowledge”, such as the results of transformations
and the evaluation of graph expressions, as well as additional quality and trust assess-
ments based on “global” meta information, context, and relationships.

In this section, we discuss the following aspects of the knowledge processing compo-
nent. Note that these will also be demonstrated in detail in throughout the scenario

analysis (chapter 6).

e Providing a formal description of data processing techniques in terms of graph

exTPressions

e Describing “global” quality and trust assessment approaches formally using belief

engines
e Incorporating knowledge from sources with different trust aspects

e Assessing trust aspects from “global” context and relationships
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e Maintaining flexibility in terms of how to perform processing and assessment com-

putations

e Including processing lineage through the formal definition of processing and as-

sessments as graph expressions

e Determining costs for processing and assessment approaches thereby enabling eval-

uation and comparison

5.3.1 Knowledge Processing: Architecture

The second stage of the TrustKnowOne framework is knowledge processing. There is
often the need to transform data in order to derive the knowledge we seek. For instance,
individual sales transactions are grouped by product, time, or location which allows
strategic business decisions to be made on a higher level of abstraction. Our framework
enables the use of a wide array of processing approaches through the evaluation of
graph expressions on graph components. As such, simple mathematical approaches can
be incorporated in the same manner that more complex ones can. Furthermore, our
abstract graph model is flexible enough to support a large number of existing techniques
for a variety of application scenarios such as sensor networks and intrusion detection
systems as well as future ones because of its extensible graph expressions approach.

By modeling data and how it is processed as graph components and graph expres-
stons, we provide a unified view of knowledge derivation. The advantage here is that
instead of having one approach for data management and another one for processing,
our framework enables the use of a single paradigm, our abstract graph model. A de-
tailed description of how knowledge processing can be performed using our abstract graph
model is discussed in chapter 4.

In addition to providing an effective way to model the processing of data, we enable
the derivation of complex “global” quality and trust assessments. We can often associate

meta information with data elements. The framework is able to correlate information
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by using meta information (see [124, 147]). Specifically, we are interested in spatial and
time series data as well as information about the process by which the data was obtained
(expected behavior and context) and security features such as certificates and signatures.
One of the major tasks for the TrustKnowOne knowledge processing stage is to evaluate
data modeled by the knowledge extraction component and combine it with additional
meta information. In particular, we incorporate expected behavior [145] such as range,
mean, and variance by associating a distinct probabilistic or deterministic dimension
model with each data element as described in chapter 4.

It has been noted [12, 72, 97] that context awareness such as the semantic meaning
and distribution of data values can often enhance knowledge derivation. Hence, our
framework provides the possibility to evaluate surrounding data elements on tempo-
ral (similar changes over time, sliding windows [11, 27]) and spatial (co-located mea-
surement entities) as well as physical (same data source, dependencies) and logical
(ownership, groupings, signatures, vouchers) levels. Similar approaches discussed in
literature include local structure inference [4, 100] and Markov blankets [130]. Our
framework accommodates these techniques which can be implemented as graph ez-
pressions which enable their reuse, modification, and extension of them in a formal
manner. Furthermore, since trust assessment techniques such as Bayesian inference
[44, 69, 100, 126, 128, 142, 158], Dempster-Shafer theory [59, 108, 147, 148, 155] and
weighting schemes [63, 108, 113, 146, 182] can be described using graph theoretic con-
structs, we are able to map them directly onto our abstract graph model.

Given these approaches, the combination of data, meta information, and trust assess-
ments enables us to derive confidence levels for individual data elements that describe
attributes such as data quality, accuracy, and trustworthiness. Our framework estab-
lishes formalized belief engines to assess quality and trustworthiness aspects of data and
data sources that can be included in the knowledge processing of data. For example,
data below certain quality or accuracy thresholds could be ignored during processing.

Similarly, relationships among data elements (e.g., overlapping and conflicting data)
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can be used to determine trust aspects.

5.3.2 Knowledge Processing: Trust Aspects in Data Fu-
sion

Maintaining trust aspects during the combination of heterogeneous data, often re-
ferred to as data fusion, is a complex problem on its own. In order to derive meaningful
knowledge we not only need to consider the combination of data elements but also in-
corporate any trust aspects associated with them. In particular, Dalvi and Suciu [36]
discusses the problems related to data integration while also having to address trust
issues. First, integrating heterogeneous data with different trust levels means dealing
with potentially conflicting data and trust assessments. Second, trust approaches need
to be flexible enough to allows for future types of data where trust may not have been
clearly defined. We address both of these problems with our TrustKnowOne framework
through the use of graph expressions.

The flexibility of implementing trust approaches as graph expressions enables the
incorporation of a variety of approaches mentioned in literature such as trust level fu-
sion [114] and confidence levels of trust [141]. Note that, while there have been several
approaches [108, 113, 148] directly focused on assessing quality and trustworthiness, the
combination of homogeneous and heterogeneous data with trust aspects remains prob-
lematic. In our approach, processing approaches have direct access to trust assessments
since they part of the abstract graph model and vice versa. This allows for trust aspects
to be incorporated in a way that is not possible in other frameworks. For instance,
one could weight data differently when performing data fusion based on its assessed
trustworthiness.

We can incorporate existing as well as future approaches to trust assessments be-
cause of the flexibility of graph expressions. This allows us to perform fact finding in

“safe” environments where data sources are cooperative and data is of high quality and
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trustworthiness as well as in “dangerous” environments where data sources have diverg-
ing interests and provide incomplete and conflicting data. Data processing frameworks
found in literature can often only handle the first scenario since they do not incorporate
trust with data fusion. What distinguishes our TrustKnowOne framework is that it can
also handle the “dangerous” environments. Some of the application scenarios that our

framework is able to address are discussed in chapter 6.

5.3.3 Knowledge Processing: Trust Relationships Between

Data

While assessing quality and trust aspects “locally” can be difficult, considering re-
lationships between data elements is even more complicated due to interdependencies
and growing complexity. However, [10, 79, 156] make use of a social network approach
to determine trusted resources based on types of relationships and frequency of inter-
action. This provides a good basis for our framework on ways to adjust trust levels and
confidence intervals.

In particular, we formulate the idea to establish “checks and balances” between
the data elements on a global level that evaluate their relationships. One goal of the
knowledge processing component is then to model relationships between data elements
including “global” meta information while incorporating a variety of trust models. In
particular, graph expressions define how trust metrics are processed into data quality
and trust assessments. Because of our abstract graph model approach to managing data,
other potential data dependencies (causality) [15, 44, 125, 127, 128, 151, 158-160]) and
correlations [10, 78, 79, 128, 130, 156] that provide additional knowledge can be explored.

In addition, clustering often provides insight to the relationships between seemingly
disparate data elements. Given the flexibility in transforming element instance graphs
using transformations as discussed in section 4.2.3, we can employ a variety of clustering

[181] and biclustering [106] algorithms to discover these relationships. Note that we are
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especially interested in temporal and spatial ones [28, 34, 73, 138] as will be used in
section 6.2. Another technique that we are able to directly map is pattern matching
[78]. In particular, graph expressions can be used to incorporate statistical (i.e., certain
amount of features match), syntactical (i.e., structural, hierarchical based) and template

matching (i.e., assign pattern to closest template that matches) approaches.

5.3.4 Knowledge Processing: Computational Aspects

Note that our framework in contrast to others does not dictate how processing and
assessment is performed (see chapter 3). We discuss our reference implementation in
chapter 7. Instead, the approaches are modeled as graph expressions that are evalu-
ated on graph components representing data. As such, our framework can work in a
distributed way based on the individual and parallel evaluation of graph expressions
hence overcoming limitations often seen in centralized systems. In the case where graph
expressions include relationships and interdependencies our abstract graph model basis
allows for various forms of clustering to be performed in terms of graph transformations
(see section 4.2.3) to provide clear definitions of computational boundaries.

Furthermore, dynamic application scenarios often require the ability to partially
reprocess and reassess knowledge. Since graph expressions provide formal computational
models they can be evaluated on any range of graph components. Therefore, in dynamic
application scenarios when new data is added or existing data is updated we only have to
reevaluate the graph expressions that are impacted. Note that this can be accomplished
without having to modify the overall knowledge derivation process. The distributed
aspect of our framework also lends itself to the modeling of heterogeneous multi-agent

systems such as radiation (section 6.2) and intrusion detection (section 6.3).
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5.3.5 Knowledge Processing: Processing Lineage

As discussed in the knowledge extraction phase, we associate meta information with
data elements. This includes lineage information on how it was extracted (i.e., data
source, time, “local” context) and how it was transformed into graph components. In
the knowledge processing component, we can attach additional lineage information that
describes how data is processed. Since processing approaches as well as quality and
trust assessment which provides “global” context are implemented as graph expressions,
they are formally defined and allow tracing of lineage.

As an example, consider the calculation of the average radiation level in a region

using several sensors with the following metric.

Expression 5.1 Average radiation level metric

In order to determine related element nodes we can use the neighbors
model expression. Here, we filter sensors based on a same location met-
ric (include expression) and retrieve the radiation values of the sensors
(evaluating expression). Finally, we average the resulting list of radiation

values using a math expression.

apply to
average radiation level Sensor
average
Neighbors
evaluatingExpression includeExpression
ElementNode ElementNode
radiation same location

Let us assume we apply this metric to a list of 10 sensors in the same location where
5 sensors were provided radiation values from data source A, 3 from data source B, and

2 from data source C. We can then associate the resulting average radiation level with
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the appropriate lineage context in absolute (i.e., number of values incorporated from
particular data sources) as well as relative terms (i.e., percentage of impact of specific
data sources). The lineage meta information incorporated during the knowledge extrac-
tion phase is automatically propagated to the result of the metric. The combination of
this with the data source context allows us to weight meta information accordingly.

In addition, we are able to attach context about processing to the result of graph
expressions. This includes the metric that was used to produce the result as well as
the graph components on which the metric was evaluated. Note that, all processing
approaches and belief engines implemented as graph expressions can be annotated with
this type of lineage context. Therefore, our framework improves knowledge derivation by
providing formal definitions of knowledge processing techniques which allow for extensive
tracing of data lineage which results in better informed and more realistic decision

making.

5.3.6 Knowledge Processing: Cost Assessments

Determining cost aspects of knowledge processing is based on assessing the cost of
performing graph expression evaluations on graph components. Since these graph expres-
sions represent both processing and assessment approaches they provide a unified cost
modeling technique based on graph theory (see [15, 19, 127, 128, 157] graph metrics).
As such, the cost of knowledge processing can be expressed as the sum of the processing

and assessment costs.

o global
COStk’nowledgeprocessing = COStprocessing + COStassesgment

Our TrustKnowOne framework enables graph components to be associated with meta
information and context. For the abstract graph model we can use a similar approach
when determining the cost of graph expressions. In particular, every expression within

the expression tree can be annotated with a cost factor. Note that this cost factor can be
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either static (i.e., fixed cost) or dynamic (i.e., based on number inputs and parameters)
depending on the particular graph expresssion used. While static cost factors make
overall cost estimation straightforward, dealing with dynamic cost factors, especially
for model expressions, is more difficult. However, parameterizing those dynamic costs
allows our framework to incorporate them into cost assessments.

The following example shows one approach that can be used by our TrustKnowOne

framework to determine the cost of processing a particular graph expression.

Expression 5.2 Temperature within range metric

In order to determine whether a sensor’s temperature is within a specified
range, we can use a number of mathematical graph expresssions and two
system parameters, the temperature to compare against (threshold) and

the acceptable range.

apply to

within range Sensor

less or equal
absolute value

subtract

temperature threshold

We need to associate cost factors with types of graph expressions. Here, we choose
1 for mathematical computations and 0 for retrieving attribute values from graph com-
ponents and using system parameters. In this specific example we apply the metric to
a set of 10 sensor element nodes.

As shown in figure 5.4, the cost of evaluating a particular expression depends on
the cost factors of its inputs and parameters (for model expressions) as well as its

own cost factor. Note that while we only discussed a limited example of performing
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cost of evaluating metric: 3 x 10 = 30 °

cost of evaluating expression: 3 a

Figure 5.4: Cost assessment for temperature within range metric evaluated
on 10 sensor element nodes

a cost assessment it works for both processing and assessment approaches because our
framework models them both as expression trees.

Since the evaluation of expression trees is performed hierarchically, determining the
cost of these expression trees can be achieved in a similar way as shown in figure 5.4.
This formalization of knowledge processing cost assessments provides a number of advan-
tages. First, it enables the analysis of different approaches found in literature. Second,
because of the modeling as graph expressions to which cost factors can be attached,
processing and assessment techniques can be compared to each other using a common
methodology. Third, one of the problems found in a variety of other approaches is the
lack of formalization which inhibits their modification, improvement, and reuse in other
application scenarios. Our TrustKnowOne framework provides a formal method for cost

assessment of knowledge processing approaches that is flexible and extensible.

The output of the knowledge processing phase is the graph model augmented with
the “processed knowledge” as well as additional quality and trust assessments based on
“global” meta information, context, and relationships. This becomes the input to the

knowledge evaluation phase.
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5.4 Knowledge Evaluation

The third and final layer of our TrustKnowOne framework is knowledge evaluation.
Making decisions is a difficult process. Furthermore, many decision processes do not
even consider quality and trust aspects because they are complicated and their inte-
gration is problematic. However, our TrustKnowOne framework provides the ability to
model various decision processes while incorporating trust and quality of data.

These decision processes are represented by graph expressions similar to the ones
used in the knowledge processing component. This allows one to operate directly on the
graph components and the assessment provided as input by the knowledge processing
phase to derive decisions. As a result of the knowledge evaluation phase, we have a
set of decision options derived by evaluating a decision process on the data provided
by the knowledge extraction and processing phases. These options include confidence
assessments that can be traced all the way back to individual data elements and data
sources as well as cost metrics of the entire decision process. Furthermore, the knowledge
evaluation component provides the ability to increase the confidence in a decision by
either requesting additional data or reevaluating existing data.

In order to provide the functionality described above, we discuss the following aspects

of the knowledge evaluation component.

e Providing a formal description of decision making techniques using decision pro-

cesses
e Incorporating quality and trust assessment aspects into decision making

e Requesting additional and challenging existing data if configurable confidence

thresholds are not reached
e Providing interfaces to other systems (e.g., notification, propagation)

e Including evaluation lineage through the formal definition of decision processes as
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graph expressions

e Determining cost for decision making approaches thereby enabling evaluation and

comparison

5.4.1 Knowledge Evaluation: Architecture

In our TrustKnowOne framework, we model decision processes as graph expressions.
The knowledge evaluation phase provides decision options based on the knowledge and
assessments derived from the previous phases. This includes knowledge in the form of
graph components and “local” assessments from the knowledge extraction component. In
addition, we are able incorporate additional processed knowledge (i.e., knowledge as the
result of processing of knowledge) and “global” assessments derived by the knowledge
processing component. Knowledge evaluation is able to utilize a variety of decisions
processes to evaluate this knowledge and determine the possible decision options.

Note that our evaluation approach follows the decision principles outlined by Pearl

[126] which we incorporated into our framework as follows.

Rational Criteria We provide measurable factors in terms of quality and trust as-

sessment metrics based on which a particular decision can be chosen over another.

Flexible Specification Our abstract graph model provides a unified and formal ap-
proach to modeling data, knowledge derived from data, and uncertainty (i.e., quality,

trust) assessments.

Efficient Algorithms The knowledge evaluation part is able to base decisions on the

rational criteria, data model, and assessments through the use of graph expressions.

Since decision processes are implemented using graph expressions we are able to
model various simple (e.g., voting, ranking, weighting) as well as complex decision

making (e.g., Markov decision processes [137], ensemble classifiers [153]). Note that
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this approach represents a natural extension of the processing techniques used in the
knowledge processing component.

It is important to point out that our framework does not require a decision to be
based on only a single quality or trust assessment approach. Instead, the TrustKnowOne
framework incorporates ideas from ensemble learning [119, 134, 165] and consensus
learning [12, 55, 116]. The former combines a set of topic specific techniques into
a larger decision engine while the latter deals with changes in time and topology as
found in dynamic scenarios. The flexibility of our abstract graph model allows decision
processes of any kind to be incorporated. Since they are graph-based, approaches such
as generic aspects [81], valuations [150], evidential networks [14] and expected outcome
[13] which are frequently used in business applications are a natural fit for our abstract
graph model.

Furthermore, knowledge evaluation incorporates trust and quality of data into the
decision options. In particular, our framework provides a flexible knowledge evaluation
approach that combines knowledge and assessments in ways ranging from simple voting
or quorum schemes to complicated formulas that require a large number of parameters.
Note that the knowledge evaluation component has access to all data managed in the
abstract graph model as well as meta information and assessment metrics provided by the
belief engines of the knowledge processing component. This allows us to enhance decision
processes significantly by enabling context and various quality and trust assessments to
affect decision making. For instance, decision processes have the ability to focus on high
quality data or ignore data with low trustworthiness. While the specifics may depend on
the particular decision engine used, our framework makes additional meta information
available to be incorporated.

By extension, the decision of whether a data source is providing high quality and
trustworthy data can be based on the assessment of data quality and trustworthiness
of the individual data elements used in the decision. Furthermore, the knowledge eval-

uation component is able to maintain a history of previous decision options thereby
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allowing iterative improvements of decision making approaches.

5.4.2 Knowledge Evaluation: Requesting Additional or Chal-
lenging Existing Data

An important aspect of our framework is its ability to deal with changes in dynamic
environments. Hence, the knowledge evaluation component needs to be flexible enough
to address these changes (see [54, 57]). In particular, we provide the ability to ask for
more data and perform challenges on existing data. As discussed earlier, this incorpo-
rates reinforcement learning [83, 163] into the TrustKnowOne framework. For instance,
requesting additional data can be performed selectively by evaluating cost metrics of
data sources and determining the one with the best estimated return. Furthermore,
there are often multiple approaches to combining available information and deriving
knowledge from it. Therefore, knowledge evaluation could also adjust which quality
and trust assessments it incorporates as part of the decision process. This means the
application of different or improved belief engines such as choosing more complex ones
to increase decision confidence.

Since we provide confidence assessments with every decision option, thresholds can
be used to determine which action to take. For example, within intrusion detection
systems one could apply our framework in a manner where additional data is requested
from the monitored resources until the decision of whether they are trustworthy or have

been compromised can be made with a certain level of confidence.

5.4.3 Knowledge Evaluation: Interfaces to Other Systems

Knowledge derivation processes are often part of a larger system designed to solve a
scenario specific problem. For instance, determining which resources have been compro-
mised in an intrusion detection system should trigger notifications to relevant parties

and countermeasures from the system administrators. Because of the flexibility of our
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abstract graph model where graph expressions are used to perform a variety of functions
(e.g., knowledge processing, belief engines, decision processes), one could associate cer-
tain administrative graph expressions with appropriate actions to be executed. Since
knowledge evaluation provides a set of decision options with confidence assessments,
these graph expressions can be used to trigger various notifications based on config-
urable confidence thresholds (e.g., anomaly detection, outlier notification). In addition,
this approach allows queries from other processes (i.e., control systems, business logic)
concerning decision confidence, processed knowledge, and trustworthiness of data in-

cluding its sources which enhances the usefulness of the TrustKnowOne framework.

5.4.4 Knowledge Evaluation: Evaluation Lineage

As discussed in the knowledge extraction and knowledge processing components,
it is important to keep track of meta information about where data originated and
how it was processed. Since decision processes are implemented as graph expressions
similar lineage information (i.e., metric, graph components used) can be attached to the
resulting decisions.

Lineage allows for a key aspect of knowledge evaluation which is the ability to de-
termine the impact and relevance of specific data elements. In particular, we will base
our approach on the idea of minimum redundancy where data should be reasonably
separated in terms of their contribution and mazimum relevance which means that only
measurements with the highest relevance should be included [131].

This approach has several advantages. First, it allows the framework to perform
knowledge and assessment model reduction which reduces complexity and increases
performance by including only a subset of the original graph components in the knowl-
edge evaluation component. Note that similar approaches include principal component
analysis [111]. However, one of the problems with reducing the amount of knowledge and

assessments is that it can potentially decrease the overall quality of the decision. Second,
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knowledge evaluation is able to optimize decision processes. By providing the formal
descriptions of decision processes our framework enables evaluation and comparison of
decision approaches. In particular, techniques such as maximum likelihood estimation
[3] can be used on sample knowledge and assessment distributions to determine suitable
parameters for decision processes as well as overcoming problems with partial evidence
during the decision making. Third, given the extensive lineage information provided
by the knowledge extraction and knowledge processing components we can determine
the usefulness of certain data sources which in combination with cost assessments al-
lows them to be evaluated and compared. This aspect can prove extremely valuable in
resource constrained (i.e., cost, time, performance) as well as dynamic scenarios (i.e.,

determining from which data source to request additional data).

5.4.5 Knowledge Evaluation: Cost Assessments

Since decision processes are modeled as graph expressions we use a similar cost
assessment approach to the one performed by the knowledge processing component.
In particular, parts of the decision processes can be annotated to include cost factors
representing aspects such as resources and time required to arrive at a decision. As
discussed in the architecture, knowledge evaluation is able to incorporate requests for
additional and challenge existing data. Because both of these costs are usually dynamic
the resulting cost factors need to include parameters to reflect this. Hence, the cost of
the knowledge evaluation is the sum of the decision process as well as any addition data

requests or challenges that need to be performed as part of the decision making.

additional challenge
COStknowledgeevaluation = COStdecision + COStdata + COStdata

The formal representation of decision processes using graph expressions provides
advantages similar to the ones discusses in the knowledge processing. First, we are

able to perform a detailed cost analysis of individual decision techniques. Second, the
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formalization as graph expressions allows for comparison based on cost factors. Third,
decision processes can be reused in different application scenarios and in order to improve
decision approaches, adjustments can be made by simply extending graph expressions
in order to achieve better cost factors.

The overall cost of performing knowledge derivation is the sum of the costs of the

individual framework components.

COStknowledgedeTivation =

COStknowledgeextraction +003tknowledgeprocessing + COStknowledgeevaluation

Note that our TrustKnowOne provides a complete cost assessment approach that
includes all aspects of knowledge derivation. Specifically, our formalization allows for in-
dividual approaches (i.e., extraction, transformation, “local” and “global” assessments,
processing, decision making) to be evaluated, compared, and improved. Since our Trust-
KnowOne framework provides a clear separation between individual phases, the com-
binations of different approaches, especially in terms of belief engines with decision
processes, can be evaluated in detail in order to find the best possible for a particu-
lar scenario. Furthermore, using parameters in cost factors enables our framework to

perform cost assessment in both static and dynamic environments.

5.5 Evaluation of Model Vulnerabilities

Our TrustKnowOne framework provides a formal approach for knowledge derivation
that incorporates trust and quality of data. Given the fact that there is an overabun-
dance of different decision and assessment techniques all with their specific strengths
and weaknesses, it becomes crucial to assess the impact of attack models (see [162, 180])

in order to choose a combination of approaches that is fair, reliable, and secure. There-
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fore, we need to distinguish between operational system impairments that are random
and the assumption that correlated changes (possibly across time and space) in data
are often part of an attack.

In general, attack scenarios can affect two parts of our framework, data and context.
In particular, within the knowledge extraction phase, we face the problem of malicious
or compromised data sources and incorrect “local” meta information. As the knowledge
processing phase depends on this data from knowledge extraction in terms of graph
components, it is indirectly affected by any attack scenario. Furthermore, malicious
“global” information could be incorporated at this phase. The knowledge evaluation
phase is also indirectly affected since its decision processes are based on the data as well
as assessments provided by the previous phases.

One of the advantages of our framework is that it enables the evaluation of different
attack models (see [162, 180]) on an individual approach (i.e., belief engine, decision
process) as well as the entire knowledge derivation process. In particular, we determine
the robustness of approaches based on their ability to perform their respective function
(i.e., processing, assessment) with and without an attack present. In case of an indi-
vidual approach we take the result of no attack as a baseline and compare it against
the results achieved during various attack scenarios. As for the evaluation of the en-
tire knowledge derivation the process is similar while the baseline is represented by the
decision options available when no attack is present.

Using the robustness metrics in combination with cost assessments we can compare
the relative value and robustness of different schemes in various scenarios (e.g., [54, 57,
99, 122]). Note that, since all the decisions are ultimately based on some data, we can
evaluate the impact of missing, inaccurate or purposefully modified information using

the approach discussed above.
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5.6 Chapter Summary

The value and novelty of the TrustKnowOne framework lies in its formal descrip-
tion of knowledge derivation and assessment. We utilize the flexibility of our abstract
graph model Berlin to manage heterogeneous data. Furthermore, processing as well as
performing assessments are formalized as graph expressions that are evaluated on the
abstract graph model.

Our framework is divided into three phases, each with their clear responsibilities and
boundaries. Knowledge extraction provides an adapter approach to data acquisition that
transforms raw data into graph component equivalents. Furthermore, it assesses data on
a “local” level that does not require additional context. Knowledge processing enables
the implementation of processing approaches as graph expressions in order to derive
additional derived knowledge. It also incorporates belief engines which purpose is to
model “global” assessments that includes relationships. Knowledge evaluation provides
the ability to arrive at decisions using decision processes with various data, processed
data, “local” and “global” assessments available as basis.

For each of the components there are a number of aspects that make the framework
stand out from regular processing approaches found in literature. TrustKnowOne is
capable of dealing with dynamic environments by allowing various data acquisition
models, requesting additional data from data source, and challenging existing data. In
addition, the framework provides formal means to integrate data from different sources
with varying levels of trust.

The use of graph expressions to model approaches enables the formal description of
belief engines for assessments and decision processes for decisions thus enabling eval-
uation and comparison. Furthermore, graph expressions can easily be computed in
parallel thereby ensuring scalability. One of the main benefits of our approach is the
way the framework provides lineage information and cost assessments by annotating

graph components. As such, our TrustKnowOne framework is able to improve knowl-
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edge derivation through the use of an abstract graph model on which graph expressions

representing knowledge and assessments are evaluated.
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Scenario Analysis

The proposed framework will be of value to many applications such as sensor net-
works, participatory sensing, smart grids, cloud computing, and health care. In each
of these cases data is obtained from geographically distributed heterogeneous sources,
data is then processed and decisions need to be made. However, managing and integrat-
ing data from distributed heterogeneous sources as needed in these types of scenarios
presents a variety of problems.

In the previous chapters we presented the TrustKnowOne framework which allows
trust and quality of data aspects to be incorporated into knowledge derivation processes.
Here we present its application to three distinct scenarios. As part of the discussion we
will highlight how our approach exhibits both the formalization and flexibility neces-
sary to model each of the realistic scenarios. These scenarios are used to confirm the
advantages of the TrustKnowOne framework over current approaches.

We focus our analysis on the following representative and realistic scenarios. The
selected scenarios and their implementations are realistic in terms of being geograph-
ically distributed, exhibiting time dynamics, and consisting of large and diverse data

sets. First, we discuss how we can evaluate the trustworthiness of Smartphone Apps
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by incorporating a variety of relationship and context assessments. We show that this
approach yields a significant improvement over current methods that are based on basic
App attributes [95]. Our data set for this scenario contains a total 11326 Apps, 790940
reviews (651801 with text, 139139 without) as well as 134 different kinds of permissions
captured in July 2012. For this purpose we developed a web crawler to pull the real
and rich App attributes out of Google Play (Android Market). As such, our data is a
diverse representation of realistic data with complex attributes and relationships.

Second, we apply our framework to distributed collaborative sensing in the domain
of radiation detection. Here, we deal with changes in sensor values over time as well as
complex relationships between them. In particular, we combine data from three data
sources amounting to &~ 2.5 million time stamped data points over the course of nine
months which are geographically distributed across Japan. Two of the data sets were
provided by the International Atomic Energy Agency [75] whereas the third data set
from Safecast [144] represents measurements taken from thousands of people in a col-
laborative sensing effort. As such, the Safecast [144] data represents a challenging data
set in terms of correlating related measurements, a common challenge in collaborative
sensing environments. Thus, the measurements captured in the three data sets provide
a realistic basis for evaluating our framework.

Third, intrusion detection provides a dynamic and challenging environment for
knowledge derivation because there exist a wide variety of approaches to determine
trustworthiness of system nodes. We discuss how our framework is able to formalize
one approach [54] in order to be able to compare and evaluate it against a number of
attacks. Our evaluation involves simulation of several dynamic systems with up to 60
nodes generating ~ 9000 time stamped test messages over 75 days. The scope of this
scenario is realistic for demonstrating the effects of a variety of attacks and evaluating

trust assessment approaches on intrusion detection systems.
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6.1 Trusting Smartphone Apps

Smartphones are becoming the mobile hubs of information for many people and
companies. What started as a way to provide users with the flexibility of installing
small software components called Apps to enhance the usability of their phone has grown
into a global market with hundreds of thousands of applications built by thousands of
developers. However, while there are plenty of well established companies developing
useful applications or entertaining games there is no easy way to differentiate them from
companies that put users at risk or worse are directly distributing malware or spyware.

One attribute that is often used in distinguishing “good” Apps from “bad” ones are
their ratings. Nevertheless, research has shown that this can prove to be an unreliable
metric, especially in cases with low rating counts. Reviews are also supposed to provide
the user with an assessment of an App’s trustworthiness by real people. However, fake
reviews written by collaborators of the developer or the developer himself are common
to boost an App’s ranking. How is the average user able to distinguish between real
and fake reviews? Finally, Apps run inside a security sandbox and need permissions to
interact with the smartphone and the data stored on it. The problem is that users are
usually not aware of what specific permissions mean or why they need to be granted.

I we present a trustworthiness assessment model for Apps that takes

In this scenario
into consideration these factors as well as others to provide the user with an indication
of whether an App can be trusted and if so why. Furthermore, the model incorporates
various relations between Apps and we discuss whether or not they should have an
impact on the individual App’s assessment. The research demonstrates that in order to
make a decision to install an App one has to consider more than just App information

and look into its associated meta data as well. The TrustKnowOne framework presented

in chapter 5 enables the modeling of the smartphone App trustworthiness scenario

LA version of this scenario was published in Martin Kuehnhausen and Victor S. Frost. Trusting
Smartphone Apps? To install or not to install, that is the question. In 2018 IEEE International Multi-
Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support, 2013
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discussed here.

6.1.1 Trusting Apps: Overview

Until recently personal information was stored on users’ home computers and busi-
ness information was stored on company servers. Each had developed certain mech-
anisms to secure their information. Users set up passwords, firewalls and antivirus
scanners on their machines and companies employed virtual private networks, sophisti-
cated access control and intrusion detection systems. While this has not changed much
over the past years, what has changed is that information has moved from these “pro-
tected” areas to mobile phones. Phones have made the transition into smart devices
that are powerful enough to perform various functions that used to be limited to per-
sonal computers, laptops or servers. Furthermore, what used to be separated, personal
and business information is now mostly merged on a single device which causes secu-
rity issues. While some solutions have been developed in order to protect personal and
business information, most notably virtualization of multiple systems on a single smart-
phone [7], other areas such as the protection [45] and control over cloud and mobile data
remain problematic [56]. Furthermore, there is a recent initiative to use smartphones
as payment methods replacing credit cards such as Google Wallet [61].

One of the major threats for information stored on a smartphone are Apps that the
user installs. While many of them are used to extend features of the phone and make
it more usable or efficient, others may be malicious and only interested in harvesting
information [48]. The problem is that there is often no clear distinction between the
two, e.g., some Apps provide useful features while also collecting a lot of information.

The domain of mobile phone applications is inherently dynamic with changing App
attributes, relations and trust assessments as well as external context in the form of
meta about the Apps from other sources. Thus the App domain is well matched to

our trust framework which was initially outlined in [96] and discussed in detail as part
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of this research that allows for knowledge extraction, processing, and evaluation while
incorporating quality of data and trust.

We use three common approaches to evaluating perceived trust in Apps — ratings,
reviews and permissions — that when taken into consideration on their own they are
flawed. Therefore, as part of this dissertation we propose several trust assessments for
the approaches and show that the evaluation of basic App properties in combination with
these assessments can be useful. In particular, we discuss why each of the assessments
is necessary and evaluate their impact on the trustworthiness of a Apps as perceived by
the user.

The goal here is to make the user aware of any trust issues related to an App by
providing confidence metrics for its attributes because it improves the overall decision
process of whether or not to install an App. It is out of the scope of this discussion to
determine if an App is malicious or spyware as discussed in [132]. This determination is
hard since, as stated earlier, many Apps provide useful functionality while also exposing
private information (requesting read access to contact lists, calendars and social network
accounts, etc.). However, we develop metrics that can be used to alert users to take a

closer look at questionable Apps.

6.1.2 Trusting Apps: Framework Modeling Approach

Determining if Apps are trustworthy or not is a large scale data mining problem
since the number of Apps available is large (>500,000) and relationships between them
complex (similar set of permissions, one person reviewing multiple Apps, etc.). How-
ever, we propose to utilize a graph modeling approach where Apps and other related
information such as reviews and permissions are represented as nodes which allows us
to describe the various relationships as edges in a graph. This approach makes it easy
to traverse and correlate information by choosing a particular App and limiting the

number of related items (hops in graph terms) to consider.
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As stated above it is important to look at the information available directly such
as average rating and the number of reviews. However, also evaluating meta data like
whether a review is positive or negative or whether the App’s permissions requested are
reasonable may yield a better overall trustworthiness assessment. The problem is that
retrieving and utilizing this information is more complicated. For example, we could
assess the perceived sentiment of a review by the appearance of keywords (e.g., good,
great, bad) and the risks of a set of permissions by comparing them against other App’s
within the same category. However, in order to do this we need a flexible framework
that allows us to incorporate relationships between Apps, reviews and permissions as
well as meta information such as sentiment and rankings (position in Top Free, Top
Paid, etc.) into trustworthiness assessments.

Here, we have applied the TrustKnowOne framework which is able to extract, pro-
cess and evaluate knowledge and complex relationships from data that incorporates trust
and data quality assessments. First, we describe all relevant elements and relations to
be included in a graph model. Second, one or more belief engines modeling trustwor-
thiness are defined. They are able to utilize data from the graph model as well as meta
information to provide confidence assessments. Third, one or more decision processes
can use data from the graph model as well as incorporate confidence assessments from
the belief engines. Here, we show its application to determine the trustworthiness of
Apps.

A key element of the framework is the definition of metrics which can be thought
of as “computable” items derived from the graph model and meta information. Belief
engines and decision processes can be described using such metrics, which allows us to
abstract processing and evaluating knowledge in a formal way that avoids having to
deal with domain specific models. However, we need to be aware that sometimes data
is incomplete. Hence, we can only compute metrics for data values that exist. In the
case that values used to compute a metric do not exist, the metric itself does not exist

for these values. It is important for the decision engine to factor in those missing values
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and the existence of metrics as they could potentially skew the overall assessment.

We developed a web crawler to retrieve information about Apps from Google Play
(Android Market). In particular, we extracted the top 100 Apps in each of the 30
categories and their respective collections (Top Free, Top Paid, Top Grossing, etc.) in
July 2012. Because of some overlap (the same App could appear in multiple collections)
our data set contains a total 11326 Apps, 790940 reviews (651801 with text, 139139
without). There are 10444 Apps with permissions and we discovered 134 different kinds
of permissions overall.

Using this data set combined with a goal of trust assessment we will demonstrate

the following aspects of the TrustKnowOne framework for this scenario:

e Modeling heterogeneous data (Apps, categories, reviews, permissions) and rela-

tionships in our abstract graph model (section 4.1)

e Formalizing confidence assessments for App attributes using context and expected

behavior as belief engines (section 5.3.1)

e Representing decision making as formal decision processes with the option of

whether or not to incorporate confidence assessments (section 5.4.1)

An overview of how the scenario relates to individual components of our framework
is shown in figure 6.1.1. Here, we introduce these components which we will discuss in

detail throughout this section.

Knowledge Extraction In this scenario we model relevant smartphone entities such
as Apps, categories, reviews, and permissions. Here, we utilize the web crawler described
above to create a data set at a particular time instance. While it is possible to run the
crawler at different times thus creating time series information for Apps we focus our
discussion on one particular instance. As such the element instance graph is a static

representation of Google Play (Android Market).
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Figure 6.1.1: Framework overview for the trusting smartphone Apps sce-
nario

Knowledge Processing We take into consideration context and expected behavior
(e.g., ratings distributions, word dictionary, sentiment database, permission knowledge
base) in order to derive confidence assessments for the App’s rating value, reviews
and permissions. In particular, belief engines showcase deterministic and probabilistic
approaches in determining trustworthiness and quality of data. As a result we provide
a variety of assessment that can be combined with basic App information to make

decisions about trusting smartphone Apps.

Knowledge Evaluation Using the confidence assessments derived by the knowledge
processing phase we have various options to incorporate them into the decision making
process. Here, we compare two approaches. The first one, does not utilize confidence
assessments and yields a trustworthiness assessment based only on the App attributes.
However, the second approach relates them to the respective attributes thus enabling
decision engines to form better decisions. We compare these approaches and discuss why

the latter provides a better representation of the state of trusting smartphone Apps.

Next, we present a detailed analysis in which aspects of the scenario are related to

the TrustKnowOne framework.
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Figure 6.1.2: App element description graph
6.1.3 Trusting Apps: Knowledge Extraction

Smartphone Apps have a variety of properties and while most users are aware of basic

ones such as the average rating or number of downloads they pay less attention to others

(e.g., number of ratings, number of one star ratings, etc.). In addition Apps can form

complex relationships with other Apps as well as categories, permissions, and reviews.

This needs to be modeled accordingly if one is to derive trustworthiness assessments for

Apps.

The abstract graph model we propose is shown in figure 6.1.2 where the key com-

ponent is the individual App element. The App domain there are a variety of attributes

which we can broadly classify into

informative author name, description, name
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less relevant date published, number of downloads, price

relevant rating count, average rating value, number of one to five star ratings

Specifically, we will focus our trustworthiness assessment on the relevant attributes
and will incorporate only those into our discussion of this scenario. Package names
(e.g., com.google.android.apps.maps for Google Maps) are used to uniquely identify
Apps. Categories are used to group Apps and we model them as elements that are
identified by a name. The relationship between an App and its Category is expressed
by the app-category relation.

Every App has some extended information associated with it. In particular, the
Permissions it requires and the Reviews that were made of it. Permissions contain a
label used to identify it, a description providing additional information, and a level which
can either be safe or dangerous. The user installing an App needs to specifically request
seeing safe permissions whereas dangerous permissions are automatically prominently
displayed. Reviews describe user feedback for an App. It is actually a combination
of rating and textual review. Thus, every Review has a rating but not every Review
contains text. While there are a number of other attributes such as author, date, device,
title, and wversion our focus is on the rating and text attributes. Since a Review is always
associated with an App its unique identifier is a composite of a review id and the App’s
id. We model relationships accordingly by introducing app-review and app-permissions
relations.

Note that here we only discuss elements and relations relevant to our trustworthiness
approach (figure 6.1.2). Other components of the abstract graph model such as other
elements (e.g., Badge, PermissionGroup, Collection), additional attributes (e.g., file
size, software version), and more complex relationships (e.g., also installed, also viewed,
same developer) are present but not considered in the initial trustworthiness approach
we present here. However, the flexibility of the proposed framework facilitates their

inclusion in the future.
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Permission Permission

app-permissions app-permissions
id }—| ( ) id }—| | ( )
label level label level
@2012-06-27 | view Wi-Fi state safe @2012-06-27 |  read contact data dangerous
app-category
Category Q App
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Review Review
id :I id
appld id rating appld id rating

@2012-07-10 | com.google.android.apps.maps | 037547456199 4.0 @2012-07-04 | com.google.android.apps.maps 09335644791 2.0

Figure 6.1.3: App element instance graph example for Google Maps

Figure 6.1.3 shows a subset of the data that is being modeled. For clarity’s sake
we have chosen only a few relevant attributes to be displayed. In particular, we have
a Google Maps Android App element node with the rating count (number of ratings)
and rating value (average rating) attributes. We show two Review element nodes with
their rating attributes. Note that these element nodes make use of a composite id as
specified above. They are connected to the App using the app-reviews relation edge
accordingly. Furthermore, two example Permission element nodes with varying level
states are shown. We express their relationship with the App as app-permissions relation
edges. The Travel & Local category element node is interesting as it only has the name

attribute. It is connected via the app-category relation edge.

6.1.4 Trusting Apps: Knowledge Processing

As part of this dissertation we propose a number of trustworthiness assessments
ranging from 0% to 100% for App attributes. In particular, we consider assessments of
ratings, reviews and permissions as well as relationships between Apps. We will discuss

how they can be utilized and why they are necessary in determining an App’s trust.
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6.1.4.1 App Ratings

Of the several attributes that users look at when considering installing an App is
its rating (on a 1 to 5 star scale). However, the often used average rating score is not
necessarily a good indicator [29] because it is usually large, in our data set the average
rating is 4.2 with a standard deviation of 0.64. Here, we discuss two ways of measuring

the confidence a user should have in the average rating.

Number of Ratings As the number of ratings grows so should our confidence in the
meaning of the average value. We have two options to derive at such a measure. On
the one hand, we can compute the sample standard deviation s of the 1 through 5 star
ratings and use this estimate to determine the standard error SEz. On the other hand,
we propose to use the Student’s t-distribution which does not require a known standard
deviation and approximates a normal distribution as the degrees of freedom approach

infinity. This allows us to propose a confidence metric using only the number of ratings

n as
0 ifn<6
C#trating (1) = ST (6.1.1)
vn—1
where

ST(n) = CDFyL, 1)(0.975) (6.1.2)

is the value of the inverse cumulative distribution function of the Student’s t-distribution

with n — 1 degrees of freedom at a two-sided 95% confidence interval with
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. -1
Tim CDFg} ., 1(0.975) = 1.96 (6.1.3)

representing a sample estimation of the standard deviation approaching normal distri-
bution. Hence, for very large n the proposed metric can be related to the standard error

as

lim =~ = = SE; (6.1.4)

One can easily see that using the Student’s t-distribution is preferable because the
standard deviation for a low number of biased ratings would yield an undesired high

confidence. For example, 10 five star ratings give s = 0 and ST(10) = 2.262 which

S

V10
1-— :9/1% = 24.6% for the proposed approach. Note that the Bayesian rating in [29]

results in a confidence indicator of 1 — = 100% for s and a confidence indicator of

could also be used to adjust the value of the rating. In terms of our abstract graph

model we have:

Expression 6.1.1 cyrating

The confidence in the number of ratings cu,qting is expressed using the
sample size confidence model expression. It is based on equation 6.1.1
and here we apply it to the rating count attribute of an App.

apply to
Cotrating App

SampleSizeConfidence

ratingCount
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Figure 6.1.4: Examples of rating distribution types
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Ratings Distribution Type Figure 6.1.4 shows a variety of distribution types pos-
sible for App ratings. They are important in determining the meaning of the average

rating for an App. In particular, we need to consider the following cases:

Unimodal The average rating is a reasonable reflection of the App’s quality where

the majority of ratings fall within the range of the average rating (Figures 6.1.4a-6.1.4d).

Uniform The ratings do not have a meaningful separation (trending towards good
or bad) and hence, the average is not an accurate interpretation of the overall ratings

(Figure 6.1.4¢).

Bimodal The ratings fall into two extreme categories (usually really good and
really bad). This is troublesome since the average rating is a deceiving reflection of the
App’s quality (Figures 6.1.4f and 6.1.4g).

We propose the following weighted means difference algorithm to discover bimodal
trends in these distributions. The result is a metric of how close the distribution is
to either one or two constants. Note that, since we are only interested in discovering
a trend we do not need to separate uniform and symmetrical bimodal distributions.
However, in order to make this distinction one could use Shannon’s information entropy
[149].

Here, we develop a weighted means difference algorithm to ratings distributions but
it can easily be generalized to other discrete or continuous distributions. Some resulting
measures are shown in table 6.1.1.

First, we separate the n ratings into the following sets
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Table 6.1.1: Result of the weighted means difference algorithm for ratings
distributions (number of 1-5 stars)

Difference Distribution

— 0.0 constant
~ 0.25 unimodal
1.0 uniform or bimodal
~ 1.5 bimodal
— 2.0 two constants
R = {7“0,... 7TTL} (6.1.5)

Ry = {ro,...,ralr = s} (6.1.6)
Ripw = {ro,...,ralr € {1,2,3}} (6.1.7)
Rpigh = A{ro....,ma|r € {3,4,5}} (6.1.8)

where r; is the i rating in stars and |R| = n. The average rating is calculated as

R==>"r (6.1.9)
ri€R

SRS

Second, we consider the following special cases:

|Riow] = 0 There are only high ratings (four and five stars) and the distribution
is either skewed left normal or a constant. Hence the weighted means difference only

depends on the high ratings
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|Ry4| X abs (R - 4)

d(R) =
wmd(R) -
|R5| x abs (E— 5)
(6.1.10)
n
|Rhigh| = 0 There are only low ratings (one and two stars) and the distribution

is either skewed right normal or a constant. Hence the weighted means difference only

depends on the low ratings

|R1| x abs (R— 1)
n
|Ro| x abs (R - 2)

n

wmd(R) =

(6.1.11)

Third, we calculate the average of the lower and upper ratings sets

— 1
Riow T 2 T (6.1.12)
‘ lO’UJ| 7'7.'61%10111
— 1
Rhign Bnion] Ti (6.1.13)
highl i€ Ryign,
and factor in the number of ratings in each of them
’Rlow|
wy = 6.1.14
o ’Rlow| + ‘Rhigh| ( )
R .
Whigh Frigh] (6.1.15)

’Rl0w| + |Rhigh|

to derive a weighted means difference with respect to the overall average rating
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wmd(R) = Wiy X abs (E - Elow)

+ Whigh X abs (E — Rhigh) (6.1.16)

Therefore, another confidence metric in the average rating is

is based on the described

The confidence in the ratings distribution ¢, - 7
weigted means difference algorithm which is implemented in the distribu-
tion type model expression. As input we use the distribution of rating
stars. Furthermore, we normalize the result to yield a confidence metric

between 0% and 100% accordingly.
apply to
Crating App
subtract
S - ®
1.0
DistributionType ¢ C)
6O 0 6 6

oneStars twoStars threeStars fourStars fiveStars

6.1.4.2 Reviews

Since users associate a review with a “recommendation” by real people, it is a valu-
able resource for evaluating an App. However, there are a number of problems associated

with evaluating reviews. Influential fake and bad reviews can dominate over interesting
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and useful ones [112, 120]. Furthermore, users review Apps differently when they can
keep their identity anonymous [41]. Identifying fake reviews is beyond the scope of
this discussion. Here, we focus on two other metrics that typically influence a user’s

perception of a review. Let us consider the text of a review as a collection of words

T = {wo,...,wp} (6.1.18)

where w; is the it" word of text in the review.

Spelling Correct spelling can be an indicator of professionalism. Therefore, when
looking at reviews we need to factor in the number of misspelled words. The proposed

confidence metric in terms of spelling is defined as

T, .
Cspelling(T) =1- ‘ |,1"-,T| if ’T‘ >1 (6119)
where
Tins = {wo, ..., wy|w € T, w misspelled } (6.1.20)

is the set of misspelled words. Note that for our spell checking purposes we use [1].

As part of our framework we can define this confidence as follows.

Expression 6.1.3 cspeiiing
The confidence in spelling cgpeiring can be defined using the spellcheck
model expression which implements equation 6.1.19. In this case we apply

it to the text attribute of a Review.
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apply to
Cspelling Review

SpellCheck

text

Sentiment Analysis Whether a review is positive or negative can be evaluated using
sentiment analysis. One approach is to describe the overall sentiment of a review is by

finding words in the review that represent a positive or negative sentiment for the set

Ts = {wo, ..., wp|w € T, 3 sentiment for w} (6.1.21)

with the overall sentiment defined as

sent(T) = Z sent(w;) (6.1.22)
w; €T

where sent(w;) is the sentiment of a word and sent(T') of the entire review. Because
more text does not necessarily imply more words with sentiments we propose to make
the sentiment proportional to the number of words in the review and bound it by the

number of words with sentiments.

sent(T)
max(\/[T1, |Ts])

sent,(T) = if || >1 (6.1.23)

This means that the same number of words with sentiments have more impact the
shorter the review is. Furthermore, sentiment analysis is based on positive or negative
values associated with specific words. Here, we use a word list by Nielsen [115]. There-

fore, we need to normalize them to a common scale between 0 representing negative,
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0.5 neutral and 1 positive overall sentiments which yields

senty(T) + abs (0 — sentymn)

(6.1.24)
sentmar — S€ENtmin

seNtscaled (T) =

where sent,,;, and sent,,,, represent the minimum and maximum possible sentiment
values used. This sentiment is a good additional indirect indicator of the App’s quality.
However, here we are interested in how closely the sentiment of the review text reflects
the review’s star rating. Discrepancies lower the confidence in a review which we leads
us to define a confidence metric as

r—1
Csentiment(T) = 1 — abs (4 — sentscaled(T)> (6.1.25)

where % is the rating given in connection with the review adjusted to range from
1 star (0% confidence) to 5 stars (100% confidence) and the overall confidence the
difference between this rating and the review’s sentiment. This approach is reflected in

the following graph model representation.

Expression 6.1.4 csentiment

The confidence in the sentiment Cgentiment is modeled as an expression
tree that uses a series of mathematical operations compute the difference
between the sentiment and its rating. In particular, the sentiment model
expression reflects equation 6.1.24. We then combine the sentiment anal-

ysis result with several math expressions as discussed in equation 6.1.25.
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apply to

Csentiment Review
subtract
C) absolute value
1.0
subtract
divide Sentiment
subtract
4.0 text
rating 1.0

6.1.4.3 Permissions

Apps require permissions to utilize smartphone system functionality as well as to
read and write user data. Users are often overwhelmed by the complexity of permis-
sions and even developers generally lack a thorough understanding of which ones are
necessary and which ones are too invasive [47, 49]. However, permissions are like keys
to information stored on the smartphone. We present several approaches to determine
the trustworthiness of Apps based on the sets of permissions they require but focus on

the dangerous ones.

Number of Permissions The number of permissions used within a particular cate-
gory can be a good indication of how many permissions are adequate for an App in the

specific category. Given the sets

C = {co,....cn} (6.1.26)
A. = Hao,...,an} (6.1.27)
W = {AyU---UA,|Vce C} (6.1.28)
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where ¢; is the i** category, a; is the i App in category ¢ and A, the set of Apps for a

particular category c consider the following sets of permissions

P = {po,...,pn} (6.1.29)
P = {po,...,pn|ApD a has p} (6.1.30)
P = {PyU---UP,lac A} (6.1.31)

where p; is the " permission, P, the set of permissions for the App a, and P¢ the
permissions for the category c. We can define the average number of permissions for a

category

Bt _ 2acA: [Fal

Pe = N (6.1.32)

and overall

Y oceC 2aca, [Pl
|W|

P= (6.1.33)

This allows us to propose a model for the permission confidence using the following

ratios for categories

Pecl Pe
Ccategory ( ) _ pel Xﬁ”_P (6.1.34)

#permissions n

and
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Figure 6.1.5: Distribution of App permissions

Pl . P
c#permissions(n) = x P F (6135)

n!

overall where n is the App’s number of permissions as well as P¢ and P the rounded
averages described above. Note that this confidence is based on the ratio of Poisson
probabilities. We use the Poisson distribution here as it has the advantage of being
displaying tail characteristics that are more suitable to describing the distribution of
permissions as shown in Figure 6.1.5 where most Apps have only few permissions. As

for our evaluation we focus on dangerous App permissions.

Expression 6.1.5 dangerous App permissions
Since permissions are always associated with an App we retrieve all its

neighbors that match the Permission type and are dangerous.
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apply to
dangerous App permissions App

Neighbors

evaluatingExpression

includeExpression

ElementNode ElementNode

and

label

is Permission type

level dangerous

Expression 6.1.6 overall dangerous App permissions

The overall dangerous App permission metric retrieves dangerous per-
missions from all element nodes that are part of the App list. Two list
model expression are used here. For each repeats the evaluating expres-
sion for all Apps while ungroup converts the lists of App permissions into
one combined list of permissions.

overall dangerous App permissions
UnGroup

ForEach

evaluatingExpression
© =

dangerous app permissions

Expression 6.1.7 Pyungerous
The average number of dangerous App permission Fygngerous then be-
comes a straightforward ratio of the number of all dangerous App per-

missions and the number of Apps.
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Pdangerous

divide

count count

App list

overall dangerous App permissions

Expression 6.1.8 cupermissions

The confidence in the number of dangerous permissions c4permissions can
be expressed using a combination of basic expressions and the Poisson
model expression. Note that we utilize the average number of dangerous
permissions Pyangerous Poth, as mean for the Poisson distribution and as

best case for the resulting probability density.

apply to
C#permissions App
divide
Poisson Poisson
type ype
lambda lambda
O O o
Pdu.nge'rous pmf Pdange'rous pmf Pdangerous

Neighbors

includeExpression

ElementNode

is Permission type

level dangerous

Type of Permissions Because some permissions are more common than others (see

table 6.1.2) we also consider the different types of permissions used by a particular
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Table 6.1.2: Most used permissions across 30 categories from our data set
of 11326 Apps with 134 different kinds of permissions as of July 2012

Permission Apps with  Average
permission rank
full Internet access 80.83% 1.03
view network state 54.88% 2.57
modify/delete USB storage contents
modify/delete SD card contents 53.88% 2.67
read phone state and identity 39.63% 4.13
control vibrator 27.62% 5.43
prevent tablet from sleeping
prevent phone from sleeping 22.38% 7.30
coarse (network-based) location 16.54% 8.10
automatically start at boot 14.13% 9.53
fine (GPS) location 11.38% 12.60
Market billing service 10.44% 13.40
discover known accounts 9.96% 12.30
take pictures and videos 8.29% 16.47
read contact data 7.97% 14.13
view Wi-Fi state 7.79% 13.13
Market license check 7.58% 13.33

App. Most used permissions are also reported in [47, 132]. We adapt the Jaccard
set similarity [77] and propose the following for bags of permissions to compare an
App’s set of permissions with the weighted set of average permissions required by other
Apps in the same category and overall. Note that a bag is a set of items where each
particular item can occur multiple times. Hence, we normalize the confidence in a set
of permissions by treating 75% similarity and above as 100% confidence for categories

as
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4 |P|
t .
P = min (3 U210 (6130
where P¢ is the bag of all permissions {Py W --- & P,|a € A.} for a particular category
and P, is the bag of permissions {po,.--,pnlp € Pa} C Pe of an App. Similarly, for all

Apps we define the confidence metric as

4 |P,
Cpermissions(Pa) = min <3 X |P’| s 1) (6137)

where P is the bag of all permissions {Py ¥ --- & P,la € W} overall and P, is the

bag of permissions {pg,...,pn|p € Py} C P of an App.

Expression 6.1.9 cpermissions

The confidence in the type of dangerous permissions cpermissions i mod-
eled using the Jaccard index model expression applied to the set of dan-
gerous permissions of the particular App and the bag of dangerous per-
missions of all Apps. The similarity level above which the confidence
results in 100% confidence can be adjusted using the system parameter
similarity.

apply to
Cpermissions App

divide ¢ O
1.0
JaccardIndex ¢ {t}
AO 5 C)type similarity

dangerous App permissions overall dangerous App permissions bags
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6.1.5 Trusting Apps: Knowledge Evaluation

In order to assess the trustworthiness of an App we consider the three basic at-
tributes — average rating, average review score, and number of permissions — and their
trustworthiness assessments as described above. We compare a decision process based
only on these attributes with one that includes confidences for the attributes. We pro-
pose a basic decision process (more sophisticated decision engines are a topic for future

research) as a weighted sum of the scaled attributes
trust(App) = Zwi X m; (6.1.38)

where w; is the assigned weight with " w; = 1 and m; one of the following metrics:

mp = %1 the scaled average rating with r being the App’s rating

_ 1 Z ri—1
[reviews| £<riEreviews ~ 4

mo the scaled average review rating with r; as the re-

view’s rating

ms = max(%,O) the scaled number of dangerous permissions with p as the

number of dangerous permissions and ¢ a scaling parameter (10 by default)

We can model these metrics as the following expressions.

Expression 6.1.10 m;
The scaled average rating m; can be modeled using basic math expressions

which are performed on an App’s rating value.
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apply to

App
divide

subtract

ratingValue 1.0

Expression 6.1.11 mo
The scaled average review rating ms can be expressed using the neighbors
model expression where the rating of each Review is scaled using math

expressions.

apply to
m2 App

average

Neighbors

evaluatingExpression

includeExpression

ElementNode ElementNode

divide
is Review type

subtract

rating 1.0

Expression 6.1.12 mg

The scaled number of dangerous permissions mg is modeled by using the
neighbors model expression to determine the set of dangerous permissions
and math expressions. The scaling factor is expressed as an adjustable

system parameter .
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apply to
m3 App

divide ¢ C)

0
subtract ¢ Q
{:ﬁ} count

)

Neighbors
includeExpression

ElementNode

and

is Permission type

level dangerous

Given the metrics discussed above we can then define equation 6.1.38.

Expression 6.1.13 trust

The trustworthiness of an App considering only the basic attribute met-
rics scaled average rating, scaled average review rating, and scaled num-
ber of dangerous permissions is modeled using a weighted sum model ex-
pression on the previously defined metrics as specified by equation 6.1.38.
We provide the ability to change the weighting scheme by adjusting the

system parameters wi, wy and ws.
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apply to

trust App
WeightedSum
values weights
List List

000QRQ

As shown in figure 6.1.6, each of the trustworthiness assessments ranges from 0%
to 100% confidence and allows for a reasonable separation between “good” and “bad”
Apps. Factoring these into our decision process we adjust each metric by the confidence
in it. This means that if a metric is trusted 100% it does not change but that overall
the lower the confidence is the lower the metric score will be. Note that, we associate
the fact that a metric does not exist with 0% confidence. The proposed decision process

becomes

trust™ (App) = Zwi X my; X (Amll X Am?) (6.1.39)

where w; and m; are the weights and metrics defined above which we adjust using

the respective assessments Am! and Am? for each of the metrics. In particular:
Ami = cgrating(n) the confidence in the number of ratings

Am? = Cm(R) the confidence in average rating considering the distribution of
ratings
1

1 ' . .
Amy = Treviews] > Tereviews Cspelling(T')  the average confidence in the reviews con-

sidering their spelling

2 _ 1 A . .
Ams = Treviems] > Tereviews Csentiment(T')  the average confidence in the reviews con-

sidering the difference between their rating and sentiment
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Figure 6.1.6: Trustworthiness assessments overview
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Am% = C4tpermissions(n) the confidence in the number of dangerous permissions

Am% = Cpermissions(P2) the confidence in the set of dangerous permissions

While some of the metrics have been discussed as part of the knowledge processing

component the other ones can be defined using the following expressions.

Expression 6.1.14 Am}
The average confidence in the spelling of reviews AmJ can be expressed
using the neighbors model expression where we evaluate the cgpeiiing metric

on each Review.

L apply to
Amg, App
average
Neighbors
evaluatingExpression includeExpression
ElementNode ElementNode
Cspelling is Review type

Expression 6.1.15 Am3

The average confidence in the sentiment of reviews Am3 is modeled in
a similar fashion. Hence, the neighbors model expression is used to eval-
uate the csentiment metric for each Review accordingly and the results

subsequently averaged.
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apply to

Am2 App
average
Neighbors
evaluatingExpression includeExpression
ElementNode ElementNode
Csentiment is Review type

As a result the enhanced version of determining App trustworthiness which incor-

porates confidence assessments is defined as:

Expression 6.1.16 trust™

The trustworthiness of an App considering factoring in confidence assess-
ments for the basic attribute metrics scaled average rating, scaled average
review rating, and scaled number of dangerous permissions is modeled us-
ing a weighted sum model expression on the previously defined metrics and
the confidences as specified by equation 6.1.39. Here, we provide the abil-
ity to change the weighting scheme by adjusting the system parameters
w1, wy and ws as well.

apply to
trustt App

WeightedSum

values weights

List List

multiply multiply multiply

w; wz w3

multiply multiply multiply

C#trating Cruting Am% Amg C4tpermissions Cpermissions
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Figure 6.1.7: Comparison of App trustworthiness assessments between
using only metrics (equation 6.1.38) and including confidence assessments
(equation 6.1.39) for a variety of different weights.

The results for the Apps in the data set using different weights are shown in fig-
ure 6.1.7. It is notable that factoring in confidences results in a significant difference in
the trust assessments. Whenever we include the confidences we generally lower the over-
all trust in an App. However, the overall trustworthiness distribution of the Apps with
confidences seems far more reasonable than without. KEspecially for often artificially
inflated ratings we notice a more evenly spaced distribution with a lot fewer “good”
Apps (Figure 6.1.7a).

Furthermore, most of the distributions noticeably change which impacts the number

of Apps above certain trust thresholds. For example, considering all attributes with
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equal weights (Figure 6.1.7d) without the confidence metrics about 5% of the Apps
have a trust level above 90% but including the confidence metrics leads to the top 5% of
Apps having trustworthiness assessments between 55% and 65%. This shows that there
is no clear threshold available that could be used by a user to determine trustworthiness
of Apps. However, the results describe overall trends and relative rankings which in
combination with the individual confidence metrics allow the user to perform a more
detailed analysis of an App.

The trustworthiness assessments shown in Figure 6.1.6 make it clear that individual
attributes of Apps have various levels of trust and that this should be considered when
using these attributes to determine trust. Hence, incorporating these assessments into
the overall decision process using a weighted approach such as trust™ (Equation 6.1.39)
or more sophisticated methods is a necessary step towards improving the overall trust
assessment of Apps as shown in Figure 6.1.7.

It is important to note that some App attributes as well as trustworthiness assess-
ments may be better suited to the needs of one decision process than another. One
also needs to consider the fact that some confidence metrics yield contrasting results for
the same App attribute. This means that the ultimate decision on how to utilize these
attributes and their confidences is up to the user. However, as part of this disserta-
tion we proposed potential trustworthiness assessments and showed that it is necessary
to incorporate them into the overall decision process because even though two Apps
may have similar attribute values such as average ratings their “true” value may be far

different.

6.1.6 Trusting Apps: Summary

Trust assessment of Apps is necessary and important since smartphones are becom-
ing the new information hubs for people and companies but their security is generally

lacking (rooting is common, malware and spyware widely circulated) such that there is
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no guarantee that information is safe. In addition, even App stores (Google Play, Apple
App store) often contain unsafe Apps.

In this scenario we discussed the application of our formal but flexible framework
to the domain of smartphone Apps. In particular, we modeled a heterogeneous system
using the abstract graph model described in chapter 4. Furthermore, we proposed several
metrics that can be utilized to determine confidence in App attributes such as average
rating, average reviews rating and number of dangerous permissions and provided formal
representations of them using graph expressions (section 4.4). Most importantly we
showed that incorporating these confidence metrics using our approach described in
chapter 5 is helpful in determining trustworthiness and ultimately whether to install
an App or not. As such, we developed two decision processes and described them in
detail using graph expressions. Furthermore, the entire scenario shows how flexible our
framework since every computation and assessment is simply based on evaluating formal
graph expressions on formal graph components.

Future research will focus on evaluating the quality of the recommendation based
on the proposed techniques and refining the decision engines. For instance, one could
easily extend the current decision process to only consider Apps as trustworthy where
no confidence metric falls below a certain threshold.

Furthermore, even though we proposed trustworthiness assessments that take into
consideration relationships between Apps we need to investigate assessments of Apps

at various levels:

local looking only at the attributes of a single App without considering its relation to

other Apps (rating but not compared to average rating of all Apps, etc.)

similar comparing Apps with “similar” attributes (similar rating, similar number of

reviews, etc.)
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related comparing Apps that share relationships among each other (same developer,

also installed, also viewed, etc.)

category comparing Apps in the same category as they should have similar attributes

but may be unrelated and hence potentially leads to Apps forming clusters
global comparing a single App to all other Apps

external meta data using information from outside the primary source (i.e., Google

Play) and correlating it with the existing Apps attributes and relationships.

By using the TrustKnowOne framework described here we provide an approach based
on graph expressions that allows existing as well as future belief engines and decision
processes to be implemented. In particular, these graph expressions can be associated
with metrics and cost assessments thereby enabling approaches to be evaluated and

compared formally.

6.2 Radiation Detection in Heterogeneous Sen-

sor Networks

Here a radiation detection scenario will be used to illustrate the kind of data and
processes our TrustKnowOne framework will be able to consider. Imagine the following;
a set of sensors are available to measure levels of radiation. These sensors could be
privately owned (connected to or part of a smart phone) or part of a government sensor
network. The goal is to use geographically distributed radiation readings from a set of
heterogeneous sensors to decide if the environment is safe. In general, the groups of
radiation detectors shown in table 6.2.1 may be present.

Note that cost could be an indicator of the accuracy and capabilities of the radiation

sensors; more expensive sensors could not only detect the presence but the type of
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Table 6.2.1: Radiation sensor groups

Type Trustworthiness Security Cost

public not verified not signed low
non-government /private varying varying varying
government verified signed high or medium

radiation, e.g., Alpha, Beta and Gamma radiation. These groups possess sensors of
varying cost, accuracy and trust which means the resulting observations need to have a
differentiated influence on the decision making process of telling whether or not there
is radiation present.

Furthermore, the entire set of heterogeneous sensors forms various physical (geo-
graphically close) and logical (e.g., same owner, same class of sensor, or same age of
sensor) relationships that we are able to utilize in our framework to determine the accu-
racy of the radiation detection and the trust we have in specific sensors. In the decision
making process we may want to trust readings from government sources more than
from public or private sensors because they are signed and verified. In addition, mobile
sensors move and their readings from previous locations are not necessarily accurate
anymore but we could still use the data to a certain degree when determining radiation,
thus making the measurements also time varying.

The use of a network of geographically distributed heterogeneous sensors combined
with the our framework could have proved useful to detect the radiation levels at Japan’s
earthquake-stricken Fukushima nuclear power plant and contributed to decisions con-
cerning the safety of the surrounding environment. We chose this scenario to showcase
how our framework is able to model the heterogeneous system of sensors and its com-
plex relationships necessary to improve the knowledge derivation process for radiation

detection.
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6.2.1 Radiation Detection: Overview

Radiation detection is a natural application of sensor networks. In this section, we
discuss how our framework can be applied to what is referred to as collaborative sensing.
Sensor networks and in particular radiation detection networks used to be expensive to
set up, difficult to maintain and often under the authority of a government agency.
However, the cost of sensors has decreased to the point where consumers are able to
purchase them. Furthermore, the capabilities of sensors have improved dramatically.
This means that both application-specific sensors (e.g., for radiation detection) as well
as multi-purpose sensors (e.g., GPS, temperature, and humidity combined) can now be
utilized more efficiently (i.e., using one multi-purpose sensor instead of multiple specific
ones) and effectively (i.e., higher accuracy with lower cost).

Nevertheless, several problems remain to be solved. For instance, the availability of
a various sensor types is prone to create heterogeneous environments in which data in-
tegration and fusion become necessary preprocessing steps before data can be analyzed.
Specifically for the radiation detection there are several different types of detectors for
individual radiation sources (e.g., cosmic, terrestrial, nuclear), elements (e.g., Caesium,
Plutonium, Uranium), and emissions (e.g., alpha, beta, gamma rays). Furthermore,
detecting radiation is sensitive to several factors such as location (e.g., inside buildings,
open field) as well as measurement inaccuracies (i.e., ground level, at 1 meter height,
sensor calibration).

These physical aspects then need to be considered with respect to logical context
such as ownership and trustworthiness, all of which makes radiation detection one of the
most complex sensor network application scenarios. In particular, during the Fukushima
nuclear incident in 2011 Safecast [144] reported that there were problems with commu-
nicating radiation level measurements in a timely manner because of bureaucracy and
political pressure. When data was released it was often incomplete or inaccurate. While

most of the data was later adjusted after public protest this led to a decrease in trust
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of official government authorities. Hence, activists turned to collaborative sensing ap-
proaches in order to alleviate these issues. In this scenario we will discuss how our
framework can be applied to model knowledge derivation that incorporates trust and

quality of data in this kind of heterogeneous sensor network environment.

6.2.2 Radiation Detection: Framework Modeling Approach

Our TrustKnowOne framework is able to model heterogeneous systems as well as
deal with the dynamic environment often found in sensor networks. Furthermore, many
of the problems described can be solved through the various aspects of our framework.
In particular, the abstract graph model allows us to model different types of sensors
and define relationships between them. Additionally, dimension models can be used to
express notions of the accuracy and constraints of sensors (see section 4.3). As trust
becomes an even more important component of being able to derive knowledge from the
vast amount of data provided by sensor networks, our framework can describe trust and
quality assessments of data in a uniform and flexible manner using graph expressions.

As a case study we will focus on collaborative sensing in the context of Japan’s
Fukushima nuclear incident in 2011. The incident caused the establishment of Safecast
[144] where users can submit radiation measurements they have taken. Furthermore,
there exists an official government database of radiation measurements by the Interna-
tional Atomic Energy Agency [75]. Here, we analyze the combined data sets from both
sources and discuss approaches to assess the confidence in individual measurements as
well as the trustworthiness of sensors and their sources.

In the following sections we will discuss how the TrustKnowOne framework is able
to model data processing from multiple source with varying trust aspects and their

analysis. In particular, we will address:

e Modeling heterogeneous data (Safecast measurements, IAEA sensors), relation-

ships (location clusters, id clusters), and data sources (collaborative, government,)
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in our abstract graph model (section 4.1)

e Incorporating location dynamics (mobile vs. stationary sensors) and time variant

information (sensor readings are time series data) throughout knowledge processing

and evaluation (section 5.3.1, 5.4.1)

e Performing complex data transformations (conversion of attribute values, combi-

nation of elements, creation of elements) using graph expressions (section 4.4)

e Formalizing confidence assessments for sensors using time series information, con-

text, and group relationships as belief engines (section 5.3.1)

e Representing decision making as formal decision processes with the option of

whether or not to incorporate confidence assessments (section 5.4.1)

Figure 6.2.1 shows an overview of how the individual components discussed in this

section relate to our TrustKnowOne framework.

Knowledge Extraction We model two types of sensors, one representing coming

from the Safecast [144] the other from the TAEA [75] data set. Note that Safecast [144]
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only provides single measurements which makes it difficult to perform extended trust
assessments that incorporate relationships between data. We retrieved the data using
the their web application interface for the entire year of 2011. The data from TAEA
[75] is based on several sensors which makes correlation is possible. However, while
the number of radiation measurements per sensor is high there are only a few sensors
available. As a result of the framework is able to utilize three static data sources that

provide sensor and radiation level information provided with time and location stamps.

Knowledge Processing In order to perform proper processing and trust assessment
we need to transform the individual measurements from Safecast [144] into sensors. Our
approach incorporates two density-based clustering procedures where we exploit location
and id sequence properties of measurements. Confidence assessments are provided in
two ways. First, each sensor is evaluated based on its attributes individually. Second,
we put the sensor into context by examining its relationship with sensors in the same
location (cluster). Hence, a variety of trust and quality assessments is provided that

allows the detailed evaluation of sensors.

Knowledge Evaluation Based on the individual as well as the location cluster as-
sessments of a sensor we are able to evaluate its trustworthiness. We discuss three
approaches that do not depend on choosing particular confidence assessments over oth-
ers but rather combine them in a variety of ways. First, all assessments are incorporated
which allows absolute (e.g., 0%-100% scale) as well as relative (e.g., top 10% percentile)
ranking. Second, we allow the user to pick thresholds to determine trustworthiness lev-

els. Third, based on ownership we incorporate confidences differently into the decisions.

The next sections will provide a detailed analysis of the scenario aspects and their

relationship to our framework.
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6.2.3 Radiation Detection: Knowledge Extraction

We propose the following approach to modeling the collaborative radiation detection
scenario described. The key components of the abstract graph model are various types
of sensors. Hence, we model each type as an independent element. The two data
sources that we consider are user submitted measurements from Safecast [144] and
official measurements from the International Atomic Energy Agency (IAEA) [75]. As
such we define elements with attributes that match their properties.

In addition, we provide a Location element that is relevant because it is used to
relate individual Sensor elements to each other. Specifically, Sensor elements represent
derivations from multiple Measurement elements through means of clustering. Since
IAEASensor elements already provide time series information they can be modeled as
is. During this process the Sensor elements will be automatically assigned to a particular
Location whereas IAEASensor elements are assigned to a single Location. We model
relationships accordingly for each of the sensor types and a particular Location. The
abstract graph model for this scenario is shown in figure 6.2.2.

An example of how the element instance graph might look like is shown in figure 6.2.3.
In particular, it displays how three Measurements are transformed into a Sensor that
incorporates their individual values. Note that we left out a number of attributes for
clarity in the figure.

After the density-based clustering process is performed during the knowledge pro-
cessing stage, only Sensor and IAEASensor element nodes are utilized for determining
trustworthiness aspects. In figure 6.2.4 we show two Sensor element nodes as well as
two TAEASensor element nodes. Each is related to a single Location element node using
the Location-Sensor and the Location-IAEASensor relation edges respectively.

An overview of the data sets we use as part of this scenario is given in table 6.2.2. We
chose the data sets based on their diversity. Whereas Safecast [144] contains thousands

of collaboratively collected measurements which are loosely connected, the IAEA [75]
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Figure 6.2.2: Radiation detection element description graph
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Figure 6.2.3: Radiation detection clustering element instance graph

data sets comprise of official government sensors and their radiation levels. As such
we are able to apply our framework in a heterogeneous environment of sensors with

radiation levels captured as time series and context such as location and ownership
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Figure 6.2.4: Radiation detection element instance graph

Table 6.2.2: Radiation detection data set overview

Data Set Data Points Sensors Time Frame Type

Safecast [144] 2,120,078 ~ 40,000 2011-04-23-2011-12-31 mobile and
stationary

Fukushima 311,720 8 2011-04-05-2011-12-31 stationary

Daiichi: Fixed
Post gamma
dose rates [75]

Fukushima 41,989 12 2011-03-14-2011-12-31 stationary
Daiichi: Mon-

itoring Car

gamma  dose

rates [75]

can be incorporated into the decision process. Note that while the IAEA monitoring
car data set name implies mobile sensors the measurements actually reflect those of
transportable sensors. That is the sensor was transported by car to a specific location,
set up, and measurements taken. Hence, we will refer to the data set transportable

SEeNSsors.
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6.2.4 Radiation Detection: Knowledge Processing

In order to assess the trustworthiness of individual measurements, sensors, and data
sources we define metrics that reflect various aspects of confidence in element node
properties. In general, there are two categories of approaches that we will discuss. First,
sensor attributes and metrics computed from these attributes can be used to evaluate
sensors on an individual basis. Second, sensors form various relationships (e.g., sensors
of the same location cluster) that can be exploited to find outliers and anomalies.

However, before we can apply these metrics we need to discuss the how the data

provided by the Safecast [144] can be incorporated into our framework.

6.2.4.1 Deriving Sensor Identities Through Density-based Clustering

We retrieved the collaborative sensing data set from Safecast [144] using their web
application programming interface. The data consists of individual measurements that
were taken and submitted by a variety of users. Specifically, we have information about
time and location of the measurement as well as its radiation value. However, there
are several problems with the data initially provided by Safecast [144]. Some attributes
such as “device id”, “location name”, and “original id” are not set in about 99% of
the cases. Furthermore, the usefulness of other attributes is limited. In particular, all

“user id"

data from 2011 has the “cpm” which stands for counts per minute and the
is 1 for about 99% of the measurements. This makes it hard to identify measurements
that were taken by the same sensor or user and model relations between measurements
beyond the basic time (measurements at a similar time) and location (measurements
in a similar location) domains. As such, one of the problems is to transform the “raw”
measurements from the Safecast [144] data set into measurements we can infer came
from specific sensors.

In order to address these problems we employed the following approach. First, we

performed density-based location clustering on the measurements to group measure-
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Figure 6.2.5: Various location clusters within a specified latitude and
longitude identified by color

ments in the same vicinity of each other to infer the identity of specific sensors. The
reason we used a density-based approach here over distance-based clustering lies in
the fact that we want to model mobile as well as stationary sensors. Distance-based
clustering would have worked well on stationary sensors but would have likely split mea-
surements from the same sensor if it was moving along a path. As shown in figure 6.2.5
stationary sensors still appear as individual clusters forming the expected circle like
coloring but mobile sensors are identified as well forming paths of the same color.
Second, within individual density-based location clusters we inferred the identity of
individual sensors by utilizing a property of the Safecast [144] data set. Most measure-
ments were uploaded in sequence and thus have consecutive ids. This fact was discovered
as many sequential measurements had similar location attributes while being specific
time intervals (e.g., 5 seconds, 10 seconds) apart. Therefore, we performed a second

clustering based on series of consecutive ids. figure 6.2.6 shows one of the density-based
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Figure 6.2.6: Several id clusters within an individual location cluster iden-
tified by color

location clusters where consecutive id clustering has been used to identify clusters. We
can clearly see that many sensors move along paths meaning they are mobile. This
validates our density-based approach to infer sensor ids to a certain degree.

Note that we used this two step approach to avoid the case were measurements were
identified as belonging to the same sensor simply because of sequential ids. However,
we need to point out that we cannot identify cases in which a sensor was used to gather
measurements at one location or path and than later elsewhere. In our approach we
would treat this as two different sensors. Next, we will discuss the clustering approaches
in detail and describe how we integrated them into our framework using flexible graph
expressions.

The first step is to cluster based on location. As described above we make use of a
density-based approach. In particular, we chose DBSCAN by Ester et al. [46]. The basic

idea behind the algorithm is as follows. We iterate over the set of data points where we
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determine neighbors using a region query. This region query performs a neighborhood
search and returns all neighbors within a specified distance e. If the number of neighbors
exceeds a minimum number of points it is considered a new cluster. All neighbors that
do not already belong to a cluster become members of the new cluster. Furthermore,
these neighbors are used as starting points for expanding the cluster. This means that
we determine their neighbors within distance € and continue recursively.

Using this approach we are able to deal with measurements that were captured by
mobile sensors since the density-based technique will be able to identify path clusters
whereas a distance-based approach will not. The key component of the algorithm is the
region query. It represents the distance calculation function and needs to be implement
in a scalable manner in order to avoid the O(n?) complexity of pair-wise data point
distance computations. There are several spatial indices available. Here, we employ
R-trees developed by Guttman [66] since they give good performance (O(logn)) for

nearest neighbor searches (see Brinkhoff et al. [21]).

Expression 6.2.1 density-based location cluster

We model the density-based location clustering approach as a DBScan
cluster model expression. In particular, we choose the minimum number
of measurements to form a cluster to be 5 and the neighborhood search
radius (epsilon) to be 0.01 which since the calculation is based on the
Euclidean distance of GPS coordinates is about 1100 meters. As a spatial
index we use an R-tree for the coordinates that are stored in the latitude
and longitude attributes. We also add the cluster id as a new location

cluster id attribute.

apply to
density-based location cluster Measurement list
DBScanClusterExpression .
coordinates epsilon minPoints A
addAsAttribute l ] regionQuery
locationClusterld latitude longitude 0.01 5 rtree
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Expression 6.2.2 density-based location cluster groups

In order to group the Safecast measurements by their location cluster id
we use a model expression called group by. Note that we have to op-
tions for the result of this expression. First, as a list of groups, such
as {{m1,ma}, {ms, mg},...} where m; is a particular measurement ele-
ment node or as a map {l; — mi,ma},lo = {m3,me},...} where [; is a

particular location cluster id.

apply to
density-based location cluster groups O—O Measurement list
GroupBy .

groupingExpression

60 O

false locationClusterld density-based location cluster

The result of the density-based location cluster groups metric is a list of clusters that
follow the density-based location clustering approach where each element in the group
is a measurement with the additional location cluster id attribute. One option is to stop

here and treat all measurements in the same group as coming from a single sensor.

Expression 6.2.3 fold location clusters

We can transform individual element nodes into new element nodes spec-
ified by the element parameter using the fold model expression. Here, we
apply this transformation to each of the location cluster groups using the
for each model expression. Thus the result of the fold location clusters
metric would be location cluster element nodes containing the combined
time series information of all measurements in a particular location clus-

ter.
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apply to
fold location clusters Measurement list

ForEach

evaluatingExpression

FoldElementNodes (b

element density-based location cluster groups

LocationCluster

In our case, as explained above, we proceed and perform additional clustering
based on the fact that measurements with consecutive ids are likely to come from
the same sensor. We can utilize the same density-based clustering approach DB-
SCAN. The one thing we need to modify is the region query. Here, we describe our
sequential neighborhood search technique. For each data point we return the neighbors
by searching the list of measurements for ids before and after the one of the speci-
fied measurement until there is a break. For example, given the set of measurements
{m1, ma, ms, m7, mg, mg, M9, M1, M15, M1g, ...} where ¢ of m; is the id, the sequential

region query would return the neighbors {my, mg, mig, m11} for ms.

Expression 6.2.4 density-based id cluster

We model the density-based id cluster metric by using the DBScan model
expression again. Here, we specify to perform the neighborhood search
based on the sequential id cluster described above. We set t