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Abstract 
 
 
 
 

Stroke is a large and growing problem in the United States.  There are 

795,000 incidences each year, and most are new incidences.  Survivors are left 

with lasting functional deficits, and therefore stroke is one of the leading causes 

of adult disability in humans.  Some function is regained that was lost to stroke, 

and this recovery is correlated to physiological reorganization.  That is to say, 

after stroke the brain functions differently.  The physiological reorganization may 

be based on anatomical reorganization.  If this is true, the brain acts differently, 

because it is wired differently after stroke.  The anatomical reorganization may be 

based on expression differences; thus, leading to the conclusion that the brain is 

wired differently because genes were expressed in different ways after the 

stroke.  The series of studies within this dissertation lead the reader down this 

train of thought and show evidence for it by using adult rats in a model of 

ischemic injury to the cortex, and compare the connectivity and gene expression 

patterns of lesioned brains to non-lesioned brains.    

 
 
 
 



 iv 

 
 
 
 

Dedication 
 
 
I dedicate this to my family.   
 
  



 v 

 
 

Acknowledgements 
 
I thank my mentor, committee and lab members.  They taught me, assisted me 

and helped me during this long journey of research.  I would also like to thank 

Billie Byerley for her work with data collection. 

 
 
  



 vi 

 
Table of contents 

 
Title Page          i 
Approval           ii 
Abstract          iii 
Dedication          iv 
Acknowledgements         v 
Table of Contents             vi 
List of Abbreviations        xi 
 
Chapter 1:  Background        1 
 

Overview         2 
Why study stroke?        3 
Functional Recovery After Stroke      4 
Reorganization        6 
Reorganization in the Uninjured Brain     8 
Process of Ischemic Damage      10 
Reorganization After Injury       11 
Intrinsic vs Extrinsic Determinants of Reorganization   12 
Summary         14 

 
Chapter 2:  Premotor Connectivity      15 
 
 Abstract         16 
 Introduction         17 
 Materials and Methods       22 
 Surgical Procedure        22 
  Fig. 1         25 
 Histology         28 
 Tissue Harvest        28 
 Cytochrome Oxidase Staining      29 

BDA10kDa Visualization       29 
 BDA10kDa Signal Intensification      30 
 Bouton and Neuronal Soma Quantification    30 

Alignment Procedure       32 
Calculation of Cortical Surface Area for each Region of Interest 33 
Statistical Analysis        33 
Region Nomenclature and Identification     34 
Regions Identified as Cytochrome Oxidase Dense Zones  34 
Regions Identified by Topographic Relationships to Other   35 

Identified Regions 
Results         37 



 vii 

Regions Based on ICMS Responsiveness and CO Histology  37 
Regions Identified by Clustering of BDA-Labeling   38 
Regions of Physiological Overlap      39 
 Fig. 2         41 
Specificity of BDA Injections      43 
 Fig. 3         45 
 Fig. 4         47 
Qualitative Description of Anterograde Corticocortical Connectivity 49 
 Fig. 5         51 
Qualitative Description of Retrograde Corticocortical Connectivity 54 
Quantitative Description of Anterograde Corticocortical Connectivity 54 
Quantitative Description of Retrograde Corticocortical Connectivity 55 
 Fig. 6         56 
 Table 1        58 
 Table 2        59 
 Table 3        60 
Discussion          61 
 Fig. 7         63 
Description of Functional Connectivity with RFA   65 
Dense and Moderate Connectivity      65 
Connectivity to Frontal Cortex (FRO and CFAR)   65 
Connectivity to Somatosensory Cortex (IZO and CFAOv):   66 

Granular vs Dysgranular 
Connectivity to Lateral Somatosensory Cortex (S2, PV and PR) 67 
PV and S2 Location        70 
Other Parietal and Perirhinal Connectivity (PM, PL and PRh)  72 
Primate and Rat Premotor Connectivity Similarities   75 
Connectivity to Overlap Zones      78 
Functional Aspect of the Connectivity     82 
Caveats         84 
Differences in Parcellation of Sensory Cortex from Previous Studies84 
Voxel Analysis        85 
Bouton Selection        86 
Feedforward vs Feedback Connections     86 
Summary          88 
Acknowledgements       90 

 
Chapter 3:  Premotor Connectivity Changes After Ischemic Infarct  91 
 
 Abstract         92 
 Introduction         93 
 Materials and Methods       94 
 Surgical Procedure I       95 
 Surgical Procedure II       98 



 viii 

  Fig. 1         100 
 Histology         102 
 Tissue Harvest        102 
 Cytochrome Oxidase Staining      102 
 BDA10kDa Visualization       103 
 BDA10kDa Signal Intensification      103 
 Quantification        104 
 Alignment Procedure       104 
 Bouton and Soma Quantification      104 
  Fig. 2         106 
 Region Nomenclature and Identification     108 

Regions Identified as Cytochrome Oxidase Dense Zones  108 
Regions Identified by Topographic Relationships to Other   109 

Identified Regions 
 Analysis         110 
 Calculation of Cortical Surface Area for each Region of Interest 110 
 Sterological Estimates of Bouton Counts in Selected Regions 110 
 Lesion Volume and Dye Core Volume Estimate    111 
 Statistical Analysis of Voxel and Soma Counts    112 
 Results         112 
 Lesion Volume        112 
 Dye Core Volume        113 
 Lesion Induced Changes to Regions of Interest    113 
 Lesion Induced Change in Area of Region of Interest   114 
 Lesion Induced Change in Voxel and Soma Count   114 
  Fig. 3         116 
  Fig. 4         120 
  Fig. 5         122 
  Fig. 6         124 
  Fig. 7         126 
 Discussion         128 
 Comparison of Rat and Primate Premotor Reorganization After  128 

Primary Motor Lesion 
 Significance of Changes Within Brain Regions After Ischemic Infarct131 
 Connectivity Changes       131 
  Fig. 8         132 
 Anterograde Connectivity Changes after Stroke    134 
 Retrograde Connectivity Changes after Stroke    135 
 Changes in Area of Regions      137 
 Reorganization Without Considering Forepaw Dominance  138 
 Reorganization Without Training      139 
 
Chapter 4:  Gene Expression Changes After Stroke    140 
 



 ix 

 Abstract         141 
 Abbreviations        142 
 Introduction         143 
 Materials and Methods       146 
 Subjects         147 
 Surgical Procedure I:  Neurophysiological Identification of CFA and  147 
  Retrograde Tracer Injection 

Surgical Preparation       147 
Neurophysiologial Mapping Procedure     148 
Retrograde Tracer Injection      149 
Surgical Closing and Recovery      150 

 Surgical Procedure II: Cortical Infarct      150 
 Tissue Harvest and Laser Capture Microdissection (LCM)  151 

RNA Sample Preparation and Affymetrix Microarray Procedures 153 
Microarray Data And Gene Pathway Analysis    154 

 Lesion Volume Estimation       155 
Results         157 
Description of Lesion        157 
Neuronal Harvesting        157 
 Fig. 1         159 
 Fig. 2         161 
RNA Quality Analysis       163 
 Fig. 3         165 
 Table 1        167 
 Table 2        168 
 Table 3        169 
Canonical Pathways Analysis      170 
Gene Function Analysis       170 
 Fig. 4         172 
Gene-Gene Interactions Network Analysis     174 
 Fig. 5         176 
Discussion         178 
Relevance of the Current Model      179 
Relevance of Gene Expression Changes after Brain Injury  181 
Genes Regulated in Current Study     183 
Development         183 
Neuroprotection        185 
Apoptosis         186 
Axonal Growth and Guidance      187 
Novel Gene Not Previously Reported with Stroke   188 
Genes with Presumably Paradoxical Expression   188 
Biological Context Revealed by IPA     190 
Relevance for the Most Regulated Genes of the “Axonal Guidance  191 

Signaling” Pathway  



 x 

Sema4B         191 
Tubb2c         192 
Bmp1          193 
Bmp4          193 
Gng11         194 
Summary         195 
Acknowledgements       195 

 
Chapter 5:  Discussion        197 
 
 Summarization of Results       198 

Methodological Details       199 
Choice of Lesion Type       199 
BDA Tract Tracer        200 
CTB Tracer         201 
Contralesional Cortex Relevance in Stroke    202 
Use of Laser Capture Microdissection     204 
Significance of Results       204 
Anatomical Reorganization       204 
Lesion Size Dependence of Physiological Reorganization  205 
Generalizability of Results       206 
The Future of Stroke Research: Unanswered Questions  209 
What are the factors that direct neural sprouting after injury?  209 
Are new connections beneficial?      210 
What could the far-off future hold?     210 
References         212 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xi 

 
 
 

List of Abbreviations 
 
 
 
 
Rat Brain Regions 
 
ALBSF Anterolateral Barrel Subfield of S1 
Aud  Auditory Cortex 
CFA  Caudal Forelimb Area of the Rat is the primary motor area  

controlling the forelimb in the rat 
CFAOv Caudal Forelimb Area Overlap Zone with S1 
CFAR  Caudal Forelimb Area, Rostral Portion 
FIA  Forelimb ICMS Area 
FR  Frontal Cortical Areas 
FRO  Frontal Cortical Areas Not Otherwise Delineated 
ICMSR S1 Zone Responsive to Intracortical Microstimulation 
IN  Insular Area 
IZ   Intercalated Zone of S1 
IZO   Intercalated Zone of S1 Not Otherwise Delineated  
GZ  Granular Zone of S1 
GZO  Granular Zone of S1 Not Otherwise Delineated  
M1   Primary Motor Area 
PirOl  Piriform and Olfactory Cortex 
 
PL   Parietal Lateral Area 
PM  Parietal Medial Area 
PMBSF Posteriomedial Barrel Subfield of S1 
PR  Parietal Rhinal Cortex 
PRH  Peri-rhinal Cortex 
PV  Parietal Ventral Area 
RFA  Rostral Forelimb Area of the Rat is the non-primary motor area  

controlling the forelimb in the rat 
RS  Retrosplenial Area 
S1   Primary Somatosensory Area 
S1H  Hand Area of S1 
S1HO  Hand Area of S1 Not Otherwise Delineated 
S2  Secondary Somatosensory Area 
TP  Temporal Posterior Cortex 
VIS  Visual Cortex 
 
Primate Motor Regions 
 



 xii 

M1   Primary Motor Area 
PMv   Ventral Premotor Area 
 
Technical Abbreviations 
 
BDA10k biotinylated dextran amine of 10,000 MW, anterograde tracer. 
CTB488 Cholera toxin, beta subunit conjugated to AlexaFluor 488,  

retrograde tracer 
CTB647 Cholera toxin, beta subunit conjugated to AlexaFluor 647,  

retrograde tracer 
DBA  Diaminobenzadine, chromagen 
ET-1    Endothelin 1, vasoconstrictor 
ICMS  Intracortical Microstimulation, physiological method for defining  

cortical motor areas 
IM   Intramuscular 
IP   Intraperitoneal 
IPA   Ingenuity Pathway Analysis 
IVT   In Vitro Transcription 
LCM   Laser Capture Microdissection 
NeuN   Neuronal Nuclei 
RIN   RNA Integrity Number 
RMA   Robust Multi-array Averaging



 1 

 
 
 
 
 
 
 
 
 
 
 

Chapter 1 
 
 

Background 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2 

Overview 

 

Stroke (or ischemic infarct in animal models) is caused by loss of blood 

flow to the central nervous system leading to cell death.  Once the nervous tissue 

dies, it does not regenerate, and any function the tissue was responsible for is 

lost.  Stroke happens to around 800,000 Americans a year and leaves a large 

percentage with lasting deficits.  This tragedy is tainted with a glimmer of hope, 

because some recovery does occur.  The major theory behind this recovery, 

vicariation, is that spared regions can take over for the lost tissue after the infarct. 

The mechanism behind vicarious take over of function during recovery seems to 

hinge on anatomical reorganization of neuronal structures. To this end, a model 

of anatomical reorganization was studied.    

Evidence exists that the premotor area is important to recovery of function 

after primary motor lesion with the primary somatosensory area (S1) hand area 

as the target of premotor reorganization. The current work adds to this evidence, 

first by showing neuroanatomical reorganization of the premotor area after infarct 

of the primary motor area, and second, by elucidating the gene expression 

changes in the premotor area after infarct of the primary motor area that may be 

the basis for the neuroanatomical changes.     

The current ischemic model involves 3 areas concerned with forearm 

movement in the rat cortex: primary motor area (CFA, caudal forelimb area), pre-

motor area (RFA, rostral forelimb area), and the forelimb region of the primary 
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somatosensory cortex (S1).  Both of the motor areas can activate motor 

movement though cortical-spinal connections, and are heavily interconnected 

through corticocortical connections between each other as well as the primary 

somatosensory area. Corticocortical connections deal with communication 

between cortical areas. Since integration of sensory and motor information is 

necessary for motor movement and connections are lost due to infarct, it is 

reasonable to study these areas. Also in the squirrel monkey, which has similar 

areas, the premotor ventral area sent novel projections to the S1 hand area, 

which suggests an attempt to reintegrate itself into a pre-infarct way, as it had 

lost the normal connections.  

       

Why study stroke? 

 

 Each year about 795,000 people experience a new or recurrent 

stroke. About 600,000 of these are first attacks, and 185,000 are recurrent 

attacks (Kissela, et al. 2001, NINDS.nih.gov, NHLBI.nih.gov).  On average, 

someone in the United States has a stroke every 40 seconds.  Each year, about 

55,000 more women than men have a stroke (Kissela, et al. 2001, 

NINDS.nih.gov, heart.org) and 10% of stroke survivors recover almost 

completely, 25% recover with minor impairments, 40% experience moderate to 

severe impairments requiring special care, 10% require care in a nursing home 

or other long-term care facility, 15% die shortly after the stroke, and 6 million 
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survivors are living in the United States (stroke.org).  It is easy to see that stroke 

in humans comes at a high cost.   

 

Functional Recovery After Stroke 

 

Some recovery of function happens after stroke but the mechanisms for 

recovery are still unclear.  Some increase in function after stroke may be related 

to the resolution of an injury state caused by ischemic infarct called diaschisis.  

The theory instigated in 1914 by von Monakow (Wiesendanger M 2006), states 

that cortical infarct causes a disturbance in connected regions even some 

distance from each other.  The dysfunction is not related to cell death caused by 

ischemic injury but an injury state that can resolve, and with its resolution, a 

return to function.  Both contralesional cortex and ipsilesional cortex can be 

involved in this reaction.  Modern techniques have shown these suppositions to 

be correct in part.  Connected regions display hypometabolism that may or may 

not coincide with hypoperfusion.  Using [18F]fluorodeoxyglucose small-animal 

positron emission tomography for glucose utilization and [14C]iodoantipyrine for 

cerebral blood flow, adult rats displayed regions of hypoperfusion at 1 day post-

infarct but hypometabolism persisted for 8 days.  Although the hypoperfusion 

existed in the infarct core, the hypometabolism was also in areas heavily 

interconnected to the infarct zone and some areas were later found to be areas 

of anatomical reorganization (Carmichael ST et al. 2004).  Some deficits are 
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related to brain regions functioning incorrectly during this period of 

hypometabolism, which is resolved once the metabolism returns to normal.  

Resolution of diaschisis cannot account for any late gain of function, as it is an 

acute process.  

Two major theories of functional recovery exist.  One posits that new 

neurons are generated and can assume functions lost by ischemic damage.  The 

other asserts that uninjured neurons in parts of the brain that survived assume 

the functions lost by ischemia.  Surviving cortex can be in the same hemisphere 

as the lesion (ipsilesional) (Brown CE et al. 2009a), either immediately around 

the lesion (perilesional) (Nishibe M et al. 2010) or far removed from it (distant) 

(Dancause N et al. 2006b), or it can be on the opposite hemisphere 

(contralesional) (Zai L et al. 2009).  Several models have been developed to 

study all three locations for expanded function, though the authors study the 

ipsilesional cortical tissue that is related in function to the lesioned tissue.       

Neuron generation, migration and integration was found to exist in 

mammals.  The subventricular zone in adult brain continuously produces new 

neurons that migrate to the olfactory bulb.  After stroke in rat cortex, these new 

neurons can migrate to the site of injury and differentiate into the kind of neurons 

that were destroyed in the stroke (Arvidsson A et al. 2002).  Though 

subventricular zone cell proliferation was found in adult humans (Bernier PJ et al. 

2000), and increased proliferation after ischemia was maintained in older adults, 

there were low amounts of neurogenesis (Macas J et al. 2006).  Therefore, 
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although originally thought to be a target for stroke recovery, neurogenesis is not 

seen as a significant contributor to stroke recovery in humans (Macas J et al. 

2006).  As the ultimate goal of the current line of study is to have some relevance 

to human stroke, such models, which are more likely to be relevant to humans 

were studied.   

Vicariation is one such model that appears to contribute to stroke recovery 

in humans and other mammals.  In this model, some other part of the brain takes 

over the function that was lost.  Non-invasive imaging studies in humans confirms 

the reorganization of brain after cortical stroke.  In such studies, humans after 

stroke use different regions of their brain to accomplish tasks than non-injured 

brains would.  Although involvement of the contralateral cortex was also reported, 

evidence is mounting that greater activation of the ipsilesional cortex is correlated 

to better motor recovery after stroke (Calautti C and JC Baron 2003).  In other 

words, although the cortex on the uninjured hemisphere is activated differently 

after stroke, those individuals experiencing better recovery are activating brain 

regions on the same side as the injury and in a pattern closer to normal 

activation.   Activation of different regions than normal after stroke is the definition 

of vicariation.  Therefore, vicariation may be a worthwhile model of study, and 

regions on the ipsilesional hemisphere may be the best targets of study.   

 

Reorganization 
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If regions of the brain take over function from an injured part, how do they 

accomplish it?  Each brain region has its own set of connections that allow for 

certain tasks to be accomplished.  The primary somatosensory cortex receives 

peripheral sensory information from specialized neurons and interacts with 

multiple secondary somatosensory regions in interpreting it.  The primary motor 

system receives input from the secondary motor regions and sends signals to 

periphery through specialized neurons.  The information received through the 

sensory system is used to constantly adjust the movements produced.  The 

network of connections is extensive, and not always redundant.  It would be 

reasonable to think that any region taking up the function of another region would 

require some form of change in connectivity or reorganization to accomplish the 

task.   

Several animal models of reorganization have been described and may be 

related to functional recovery. In vivo, voltage sensitive dye can be taken up and 

observed in firing cortical neurons.  After cortical infarct, sensory neurons in the 

cortex were shown to respond to stimulation of different parts of the body after 

stroke than they did before injury to an adjacent brain region (Brown CE et al. 

2009a).  Single neurons responding differently before and after ischemic infarct is 

an example of vicariation through physiological reorganization. It shows that 

given the right circumstances a neuron can switch its function to a function lost 

with injury. 
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The motor cortex is also capable of reorganization.  A model of motor 

cortex reorganization has been described in non-human primates after ischemic 

infarct.  In this model, ischemic infarct destroys the primary motor area and the 

premotor area ventral (PMv) changes its connectivity pattern (Dancause N et al. 

2006b).  PMv neuronal projections increased to the somatosensory cortex.  The 

PMv does not normally project to the hand area of the primary somatosensory 

cortex, but M1 does (Dancause N et al. 2006a).  The new projection seemed to 

reintegrate the PMv into circuitry lost by the injury.    

There are hints that the same is true for the rat.  The rostral forelimb area 

(RFA), first described by Neafsey and Sievert using intracortical microstimulation 

(ICMS) (Neafsey EJ and C Sievert 1982), fulfills both requirements for premotor 

designation used in primates (Dum RP and PL Strick 2002).  The RFA was also 

shown to be important to functional recovery after motor cortex lesion (Conner 

JM et al. 2005).  Further, sensorimotor cortex caudal to the CFA has been shown 

to be important in behavioral recovery.  After bilateral ablation, ventral tegmental 

stimulation during training and recovery, a novel ICMS area, which could activate 

forelimb movements appeared caudal to the normal location of CFA (Castro-

Alamancos MA and J Borrel 1995).  Deficits were reinstated with ablation of the 

novel area.  

 

Reorganization in the Uninjured Brain 
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Cortical reorganization does not only occur after lesion, it also occurs in 

the uninjured state during learning.  Uninjured adult owl and squirrel monkeys 

had increased areal representations of sensory areas related to learning a skilled 

reach task, with increased sensitivity of digits used in the task itself (i.e. the 

cutaneous receptive fields of digits became smaller suggesting increased 

cutaneous acuity) (Xerri C et al. 1998).  Also, young Long-Evans rats exposed to 

enriched environments for 80-115 days experienced increased areal 

representation of forelimb sensory areas and increased discrimination while a 

deprived environment had the opposite affect.  This effect was the same for adult 

rats with an immobilized limb, the areal representation shrank with either 7 or 15 

days of restriction (Xerri C et al. 1996).  Similar dopaminergic projections exist in 

the primate, and although there are differences in number and location (Gaspar P 

et al. 1992), they would presumably serve a similar function. 

Motor learning and plasticity is dependent on protein synthesis during the 

learning process.  Inhibition of protein synthesis, by intracortical injection of 

anisomycin, during the learning phase of a skilled reaching task inhibited the 

learning, but did not block performance once the task was already learned, nor 

did injection into the cerebellum block learning (Luft 2004).  Motor skill learning 

induces synaptic strengthening and modification in rat M1 horizontal fibers. 

Horizontal fibers of rat cortical layer II/III in M1 show learning induced synaptic 

strengthening after 3-5 days of skilled reach training (Rioult-Pedotti MS et al. 
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1998).  This strengthening was later shown more definitively to be due to long 

term potentiation (LTP) (Rioult-Pedotti M-S et al. 2000).   

A similar process seems to be occurring after stroke.  Chronic cortical 

stimulation after sensorimotor lesion increased efficacious axodendritic synapses 

in the ipsilesional cortex and was correlated with increased functional recovery in 

moderately impaired rats (Adkins DL et al. 2008).  The chronic stimulation mimics 

the activity of learning, though not as neuron specific as the actual learning 

process.   

 

Process of Ischemic Damage 

Ischemic infarct, as can occur in stroke, progresses from a lack of blood 

flow to cell death.  Lack of blood flow results in oxygen depletion, and depletion 

of adenosine triphosphate, the cells energy source.  Neurons can no longer 

maintain electrolyte balance without ATP, and cells begin to swell, and 

malfunction.  During ischemia, there is a threshold of blood flow for electrical 

activity cessation and a lower threshold for ion dysregulation.  Cessation of 

electrical activity is not necessarily linked to cell death, but dysregulation of ion 

homeostasis is a harbinger of cell death (Astrup J et al. 1981).  In baboon 

neocortex, lowering cerebral blood flow below the higher threshold leads to 

cessation of EEG activity, while a lowering below the lower threshold leads to an 

increase in extracellular K+.  EEG and K+ levels could be restored to normal 
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values with the increase of cerebral blood flow to normal levels (Astrup J et al. 

1977). 

Anoxic depolarizations contribute to the final volume of ischemic lesion 

within the central nervous system.  Anoxic depolarizations occur as the 

electrolyte imbalance leads to an increase in intracellular calcium and signal 

transduction.  In adult rat hippocampal slices, inhibiting Na/K ATPase with 

Ouabain, delays anoxic depolarization 2 fold, while increasing osmolarity of 

extracellular space (to delay swelling) delays anoxic depolarization by 25%.  This 

suggests ATP depletion leads to failure of the NA/K ATPase followed by swelling, 

which leads to anoxic depolarization (Balestrino M 1995).  The authors bring up 

stretch related channels, but offer no proof of their existence.  It is interesting that 

the swelling itself is related to the depolarizations, because one would think 

increases in Na would be sufficient to open voltage gated Na channels to initiate 

depolarization along with intracellular calcium and neurotransmitter release.  

These depolarizations further injure the neuron, as they use up any remaining 

ATP, possibly turning a survivable hypoxia into permanent cell damage.  NMDA 

and non-NMDA antagonists can stop this progression, suggesting increased 

activity is part of the progression (Back T 1998).  As depolarizations continue, the 

ischemic core of cell death expands into the penumbra until it relegates the 

penumbra to the edge of the ischemic territory. 

 

Reorganization After Injury  
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The brain does not just die off in response to injury.  It is actively changing.  

Organisms can upregulate various kinds of gene expression that may be helpful 

or hurtful to their eventual recovery.  Cortical infarct in the rat induces an array of 

gene expression with increases and decreases in both growth promoting and 

growth inhibiting genes.  The peri-infarct region has been studied extensively by 

the Carmichael lab.  The peri-infarct cortex (a region that displays increased 

neuroanatomical reorganization) has a general decrease in extracellular matrix 

and increase in growth promoting gene expression after infarct (Carmichael ST et 

al. 2005).  The pattern seems to include a trigger of sprouting consisting of 

synchronous neuronal activity.  By exploiting differences in lesion type, 

synchronous activity between areas of sprouting was found to be an important 

trigger for reorganization (Carmichael ST and MF Chesselet 2002).  After this 

synchronous activity was blocked, the reorganization did not occur.   Following 

the trigger phase, there is an initiation and maintenance phase from 7-14 days 

post-infarct and a return to baseline by 28 days.  The pattern of expression is not 

completely intuitive, as neurocan, as well as known developmental growth 

inhibitors ephrin-A5, ephB1, semaphorin IIIa, and neuropilin 1 were increased in 

the same place and during the same time as otherwise growth promoting gene 

expression. 

 

Intrinsic vs Extrinsic Determinants of Reorganization 
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     Neurons in adult animals have varying ability to instigate axonal 

reorganization after an injury.  The ability to reorganize can be divided into 

intrinsic (the cells own ability) and extrinsic (the environment in which the cell is 

located) factors (Rossi F et al. 2007).  Some neurons need nothing to regenerate 

axons after lesion, some can be manipulated to do so if external forces are 

removed, while still others will not reorganize, regardless of attempts to mitigate 

external inhibition or increase external instigation on the neuron (Rossi F et al. 

1997).   

     Intrinsic ability difference begins with the most basic of divisions within the 

nervous system.  While most neurons within the peripheral nervous system will 

undergo some form of reorganization (sometimes of limited extent), only some of 

the central nervous system neurons will undergo reorganization without overt 

manipulation (Jones LL et al. 2003).  In adult animals, the intrinsic ability of 

neurons to reorganize axons can depend on the type of the neuron and the 

distance from the lesion.  Cerebrospinal nuclei neurons will respond differently 

depending on the distance of the spinal cord lesion in adult zebrafish.  Some 

neurons will only reorganize with proximal lesions, while others have an intrinsic 

difference that allows them to differentially express genes for reorganization with 

both proximal or distal placement of the lesion. Although the neuronal cell 

adhesion molecule L1.1 was upregulated in both kinds of neurons when 

regeneration was successfully launched, those neurons unable to regenerate 

with a distal lesion were unable to upregulated L1.1 (Becker T et al. 1998). 
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Development stage also plays a role in intrinsic ability.  Embryonic day 16 

frontal and occipital lobe cortex transplanted into newborn rat occipital lobe 

developed thalamic connections appropriate for their site of origin (Frappé I et al. 

1999).  This suggests specific factors arise in development. 

 

Summary 

The series of experiments within this dissertation study the connectivity of 

the Premotor region in the rat, and the changes it undergoes after ischemic 

infarct of a connected region of the cortex.  First, Chapter 2 describes the 

connectivity pattern of RFA throughout the cortex of the rat.  Second, Chapter 3 

describes the changes of connectivity pattern of RFA after infarct of the primary 

motor cortex.  Third, Chapter 4 discusses the gene expression changes in RFA 

neurons after primary motor cortex, and how they relate to the connectivity 

changes described in Chapter 3.   
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Abstract 

 

The rostral forelimb area (RFA) in the rat is considered a premotor cortical 

region based on its prominent efferent connections with the primary motor cortex, 

also known as the caudal forelimb area (CFA). In the present study, the RFA of 

adult male Long-Evans rats (n=6) was eletrophysiologically identified using 

intracortical microstimulation techniques and injected with the tract tracer, 

biotinylated dextran amine (BDA).  The post-mortem cortical tissue was flattened 

and sectioned tangential to the surface. Somatosensory areas were delineated 

with the aid of cytochrome oxidase staining.  The locations of 100 µm square 

voxels containing BDA-labeled boutons were projected to the surface, plotted, 

and tallied across the entire section.  BDA-labeled neuronal somata were plotted 

and counted in a similar manner.  Voxel and soma counts were normalized to the 

area of each region of interest and defined as containing dense, moderate, 

sparse and negligible connectivity.  The results demonstrate that the RFA sends 

dense to moderate projections to CFA (including the overlap zone with the 

somatosensory hand area), widespread regions of the frontal cortex medial and 

lateral to RFA, the second somatosensory area (S2), the parietal ventral area 

(PV) and the parietal rhinal area (PR), and the intercalated zone of S1.  By 

contrast, projections to the majority of the primary somatosensory cortex are 

relatively sparse.  The distribution of retrogradely-labeled somata roughly 

paralleled that of labeled boutons, suggesting that connections with cortical 
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regions are largely reciprocal. Cortical connections of RFA in rat are strikingly 

similar to cortical connections of the ventral premotor cortex in non-human 

primates, suggesting that these areas share similar functions. 

 

Introduction 

 

The motor areas of the cerebral cortex of mammals have generally been 

divided into primary motor cortex and various premotor areas. By definition, 

premotor areas provide direct input into the primary motor cortex (Dum RP and 

PL Strick 2002). While several premotor areas have been identified in non-

human primates, the status of premotor cortex in rodent species is still unclear. 

Rodents are used increasingly in studies focused on understanding the cortical 

control of movement, and the role of premotor areas in recovery after cortical 

injury.  Therefore, it is important to understand the relationship of premotor areas 

in rodents and primates, and the similarity of their anatomical connectivity with 

other cortical areas justifies further exploration. 

Functionally, the primary motor cortex is thought to be in direct control of 

motor movements, while the non-primary motor cortex is thought to be involved 

with higher order processing, which affects motor movement by instructing the 

primary motor cortex.  Numerous interconnections between the two cortices 

could relay movement selection of the non-primary motor cortex into the primary 

motor cortex, which activates movement through corticospinal connections and 
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other descending pathways.  In rat, both primary and non-primary cortices have 

corticospinal connections, which terminate in the intermediate zone and ventral 

horn of the spinal cord (Rouiller EM et al. 1993).  This holds true for non-human 

primates, as well. 

The areal extent of both primary motor and premotor areas can be defined 

neurophysiologically using low threshold intracortical microstimulation (ICMS).  

The non-primary motor cortex controlling forelimb movements (rostral forelimb 

area, RFA) is a well-studied region of the non-primary motor cortex in rats.  On 

the basis of ICMS results, this area is separated from the primary motor area 

controlling the forelimb (CFA) by a thin strip of cortex where ICMS elicits neck 

movements.  

Although other studies (Neafsey EJ et al. 1986; Li X-G et al. 1990) report 

possible connections to hind limb movements, this study will focus on the fully 

documented RFA function.  As an entire body representation is not present in the 

rat non-primary motor area, it is essential to assess the forelimb region of the 

non-primary motor area.  Information regarding the connectivity of the forelimb 

area is a useful surrogate for the entire non-primary motor area.  Therefore, this 

study will focus on the connectivity of the RFA, in lieu of the entire non-primary 

motor area.   

While there are many similarities in anatomy and physiology, the 

homology of rat and primate non-primary areas are still debated.  Premotor areas 

in the primate are classically defined as regions of the frontal cortex with 
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corticospinal projecting neurons that are connected to the primary motor area 

(Dum RP and PL Strick 2002).  The primateʼs frontal cortex houses the primary 

motor cortex and at least six premotor regions.  The premotor ventral and dorsal 

areas (PMv and PMd) of the primate have a similar orientation and numerous 

interconnections with the M1, as RFA does to CFA.  The areas combined 

(premotor, PM) make a logical first choice to compare homology.  However, there 

are up to four other premotor areas of the primate, confusing any homology that 

could be derived.  Further, the isolation of the premotor areas is different.  If the 

Brecht model is used (Brecht M et al. 2004), the non-primary motor area of the 

rat is fully within M1, while each premotor and motor area is separated by several 

millimeters in the primate.  Also, an area within the rat cortex, termed the 

sensorimotor overlap, has properties of both the motor and sensory cortex.  This 

sensorimotor overlap does not exist in the primate, as it does in the rat.  

Another similarity between the RFA and PMv is the incomplete cortical 

representation of body movements.  A full body representation is difficult to 

delineate in the non-primary motor cortex.  Hind limb, trunk and face 

representations have been reported to exist within the non-primary motor cortex, 

and some report corticospinal projections to the lumbar enlargement originating 

from close proximity to RFA (Li X-G et al. 1990), but few studies report eliciting 

hindlimb movements using ICMS (Neafsey EJ 1990). Also, RFA is surrounded by 

face, neck and trunk representations confusing the delineation between ICMS 

responses of these movements belonging to primary and non-primary motor 
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areas.  In this sense, RFA is similar to the PMv of primates, as the hindlimb is 

also not observed in PMv during ICMS. 

Due to this problem of homology, past studies in the rat have sought to 

define the connectivity of the motor cortices, in particular, with other cortical 

areas.  As a first step in delineating the hierarchy of RFA, Rouiller determined the 

anterograde and retrograde connectivity of RFA and CFA (Rouiller EM et al. 

1993).  That study identified cortico-cortical projections from RFA to the ipsilateral 

CFA (all layers), S1, S2, AGm, anterior cingulate (AC) and insular cortex.   Based 

on connectivity alone, those authors could not firmly conclude whether the RFA 

corresponds to the supplementary motor area (SMA) or premotor (PM) of the 

primate, though it had aspects of both.  They did establish that the cortex 

controlling the forelimb, described as two regions by Neafsey (Neafsey EJ and C 

Sievert 1982), was in fact two distinct regions with different connectivity patterns, 

and that the CFA was akin to M1 of primates, while RFA shared similarities of 

both the supplementary motor area (SMA) and premotor area (PM).  

In some ways the homology between primates and rats is clear.  The fact 

that the RFA lacks sensory input, while CFA neurons respond to sensory 

stimulation, is consistent with RFA's role as a supplementary motor area (Sievert 

CF and EJ Neafsey 1986).  The comparison is complicated because primate 

premotor areas each have connectivity patterns that are only partially similar to 

rat non-primary motor area.  In the primate, both SMA and PM connect to the 

insular cortex (Jurgens U 1984; Matelli M et al. 1986) as does the RFA.  This fact 
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helps separate out the RFA from CFA, but does not distinguish its homology to 

either. 

While the basic connectivity of RFA has been described in a qualitative 

way, tract-tracing studies are quite scarce, and many more details are needed to 

resolve RFAʼs connectivity relationship with primate premotor cortex.  For 

example, in the Rouiller study, the injection placement within the RFA was 

centered around stereotaxic coordinates and one ICMS site (Rouiller EM et al. 

1993).  While stereotaxic coordinates are valid for general placement, they 

cannot be precisely located within the RFA.  This leaves some question as to 

how much of the RFA was labeled and how much tract tracer could have 

expanded into other cortical areas. Also, the injections of anterograde tracers 

themselves were variable and relatively large (3 µL per site for dextran amine), 

and thus, the tracer may have leaked beyond the confines of the RFA.  Lastly, 

although the laminar distribution of connectivity to/from RFA was described in 

detail, coronal sectioning does not afford the same description of the topographic 

relationships of terminal fields as tangential sectioning allows.  The current study 

employed ICMS, small injections (100 nL of biotinylated dextran amine, BDA), 

and tangential sectioning to understand the anterograde and retrograde 

connectivity of a limited cortical volume within RFA. 

The result of the current study provides a description of the terminal fields 

of connectivity.  Using tangential sectioning and a specific injection of small 

volumes of tracer within the physiologically defined borders of RFA, we confirm 
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that the ipsilateral corticocortical connectivity of RFA is not diffuse throughout the 

cortex, but has clusters of connectivity with a preference for motor regions and 

higher order processing areas. Further, by using the semiquantitative approach, 

we were able to rank order the density of connections, providing further 

documentation of the corticocortical hierarchy.  Connections suggest important 

roles for these areas in the normal function of movement coordination of the 

forelimb.  Although previous studies are largely consistent with our findings, we 

add the description of the connectivity to the parietal medial (PM), parietal lateral 

(PL) and accessory areas in the caudal (CAS) brain. The RFA sends few 

projections to the primary somatosensory area or areas associated with the 

special senses of taste, vision or hearing. The retrograde labeling follows this 

pattern, and hints that reciprocal connectivity may be important in the function of 

the RFA.   

 

Materials and Methods 

 

 Male Long-Evans hooded rats (n=8; 370-450 g; 3-5 months of age Harlan, 

Indianapolis, IN) were singly-housed with a 12 hr:12 hr light:dark cycle.  Food 

and water were provided ad libitum.  The Institutional Animal Care and Use 

Committee of the University of Kansas Medical Center approved all animal use.  

 

Surgical Procedure 
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 Isoflurane sedation was followed by ketamine [100-80 mg/kg, 

intramuscularly (IM)] and xylazine [30 mg/kg, intraperitoneal (IP)] anesthesia.  

Supplemental doses of ketamine (20 mg/kg IM) were provided throughout the 

procedure as needed to maintain stable anesthetic depth.  After the rat was 

secured in a stereotaxic frame, Bupivacaine (2.5 mg, local anesthetic) was 

applied to the scalp.  A homeothermic blanket system maintained physiological 

body temperature.  The scalp was incised and reflected, and muscles attached to 

the temporal and occipital ridges were released.  The cisterna magna was 

opened to relieve cerebrospinal fluid, and a craniotomy performed from +5 

anterior to and -4 mm posterior to Bregma, and from +1 mm lateral to the midline 

to the temporal ridge.  The dura was reflected and warm sterile silicone oil 

applied to the cortex.  

 Motor areas were identified by intracortical microstimulation methods 

(Urban ET, 3rd et al. 2012).  Briefly, a digital photomicrograph of the cortical 

surface vasculature was taken through the surgical microscope and overlaid with 

a grid pattern (250 µm) in image software (Canvas, Deneba Software, Miami, 

FL).  A tapered and beveled glass electrode (20 µm outside diameter) filled with 

concentrated saline solution (3.5 M), was inserted 1725 µm below the cortical 

surface at every other grid intersection to give a resolution of 500 µm. A 

stimulation pulse train (40 msec duration) of 13 monophasic cathodal pulses (200 

µsec duration, 350 Hz) was delivered each second from an electrically isolated, 
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charge-balanced, constant-current stimulation circuit (BSI-2, Bak Electronics Inc, 

Mount Airy, MD).  The current was increased from 0 µA until a movement was 

visible, then reduced until the movement was no longer visible. Stimulation of 

“nonresponsive” sites did not elicit movements at the maximum current level of 

80µA. 

The size and shape of the electrically excitable and ICMS identifiable 

cortex, the RFA and FIA (CFA of others), are consistent with previous reports 

from this lab and others (Neafsey EJ and C Sievert 1982; Nishibe M et al. 2010).  

RFA was located between +3.7 and +2.7 mm anterior to Bregma and 2 to 4 mm 

lateral of the sagittal suture (Fig. 1A).  FIA was located between +2.7 anterior and 

-1 mm posterior to Bregma and 2 to 4.5 mm lateral of the sagittal suture.  The 

name of CFA was changed to FIA (Forelimb ICMS Area), because this ICMS 

responsive region overlapped the caudal part of IZ, which is outside the 

classically defined sensorimotor overlap zone, and the new name is reflective of 

that.  
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Fig. 1  Experimental overview, section alignment and voxel distribution of case 
R11-34. A. Location and border of RFA (green) and FIA (yellow) for rat R11-34.  
Photomicrograph of the cortex surface vasculature after craniotomy was taken 
through surgical microscope.  A 250 µm grid was overlaid (removed for clarity), 
and stimulating electrode lowered to 1725µm sub-pial depth at every other grid 
intersection.  Stimulation was increased from 0 to 80 µA until movement was 
elicited, and then decreased until movement was no longer visible (threshold). 
Black dots indicate site of stimulation while size is inverse to the threshold in 20 
µA steps (largest is 0-20 µA, second largest is 21-40 µA, second smallest is 41-
60 µA, and smallest is 61-80 µA). Anterograde tracer, biotinylated dextran amine 
with 10,000 molecular weight (BDA10kDa, black circle) was injected within RFAʼs 
center.  Fiducial marker, cholera toxin B subunit conjugated to AlexaFluor 647 
(CTB647, red dots) was injected 1mm caudal to the caudal extent of the CFA in 
two spots.  Bregma (vertical line) is indicated.  Scale bar is 1 mm, and is the 
same for B and G-J. B. Areas of pane A are overlaid on section outline (white 
line) of flattened cortex to show position. C.  On the flattened cortex, the 
BDA10kDa injection core (black line) was drawn around the area of dark 
speckling with little identifiable cellular structure.  Larger area of dark color is 
abundance of stained axons immediately around core.  Scale bar is 500 µm.  D.  
BDA10kDa is predominantly an anterograde tracer, retrogradely labeled neuronal 
somata (brown) are present.  Scale bar is 10 µm.  E.  Axons labeled with 
BDA10kDa appear as lines with boutons (arrow heads).  A bouton is a dark, 
round object about twice as big as the thin fiber on either side of it, or at the end 
of a thin projection off the main axon (arrow). Scale bar is 10 µm.  G.  Sensory 
cortex appears as dark cytochrome oxidase (CO) rich areas.  Arrows point in 
medial (M) and caudal (C) directions, (directions same for all panes).  H.  Section 
in G is shown here with CO-rich areas outlined and identified. The granular zone 
of S1 (light grey areas) is further divided into S1H, GZ, and PMBSF.  CTB647 
(red dots) and BDA10kDa (black dot).  I.  Outline from H is overlaid with voxel 
counts.  A 100 µm square grid was overlaid on the flattened cortex with a 
computerized microscope and stereology software (StereoInvestigator).  Boutons 
were counted and recorded semi-quantitatively within each grid, or voxel: voxels 
of 2-30 boutons are shown as blue dots, and voxels of >30 boutons are shown as 
red dots.  The cluster of voxels aided in the identification of PM, PL, PM, S2, PV, 
PR, and PRh.  CTB647 (red dots) and BDA10kDa (black dot) served as fiducial 
markers to align CO sections with those used to count boutons.  J.  Same section 
as in I. Retrogradely labeled neurons (green dots) were overlaid on the section 
outline.   
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 After defining the borders of RFA, a micropipette containing the neuronal 

tract tracer, biotinylated dextran amine, 10,000 MW (BDA10kDa, 10% w/v in 

0.9% sterile saline) was placed at approximately the center of RFA.  The injection 

needle included a tapered glass micropipette cut to 60µm outside diameter and 

was attached with beeswax to a 1µL Hamilton syringe (30100, Hamilton 

Company, Reno, NV).  It was actuated by a microinjector (Micro4, World 

Precision Instruments, Sarasota, FL).  Injection depth was controlled by a 

hydraulic Microdrive (650 Micropositioner, David Kopf Instruments, Tujunga, CA) 

on a stereotaxic arm. BDA10kDa was pressure injected in 3 boluses of 33.3nL 

(100nL total) at 1500, 1250 and 1000µm below the cortical surface, and CTB-647 

injections were delivered in 2 boluses of 75nL (150nL total) at 1500 and 1000µm 

below the cortical surface. The fiducial marker cholera toxin beta subunit 

conjugated to AlexaFluor 647 (CTB647, 5 µg/µL in 0.9% sterile saline, C34778, 

Invitrogen, Grand Island, NY) was injected (with the same configuration and 

outside diameter as BDA10kDa) at 2 sites that were each roughly 1mm caudal to 

the caudal border of FIA as defined by ICMS.   

 The cortical surface was rinsed with warm sterile saline (0.9%) and 

covered with a silicone sheet (Invotec International Inc, Jacksonville, FL), gel 

foam, (Surgifoam, Ethicon, Sommerville NJ) and dental acrylic and resin (Lang 

Dental Mfg Co Inc, Wheeling, IL) to form a protective cap over the craniotomy.  

The skin was sutured, penicillin injected (45,000 U, SQ) into the nape of the neck 

and local anesthetic (Bupivicaine, 2.5mg, APP Pharmaceuticals, Schaumburg, 
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IL) and topical antibiotic (Vetropolylycine gel, Dechra Veterinary Products, OP, 

KS) applied. Buprenorphine (0.05 mg/kg SQ, Reckitt Benckiser Pharmaceuticals 

Inc, Richmond, VA) and acetaminophen (40 mg/kg oral) were given after the 

surgery for pain management.  The rat was allowed to recover on the heating 

pad until it was alert and moving spontaneously, and then returned to its home 

cage.  Three additional doses of buprenorphine and acetaminophen were given 

during the subsequent 48 hours.   

   

Histology 

 

Tissue Harvest 

Seven days after the surgical procedure, rats were sedated with 

isoflurane, and euthanized with Beuthenasia-D (390mg pentobarbital, 50mg 

phenytoin sodium IP, Shering Plough Animal Health, Union, NJ).  After rib cage 

reflection, heparin sodium (500 USP Units, Hospira Inc, IL) was injected into the 

left ventricle, and exsanguination was achieved through transcardial perfusion of 

saline solution [0.9% saline in distilled water, heparin sodium (1,000 USP Units, 

APP Pharmaceuticals, Schaumburg, IL) and lidocaine HCl (20 mg, APP 

Pharmaceuticals, Lake Forest, IL)] followed by 3% paraformaldehyde in 0.9% 

saline.  The brain was extracted, both hemispheres of cortex were separated 

from the underlying structures, and flattened between glass slides.  The flattened 

cortices were exposed to 4% paraformaldehyde-20% glycerol in 0.9% saline (2 
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hr), 20% glycerol-2% dimethylsulfoxide in 0.9% saline (overnight), and 20% 

glycerol in 0.9% saline (24 hr).  Each flattened cortex was sectioned at 50 µm 

thickness on a freezing microtome chilled with dry ice. Individual sections were 

placed in 0.1 M PBS solution and kept at 4°C. 

 

Cytochrome Oxidase Staining 

 Sections were placed in 0.1 M PBS solution and allowed to float. Then, 

sections were inspected with the unaided eye for the S1 representation, which is 

visible as several slightly opaque white areas within the translucent section.  

Sections with the most complete representations (3 to 4 sections/cortex) were 

chosen for cytochrome oxidase (CO) staining.  After rinsing (2 x 10 min in 0.1 M 

PBS), floating sections were reacted with CO solution at 37°C containing 

cytochrome c oxidase (20 mg, Sigma, #C2506-500MG), sucrose (4 g, Fisher 

Scientific), and DAB (50 mg) per 100 mL of 0.1 M phosphate buffered distilled 

water (pH 7.4). Sections were allowed to react for ~2-3 hr until dark CO-rich 

areas were easily detectable against the lighter background.  The sections were 

then rinsed (2 x 10 min) in 0.1 M PBS.  

 

BDA10kDa Visualization 

All sections underwent a standard staining procedure using Avidin-Biotin 

Complex (ABC) linked to peroxidase with 3,3ʼ Diaminobenzidine (DAB, MP 

Biomedicals, Solon, OH, #980681) reaction product as the chromogen.  Sections 
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were rinsed in 0.1 M PBS (2 x 10 min with agitation), then exposed to 0.4% Triton 

X-100 (Sigma, #X100-500ML) in 0.05 M PBS (1 hr with agitation).  Sections were 

rinsed in 0.1 M PBS (3 x 10 min, with agitation).  Sections were incubated 

overnight in 0.1 M PBS with reagents “A” and “B” added according to Vectastain 

Elite Kit (Vector Laboratories, Burlingame, CA, #PK6100). Then, sections were 

rinsed (4 x 10 min, 0.1 M PBS), and exposed to DAB solution (0.05% w/v DAB 

and 0.01% v/v H2O2 in 0.1 M PBS).  Sections were wet mounted in 0.05 M PBS 

onto subbed slides and allowed to dry overnight. 

  

BDA10kDa Signal Intensification 

 Sections on slides were dehydrated in ascending alcohol concentrations 

(50%, 70%, 95% and 100% for 5 min each), cleared with xylene (5 min), then 

rehydrated by reverse order of alcohol concentrations.  Sections were exposed to 

1.42% silver nitrate in distilled water (55°C, 1 hr), rinsed (15 min, distilled water), 

exposed to 0.2% gold chloride (10 min), rinsed (15 min, distilled water), exposed 

to sodium thiosulfate (5 min), and rinsed (15 min, distilled water).  Finally, 

sections were dehydrated again, as described above, cleared in xylene, and 

coverslipped with DPX mounting medium (Sigma, #44581-500ML).    

 

Bouton and Neuronal Soma Quantification 
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Section outlines were traced with the aid of a computerized microscope 

(Axiophot 2, Zeiss) and stereology program (Stereoinvestigator, Microbrightfield).  

A 100 µm square grid was overlaid on the flattened cortical outline.  As the 

section thickness was 50 µm, voxels with dimensions 100 x 100 x 50 µm were 

examined systematically throughout the section. Voxels containing BDA-labeled 

boutons were coded as either “Red” (> 30 boutons per voxel) or “Blue” (2-29 

boutons per voxel).  

Axons labeled with BDA10kDa appear as dark lines with varicosities or 

boutons (Fig. 1E).  A bouton was defined as a dark (chromogen dense), round 

object about twice as wide as the thin dark fiber on either side of it (en passant 

bouton), or at the end of a thin projection off the main axon (terminal bouton). 

Boutons were counted and recorded semi-quantitatively within each 100 µm x 

100 µm x 50 µm (section thickness) voxel.  Voxels containing 2-30 boutons were 

marked with a blue dot (Fig. 1I), and voxel containing greater than 30 boutons 

were marked with a red dot (Fig. 1l).   

Although BDA10kDa is an effective anterograde tract tracer, retrograde 

labeling occurs as well.  BDA-labeled somata were plotted and counted on the 

same section as boutons.  A neuronal soma was taken as a confluently dark, 

smooth-edged shape with evidence of at least one thin projection emanating out 

of it (Dancause N et al. 2006b) (Fig 1D). These BDA-labeled somata were 

marked with a green dot (Fig 1J).   
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Within a given region, the density of boutons was greatest in deeper 

cortical laminae and least in superficial laminae.  However, the distribution of 

BDA-labeled boutons and somata was similar throughout cortical depths, similar 

to descriptions in previous connectivity studies in rat (Reep RL et al. 1987; 

Rouiller EM et al. 1993).  The current experiment uses a superficial layer section 

in order to more easily delineate between regions of interest, as deep layers have 

a larger more diffuse projection pattern.  Thus, although variations in overall 

density exist from superficial to deep laminae, it was deemed that a single 

section was representative of a particular animalʼs connectivity patterns. Due to 

the extensive amount of time required to plot BDA-labeling in each section, this 

was the most feasible approach to describing consistent connectivity patterns in 

the sample of rats.  

 

Alignment Procedure 

 

 Fiducial markers were used to align the ICMS map from the surgical 

procedure with the section outlines, voxel counts, neuronal soma counts, and 

CO-rich zones drawn in StereoInvestigator.  The location of 2 injections of 

CTB647 and 1 injection of BDA10kDa injection cores were marked on all ICMS 

maps and section outlines.  Section outlines and ICMS maps were overlaid in 

Photoshop, and the ICMS map was scaled and rotated until the 3 injection cores 

were in register.  Numerous symbols used to designate voxels (red and blue 
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dots) were present in the region of RFA and FIA.  Careful attention was paid to 

the relationship of the borders of RFA and FIA to the symbols, which helped 

maintain correct proportion while transferring the RFA and FIA outlines into 

StereoInvestigator.  

 

Calculation of Cortical Surface Area for each Region of Interest 

 

 The areal representations of the regions of interest (as determined by 

alignment of CO stained sections, ICMS maps and voxel clusters) were outlined 

in StereoInvestigator, and imported into a graphics software program (Illustrator, 

Adobe).  The area (mm2) of each region was then measured with another 

software program (Image J, NIH).  

 

Statistical Analysis 

 

Both voxel counts and soma counts were normalized to the surface area 

of the region of interest. These values (voxels/mm2, somata/mm2) were examined 

using a statistical program (JMP v10, SAS Institute). Since the variance in the 

different regions was determined to be unequal (OʼBrien test, F = 4.34; p < 

0.0001), a nonparametric analysis, Wilcoxon Rank-Sum test, was used to 

compare values in the different regions. Z-scores generated by the Wilcoxon test 



 34 

were then used to define cutoff levels for dense, moderate, sparse and negligible 

connectivity. 

 

Region Nomenclature and Identification 

 

The nomenclature, location and description of the regions of interest 

utilized in this study are derived from various sources in order to achieve the 

most accurate and reliable description.  Regions were identified using a variety of 

criteria including, response to ICMS, CO staining, obvious clustering of voxels, or 

spatial relationship to other regions, and are consistent with previously reported 

nomenclature.  If regions were indistinguishable using the methods of the current 

study, they were pooled together.  

 

Regions Identified as Cytochrome Oxidase Dense Zones 

 

Cytochrome oxidase staining reveals dark zones within granular cortex of 

flattened sections (Fig. 1H or G). These CO-rich zones were useful in identifying 

the S1, VIS, RS, TP and Aud cortex.  CO dense zones are widely accepted as 

the histological representation of the sensory cortex (Li H and MC Crair 2011). 

S1 is positioned in the middle of the flattened cortex with the ratunculus (body 

representation of the rat) in upside-down orientation facing rostral.  The hindlimb 

representation is furthest medial, while the head, upper lip, and barrel field 
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representations are furthest lateral.  The trunk area comprises the caudo-medial 

border, while the caudal end of the PMBSF comprises the caudal-lateral border.  

S1 is wider at its caudal than at its rostral aspect.  It is consistent with Remple 

(Remple MS et al. 2003) Chapin and Lin (Chapin JK and C-S Lin 1984), and 

incorporates the IZ of Krubitzer (Krubitzer L et al. 2011). 

VIS and TP are CO-dense regions coursing from the caudal edge of the 

cortex in a wide triangular shape. Both regions are thinnest at the rostral vertex.  

VIS is consistent with the Oc1M and Oc1B of Zilles (Zilles KJ 1985) pooled 

together.  TP is the smaller triangular region directly lateral to and separated from 

VIS by a CO-sparse strip of cortex, consistent with Krubitzer (Krubitzer L et al. 

2011).  Aud is a large circular CO-dense region lateral and caudal to the S1.  Our 

Aud is consistent with Aud of Remple (Remple MS et al. 2003), and the 5 

auditory fields of Polley (Polley DB et al. 2007).  

RS contains both a thin CO-dense region coursing along the medial edge 

of the caudal half of the flattened cortex (Harley CA and CH Bielajew 1992). The 

rostral aspect of RS stops at the caudal border of Fr; the lateral border is 

concurrent with the CAS, the caudal aspect ends 1-2 mm from VIS, and the 

medial border extends to the medial border of the cortex.  

 

Regions Identified by Topographic Relationships to Other Identified 

Regions 
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After aligning CO-rich section tracings, voxel and neuronal maps, some 

regions were identifiable by their spatial relationship to other regions.  Fr and IN 

were largely identified by their relationship to S1.  S1 is useful because it is large, 

easily identifiable and shares large sections of borders with Fr to the rostral edge, 

and IN on the lateral edge.  Fr occupies the rostral half of the medial cortex as 

well as the frontal pole, it borders S1 along its lateral caudal aspect.  Fr, and IN 

cortex follow Zilles (Zilles KJ 1985) with some modification.  All of the Frontal 

regions (Fr1, Fr2, and Fr3, and Cingulate cortex) were pooled into one region. Fr. 

Zillesʼ Insular cortex AID and AIV were pooled with the rostral half of Vi to form 

our IN.  IN occupies the lateral aspect of the cortex and is bordered by Fr and S1 

at its medial aspect, shares its caudal border with S2, PV and PR, and the rhinal 

fissure laterally. According to the Zilles terminology, the caudal half of Vi is our 

PV, and AIP is our PR.  The border between IN and FR was drawn from the 

mediorostral edge of S1 to a small consistent area of dense axons and boutons 

in the rostral pole.  The area has not previously been identified in connectivity 

experiments, and its identity is unknown.    

A large portion of the caudal cortex is named CAS, which borders FRO, 

PM, PL, Aud, PV, and PR on the rostral edge, the rhinal fissure on the lateral 

edge, TP and VIS on the caudal edge, and RS at the medial edge.  Because this 

cortex in the caudal half of the flattened cortex has neither dense CO staining 

(i.e., VIS) or readily identifiable clusters of voxels (i.e., S2), the CAS is a catchall 

term for the areas in the occipital and temporal lobes that have indeterminate 
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borders with the current methods.  The name was chosen to reflect the nature of 

the association areas that make up the CAS: Oc2MM, Oc2ML, Oc2L, Te2, and 

Te3.  

The piriform and olefactory bulb were not removed during sectioning and 

were included in the analysis for completeness sake.  There is no connectivity to 

these areas, so the areas lateral to the rhinal fissure along its entire length are 

pooled together as PirOl, excluding the PRh. 

 

Results 

 

Of the eight animals that underwent surgical procedures, six were used for 

quantification.  One animal died at the end of the surgical procedure. In another 

animal, the CO staining procedure failed to reveal the S1 representation.   

 In each of the six animals used for analysis, BDA-labeling of boutons and 

neuronal somata was clearly visible in various regions of the cortex. In the 

sections that follow, first the regions of interest are defined. Then, the relationship 

of the size of the BDA injection core to the physiologically defined RFA borders is 

described. Finally, the analysis of the relative density of BDA-labeled boutons 

(voxels) and neuronal somata is described.  

 

Regions Based on ICMS Responsiveness and CO Histology 
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 The regions of ICMS and CO staining were located as described in the 

Materials and Methods section above.  Region location was in agreement with 

other published reports.   

 

Regions Identified by Clustering of BDA-Labeling 

 

Discrete clusters of voxels on section outlines led to the identification of 

some areas.  Our S2, PV, PM, PR and PL are in accordance with Remple 

(Remple MS et al. 2003), and Fabri and Burton (Fabri M and H Burton 1991).  

Like Fabri and Burton, discrete dense clusters of connectivity were identifiable 

lateral to the S1, which spanned the caudal half of ALBSF and rostral half of 

PMBSF.  Proceeding from medial to lateral, respectively, S2, PV and PR occupy 

the cortex lateral to S1, medial to the rhinal fissure, rostral to Aud and caudal to 

IN.  These three areas are strips of cortex which generally share the same 

dimensions,  1-3 mm in the mediolateral and 2-3 mm in the rostrocaudal 

directions.  The extent of the regions was determined by the largest extent of the 

cluster of voxels.   

PM and PL were identified by small clusters of voxels, which were located 

caudal to and caudolateral to S1, respectively.  PM shares the caudal border with 

S1 and is the width of the bouton clusters it surrounds, (~1.2 mm anterior-

posterior).  PL shares a border with PM and S1 medially, S2 rostrally, Aud 

laterally and ends caudally the same level as PM.  This distribution pattern is 
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similar to those reported in other published reports (Fabri M and H Burton 1991; 

Reep RL and JV Corwin 2009).  

The TO is an area that has a small cluster of sparse voxels between or 

within one or both of the Oc2L and Te2 of Zilles (Zilles KJ 1985). The TO has not 

been reported previously to our knowledge and is drawn as a circle of 1mm 

diameter, which is centered between TP and Aud with the medial tip of TO circle 

in a line with the medial tip of TP.   

 

Regions of Physiological Overlap 

 

 Some regions were identified through the overlapping of ICMS regions 

with histological regions.  These overlapping sections were treated as separate 

regions to avoid confusion in nomenclature and double-counting voxels during 

analysis.  Also, in an effort to capture any connectivity differences in closely 

adjacent regions that might have existed because of the nature of the cortex 

overlap (sensory, motor, or sensorimotor overlap), closely adjacent regions were 

distinguished with different names.  In the case of IZ, pieces of the rostral part of 

IZ were included in the overlap zone of CFAR, so non-overlapping IZ was 

renamed IZO (Fig 2).  As the physiologically defined FIA was found to overlap the 

histologically defined IZ, S1H and GZ, additional terminology is introduced here:  

The cortex was overlapped by FIA and the rostral portion of IZ is included in 

CFAR along with the FIA, which was overlapped with FR.  The cortex, which was 
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overlapped with FIA and S1H or GZ, became CFAOv, while non-overlapped S1H 

became S1HO and non-overlapped GZ became GZO.  The cortex overlapped by 

FIA and the caudal portion of IZ is the ICMSR, while non-overlapped IZ is IZO.  

The issue of FIA overlap is further discussed below (see Discussion).   
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Fig. 2  Section outline from Fig.1H, overlaid with the subdivisions of FIA and S1 
overlap to give overview of position of regions of interest.  The FIA (A, thick line), 
based on its overlap with S1 (B, black line) and its subdivisions (grey lines, GZ, 
S1H, IZ and PMBSF), was subdivided (C) into CFAR (yellow), CFAOv (green) 
and ICMSR (brown).  CFAR includes the FIA outside of S1 and the intersection 
between the FIA and the rostral parts of IZ, which have a larger cortical layer V 
than the caudal parts.  CFAOv includes the overlap between FIA and S1H and 
some of GZ.  ICMSR includes the overlap between FIA and the caudal parts of 
IZ, which are more dysgranular in nature, but without the motor-cortex-like layer 
V of the rostral half.  PMBSF (dark blue) stays the same throughout.  The parts of 
S1H, GZ and IZ that were not otherwise delineated by FIA overlap were renamed 
S1HO (light blue), GZO (medium blue), and IZO (Orange), respectively, to reflect 
this new stature.  Arrows point in medial (M) and caudal (C) directions, and scale 
bar is 1 mm (same for A-C).   
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The last naming convention relates to subregional  nomenclature.  Larger 

regions were also given the extra designation of “O” for “not otherwise 

delineated.”  In the case of FR, RFA resides fully within the borders of FR.  RFA 

and CFAR became separate regions, while FR became FRO.  

Although size and location of FIA was fairly consistent, each FIA did have 

variability when overlapped with S1 to create CFAR, CFAOv and ICMSR.  While 

the more frequently reported sensorimotor overlap (our CFAR and CFAOv) are in 

all six animals (Fig. 3A and D), the new designation of ICMSR exists in four out of 

six animals (Fig. 3B, C, E, and F).  The CFAR, which exists in the rostral half of 

FIA, forms a rostrolateral border with S1 at the hand and wrist representation, 

extends rostrally 2 mm from the S1 border, and is up to 2mm mediolateral.  The 

CFAOv exists in the middle of or the caudal half of FIA.  CFAOv covers the S1H 

in all animals, and some parts of the wrist and forearm representation in others.  

It runs in an oblique angle along the rostral aspect of S1, and is up to 2mm wide 

and 3mm long.  The ICMSR, when present, is a thin strip of caudal FIA that 

overlaps exclusively with the caudal sections of IZ, also called the DZ by Chapin 

and Lin (Chapin JK and C-S Lin 1984).  The ICMSR region extends up to 1.5 mm 

in an anteroposterior direction and up to 1 mm in a mediolateral direction and can 

encompass one to four ICMS stimulation sites. 

 

Specificity of BDA Injections 
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In the flattened, tangentially-sectioned cortex, the BDA injection core was 

defined as the area of dark, uniformly-speckled staining with little identifiable 

cellular structure.  The halo was identified as a larger area of dark staining 

extending beyond the core at low magnification; however, at higher 

magnification, it contains a large number of labeled axons immediately around 

the injection core (Fig. 1C).  After visual inspection of the sectioned tissue, 

sections 8-24 were determined to be consistently intact among all animals and 

were used for further analysis.  Every other section (nine sections per animal) 

was used for determining BDA injection core size.  Both BDA and CTB647 (Fig. 

1F) injection cores were outlined on sections.  The section outlines and the ICMS 

maps were aligned using these cores as fiducial markers.  The BDA injection 

core from each of the nine sections was within the borders of RFA as defined by 

ICMS (Fig. 4). 
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Fig. 3  Overlap of specific cases.  A-F.  The animal identifier is immediately 
above its outline.  RFA (dotted line) is rostral.   Although size and location of FIA 
is fairly consistent, each FIA (thin line) overlaps with S1 (thick line) to create 
CFAR (light grey), CFAOv (medium grey) and ICMSR (dark grey) do have 
variability in shape.  Arrows point in medial (M) and caudal (C) directions, and 
scale bar is 1 mm (same for all panes).  F.  RFA and RIA are labeled, as well as 
GZ, IZ, and PMBSF within their respective grey lines (same for A-F).   
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Fig. 4  A, C-G.  In order to show that connectivity is specific to RFA, BDA10kDa 
injection cores from all nine sections (pink with grey outline) from each animal 
were outlined and aligned with each other and the ICMS map from that animal.  
Each RFA (green line, as determined by ICMS) encompasses the injection core 
with little spread past its borders.  The injection core outline from the section 
used for bouton counting is outlined in blue. The animal identifier is immediately 
above its outline.  B. The BDA10kDa injection core (black line) was identified as 
the diaminobenzadine (DAB) dense, pixelated area with little neuronal 
morphology visible.  The area outside of the injection core has abundant labeled 
axonal projections and appears dark.  Arrows point in medial (M) and caudal (C) 
directions, and scale bar is 0.5 mm (same for A-G).   
  



 49 

 
Qualitative Description of Anterograde Corticocortical Connectivity 

 

The connections of two animals R11-29 (Fig. 5A-B), which had the least 

total voxels with labeled boutons (4,129), and R11-09 (Fig. 5C-D), which had the 

most total voxels with labeled boutons (5,513), are displayed in Fig. 5. The 

regions of interest outlines (grey lines) are surrounded by the section outline 

(thick black lines).  Regardless of differences in total number, the relative 

connectivity is similar between the two animals.  FRO, RFA, CFAR, and CFAOv 

are almost confluent with both red (≥ 30 boutons/voxel) and blue (< 30 

boutons/voxel) voxels with the frontal pole receiving mostly red voxels.  GZO, 

S1HO and PMBSF) has small amounts of dispersed voxels throughout.  Voxels 

present within the granular S1 are confined to the rostral border centered around 

CFAOv.  The dysgranular cortex of IZ, is almost confluent with both red and blue 

voxels. The IN has many voxels in the rostral half of the region but has only a few 

scattered voxels in the lateral and caudal half.  S2, PV, and PR have a dense 

cluster of both red and blue voxels within the center of each region, wherein the 

center of each of the clusters is made up of a group of red voxels.  PM has a 

cluster of mostly blue voxels in the center of the mediolateral and rostrocaudal 

axis, although the center of the cluster of voxels is red.  PL has a cluster of 

voxels in the rostral edge of the region, which may or may not have red voxels in 

the center.  PRh has many blue and red voxels along the entire length of the 

region; the red voxels may or may not be in the center of the region.  TO is a 
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region drawn between Aud and TP centered around a variably small cluster of 

blue voxels.  Aud, PirOl, VIS, TP, CAS and RS have few dispersed blue voxels 

within the regions.    

In the current study, the caudal half of the IZ was coextensive with an area 

of confluent voxels within the center of S1.  The rest of S1 had few connections to 

RFA, as denoted by few voxels in the areas of GZO, PMBSF and S1HO.  Before 

the aligning procedure, it was easy to guess where the CO-rich regions of S1H, 

PMBSF and GZ would rest after alignment by looking at the voxel section.  The 

zones with no voxels formed a negative image for the GZ, S1H and PMBSF to fit 

into.  This pattern holds true in all rats tested. 

  



 51 

 

 



 52 

 
 
 
 
 



 53 

 

Fig. 5  Distribution of voxels and somata of the animal with the least number of 
voxels (R11-29) and most (R11-09) number of voxels.  A.  The section outline 
(black line) from animal R11-29, surrounds outlines of regions of interest (grey 
lines), along with the BDA10kDa core (large black shape) and CTB647 (small 
black dots).  FRO, CFAR (light grey), ICMSR (dark grey), IZO, S2, PV, PR, and 
PRh receive many connections from RFA, as the areas are almost confluent with 
voxels containing >30 boutons (red), and voxels containing 2-30 boutons (blue).  
CFAOv (medium grey), GZO and PMBSF, S1HO, GZO, PM, PL, RSA, and IN 
regions have few, if any, voxels containing >30 boutons and minimal voxels 
containing 2-30 boutons.  VIS, TP, CAS, TO, Aud, and PirOl receive the fewest 
connections from RFA, containing only a few, if any, blue voxels (containing 2-30 
boutons).  Regions of confluent axons (green lines) in Fr and IN were also noted.  
Arrows point in medial (M) and caudal (C) directions, and scale bar is 1 mm 
(same for A-D).  B.  Neuronal somata (green dots) distribution of same animal as 
in A.  C. Outline of section (black line) from animal R11-09, surrounds outlines of 
regions of interest (grey lines), along with the BDA10kDa core (large black 
shape) and CTB647 (small black dots).  Colors and labels are same as A-D.  D.  
Neuronal somata (green dots) distribution of same animal as in C. This figure 
shows the stability of relative pattern in a qualitative assessment of corticocortical 
connectivity from RFA regardless of variability in total number of voxels. 
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Qualitative Description of Retrograde Corticocortical Connectivity 

 

The pattern of retrogradely labeled somata follows the pattern of the voxel 

connectivity (Fig 1, 5, 7 and Table 1).   Qualitatively, there are sparsely 

distributed, labeled neuronal somata dispersed throughout the section with 

minimal clustering.  Within RFA, there are numerous labeled somata.  FRO has 

multiple labeled somata in close proximity to the RFA.  CFAR, CFAOv, ICMSR 

and IZO have multiple labeled somata scattered throughout.  PMBSF, GZO, and 

S1HO have somata scattered throughout the regions, but most somata are in 

close proximity of IZO.  S2, PV, PR, and PM have somata clustered in areas of 

high voxel connectivity within the regions.  RS, CAS, VIS, TP, TO, Aud, PM, and  

PirOl rarely have any labeled somata within themselves. 

Regions of interest with numerous voxels with labeled boutons, i.e. IZO, 

S2, FRO and CFAR (Fig 5A-B), also contained more labeled somata within them.  

Regions of interest with no or few voxels with labeled boutons, contained no 

labeled somata, i.e., PirOl and Aud.   

 

Quantitative Description of Anterograde Corticocortical Connectivity 

 

Total voxels were normalized for the area of each region of interest in 

each rat. These numbers were used for mean and standard error of the mean 

calculations (Fig. 6).   
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In order to delineate among dense, moderate, sparse and negligible 

connectivity, voxel counts/mm2 were analyzed using a nonparametric procedure, 

the Wilcoxon Rank Sums Tests.  Significant differences in voxel counts/mm2 

were found among the regions of interest (Chi-square = 95.22, p < 0.0001). Z-

scores based on the Wilcoxon test were then used to derive arbitrary cut-off 

levels for densities. Regions with dense connections were defined as those with 

z-scores (>2.5); regions with moderate connections had Z-scores between 1 and 

2.5, and regions with sparse connections had Z-scores between -0.5 and 1. 

Regions with z-scores < -0.5 were considered to have negligible connections 

(Table 2).     

Based on z-scores for bouton densities, FRO, PR and CFAR had dense 

connectivity; IZO, CFAOv, S2, and PV had moderate connectivity, while ICMSR, 

S1HO, PRh, IN, PMBSF, and PM had sparse connectivity.  PL, GZO, RS, Aud, 

Vis, TO, PirOl, CAS and TP had negligible connectivity (Figure 7A).  

 

Quantitative Description of Retrograde Corticocortical Connectivity 

 

Total soma counts were treated in the same manner as voxel counts.  

They were normalized for the area of each region of interest in each rat. These 

numbers were used for mean and standard error of the mean calculations (Fig. 

6).   
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Fig. 6  A-C.  Histogram of the distribution of RFA connectivity.  Percentage of 
voxels per region of interest was figured with the formula (X in region of 
interest)/(X in total section)/(area of region of interest), where “X” is either voxels 
containing >30 boutons (A) or voxels containing 2-30 boutons (B).  Percentage of 
somata per region of interest (C) was figured with the formula (somata in region 
of interest)/(total somata in section)/(area of region of interest).  Percentages (y 
axis) are displayed versus the region of interest (x axis), and height is equal to 
mean (n=6) with error bars equal to standard deviation (same for A-C).  A.  When 
considering total voxels, neurons within the RFA send dense projections to other 
parts of the RFA, FRO, PR and CFAR send  moderate projections IZO, CFAOv, 
S2 and PV, send marginal projections to ICMSR, S1HO, PRh, IN, PMBSF and 
PM, and send negligible projections to PL, GZO, RS, Aud, VIS, TO, PirOl, CAS, 
and TP. Please notice the break in the bar for RFA. B.  When considering the 
location of the retrogradely labeled cells, the region of interests are connected to 
the same level in a retrograde direction as they are in the anterograde, as in A, 
with the exception of CFAOv, PR, IZO, S2, PRh, and GZO.  Please notice the 
break in the bar for RFA.   
 



 58 

Table 1. Means and Standard Deviations 
 Area (mm2) Total Voxels with 

Boutons 
Voxels with ≥30 
Boutons (Red) 

Voxels with <30 
Boutons (Blue) 

Total Neurons 

Region Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 
Aud 18.17 5.74 0.00 0.00 0.00 0.00 18.17 5.74 0.00 0.00 
CAS 55.00 28.96 0.17 0.41 0.17 0.41 54.83 28.81 0.00 0.00 
CFAOv 111.00 55.81 17.17 22.61 17.17 22.61 93.83 50.59 3.17 2.32 
CFAR 229.33 111.86 131.00 107.57 131.00 107.57 98.33 73.75 19.17 20.55 
FRO 1544.67 212.63 937.17 306.11 937.17 306.11 607.50 355.62 74.17 43.20 
GZO 278.17 156.17 13.50 20.60 13.50 20.60 265.50 139.57 3.00 3.52 
ICMSR 20.50 25.21 3.17 4.92 3.17 4.92 17.33 20.57 0.50 0.84 
IN 530.83 111.06 107.00 60.27 107.00 60.27 423.83 93.60 2.00 2.00 
IZO 391.33 84.92 98.50 60.07 98.50 60.07 292.83 60.97 6.17 3.49 
TO 3.67 4.32 0.00 0.00 0.00 0.00 3.67 4.32 0.00 0.00 
PIRol 58.33 37.72 0.83 1.33 0.83 1.33 57.50 37.29 0.17 0.41 
PL 66.67 47.56 1.83 2.48 1.83 2.48 64.83 45.54 0.17 0.41 
PM 138.33 40.66 15.17 20.18 15.17 20.18 123.17 29.59 0.83 0.75 
PMBSF 206.50 65.80 12.83 11.57 12.83 11.57 193.67 56.00 1.83 1.83 
PR 154.67 76.78 49.67 30.53 49.67 30.53 105.00 55.75 2.33 1.75 
PRh 120.67 93.32 7.67 8.38 7.67 8.38 113.00 87.00 0.00 0.00 
PV 272.50 47.86 94.83 38.88 94.83 38.88 177.67 22.50 2.33 1.75 
RS 21.33 31.41 1.33 3.27 1.33 3.27 20.00 28.50 0.17 0.41 
S1HO 49.50 42.56 3.00 6.00 3.00 6.00 46.50 37.04 0.33 0.52 
S2 337.50 58.82 69.17 39.81 69.17 39.81 268.33 26.75 3.50 4.93 
TP 1.83 2.04 0.00 0.00 0.00 0.00 1.83 2.04 0.00 0.00 
V1 18.17 13.05 0.00 0.00 0.00 0.00 18.17 13.05 0.00 0.00 
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Table 2:  Ranking of Bouton Densities 
Region Score Mean Z-scores 
FRO 119.000 3.437 
PR 108.833 2.770 
CFAR 107.000 2.650 
IZO 104.000 2.453 
CFAOv 97.667 2.038 
S2 97.333 2.016 
PV 96.667 1.973 
ICMSR 81.500 0.978 
S1HO 78.250 0.765 
PRh 75.000 0.552 
IN 72.167 0.366 
PMBSF 69.167 0.169 
PM 66.833 0.016 
PL 57.000  -0.617 
GZO 56.167  -0.672 
RS 32.833  -2.202 
Aud 28.333  -2.497 
V1 28.250  -2.503 
TO 25.250  -2.699 
PirOl 24.333  -2.759 
CAS 19.500  -3.076 
TP 17.917  -3.180 
 
Note: Total Voxels (with labeling) Per Region of Interest was subjected to a 
nonparametric test (Wilcoxon Rank Sum Test). Z-scores were used to determine 
cutoff values for defining regions of interest with dense, moderate and sparse 
connectivity. Cutoff values for z-scores were set at ≥ 2.5 (dense), ≥ 1.0 and < 2.5 
(moderate), ≥ 0 and < 1.0 (sparse). Connectivity for regions of interest with z-
scores < 0 were designated as negligible.  
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Table 3:  Ranking of neuronal somata densities 
Region Score Mean Z-scores 
FRO 123.833 4.025 
CFAR 118.500 3.650 
CFAOv 112.167 3.205 
IZO 103.333 2.584 
PR 96.333 2.092 
PV 84.167 1.236 
GZO 78.833 0.861 
S2 76.500 0.697 
PMBSF 70.833 0.299 
PM 68.667 0.146 
ICMSR 64.167  -0.158 
IN 63.667  -0.193 
S1HO 59.333  -0.498 
PL 43.500  -1.611 
RS 43.000  -1.646 
CAS 40.667  -1.810 
PIRol 39.833  -1.869 
Vis 39.667  -1.881 
PRh 34.000  -2.279 
TO 34.000  -2.279 
Aud 34.000  -2.279 
TP 34.000  -2.279 
 
Note: Total Somata Per Region of Interest was subjected to a nonparametric test 
(Wilcoxon Rank Sum Test). Z-scores were used to determine cutoff values for 
defining regions of interest with dense, moderate and sparse connectivity. Cutoff 
values for z-scores were set at ≥ 2.5 (dense), ≥ 1.0 and < 2.5 (moderate), ≥ -0.5 
and < 1.0 (sparse). Connectivity for regions of interest with z-scores < -0.5 were 
designated as negligible.  
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Dense, moderate, sparse and negligible connectivity were delineated in 

the same manner as voxel counts.  Somata/mm2 were analyzed using a 

nonparametric procedure, the Wilcoxon Rank Sums Tests.  Significant 

differences in somata/mm2 were found among the regions of interest (Chi-square 

= 95.22, p < 0.0001). Z-scores based on the Wilcoxon test were then used to 

derive arbitrary cut-off levels for densities. Regions with dense connections were 

defined as those with z-scores (>2.5); regions with moderate connections had Z-

scores > 1 and < 2.5; regions with sparse connections had Z-scores > -0.5 and < 

1. Regions with z-scores < -0.5 were considered to have negligible connections 

(Table 3).     

Based on z-scores for neuronal somata densities, FRO, CFAR, CFAOv, 

and IZO had dense connectivity, PR and PV had moderate connectivity, and 

GZO, S2, PMBSF, and PM had sparse connectivity.  ICMSR, IN, S1HO, PL, RS, 

PL, PirOl, VIS, Aud, CAS and TO had negligible connectivity (Figure 7B).   

 

Discussion 

 

Based on quantitative methods describing the density of cortico-cortical 

termination patterns, this study provides several findings.  1) The connectivity 

pattern of RFA was determined throughout the cerebral cortex.  The RFA sends 

dense projections to FRO, PR and CFAR, moderate projections to IZO, CFAOv, 
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S2, and PV, and sparse projections to ICMSR, S1HO, PRh, IN, PMBSF, and PM.  

Retrograde labeling revealed that somata projecting to RFA were dense in FRO, 

CFAR, CFAOv, and IZO, were moderate in PR and PV, and were sparse in GZO, 

S2, PMBSF, and PM.  Figure 7 is a summary of the findings of both anterograde 

and retrograde connectivity.  2) More specifically, this study provides convincing 

evidence that RFA projects heavily to the intercalated zone of the somatosensory 

cortex, but sparsely to the granular portions of the somatosensory cortex, 

including the S1 hand area caudal to the FIA/S1 hand area overlap zone.  3) The 

FIA tail was found to be further caudal than previously described, overlapping the 

intercalated zone, and densely connected to RFA.   

This study also provides further evidence for the location of S2 and PV 

directly lateral to S1, in which PV does not share a border with S1.  In the 

following sections, we will also discuss the status of RFA as a premotor area, the 

unique connectivity of RFA, the importance of our quantitative approach to 

understanding RFAʼs hierarchy of connectivity, and caveats of the study.   
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Fig. 7  A-B.  Diagram of the distribution of RFA connectivity.  Labels (boxes) for 
the regions of interest (grey lines) are placed within the section outline (black 
line) and have high (thick black line), moderate (medium black line), low (dotted 
line), or no (no line) representing connectivity to RFA.  A.  Anterograde 
connectivity considering total voxels in each region of interest.  Arrows point in 
medial (M) and caudal (C) directions, and scale bar is 1 mm (same for A-B).  B. 
Retrograde connectivity from the regions of interest to the RFA, considering 
location of retrogradely labeled somata.  This shows that areas are largely 
interconnected anterogradely (total voxels) and retrogradely (somata) to the 
same degree.  Only CFAOv, PR, IZO, S2, PRh, and GZO change designations. 
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Description of Functional Connectivity with RFA. 

 

Dense and Moderate Connectivity  

Greater connectivity to a functionally characterized cortical region 

suggests the region is more essential to proper function than an area of less 

connectivity.   As such, those regions with dense and moderate connectivity will 

be discussed further, while regions with sparse or negligible connectivity will not.  

Qualitatively, FIA, FRO, PR, CFAR, IZO, CFAOv, S2 and PV are almost 

confluent with voxels.  Quantitatively, regions FRO, PR, CFAR, IZO, CFAOv, S2 

and PV had dense and moderate connectivity, which suggests important roles for 

each of these areas in movement coordination of the forelimb.  To facilitate 

description, these regions can be divided into frontal, somatosensory, and lateral 

somatosensory cortex. 

 

Connectivity to Frontal Cortex (FRO and CFAR) 

Fr is the location of the primary motor, secondary motor, and medial 

frontal cortex, and nearly half of all voxels are located within FRO.  Connections 

to other parts of the Fr cortex would allow communication of multiple muscle 

systems working together for postural support and hand/face coordination, 

necessary for feeding.  Connections to the primary motor hand area allow access 

to corticospinal projections for movement activation.  Higher order functions are 
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encompassed within the other areas of frontal cortex as well.  The medial frontal 

cortex has a role in the aiming component of reaching tasks (Whishaw IQ et al. 

1992).  Maintaining concentration on a task is also related to this area.  Bilateral 

frontoparietal ischemia led rats to increase premature lever release errors on a 

lever task to receive food reward thereby increasing reaction time errors to visual 

cues, while rats affected with rostral pole lesion had major effects leading to a 

premature release signifying attentional deficits (Baunez C et al. 1998).  These 

functional deficits are seen in similar regions in the primate.  Connections to the 

Fr are not only instrumental in firing of corticospinal neurons but also important in 

aiming of the forelimb and attention to tasks related to forelimb movement.   

 

Connectivity to Somatoensory Cortex (IZO and CFAOv): Granular vs 

Dysgranular 

One of the most striking results is the different strength of connectivity to 

the different subareas of S1.  As S1 of the rat can be separated into granular and 

dysgranular areas, one might expect differences in connectivity, but the 

differences are quite stark.  IZO received dense connectivity while most the 

granular region was devoid of connectivity.  In fact, the space of absent voxels in 

S1 was the negative image of the somatosensory area, making it easy to 

estimate the final overlap position of the CO stained sections during section 

registration.  The granular cortex  (S1H, PMBSF, and GZO) and dysgranular 

cortex (IZ) of S1 are different in several aspects besides connectivity to RFA.  
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The most obvious difference is a reduced Layer IV in the dysgranular cortex and 

how this affects function.  The caudal half of the IZ receives deep sensory 

information from joints, while the granular zone containing S1H, PMBSF, and 

GZO receives cutaneous information (Chapin JK et al. 1987).  There is also a 

distinction between subcortical projections that may be involved in sensorimotor 

integration.  Dysgranular IZ has been shown to send projections that overlap with 

projections from granular S1 within the striatum, while projections from 

dysgranular S1 to the thalamus and spinal cord overlap with projections from 

other sensory and motor areas suggesting that both areas play distinct roles of 

modulating motor and sensory signals (Lee T and U Kim 2012). 

There is one exception to the granular dysgranular distinction regarding 

connectivity with RFA.  CFAOv does have moderate connectivity with RFA.  This 

is a special case in that the CFAOv zone is defined as an electrically excitable 

area of granular cortex capable of eliciting forelimb movements.  RFA connects 

densely to the other parts of M1, and thus one would expect dense projections to 

the primary motor cortex of the rat that extends through CFA including the 

granular sensorimotor overlap area CFAOv.  This suggests RFA modulation of 

motor function within the overlap zone is necessary, but to a lesser degree than 

to the modulation of motor cortex within Fr (CFAR).     

 

Connectivity to Lateral Somatosensory Cortex (S2, PV and PR) 
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S2 and PV are multimodal somatosensory regions.  They both have 

somatotopically organized full-body representation in the rat (Remple 2003). Both 

S2 and PV have corticospinal and medullary projections (Li 1990).  These 

connections suggest that RFA is both receiving and modulating the signal from 

these multimodal areas.  Given the specificity in topography of S2 and PV, an 

unexpected finding is the seemingly non-homotopic nature of connectivity these 

areas have with RFA. This is an atypical connectivity pattern for somatotopically 

organized sensory areas of cortex. Other studies show the connectivity of 

somatosensory areas is somatotopic in nature, i.e. injection into the forelimb area 

labels other areas associated with forelimb sensation.  However, after RFA 

injection, S2 and PV do not have clusters of connectivity within forelimb regions.  

S2 and PV are joined at the forelimb and hind limb representations, so a 

homotopic pattern would be expected to include one cluster of connectivity 

located at the joined forelimb representation of both S2 and PV that forms a 

border between the two regions surrounded by the empty space of negligible 

connectivity to the rest of the body representations.  Instead, there are two 

clusters of connectivity with one cluster of voxels in the middle of each region 

separated by a blank area of no voxels.  The densely connected zone is located 

in the proximal body representation of both S2 and PV, while the empty space 

corresponds to the forelimb and hindlimb area of others (Koralek K-A et al. 1990; 

Remple MS et al. 2003).  It is interesting to note that even though the dense 

connectivity is to unexpected representations within the S2 and PV, the pattern is 
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consistent within the group.  Areas of red voxels (>30 boutons/voxel) are located 

in the middle to medial area of each S2 and the middle to lateral area of each PV.  

This pattern is also consistent with the orientation of S2 and PV being mirror 

images of each other (Koralek, et al. 1990, Remple, et al. 2003).  Figures of the 

current study reveal the consistency (Fig 1a, 5a, 5c).   This pattern could be 

explained by incorrectly drawn regions, or be an artifact of the superficial layer.  

This is unlikely however due to the consistency of the pattern within the group 

and suggests the importance of modulation of the proximal body during forelimb 

function. 

 PR, located laterally to S2 and PV, may relay visceral information based 

on its thalamic connectivity (Cechetto DF and CB Saper 1987).  It is described as 

a thin strip of cortex on the medial rhinal sulcus, though Remple found it more 

medial than previously reported (Remple MS et al. 2003).  Li (Li X-G et al. 1990) 

found labeled neurons after tract tracer injection into the lumbar and cervical 

enlargement, which he labeled PR.  The location of PR in those studies is much 

more rostral than the current study.  A similar cluster of connectivity was found in 

the current experiment in the rostral region of IN.  The location of PR identified in 

this study is more in line with Remple (Remple et al. 2003) in an area of the 

cortex, which did not have corticospinal or medullary connections (Li, Florence et 

al. 1990), but that was heavily interconnected to the S1 granular zones (Fabri 

and Burton 1991).  It has been suggested that this area could be a fusion 

between internal and external body maps (Fabri and Burton 1991).  
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PV and S2 Location 

 

The rat has several secondary sensory regions lateral to S1 that are 

thought to be higher order and multisensory integration areas, S2 and PV.  

However, the precise position of these regions and the number of sensory areas 

in the rat has been subject to debate. This issue is important in that the functional 

significance of PV can be very different depending on which cortical space it 

occupies.   

In the rat, Zilles describes S2 (labeled Par 2) lateral to S1 (labeled Par1) in 

the rat, sharing a medial border with the lateral aspect of S1 (Zilles K 1990).   He 

then describes a visceral area (Vi) lateral to S2, which includes part of the 

gustatory area (Gu) and agranular insular posterior (AIP), the PV had not been 

identified yet.  PV was first described in rodents in the squirrel (Krubitzer LA et al. 

1986).  In the squirrel, PV is rotated more rostrally to S2.  Campi and Krubitzer 

put the S2 and PV of the rat in a similar relationship to that of the squirrel cortex, 

placing them rostrolateral to S1 (Campi KL and L Krubitzer 2010). This gives the 

impression that both S2 and PV share a border with S1, that S2 shares a border 

with PMBSF, and that PV shares a border with ALBSF.  

Our results are in general consistent with the interpretation of Remple 

(Remple MS et al. 2003).  The authors overlaid microelectrode recording maps 

with CO stained tangential sections.  CO-rich zones corresponding with the ratʼs 
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foot and mouth sensory representation aided in defining the border between S2 

and PV.  Similar CO-rich zones were used in the current study.  Remple defined 

two areas directly lateral to S1--each with a full somatotopic representation 

(Remple, Henry et al. 2003).  The areas mirrored each other in orientation, as 

they were joined at the forepaw and hindpaw representation.  In the current 

study, we found two distinct clusters of connectivity directly lateral to S1, which 

we divided into S2 and PV.  The clusters corresponding to S2 and PV are 

consistent in length and shape, and separated by blank areas (devoid of voxels), 

which aided in the recognition of the different regions.  However, there are 

discrepancies with Remple et al. (Remple MS et al. 2003) in that they describe a 

more lateral orientation of S2 and PV.  Krubitzer places PV in an area of cortex, 

which is devoid of connectivity in the current study (Krubitzer L et al. 2011).  The 

same area corresponds to the mouth representation of Remple (Remple, Henry 

et al. 2003).  It is easy to surmise the existence of similar connectivity to the S2 

and PV, and that these two areas correspond to the clusters of connectivity seen 

lateral to S1.  It stands to reason that the RFA would exhibit similar connectivity 

to two areas concerned with body and limb movement, while sending negligible 

connectivity to a mouth representation.      

In the current study, S2 and PV display a clear somatotopic organization.  

The caudal part of their shared border is the hindpaw representation of both S2 

and PV, as they are reflections of each other (Fabri M and H Burton 1991; 

Remple MS et al. 2003).  The hindpaw representations of S2 and PV were 
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devoid of voxels, while the proximal forelimb and trunk representations contained 

many voxels.  It stands to reason that the RFA would exhibit similar connectivity 

to two areas concerned with body and forelimb movement, while sending 

negligible connectivity to the mouth representation.  As S2 and PV are both 

integrative sensory in nature, it is easy to suggest that sensory-modulation is 

necessary for accurate forelimb movement.  S2 and PV also have labeled 

somata, suggesting the necessity of feedback from the regions. 

 

Other Parietal and Perirhinal Connectivity (PM, PL and PRh) 

 

 Although the other parietal areas, PM and PL, and perirhinal cortex, did not 

reach significant dense or moderate connectivity, the consistent clusters of 

connectivity within the regions warrant more discussion.    

The failure of these areas to reach the quantitative threshold may be a 

byproduct of region shape.  Both PM and PL were drawn larger than the cluster 

of voxels would dictate.  PM was extended to span the entire caudal border of S1 

in its mediolateral aspect beyond the cluster edge, while the widest part of the 

cluster was taken as the width of the entire region along its anterioposterior 

aspect, in a manner similar to Reep (Reep RL and JV Corwin 2009).  PL was 

extended both anterioposteriorly and mediolaterally so that it shared a border 

with PM and S1 medially, S2 rostrally, Aud laterally and ended in a line even with 

the PM caudally.  This is in a manner similar to an unnamed region of Reep, 
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which is smaller than our representation but which occupies the same space 

(Reep RL and JV Corwin 2009), and is in agreement with the general placement 

of Fabri and Burton (Fabri M and H Burton 1991).  Reep (Reep and Corwin 2009) 

visualizes PM as thinner and with a lateral aspect that extends further medially 

than ours; the medial aspect of our PM ends in a line even with the medial aspect 

of S1, as with Fabri and Burton (Fabri M and H Burton 1991). 

PL is a multisensory region found on the caudal lateral edge of S1 barrel 

cortex, and the caudal border ends at the caudal border of PM (Brett-Green B et 

al. 2003).  PL shares a border with PM on the caudal medial side, S1 on the 

rostral medial side, S2 on the rostral side, and Aud on the lateral side.  Although 

Brett-Green identify the region between Aud and S1 as having a multisensory 

component on its caudal end (Brett-Green B et al. 2003), the authors included it 

with S2.  The connectivity found in the current study revealed a distinct cluster of 

voxels in PL, and which deserves designation.  We have identified the area as PL 

in accordance with Remple (Remple MS et al. 2003) because it has multisensory 

responsiveness and connectivity that differentiates it from the rest of S2.  

Integration of multisensory information for correct stimulus-driven guidance of the 

forelimb is again intuitively important. 

The role of the posterior parietal cortex as a sensory integration area has 

been previously studied.  Like humans and non-human primates, the rat suffers 

from attentional and visual-spacial deficits when the parietal cortex is lesioned 
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(DiMattia BV and RP Kesner 1988).  Connections to PM would aid in the correct 

movement selection moving through 3-dimensional space.  

Although other studies have not specifically labeled the RFA, the current 

results are consistent with other studies on PRh connectivity to the motor cortex 

and extend the findings somewhat.  Fr2 (Prcm), which may or may not include 

the RFA, projects to the perirhinal cortex, with a large part extending into the 

ventral bank of the rhinal sulcus (Deacon TW et al. 1983).  The current results 

are at least consistent with studies involving retrograde tracer injections into the 

entorhinal and perirhinal cortex, which labeled cell bodies in primary and 

secondary motor cortex (Burwell RD and DG Amaral 1998). This current study 

extends these findings to identify physiological areas that were not defined in 

previous research.  Previous research revealed how RFA and CFA are 

connected to the perirhinal cortex in the upper layers I, II and VI by anterograde 

injection of the perirhinal cortex (Kyuhou S-i and H Gemba 2002).  The sensory 

cortex has also been shown to connect to PRh.  Although Fabri and Burton do 

not specifically name it as such, after close examination of their figures, our PRh 

is also present in their diagrams as a thin strip of connectivity coursing lateral 

along the entire caudal length of the rhinal fissure (Fabri and Burton 1991). 

 Previous findings not only show that connections exist between the frontal 

and perirhinal cortex, but connections have some functional relevance.  The 

transfer of auditory information is carried by such connections, as lesioning 

perirhinal cortex abolishes auditory signal potential in the frontal cortex (Kyuhou 
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S-i et al. 2003).  The perirhinal cortex is also related to object recognition.  

Lesioning perirhinal cortex creates deficits in object recognition that are not 

evident with amygdala lesion (Mumby DG and JP Pinel 1994). Also, the perirhinal 

sulcus layer V projects to frontal cortex while the perirhinal cortex projects to 

agranular insular, infralimbic, orbital, parietal and entorhinal cortices (McIntyre 

DC et al. 1996).  The involvement of PRh in multiple areas, i.e., object recognition 

and auditory information, supports the idea that PRh participates in stimulus-

driven guidance of the forelimb. 

 

Primate and Rat Premotor Connectivity Similarities 

 

 Since the early days of rat research, brain region homology between 

primate and rat is a constant question.  The rat is used frequently in neurological 

studies, but in order to appreciate the generalizability of results, the relationship 

to other species, especially primates needs to be addressed.  One area of 

concern, which this study elucidates, is the relationship of RFA to the premotor 

areas of primates.  

In primates, the premotor areas are classically defined as 1) regions within 

the frontal cortex that 2) directly projected to M1 (Dum RP and PL Strick 2002).  

RFA fulfills both of these, and also has corticospinal projections, as all primate 

premotor regions do (Rouiller EM et al. 1993; Dum RP and PL Strick 2002).  A 

major roadblock is the number of premotor areas in primates, which is far greater 
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than the one premotor area of the rat.  The RFA could be homologous to SMA, 

CMA, PMd or PMv areas; it could also be a combination of all or some of the 

areas or it could be an independently evolved region.   

The simplest approach to ascertaining brain region homology is by 

comparing connectivity patterns of areas. In general, the premotor cortex of a rat 

projects in a similar fashion to that of primate. The fundamental concept a 

researcher learns when first approaching this field of research is that the cortex 

involved in special senses (taste, sight and hearing) are devoid of connectivity 

while sensory and motor areas have various levels of connectivity.   

Similar connectivity studies regarding PMv have been done in squirrel 

monkey (Dancause N et al. 2006b).  PMv of primates has corticocortical 

connectivity very similar to RFA concerning projection target regions and relative 

strength of connectivity to those regions.   As one can see from the current study 

(Fig. 7), RFA sends dense projections to the rostral portion of the ICMS defined 

borders of M1, while only moderate connections are sent to the caudal portion.  

PMv shows increased connectivity to the rostro-lateral portion of M1 as well.  

While the difference between rostral and caudal M1 is greater in primates, both 

rats and primates show a clear preference for the rostral half of the motor cortex.  

In rats, the caudal portion of FIA is coincident with the sensorimotor overlap, and 

lower connectivity may be explained by the overlap itself.  Both PMv and RFA 

send dense connections to parts of the Frontal cortex rostral to itself, and 

moderate projections to S2 and PV.  Both PMv and RFA largely avoid sending 
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projections to S1, while sending projections to posterior parietal cortex.  RFA and 

PMv both display reciprocal connections; in addition, areas of increased 

anterograde connectivity have increased retrograde connectivity as well.  As 

shown in Table 1, regions of interest with high anterograde connectivity also have 

high retrograde connectivity.  The rostral part of IN has both confluent voxels and 

sparse neuronal somata, while the caudal part of IN has neither.  The 

interconnectivity of RFA to other areas is important in the function of RFA.  

The main differences between PMv and RFA exist because of the 

decreased number of brain regions in the rat.  PMv sends moderate and minor 

projections to the other premotor areas (PMd, SMA and CMA), while RFA has no 

other premotor area to project to.  There is also a moderate connection to 

anterior operculum, which is a brain region the rat does not have.       

Compounding the issue, RFA has connectivity patterns similar to other 

primate premotor regions.  Both the SMA and premotor cortex of primates project 

to the insular cortex (Jurgens U 1984; Matelli M et al. 1986) as well as to RFA.  In 

the current study, RFA displays extensive connectivity to the rostral part of the 

insular cortex.  The connectivity was not significant during statistical analysis, but 

the heterogeneous nature of IN make it difficult to capture the connectivity in only 

the rostral part of the region.  While this connectivity pattern helps validate RFA 

as a premotor area, it does not help distinguish which region it is.  Although, the 

similarities between PMv and RFA are striking, and it is tempting to say PMv and 

RFA are homologous, more study is necessary.       
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Connectivity to Overlap Zones 

 

The different anatomical aspects of the cortex have long been studied.  In 

the earliest analysis, the motor cortex was defined by large pyramidal neurons in 

Layer V projecting to the spinal cord, and the sensory cortex was defined by a 

dense granular Layer IV, which received thalamic inputs.  In primates, the 

sensory and motor cortex are separate.  Stimulation of the motor cortex drives 

muscle movements detectable by unaided eye or EMS, and electrical activity 

from peripheral stimulation can be recorded within the sensory cortex.  Recording 

within the motor cortex or stimulating neurons within the sensory cortex in order 

to drive movement is less effective.  However, the rat contains a cortical overlap 

zone with both properties, electrically excitable motor cortex and sensory cortex 

with peripheral stimulus-driven recording.  The potential evolutionary pressures 

for such arrangement are numerous, including the smaller size of the rat brain 

dictating that the same region accomplish multiple activities, or response time 

may decrease between sensory stimulus and motor activation with close 

proximity. 

This overlap zone was first described by Hall and Lindholm (Hall RD and 

EP Lindholm 1974) using electrical stimulation and recording, and verified by 

other authors (Chapin JK and DJ Woodward 1986).  It was reported as a 1 mm 

wide strip of cortex, running obliquely across the rostral border of S1, which 
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encompasses the caudal half of the motor cortex hand representation and all of 

the motor cortex hindlimb representation.  Donoghue did further anatomical 

studies and found the motor cortex within the overlap zone connected to both 

sensory and motor thalamic nuclei, while the motor cortex outside of the overlap 

zone connected to motor-only nuclei (Donoghue JP et al. 1979). After retrograde 

tract-tracer injection into the hindlimb cortex, both motor thalamus (ventrolateral 

nucleus, recipient of cerebellar connections) and the sensory thalamus 

(ventrobasal nucleus, recipient of the lemniscal pathway) were labeled.  

However, retrograde tract-tracer injection into the motor face representation 

(outside the overlap) led to motor thalamus neuronal staining, while retrograde 

tract-tracer injection into the sensory cortex (outside the overlap) led to sensory 

thalamus neuronal staining (Donoghue JP et al. 1979). In other experiments 

cytoarchitecture was compared with electrical stimulation maps (Donoghue JP 

and SP Wise 1982) to show stimulation sites covering most of the sensory 

forelimb region and all of the sensory hindlimb.  Neurons within the forelimb 

sensori-motor overlap fire in correlation with active movements (Chapin JK and 

DJ Woodward 1986).    

After aligning the sections in our study, the FIA was found to overlap S1H 

cortex in all six rats, and in two of the six rats--the overlap extends past the S1H 

to the GZ and IZ.  This encroaches into territory not previously identified as 

sensorimotor overlap.  The FIA (Fig. 2B) was subdivided into CFAR, CFAOv and 

ICMSR, based on its overlap with S1 and its subdivisions (GZ, S1H, and IZ).  
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CFAR includes the FIA in the frontal cortex, outside of S1 borders, and the 

intersection between the FIA and the rostral part of IZ.  The rostral parts of IZ 

have a larger cortical layer, V, than the caudal parts, and was included with the 

motor region overlap to reflect its motor-cortex-like morphology.  The CFAOv 

includes the overlap between FIA and S1H and some of GZ.  ICMSR includes the 

overlap between FIA and the caudal parts of IZ, which are more dysgranular in 

nature, but without the motor-cortex-like layer, Vb, of the rostral half.  PMBSF did 

not overlap with FIA in any of the rats, so a change was not necessary.  The 

parts of S1H, GZ and IZ that were not otherwise delineated by FIA overlap were 

renamed S1HO, GZO, and IZO, respectively, to reflect this new stature.  To our 

knowledge this is the first report of this naming system. 

We believe the ICMS response within the caudal part of IZ (ICMSR) is not 

an artifact of section alignment because eliciting movements within the caudal 

part of IZ is not without precedent in rodents.  Both Li, and Miller show location of 

corticospinal neurons consistent in position with our ICMSR after cervical cord 

injection, and as such, stimulation of forelimb movements is a reasonable finding 

(Miller MW 1987; Li X-G et al. 1990).  Donoghue shows connectivity of RFA, but 

they used coronal sections, which are harder to aggregate for areal 

representations of regions of interest; furthermore, the sensory forelimb region of 

interest on their standard model (see their Fig 10) (Donoghue JP and SP Wise 

1982) is of a different shape than the current study.  Since, the general pattern of 

stimulation sites in the former experiment is consistent with the current 
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experiment, it is quite feasible that the authors would have shown stimulation 

sites in the caudal part of IZ if tangential sections and CO staining had been 

used. In squirrels, the area between granular somatosensory areas is called the 

unmyelinated zone (UZ).  Recently, Cooke (Cooke DF et al. 2011) reported 

eliciting movements by stimulating within the UZ, while using similar parameters 

as the current study.  Although differences do exist, UZ in squirrel and IZ in rat 

may be homologous to one another, and therefore, it is not surprising that low 

threshold movements were elicited in the current study.   

One might ask why such things have not been reported previously. One 

answer points to the cortex motor region, which is inherently difficult to define 

because excitable cortex is sensitive to all manner of experimenter protocols, 

(i.e., anesthetic depth, current level).  Even in the first experiments of Hall and 

Lindholm, forelimb stimulation sites were reported further lateral than our own 

ICMSR (see their Fig 4)(Hall RD and EP Lindholm 1974).  Neafseyʼs (see their 

Figure 3) extent of CFA is consistent with our FIA (Neafsey EJ et al. 1986).  In a 

similar ICMS study, the overlap of ICMS and CO sections were accomplished 

with lytic lesions of the cortex during the surgical procedure, and the extent and 

placement of CFA was consistent with our results (Xie N et al. 2010).  In 

particular, their Fig 3c shows the caudal end of CFA extending past the forearm 

representation into the Intercalated Zone, as we have shown.  

The caudal and rostral part of IZ were included in different overlap zones 

due to various properties of the IZ.  FIA overlap with the rostral part of IZ was 
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included with Fr in CFAOv, while overlap with the caudal part was named 

ICMSR.  The rostral part of IZ is a thin strip of cortex between the forelimb and 

hind limb representations of S1 and the Fr cortex.  It has a mixture of the 

cytoarchitectural and physiological properties of the motor and sensory cortex 

that it resides between.  This area has a layer of large pyramidal cells in layer Vb, 

but also a variable granular Layer IV that would be expected in the sensory 

cortex.  Neurons in this area also respond exclusively to passive joint movement 

in anesthetized rats; however, ICMS in this area evoked muscle movement in 

Chapin and Linʼs study (Chapin JK and C-S Lin 1984) and also in the current 

study.  The mixture of both motor and sensory properties led Chapin and Lin to 

name it the transition zone (TZ) (Chapin and Lin 1984).  The difficulty in pinning 

one or the other term on these properties has led us to include the rostral IZ 

within S1, as it is clearly sensory, but we are also including it in CFAR with the 

classical motor cortex of Fr.  Future studies may elucidate its characteristics as 

worthy of its own designation. 

 

Functional Aspect of the Connectivity 

 

In general, the RFA connects heavily to non-primary somatosensory areas 

and other motor and sensory cortex involved in upper body motion while largely 

avoiding cortical areas involved in lower body movement or primary sensory 

cortex areas controlling taste, sight, and hearing.  
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Because of the sensorimotor overlap in the rat, the motor and sensory 

cortex areas responsible for hindlimb function completely overlap each other.  It 

is interesting to note that while the hindlimb area of GZO was not given a specific 

designation, there is a paucity of connectivity from the RFA to this area, even 

though RFA projects to most of the remaining primary and secondary motor 

cortex area, Fr (Fr1-3 of Zilles (Zilles KJ 1985)).  This suggests that while hand 

areas controlling hand, face, trunk and nose need to communicate for proper 

function, this control may be less important for hand and foot coordination.  This 

pattern also supports a somatotopic organization of RFA projections. 

It was not surprising that RFA connectivity to the motor trunk area and 

forelimb area followed the same somatotopic order in S2, PV, PM and Fr.  The 

secondary motor and sensory cortex are connected in the same somatotopic 

order to each of these regions, i.e., in rats  where RFA connected more heavily to 

the neck/trunk area of motor cortex, there were more voxels of the appropriate 

color in the appropriate somatotopic orientation in the S2, PM, PV, and Fr.  This 

pattern was not just held by relative placement in each of the regions, but also 

the pattern of density voxels in most animals  to the point where sparse and 

dense voxels (blue and red, respectively) from one region of interest were in the 

appropriate places to conform to the somatotopic pattern set forth in the other 

regions of interest.  As a negative control, the caudal IZ and PR, had no reported 

somatotopic organization and did not show the same pattern involving dense or 

sparse voxels.  As mentioned above, the RFA did not connect heavily to the foot 
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representation of S1, considered to be in the primary motor cortex of the 

hindlimb.  There was also a paucity of voxels in the caudolateral corner of S2, the 

caudomedial corner of PV and the medial side of PM, which are all areas of the 

hindlimb representation in those regions (Remple MS et al. 2003). 

 Although, these anatomical projections found in the current experiment 

could be nonfunctional, there is good reason to assume them functional, since 

similar anatomical connections found in the somatosensory cortex have proven 

functional.  Anatomical connections from S1 to PL were described first (Fabri M 

and H Burton 1991), but in later experiments, stimulation of the A2 barrel in S1 

led to an activity spread encroaching into PL (Brett-Green BA et al. 2001).  This 

is evidence for the functional relevance of anatomical connectivity.  Although, this 

is not evidence for functional relevance for the connectivity in the current 

experiment, the methods used to describe these connections are similar, and it is 

reasonable to hypothesize that similar methodology will label similar kinds of 

connections. 

 

Caveats 

   

Differences in Parcellation of Sensory Cortex from Previous Studies 

 S1 has been defined differently from previous reports.  Although our S1 is 

largely consistent with the Zilles regions (FL, HL and Par1) pooled together 

(Zilles KJ 1985) and the S1 of Chapin and Lin (1984) (Chapin JK and C-S Lin 
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1984; Zilles KJ 1985; Chapin JK et al. 1987) our S1 contains two CO-rich zones 

rostral to the S1, which are not usually reported as S1. They are two CO-rich 

areas separated from the rostral borders of the lower and upper lip 

representations by a small strip of CO-sparse cortex, which are the 

somatosensory representation of the bottom teeth and tongue, identified by 

Remple (Remple MS et al. 2003). S1 is further divided into the CO-dense region 

of granular sensory neurons and an intermingled CO-sparse region of the IZ of 

Krubitzer (Krubitzer L et al. 2011), which combines the DZ and TZ of Chapin and 

Lin (Chapin JK and C-S Lin 1984).  The granular portion of S1 is divided into the 

S1H, GZ and PMBSF.  All of these are readily identifiable as CO-dense regions 

consistent with Chapin and Lin (Chapin JK and C-S Lin 1984).  S1H is the 

forelimb sensory cortex with forepaw sensory inputs; PMBSF is the caudal half of 

the barrel cortex, while GZ contains the rest of the CO-dense sensory cortex not 

contained in S1H or PMBSF.   

 

Voxel Analysis 

Although voxels were counted as either red (>30 boutons) or blue (2-30 

boutons), the importance of either was indeterminate; so, both red and blue 

voxels were pooled into one number called total voxels for each region of 

interest.  This step removed some detail as voxels with higher bouton count and 

voxels with lower bouton count were analyzed with the same weight.  Although 

red and blue were condensed for the purposes of statistical analysis, Figures 1 
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and 5 display the red and blue voxel symbols in the interest of a more complete 

qualitative understanding of the distribution. 

 

Bouton Selection 

The strength of retrograde label was variable and created dark staining 

dendritic trees in some cases.  These dendritic trees were thicker and their 

attached boutons had different morphology than the axonal boutons.  Some will 

surmise that areas containing somata will have inflated anterograde connectivity 

from incorrectly counting the dendritic tree boutons.  Although this affect cannot 

be dismissed, it was minimized by counting only boutons on thin fibers and not 

counting boutons on obvious dendrites.   The effect of this can be found on Fig 8 

where both the rostromedial corner of S2 and the rostrolateral tip of S1 have a 

neuronal body present, but no voxels.  

 

Feedforward vs Feedback Connections 

 

The nature of flattening a cortex is not exact and thickness may vary from 

animal to animal, even though the same procedures, methods and personnel 

were used.  Although no attempt was made to ascertain the exact cortical layer of 

the section used for bouton quantification for each rat, an attempt at normalizing 

the section between rats was made.  Brains were sectioned from superficial to 

deep layers.  The first complete section and the section displaying the most 
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complete S1 representation based CO staining were noted for each rat 

separately.  Voxels were quantified on one superficial section halfway between 

the first complete section and the section displaying the most complete 

somatosensory representation, cortical Layer II/III.  Assuming the most complete 

S1 representation occurs at the same level in each rat, our method of choosing 

the section for bouton quantification would allow for comparison of a cortex 

between animals with some variation in thickness resulting from histological 

processing.  Although the absolute distance from pia to cortical Layer II/III 

changes, the relative distance between pia and cortical Layer IV should remain 

more stable.   

Feedforward connections are defined as brain areas involved in higher 

order processing connecting to brain areas involved in lower order or associative 

processing, and have traditionally been deemed instructive.  The typical 

feedforward pattern is connections from the upper cortical layers of areas 

involved in higher order or associative processing to deeper cortical layers of 

areas involved in primary processing.  These connections are considered to be 

instructive, modifying activity in the primary sensorimotor activity for adaptive 

changes to the internal and external environments.  In the case of connectivity 

from the RFA to CFAR, CFAOv or ICMSR, Layers II/III of RFA would be expected 

to project to Layer V of the FIA.  Feedback connections are seen as the reverse 

of this, and parallel communication would show connectivity to and from similar 
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layers and areas where similar processing took place.  Both feedback and 

parallel connections are suggested to be informative.   

BDA injection cores were present on all tangential sections and were 

consistent throughout the cortical layers; therefore, the quantified boutons 

necessarily emanated from any level of the tissue column encompassed by RFA.  

The cortical layer of somata giving rise to any specific bouton clusters was not 

determined; neither was the cortical layer of the target of retrogradely labeled 

somata.  Since feedforward and feedback connection definitions rely somewhat 

on the cortical layer occupied by both the efferent boutons and somata, questions 

answered by the current study regarding feedforward and feedback projections 

are minimal.  What can be ascertained is that RFA projects to cortical Layer 2/3 

of other areas, and neurons located in cortical Layer 2/3 of other areas project to 

RFA.  These connections are parallel creating feedback in the strict sense of 

cortical layer location.  

 If only the higher and lower order processing aspects of regions are taken 

into account, it is reasonable to suggest that most of the connectivity to regions 

outside the motor cortex is parallel in nature.  RFA has heavy or moderate 

connectivity to regions of multimodal or higher order processing:  PM, PL, S2, 

PV, PR and the caudal half of IZ.  RFA seems to be absent from other primary 

sensory areas.   

  

Summary 
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The tangential sectioning and specific injection of anterograde tracer make 

clear that ipsilateral corticocortical connectivity of RFA has clusters of 

connectivity with a preference for motor regions and higher order processing 

areas.  The RFA does not send many projections to the primary somatosensory 

area or areas associated with the special senses of taste, vision or hearing.  RFA 

was densely connected to FRO, PR, and CFAR, while IZO, CFAOv, S2, and PV 

received moderate connectivity.  ICMSR, S1HO, PRh, IN, PMBSF and PM 

received sparse connectivity, and PL, GZO, RSA, A1, VIS, OT, PiRol, CAS, and 

TP received negligible connectivity.  The retrograde labeling of neurons that 

connect to RFA from other regions shared a similar pattern.  FRO, CFAR, 

CFAOv, and IZO have dense labeled neurons, while PR and PV have moderate 

density. GZO, S2, PMBSF, PM, ICMSR, IN, and S1HO have sparse density, and 

PL, RS, PirOl, VIS, A1 CAS, OT, PRh, and TP have negligible density.  FRO, PR 

and CFAR are almost confluent with voxels, which suggests important roles for 

each of these areas in the proper function of movement coordination of the 

forelimb.  

Also, this study provides further evidence for the premotor nature of RFA, 

the position of S2 and PV being directly lateral to the PMBSF and ALBSF of S1, 

and further defines the overlap of physiologically defined (by ICMS) excitable 

motor cortex with the anatomically defined motor (Fr) and primary somatosensory 

(S1) cortex. 
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Abstract 

The mechanism for recovery after ischemic injury is not well understood. 

Adult neuronal reorganization has been reported after cortical lesion, which may 

provide the basis for recovery of function.  The premotor area of the cortex is 

becoming more interesting to study for its possible role of reorganization from 

motor cortex ischemic lesion.  Changes in connectivity of the premotor area 

controlling the forelimb (RFA) after primary motor cortex ischemic infarct have 

not been document in the rat.  In the current study, the RFA of adult male Long-

Evans rat was located in vivo with intracortical microstimulation (ICMS), then 

anterograde label, biotinylated dextran amine 10,000 MW (BDA10kDa), was 

specifically injected into the RFA.  By visualizing primary sensory regions with 

cytochrome oxidase (CO) stained sections, and utilizing tangential sectioning, 

connectivity to other cortical regions of interest were mapped in clear areal 

representations.  Connectivity was semi-quantitatively assessed by bouton 

counts within a 100 µm square grid (voxel).  We divided voxels into 2-30 boutons 

(blue) and >30 boutons (red).  Retrogradely-labeled neuronal somata were also 

recorded.  We provide evidence for anatomical reorganization of RFA in both 

anterograde and retrograde connectivity after motor cortex lesion. There was a 

significant (p=0.05) reduction in total voxels within PirOl, red voxels within PR, 

and increase in red voxels within both CAS and IN, a trend towards decrease 

(p=0.071) within PR, and a trend towards increase (p=0.071) for total voxels 

within IN in animals with ischemic infarct compared to control animals.  There is 

also significant decrease (p=0.05) in neuronal somata within FRO, IZO and PM, 



 93 

and a trend toward increase (p=0.071) within IN in animals with ischemic infarct 

compared to control animals.  These changes in anatomical connectivity may 

represent the substrate for recovery of function after cortical lesion. 

 

Introduction 

 

 Reorganization in the adult central nervous system (CNS) once merely a 

suggestion has become a basic tenet of modern neurophysiology.  The injured  

brain is no longer seen as naïve brain with a missing puzzle piece (Nudo RJ 

2006). The adult brain is actively changing in response to injury.  This 

reorganization is a possible substrate for behavioral deficit recovery (Xerri C et al. 

1998).   

Ischemia of cortical tissue, as often occurs in stroke, is a major cause of 

long-term disability in humans (Muntner P et al. 2002).  The motor and premotor 

cortex are advantageous cortical areas for study, because of their obvious role in 

motor control and concomitant effect on function that result if they are lesioned.  

Premotor cortex physiological reorganization was found by Nudo et al. (Nudo RJ 

et al. 1996c) after motor cortex lesion in the primate, and later studies in the 

same model showed anatomical reorganization in primate premotor area 

(Dancause N et al. 2005). 

A similar premotor area exists in rat, though the exact homology is still 

debated (Rouiller EM et al. 1993).  The premotor area controlling the forelimb of 
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the rat (RFA) has remarkably similar cortical connectivity pattern to the premotor 

ventral (PMv) in primates (Urban et al. in process), and fulfills both criteria for 

premotor cortex in primates (Dum RP and PL Strick 2002).  Although there are 

several models of reorganization involving the somatosensory cortex (Carmichael 

ST et al. 2001), none has yet determined the affects of motor cortex lesion on the 

premotor area in the rat.  In a previous study using the same lesion model as the 

current study, genetic expression changes were found in neurons of the rat 

premotor area 7 days post-infarct of the primary motor area ischemic infarct 

when compared to control animals (Urban ET, 3rd et al. 2012).  These changes 

were consistent with axonal reorganization, and it is reasonable to expect 

anatomical changes to be present.       

 In the current study, we created ischemic lesions in the primary motor 

cortex controlling the forelimb and examine the corticocortical connectivity of the 

premotor area controlling the forelimb (RFA).  Using a semi-quantitative method 

for counting axonal boutons within a superficial layer of tangentially sectioned 

cortex, we show the RFA of lesion animals connects in significantly different 

ways 1 month post-lesion, when compared to control animals.  Retrograde 

connectivity, assessed by counting neuronal somata, also shows significant 

changes in animals with ischemic lesions.    

 

Materials and Methods 

 

 Ad libitum food and water were provided to 12 adult male Long-Evans 
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Hooded rats (370-450 g, 3.5 months old, Harlan, Indianapolis, IN).  Rats were 

singly-housed with a 12hr:12hr light:dark cycle.  Animal use was approved by the 

Institutional Animal Care and Use Committee of the University of Kansas Medical 

Center.  

 

Surgical Procedure I 

 The surgical procedure was described in detail in previous studies (Urban 

ET, 3rd et al. 2012).  Sedation by inhaled isoflurane was followed by anesthesia 

with ketamine [100-80 mg/kg, intramuscularly (IM)] and xylazine [30 mg/kg, 

intraperitoneal (IP)].  Doses of ketamine (20 mg/kg IM) were provided throughout 

the procedure as needed to maintain stable anesthetic depth.  The rat was 

secured in a stereotaxic frame, then Bupivacaine (2.5 mg, local anesthetic) was 

applied to the scalp.  Physiological body temperature was maintained with a 

homeothermic blanket system.  Scalp incision and reflection, was followed by 

release of muscles attached to temporal and occipital ridges.  The cisterna 

magna was opened to relieve cerebrospinal fluid pressure, and craniotomy 

performed anterior posterior to Bregma, +5 and -4 mm respectively, and laterally 

from 1 mm lateral of the sagittal suture to the temporal ridge.  After dura 

reflection, warm sterile silicone oil was applied to the cortical surface.  

 Motor and premotor areas were identified by intracortical microstimulation 

(ICMS) (Urban ET, 3rd et al. 2012).  A digital photomicrograph of the cortical 

surface vasculature was taken through the surgical microscope.  The image was 

overlaid with a grid pattern (250 µm) in image software (Canvas, Deneba 
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Software, Miami, FL).  A glass electrode, which was tapered to 20 µm outside 

diameter, beveled and filled with concentrated saline solution (3.5 M), was 

inserted 1725 µm below the cortical surface at every other grid intersection to 

give a resolution of 500 µm. A pulse train of 40 msec duration, made of 13 

monophasic cathodal pulses (200 µsec duration, 350 Hz) was delivered at 1 Hz 

from an electrically isolated, charge-balanced, constant-current stimulation circuit 

(BSI-2, Bak Electronics Inc, Mount Airy, MD).  Current was increased from 0 µA 

until a visible movement was recorded, then decreased until the movement was 

no longer visible. “Nonresponsive” sites had no elicited movements at the 

maximum current level of 80µA. 

The RFA and FIA (CFA of others) size and location were consistent with 

previous reports from this lab and others (Neafsey EJ and C Sievert 1982; 

Nishibe M et al. 2010).  RFA was found between +3.7 and +2.7 mm anterior to 

Bregma and 2 to 4 mm lateral of the sagittal suture.  FIA was located anterior 

posterior to Bregma +2.7 and -1 mm respectively and laterally from 2 to 4.5 mm 

from the sagittal suture.  CFA’s name was changed to FIA (Forelimb ICMS Area), 

because this ICMS responsive region overlapped the IZ, which is outside the 

classically defined sensorimotor overlap zone.  The new name is reflective of the 

extended border.  

 Borders of RFA were defined, then a micropipette containing the neuronal 

tract tracer, biotinylated dextran amine, 10,000 MW (BDA10kDa, 10% w/v in 

0.9% sterile saline) was placed in the approximate center of RFA.  A glass 

micropipette tapered to 60µm outside diameter was attached with beeswax to a 
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1µL Hamilton syringe (30100, Hamilton Company, Reno, NV), and actuated by a 

microinjector (Micro4, World Precision Instruments, Sarasota, FL).  A hydraulic 

Microdrive (650 Micropositioner, David Kopf Instruments, Tujunga, CA) on a 

stereotaxic arm was used to control injection depth. For control animals, pressure 

injection of BDA10kDa was accomplished in 3 boluses of 33.3 nL (100 nL total) 

at 1500, 1250 and 1000 µm below the cortical surface, and CTB-647 injections 

were delivered in 2 boluses of 75 nL (150 nL total) at 1500 and 1000µm below 

the pia.  Fiducial marker, cholera toxin beta subunit conjugated to AlexaFluor 647 

(CTB647, 5 µg/µL in 0.9% sterile saline, C34778, Invitrogen, Grand Island, NY), 

was injected (same configuration as used with BDA10kDa) at 2 sites roughly 

1mm caudal to the caudal border of FIA, and separated by 1mm from each other.  

For lesion animals, the fiducial marker injection was the same, but no BDA10kDa 

was injected at this point.  Instead of BDA10kDa, the vasoconstrictor, endothelin-

1 (ET-1) was injected for lesion animals, while BDA10kDa was injected during 

Surgical Procedure II, described below.  A glass micropipette tapered to160 µm 

outside diameter was secured with wax to a 2 µL Hamilton syringe filled with ET-

1 (0.33 mg/mL 0.9% sterile saline, H-6995, Bachem Americas, Inc, Torrance, 

CA), and attached to a microinjector clamped to a microdrive on a stereotaxic 

arm.  Four to five ET-1 injections sites, determined by the size of the CFA, 

exposed most of the FIA to ischemic damage.  The micropipette tip was lowered 

perpendicularly to 1500 µm below the cortical surface.  ET-1 was injected at 5 

nL/sec in three 110 nL boluses.  There was a 1 min delay between boluses, and 

a 5 min delay before tip extraction.  The craniotomy was flushed constantly with 
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sterile saline during the injection and delays to prevent non-specific spread of 

ET-1.      

 At the end of the procedure, the cortical surface was rinsed with warm 

sterile saline (0.9%) and a protective cap formed by placing a silicone sheet 

(Invotec International Inc, Jacksonville, FL), gel foam, (Surgifoam, Ethicon, 

Sommerville NJ) and dental acrylic and resin (Lang Dental Mfg Co Inc, Wheeling, 

IL) over the craniotomy.  To close the incision, the skin was sutured, penicillin 

injected (45,000 U, SQ) into the nape of the neck and local anesthetic 

(Bupivicaine, 2.5mg, APP Pharmaceuticals, Schaumburg, IL) and topical 

antibiotic (Vetropolylycine gel, Dechra Veterinary Products, OP, KS) applied. 

Post procedural pain management was accomplished with Buprenorphine (0.05 

mg/kg SQ, Reckitt Benckiser Farmaceuticals Inc, Richmond, VA) and 

acetaminophen (40 mg/kg oral).  After allowing the rat to recover on the heating 

pad until alert and moving spontaneously, it was returned to its home cage.  

Buprenorphine and Acetaminophen were given an additional 3 times during the 

subsequent 48 hours.   

 

Surgical Procedure II (Lesion Animal BDA10kDa Injection) 

     Lesion group animals (n=6) underwent a second surgical procedure 21 days 

after Surgical Procedure I.  The 21-day interval allowed sufficient time for the 

lesion to mature and any axonal sprouting to occur (Fig. 1).  A second procedure 

was not done to animals in the control group.  The same protocol was followed 

as for Surgical Procedure I above, with some minor changes.  As the craniotomy 
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was performed during the Surgical Procedure I, removing the protective cap from 

the cranium re-exposed the cortex.  As ICMS, ET-1 injection and fiducial marker 

injection were done during the Surgical Procedure I, these were not repeated. 

BDA10kDa was injected the same as stated in Surgical Procedure I, and the 

blood vessel pattern in the photomicrograph taken during that procedure was 

used as guidance of injection placement.  The craniotomy cap formation, incision 

closure and post-procedure recovery were the same as stated for Surgical 

Procedure I above.  
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Fig. 1  The experimental time line.  Lesion animals (A) underwent the 1st surgical 
procedure involving ICMS mapping and lesioning on day 0.  On day 21 the cortex 
was re-exposed and BDA10kDa injected into RFA.  The tissue was harvested on 
day 28.  Control animals (B) underwent the 1st surgical procedures involving 
ICMS mapping and BDA10kDa injection into RFA.  This ensured enough time for 
any reorganization to take place in lesion animals, allowed adequate time for 
tract tracer transport, and equalized tract tracer transport time for both groups. 
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Histology 

 

Tissue Harvest 

Seven days after Surgical Procedure I (control animals) or Surgical 

Procedure II (lesion animals), rats were sedated with isoflurane, and euthanized 

with Beuthenasia-D (390mg pentobarbital, 50mg phenytoin sodium IP, Shering 

Plough Animal Health, Union, NJ).  The rib cage was reflected, the heart was 

exposed, heparin sodium (500 USP Units, Hospira Inc, IL) was injected into the 

left ventricle, and animal exsanguinated by transcardial perfusion of saline 

solution [0.9% saline in distilled water, heparin sodium (1,000 USP Units, APP 

Pharmaceuticals, Schaumburg, IL) and lidocaine HCl (20 mg, APP 

Pharmaceuticals, Lake Forest, IL)] followed by 3% paraformaldehyde in 0.9% 

saline.  After brain extraction, underlying structures of both hemispheres were 

separated from the cortex.  The cortices were flattened between glass slides and 

exposed to 4% paraformaldehyde-20% glycerol in 0.9% saline (2 hr), 20% 

glycerol-2% dimethylsulfoxide in 0.9% saline (overnight), and 20% glycerol in 

0.9% saline (24 hr).  Cortices were sectioned at 50 µm thickness on a freezing 

microtome chilled with dry ice, and sections were placed in 0.1 M PBS solution 

and refrigerated (4°C) until processed further. 

 

Cytochrome Oxidase Staining 

 Sections were floated in 0.1 M PBS solution, and inspected with the 

unaided eye for the S1 representation (visible as slightly opaque white areas 
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within the translucent section).  Three to four sections per cortex with the most 

complete representations were chosen for cytochrome oxidase (CO) staining.  

Sections were rinsed (2 x 10 min in 0.1 M PBS), and reacted with CO solution at 

37°C [cytochrome c oxidase (20 mg, Sigma, #C2506-500MG), sucrose (4 g, 

Fisher Scientific), and DAB (50 mg) per 100 mL of 0.1 M phosphate buffered 

distilled water (pH 7.4)] until dark CO-rich areas were easily detectable against 

the lighter background (2-3 hours).  Then, sections were rinsed (2 x 10 min) in 

0.1 M PBS.  

 

BDA10kDa Visualization 

Every section underwent an Avidin-Biotin Complex (ABC) linked staining 

procedure with 3,3’ Diaminobenzidine (DAB, MP Biomedicals, Solon, OH, 

#980681) reaction product as the chromogen.  After rinsing sections in 0.1 M 

PBS (2 x 10 min with agitation), they were exposed to 0.4% Triton X-100 (Sigma, 

#X100-500ML) in 0.05 M PBS for 1 hr with agitation.  After rinsing sections in 0.1 

M PBS (3 x 10 min, with agitation), they were incubated overnight in 0.1 M PBS 

with reagents “A” and “B” added according to Vectastain Elite Kit (Vector 

Laboratories, Burlingame, CA, #PK6100). After rinsing sections (4 x 10 min, 0.1 

M PBS), they were exposed to DAB solution (0.05% w/v DAB and 0.01% v/v 

H2O2 in 0.1 M PBS), and wet mounted in 0.05 M PBS onto subbed slides, then 

allowed to dry overnight. 

  

BDA10kDa Signal Intensification 
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 After slide-mounted sections were dehydrated in ascending alcohol 

concentrations (50%, 70%, 95% and 100% for 5 min each), they were cleared 

with xylene (5 min), and rehydrated in descending alcohol concentrations.  

Sections were exposed for 1hr in 1.42% silver nitrate in distilled water (55°C), 

rinsed in distilled water (15 min), exposed to 0.2% gold chloride (10 min), rinsed 

in distilled water (15 min), exposed to sodium thiosulfate (5 min), and rinsed in 

distilled water (15 min).  Sections were dehydrated again, as before, cleared in 

xylene, and coverslipped with DPX mounting medium (Sigma, #44581-500ML).    

 

Quantification 

 

Alignment Procedure 

 BDA10kDa and CTB647 injection cores were used as fiducial markers to 

align the ICMS maps and section outlines containing voxel counts, somata 

counts, and CO-rich zones.  The CTB647 and BDA10kDa injection cores were 

marked on all ICMS maps and section outlines.  The overlap procedure was 

accomplished in Photoshop (Adobe).  The ICMS map was scaled and rotated 

until the 3 injection cores were in register with other outlines.  Symbols present in 

and around RFA and FIA aided in transferring the position of RFA and FIA back 

to StereoInvestigator.  

 

Bouton and Soma Quantification 
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A computerized microscope (Axiophot 2, Zeiss) and stereology program 

(Stereoinvestigator, Microbrightfield) was used to trace flattened section outlines, 

then a 100 µm square grid was overlaid on the outlines.  Each voxel with 

dimensions 100 x 100 x 50 µm was examined throughout the section.  

BDA10kDa labeled axons appear as thin dark lines (Fig 2).  A bouton (or 

varicosity) was defined as a dark (chromogen dense), round object, about twice 

as wide as the axon on either side of it (i.e. en passant bouton), or at the end of a 

thin projection attached to the main axon (i.e. terminal bouton). Boutons were 

counted semi-quantitatively within each 100 µm x 100 µm x 50 µm voxel (section 

thickness is 50 µm).  Blue dots were used to mark voxels containing 2-30 

boutons, while red dots were used to mark voxel containing greater than 30 

boutons.   
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Fig. 2  Bouton and neuronal somata identification with BDA10kDa tract tracer.  A.  
The photomicrograph displays boutons in tangential section seen at 40x 
magnification.   Boutons are identified as dark, circular varicosities (arrowheads) 
attached at either side to an axon (dark thin line, en passant bouton) or at the 
end of thin projection off the main axon (not shown, terminal bouton).  B.  The 
photomicrograph displays a back-filled neuronal soma in tangential section seen 
at 40x magnification.  Somata (brown density in center) are identified as granular, 
circular densities with evidence of at least one cellular projection.   Bar is 25 µm, 
same for A and B.   
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BDA10kDa is an effective anterograde tract tracer, though retrograde 

labeling does occurs.  Therefore, BDA-labeled somata were plotted on the same 

section as boutons.  Somata were counted if they had a confluently dark, 

smooth-edged shape, and evidence of at least one thin projection (Dancause N 

et al. 2006b). BDA-labeled somata were marked with a green dot.   

The distribution of BDA-labeled boutons and somata forms a column of 

connectivity throughout the cortical laminae, similar to descriptions in previous 

connectivity studies in rat (Reep RL et al. 1987; Rouiller EM et al. 1993).  

Therefore, the current study uses one superficial layer section.  It was deemed 

that a single section was representative of a particular animal’s connectivity 

patterns. This approach was the most feasible, because of the extensive amount 

of time required to plot BDA-labeling in each section.  

 

Region Nomenclature and Identification 

Regions of interest nomenclature, location and description were procured 

from various sources in order to achieve the most accurate and reliable 

description.  In order to identify all regions several criteria were used, including, 

ICMS response, CO staining, voxels clusters, region overlap and the spatial 

relationship to other identified regions.  These regions are consistent with 

previously reported nomenclature.  

 

Regions Identified as Cytochrome Oxidase Dense Zones 
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CO staining reveals dark zones in several regions of the cortex, including 

S1, VIS, RS, TP and Aud cortex.  CO-dense zones are the histological 

representation of the sensory cortex (Li H and MC Crair 2011). In the middle of 

the flattened cortex, S1 is positioned as an inverted ratunculus (body 

representation of the rat) facing rostral.  Hind limb and tail representations are 

medial, while head and face representations are lateral.  Wider at its caudal 

edge, S1 tapers to the rostral aspect.  Our S1 is consistent with previous work 

(Chapin JK and C-S Lin 1984; Remple MS et al. 2003; Krubitzer L et al. 2011).  

VIS is consistent with the Oc1M and Oc1B of Zilles (1985) pooled together (Zilles 

KJ 1985).  TP is consistent with Krubitzer (Krubitzer L et al. 2011).  Aud is 

consistent with Aud of Remple et al. (Remple MS et al. 2003), and Polley et al.  

(Polley DB et al. 2007).  RS contains both a CO-dense and sparse region (Harley 

CA and CH Bielajew 1992).  

 

Regions Identified by Topographic Relationships to Other Identified Regions 

Some regions were identified by their spatial relationship to other regions. 

S1 was useful in identifying Fr and IN, because its extensive border, and 

consistent presence.  Fr, and IN are consistent with Zilles 1985 (Zilles KJ 1985) 

with some modification.  Zilles’ Fr1, Fr2, and Fr3, and Cingulate cortex were 

pooled into our Fr. Zilles’ Insular cortex AID and AIV were pooled with the rostral 

half of Vi to form our IN. To determine the border between IN and FR, a line was 

drawn from the mediorostral edge of S1 to a small consistent area of dense 

axons and boutons in the rostral pole.  
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A large portion of the caudal cortex is named CAS, which borders FRO, 

PM, PL, Aud, PV, PR, the rhinal fissure, TP, VIS, and RS.  This cortex has 

neither dense CO staining or readily identifiable clusters of voxels.  The region is 

made up of association areas with indeterminate borders with the current borders 

and the name is reflective of that: Oc2MM, Oc2ML, Oc2L, Te2, and Te3(Zilles KJ 

1985).  

Neither the piriform nor olefactory bulb were removed during sectioning 

and thus included in the analysis for completeness sake.  There is negligible 

connectivity to either area, so the areas lateral to the rhinal fissure are pooled 

together as PirOl, excluding the PRh. 

 

Analysis 

 

Calculation of Cortical Surface Area for each Region of Interest 

 Areal representations of the regions of interest was determined using the 

image processing programs Adobe Illustrator and NIH Image J.  The region 

borders were first outlined in StereoInvestigator, and imported into Adobe 

Illustrator, and then the area (in mm2) of each region was measured with Image 

J.  

 

Stereological Estimates of Bouton Counts in Selected Regions 

 The connectivity of certain regions of interest were further investigated 

with unbiased stereological techniques for estimates of bouton counts.  Although 
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the cut thickness of sections was 50 µm, actual thickness was measured on 

every-other counting field.  The same computerized microscope and stereology 

program described above was used.  After alignment procedures and region of 

interest borders were determined, the regions of interest outlines were applied to 

each section.  Sections 8-24 of each animal were found to be consistent and 

complete in each animal and every other section was used for the analysis.  

Boutons were counted with the Optical Fractionator probe at 100 x magnification.  

The counting frame was 14 x 14 µm square, and both top and bottom guard 

zones were set at 3µm.  The SRS grid layout was set to distances that would 

give 15-30 counting frames per region of interest.  After Optical Fractionator 

parameters were established for a particular region of interest for a particular 

animal, they were constant through all sections of that animal.  The parameters 

were adjusted for different animals’ regions of interest to maintain a similar 

number of counting frames per region of interest throughout the study. 

 

Lesion Volume and Dye Core Volume Estimate 

 The volumes of the lesion and dye core were both estimated in the same 

way.  The same computerized microscope and stereology program was used as 

described above.  Lesion outlines were traced on every other section from 8-24 

as before.  BDA10kDa staining led to darkening of all cortical tissue. This 

darkening was used to discriminate normal tissue from lesion tissue.  The lesion 

was identified by the absence of tissue in the appropriate location.  It also 

included lighter stained tissue around the edges of the infarct hole, which may or 
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may not have contained darkly staining lesional debris or multiple cells consistent 

in morphology with lymphocytes (darkly staining, small, round objects).  

Recognition of lesion extent by such color difference on CO-stained sections has 

previously been reported (Katsman D et al. 2003). Again, sections 8-24 were 

consistent through animals.  The area of each lesion outline was estimated using 

the Cavalieri Probe with Stereo Investigator.   

 The dye core estimate was done in the same manner as described for 

lesion volume.  The dye core was identified as the densely colored area where 

neuronal morphology was not discernable (Dancause N et al. 2006).  

 

Statistical Analysis of Voxel and Soma Counts 

Voxel and soma counts were normalized to the surface area of the region 

of interest. The statistical program, JMP (v10, SAS Institute), was used to 

examine the values (voxels/mm2, somata/mm2). The variance in the different 

regions was determined to be unequal (O’Brien test, F = 4.34; p < 0.0001), so the 

Wilcoxon Rank-sum test, a nonparametric analysis, was used to compare values 

in the different regions. Z-scores generated were used to define cutoff levels for 

connectivity (dense, moderate, sparse and negligible). 

 

Results 

Lesion Volume 

 During Surgical Procedure I, the FIA (CFA of others) was found in a similar 

location to other reports (Urban ET, 3rd et al. 2012).  ET-1 injection resulted in 
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consistently produced cell death, and cavitation in cortical tissue, through all 

layers of the cortex (Fang PC et al. 2010).  The lesion volume was 1.86 mm3 ± 

0.74 mm3 (mean ± standard deviation; n=6).   

Based on CO staining of S1 cortex and ICMS map registration, the 

ischemic territory encompassed the entire rostral extent of FIA, but only partly 

encroach upon the CFA/S1 overlap zone (CFAOv).  Rostrally, the lesion 

extended to the caudal border of RFA in four animals and encroached into the 

lateral portion of RFA in two animals.  Medially, the lesion extended to or just 

before the upper medial border of the FIA.  Laterally, the lesion ended just before 

the lateral border of FIA.  Caudally, the lesion extended past the caudal border in 

three animals and ended just before the caudal border in three animals.   

 

 

Dye Core Volume 

 Dye core volume was also assessed.  For the lesion group, the dye core 

volume was 1.11 x 108 mm3 + 1.16 x 107 mm3 (mean + SEM; n=6), and the 

control group, the dye core volume was 7.66 x 107 mm3 + 7.54 x 106 mm3 (mean 

+ SEM; n=6).  The difference between groups was not significant (ANOVA, F = 

3.3025, P = 0992).   

 

Lesion Induced Changes to Regions of Interest 
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 Anterograde and retrograde connectivity of RFA in both control and lesion 

animals was counted and projected onto the cortical surface.  The anterograde 

connectivity in both groups was qualitatively similar (Fig 3).  Projections of RFA to 

other brain regions were most prominent to the primary motor region, and higher 

order somatosensory areas.  RFA projections were least to the special sensory 

cortex, and PirOl.  The retrograde connectivity in both groups was also 

qualitatively similar (Fig 4).  Regions projecting to RFA followed the anterograde 

connectivity closely.  Those regions projecting to RFA were the same regions, 

which received anterograde connectivity from RFA.   

 

Lesion Induced Change in Area of Region of Interest 

 To determine if the lesion itself significantly changed the area of regions of 

interest in the rat cortex, the area of regions was compared in lesion and control 

animals.  There was a significant (p<0.05) decrease in area for both S1HO and 

IZO in lesion animals when compared to control animals (Fig. 5). The area of PV 

was not significantly changed in lesion animals when compared to control 

animals (Fig. 5).  Other regions of interest were not significantly changed.  

 

Lesion Induced Change in Voxel and Soma Count 

Connectivity from RFA to several regions of interest was significantly 

different in lesion animals when compared to control animals. When comparing 

the least squared means of voxel and soma counts per region of interest, it was 
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found that the size of the region of interest itself was a covariate.  This covariate 

was accounted for by using ANCOVA.   

 Voxel counts were compared between control and lesion groups using 

ANCOVA with area of the region as the covariate. There was a significant 

increase for IN in red voxels, and an increase in red voxels for CAS after lesion 

compared to control animals (Fig. 6).  Total voxels for PirOl and red voxels for PR 

were significantly (p<0.05) reduced after lesion compared to control regions (Fig. 

6).  Although total voxels for IN was not significantly different after lesion 

compared to control animals, there was a trend for significance with p=0.085.  

 Neuronal soma counts were compared between control and lesion groups 

using ANCOVA with area of the region as the covariate.  Soma number was 

significantly reduced in FRO, IZO, and PM in lesion animals when compared to 

control animals (Fig. 7).  IN showed a trend toward a significant increase in soma 

number in lesion animals compared to control animals with a p=0.071 (Fig. 7).   
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Fig. 3  Anterograde RFA connectivity patterns with cortical regions on tangential 
section in control and lesion animals.  A-F.  Each lesion animal outline (R11-15, 

A; R11-03, C; R11-30, E) is displayed on the same page as a control animal 
outline (R11-09, B; R11-29, D; R11-34, F).  The flattened section outline (black 
outline) surrounds the labeled regions (grey lines).  The borders of RFA (black 

outline), and divisions of FIA (black outline) are labeled (CFAR, light grey; 
CFAOv medium grey; ICMSR, dark grey).  Voxels containing 2-30 boutons (blue 
dots) and voxels containing >30 boutons (red dots) are labeled throughout the 

section, while the core of BDA10kDa (black dot) is within RFA.  The lesion 
(yellow-green), when present, is centered in the CFAR.  Medial (M, up) and 

caudal (C, right) are labeled on directional arrows.  The Bar is 1mm.  
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Fig. 4  Retrograde RFA connectivity patterns with cortical regions on tangential 
section in control and lesion animals.  A-F.  Lesion animal outlines are displayed 
to the left (R11-15, A; R11-03, C; R11-30, E) of control animal outlines (R11-09, 
B; R11-29, D; R11-34, F).  Each flattened section outline (black outline) 
surrounds the labeled regions (grey lines).  The borders of RFA (black outline), 
and divisions of FIA (black outline) are labeled (CFAR, light grey; CFAOv 
medium grey; ICMSR, dark grey).  Somata (green dots) are labeled throughout 
the section, while the core of BDA10kDa (black dot) is within RFA.  The lesion 
(yellow-green), when present, is centered in the CFAR.  Medial (M, up) and 
caudal (C, right) are labeled on directional arrows.  The Bar is 1mm. 
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Fig. 5  Histograms showing change in the area of regions between control and 
lesion groups.  A significant decrease (p < 0.05) in area was identified for both 
S1HO and IZO of lesion animals when compared to control animals using 
ANOVA.  Area (mm2) means ± SEM (box and whisker) are plotted versus group 
for regions S1HO (A), IZO (B), and PV (C).  Significance difference (p < 0.05) 
between control and lesion groups is designated by “*”.  
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Fig. 6  Point and whisker plots showing voxel counts differences within cortical 
regions in lesion animals.  Voxels counts, least square mean ± SEM (point and 
whisker), are plotted versus group.  A significant difference (p < 0.05) between 
control and lesion group least squared means was identified with ANCOVA using 
area of the region as covariate.  Total voxels within PirOl (A) were significantly 
decreased, red voxels within PR (C) were significantly reduced, red voxels were 
significantly increased within IN (D), and red voxels were significantly increased 
within CAS (E) after lesion.  There was a trend towards increase in total voxels 
within IN (B), p = 0.085.  Significant difference (p < 0.05) between control and 
lesion groups is designated by “*”. 
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Fig. 7  Point and whisker plots showing differences in neuronal somata counts 
within cortical regions in lesion animals.  Neuronal somata counts, least square 
mean ± SEM (point and whisker), are plotted versus group.  A significant 
difference (p < 0.05) between control and lesion group least squared means was 
identified with ANCOVA, using the regionsʼ area as covariate.  Neuronal somata 
were significantly decreased within FRO (A), IZO (B), and PM (C) after lesion.  
There was a trend towards increase in neuronal somata within IN (D), p = 0.071.  
Significant difference (p < 0.05) between control and lesion groups is designated 
by “*”. 
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Discussion 

 

 The current study demonstrated a significant difference in RFA 

connectivity in animals with primary motor cortex ischemic infarct compared to 

control animals.  There is a significant (p=0.05) reduction in total voxels with 

labeled terminal boutons within PirOl, red voxels within PR, and increase in red 

voxels within both CAS and IN, a trend towards a decrease (p=0.071) within PR, 

and a trend towards increase (p=0.071) in total voxels within IN in animals with 

ischemic infarct compared to control animals.  There is also significant decrease 

(p=0.05) in neuronal somata within FRO, IZO and PM, and a trend toward 

increase (p=0.071) within IN in animals with ischemic infarct compared to control 

animals.  This study provides evidence that anatomical connectivity from the RFA 

changes after ischemic infarct to the motor cortex in specific regions of the adult 

rat brain, while remaining stable in most cortical regions.  These changes may 

provide an anatomical substrate for recovery of function after ischemic infarct.   

   

Comparison of Rat and Primate Premotor Reorganization After Primary 

Motor Lesion   

 

The connectivity patterns of PMv in primate and RFA in rat are remarkably 

similar.  Dancause investigated the corticocortical connectivity patterns of PMv in 

Squirrel Monkey (Dancause N et al. 2006b).  First, the regions projected to are 
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similar, PMv connected to M1, other frontal areas rostral to PMV, posterior 

operculum/inferior parietal cortex, S1, and posterior parietal regions.   These 

regions have counterparts in the rodent and the RFA connects to each of them.  

Second, the density of connectivity to these regions is similar.  PMv has major 

connections to M1, and frontal area rostral to PMv.  This pattern is very similar to 

the pattern found to RFA with dense connectivity to FRO, and M1.  Also, PMv 

has increased connectivity to the rostro-lateral M1, found in rats as dense 

connectivity to the rostral half of FIA, while the caudal half of FIA receives 

moderate connectivity.  Further, PMv has only minor connectivity to S1, and so 

does RFA, as it sends sparse and negligible connectivity to GZO, PMBSF, and 

S1HO.   

The notable differences between RFA and PMv connectivity occur in 

regards to regions that do not exist in both species.  There are several other 

premotor regions that exist in the primate and have moderate connectivity, but 

not in the rodent (Dum RP and PL Strick 2002).  PMv has moderate connectivity 

to CMA and PMD, (Dancause N et al. 2006a) (see their summary Figure 11).  

Also, the IZ/IZO of the rodent does not have an exact correlate in the primate, 

although it may be homologous to region 3a (Krubitzer L et al. 2011).   

 RFA and PMv similarities led the authors to hypothesize that ischemic 

infarct to primary motor cortex in rat would result in similar connectivity pattern 

changes as was shown after ischemic infarct in primate M1.  In squirrel monkey, 

ischemic infarct in M1 hand area resulted in significant increase in PMv 
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connectivity to a subregion of the primary somatosensory cortex, within the hand 

representation of area 1/2 (Dancause N et al. 2005).  In the current study, 

connectivity to S1HO or CFAOv was not significantly different after ischemic 

injury.   

Despite the similarities in healthy animals, the difference in connectivity 

changes between RFA and PMv after ischemic infarct may be explained by 

several reasons.  M1 of the primate connects to S1 area 1/2, but the PMv does 

not.  Sensory information is necessary for proper motor control.  Movement 

deficits result after lesioning the sensory cortex, without lesioning motor cortex.      

Since PMv does not connect directly to S1, connections from S1 to PMv would be 

indirect through other brain regions.  The new connectivity patterns found after 

ischemic infarct of PMv, may represent the reintegration of the PMv with sensory 

information, thereby increasing the recovery of motor function.   

This plausible line of reasoning would not be valid in the rat, and may 

account for the difference between species.  The RFA connects to S1, as well as 

the CFA (our FIA).  Rouiller determined that both RFA and CFA connect to the 

S1 to a similar extent (Rouiller EM et al. 1993).  The connectivity pattern change 

after ischemic infarct in primate M1 may represent the reintegration of premotor 

cortex with somatosensory cortex, but the RFA maintains its connection to the 

somatosensory cortex after ischemic stroke (no significant difference in 

connectivity between stroke and control animals).  The conditions and possible 

pressures inducing reintegration in primate may not be produced in the rat due to 
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this stable connectivity with S1.  Therefore, the patterns of RFA connectivity did 

not change in a similar fashion as PMv.    

 

Significance of Changes Within Brain Regions After Ischemic Infarct  

 

Connectivity Changes 

After cortical injury, RFA connectivity changes within several regions (Fig. 

8).  In general, this change may be beneficial, detrimental or epiphenomenal.  We 

side with the beneficial interpretation of anatomical connectivity changes, 

because studies involving treatments to increase connectivity changes after 

injury showed increase in functional recovery (Zai L et al. 2009; Liu Z et al. 2010).  

Although we did not assess function in the current study, a model used in 

previous study showed recovery of function after ischemic infarct of the motor 

cortex with or without intervention (Fang PC et al. 2010).  As such, the increased 

connectivity to certain regions in the current study may represent the 

unenhanced reorganization responsible for spontaneous recovery.   

There is a possibility that such change represents exuberant sprouting 

after infarct.  However, one would expect a significant increase in connectivity 

within most regions, if the infarct instigated unguided exuberant sprouting.  This 

explanation of increased connectivity is less likely, as most regions show no 

significant change after infarct. 
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Fig. 8  Line drawings demonstrating the connectivity changes after ischemic 
infarct.  Anterograde (A) and retrograde (B) connectivity changes overlaid on 
outlines of the flattened cortex (thin black line) and regions (grey outlines).  
Connectivity to regions in control animals is marked for dense (thick black line, z-
score > 2.5), moderate (medium black line, z-score 1 to 2.5), and sparse (dotted 
black line, z-score -0.5 to 1).  Connectivity changes to regions after infarct are 
marked as significantly increased (p < 0.05, green), trend towards increase (p > 
0.05, light green), significantly decreased (p < 0.05, red), and trend towards 
decrease (p > 0.05, pink).  The medial (M) and caudal (C) directions are labeled.  
Figure adjusted from (Urban et al., in process).  Bar is 1mm.      
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Anterograde Connectivity Changes after Stroke 

Increased connectivity to IN after infarct is an interesting finding.  The 

current study found connectivity differences to IN after infarct.  Connectivity 

significantly increased in red voxels with a trend towards increase (p=0.071) for 

total voxels and a trend towards increase (p=0.071) for neuronal somata.  This 

increase is interesting in that regions with increased connectivity after stroke, if 

beneficial, suggest a restoration of lost integration between regions.  RFA 

projections to IN have been previously reported (Rouiller EM et al. 1993) as a 

major difference between the primary motor and premotor cortex.  The RFA is 

already heavily interconnected to the insular cortex, while the primary motor 

cortex is not (Rouiller EM et al. 1993).  After FIA infarct, increased connectivity 

from RFA to IN would not represent reintegration, but a further strengthening of 

differential connectivity that was present before the lesion.  

Increase to IN may not represent a reintegration of lost circuitry, but may 

be beneficial in other ways.  IN contains visceral sensory, gustatory and aversive 

behavior functions.  It has somatosensory, autonomic, visceral and limbic 

connections (Saper CB 1982). The IN has been suggested to be involved in both 

the consolidation and expression phases, but not the acquisition of fear memory 

(Alves FH et al. 2013).  It may be that our experimental injury is such a strong 

aversive stimulus that the brain is rewiring to increase behavior to avoid noxious 

stimulus involving the forelimb in the future.  
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An increase in connectivity to CAS may also be beneficial.  The current 

study found a significant increase in red voxels within CAS after infarct.  The 

CAS, identified by exclusion, is a region in the caudal half of the brain of 

association cortex that could not be differentiated well with the current methods.  

It does not include any of the special sensory cortex of sight (Vis), or hearing 

(Aud).  This region contains Te2, Te3, Oc2L, Oc2ML, and Oc2MM of Zilles (Zilles 

K 1990), and has been shown to be responsive to polysensory stimulation (Barth 

DS et al. 1995).  Polysensory areas decrease reaction time to multimodal 

stimulation (Hirokawa J et al. 2008).  

 The current study found a decrease in connectivity to PR.  Red voxels 

were significantly decreased, while neuronal somata displayed a trend for 

decrease.  This region has been described in rats (Koralek K-A et al. 1990)  and 

squirrel (Krubitzer LA et al. 1986).  PR has been suggested to be a higher order 

processing center based on its connectivity to other somatosensory areas 

(Krubitzer LA et al. 1986).  This decrease in connectivity may indicate a limit to 

reorganization.  As only a finite number of neurons exist within RFA, there is only 

so much reorganization that can be produced.  Connectivity to other areas may 

reorganize first, and the RFAʼs reorganization capacity may be reached.  

Connectivity to PR may have been withdrawn to supply other closer or more 

needy areas.   

 

Retrograde Connectivity Changes after Stroke 
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Several of the regions (FRO, IZO and PM) have a significant decrease in 

neuronal somata when compared to control animals.  While this could be an 

indication of the death of neurons or layer specificity, it could also be an 

indication of reorganization involving neurons projecting to the RFA.  Neuronal 

cell death takes place through anterograde excitotoxicity.  As the lesion 

progresses, neurons within the lesion core undergo anoxic depolarization.  The 

process instigates release of neurotransmitters possibly resulting in 

overstimulation and excitotoxic cell death of neurons receiving anterograde 

signal.  These three regions are interconnected with M1 as well as RFA, raising 

the possibility of this phenomenon.  This explanation is less likely as similar 

models of small cortical infarct in areas with comparably high interconnectivity 

showed cell death only within the ischemic core and a thin layer of adjacent 

tissue (Katsman D et al. 2003).   

The most parsimonious explanation of decreased connectivity would be 

disruption of the axons due to the lesion itself, concomitantly decreasing 

connectivity from both IZO and PM.  The FIA, and therefore the lesion, is 

geographically directly between RFA and both the IZO and PM on the cortical 

surface.  The most direct path for axons to travel from either region to RFA is 

directly through the FIA.  If retraction of axons from a region produced a 

decrease in connectivity, then one would expect a similar axonal retraction with 

any axon coursing through the lesion territory.  In such a case, both anterograde 

and retrograde connectivity would be reduced, but the results show anterograde 



 137 

connectivity is not changed.  This suggests that regions connecting to the RFA 

are undergoing reorganization.  One could make the point that lower numbers of 

somata compared to voxels could be skewing this interpretation.  Lower numbers 

of somata in each region could turn the absence of even one or two neurons into 

a significant difference, while large reductions in voxels are required to produce 

significant differences.   

Alternatively, it is reasonable that decreased somata number indicates 

possible reorganization within these areas.  It is unknown whether neurons 

located in distant regions that undergo reorganization are the same neurons 

connected to the lesion area.  It is possible that distant regions reorganize by 

disconnecting from other regions not affected by the lesion.  Neurons from the 

FRO, IZO and PM regions connected to RFA could have been induced to 

reorganize by retracting from RFA.  Whether these neurons reconnect with 

another region after disconnecting from RFA is unknown with the current 

methods.  This indicates that neurons directly connected to a lesion may not be 

the only neurons that reorganize after lesion.  Neurons within uninjured regions 

and connected to uninjured regions may also participate in reorganization after 

ischemic infarct.  

 

Changes in Area of Regions 

 Changes in the area of regions after stroke may represent important 

aspects of post infarct reorganization.  We found a significant decrease in both 
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IZO and S1HO area after infarct compared to control animals.  The most 

parsimonious explanation is that the lesion encroached upon both of these areas, 

and they were simply smaller in size after cavitation of the lesion.  This is a less 

likely explanation, as other similarly affected regions did not show a similar 

decrease in area.  The S1H is adjacent to the lesion along with the S1HO, but did 

not show a similar decrease.  An alternative explanation is that some aspect of 

region has changed to actually shrink its size.  Dendrites may have decreased 

with post-stroke pruning as was shown in contralateral cortex after ischemic 

infarct (Jones TA and T Schallert 1992).  It may also be related to the movement 

of resident glia and inflammatory cells within these regions (Weston RM et al. 

2007).  This particular aspect of post stroke morphology may warrant further 

study.   

   

Reorganization Without Considering Forepaw Dominance  

 

Some may question the relevance of the current study, as it did not take 

into account forepaw preference.  The current study lesioned the right 

hemisphere without determining the individual ratʼs dominant hemisphere. 

Studies in non-human primates carefully document hand preference and study 

the effect of lesion on the dominant hand.  

There is some evidence to support that CNS lesion recovery is similar 

without considering hand preference.  Whishaw showed that regardless of initial 
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forepaw preference on a reaching task, rats recovered similarly after lesion, even 

if the non-preferred forepaw was trained for the task that was tested (Whishaw IQ 

1992). In other words, initial forepaw preference for a task did not change the 

recovery characteristics.  This suggests, that unlike the lateralized non-human 

primate, the more quadruped rat displays less lateralization.   

 

Reorganization Without Training 

 

 There has been much suggested about the essential role of experience to 

drive plasticity.  Future work focused on differences after ischemic infarct with 

and without training will be an important next step, but the current study was to 

establish the general principle of corticocortical anatomical reorganization in this 

model of ischemic infarct.  While the role of experience-driven reorganization is 

beyond the scope of the current study, it will be important in the future to 

understand how experience drives anatomical changes that occur spontaneously 

after cortical infarct. 
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Abstract (Urban ET, 3rd et al. 2012) 

After cortical injury resulting from stroke, some recovery can occur and may 

involve spared areas of the cerebral cortex reorganizing to assume functions 

previously controlled by the damaged cortical areas.  No studies have specifically 

assessed gene expression changes in remote neurons with axonal processes 

that terminate in the infarcted tissue, i.e., the subset of neurons most likely to be 

involved in regenerative processes.  By physiologically identifying the primary 

motor area controlling forelimb function in adult rats (caudal forelimb area = 

CFA), and injecting a retrograde tract-tracer, we labeled neurons within the non-

primary motor cortex (rostral forelimb area = RFA) that project to CFA.  Then, 7 

days after a CFA infarct (n=6), we used laser capture microdissection techniques 

to harvest labeled neurons in RFA. Healthy, uninjured rats served as controls 

(n=6).  Biological interactions and functions of gene profiling were investigated by 

Affymetrix Microarray, and Ingenuity Pathway Analysis. A total of 143 up- and 

128 down-regulated genes showed significant changes (fold change ≥±1.3 and 

p< 0.05).  The canonical pathway, “Axonal Guidance Signaling,” was 

overrepresented (p-value = 0.002).  Significantly overrepresented functions 

included: branching of neurites, organization of cytoskeleton, dendritic growth 

and branching, organization of cytoplasm, guidance of neurites, development of 

cellular protrusions, density of dendritic spines, and shape change (p = 0.000151 

to 0.0487).  As previous studies have shown that spared motor areas are 

important in recovery following injury to the primary motor area, the results 
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suggest that these gene expression changes in remote, interconnected neurons 

may underlie reorganization and recovery mechanisms.   

 
 
Abbreviations   
CFA  Caudal Forelimb Area 
RFA  Rostral Forelimb Area 
PMv  Ventral Premotor Area 
S1  Primary Sensory Area 
M1  Primary Motor Area 
ICMS  Intracortical Microstimulation 
CTB647  Cholera Toxin Beta Subunit Conjugated to AlexaFluor 647 
LCM  Laser Capture Microdissection 
IPA  Ingenuity Pathway Analysis 
IM  Intramuscular 
IP  Intraperitoneal 
RIN  RNA Integrity Number 
IVT  In Vitro Transcription 
RMA  Robust Multi-array Averaging 
NeuN  Neuronal Nuclei  
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Introduction 
 

Stroke affects 795,000 individuals in the US, and over 15 million individuals 

worldwide each year, making stroke one of the major causes of adult disability 

(MMWR 2001; Roger VL et al. 2011).  Some recovery can occur and may be 

related to plasticity in spared areas of the brain, presumably to assume functions 

that were previously controlled by the destroyed areas, a process known as 

vicariation.  Evidence for functional plasticity in spared cortical areas has been 

found in peri-infarct cortex in both sensory and motor cortex in humans(Cramer 

SC et al. 1997), monkeys (Nudo RJ and GW Milliken 1996b; Frost SB et al. 

2003), and rodents (Carmichael ST et al. 2001; Jablonka JA et al. 2010).  It is 

widely recognized that plasticity in spared brain areas is correlated with 

behavioral improvement after cortical infarct, but the underlying mechanisms are 

still unclear (Nudo RJ 2006).  

Gene expression changes have been reported in tissue homogenate and 

sprouting neurons within the peri-infarct region (Carmichael ST et al. 2005; Li S 

et al. 2010).  A cortical infarct induces sequential waves of growth-inhibitory and 

growth-promoting genes associated with neuron-, glia- and extracellular matrix-

associated molecules over a period lasting at least a month (Carmichael ST et al. 

2001).  This pattern involves decreases in some inhibitory molecules, and 

increases in growth-associated genes suggested to support the anatomical 

reorganization (Carmichael ST 2006).  Thus, peri-infarct tissue is likely to be a 

locus for regenerative processes, and it is now clear that neurophysiological 
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reorganization in peri-infarct cortex is directly related to behavioral recovery 

(Nudo RJ et al. 1996c).   

While most studies of gene expression changes after ischemic injury have 

focused on the peri-infarct cortex, it is now known that neurophysiological and 

neuroanatomical plasticity occurs in many regions of the cortex that are spared 

by the ischemic injury, but remote from it. In particular, intact cortical areas that 

are functionally related to the area of injury, and anatomically connected to it via 

axonal connections, are altered. For example, after motor cortex injury in the rat, 

the motor cortex in the spared hemisphere undergoes a time-dependent process 

of dendritic arborization and synaptogenesis (Jones TA and T Schallert 1994).  

Gene expression studies in the contralateral (intact) hemisphere have been 

limited to a single study of tissue homogenates and neurons connected to spinal 

cord (not the cortical lesion) (Keyvani K et al. 2002; Zai L et al. 2009). These 

studies demonstrated molecular changes that were suggested to be supportive of 

anatomical reorganization.  

It has also been suggested that functionally related areas that are spared by 

the ischemic injury within the injured hemisphere and that have anatomical 

connections with the injury zone also undergo neurophysiological and anatomical 

plasticity. For example, after injury to motor cortex, premotor cortex, although 

remote from the direct damage of the ischemic infarct and penumbra, can also 

undergo neuroanatomical and neurophysiological plasticity. In human stroke 

survivors, finger movements of the impaired limb are associated with increased 
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blood flow in premotor areas (Chollet F et al. 1991).  Further, after an infarct in 

primary motor cortex in non-human primates, the ventral premotor cortex (PMv), 

an area whose principal output target is the primary motor cortex, undergoes 

neurophysiological reorganization that is correlated with behavioral recovery 

(Frost SB et al. 2003).  The PMv also undergoes neuroanatomical reorganization, 

sending new axonal terminations into the parietal cortex (Dancause N et al. 

2005). In addition, neurons in PMv undergo molecular changes as demonstrated 

by immunohistochemical studies (Stowe AM et al. 2007; Stowe AM et al. 2008).  

In both mice and rats, anatomical reorganization in spared areas distant from the 

lesion has been well documented (Zai L et al. 2009; Li S et al. 2010).  There is 

indirect evidence that functional recovery may be mediated by plasticity in spared 

areas, since treatments that increase sprouting improve behavioral outcomes 

(Zai L et al. 2009; Liu Z et al. 2010). 

Though functionally related and neuroanatomically interconnected areas likely 

play a role in recovery of function, little is known about the concomitant molecular 

program that occurs in spared, remote, neuronal populations that may trigger and 

orchestrate axonal sprouting and neurophysiological reorganization. The present 

study is unique in that it selectively identifies and characterizes the gene 

expression changes in neurons that send axonal connections to a focal infarct 

core in a remote area of cortex. We have developed a model of ischemic injury in 

rats that specifically targets the primary motor cortex, sparing the premotor cortex 

that normally has reciprocal connections with primary motor cortex (Rouiller EM 
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et al. 1993). In rodents, the homolog of the primate primary motor cortex is the 

caudal forelimb area (CFA), while the premotor equivalent is the rostral forelimb 

area (RFA). RFA is important for recovery, as secondary lesions to the RFA after 

CFA lesions reinstate behavioral deficits after recovery (Conner JM et al. 2005).   

The goals of the present study were accomplished by physiologically 

identifying the forelimb representation in the CFA of adult rats, then labeling 

neuronal somata projecting to the CFA by injection of a retrograde tracer, next 

creating an ischemic lesion in the CFA, then finally, harvesting labeled neurons 

within the RFA 7 days after the infarct using laser capture microdissection. The 7-

day post-infarct time point represents the onset of an “initiation phase” in which 

growth-promoting molecules are thought to be initially increased (Carmichael ST 

et al. 2005). Gene expression patterns were then determined using Affymetrix 

Microarray analysis.  Ingenuity Pathway Analysis software was used to further 

understand the biological significance. The resulting expression changes are 

consistent with the hypothesis that neurons in the RFA undergo neuroanatomical 

reorganization by involvement of specific genes associated with axonal growth, 

and guidance.  These data help to elucidate the genetic response to infarct in 

interconnected neurons, and may eventually provide potential targets for 

regenerative therapy. 

 

   

Materials and Methods 
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Subjects  

 

Male Long-Evans hooded rats (n=14; 270-470g; 3-6 months of age; Harlan, 

Indianapolis, IN) were singly housed in a temperature-controlled room on a 12 

hr:12 hr light:dark cycle, with ad libitum access to food and water.  Animal use 

was approved by the Institutional Animal Care and Use Committee of the 

University of Kansas Medical Center.  Animals were randomly assigned to lesion 

(n=6) and control (n=6) groups.   

 

Surgical Procedure I: Neurophysiological Identification of CFA and 

Retrograde Tracer Injection 

 

Surgical Preparation 

 After sedation with isoflurane, each rat was anesthetized with ketamine 

(100-80mg/kg IM) and xylazine (30mg/kg IP).  The rat was placed in a stereotaxic 

frame, a local anesthetic (Bupivacaine, 2.5mg) was applied to the scalp.  The 

scalp was incised and reflected, muscles attached to the temporal ridge and 

occipital ridge were released.  The dura overlying the cisterna magna was incised 

to relieve cerebrospinal fluid pressure, and a craniotomy performed using a hand 

drill with a burr bit from +5 to -4 mm relative to bregma and from 1mm lateral of 

the sagittal suture to the temporal ridge.  Anesthesia was maintained with 
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supplemental doses of ketamine (20 mg/kg IM), as needed, and temperature 

held constant with a homeothermic blanket system at physiological normal. Core 

temperature was monitored with a rectal probe. The dura was reflected and 

warm, sterile silicone oil was applied to the craniotomy to aid in visualization and 

to prevent desiccation of the cortex.  

 

Neurophysiologial Mapping Procedure 

 The CFA was identified in each animal by intracortical microstimulation 

(ICMS) mapping techniques as described in previous publications (Nishibe M et 

al. 2010).  A magnified digital image of the cortical surface vasculature was 

obtained and a grid pattern (250µm) overlaid with image processing software 

(Canvas, Deneba Software, Miami, FL).  The microelectrode, a tapered and 

beveled glass micropipette (20µm outside diameter at the tip) filled with 

concentrated saline NaCl solution (3.5M), was advanced perpendicular to the 

cortical surface (1725µm subpial depth) with the aid of a hydraulic microdrive 

(650 Micropositioner, David Kopf Instruments, Tujunga, CA) at sites 

corresponding to every other grid intersection (500µm resolution), or when 

necessary, every grid intersection (250µm resolution), to accurately delineate the 

CFA/RFA boarder. The stimulus consisted of a 40msec duration train of 13 

monophasic cathodal pulses (200µsec duration) at 350Hz delivered one per 

second from an electrically isolated, charge-balanced, constant-current 

stimulation circuit (BSI-2, Bak Electronics Inc, Mount Airy, MD).  The current was 
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increased from 0-80µA until a movement was just visible from at least 50% of the 

train bursts, then movement type and minimum current required to evoke the 

movement were recorded.  The site was recorded as “nonresponsive” if no 

movement was elicited before reaching the maximum current level (80µA). The 

500µm resolution grid used in these experiments was adequate to delineate the 

borders of the CFA for defining the location for the tracer injection and the extent 

of the intended lesion (see Surgical Procedure II below). 

 

Retrograde Tracer Injection 

 After delineating the CFA borders, the rostral half of CFA was injected with 

a retrograde neuronal tracer, cholera toxin beta subunit conjugated to AlexaFluor 

647 (CTB-647, 5µg/µL in 0.9% sterile saline, C34778, Invitrogen, Grand Island, 

NY).  CTB-647 leaves a residual blue mark on the cortical surface that is 

identifiable upon reopening.  Preliminary experiments determined that the 

synaptic terminal field from RFA was most dense in this subregion (unpublished 

observations and see (Rouiller EM et al. 1993)). The tracer was delivered by 

pressure injection from a tapered glass micropipette (70µm outside diameter) 

secured with wax to a 1µL Hamilton syringe (80100, Hamilton Company, Reno, 

NV). The syringe plunger was actuated by a microinjector (Micro4, World 

Precision Instruments, Sarasota, FL) clamped to a hydraulic microdrive on a 

stereotaxic arm.  Each animal received injections at 2 sites 1mm apart within the 

CFA. At each site, 75nL (5nL/sec) of tracer was injected at each of two depths 
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(1500µm and 1250µm below the pial surface), for a total of 150nL at each site.  

 

Surgical Closing and Recovery 

 Following the procedures described above, the craniotomy was rinsed with 

sterile saline.  A silicone sheet was placed over the craniotomy followed by gel-

foam and dental acrylic to form a protective cap.  The scalp was sutured, 

followed by Bupivacaine (2.5mg, topical), and Vetropolylycine gel (topical 

antibiotic).  Animals were monitored until alert and active, and then returned to 

their home cage. 

 

Surgical Procedure II: Cortical Infarct  

 

Animals in the lesion group underwent a second surgical procedure 14 days 

after Surgical Procedure I (ICMS and tracer injection). The 14-day interval 

allowed sufficient time for the tracer to be retrogradely transported to the parent 

somata in RFA, where it remains for later identification. Animals in the control 

group did not undergo a second procedure.  General surgical procedures 

discussed above were followed, except that the cortex was re-exposed by 

removing the protective cap from the first procedure without the need for further 

craniotomy.  After re-exposing the cortex, a tapered glass micropipette (160µm 

outside diameter) was secured with wax to a 2µL Hamilton syringe filled with the 

vasoconstrictor, endothelin-1 (ET-1, 0.33mg/mL 0.9% sterile saline, H-6995, 
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Bachem Americas, Inc, Torrance, CA), and attached to a microinjector clamped 

to a microdrive on a stereotaxic arm.  The residual blue mark of the tracer 

injections (visible on the cortex) and blood vessel patterns photographed from 

Procedure I were used to guide injection placement.  The majority of the CFA 

representation was targeted for ischemic injury.  The size of the CFA determined 

the number of ET-1 injection sites (2 to 5).  The micropipette tip was lowered to 

1500µm below the pial surface, perpendicular to the cortex.  At each injection 

site, ET-1 was delivered at 5nL/sec in three 110nL boluses with a 1min delay 

between boluses, and a 5min delay before tip extraction.  During the injections 

and delay times, the craniotomy was flushed constantly with sterile saline to 

prevent non-specific spread of ET-1.  At the conclusion of the ET-1 injections, 

rats underwent the Surgical closing and recovery procedure described above.  

 

Tissue Harvest and Laser Capture Microdissection (LCM) 

 

 Seven days after Surgical Procedure II (or an equivalent time period in 

control rats), rats were anesthetized with isoflurane and ketamine (45mg IP), then 

decapitated by guillotine in accordance with American Veterinary Medicine 

Association Guidelines on Euthanasia.  The brain was extracted and flash frozen 

for 30sec in heptane (on dry ice for 5min) and stored in a -80C freezer until 

sectioning.  After a 30min equilibration time, brains were sectioned in the coronal 

plane on a cryostat at 14um.  Sections were cut rostral to caudal beginning at the 
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rostral pole until the tracer injection cores in the CFA were contacted.  At 7 days 

post-lesion the CTB647 injection cores were still visible to the unaided eye within 

the translucent lesion of lesion animals, or opaque tissue of the control animals.  

Then, after a series of 7 sections were cut, 4 sections were thaw mounted to 

charged slides and 3 sections discarded.  Four sections per slide proved to be 

the optimal number of sections for LCM collection (Arcturus Veritas, Applied 

Biosystems, Carlsbad, CA).  In lesion animals, in order to obtain an accurate 

measure of the lesion volume, 2 serial sections were taken at 504 µm intervals 

(every 36 sections) throughout the extent of the lesion.   Slides were returned to 

dry ice within 20sec of thaw mounting to preserve RNA integrity, and stored in a -

80C freezer until the LCM procedure. 

Given the time dependent nature of RNA degradation, only one slide at a 

time was processed for LCM.  Each slide at the level of the RFA was removed 

from dry ice and dehydrated by an increasing alcohol gradient and xylenes for 

clearing.  The procedure was slightly modified from protocols available from 

Arcturus (Applied Biosystems).  Briefly, each slide was exposed to 75% ethanol 

(30s), water (30s), 75% ethanol (30s), 95% ethanol (30s), 100% ethanol (2x2 

min) and xylene (5min).  The slide was placed in the LCM along with Macro 

collection caps (Arcturus, Applied Biosystems).  Sections were viewed under 

fluorescent illumination to identify retrogradely labeled somata at the level of the 

RFA (Rouiller EM et al. 1993; Nishibe M et al. 2010). After test firing, the infrared 

laser settings were adjusted to produce a collection spot of 32µm in diameter.  
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Standard laser settings were used, but power varied from 35-90 mW as needed 

to produce a collection spot of 30µm.  Within 2 hours of dehydration, 100 to 500 

cells were collected per cap to prevent overloading.  The cap was inserted into a 

microcentrifuge tube and exposed to PicoPure RNA extraction buffer (30min at 

42C, Arcturus, Applied Biosystems).  This process was repeated with as many 

slides as was necessary until 28 ng of purified RNA (~ 1900 cells) was collected 

from each animal.  Extracted RNA was stored at -80°C until RNA isolation. 

 

RNA Sample Preparation and Affymetrix Microarray Procedures 

 

A PicoPure (Arcturus, Applied Biosystems) on-column RNA isolation kit was 

used per manufacturerʼs instructions, along with the DNase I (Qiagen, Valencia, 

CA,) treatment to eliminate DNA contamination, and RNA quality was assessed 

by Agilent 2100 Bioanalyzer with a RNA 6000 Pico LabChip kit (Agilent 

Technologies, Santa Clara, CA).  Only samples with RNA Integrity Numbers 

(RINʼs) of 7 or above were considered of acceptable quality for microarray assay.  

RIN is calculated with a proprietary algorithm (www.chem.agilent.com), which 

takes into account the entire electrophoretic trace of the Pico LabChip.  Total 

RNA (~35ng, 1500 cells) from each animal was amplified twice according to 

Affymetrix Small Sample Labeling protocol: reverse transcription with Superscript 

II (SuperScript Choice System, Invitrogen), in vitro transcription (IVT) with 

MEGAscript T7 kit (Ambion, Invitrogen) including T7(dT)24 primer 
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(5ʼGGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGGTTTTTTTTTTTT

TTTTTTTTTTTT-3ʼ) for 1st and random primers for 2nd round IVT, cDNA cleanup 

through ethanol precipitation, cRNA cleanup with Qiagen RNeasy columns, and 

GeneChip Expression 3ʼ-Amplification IVT Labeling kit (Affymetrix, Santa Clara, 

CA) for the last round of IVT and biotin labeling. Biotinylated-cRNA was 

fragmented (buffer: 200mM Tris-Acetate, pH 8.1, 500mM potassium acetate, 

150mM magnesium acetate), and average fragment length was assessed by 

RNA 6000 Nano LabChip kit (Agilent). Affymetrix GeneChip Rat Genome 230 2.0 

Arrays (Affymetrix Cat. No.: 900506) were hybridized, washed and stained using 

GeneChip Fluidics Station 450 (Affymetrix) under the Standard Array Format.  

The automated scanning process (Affymetrix GeneChip Scanner 3000 7G with 

autoloader) completed 1 scan for each array using standard settings for pixel 

value (3um), and wavelength (570nm).  Absolute and comparison analysis was 

performed with the target signal scaled to 500 with a normalization factor of 1 (no 

normalization). 

 

Microarray Data And Gene Pathway Analysis 

Probe intensities from microarrays were background corrected, quantile 

normalized and summarized using Robust Multi-array Averaging (RMA, Partek 

Genomic Suite 6.4, Partek Incorporated, St Louis, MO)(Irizarry RA et al. 2003). 

The resulting log (base2) transformed intensity values were used for quality 

control and further analysis. Probe level fold changes were obtained by taking the 
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exponentiation of the linear contrast between the least square means of the 7 

day control and 7 day lesion samples. The significance of these fold-changes 

was calculated using a 2-way mixed model ANOVA. Apart from the treatment 

effect; the day each array was hybridized was included as a random effect in the 

ANOVA model.   

      Interaction networks, functions and canonical pathways were developed 

using Ingenuity Pathway Analysis (IPA, version 7.6, Ingenuity Systems, Redwood 

City, CA), an online software that uses a curated database of genes, proteins, 

chemicals, drugs, and molecular relationships to build biological models.  The 

significance of the interaction networks, functions and canonical pathways were 

determined by the right-tailed Fisherʼs Exact test which measures the 

significance of the number of genes common to both the input gene set and the 

particular network, function or canonical pathway. The significance p-values of 

networks were adjusted for multiple hypothesis testing using the Benjamani-

Hochberg correction procedure. 

 

Lesion Volume Estimation 

 

 At 504 µm intervals during “Tissue Harvest,” described above, 2 coronal 

sections (14µm) were thaw mounted to charged slides for lesion volume 

estimation.  The following procedure occurred on slides with a hydrophobic 

barrier created by PAP pen (SuperHT, Research Products International Corp., 
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Mount Prospect, IL).  After washing in tris-buffered saline (TBS), sections were 

incubated overnight at 4ºC, and slowly agitated in 0.05M TBS containing 5% 

Donor Goat Serum (Equitech-Bio, Inc, Kerrville, TX), 0.4% Triton X-100, and 

1:1000 dilution of biotinylated mouse monoclonal anti-Neuronal Nuclei (NeuN) 

antibody (MAB377B, Chemicon, Temecula, CA).  Sections were rinsed in 0.05M 

TBS, incubated for 3 hr at room temperature in Avidin-Biotin Complex solution 

(ABC, PK-6100, Vector Laboratories, Burlingame, CA), rinsed in 0.05M TBS, and 

incubated in Vector SG Substrate Solution (SK-4700, Vector Laboratories) until 

visually acceptable background was evident (2-7min). Sections were rinsed in 

0.05M TBS, then dried, dehydrated, and coverslipped with DPX mounting 

medium (Sigma-Aldrich, St Louis, MO). An Axioplan 2 microscope (Zeiss, 

Thornwood, NY) was used with Stereo Investigator software (Microbrightfield, 

Williston, VT) and Cavalieri probe to estimate the lesion size in 4 animals.   

Cortical areas (dorsal to the corpus callosum on coronal sections) containing 

presumed neurons (NeuN-positive cells) were selected as normal tissue, while 

cortical areas containing light or no NeuN staining were selected as infarcted 

tissue.  Although the lesion was complete at 7 days post-infarct, the cortical 

tissue was not cavitated, allowing for the lesion to be traced and calculated 

directly.  Every 36th section (504µm apart) was analyzed and only sections with a 

visible lesion were included in the probe.  Lesion area from each section was 

multiplied by section thickness and distance between sections to calculate the 

lesion volume.  Mean and standard error of the mean for lesion volume were 
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calculated for 4 animals (SPSS, IBM, Armonk, NY). 

 

Results 

 

Description of Lesion  

 

Based on ICMS results (Fig. 1B), the CFA was found in a location similar to 

that of previous reports (Rouiller EM et al. 1993).  The lesion was similar in size 

compared with previous results using identical Endothelin-1 infarct procedures 

(Fang PC et al. 2010).  The ET-1 injections resulted in a continuous area of 

neuronal death, as judged by NeuN staining, and extended through all 6 cortical 

layers throughout the CFA. There was no evidence of damage to the corpus 

callosum or underlying subcortical structures.  As expected, no cavitation was 

observed at this 7 day post-lesion time point, so lesion volume was calculated 

directly by measuring the area of the lesion on coronal sections at 500µm 

intervals and multiplying by the section thickness and section interval (Cavalieri 

Probe, Microbrightfield.  The lesion volume was 12mm3 ± 1.7mm3 (mean ± SEM; 

n=4 brains available for lesion volume estimation).  

 

Neuronal Harvesting  
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Fourteen animals received surgical procedures. Of these, one, 1 control 

animal was found to have cortical damage and one 1 lesion animal was found to 

have subcortical damage, and were excluded from the study.  In vivo labeling of 

neurons with CTB-647 allowed for identification of neuronal somata that 

terminated in the infarcted area, as described in Methods. Approximately 1900 

somata per animal were targeted for collection during the LCM procedure (Fig. 

2A-D).   
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Fig. 1  Physiological identification of cortical areas and lesion volume.  a 
Illustration of the rat brain labeled with CFA (yellow) and RFA (green).  Inset 
shows same area as b. Bar is 1mm.  b Photomicrograph of exposed rat cortex 
taken through surgical microscope optics (18x magnification) and overlaid with a 
250 x 250um grid (grid is removed for clarity) in image processing software 
(Canvas; ACDSee, Victoria, British Columbia, Canada).  The ICMS electrode was 
inserted at grid intersections, stimulation elicited movements (black dots) of the 
forelimb, and non-forelimb defined the borders of CFA (yellow line) and caudal 
portion of RFA (green line), and allow for accurate placement of CTB647 (red 
circle).  Blood vessel patterns, ICMS data recorded on the surgical photograph 
and visible blue of dye core guided placement of ET-1 injection (purple circle) 2 
weeks after ICMS/tracer procedure, completely overlapping the CTB647 
injection.  Medial (M) and rostral (R) directions are the same in a-b.  Bar is 1mm.  
c Coronal section tracing series (drawn at 5x magnification) of lesion size and 
location (gray).  Lesion volume per ET-1 injection (12mm3 ± 1.7mm3 SEM) was 
determined using Stereoinvestigator (Microbrightfield) on coronal sections 
labeled with biotinylated NeuN immunohistochemistry, numbers represent 
section distance from Bregma (Paxinos G and C Watson 1986).  Bar is 3mm  
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Fig. 2  LCM collection and RNA quality verification.  a Cortical neurons (red), 
retrogradely-labeled in vivo with CTB-647 during the 1st procedure, viewed 
through the LCM optics at 40x magnification (same for a-d).  White arrows point 
to the same neurons in a-d.  b Brightfield illumination of the same section as a 
after laser fire showing wetted spots (dark circles) of photoreactive polymer.  c 
Overlap of a and b showing accuracy of wetted spot placement over labeled 
neurons.  d Same section as a after removal of collection cap showing removal of 
selected tissue (holes appear white).  1,900 neurons were collected from 14μm-
thick sections at the level of the RFA.  Frames a and c were adjusted for contrast 
and brightness for easier viewing.  Bar is 20µm (same for a-d). e 
Electropherogram in gel format of isolated RNA of 5 samples run in duplicate (1-
5, 6-10) plotted vs run time (s, seconds), standard ladder (L) is included.  f 
Electropherogram of lane 2 from e in native format, run time (s) is plotted vs 
fluorescence units (FU). Well-defined bands of 18S and 28S rRNA (e black lines, 
f sharp peaks) are present in high quality samples 
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RNA Quality Analysis 

 

After RNA extraction and isolation from each section, purity was assayed with 

RNA 6000 Nano LabChip kit, and only samples with RINʼs of 7 or above were 

used for further analysis (Fig. 2E-F).  The entire electropherogram was taken into 

account in the proprietary RIN calculation (Agilent), although with high quality 

samples, the characteristic sharp bands of 18s and 28s can be seen (Fig. 2E-F).  

      RNA from neurons collected from a single animal was run on its own 

microarray (n=12).  After background correction, quantile normalization and 

summarization with RMA analysis (Partek Genomic Suite 6.4), log (base2) 

expression values were compared between microarrays to assess quality 

(Irizarry RA et al. 2003).  It is generally assumed that expression changes 

between groups are a small percentage of those assayed, and most gene 

expression remains the same.  The quality control assessment showed gene 

expression similarity between chips:  the frequency histogram shows overlap, 

and log probe cell intensity and log expression signal graphs show similarity of 

mean and quartile signal characteristics of control (red) and lesion (blue) 

microarrays.  The Pearsonʼs correlation, shows a correlation of > 0.883 for all 

arrays (Fig. 3) after MAS5 analysis (Partek).  

      Differential gene expression at 7 days post-infarct compared with controls 

was determined by mixed model ANOVA after RMA analysis.  A total of 237 

genes were significantly up-regulated and 357 genes were significantly down-
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regulated (p< 0.05).  Of the 271 genes whose expression changed ≥±1.3 fold and 

p< 0.05, 143 were up-regulated and 128 were down-regulated. These genes 

included ion channels (Clic3, Glrb), receptors (Trem2, Oprk1), enzymes (Gpam, 

Neu2), and transcription regulators (Creg1, Pou3f1) (Table 1 and 2).   
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Fig. 3  Quality control assessment of microarrays.  a Frequency histogram of 
signal following RMA analysis, plotted as frequency of signal vs log of the signal 
for all lesion (blue) and control (red) arrays.  b Box-and-whisker plots showing the 
log of probe cell intensity, and c the log of the expression signal for each of the 
arrays (Sample 1-12) following RMA analysis plotted as sample number vs log of 
the probe cell intensity or log of the expression signal, respectively.  Lesion (blue) 
and control (red) plots are divided into 100, 75, 50 and 0th percentile (same for b 
and c).  d Pearsonʼs correlation for signal after MAS5 analysis is greater than 
0.883 for all arrays, plotted as Sample 1-12 vs Sample 1-12 (red boxes in 
diagonal line are identity).  The indicator to the right displays higher (red) to lower 
(blue) correlation 
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 Table 1 List of upregulated genes 7 days post-infarct 
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Table 2  List of down regulated genes 7 days post-infarct 
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Table 3  List of regulated genes involved in the Axonal Guidance Signaling pathway 
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Canonical Pathways Analysis 

 

Differentially expressed gene products (p< 0.05, ≥±1.3 fold change) were fit to 

known “canonical” pathways developed with a curated gene database (IPA 

analysis software). Significance of overrepresentation was determined by right-

tailed Fisherʼs Exact test.  The canonical pathway, “Axonal Guidance Signaling,” 

was differentially regulated (-log(p-value) = 2.68).  The pathway involved 14 

significantly regulated genes from the current data set. The differentially 

regulated genes were: Actr2, Pxn, Bmp4, Rras, Wnt9a, Rock2, Ntng1, Pak1, 

Tubb2c, Gng11, Ntrk2, Ppp3r1, Sema4b, and Bmp1 (Table 3).   

 

Gene Function Analysis 

 

Genes with significant differential regulation (p< 0.05, ≥±1.3 fold change) were 

also overrepresented in several biological processes, determined with the right-

tailed Fisherʼs exact test with a Benjamini-Hochberg correction (IPA analysis 

software).  Although some genes were included in multiple categories, 220 

unique genes were fit to overrepresented functional categories, which were 

reduced to 186 after the Benjamini-Hochberg correction.  “Neurological Disease,” 

“Cell-to-cell Signaling and Interaction,” and “Nervous System Development and 

Function” were among the top categories dysregulated (Fig. 4).  Within the 

categories, the functions “Branching of Neurites”, “Organization of Cytoskeleton”, 
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“Dendritic Growth and Branching”, “Organization of Cytoplasm”, “Guidance of 

Neurites”, “Development of Cellular Protrusions”, “Density of Dendritic Spines”, 

and “Shape Change” (p = 0.000151 to 0.0487) involved 50 genes.   The 

functions, “Development of Nervous Tissue”, “Neurogenesis”, “Development of 

Neurons”, and “Organization of Nervous Tissue” (p=0.0322 to 0.0495), involved 

30 genes.  There were 13 genes involved in the function, “Synaptic 

Transmission” (p=0.0229).  The function of “Synaptic Transmission” (p = 0.0229) 

included: ApoE, Cd24, Chrm3, Gabrd, Glrb, Kcnd2, Nlgn2, Npy5r, Oprk1, 

Pcdhb6, Rasd2, Slc1a3, and Slc5a7.  Interestingly, the function, “Rheumatic 

Disease” was overrepresented with 50 differentially expressed genes (p = 

0.0113), and included the up-regulated genes, Rgs5, Tubb2c, Timp3, Klhl5, Ahi1, 

Bmp4, Tcf12 and Hla-Dqa1, and the down regulated genes Lypd6b, Oprk1, 

Scn4b, Mycbp2, Kcns3 and Znf385b. 
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Fig. 4 Canonical pathways and function categories involving significantly 
regulated genes from interconnected neurons 7 days post-infarct.  a Significantly 
regulated genes (p< 0.05 and above ≥±1.3 fold change) were analyzed for 
interaction of their gene products and fit to canonical pathways developed with a 
curated gene database using Fisherʼs Exact test (IPA software) to determine the 
probability of the same result when choosing genes at random.  The length for 
each canonical pathway or function (blue box) is the negative log of the p-value, 
and is significant if it extends to the right of the orange threshold line (-log(p≤ 
0.05)). Fisherʼs Exact test accounts for the number of uploaded genes, genes in 
the reference set, genes in the pathway and uploaded genes in the pathway.  
“Axonal Guidance Singnaling”, has a –log(p) = 2.86. b Significantly regulated 
genes (p< 0.05 and above ≥±1.3 fold change) were analyzed for overrepresented 
biological functions involving their gene products in accordance with a curated 
gene database using Fisherʼs Exact test (IPA software) to determine the 
probability of the function being overrepresented when choosing genes at 
random.  Box length and threshold line are the same as in a  
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Gene-Gene Interactions Network Analysis  

 

Genes up- or down-regulated (≥ 1.3x and p< 0.05) were further analyzed for 

gene product interactions.  The most dysregulated genes were used as “seed” 

molecules and other molecules with known interactions were added to form 

networks of interaction, in accordance with a curated gene database (IPA). 

Significance was determined with right-tailed Fisherʼs Exact test, and adjusted 

with Bonferonni correction to determine the probability that the same network 

would be developed, if choosing genes at random. Significant networks involved 

260 differentially expressed genes.  The top 3 interaction networks (Fig. 5) had p 

values ranging from 2.5x10-37 to 2.5x10-22, and involved 124 differentially 

expressed genes.   

Differentially regulated molecules appearing as nodes in the first 6 networks 

(Fig. 5) were: FBLN2 2.26, TIMP3 1.874, AQP4 2.146, RGS5 3.446, FLNC 

1.793, OMD 2.021, TUBB2C 1.996, CD44 1.894, CREG11 1.966, GNG11 1.813, 

NNAT 2.145, ERMIN -2.398, and OPRK1 -1.760 (symbol and fold change, 

respectively).    

Those genes in the “Axonal Guidance Signaling” pathway with ≥±1.5 fold 

changes and p-value< 0.05 were further analyzed for interactions.  IPA software 

identified several potential interactions using the significant genes involved in the 

pathway and genes from its curated knowledge base.  Network 4 (Fig. 5D) shows 

GNG11 interacting with BMP4 through RGS19 and TUBB2C through NOTCH1.  
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TUBB2C can also interact with GNG11 through TUBA1A, and BMP4 though 

MYD88, SMURF1, and BMP receptors 1A or1B.  SEMA4B can interact with 

TBB2C through DLG4 and SYT1, and BMP4 through DLG4 and EZH2.  
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Fig. 5  Interaction networks of significantly regulated genes from interconnected 
neurons 7 days post-infarct.  a-c Significantly regulated genes (p< 0.05 and 
above ≥±1.3 fold change) were analyzed for interactions of their gene products 
using Fisherʼs Exact test (IPA software) to determine the probability of the same 
interaction network occurring after choosing genes at random, interactions 
significant at p< 0.05.  d-e Show the reanalysis to detect interactions between 
genes in the “Axonal Guidance Signaling” pathway, which have ≥±1.5 fold 
change and p-value< 0.05.  a-e Upregulated (red) and downregulated (green) 
genes interact directly (solid line) or indirectly (dotted line).  Genes (p< 0.05) not 
meeting the fold change cutoff (gray), and genes not present in the uploaded 
gene set (white) were only included in the interaction networks, if the gene was 
required as a necessary intermediary between two significant genes 
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Discussion 

 

The injured brain is no longer seen as an uninjured brain with a missing 

puzzle piece (Nudo RJ 2006).  An ischemic infarct instigates an array of 

molecular, physiologic and anatomical changes in spared areas of the adult CNS 

(Dancause N et al. 2005; Stowe AM et al. 2008; Li S et al. 2010).  Surviving 

areas play a role in recovery from CNS damage, but little has been done to 

understand the mechanisms underlying neural plasticity at the level of gene 

expression. While hypoxia in the ischemic territory and surrounding penumbra 

undoubtedly results in gene-associated changes in a host of cell types, including 

neurons, glia, astrocytes and endothelial cells, the signaling pathways may be 

very different in remote tissue that is far removed from the hypoxic zone. 

Neuronal somata located in remote areas, in particular, may be triggered to 

initiate growth processes, since many of them send axonal arbors into the 

ischemic territories, where they normally form synaptic connections. This study 

was designed to isolate such remote neurons that have known terminations in an 

ischemic territory, and determine their differential gene expression changes. 

The results demonstrated that 143 genes were up-regulated and 128 genes 

were down-regulated at 7 days post-infarct.  IPA analysis revealed potential 

biological interactions of gene products from significant genes and found several 

canonical pathways that were overrepresented in the dataset with “Axonal 

Guidance Signaling” being the most overrepresented.  IPA also identified the 
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overrepresented functions of “Branching of Neurites”, “Organization of 

Cytoskeleton”, “Dendritic Growth and Branching”, “Organization of Cytoplasm”, 

“Guidance of Neurites”, “Development of Cellular Protrusions”, “Density of 

Dendritic Spines”, and “Shape Change,” which involved 50 genes.  Putative 

networks of interaction were also developed with IPA involving highly 

dysregulated genes as nodes.  Those genes in the “Axonal Guidance Signaling” 

pathway with ≥±1.5 fold change and p-value< 0.05 were included in a second 

analysis and fit to their own interaction networks.  These analyses add to the 

known functions of the current studyʼs significant genes, showing possible 

biological relevance.  Taken together, these data add credence to the idea that 

neurons in remote areas that are anatomically connected to an ischemic territory 

may initiate growth and guidance signaling pathways, presumably in an attempt 

to reorganize. This process appears to be in place at 7 days after infarct.    

 

Relevance of the Current Model 

 

    Our lesion model is the first to study gene expression in a neuronal 

population located in an anatomically identified premotor area after a primary 

motor cortex injury.  After Neafsey and Sievert identified the RFA as a non-

primary motor area, Rouiller further defined its general pattern of connectivity and 

its relationship to the primary motor, subcortical and sensory areas (Neafsey EJ 

and C Sievert 1982; Rouiller EM et al. 1993).  The rodent RFA is a premotor 
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area, as classically defined, since it contains a forelimb representation distinct 

from the primary motor cortex (CFA), its principal target of efferent fibers in the 

cortex is to the primary motor cortex, and it contains neurons that project directly 

to the spinal cord via the corticospinal tract. Both CFA and RFA are involved in 

function of the forelimb in intact animals, and both can be identified in vivo by the 

presence of movements evoked by ICMS at low current levels.    

The RFA is important to behavioral recovery when CFA is injured.  After a 

lesion to CFA and subsequent functional recovery over a period of 5 weeks, a 

secondary lesion in RFA leads to reinstatement of the deficits, even though a 

lesion to RFA in otherwise normal rats does not induce significant impairments 

(Conner JM et al. 2005).  In different rat models of cortical infarct, increased 

recovery of function has been correlated with treatments that increase anatomical 

sprouting (Zai L et al. 2009; Liu Z et al. 2010).  Also, after a primary motor cortex 

lesion in non-human primates, the ventral premotor area (PMv), which shares 

structural and functional similarities to RFA, undergoes physiological 

reorganization that is proportional to the size of the lesion (Frost SB et al. 2003). 

In addition, neurons in PMv undergo axonal reorganization that results in 

trajectory alteration and formation of synaptic contacts in completely new 

territories in the parietal lobe (Dancause N et al. 2005).  

The current study adds to earlier findings by identifying a specific neuronal 

population that is connected to an infarcted area.  LCM was used to provide a 

more specific picture of the gene expression changes in identified neurons from 
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this area after ischemia compared to neurons from non-infarcted animals.  While 

LCM is not completely selective, and closely apposed cell fragments and neuropil 

are also collected, the collected RNA is concentrated with neuronal signal.  This 

is the first model to selectively acquire neurons interconnected to an area that is 

destined for infarction.  Though Li et al. used LCM and double retrograde labeling 

to selectively acquire sprouting neurons in peri-infarct cortex, the study was 

focused on a specific population of neurons that sprouted after the infarct, rather 

than a more remote population of neurons that were connected to the infarct core 

prior to injury, as in the present study (Li S et al. 2010).  It is possible that the 

harvested neurons in the Li et al. study displayed somewhat different expression 

patterns since they were likely within a hypoxic territory. By identifying the areas 

targeted for infarct physiologically with ICMS, retrogradely labeling the RFA 

neurons, and employing LCM at the level of the RFA, we have produced a more 

specific picture of gene expression changes in RFA neurons after CFA ischemic 

infarct.  

 

Relevance of Gene Expression Changes after Brain Injury 

 

Although initially thought to be a recapitulation of developmental gene 

expression, the brainʼs response to injury, such as occurs in stroke, is now seen 

in a broader context, including regulation of a similar set of genes to those 

involved in development, as well as genes specific to neuronal response to injury 
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(Benowitz LI and ST Carmichael 2010).  Studies in peri-infarct cortex show up- 

and down-regulation of both developmentally and non-developmentally 

associated genes that are both neuronal and non-neuronal in origin (Carmichael 

ST et al. 2005).  Extensions of this work found gene expression differences 

specifically in sprouting neurons that were not strictly developmental in nature. 

Notably, these studies revealed changes in the expression of some novel genes 

not known to be associated with axonal sprouting after ischemic infarct (Li S et al. 

2010).     

Likewise, the present study, which examined specific neuronal populations 

well outside of the peri-infarct, and presumably hypoxic, territory, found up- and 

down-regulation of both developmentally and non-developmentally associated 

genes.  While gene expression changes were characterized at a single time point 

after infarct (7 days), it important to note that there is a complex temporal profile 

of gene regulation over time (Carmichael ST et al. 2005). Seven days was 

chosen in this study because it represents the beginning of an initiation phase of 

growth promotion. However, future studies will be important to address other time 

points to establish a more complete temporal profile of neuron-specific gene 

expression during trigger, initiation, maintenance and termination phases.  

The importance of understanding the temporal profile of gene expression 

changes after brain injury is related to the potential for identifying specific targets 

for therapeutic development. It may be possible to induce adaptive changes in 

neuronal connections by triggering one or more of the identified pathways at 
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specific time points after injury. Likewise, in the future, it will be critical to 

understand how various rehabilitative therapies affect both growth-promoting and 

growth-inhibiting molecules. Such neuron-specific gene expression studies may 

be used for the development of surrogate markers of recovery. 

 

Genes Regulated in Current Study 

 

The genes most differentially regulated in the current study can be 

grouped into several categories, based on their presumed function, including 

nervous system development, neuroprotection, apoptosis, axonal growth and 

guidance, and several genes that have not been associated with ischemia 

previously.  There were also genes with expression profiles that were 

counterintuitive to expectations.   

 

Development 

Regulation of developmentally-associated genes after focal cortical infarct 

is consistent with the findings of other studies involving neuronal gene expression 

in vivo. Northern blot analysis of E13 and newborn mice showed increased 

expression of fibulin 2 (Fbln2, +2.26 fold change in the current study) in certain 

ganglia and embryonic spinal cord, suggesting a role in motor neuron 

development (Zhang HY et al. 1996).  Tripartite motif containing 54 (Trim54, -

1.503 fold change in the current experiment) an E3 ubiquitin ligase is not 
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significantly expressed before birth, and knockdown perturbs tubulin dynamics 

and disrupts ordered Z and M bands in cardiac development (Perera S et al. 

2011).  Chondrolectin (Chodl, -1.533 fold change in the current experiment) a 

type I transmembrane protein is important in development, proliferation and 

differentiation of a myoblastic cell line and maturation of T-cells in mice (Weng L, 

DR Van Bockstaele, et al. 2003; Claessens A et al. 2008).  Chodl was also 

localized to cholinergic, fast motor neurons in spinal cord with in situ hybridization 

and in the brain of adult mice with southern blot (Weng L, R Hubner, et al. 2003; 

Enjin A et al. 2010). Cellular repressor of E1A-stimulated genes 1 (Creg1, +1.96 

fold change in the current study), a secreted glycoprotein, is suggested to have a 

role in development of the mouse brain, due to its differential gene expression 

and protein concentration pattern (Yang G et al. 2011).  CREG1 enhances 

differentiation, reduces proliferation, and its RNA is present in adult mouse brain 

(Veal E et al. 2000).    

Other genes are also involved in neuronal development.  Nnat is an 

imprinted gene important in hindbrain development (Sowpati DT et al. 2008).  

Oprk1 is involved in EGF-stimulated spinal cord development (Tsai NP et al. 

2010).  Mycbp2 is involved in retinocollicular targeting (Vo BQ et al. 2011), while 

thyroid hormone partially regulates brain development through Cd44 (Dong H et 

al. 2009). Finally, Sema4b is important for the developing cerebellum (Maier V et 

al. 2011), and Bmp1 (Ge G and DS Greenspan 2006) and Bmp4 (Mehler MF et 

al. 1997) are involved in dorsal/ventral patterning of the embryo.  These genes 
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are differentially expressed during neuronal development and are differentially 

expressed in the same direction after CNS injury in adult rat, consistent with a 

return to a previous developmental state.  

Carmichael et al found that although developmentally related genes in 

peri-infarct tissue were differentially expressed after cortical infarct, the 

expression pattern included genes not reported with development and the 

authors suggested that regeneration exhibits a unique pattern of expression 

(Carmichael ST et al. 2005).  Likewise, the current study found genes not 

typically associated with development, but involved in regeneration.  For 

example, Tubb2c increases neurite sprouting (Lewis GP et al. 1998; Mandal N et 

al. 2011), while Gng11 regulates senescence (Hossain MN et al. 2006). Scn4b 

up-regulation increases neuroblastoma cell neurite extension and dendritic spine 

density in hippocampal primary neuron cultures (Oyama F et al. 2006), while 

Dennd4c is a guanine exchange factor (Sano H et al. 2011).  The differential 

regulation of genes in the current study associated with neuronal development as 

well as unique regenerative genes may suggest axonal regeneration is taking 

place in RFA neurons.   

 

Neuroprotection  

Regulation of a gene thought to be involved in neuroprotection was also 

found.  Knockdown of sodium channel, voltage-gated, type IV, beta, (Scn4b, -

1.72 fold change in the current study) has been shown to decrease the resurgent 
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firing in cultured cerebellar granule neurons (Bant JS and IM Raman 2010).  

Preventing resurgent firing may provide protection from excitotoxic injury in 

neurons reciprocally connected to an area undergoing anoxic depolarizations, as 

in our model; thus, its down regulation in the current model may be 

neuroprotective.  Its role in development has yet to be investigated (Brackenbury 

WJ and LL Isom 2011) 

 

Apoptosis 

Apoptosis related gene expression changes also were detected in the 

current study.  In a model of middle cerebral artery (MCA) occlusion, intracortical 

ET-1 injection near the MCA led to hypoperfusion of the cortex for 16-22 hours 

(Biernaskie J et al. 2001).  After 2 hr of transient or permanent MCA occlusion, 

cell death in the penumbra and ischemic core was similar for 2 hr of transient or 

permanent MCA occlusion (Zhang RL et al. 1994).  Although the time course of 

apoptosis and necrosis is unknown in our model, the potentially long lasting 

effects of ET-1 make more probable the comparison between our model and 

other focal lesions.   Neuronal apoptosis and necrosis during a ligation model of 

focal ischemic cortical infarct peak at 1 day post-infarct, and are minimal by 5 

days post-infarct, as shown by caspase 3 activation, and 8-Hydroxy-2-deoxy 

guanosine (8-OH-dG) and TUNEL staining (Katsman D et al. 2003).  This time 

frame is consistent with the observation that 24 hr after ischemia ~80% of 

neurons in the ischemic core in focal ischemia have apoptosed (Lipton P 1999). 
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In the current study, the RFA is outside the lesion core and penumbra, and 

therefore outside of the area of known apoptosis.  Further, neuronal harvesting 

was conducted 7 days after the infarct, at a time when further cell death was 

minimal anywhere in the cortex.  Therefore, neurons undergoing apoptosis would 

have already done so, and not been collected in the LCM process.  In addition to 

the previously stated role for CREG1, CREG1 upregulation inhibits apoptosis of 

cultured vascular smooth muscle cells, and was inversely correlated with 

caspace-3 activation (Han Y et al. 2010).  Apoptotic and anti-apoptotic related 

gene changes in the current study were relatively few, but those present may be 

enough to instigate apoptosis in surviving cortical neurons.  The presence of both 

apoptotic and anti-apoptotic related genes may indicate different populations of 

interconnected neurons undergoing stages of apoptosis, neuroprotection, or are 

still within the decision process of whether to enter apoptosis or not. 

 

Axonal Growth and Guidance 

Several genes were related to sprouting or axonal growth, but not included 

in the canonical IPA pathway of “Axonal Guidance Signaling”.  A decrease of 

MYC binding protein 2 (MycBp2, -1.69 fold change in the current study) was 

shown to increase axonal regeneration in adult c. elegans after axotomy (Nix P et 

al. 2011). CD44 molecule (Indian blood group) (Cd44, +1.894 fold change in the 

current study) a cell-adhesion molecule involved in extracellular matrix changes 

can influence cell growth, survival and differentiation (Ponta H et al. 2003). CD44 
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acts as a repulsive signal for retinal ganglionic cell axons entering the embryonic 

diencephalon that will become the optic chiasm and has been reported to 

decrease neurite length of retinal neuron explants in vitro (Sretavan DW et al. 

1994).  The increase in CD44 in the current experiment may play a role in 

decreasing axon length.  

 

Novel Gene Not Previously Reported with Stroke 

Genes not previously reported in ischemia, were also differentially 

expressed in the present study. While the novelty of these findings may be 

related to the specific time point chosen for analysis in various studies, it may 

represent novel findings important to the specific roles of interconnected neurons 

after injury.  DENN/MADD domain containing 4C (Dennd4c, +2.081 in the current 

study) is a guanine nucleotide exchange factor for RAB10.  Activation of RAB10 

by DENND4C leads to increased trafficking of glucose transporter, GLUT4, to the 

cell membrane in adipocyte cultures and an increase of glucose influx (Sano H et 

al. 2011). In situ hybridization has shown that Glut4 mRNA is localized to 

neurons within the rat motor cortex (El Messari S et al. 2002). 

 

Genes with Presumably Paradoxical Expression 

There were several genes that did not fit with expected expression 

patterns.  It has been shown that Artemin treatment (3 hrs) of adult rat DRG 

neurons increased total neurite length, branching and synaptic vesicle clustering, 
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and decreased neuronatin (Park S and YW Hong 2006).  The increase in 

Neuronatin in the current study (Nnat, +2.145 fold change) would seem to hinder 

neurite extension, and is contrary to expectations.  Down-regulation of opioid 

receptor, kappa 1 in the current study (Oprk1, -1.76 fold change) also is 

paradoxical, in that agonism during ischemia has been shown to be 

neuroprotective (Zhang Z et al. 2003) and knockdown or inhibition leads to less 

EGF-stimulated growth in cultured neurons (Tsai NP et al. 2010).  A decrease in 

opioid receptor would seemingly increase neuronal death and decrease 

sprouting.  It is possible this could be indicative of a balance between maintaining 

enough activity to induce and guide sprouting, and decreasing activity, so as not 

to induce excitotoxicity.  GABA disinhibition and NMDA receptor increase has 

been noted in areas interconnected to an infarct (Chen R et al. 2002).  Growth 

associated protein of 43 kDa (Gap43) was not found to be differentially regulated 

in the current experiment, even though it is found at this time point (7 days post-

infarct) in neuronal sprouting studies in similar distances from the cortex, and is 

seen as a paradigmatic growth cone marker (Stroemer RP et al. 1993; 

Carmichael ST et al. 2005).  This suggests that some or all of the collected 

neurons are not sprouting, or that they do sprout but do not employ Gap43 up-

regulation.  However, interconnected neurons could instead be serving as a relay 

station, signaling and instigating reorganization in nearby neurons, instead of the 

interconnected neurons themselves sprouting.  As size and type of lesion is also 

important during reorganization, this lesion may not be of a sufficient size or type 
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to instigate sprouting (Carmichael ST and MF Chesselet 2002; Dancause N et al. 

2006b).  

 

Biological Context Revealed by IPA 

 

In the current study, IPA software was used to give broader biological 

implications beyond what would be concluded by the identification of single 

genes significantly regulated. Gene product functions, pathways, and interactions 

are based on the Ingenuity Knowledge Base, a curated database of literature 

findings.  IPA is well accepted by the scientific community and a PubMed search 

reveals 473 articles involving the software, as well as 13 reviews, since the year 

2005.   

Select functions found to be overrepresented were “Branching of 

Neurites”, “Organization of Cytoskeleton”, “Dendritic Growth and Branching”, 

“Organization of Cytoplasm”, “Guidance of Neurites”, “Development of Cellular 

Protrusions”, “Density of Dendritic Spines”, and “Shape Change,” and involved 50 

genes.  These functions involve morphological changes, and are consistent with 

collected neuron reorganization. 

IPA identified genes (≥±1.3 fold change and p< 0.05) that were 

overrepresented in several canonical pathways: “Axonal Guidance Signaling”, 

“Actin-based Motility by Rho”, and “Actin Cytoskeleton Signaling”.  IPA also 

identified the functional categories of cytoplasmic restructuring, and cytoskeletal 
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reorganization.  Genes changed within these pathways and functional categories 

are consistent with other studies of reorganization.  These genetic changes show 

that 7 days after CFA infarct, RFA neurons activate gene expression conducive 

to sprouting and reorganization.  This suggests axonal sprouting is part of the 

response to ischemic infarct in axons connected to an infarct.   

Those genes in the “Axonal Guidance Signaling” pathway of ≥±1.5 fold 

changed and p-value< 0.05 are further discussed below.  They were also 

reanalyzed to determine interactions beyond the canonical pathway.  Interactions 

were found that are different than those in the canonical pathway, and these 

interactions may be important in this model.   

 

Relevance for the Most Regulated Genes of the “Axonal Guidance 

Signaling” Pathway  

 

Sema4B 

Semaphorins were originally characterized as negative guidance cues of 

axonal growth cones, are both soluble and membrane bound ligands, and can 

act as receptors themselves.  They have both long and short range effects on the 

morphology of various cell types (Tran TS et al. 2007).  As such, Semaphorins 

are repulsive signaling proteins involved in axonal guidance and dendritic 

structure (Tran TS et al. 2007).  Semaphorin 4b (Sema4b, +1.54 fold change in 

the current study), primarily localized to Bergman glia and astrocytes in postnatal 
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mice, may be important in granule cell migration and proper formation of the 

cerebellum (Maier V et al. 2011). By knocking down Sema4b and staining for 

synapsin 1 and PSD-95 in in vitro cultures of E18 hippocampal neurons, Paradis 

et al. found Sema4b was necessary for gluatamatergic synapse formation 

(Paradis S et al. 2007). RNA in situ hybridization experiments detected Sema4B 

in neurons (with low level signal in chondrocytes) from E14-E19 in Sprague-

Dawley rats.  It was absent in adults, but increased in olfactory epithelium 

neurons 2 weeks after olfactory bulbectomy. The authors suggested Sema4bʼs 

presence in the adult bulbectomy model instigated a growth pause in 

regenerating axons because the axons lacked the target of the bulb (Williams-

Hogarth LC et al. 2000).  

 

Tubb2c 

 Microtubules are cytoskeletal proteins involved in diverse processes 

from signaling to mitosis, and are formed from heterodimers of alpha and beta-

tubulin.  Beta-tubulin 2c (Tubb2c, +2.00 fold change in the current study), one of 

several isoforms identified, is ubiquitous in human tissues (Leandro-Garcia LJ et 

al. 2010).  Lewis et al, used adult cats to show neurite outgrowth from neurons 

whose cell bodies reside in the inner nuclear layer after retinal detachment 

(Lewis GP et al. 1998).  The inner nuclear layer was later shown to have an 

increase in TUBB2C protein 7 days after retinal detachment in rabbits (Mandal N 

et al. 2011).  This increase in TUBB2C points to its possible role in sprouting.     
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Bmp1 

 Bone morphogenetic protein 1 (Bmp1, +1.46 fold change in the current 

study) is the prototype of a highly conserved family of metalloproteinase involved 

in dorso-ventral patterning in the vertebrate embryo through activation of BMP2 

and 4 (Ge G and DS Greenspan 2006).  Originally thought to activate the other 

BMPʼs with which it was co-purified, it was later found to have procollagen C-

proteinase activity.  Its role in development may come from formation of 

extracellular matrix and activity of growth factors (Hopkins DR et al. 2007).  Also, 

mRNA of the Aplysia homolog to Bmp1 (Aplysia tolloid/BMP-1-like protein, 

apTBL-1) was increased after long term training in Aplysia and was suggested to 

play a role in synaptic plasticity between sensory and motor neurons (Liu QR et 

al. 1997). 

 

Bmp4 

Bone morphogenetic protein 4 (Bmp4, +1.51 fold change in the current 

study) is part of the transforming growth factor beta (TGF-b) superfamily localized 

to the extracellular space.  BMP2 and BMP4-7 are involved in dorsal patterning in 

the embryo, while sonic hedgehog (SHH) is responsible for the ventral.  

Intracisternal injection of BMP7, which activates similar receptors as does BMP4 

(Mehler MF et al. 1997), increased behavioral recovery in rats after MCAO, 

without decreasing the lesion size (Kawamata T et al. 1998).  It was suggested 
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that the behavioral improvements were related to the BMP7ʼs known instigation 

of dendrite growth and development (Withers GS et al. 2000).  BMP4 is also 

present during neural tube closing and is suggested to have autocrine or 

paracrine activity during development (Mehler MF et al. 1997). Injection of an 

Adeno-associated virus encoding Bmp4 into the dorsal root ganglia increased the 

ability of severed axons to regenerate after spinal cord injury (complete dorsal 

column transection) in adult mice.  Regeneration was increased even if injection 

occurred 15 min after transection (Parikh P et al. 2011). 

 

Gng11 

 Guanine nucleotide binding protein (G protein) gamma 11 (Gng11, 

+1.81 fold change in the current study), a membrane bound G-protein subunit 

that can translocate to the Golgi apparatus and alter its structure, may have a 

role in increasing cell senescence (Cho JH et al. 2011). Gng11 down-regulation 

by antisense cDNA increased longevity of human fibroblasts and oxidative stress 

induced its transcription.  Over expression leads to activation of ERK1/2 but not 

RAS (Hossain MN et al. 2006).  GNG11 was not found in normal retina or brain 

tissue (Balcueva EA et al. 2000). The gamma11 subunit has differential A1 

adenosine receptor, M1 muscarinic receptor and phospholipase C-beta activation 

depending on beta subunit pairings (McIntire WE et al. 2006). Gamma11 was not 

found in rat brain by immunoblot but expression was abundant in blood cells and 

may explain its presence at 7 days (Morishita R et al. 1998).   As GNG11 
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increase leads to senescence, this may represent a paradoxical expression 

pattern.   

 

Summary 

 

 In summary, stroke induces a unique set of gene expression patterns in 

spared interconnected corticocortical neurons 7 days after ischemic infarct.  The 

gene expression patterns display up- and down regulation associated with 

nervous system development, apoptosis, and axonal growth.  Several have not 

been reported previously in ischemia models.  Canonical pathways and 

interaction networks developed with IPA suggest gene product interactions. 

Though RFA neurons display some aspects of reorganization, they may serve to 

instigate other cortical neurons to reorganize, or simply survive.  Future 

experiments will be necessary to further investigate the purpose of this unique 

genetic program.   
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Summarization of Results 

 

 This series of experiments has shown the cortical connectivity of RFA (Ch. 

2), the connectivity changes four weeks after an ischemic infarct to the primary 

motor cortex (Ch. 3), and the gene expression changes 7-days post-infarct that 

may be the substrate for the anatomical reorganization (Ch. 4).   

The second chapter shows a clear picture of the corticocortical 

connectivity of RFA.  The RFA does not connect homogeneously throughout the 

cortex.  It preferentially connects to other motor regions, multisensory regions, 

and higher order processing regions.  This work confirms the work of others, but 

adds specificity that was not previously present.  It also provides evidence that 

RFA shares a cortical connectivity pattern similar to the PMv of primates, and 

strengthens the argument for homology of these regions.    

The third chapter provides evidence of corticocortical reorganization of the 

RFA four weeks after motor cortex ischemic infarct.  Although other models in 

rats show corticocortical reorganization is possible in the somatosensory and 

spinal column after various cortical lesions, this study is the first to specifically 

target changes in the premotor cortex of the rat after specific motor cortex lesion.  

The fourth chapter identifies gene expression changes, which may 

represent the substrate for anatomical changes discussed in the third chapter.  

These gene expression changes occur 7-days post-infarct.  This time frame is 

consistent with the instigation phase of expression changes, thought to be 
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responsible for anatomical reorganization found in other models. The fourth 

chapter provides further evidence that post-infarct reorganization requires 

differential gene expression.  

Together, these studies increase the field of knowledge concerning the 

premotor cortex in the rat and its response to injury of an interconnected region. 

 

Methodological Details 

 

 There are several methodological decisions that aided in the success of 

this set of studies.  From lesion choice to tract tracer, and even model animal, the 

decisions affect the generalizability of any findings.   

   

Choice of Lesion Type 

 The lesion type itself is important to the resulting reorganization or lack 

thereof.  Aspiration lesions did not produce reorganization, even though they 

were of the same size and location as thermal-ischemic lesions (Carmichael ST 

and MF Chesselet 2002).  An ischemic infarct is also more closely related to the 

natural process of stroke in other species, unlike mechanical or thermal injury 

produced in some models.   

The vasoconstrictor Endothelin 1 (Et-1), was used to create the current 

ischemic model.  Et-1 is an endogenous compound in mammals.  In other 

models, injecting the cortex near the large middle cerebral artery created 
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hypoperfusion for 16-22 hours (Biernaskie J et al. 2001), which was enough to 

cause permanent ischemia.  The ability to constrict arteries by diffusion through 

tissue was exploited in the current model. This method has been shown to create 

complete lesions throughout the cortical layers with little involvement of the 

corpus callosum (Fang PC et al. 2010).  

 

BDA Tract Tracer 

Considering the properties of neuroanatomical tracers is paramount to a 

successful study.  Biotinylated dextran amine (BDA) has been used extensively 

for its non-toxic, fixable, anterograde and retrograde tracing properties.  

Anterograde tracing is favored with the 3,000 molecular weight polymer and 

shorter in vivo incubation times, while retrograde tracing is favored with the 

10,000 molecular weight polymer and longer in vivo incubation times.  Both 

molecular weight polymers will label in the reverse direction less effectively.  

Streptavidin conjugated to peroxidase can be easily attached and reacted with 

diamobenzidine to create an indelible brown product that is visible in light or 

electron microscopy.  Axons, dendrites, spines, boutons, and soma can be 

completely labeled for long periods of time.  BDA signal is not degraded over 

long periods within animal neurons.  It is stable both before and after tissue 

harvest.  Within squirrel monkey, detection up to 7 weeks of in vivo has been 

reported without distinguishable loss of signal for BDA reacted with DAB elite kit 
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(Brandt HM and AV Apkarian 1992).  The length of time required to quantify 

connectivity mandates a stable label.   

The label-filled boutons have also been shown to be the light microscopic 

equivalent of synapses.  Electron microscopy of BDA labeled cortico-cortical 

axons show 1.7 synapses per bouton when synapsing on spines, dendrites and 

somata of other neurons and some boutons were large enough to envelope the 

spine head (Anderson JC et al. 1998).  As this is a study of connectivity, such 

identification is necessary.   

Though biotinylated dextran amine is an anatomical study stalwart, it is not 

without its considerations.  Biotinylated dextran amine can be carried in both 

anterograde and retrograde directions, having the effect of filling a cell and all of 

its projections, if given enough time (Chen S and G Aston-Jones 1998).  One can 

imagine a situation in which a retrogradely labeled axon with labeled-filled 

collaterals appears to be an anterogradely labeled axon from the area of interest.  

Even a retrogradely axon could have anterograde transport that would fill the 

axon and give the appearance of boutons on an anterogradely labeled axon.  As 

there is no way to eliminate such labeling, boutons of such a nature would 

certainly be counted as anterogradely labeled from the area of interest. 

 

CTB tracer 

The use of cholera toxin beta subunit has special considerations as well. 

There is evidence of uptake in fibers of passage and both anterograde and 
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retrograde transport (Chen S and G Aston-Jones 1995).  In the current gene 

expression study using CTB, the collection process targeted cell bodies, so any 

anterograde transport would not have interfered with proper identification and 

extraction of labeled neurons.  Labeling fibers of passage is a more problematic 

issue, in that one could imagine a situation in which a corticocortical axon was 

labeled because it passed through the injection core but did not maintain 

synapses with the CFA.  The lesion overlapped the CTB injection core.  Any 

fibers passing through the CTB injection core would necessarily also pass 

through the lesion core.  Fibers passing though the lesion, regardless of final 

target would be subjected to an environment that instigates retraction and 

degeneration in cultured neurons; therefore, even soma labeled from fibers of 

passage would be collected from the RFA, and be de-efferented neurons, just 

like the other RFA neurons which projected to the newly lesioned CFA. In the 

current experiment of connectivity, the CTB647 was used as a fiducial marker 

only, negating any effect in tract tracing.  

 

Contralesional Cortex Relevance in Stroke 

The contralesional cortex has been studied in the same ways as ipsilateral 

cortex.  Contralateral hemisphere activity is important during stroke, as 

overactivity of the uninjured side after lesion is thought to contribute to diaschisis.  

The contralesional and ipsilesional cortex hyperexcitably up to days after 

photothrombic stroke in rat has also been suggested to contribute to 
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reorganization (Buchkremer-Ratzmann I et al. 1996).   After pyramidal tract lesion 

(pyramidotomy) and treatment with a neutralizing antibody to a myelin-associated 

neurite growth inhibitor, corticorubral and corticopontine sprouting from the 

uninjured side was identified, and was correlated with improved function on pellet 

retrieval, rope climbing and grid walking tasks (ZʼGraggen WJ et al. 1998).  

These other pathways might play a role in recovery after CNS injury in rats. 

Although the contralateral cortex activity increases after stroke, it seems to 

be related with larger lesions that do not leave enough tissue on the ipsilateral 

cortex to take over function.  In fMRI studies, contralateral tissue activation is 

associated with worse functional outcomes (Carey JR et al. 2002).  Studies which 

train the unaffected arm after stroke show increased dendritic arborization, but 

this is correlated with decrease in function of the injured arm (Luke LM et al. 

2004; Allred RP and TA Jones 2008).  As the ultimate goal is to increase function 

for stroke survivors, a paradigm that is detrimental to the injured cortex is not as 

useful and brings doubt into the contralateral cortexʼs role in behavioral recovery 

after stroke. 

Ipsilateral connections from the contralesional side might also play a role 

in functional recovery after unilateral stroke.  Ipsilateral connections do exist and 

can be stimulated during ICMS of the motor cortex.  It has been suggested that 

strengthening of ipsilateral may play a role in recovery of function.  Without 

treatments to increase the effectiveness of corticospinal signal, this affect seems 

to require the influence of the intact homotopic cortical area.  No ipsilateral 
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movements were found in rats after deactivation of the homotypic motor cortex or 

contralateral pyramid laceration (Brus-Ramer M et al. 2009).  Reliance on an 

intact contralateral side may limit any models role in the recovery process. 

 

Use of Laser Capture Microdissection 

The extraction of RNA from specific cells in the brain for analysis is 

difficult.  Digestion of neonatal rat brain has been described, followed by flow 

cytometry to separate pre-labeled cells.  Although RNA can be isolated 

successfully after flow cytometry, the adult rat brain is not conducive to current 

digestion protocols (Barrett MT et al. 2002).  Therefore, LCM was chosen as the 

best method of neuron extraction. 

 

Significance of Results 

 

Anatomical Reorganization 

Some lesion models that involve recovery of function do not include 

physiological reorganization.  In one study, contusion, ablation and undercut 

lesions involving the hind limb motor cortex, did not produce reorganization of 

motor map representation (Boyeson MG et al. 1991).  The rats receiving the 

ablation recovered function (Boyeson MG et al. 1991), even though ablation 

injury has not instigated anatomical reorganization in same cortex that will 

anatomically reorganize if given ischemic injury (Carmichael ST and MF 
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Chesselet 2002).  Such examples represent the main argument against the 

relationship between recovery of function and reorganization.  If recovery can 

occur without anatomical or physiological reorganization, there may be some 

other location or mechanism to underlie recovery in the rat.   

Though this is a consideration, the current studies (Ch. 3 in specific) show 

evidence of reorganization in a region, which is important for recovery of function. 

RFA was shown to increase connectivity to IN, 28 days post-infarct.  A similar 

model in rats produced a lesion in the primary motor cortex, allowed for recovery, 

and then produced a lesion in the RFA.  The recovered function was destroyed 

with RFA destruction (Conner JM et al. 2005), providing evidence for the 

importance of the RFA in recovery after lesion.  Taken together with the current 

studies, which provide evidence of anatomical change to an uninjured regionʼs 

connectivity patterns and genetic expression changes occurring during a critical 

time point involving genes (Ch. 4) likely supportive of said anatomical 

reorganization, and the question is not a foregone conclusion.   

 

Lesion Size Dependence of Physiological Reorganization  

A possible size limitation exists, with larger cortical lesions or spinal cord 

hemisection (effectively disconnecting hemispheres from spinal cord) leading to 

more involvement of the uninjured hemisphere.  After hemisection in rat, 

projections from the intact hemisphere can recross the spinal cord and re-

innervate the denervated side.  It was also found that the intact hemisphere was 
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responsive to ipsilateral hind limb stimulation through voltage sensitive dyes and 

IOS imaging (Ghosh A et al. 2009).  The size dependent nature of lesion specific 

reorganization was also highlighted by work done by the Biernaskie lab 

(Biernaskie J et al. 2005).  Rats were given large and small infarcts and trained 

on a retrieval task.  After 4 weeks of recovery and rehabilitation, the intact 

hemisphere was deactivated with lidocaine injection, and rats were tested on the 

retrieval task again.  Rats with large lesions had significantly impaired 

performance after deactivation of the uninjured hemisphere, but those with small 

lesions were not significantly impaired.  This suggests that with large lesions, the 

uninjured hemisphere is relied upon for regaining function, while during a small 

lesion, the remaining cortex in the injured hemisphere may be sufficient to 

reorganize and regain the lost function.  The current results (Ch 3) seem to be 

consistent with this size dependence, as the cortical lesion produced in the 

current studies are small and the reorganization occurred in the ipsilesional 

cortex.  

 

Generalizability of Results 

 

Some differences in rat and higher mammalsʼ brain function do exist.  The 

striatum is used more often in rat movement.  This non-cortical area can take 

over functions that would be solely cortical in primates. Some studies suggest 

that although the striatum is utilized during stereotyped movements, both 
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excitatory and inhibitory cortical neurons are active during skilled reaching task 

(Hyland B 1998).   Having cortical involvement during movements makes the 

results more generalizable. 

Monosynaptic corticomotor connections are thought to exist in primates, 

but not rat and underlie the primateʼs increased hand dexterity over the rat.  

There is some evidence that minor components of the corticospinal tract make 

monosynaptic connections in rodents (Bareyre FM et al. 2005).  In order to show 

connectivity corticospinal axons and synapses must be labeled in an anterograde 

direction from the cortex.  The cell bodies of motor neurons within the spinal cord 

must be retrogradely labeled from the muscle itself.  If labeled synapses form, 

they can only come from a direct corticomotor connection.  Such direct 

connection was observed in one model using stable expression of yellow 

fluorescent protein (YFP) in mice layer V corticospinal neurons and synaptic 

vesicle (SV2) immunofluorescence and retrograde label from hind limb muscle 

for motor neuron location.  The other nuclei sending projections to the spinal cord 

did not contain YFP+ neurons.  Thus aberrant YFP expression in the red 

nucleus, superior colliculus, and reticular formation could not account for synaptic 

connections.  This adds to the similarities between rodent and primate models 

(Bareyre FM et al. 2005).  In a rat model, ICMS was used to find physiologically 

defined cortical regions and the specific muscle groups activated, then 

anterograde tracer was injected into cortex and retrograde tracer was injected 

into the muscle group. Under light microscopy, contacts were made between 
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corticospinal projections and motor neurons (Liang FY et al. 1991).  Though this 

is minimal evidence for monosynaptic corticospinal connections, it does show 

that some corticomotor connectivity may be present in the rat similar to that found 

in the primate. 

Translating animal research results into primates and possibly one-day 

humans is problematic.  Although amphetamine was mostly successful in 

improvement of function of rat and cat, the human trials were not as effective 

(Barbay S and RJ Nudo 2009).  On the other hand, parietal cortex lesions in the 

rat produce similar deficits as human and non-human primate lesions of the 

parietal cortex, namely visual-spatial and attentional deficits (DiMattia BV and RP 

Kesner 1988).  The frontal pole has a role in maintaining attention in the rat and 

bilateral frontoparietal area lesions create deficits in reaction time to visual cue 

for food reward (Baunez C et al. 1998).  In human children stroke survivors 

during the subacute phase (5-30 days) and in rat pups 1 week after ischemia, X-

linked inhibitor of apoptosis protein (XIAP) is increased and may be 

neuroprotective (Askalan R et al. 2009).  These examples show that at least 

some brain regions and processes have good correlation between species.  

Environmental factors may be important in translation.  Plasticity is active 

in nonlesioned animals, and this has implications for animal models of stroke.  

Human stroke survivors invariably experience an enriched environment 

compared to the Spartan accommodations of a singly housed animal, therefore 
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animal studies would seem more translational if the manipulation of interest was 

performed against a backdrop of enriched environments (Xerri C et al. 1996).  

Different locations of stroke may make translation more difficult.  Although 

specific location of stroke is less studied in human research as location is 

random in survivors, some evidence shows the brain reacts differently to different 

stroke locations. Activation patterns determined by fMRI during elbow flexion 

were different between survivors of sensorimotor cortex plus subcortical lesions 

and subcortical lesions only (Luft AR et al. 2004).  The subcortical survivors 

activated areas more similar to normal activation patterns (contralateral motor, 

ipsilateral cerebellum, bilateral mesial (MSA, cingulate) and perisylvian), but the 

cortical survivors activated much different areas (ipsilateral postcentral mesial 

and peri-infarct.)  This suggests the brain is employing different strategies for 

recovery depending on location of lesion despite similar behavior deficits. 

 

The Future of Stroke Research: Unanswered Questions 

   

What are the factors that direct neural sprouting after injury? 

 The relationship of exogenous guidance cues to in vivo sprouting after 

injury is still an open question.  Semaphorins act as both attractive and repellant 

cues for axon guidance during development.  Embryonic neurons had binding 

sites for neuropilin-1 and neuropilin-2 (semaphorin receptor components) during 

periods of development when corticofugal projections are forming (Bagnard D et 
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al. 1998).  Neurotrophin 3 was overexpressed in specific areas of the brain stem, 

and after spinal cord injury the in vivo gradient not only led to regenerating axons 

extending into the lesion site and past the lesion site, but it also led to 

regenerating axons re-innervating both a physiologically appropriate (nucleus 

gracilis) site, as well as researcher designated site (reticular formation).  Although 

synapses were not confirmed to be functional, the axons formed morphologically 

correct axodendritic synapses (Alto LT et al. 2009).  In this case, the guidance 

cue was overexpressed by experimentation, but it is an effective example of the 

important role endogenous guidance cues may be playing after injury.  More 

studies involving guidance cues would be warranted.  

 

Are new connections beneficial? 

There is still the question of exuberant projections.  Cortical neurons, 

primed by the ischemic injury to change gene expression, may send out a 

multitude of projections, which connect at random to a receptive environment.  

Connections forming in such a process could range from beneficial to simply 

unbeneficial to detrimental to the organism.  The evidence presented in Ch. 3 

suggests a more focused process, but more study is necessary.    

 

What could the far-off future hold? 

Successful therapeutic interventions for stroke have been few in number 

and wrought with problems.  The advent of tissue plasminogen activator (tPA) 
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treatment was amazingly affective, but has been restricted severely by a tight 

treatment period after the stroke.  This “clot-buster” reduces ischemia and 

necrosis by removing the blockage within the vascular system.  Only a small 

percentage of stroke victims seek treatment within the effective treatment period.  

Though education is increasing regarding the symptoms of stroke and the need 

for quick response to take advantage of this small treatment window, there will 

always be those that do not receive the treatment.  The 15% of strokes yearly 

that are hemorrhagic are not candidates for tPA and some comorbidities are 

contraindicated (Roger VL et al. 2011).  Hence, there will always be a need for 

studies of the brainʼs response to ischemia.  Studies showing increased 

anatomical reorganization leads to increased recovery of function are the most 

exciting (Zai L et al. 2009).   Future studies should be geared to confirm the 

beneficial nature of reorganization.  If reorganization is proven beneficial, work 

could be done to discover the best way to guide reorganization, and understand 

which brain regions are the most important for recovery after lesion of specific 

cortical areas.  In the far-off future, it may be a possibility to guide reorganization 

in vivo to the most advantageous regions in order to maximize any functional 

recovery needed.   
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