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Abstract 

Mammalian reproduction is highly dependent on the delicate balance of signals within the 

hypothalamic-pituitary-gonadal (HPG) axis that maintains proper endocrine environment. One of 

the key signals is the pituitary glycoprotein follicle-stimulating hormone (FSH) which is critical 

for gonadal development and fertility. FSH acts via FSHR, a G protein-coupled receptor present 

on a few distinct cell types, prominently on the Sertoli cells of the testis and granulosa cells of 

the ovary  Prior studies have identified several key regulatory elements required for Fshr 

transcription but a clear understanding of what controls its limited cell specific expression 

remains elusive. Comparative genomics identified a number of evolutionary conserved regions 

(ECR) distal to the proximal promoter, indicating these regions might harbor regulatory 

elements. One such distal regulatory element known to play a role in transcriptional regulation is 

the “multivalent” protein CCCTC-binding factor (CTCF). Computational analysis of ECRs 

identified multiple CTCF binding sites in the intergenic regions of the Fshr locus and depletion 

of CTCF in rat granulosa cells led to a two-fold increase in Fshr mRNA. These data indicate that 

CTCF either by itself or in conjunction with other protein complexes might play a role in 

transcriptional regulation of the Fshr gene. 

Another important component of the HPG axis is the transcription factor, Steroidogenic factor-1 

(SF-1) transcribed from the Nr5a1 gene (also known as Ftz-F1 or Ad4bp) which plays a pivotal 

role in adrenal and gonadal development and regulates genes at all levels of the axis. 

Comparative genomics identified two conserved sequences associated with Ftz-F1. One was 

found to encode a long non-coding RNA and the other a regulatory element important for SF-1 

expression in the pituitary. A long non-coding RNA named Fast or Ftz-F1 associated transcript 

was found transcribed in the opposite direction to SF-1, co-expressed, and co-regulated with SF-
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1 and hormonally regulated. Knockdown and over-expression of the Fast transcript in MA-10, 

mouse Leydig cell line, did not alter the transcription or translation of SF-1. Long non-coding 

RNA have been focus of intense research and have been shown to play diverse role in various 

physiological and pathological processes. Considering their potential for transcriptional 

regulation, the identified long non-coding RNA, Fast, might play potentially important role in 

endocrine development and homeostasis.  

Comparative sequence analysis identified an evolutionary conserved region, ECR3, 

approximately 4kb away from the transcriptional start site of SF-1. Transient transfection data 

revealed ECR3, upregulated SF-1 transcription in alpha T3 (gonadotrope cell line) and Y-1 

(adrenal) cells, but downregulated SF-1 in MA-10 (Leydig cell line), MSC-1 (Sertoli cell line) 

and primary rat peritubular Myoid and Sertoli cells. This region was found to contain an E-box 

and was bound by upstream stimulatory factors 1 and 2 (USF1 and USF2) and a basic-helix-

loop-helix (bHLH) protein E2A. In particular, co-transfection studies identified Inhibitors of 

DNA binding, Id2 and Id3 to downregulate SF-1 transcription. 

In summary, this dissertation looks at the regulation of Fshr and SF-1 in the HPG axis and 

identifies the importance of distal regulatory sequences and non-coding transcripts and its role in 

gene regulation.  
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The hypothalamus-pituitary-gonad axis and the gonadotropin hormones  

In mammals, fertility depends on precise hormonal regulation of a functional feedback loop that 

involves the hypothalamus, pituitary, and gonads (HPG), responsible for production of gametes 

and hormones, and influences the overall reproduction system. The HPG axis was proposed in 

1930 by Carl R. Moore and Dorothy Rice, who demonstrated that hormones produced in the 

testis and ovary feedback onto the pituitary reduced the production of gonadotropins (Moore and 

Price 1930, Moore and Price 1932). Shortly thereafter, Walter Hohlweg and Karl Junkmann 

deduced that there was an interdependent relationship between the gonads, the central nervous 

system, and the pituitary (Hohlweg and Junkmann 1932, Hohlweg 1975). The central thought 

was that hormones secreted by the gonads, via their effect on the central nervous system; control 

the secretion of gonadotropins from the pituitary, which in turn regulate hormone production in 

the gonads. Geoffrey Harris then demonstrated that the hypothalamus was the main control site, 

by inducing ovulation in rabbits by electric stimulation of either the hypothalamus or the 

pituitary, thus identifying the components of the HPG axis (Harris 1937).  

The intricate relationship starts with the pulsatile secretion of the hypothalamic gonadotropin-

releasing hormone (GnRH), leading to the secretion of bioactive gonadotropins, Follicle 

stimulating hormone (FSH) and luteinizing hormone (LH), which travel through the blood 

stream and act on specific cell surface receptors on the gonads, leading to hormone production.  

A complex feedback loop regulates the hormone levels, which is necessary to initiate and 

support gametogenesis, steriodogenesis, and ovulation. LH and FSH are integral parts of the 

neural and endocrine interchange between the hypothalamus, pituitary, and gonads that controls  
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Figure 1: GnRH secreted from the hypothalamic neurons feeds into the anterior pituitary, 
where it binds its receptor GnRHR, leading to synthesis and secretion of gonadotropin 
hormones, LH and FSH. These gonadotropin hormones make their way through the blood to 
the cell surface receptors present on the gonadal cells. FSH binds to its receptor, FSHR present 
on the Sertoli cells of the testis and the granulosa cells in the ovary. LH binds to its receptor, 
LHCGR, on the Leydig cells of the testis and in granulosa, theca, luteal, and interstitial cells of 
the ovary. This leads to production of steroids and inhibin which feedback negatively on the 
hypothalamus and the pituitary leading to decrease in gonadotrope production. 
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steroid hormone synthesis and gamete production (reviewed in (Young 1995, Achermann and 

Jameson 1999, Plant 2008)).   At the top of the network is GnRH, which, once released from the 

hypothalamus, binds specific receptors on pituitary gonadotrophs and induces the synthesis and 

secretion of LH and the FSH. These dimeric proteins formed by the heterodimerization of a 

common alpha subunit (α-glycoprotein hormone subunit) with the specific beta subunit (FSHβ or 

LHβ) confer biological specificity to the hormones. Once in circulation, FSH and LH, bind to 

their respective receptors on the gonad cells leading to regulation and expression of 

steroidogenic genes and production of steroid hormones (Figure 1). Expression of a number of 

steroid hormones in the HPG axis is tightly regulated in a temporal and development manner.  

GnRH, GnRHr, and gonadotropins 

Gonadotropin releasing hormone is an evolutionary conserved decapeptide that forms a bridge 

between the brain and the peripheral reproductive system. Since the first isolation of GnRH, in 

1971, from pig and sheep brains, the GnRH family now encompasses 24 molecular isoforms 

identified in vertebrates and invertebrates (Amoss, Burgus et al. 1971, Matsuo, Baba et al. 1971, 

Gorbman and Sower 2003).  In vertebrates, there are two major isoforms of GnRH; the 

hypothalamic GnRH1, which acts on the pituitary and extra-hypothalamic GnRH2, which has no 

known functional involvement to gonadotropin release (Gorbman and Sower 2003).  Once 

released from the hypothalamus, GnRH1 travels via the median eminence to the pituitary where 

it binds the GnRH receptor, a member of the rhodopsin family of G protein-coupled receptor 

expressed on the pituitary gonadotropes (Tsutsumi, Zhou et al. 1992, Stojilkovic, Reinhart et al. 

1994, Kaiser, Conn et al. 1997, Sealfon, Weinstein et al. 1997). GnRH binds to its receptor 

causing activation of G-proteins, including Gq and G11, subsequent activation of phospholipase 

Cβ, release of calcium, and increased activity of protein kinase C and calcium/calmodium kinase 
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(Stanislaus, Janovick et al. 1997, Liu, Austin et al. 2002, Haisenleder, Ferris et al. 2003).   

Pulsatile release of GnRH stimulates the expression of mitogen-activated protein kinase (MAPK) 

signaling cascades (MAPK1/3 [extracellular signal-regulated kinase, or ERK], MAPK8/9 [c-Jun 

N-terminal kinase, or JNK], and MAPK14 [p38]). While the role of p38 in transcriptional 

regulation of LHβ has been controversial, ERK1/2 and JNK are involved in the induction of 

early growth response-1 (Egr-1), a factor known to regulate the LHβ promoter (Yokoi, Ohmichi 

et al. 2000, Harris, Bonfil et al. 2002, Burger, Haisenleder et al. 2004, Yamada, Yamamoto et al. 

2004). Female Egr-1 knockout mice were infertile and lacked expression of LHβ (Lee, Sadovsky 

et al. 1996, Topilko, Schneider-Maunoury et al. 1998). The proximal promoter region of GnRH 

contains binding site for Egr1, and transcription factors SF-1 and Ptx1. GnRH induces gene 

expression of Egr-1, leading to a synergistic interaction of Egr-1 with transcription factors, SF-1 

and Ptx1 inducing LHβ transcription (Dorn, Ou et al. 1999, Tremblay and Drouin 1999).  

GnRH also regulates FSH levels, as GnRH null mice reported 60% reduction in serum FSH 

levels when compared to normal mice (Mason, Hayflick et al. 1986). Furthermore, 

administration of a single pulse of GnRH led to a fourfold increase in FSHβ gene expression 

indicating that GnRH is an important regulator of the FSHβ gene (Burger, Dalkin et al. 2001). 

GnRH mediates FSHβ gene expression via the PKC and MAPK signaling pathways (Vasilyev, 

Lawson et al. 2002, Bonfil, Chuderland et al. 2004, Coss, Jacobs et al. 2004, Liu, Ruiz et al. 

2005). GnRH also regulates FSHβ gene through the induction of activator protein-1 (AP-1), a 

heterodimeric transcription factor that consists of a variety of dimers of Fos and Jun isoforms 

(Wurmbach, Yuen et al. 2001, Kakar, Winters et al. 2003). Mice deficient of c-Fos had smaller 

ovaries with atretic follicles, similar to FSHβ knockout mice (Johnson, Spiegelman et al. 1992, 

Kumar, Wang et al. 1997). AP-1 also interacts with factors NF-Y and USF-1 to stimulate FSHβ 
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in response to GnRH (Coss, Jacobs et al. 2004, Ciccone, Lacza et al. 2008). Transcription factor 

cAMP response element-binding protein (CREB) binds to the CRE/AP-1 site in response to 

GnRH regulation of rat FSHβ (Ciccone, Lacza et al. 2008). CREB deficient mice did not have 

reduced FSH levels, indicating that either cAMP-responsive element modulator (de Kok, Merkx 

et al.) or activating transcription factor (ATF) family members may compensate for the 

deficiency or CREB activity on FSHβ activity is a species-specific phenomenon (Hummler, Cole 

et al. 1994, Ciccone, Lacza et al. 2008).  

In this dissertation, I will explore the transcriptional regulation of two critical genes involved in 

the HPG axis. In Part I, I will discuss distal regulatory elements and the role of CCCTC-binding 

factor (CTCF) in the regulation of the Follicle Stimulating hormone receptor (Fshr) gene. In Part 

II, I will investigate distal regulatory regions and SF-1 transcription and define a long non-

coding RNA transcribed at the SF-1 locus. These distinct regulatory elements will be discussed 

subsequently under “Transcriptional regulatory elements”. 

Transcriptional regulatory elements 

Various aspects of human development hinge on proper spatial, temporal, and tissue-specific 

control of gene expression. As we mark 60 years since Watson and Crick proposed the double 

helical structure of DNA, questions remain on how thousands of genes are orchestrated in a 

controlled and precise manner (Watson and Crick 1953). Britten and Davidson hypothesized that 

discrete regulatory sequence not only played a role in regulating gene expression, but also played 

a major role in governing biological complexity in eukaryotes (Britten and Davidson 1969). This 

increased level of complexity is understandable with the fruition of the human genome project 

and identification of ~20,000-25,000 genes (Human Genome Sequencing 2004). It has become 
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abundantly clear that there are functional regions that extend from the promoters into the vast 

space of the human genome. Sequencing of human and other vertebrate genomes, coupled with 

high throughput in-vitro and in-vivo functional screens have facilitated the comprehensive 

identification of a number of regulatory sequences and helped compile the regulatory 

architecture required to establish the spatial and temporal expression of genes. Gene expression 

is regulated by the coordinated expression of distal regulatory elements (Figure 2) which can be 

crudely classified into a. Core and Proximal promoter, b. Enhancers, c. Silencers, d. Insulators, e. 

Locus Control regions, and f. non-coding RNA.  
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Figure 2: Schematic of classical gene regulator elements. The promoter is composed of a 
core promoter and proximal promoter elements and mediates basal transcriptional control. 
Upstream regulatory elements, enhancers and locus control regions, mediate positive 
transcription while silencers negatively affect transcription. Insulators, play a complex role 
by acting as enhancer-blockers and barrier insulators. These regulatory elements are thought 
to carry out their function by employing what is known as “DNA looping”. Modified 
according to (Maston, Evans et al. 2006) . 
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a. Core and proximal promoters: The core promoter can be defined as the minimal stretch of 

DNA that serves as the docking site for the basic transcription machinery and encompasses the 

site and direction of the transcription start site (Smale and Kadonaga 2003). Accurate and 

efficient transcription of the core promoter requires RNA polymerase II (RNAP II) along with 

“basal” transcription factors that include transcription factor (TF) IIA, TFIIB, TFIID, TFIIE, 

TFIIF, and TFIIH.  Assembly of the preinitiation complex starts with the binding of TFIID 

followed by recruitment of TFIIA and TFIIB. This association leads to the addition of TFIIF 

bound with RNAP II and of further incorporation of TFIIE and TFIIH leading to the completion 

of the preinitiation complex and initiation of transcription. An alternate pathway of the 

preinitiation complex formation is the RNAPII holoenzyme pathway, which comprises of TFIIF, 

TFIIE, TFIIH and other heterogeneous proteins that are involved in chromatin remodeling, DNA 

repair, and mRNA processing.  Irrespective of the manner in which the preinitiation complex is 

formed, TFIID is the first TF that binds to the core promoter element and has emerged as the 

central component of the transcription apparatus (Baumann, Pontiller et al. 2010).  

In addition to TATA box, core promoters can consist of Initiator element (Inr), Downstream 

Promoter Element (DPE), Downstream Core Element (DCE), TFIIB-Recognition Element 

(BRE), and Motif Ten Element (MTE) (Maston, Evans et al. 2006).  A statistical analysis of 

human core promoters revealed that Inr was the most common core promoter element, followed 

by DPE and BRE, and surprisingly, TATA being present in the lowest levels. Furthermore, a 

quarter of the analyzed promoters had neither TATA, Inr, DPE or BRE elements indicating 

presence of novel promoters (Gershenzon and Ioshikhes 2005). In line with this, recent reports 

have now identified a new core element labeled as ATG deserts (Lee, Howcroft et al. 2005). This 
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diverse content of the core promoter possibly play a functional role by contributing to gene 

specific regulation.  

Proximal promoter can be defined as the region immediately upstream of the core promoter and 

contributes to its basal activity by the presence of multiple binding sites for activators. These 

transcriptional regulatory elements act synergistically and mutation of any of these sites leads to 

decreased transcriptional activity (Maston, Evans et al. 2006). While the core and proximal 

promoter comprise the very basic level of transcriptional regulation, elements that are more distal 

have now been identified to play a role in this exceeding intricate ballet of gene expression and 

include enhancers, silencers, insulators, locus control regions and non-coding RNA’s which are 

discussed in the following sections.   

b. Enhancers: Enhancers are typically small segments of DNA, typically few hundred base pairs 

in length, that can reside either in the intergenic regions, introns, or exons and can be located ten 

to hundred kilobases away from their target genes and operate as transcription factor binding 

sites, which work cooperatively to enhance transcription. They have the inherent capacity to act 

in a modular manner such that a single promoter can be acted upon by distinct enhancer elements 

in a spatial and temporal specific manner (Maston, Evans et al. 2006, Spitz and Furlong 2012). 

How do these enhancers carry out their function in a spatio-temporal manner? Analysis of 

transcription factor occupancy at different stages of development in both Drosophila and 

mammals have identified that precise timing of DNA occupancy is what controls the temporal 

nature of gene expression driving development (Sandmann, Jensen et al. 2006, Jakobsen, Braun 

et al. 2007, Cao, Yao et al. 2010, Lin, Jhunjhunwala et al. 2010). Temporal regulation was 

thought to correspond to relative affinity or number of transcription factor binding sites, affecting 

change in occupancy relative to concentration of transcription factor over time (Gaudet and 
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Mango 2002, Sandmann, Jensen et al. 2006). However, evidence now indicate that enhancers 

with context-dependant occupancy with differential motif enrichment are co-occupied with 

different transcription factors in a time-dependant manner and this co-occupancy is needed for 

recruitment of additional transcriptional factors (Zeitlinger, Simon et al. 2003, Jakobsen, Braun 

et al. 2007, Sandmann, Girardot et al. 2007, Lin, Jhunjhunwala et al. 2010, Wilczynski and 

Furlong 2010, Mullen, Orlando et al. 2011, Trompouki, Bowman et al. 2011, Yanez-Cuna, Dinh 

et al. 2012).  

Based on the relative order, orientation, and spacing of transcription factors, three models have 

been proposed to explain enhancer activity. In the enhanceosome model, as exemplified by IFN-

β and TCRα, recruited transcription factors form an ordered and specific position relative to each 

other, such that only one arrangement can lead to gene expression (Thanos and Maniatis 1995, 

Spicuglia, Payet et al. 2000, Merika and Thanos 2001). While this ordered positioning is thought 

to be essential for rapid response, most developmental enhancers are more flexible, with a subset 

of transcription factors binding co-operatively (Senger, Armstrong et al. 2004). This flexible 

positioning known as the “billboard model” in which there are fewer constraints on relative 

binding of transcription factors but requires a subset of factors to be active, such as the stripe 2 

enhancer of Drosophila even-skipped  (Arnosti, Barolo et al. 1996, Ludwig, Patel et al. 1998, 

Kulkarni and Arnosti 2003, Arnosti and Kulkarni 2005, Hare, Peterson et al. 2008). The third 

model of regulation, known as the “transcription factor collective”, suggests that the same set of 

transcription factors can bind to multiple enhancers and do so in a cooperative manner. In a 

recent example when one transcription factor was removed, all other transcription factors failed 

to activate the enhancer in vitro indicating cooperative binding occurs in vivo, with all or a sub-
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set of transcription factor binding to the DNA and other transcription factors recruited via 

protein-protein interaction (Junion, Spivakov et al. 2012).  

Since enhancers often reside at significant distances, either upstream or downstream of their 

target promoters, mechanisms must exist for them to communicate over large genomic distances. 

Current data indicates that chromatin “looping” permits the interaction between the enhancer and 

the core promoter (Blackwood and Kadonaga 1998, Bulger and Groudine 1999, de Laat, Klous 

et al. 2008). An alternative model supports a diffusion or “tracking” mechanism, in which the 

enhancer scans along the chromatin until it arrives at the core promoter (Blackwood and 

Kadonaga 1998). With the advent of techniques such as chromosome conformation capture (3C), 

in which the interactions between two genomic regions are determined by cross-linking, 

restriction enzyme digestion, followed by intra molecular ligation and PCR analysis of the 

resulted ligated products, data has now accumulated in favor of the looping model (Cullen, 

Kladde et al. 1993, Dekker, Rippe et al. 2002, Miele and Dekker 2009).  

c. Silencers: Silencers are sequence specific elements that silence or repress transcriptional 

activity of a gene and act typically in a distance and orientation independent manner (Brand, 

Breeden et al. 1985, Ogbourne and Antalis 1998). Silencers can be situated at the proximal 

promoter, as part of distal elements, or independently far away from its target gene in the intron 

or the 3’-untranlsated region (Maston, Evans et al. 2006).  

Silencers repress promoter activity by binding of negative transcription factors called repressors 

and recruitment of negative cofactors, called corepressors (Privalsky 2004). Based on distance of 

action, two classes of silencer elements have been identified in Drosophila, short-range silencers 

that reside within ~100 bp of the target gene and repress its transcription, and long-range 
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silencers, which can affect multiple enhancers or promoters over a span of few kilobases. The 

current understanding is that this distance dependant repression is due to the difference in 

recruitment of different co-factors (Kulkarni and Arnosti 2005).  

These silencer elements repress gene transcription by blocking the binding of a nearby activator 

or by competing for activator binding sites (Li, He et al. 2004, Harris, Mostecki et al. 2005). 

Other models that have been proposed to explain the repressor activity suggests that they may 

establish a repressive chromatin structure by recruiting histone modifications or chromatin 

stabilizing factors or by inhibiting assembly of the preinitiation complex (Srinivasan and 

Atchison 2004, Chen and Widom 2005).   

  d. Insulators: Insulators, also known as boundary elements are a family of DNA sequence 

elements typically ~0.5-3kb in length, that protect genes from transcriptional activity of its 

neighboring genes, in a position-dependent and orientation independent manner (Maston, Evans 

et al. 2006). Originally described in Drosophila, insulators have now been found in most 

eukaryotes, from yeast to human (Phillips and Corces 2009). Insulators that disrupt 

communication between enhancer and promoter are known as enhancer-blocking insulators and 

those that protect against heterochromatin silencing are known as barrier insulators (Sun and 

Elgin 1999, Valenzuela and Kamakaka 2006).   

The first vertebrate insulator identified was a Dnase1 hypersensitive site (HS), 5’ HS4, sequence 

of the chicken β-globin locus. The β-globin locus was an ideal starting ground due to the 

extensive work on local and distant regulatory elements and the fact that chicken erythrocyte 

nuclei were relatively free of proteases and nucleases. The folate receptor gene located upstream 

is separated from the β-globin locus by a 16-kb long region of condensed chromatin that bear 
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silenced heterochromatin marks of H3K9 and K27 methylation (Litt, Simpson et al. 2001, Litt, 

Simpson et al. 2001). This sudden transition of heterochromatin to euchromatin at the active β-

globin locus suggested the presence of a boundary sequence that separated the domains. Dnase 1 

hypersensitivity and H3 lysine 9 acetylation histone modification identified the HS4 insulator 

element (Litt, Simpson et al. 2001, Litt, Simpson et al. 2001, Ma, Heath et al. 2011). Further 

work identified a core ~250bp sequence of the HS4 insulator element with properties of both 

enhancer blocking and barrier activity (Chung, Whiteley et al. 1993, Pikaart, Recillas-Targa et al. 

1998, Bell, West et al. 1999, Recillas-Targa, Pikaart et al. 2002). The transcription factor 

mediating this activity was identified as CCCTC-binding factor (CTCF), an eleven-zinc finger 

protein, both necessary and sufficient for the enhancer-blocking activity of the 5’ HS4 (Bell, 

West et al. 1999).  Another CTCF binding site was identified in the 3’ end of the chicken β-

globin locus (Bell, West et al. 1999). In parallel, CTCF binding sites were subsequently 

identified within the imprinted control region (ICR) of the mammalian H19/Igf2 locus (Bell and 

Felsenfeld 2000, Hark, Schoenherr et al. 2000, Szabo, Tang et al. 2000). To date, CTCF has been 

the only protein identified to show enhancer-blocking activity in vertebrates. 

 CTCF is a multivalent factor, originally identified, owing to its ability to bind to a variety of 

sequences as well as co regulatory proteins using multiple zinc fingers (Filippova, Fagerlie et al. 

1996). This unique structural feature suggested that CTCF plays a varied role in genome 

regulation. Global knockout of CTCF led to embryonic lethality prior to implantation (Splinter, 

Heath et al. 2006, Heath, Ribeiro de Almeida et al. 2008). Depletion of CTCF in oocytes caused 

transcriptional misregulation of hundreds of genes (Wan, Pan et al. 2008). Taken together this 

data suggests that CTCF plays an important and varied role in gene regulation that include  
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traditional enhancer blocking, promoter activation/repression, hormone-responsive silencing, 

long-range chromatin interactions and genomic imprinting (Phillips and Corces 2009).  

The H19/Igf2, one of the first identified imprinted loci, is a classical example wherein genetic 

information is stored in two copies, one from each parent, with expression of one parental copy 

while silencing the other (Bartolomei, Zemel et al. 1991, DeChiara, Robertson et al. 1991, 

Ferguson-Smith, Cattanach et al. 1991). Gene knockout studies have identified that Igf2 is 

crucial for placental and fetal growth, whereas the H19 gene encodes for a non-coding RNA, and 

retards fetal growth. The same enhancer activates H19 on the maternal allele and Igf2 on the 

paternal allele. In the paternal allele, the ICR region immediately upstream of the H19 gene is 

methylated preventing CTCF binding, abrogating the insulator activity, resulting in the 

functional communication between the Igf2 promoter and enhancer. In the maternal allele, ICR 

is unmethylated, which allows CTCF to bind to the ICR region and prevents the enhancers from 

accessing the Igf2 promoter (Herold, Bartkuhn et al. 2012).  Proper expression of the parental 

allele is crucial, as mutant H19 gene is one of the causes of Beckwith-Wiedemann syndrome 

(BWS); a condition associated with fetal overgrowth and increased risk of tumor formation. 

BWS phenotype has been observed by increased DNA methylation at ICR resulting in biallelic 

Igf2 expression and reduced H19 activity and also in patients with micro-deletions at the CTCF 

binding site at the ICR locus, indicating that loss of CTCF binding at ICR either due to mutations 

or due to DNA methylation causes Igf2 activation and H19 inactivation (Sparago, Cerrato et al. 

2004, Azzi, Rossignol et al. 2009). Conversely, loss of methylation at the paternal ICR, results in 

biallelic expression of the H19 gene and reduced expression of Igf2, is observed in patients 

diagnosed with Silver-Russell syndrome (SRS), a condition characterized by growth retardation 

during fetal and postnatal development (Herold, Bartkuhn et al. 2012).  
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With the use of techniques such as fluorescence in situ hybridization (FISH) and chromosome 

capture conformation (3C), a greater understanding has now emerged on the importance of 

nuclear architecture (Fraser and Bickmore 2007, Miele and Dekker 2009).  For the mouse 

H19/Igf2 locus, silencing of the Igf2 occurs by the formation of a tightly coiled loop by the 

interaction of CTCF bound at the ICR and the upstream differentially methylated region (DMR) 

and a downstream matrix attachment region (MAR), which prevent the interaction between the 

maternal-specific enhancer and the promoter (Yoon, Jeong et al. 2007, Li, Hu et al. 2008).  The 

overlapping distribution patterns of genome-wide analysis of CTCF and cohesin as well as 

functional tests have now identified cohesin to be an important mediator for CTCF dependent 

loop function, with cohesin conferring the linking function and CTCF responsible for the 

sequence-specific binding (Parelho, Hadjur et al. 2008, Wendt, Yoshida et al. 2008, Hadjur, 

Williams et al. 2009, Nativio, Wendt et al. 2009). In fact, the cohesin component SA2 directly 

contacts CTCF, with the ring-forming components recruited by SA2 (Xiao, Wallace et al. 2011). 

Other players involved in the looping and insulation functions of CTCF include RNA helicase 

p68 and the non-coding RNA steroid receptor RNA activator (SRA), which is thought to help 

stabilize the CTCF-cohesin interaction (Yao, Brick et al. 2010).  

e. Locus control regions: Locus control regions (LCR) are groups of regulatory sequences that 

regulate transcriptional programming of either an entire locus or gene cluster. They are 

operationally defined as elements that are able to enhance tissue-specific physiological 

expression of linked genes in a position-independent and copy-number dependent manner(Li, 

Peterson et al. 2002). LCRs are typically composed of multiple regulatory elements such as 

enhancers, silencers, insulators, and matrix attachment regions that are bound by transcription 

factors, which differentially affect gene expression. These collective activities define a LCR and 
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regulate spatio-temporal gene expression (Maston, Evans et al. 2006). Similar to enhancers and 

silencers, LCRs can regulate gene transcription from a distance. While typically located 

upstream, LCRs are reported to be present in introns, downstream of genes and even in introns of 

neighboring genes (Lang, Mamalaki et al. 1991, Aronow, Silbiger et al. 1992, Adlam and Siu 

2003, Lee, Fields et al. 2003).  

The first LCR region to be identified and the best studied to date, is the mammalian β-globin 

gene (Grosveld, van Assendelft et al. 1987). Transgenic mice containing 1.5kb of the 

mammalian β-globin promoter region failed to express β-globin gene to the extent seen in vivo, 

indicating that major regulatory regions required for proper expression were missing (Magram, 

Chada et al. 1985, Townes, Lingrel et al. 1985, Kollias, Wrighton et al. 1986). Further evidence 

from cases of β-thalassemia and later from transgenic mouse studies indicated that a LCR region 

upstream of the promoter was required for proper expression of the β-globin gene in vivo 

(Kioussis, Vanin et al. 1983, Grosveld, van Assendelft et al. 1987, Driscoll, Dobkin et al. 1989) .  

Although a number of models have been proposed to understand how LCRs function over long 

distance, a series of recent studies showed that in the case of the β-globin LCR, DNA looping is 

the primary mechanism employed by LCRs to make long-range physical contacts that lead to 

active chromatin formation and transcription of the β-globin gene (Liu, Austin et al. 2002, 

Tolhuis, Palstra et al. 2002, Bank 2006). The looping mechanism is also currently established for 

the Th2 LCR (Spilianakis, Lalioti et al. 2005).  

f. non-coding RNA: The advent of high throughput assays and next generation sequencing has 

expanded the catalog of functional non-coding RNA. Among the growing classes of functional 

RNA, non-coding RNAs can be classified as short non-coding RNA, which are less than 200 
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base pairs (bps) in length, and the long-non coding RNAs (lncRNA) which are larger than 200 

bps in length (Gibb, Brown et al. 2011).   

Small non-coding RNA are functionally sub-divided into housekeeping non-coding RNA and 

regulatory non-coding RNA(Ponting, Oliver et al. 2009). The housekeeping non-coding RNA 

consists of ribosomal, transfer, small nuclear and small nucleolar RNAs. While a plethora of 

regulatory non-coding RNA have been identified ( see (Esteller 2011) for review), the three main 

classes of small regulatory non-coding RNAs that have been well studied are the small 

interfering RNA (siRNA), micro RNA (miRNA) , and the piwi-interacting RNA (piRNA).  

Small interfering RNA’s are derived from long double stranded RNA (dsRNA) precursors that 

are either endogenous or exogenous in origin (Mello and Conte 2004). Dicer, a ribonuclease III 

enzyme, processes the dsRNA, leading to the formation of a short double stranded intermediate 

RNA. One strand, labeled as the guide strand is loaded onto the multi protein RNA-silencing 

complex (Driscoll, Dobkin et al.), leading to the posttranscriptional repression by 

endonucleolytic  cleavage of the mRNA (McCaffrey, Meuse et al. 2002, Vagin, Klenov et al. 

2004, Siomi, Sato et al. 2011). Small interfering RNA’s are also know to induce transcriptional 

gene silencing by inducing heterochromatin formation (Carthew and Sontheimer 2009). 

micro RNA are a family of endogenous, short, non-coding RNA that consist of 21-25 nucleotides 

that regulate gene expression at the post-transcriptional level (Du and Zamore 2005, Cannell, 

Kong et al. 2008, Suh, Baehner et al. 2010). RNA polymerase II transcribes miRNA into 2-4kb 

long single stranded RNA which are capped and polyadenylated (Bartel 2004, Bartel 2005). 

These primary transcripts called the pri-mRNA form a stem-loop structure with an imperfectly 

paired ~33bp stem, a terminal loop and flanking segment. Drosha, a RNase III enzyme, bound to 
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co-factor DiGeorge Syndrome Critical region 8 (DGCR8) processes the pri-miRNA in the 

nucleus by excising the stem-loop to create the pre-miRNA.  The pre-miRNA is exported to the 

cytoplasm by exportin-5 together with RAN-GTPase. Once exported into the cytoplasm, Dicer 

processes the pre-miRNA, in concert with Tar RNA-binding protein to form the ~22 nucleotide 

mature duplex miRNA (Liu, Fortin et al. 2008, Kim, Hwang do et al. 2009). One strand of the 

miRNA incorporates onto the RISC to function as mature miRNA and guide the RISC to target 

the specific mRNA (Lund and Dahlberg 2006, Chua, Armugam et al. 2009). The miRNA binds 

to the 3’-UTR “seed sequence” of the target mRNA transcript. If perfect or near-perfect base 

pairing occurs between the seed sequence and the miRNA, the mRNA transcript is degraded, 

inhibiting translation (Jackson and Standart 2007). However, multiple partial complementarity 

between miRNA and target mRNA can lead to decreased mRNA and protein levels (Pillai 2005). 

miRNA are also implicated in regulation of gene expression by increasing translation in some 

biological systems (Vasudevan, Tong et al. 2007). Since the discovery of miRNA in 

Caenorhabditis elegans, miRNA have been shown to have diverse expression and act as master 

regulators of a number of fundamental biological progresses, such as proliferation, metabolism, 

aging, and cell death (Pasquinelli and Ruvkun 2002, He and Hannon 2004, Brennecke, Aravin et 

al. 2007, Melton, Judson et al. 2010). In the female reproductive tract, miRNAs have been shown 

to be essential for proper development and function, with loss of Dicer1 resulting in female 

infertility (Nothnick 2012). 

P-element induced wimpy testis (Piwi)-interacting RNA (piRNA), discovered in 2006, are small 

non-coding RNAs, ~26-30 nucleotides in length. PiRNAs were isolated by sequencing the small 

non-coding RNAs pulled down by immunoprecipitation of the Piwi protein in mammalian testes 

(Aravin, Gaidatzis et al. 2006, Girard, Sachidanandam et al. 2006, Grivna, Pyhtila et al. 2006, 
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Lau, Seto et al. 2006).   Unlike the miRNA and the siRNA, these piRNAs are generated in a 

RnaseIII independent manner (Houwing, Kamminga et al. 2007). They also differ from miRNA 

and siRNA in origin, length, and structure. piRNAs are generated from nascent transcripts that 

arise from the piRNA clusters, intergenic repetitive elements in the genome, which are loaded 

onto the PIWI proteins. On maturation, the 3’ ends of the piRNAs are 2′-O-methylated by 

Hen1/Pime, leading to the stability of the piRNAs in vivo (Horwich, Li et al. 2007, Billi, Alessi 

et al. 2012). The ping-pong pathway amplifies primary piRNAs, wherein the antisense piRNA 

are associated with the Piwi subfamily of Argonaute proteins including Mili and Miwi, leading 

to the production of sense piRNAs, which then associate with Argonaute protein, Ago 3, and 

target anti-sense transcripts (Figure 2) (Siomi, Sato et al. 2011).  

While the main role of piRNAs been associated with curbing the silencing of transposable 

elements in the germ cell line, recent studies have also implicated them in regulating memory 

storage in the brain (Siomi, Sato et al. 2011, Rajasethupathy, Antonov et al. 2012). In Drosophila 

melanogaster, piRNAs are transmitted maternally and are able to mount an effective silencing 

response in the progeny (Brennecke, Malone et al. 2008).  

Noncoding RNAs that are greater than 200 nucleotides in length and do not have any coding 

potential are defined as long noncoding RNA (lncRNA). The completion of the Human Genome 

project and advancements in RNA sequencing, microarray technology, and cDNA cloning led to 

the conclusion that the number of genes coding for RNA were far greater than protein-coding 

genes. It was now clear that a vast majority of the genome was transcribed, however, the 

function of these noncoding RNAs was elusive, leading to the belief that these were products of 

translational noise (Shoemaker, Schadt et al. 2001, Birney, Stamatoyannopoulos et al. 2007, 

Ponjavic, Ponting et al. 2007, Struhl 2007, Clark, Amaral et al. 2011). Furthermore, RNA 
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polymerase II is known to initiate transcription spuriously in more than 90% of the cases, and 

transcription events can “spill over” or ripple to the neighboring genes leading to leaky 

expression (Ebisuya, Yamamoto et al. 2008). 

Identifying functional lncRNA from the pervasive transcription of the genome is a daunting task 

and tantamount to finding a needle in a haystack. The massive parallel sequencing and 

understanding of different chromatin modifications identified clear signatures of polymerase II 

binding, namely Histone H3 lysine 4 trimethylation (H3K4me3) at the gene promoters, and 

histone H3 lysine 36 trimethylation (K4-K36 chromatin domain) at the transcribed region. 

Coupled with conserved patterns, coding patterns, and anatomical properties, great progress is 

now being made in identifying lncRNA (Mikkelsen, Ku et al. 2007, Marson, Levine et al. 2008, 

Guttman, Amit et al. 2009, Khalil, Guttman et al. 2009).  

Based on their geographical location in the genome, relative to nearby protein-coding gene 

lncRNA can be grouped in: a. stand-alone lncRNA: b. natural antisense transcripts, c. 

pseudogenes, d. long intronic ncRNA and e. divergent transcripts, promoter-associated and 

enhancer RNA (Figure 3) (Kung, Colognori et al. 2013). 

a. Stand-alone lncRNA: Also referred to as large intergenic noncoding RNAs (lincRNA), are 

located in regions that do not overlap protein-coding genes (Guttman, Amit et al. 2009, Cabili, 

Trapnell et al. 2011, Ulitsky, Shkumatava et al. 2011). Largely identified through active 

chromatin signatures of H3Kme3 at the promoter and H3K36me3 along the transcribed region, 

these noncoding RNA are usually 1kb in length, are transcribed by RNA pol II, are 

polyadenylated, and spliced. Examples of this noncoding RNA are Xist, H19, HOTAIR, and 
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MALAT1 (Brannan, Dees et al. 1990, Brockdorff, Ashworth et al. 1992, Brown, Hendrich et al. 

1992, Ji, Diederichs et al. 2003, Rinn, Kertesz et al. 2007). 

b. Natural antisense transcript: As the name suggests, these transcripts occur opposite the sense 

DNA strand and are enriched at either the 5’ promoter or the 3’ terminator end of the sense 

transcript. Rarely are the lncRNA belonging to this class spliced or polyadenylated when 

compared to the stand-alone lncRNA (Kung, Colognori et al. 2013). Well-documented 

transcripts of this class are Kncq1ot1 and Air (Lyle, Watanabe et al. 2000, Kanduri, Thakur et al. 

2006).  

c. Pseudogenes: The term “pseudogene” coined in 1977, refers to genes that have lost their 

ability to code for functional proteins due to nonsense, frameshift and other mutations (Jacq, 

Miller et al. 1977, Pink, Wicks et al. 2011).  Estimated to be numerically equal to protein-coding 

genes, these pseudogenes are by majority, transcriptionally silent. However, there are 

pseudogenes that are transcriptionally active and exhibit high levels of sequence conservation. 

These expressed pseudogenes maybe on their way to be completely silenced or are possibly 

resurrected for a functional purpose (Pink, Wicks et al. 2011). Long noncoding RNA produced 

from pseudogenes have added another interesting layer for gene  
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regulation. A recent example is the PTENpg1, a PTEN pseudogene that regulates PTEN by 

encoding for three different lncRNA; two functional antisense (as) RNA and one sense 

PTENpg1. The sense PTENpg1 regulates PTEN by acting as a sponge for several miRNA that 

target PTEN. The PTENpg1 asRNAα is a trans acting transcript that binds to the promoter of 

PTEN, and inhibits transcription by recruiting epigenetic repressor complexes. The PTENpg1 as 

RNAβ , stabilizes the sense PTENpg1 by binding to the 5’end (Johnsson, Ackley et al. 2013).   

d. Long Intronic RNA:  RNAs with regulatory roles have long been known to reside in intronic 

regions, indicating that intronic regions maybe more stable than previously thought. While a 

substantial fraction of the long intronic RNA correspond to the antisense transcript, a recent 

survey revealed noncoding RNA to have a strong preference to be associated with the 

transcribing sense strand (Nakaya, Amaral et al. 2007, Valen, Preker et al. 2011). Many of these 

are implicated in a myriad of biological functions and have been observed to respond to stimuli 

or misregulated in cancer (Guil, Soler et al. 2012). An example of long intronic RNA is 

COLDAIR, transcribed from the sense strand, it has been implicated in plant vernalization by 

recruiting PRC2 complex and inducing epigenetic silencing (Heo and Sung 2011).  

 e. divergent transcripts, promoter-associated and enhancer RNA: As a result of Pol II pausing a 

number of transcripts, such as transcription start site-associated (TSSa-) RNA, upstream 

antisense (ua) RNA or promoter upstream transcripts (PROMPTS), are formed at the 

transcription start site, both in the sense and anti-sense direction (Buratowski 2008, Core and Lis 

2008). These transcripts are usually capped, polyadenylated, low in abundance, and degraded 

rapidly by exosomes. The current thought is that the act of transcription of these heterogeneous 

transcripts helps maintain the open chromatin status.  
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Another class of regulatory long noncoding RNA is the short, bidirectional transcripts formed at 

enhancer regions and hence called enhancer (e) RNA. These transcripts are postulated to 

function by activating the promoter or by keeping the chromatin in an open state, or by recruiting 

and interacting with enhancer-associated proteins (Orom, Derrien et al. 2010).  

The ubiquitous expression of lncRNA indicates that these transcripts engage in diverse 

mechanisms to regulate gene expression. Over the past 15 years, multiple studies have shown 

that lncRNA are regulated during development, epigenetic regulation, imprinting, and are also 

associated with human disease (Kung, Colognori et al. 2013). Broadly, lncRNA can be classified 

according to their mode of action into four archetypes, a. signals, b. decoys, c. scaffold, and d. 

guide (Wang and Chang 2011). While this classification will help in demarcating their mode of 

regulation, an lncRNA may utilize multiple modes to bring about their function indicating that 

these archetypes are not mutually exclusive.  

a. Signals: LncRNA can act as signaling molecules as they show cell-specific expression and 

respond to various stimuli. While some lncRNA belonging to this category have regulatory 

function, even as by-products, the act of transcription of lncRNA in itself indicates that the 

chromatin is in an active state. The advantage of using RNA as a medium is that the cell can skip 

protein translation and as a result, the regulatory functions can be performed quickly (Wang and 

Chang 2011). One example where lncRNA can act as signaling molecules is during imprinting. 

Kcnq1ot1 and Air transcribed at the Kcnq1 and Igf2r locus respectively, mediate transcriptional 

silencing by recruiting chromatin modifying complexes. Kcnq1ot1, a 90kb lncRNA directs 

silencing of a cluster of genes at the Kcnq1 domain, in the paternal allele. Kcnq1ot1 recruits 

histone methyltransferases G9a and PRC2, leading to bidirectional silencing of genes in the 

Kcnq1 domain (Pandey, Mondal et al. 2008). Similarly, the lncRNA Air, transcribed from the 
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second intron of the Igf2r gene, represses several genes at the paternal chromosome in a tissue 

specific manner. The Air lncRNA mediates silencing by recruiting G9a, a histone 

methyltransferase (Nagano, Mitchell et al. 2008).  

X inactivation, a process in which one of the two chromosomes in the female is silenced, such 

that only one of the X chromosome is expressed is now known to be controlled by a cluster of 

lncRNA termed X-inactivation center. The 17kb X inactive specific transcript (Xist), is expressed 

from the inactive X. It coats the X chromosome and forms a “Xist cloud” leading to the 

recruitment of the PRC2 complex (Zhao, Sun et al. 2008) . Xist is regulated by an antisense 

lncRNA called Tsix, which reverses the action of Xist by repressing the silencing caused by Xist 

and Tsix accomplishes this by several different mechanisms. Recruitment of the polycomb 

complex to the 5’ end of Xist is accomplished by a 1.6kb ncRNA called RepA. Tsix blocks 

loading of this complex to Xist, inhibiting induction of the lncRNA, Xist (Zhao, Sun et al. 2008). 

Transcription of Tsix also causes silencing of Xist activity by recruiting DNA (cytosine-5)-

methyltransferase 3A (Dnmt3a) enzyme leading to the formation of repressive histone 

modifications inhibiting transcription of Xist (Sado, Hoki et al. 2005).   More recently, it has 

been shown that the very act of transcription of Tsix can lead to suppression of Xist as insertion 

of poly A cassette leading to the truncation of Tsix, releases the repressive environment at the 

Xist promoter (Ohhata, Hoki et al. 2008). Another lncRNA Jpx, regulated in trans activates Xist 

on the inactive X chromosome (Lee, Davidow et al. 1999, Chureau, Prissette et al. 2002, 

Johnston, Newall et al. 2002, Tian, Sun et al. 2010).  

b. Decoys: In this mechanism, lncRNA act as molecular decoys by binding and pirating a protein 

away from its intended target and restricting the functional outcome. In this case, lncRNA act as 

a repressor of function and its action can be negated by knocking down the lncRNA, allowing 
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the protein to bind and leads to gain of function (Wang and Chang 2011). The human 

dihydrofolate reductase (DHFR) gene is an example of RNA dependant repression. The minor 

upstream promoter of the DHFR gene initiates transcription of the DHFR lncRNA, inhibiting the 

formation of the Pre-initiation complex (PIC) at the major complex by forming a stable ncRNA-

DNA complex and by directly interacting with the general transcription factor IIB (TFIIB). 

Knockdown of the lncRNA, removed the repressor effect of the lncRNA, leading to high 

occupancy of the TFIIB at the major promoter (Martianov, Ramadass et al. 2007).    

The “molecular sink” mechanism of these lncRNA is not restricted to proteins but also 

encompasses miRNAs and splicing factors. The tumor suppressor gene PTENP1 functions as a 

decoy and sequesters miRNA that would affect the transcriptional regulation of the PTEN gene. 

The 3’ UTR sequence of the PTENP1 RNA is similar to that of the PTEN gene, allowing the 

miRNA to bind to the PTENP1 RNA, and in the process, allowing the PTEN gene to be 

transcribed and translated (Poliseno, Salmena et al. 2010).  

Metastasis-associated lung adenocarcinoma transcript (MALAT1) is a nuclear lncRNA 

abundantly present in nuclear speckles. This lncRNA binds to several serine/argenine (SR) 

splicing factors and sequesters them into nuclear speckles. Depletion of MALAT1 leads to 

altered splicing pattern for pre-mRNA (Tripathi, Ellis et al. 2010). MALAT1 regulates splicing 

factors in hippocampal neurons and is important for synapse formation (Bernard, Prasanth et al. 

2010). Thus, lncRNA can act as decoys and sequester away regulatory factors both in the 

cytoplasmic and nuclear domains.  

c. Guides: The third mechanism of lncRNA is as a guide leading to the proper localization of 

specific complexes to their target regions. This can occur both in cis (on neighboring genes) or in 
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trans (distantly located genes) and can include both repressive and activating complexes. The 

underlining concept is that these groups of lncRNA convey regulatory information and control 

gene expression. The functional role of these lncRNA can be predicted by knocking down the 

lncRNA leading to the loss of proper localization of the effector molecule or loss of function of 

the effector, or both.  

One of the best-studied “guide” lncRNA is at the X-inactivation center (XIC), which controls 

silencing of one of the X chromosomes.  Coating of Xist on the X chromosome marks it for 

repression. This silencing is initiated by the recruitment of the PRC2 complex by RepA, a 1.5kb 

lncRNA, which originates from the 5’ end of Xist (Wutz, Rasmussen et al. 2002, Sun, Deaton et 

al. 2006). A similar mechanism is employed by the lncRNA Air, which recruits G9a leading to 

H3K9 methylation and silencing (Nagano, Mitchell et al. 2008). In the plant lncRNA, 

COLDAIR, guides the PRC2 complex to the floral repressor gene FLC, during vernalization, 

leading to its repression by trimethylation of H3K27 (Heo and Sung 2011).  

LncRNA act both in cis as well as in trans as seen in the case of the Hox lncRNA HOTAIR. 

HOTAIR plays a critical role in cancer cells, as depletion of this lncRNA reduces invasiveness of 

cells that express high levels of PRC2 (Gupta, Shah et al. 2010). Long intergenic non-coding 

RNA-p21 induces gene expression changes across multiple sites in the genome. Ectopic 

expression of LincRNA-p21 leads to apoptosis by bypassing the upstream p53 (Huarte, Guttman 

et al. 2010).  

d. Scaffolds: Originally thought to be the function of proteins, recent evidence now point to the 

possibility that lncRNA may play similar roles (Good, Zalatan et al. 2011). Highly intricate and 

complex, the lncRNA binds to multiple effectors at the same time leading to either gene 
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activation or repression. Knockdown of these lncRNA could change the spatial occupancy of the 

effector leading to dismantling of the complex, loss of phenotype, or both.  

The scaffold mechanism can be seen in telomerase activity, a fundamental process that maintains 

genomic stability by adding back telomere DNA repeats lost from chromosome ends. This 

catalytic activity requires the association of TERT, a catalytic protein subunit and a telomerase 

RNA (TERC). TERC provides a template, contributes to binding of TERT and its catalytic 

activity, and plays a major role in stability of the complex(Lustig 2004). In the disease condition 

of dyskeratosis congenita, mutations affect the conformation of TERC leading to loss of RNA 

scaffold structure underlining the functional importance of TERC (Chen and Greider 2004).  

Recent work has identified that a 300-nucleotide fragment present at the 5’ end of the lncRNA 

HOTAIR, is responsible for the binding of the PRC2 complex (Tsai, Manor et al. 2010). In 

addition, the 700 nucleotides of the 3’end of HOTAIR was found to interact with Lysine specific 

demethylase (LSD1), RE1 silencing transcription factor (REST), and its co-repressor protein, 

CoREST that demthylates H3 on K4 leading to gene repression (Tsai, Manor et al. 2010). These 

findings identify HOTAIR as a scaffold and bridge between the PRC2 and the 

LSD1/CoREST/REST complex leading to suppression of gene expression.  

While these regulatory mechanisms encompass the majority of known functional lncRNAs, the 

growing numbers of lncRNA are certain to reveal more mechanistic and functional aspects of 

lncRNA. While the argument remains as to if these merely represent transcriptional noise, 

support is increasing for their functional significance and thus adds another level of complexity 

to the mechanisms of gene regulation. The varied sub-cellular expression, nuclear or 

cytoplasmic, cell-specific expression patterns, and varying levels of conservation among the 
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lncRNA add chaos to the understanding of these transcripts. Another intriguing possibility is that 

lncRNAs may be tools for evolution to tinker in generating mechanisims for survival and 

advancement of the species(Kung, Colognori et al. 2013). One thing is for sure, we have barely 

scratched the surface of the lncRNA world and as more are discovered, their versatility as 

regulators of gene expression will be revealed.  
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The gonadotropin hormones 

 Luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are integral parts of the 

neural and endocrine interchange between the hypothalamus, pituitary, and gonads that controls 

steroid hormone synthesis and gamete production (reviewed in (Plant 2008)).   At the top of the 

network is gonadotropin releasing hormone (GnRH), which, once released from the 

hypothalamus, binds receptors on pituitary gonadotrophs and induces the synthesis and secretion 

of LH and the FSH. Once in circulation, LH and FSH finalize the communication by binding 

their receptors and transmitting signals to the gonads.  These signals are at the hub of the 

regulatory network, relaying neuronal signals from the hypothalamus to the gonads and inducing 

feedback signals returned to the hypothalamus and pituitary.  The receptors for FSH and LH, 

FSHR and LHR (LHCGR), reside on the surface of somatic cells in the gonads and are members 

of the Rhodopsin receptor family of G-protein coupled receptors, but unlike the other members, 

LHR and FSHR have extended NH2-terminal extracellular domains with numerous leucine-rich 

repeats that assist ligand specificity (Braun, Schofield et al. 1991, Dias, Cohen et al. 2002, 

Vassart, Pardo et al. 2004, Bogerd 2007, Lagerstrom and Schioth 2008). FSH binding elicits 

several diverse signaling events, but the most characterized is that initiated by adenylyl cyclase, 

followed by induction of cAMP, PKA activation, and protein phosphorylation (Heindel, 

Rothenberg et al. 1975, Dorrington and Armstrong 1979).  FSH binding is also associated with 

increased intracellular calcium, activation of mitogen activated protein kinase (MAPK), and 

stimulation of inositol triphosphate (IP3) (Flores, Veldhuis et al. 1990, Tena-Sempere, Manna et 

al. 1999, Seger, Hanoch et al. 2001). 

Since FSH acts exclusively through FSHR, mechanisms controlling receptor expression 

determines the FSH-responsive cell population and influences their sensitivity to hormone. Thus, 
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FSHR expression determines both the targets and extent of FSH action, ultimately directing 

hormone response to granulosa cells in the ovary and Sertoli cells in the testis (Heindel, 

Rothenberg et al. 1975). In the ovarian granulosa cells, temporal changes in FSH signaling 

regulate a number of transcriptional, metabolic, and hormonal activities that are important for the 

proliferation and differentiation events required for follicular growth and oocyte maturation 

(Abou-Issa and Reichert 1977, Peluso and Steger 1978, Grasso and Reichert 1990, Dunkel, Tilly 

et al. 1994, Rannikki, Zhang et al. 1995, Sairam, Jiang et al. 1996, Kumar, Wang et al. 1997, 

Simoni, Gromoll et al. 1997, Simoni, Gromoll et al. 1997, Huhtaniemi and Themmen 2005).   In 

testicular Sertoli cells, the actions of FSH change with testis development (reviewed in (Kishi, 

Minegishi et al. 1998, Meachem, Ruwanpura et al. 2005)).  Initially, during the perinatal period, 

FSH induces Sertoli cell proliferation and establishes the final Sertoli cell number that will 

ultimately determine spermatogenic output, while later in development FSH stimulates Sertoli 

cell transcriptional and metabolic activities, which contribute to the hormonal and nutritional 

environment necessary for germ cell survival and development (Orth 1984, Orth, Gunsalus et al. 

1988, Russell and Griswold 1993, Boitani, Stefanini et al. 1995, Meachem, McLachlan et al. 

1996, Shetty, Marathe et al. 1996, Ruwanpura, McLachlan et al. 2008). In both males and 

females, FSH induces hormonal signals that return to the pituitary and hypothalamus, as part of 

the feedback mechanism upholding the endocrine balance in the reproductive axis (Benson, 

Sorrentino et al. 1969, Moguilevsky, Libertun et al. 1970, Yen and Tsai 1971, Shahmanesh, 

Sedigh et al. 1980, Schwartz 1982, McNeilly, Souza et al. 2002).     

FSHR expression 

Expression of FSHR, both protein and mRNA, is remarkably limited with respect to its cellular 

profile, with Sertoli and granulosa cells by far the predominant expressing cell types 
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(Ketelslegers and Catt 1974, Orth and Christensen 1977, Heckert and Griswold 1991).  

FSHR/Fshr transcripts are first observed in embryonic gonads, around embryonic day 14.5 in 

males and 20.5 in females (Dankbar, Brinkworth et al. 1995, Rannikki, Zhang et al. 1995).  

These initial transcripts are incomplete and represent only the extracellular portion of the 

receptor, with full-length mRNA expressed several days later (Richards, Ireland et al. 1976, 

Sokka and Huhtaniemi 1990, Rannikki, Zhang et al. 1995).  In the rodent ovary, FSHR 

expression coincides with primary follicle formation and follicular development through the pre-

antral stage, with initial full-length transcripts and hormone binding observed shortly after birth 

(around postnatal day 3) and continuing to increase through day 21 (Sokka and Huhtaniemi 

1990, Dunkel, Tilly et al. 1994, O'Shaughnessy, Marsh et al. 1994, Rannikki, Zhang et al. 1995, 

Drummond, Dyson et al. 1996). In the testis, full-length FSHR mRNA initiates during fetal 

development (around embryonic day 16.5 in the rat) and expression is maintained throughout 

development and in the adult testis (Steinberger, Thanki et al. 1974, Nimrod, Erickson et al. 

1976, Sprengel, Braun et al. 1990, Heckert and Griswold 1991, O'Shaughnessy, Marsh et al. 

1994, Dankbar, Brinkworth et al. 1995, Rannikki, Zhang et al. 1995). Once the spermatogenic 

cycle is initiated, FSHR levels change with the cycle, with levels highest at stages X-II and 

lowest at VI-VII (Heckert and Griswold 1991, Kliesch, Penttila et al. 1992, Heckert and 

Griswold 1993, Rannikko, Penttila et al. 1996).   Several signals that regulate ovarian and 

testicular physiology also influence FSHR expression.  In the ovary, FSHR is regulated by a 

combination of transcriptional and posttranscriptional mechanisms induced by FSH and activin 

and indirectly by follistatin through its influence on activin (Knecht, Ranta et al. 1983, 

Woodruff, D'Agostino et al. 1988, Sanford and Batten 1989, Nakatani, Shimasaki et al. 1991, 

Themmen, Blok et al. 1991, Nakamura, Minegishi et al. 1993, Sites, Patterson et al. 1994, 
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Minegishi, Tano et al. 1995, Tano, Minegishi et al. 1995, Tano, Minegishi et al. 1997). In the 

testis, FSHR is primarily regulated by its ligand, which decreases its expression through several 

mechanisms, including membrane receptor internalization, mRNA stability, and transcriptional 

regulation (Jahnsen, Gordeladze et al. 1980, Fletcher and Reichert 1984, Shimizu, Tsutsui et al. 

1987, Themmen, Blok et al. 1991, Monaco, Foulkes et al. 1995, Viswanathan, Wood et al. 

2009).   

While FSHR expression is considered gonad-specific and restricted to Sertoli cells in the testis 

and granulosa cells in the ovary, there are a few notable reports of its presence elsewhere; in 

particular, uterus, prostate, bone, and the ovarian surface epithelia (Zheng, Magid et al. 1996, 

Ben-Josef, Yang et al. 1999, Mariani, Salvatori et al. 2006, Sun, Peng et al. 2006).  In prostate 

and ovarian epithelial cells, FSH signaling is implicated in cell proliferation and tumor 

invasiveness in precancerous and malignant cells, and thus reports of receptor expression are 

often within the same cell context (Ben-Josef, Yang et al. 1999, Choi, Choi et al. 2004, Ji, Liu et 

al. 2004, Zhang, Chen et al. 2009).  In bone, there is strong evidence linking FSH and FSHR to 

hypogonadal bone loss in women but there is still uncertainty as to the site of FSH action (Sun, 

Peng et al. 2006, Prior 2007, Zaidi, Blair et al. 2007, Ritter, Thuering et al. 2008, Robinson, 

Tourkova et al. 2010).  Consequently, it has been difficult to assess from the literature the degree 

to which normally differentiated cells, other than Sertoli and granulosa cells, actively transcribe 

FSHR/Fshr.  However, its specificity can be greatly appreciated using publically available, high-

throughput expression data to examine distribution of FSHR/Fshr mRNA.  As an example, data 

derived from more than 30 tissues, using massively parallel signature sequencing, (FSHR query 

with GEO Series accession number GSE1581 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1581 and dataset record GDS868) 
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showed FSHR/Fshr mRNA present only in the testis and ovary; a remarkable finding given the 

high sensitivity of the detection method (Edgar, Domrachev et al. 2002, Barrett, Troup et al. 

2007, Barrett, Troup et al. 2009).  What is the mechanism responsible for this remarkable cell-

specificity?  Currently, it is unknown but as reviewed below, the evidence indicates that 

FSHR/Fshr expression is directed by transcription factors that function through elements located 

at significant distances from the gene itself.   

Transcription of FSHR/Fshr 

FSHR/Fshr transcription contributes to receptor levels and directs its cell-specificity, indicating 

components of the underlying mechanisms are important for both FSH responsiveness and target 

cell identity. Our current understanding of FSHR/Fshr transcription is derived largely from 

studies on the rat, murine, ovine, and human FSHR/Fshr genes, which focused on 

characterization of the 5’ flanking region.  The resulting data provided significant insight, 

revealing both similarities and differences between promoters of the four species.  Since most 

promoter characteristics were detailed in a previous review, the discussion here will be limited to 

its prominent features (Heckert 2005). The accumulated information represents primarily 

transient transfection and DNA/protein binding results from Sertoli and granulosa cells. These 

studies identified regulatory elements and their associated binding proteins within promoters 

represented by various species and lengths and revealed both similarities and differences in 

promoter function (Huhtaniemi, Eskola et al. 1992, Gromoll, Dankbar et al. 1994, Goetz, Lloyd 

et al. 1996, Heckert, Daggett et al. 1998, Heckert, Sawadogo et al. 2000, Heckert 2001, Kim and 

Griswold 2001, Xing and Sairam 2001, Xing, Danilovich et al. 2002, Xing and Sairam 2002, 

Xing and Sairam 2002).  Promoter sequence comparisons between several species showed 

significant conservation of approximately 1000bp 5’ to the translational start, a reference point 
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used to avoid uncertainty in transcriptional start sites for some species (Huhtaniemi, Eskola et al. 

1992, Gromoll, Dankbar et al. 1994, Sairam and Subbarayan 1997, Tena-Sempere, Manna et al. 

1999, Xing and Sairam 2001, Heckert and Griswold 2002, Heckert 2005). While variations in 

methodology and promoter context make it hard to assess relevance to regulatory sequences 

identified in a single species or study, results representing the rat, sheep, and human promoters 

identified a common E box element (Goetz, Lloyd et al. 1996, Heckert, Daggett et al. 1998, 

Findlay and Drummond 1999, Xing and Sairam 2001, Xing, Danilovich et al. 2002, Xing and 

Sairam 2002, Xing and Sairam 2002, Putowski, Schillings et al. 2004). The element contributes 

significantly to promoter activity and provides a common mechanistic theme that features the E 

box and its cognate binding factors upstream stimulatory factor 1 (USF1) and 2 (USF2) (Figure 

4A).  Other promoter sequences implicated in FSHR/Fshr regulation include binding sites for 

steroidogenic factor-1 (SF-1), SMAD3 (mothers against decapentaplegic Homolog 3), E2F 

(transcription factor E2F), GATA-1 (GATA-binding factor 1), and ETS proteins (Heckert 2001, 

Kim and Griswold 2001, Levallet, Koskimies et al. 2001, Gong and McGee 2009, Brune, Adams 

et al. 2010). 

Located just 5’ to the transcriptional start sites, the E box and its binding proteins have, by far, 

received the greatest attention with respect to FSHR/Fshr transcription. USF1 and USF2 are 

members of the helix-loop-helix family that form both homo- and heterodimers (USF1, USF2, 

USF1/2, respectivity) and considerable evidence, from studies in rodents, document their role 

directing Fshr promoter activity via the E box (Shieh, Sparkes et al. 1993, Goetz, Lloyd et al. 

1996, Viollet, Lefrancois-Martinez et al. 1996, Heckert, Daggett et al. 1998, Findlay and 

Drummond 1999, Heckert, Sawadogo et al. 2000, Griswold and Kim 2001, Heckert 2001, 

Rodriguez, Girones et al. 2003).  In both testis and ovary, in vitro (electrophoretic mobility shift 
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assay) and in vivo (chromatin immunoprecipitation, ChIP) studies showed USF1, USF2 and 

USF1/2 bind the promoter, but dimer composition differed between males and females, with 

USF1/2 and USF1 favored in the testis and USF1, USF2, and USF1/2 equally matched in the 

ovary (Figure 1B) (Hermann, Hornbaker et al. 2008).  Furthermore, Fshr mRNA expression and 

in vivo promoter binding evaluated in Usf1- and Usf2-null mice, revealed differences between 

testis and ovary in their response to loss of either USF protein (Hermann, Hornbaker et al. 2008). 

Thus, in testis, Fshr expression was unchanged by either Usf1 or Usf2 deletion and showed 

compensatory increases in promoter-bound USF homodimers (Hermann, Hornbaker et al. 2008, 

Viswanathan, Wood et al. 2009).  In contrast, ovarian Fshr expression declined in both and 

compensatory change in homodimer binding was not indicated. Additional studies on the Fshr 

promoter in Sertoli cells, showed USF binding to the E box increases during differentiation and 

decreases, together with promoter activity, upon FSH treatment (Scobey, Fix et al. 2004, 

Viswanathan, Wood et al. 2009, Wood and Walker 2009).  The predicted mediator of these FSH-

induced changes is the inhibitor of DNA binding/differentiation protein, ID2, which increases 

with FSH treatment and inhibits both E box binding and promoter activity (Figure 4B).  
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Despite numerous studies on the FSHR/Fshr promoter, no mechanism has evolved to explain the 

gene’s remarkable cell specific expression.  This deficiency in promoter specificity was also 

demonstrated by studies that evaluated 16 distinct transgenic mouse lines for cell-specific 

expression of reporters directed by either 5.0kbp or 143bp (8 lines each) of rat Fshr promoter 

sequence, none of which showed Sertoli or granulosa cell expression (Heckert, Sawadogo et al. 

2000). Similar findings were reported for 1.5kbp of the human promoter (Nordhoff, Gromoll et 

al. 2003).    The recognition that sequences beyond the 5.0Kbp promoter were required for 

expression, together with emerging data on regulatory elements that act from distal positions, led 

to studies using yeast artificial chromosomes (YACs) as transgenes, in order to define the region 

required for FSHR/Fshr specificity. The absent transgene expression in Sertoli and granulosa 

cells of mice carrying a YAC with the entire rat Fshr gene, plus bordering sequences stretching 

more than 50kbp 5’ and 30kbp 3’, further supports involvement of distal regulation and suggests 

regulatory regions extend well beyond the gene itself (Hermann, Hornbaker et al. 2007).   

With the evidence that proper expression of FSHR/Fshr requires contributions from regulatory 

elements located outside the promoter region, most likely at significant distances, the challenge 

became identifying these sites within a vast amount of potential sequence.  Initially, with only a 

small amount of available sequence, this was tackled using conventional DNase I 

hypersensitivity mapping to identify regions of accessible chromatin and thus potential sites of 

regulatory importance (Hermann and Heckert 2005).  This revealed four hypersensitive sites 

located within a 45kbp region surrounding the first exon, three of which showed significant 

sequence conservation, a predictive feature of important regulatory elements (Hermann and 

Heckert 2005).  One of these, DHS#3, was located approximately 4kb downstream in intron 1 

and showed much greater sensitivity to DNase I in non-expressing cells (myoid) than expressing 
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cells (Sertoli), suggesting an association with gene silencing (Figure 1). Further functional 

characterization, using transient transfections and in vitro and in vivo binding assays, revealed 

important elements that attenuated gene expression and their cognate binding proteins, OCT1, 

GATA4, and GATA1.  The studies also implicated OCT1 in selective binding to this element in 

order to maintain its silent state in non-expressing cells (Hermann and Heckert 2005).  While the 

approach proved to be a valid means to identify important regulatory elements, it was evident 

that scanning extensive regions of the genome without better knowledge of its DNA content or 

genomic landscape was impractical.   This has since been remedied by the infusion of genomics 

data that brought, not only new sequence information, but also a wealth of insight on the 

FSHR/Fshr gene and it residing landscape.    

The FSHR gene  

The initial characterization of the Fshr gene in 1992, which revealed a pronounced structural 

similarity to the LHCGR/Lhcgr gene that suggested the two evolved through duplication of a 

common ancestral gene (Heckert, Daley et al. 1992). Similarities between FSHR/Fshr and 

LHCGR/Lhcgr and the genes for other G-protein coupled receptors (GPCR) also suggested the 

predecessor for FSHR/Fshr and LHCGR/Lhcgr was formed by combining a common GPCR 

ancestral gene. The ancestor for these genes presumably arose by encoding the characteristic 

transmembrane and intracellular domains, with multiple repeated exons derived from tandem 

duplications of a module for a leucine-rich motif, a featured attribute of the extracellular domain 

of glycoprotein hormone receptors (Heckert, Daley et al. 1992). Formation of the gonadotropin 

receptor genes through tandem duplication of an ancestral gene was further substantiated by 

recent genomics data that show they are arranged in tandem on chromosomes from nearly all 

annotated Tetrapoda genomes (Heckert, Daley et al. 1992, Montgomery, Tate et al. 1995, 
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Chauvigne, Tingaud-Sequeira et al. 2010).  While the two ancestral descendents, FSHR/Fshr and 

LHCGR/Lhcgr, differ by one exon (10 for FSHR/Fshr and 11 for LHCGR/Lhcgr), the coding 

scheme is largely the same, with the carboxy-terminal, transmembrane-intracellular domain 

encoded by the last exon and the amino-terminal, extracellular domain by all preceding exons 

(Koo, Ji et al. 1991, Tsai-Morris, Buczko et al. 1991, Heckert, Daley et al. 1992).  Exons that 

partition the receptors’ extracellular domains also share a repeated structure that delineates seven 

of the leucine-rich motifs into exons 2-8 and two into exon 9 (Figure 5).   

However, despite knowing the structure of FSHR/Fshr for nearly two decades, it was not until 

the various genome-sequencing projects greatly expanded the available sequence data that there 

was accurate knowledge of its size or chromosome habitat. Now, FSHR/Fshr chromosome 

locations and annotated sequences are reported for more than 40 vertebrate species through the 

University of California, Santa Cruz Genome Browser (http://genome.ucsc.edu/) and similar web 

sites.  In human, rat, and mouse FSHR/Fshr are located on chromosomes 2, 6 and 17, 

respectively, and span roughly 200kb, a size much larger than originally predicted (Heckert, 

Daley et al. 1992, Huhtaniemi, Eskola et al. 1992, Rousseau-Merck, Atger et al. 1993, Gromoll, 

Ried et al. 1994, Rhead, Karolchik et al. 2010) (Figure 2).   This wealth of sequence information 

also disclosed several defining features of FSHR/Fshr and its surrounding neighborhood that 

indicate its associated regulatory environment is strongly influenced by evolutionary constraints 

that retain regulatory sequences directing distally-located genes (Hermann and Heckert 2005, 

Hermann, Hornbaker et al. 2007).  This includes the tandem placement of FSHR/Fshr between it 

closest 5’ neighbor NRXN1/Nrxn1, which encodes the synaptic neuronal adhesion protein 

NEUREXIN 1, and its closest 3’ neighbor LHCGR/Lhcgr, the gene encoding the luteinizing 

hormone receptor, to form a highly conserved syntenic block, a feature identified by several 
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studies to indicate evolutionary constraints intended to preserve the relative positions between 

noncoding sequences and their target genes (Hermann and Heckert 2005, Engstrom, Ho Sui et al. 

2007, Kikuta, Laplante et al. 2007, Akalin, Fredman et al. 2009).   The genomic relationship 

between FSHR/Fshr and LHCGR/Lhcgr, when examined together with their similar expression 

profiles and functions in gonadotropin signaling, raises the intriguing possibility that function of 

one or both genes depends on their relative positions.  In considering potential mechanisms, a 

link between transcriptional regulation and the shared synteny can be readily conceived if 

FSHR/Fshr and/or LHCGR/Lhcgr expression depends on regulatory sequences that would be lost 

if the genes separated.  This implies the sequences are either; 1) required for expression of one 

gene and reside within the locus defined by the other (gene plus regulatory domain) or 2) 

required by both genes (i.e. identical or overlapping sites) and function depends on their position 

relative to FSHR/Fshr and LHCGR/Lhcgr.  The second mechanism can be expanded to include 

the use of sequences for concurrent gene regulation, which, for co-regulation of FSHR/Fshr and 

LHCGR/Lhcgr activity is limited to granulosa cells of growing follicles, the only cells that 

express both genes. So despite similar gonad-specific expression profiles, the receptors are 

largely confined to distinct cell types, where any simultaneous use of a regulatory sequence will 

require opposite transcriptional effects on the two genes.  Thus, most gonadotropin-responsive 

cells do not co-express FSHR/Fshr and LHCGR/Lhcgr and FSH response is restricted to Sertoli 

and granulosa cells of the testis and ovary, respectively, and LH response is confined to testicular 

Leydig cells and ovarian theca, maturing granulosa, and luteal cells (Camp, Rahal et al. 1991, 

Peng, Hsueh et al. 1991, Kaminski, Gawronska et al. 2000, Zhang, Shi et al. 2001, Dickinson, 

Stewart et al. 2009). 
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FIGURE 5: Organization of FSHR/Fshr and its genomic environment.  A) Structure of 
FSHR/Fshr and LHCGR/Lhcgr, depicting the exon distribution of the receptor’s protein 
domains.  Exons are indicated by rectangles, intervening regions by lines, and 
transcriptional direction by arrows.   B) Position of the NRXN1;FSHR;LH/CGR syntenic 
region on human chromosome 2 (red box indicated by arrow).  C) Syntenic region of 
NRXN1/Nrxn1, FSHR/Fshr, and LHCGR/Lhcgr from human, rat, mouse, and chicken, with 
sizes indicated for the genes and intervening regions. Genes are indicated by rectangles, 
intervening regions by lines, and transcriptional direction by arrows. 
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To date, there are no identified regulatory elements shared by FSHR/Fshr and LHCGR/Lhcgr or 

located within the other’s defined locus.  However, our knowledge of their transcription is 

represented almost entirely by promoter characteristics and, therefore, insufficient to conclude 

the elements do not exist.  Regardless, promoter characteristics do suggest divergent regulation, 

as they differ significantly with respect to sequence, identified regulatory elements, and activity 

in transgenic mice, i.e. LHCGR/Lhcgr, but not FSHR/Fshr, promoter directs cell-specific 

expression in vivo (Heckert and Griswold 1991, Heckert, Daley et al. 1992, Tsai-Morris, Xie et 

al. 1993, Tsai-Morris, Geng et al. 1994, Tsai-Morris, Geng et al. 1995, Goetz, Lloyd et al. 1996, 

Heckert, Daggett et al. 1998, Hamalainen, Poutanen et al. 1999, Hamalainen, Poutanen et al. 

2001, Kim and Griswold 2001, Apaja, Aatsinki et al. 2005, Hermann, Hornbaker et al. 2007).  

On the other hand, there are a few common promoter features worth noting. First is the core 

structure, which, for both, lacks a TATA box and has multiple transcription initiation sites within 

a region similar to an initiator element (Tsai-Morris, Buczko et al. 1991, Heckert, Daley et al. 

1992, Dufau, Tsai-Morris et al. 1995, Goetz, Lloyd et al. 1996, Juven-Gershon, Hsu et al. 2008).  

Second is the ubiquitous nature of each promoter’s main functional element(s), which depend 

largely on non-specific, widely expressed but distinct, transcription factors; LHCGR/Lhcgr with 

two GC-rich sequences that bind SP1 and SP3 and FSHR/Fshr with a single E box bound by 

USF1 and USF2 (Tsai-Morris, Geng et al. 1995, Goetz, Lloyd et al. 1996, Geng, Tsai-Morris et 

al. 1999, Heckert, Sawadogo et al. 2000).  While these similarities may reflect the common 

ancestry and/or association via an undisclosed fundamental mechanism, the predominant 

promoter characteristics emphasize functional divergence of key regulatory features that 

highlight the promoter for LHCGR/Lhcgr and distal regulatory sites for FSHR/Fshr. 
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 Another notable feature is the large intergenic distances between FSHR/Fshr and its neighbors, 

which span more than 750kbp on its 5‘side and 200kbp on its 3‘side (Hermann and Heckert 

2005).  The uninhabited region between NRXN1/Nrxn1 and FSHR/Fshr is characteristic of a 

gene desert, or long genomic stretch devoid of protein-coding sequences or other obvious 

biological functions.  Such regions, when located within a conserved syntenic block, are 

associated with areas of enhanced sequence conservation, suggesting the content was under 

evolutionary pressure to retain functional and contextual information of resident elements 

(Venter, Adams et al. 2001, Ovcharenko, Loots et al. 2005, Akalin, Fredman et al. 2009).  While 

evidence shows not all gene deserts have measurable activity, numerous risk loci and regulatory 

elements are documented within these regions, confirming their importance to the genome 

(Lodder, Eussen et al. 2009, Xu, Tsumagari et al. 2009, Kiltie 2010).  Comparative sequence 

analysis has been consistently used in genome-wide studies to evaluate evolutionary constraint as 

a means to understanding genome structure, biological function, and evolution (Waterston, 

Lindblad-Toh et al. 2002). The initial whole-genome sequence comparisons between mouse and 

human provided considerable insight and estimated 5% of the human genome was conserved 

over 70-100 million years (Lander, Linton et al. 2001, Venter, Adams et al. 2001, Dermitzakis, 

Reymond et al. 2002, Mural, Adams et al. 2002, Waterston, Lindblad-Toh et al. 2002, 

Pennacchio 2003). What was remarkable in this finding was that only 1/3 of the conserved 

sequences were located in coding regions.  Thus, the genome’s non-coding sector represents the 

largest portion under evolutionary selection, which suggests there is considerable functional 

information within conserved non-coding sequences, aka evolutionary conserved regions (ECRs) 

(Waterston, Lindblad-Toh et al. 2002, Dermitzakis, Reymond et al. 2005). 
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Expansion of genome sequence data and species representation added significantly to the power 

of cross-species sequence comparison, the genomic landscape and sites of potential biological 

functions. These breakthroughs have led to identification of many non-coding sequences 

involved in gene regulation, including enhancers, insulators, silencers and matrix attachment 

regions (Glazko, Koonin et al. 2003, Koonin 2003, Nobrega, Ovcharenko et al. 2003, de la Calle-

Mustienes, Feijoo et al. 2005, Woolfe, Goodson et al. 2005, Pennacchio, Ahituv et al. 2006, 

Prabhakar, Poulin et al. 2006, Visel, Prabhakar et al. 2008).   A connection between sequence 

conservation and regulatory sequences was nicely illustrated in a recent study that used ChIP 

with massively parallel sequencing to map DNA sites linked to p300, a co-regulator for many 

transcription factors (Visel, Blow et al. 2009). Results from mouse embryonic tissues (forebrain, 

midbrain and limb) showed p300 highly enriched at sites containing conserved non-coding 

sequence and, of those evaluated, nearly all were functional.  The study also demonstrated that 

most p300-associated sites/enhancers were located at least 10kbp from a potential target gene, 

which suggests distal elements are commonly involved in transcriptional control.  Direct 

evidence for long-distance gene regulation is found in numerous studies that demonstrate 

transcriptional effects from distant sequences on specific target genes, such as those for β-globin, 

IF, SOX9, GATA3, FGF4, IL-10, and CD69 (Martinez-Jimenez, Gomez-Lechon et al. 2005, 

Bejerano, Lowe et al. 2006, Schoenborn, Dorschner et al. 2007, Vazquez, Laguna et al. 2009). 

The significance of non-coding regulatory sequences to human disorders has also gained 

recognition with reports linking them to diseases and developmental disorders, as noted in cases 

of X-linked deafness, preaxial polydactyl, campomelic dysplasia, sex reversal, postaxial 

polydactyly (de Kok, Merkx et al. 1995, Bishop, Whitworth et al. 2000, Jamieson, Perveen et al. 

2002, Epstein 2009, Lodder, Eussen et al. 2009).  In the case of preaxial polydacyl, the reported 
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mutation was located within a regulatory element approximately 1Mbp from its target gene that 

emphasizes not only the remarkable linear distance in which the transcriptional signal passes but 

also the importance of nuclear architecture in positioning regions that collaborate in the 

transcriptional signal (reviewed in (Schneider and Grosschedl 2007)).   

Identification of new regulatory elements 

The search for new regulatory elements is clearly facilitated by predictions based on sequence 

conservation.  However, the evidence is also clear that sequence conservation does not detect all 

regulatory elements nor provide any assurance that the predicted sites are functional, and thus, 

most effective when used in conjunction with other corroborating techniques, particularly ones 

that can assess chromatin changes linked to transcriptional activity (Nobrega, Ovcharenko et al. 

2003, Dermitzakis, Reymond et al. 2005, Rizzolio, Bione et al. 2008, D'Haene, Attanasio et al. 

2009, Liska, Snajdr et al. 2009, Vazquez, Laguna et al. 2009, Visel, Zhu et al. 2010).  In studies 

to identify regulatory sequences that direct FSHR/Fshr transcription, results from transgenic and 

promoter studies shifted the experimental focus away from the promoter to the region 

encompassing all of FSHR/Fshr and its adjoining intergenic regions, which required a new set of 

tools and resources that fortunately evolved from the collection of genome sequences and efforts 

to understand their content.  Initial reports on the FSHR/Fshr conservation profile compared 

human and rat sequences by direct pairwise comparison and analysis of precompiled LAGAN 

alignments through the web-based VISTA genome browser (Hermann and Heckert 2005).  This 

revealed over 150 conserved sites, which, when matched together with DNase I hypersensitivity 

data, was instrumental in the identification of an important silencing region in the first intron 

(discussed above).  However, it was also evident that greater constraints were required to 

improve functional prediction and therefore, once more distant genomes (e.g. chicken) were 
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available and included in computations, ECRs having greater predictive power could be 

distinguished and seven of the most conserved were selected for functional testing by transient 

transfection (Hermann, Hornbaker et al. 2007). With continuous enhancements in genome data 

and resources that improve regulatory element prediction, the number of selected sites has grown 

to more than twenty, which includes the original seven ECRs.   These sequences were identified 

using the human genome and the UCSC Genome Browser (http://genome.ucsc.edu/) to reveal 

highly conserved (vertebrate consensus and net alignment with chicken as the target), non-

coding sequences with a significant regulatory potential score (7X regulatory potential; 

(Waterston, Lindblad-Toh et al. 2002, 2004, Gibbs, Weinstock et al. 2004, Havlak, Chen et al. 

2004, Kolbe, Taylor et al. 2004, King, Taylor et al. 2007)).  Figure 6 provides an example of the 

FSHR locus spanning from LHCGR to NRXN1 that was modified from the UCSC Genome 

Browser results to show the top predicted sites (marked ECRs) for FSHR/Fshr regulatory 

sequences and the key features used in their selection.  
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Summary 

The evidence to date shows that sequences directing FSHR/Fshr expression lie far from the start 

of transcription in a regulatory environment without defined boundaries, which complicates their 

detection using standard molecular approaches. While computational genomics has helped 

narrow the search, limitations due to false positives and undetected sequences caution its use 

without additional methods to substantiate the data (Giresi, Kim et al. 2007).  Fortunately, many 

technologies have adapted to the influx of sequence data by developing high-throughput and 

genome-wide strategies. Two such strategies offer considerable promise for regulatory element 

identification and that the FSHR/Fshr transcriptional mechanism is within reach.  Both strategies 

reveal chromatin signatures featured in regulatory sequences; one identifies sequences bound to 

modified histones linked to transcriptional activity by chromatin immunoprecipitation, the other 

identifies open regions of chromatin, similar to DNase I hypersensitivity, by formaldehyde 

associated identification of regulatory elements. (Wu, Smith et al. 2006, McGaughey, Stine et al. 

2009).  Implementation of such strategies together with comparative genomics will significantly 

enhance the probability of relevant sequence identification and the mechanistic understanding of 

the regulatory landscape.  When combined with high-throughput strategies, such as DNase-Chip, 

high-density tiling arrays and next generation sequencing, to canvass the genome without the 

bias of conservation, additional insight is likely on mechanisms that employ non-conserved 

regulatory elements and possible contributions to species-specific regulatory features (Crawford, 

Davis et al. 2006, Roh, Wei et al. 2007, Chen, Lin et al. 2008). 
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Chapter 2 

CTCF and transcription regulation of Fshr in rat granulosa cells 
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Abstract 

The anterior pituitary in response to gonadotropin releasing hormone (GnRH) stimulates the 

release of follicle stimulating hormone (FSH). FSH targets the gonad by binding specifically to 

its cell-surface receptor, FSHR, present on Sertoli cells of the testis and granulosa cells of the 

ovary. FSHR hence forms a bridge for FSH action and plays a crucial role in mediating gonadal 

development and fertility. Prior studies investigating the transcriptional regulation of Fshr 

focused on the promoter region and identified a number of crucial elements required for the 

proper transcription of the gene. However, in vitro transfection studies and in vivo YAC 

transgenic mice soon identified that regions at considerable distance from the promoter are 

needed for correct spatio-temporal regulation. This thought is supported by numerous studies 

showing that many regulatory elements reside far from the target gene. Comparative genomics 

coupled with CTCF binding prediction tools identified multiple highly conserved regions both 5’ 

and 3’ to the Fshr gene that indicate binding sites for the versatile CCCTC-binding factor 

(CTCF). CTCF is a eleven-zinc finger protein known to play varied roles in genome regulation, 

including transcription, chromatin insulation, and high order chromatin structure. To identify the 

role of CTCF in Fshr regulation, granulosa cells harvested from estrogen treated female rats 

were depleted of CTCF by siRNA transfection, leading to a two-fold increase in Fshr mRNA 

expression while transcription of the nearby Lhcgr gene was unaffected. These data indicate that 

CTCF either by itself or in conjunction with other protein complexes might play a role in 

transcriptional regulation of the Fshr gene.  
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Introduction 

          Gonadotropin releasing hormone (GnRH), synthesized by the peptidergic neurons of the     

hypothalamus, binds to receptors present on the surface of the gonadotroph cells of the anterior 

pituitary gland, initiating the synthesis and secretion of Lutenizing hormone (LH) and Follicle 

stimulating hormone (FSH). FSH is a heterogeneous glycoprotein that recognizes and binds to 

FSHR, a G-protein coupled receptor present on the Sertoli cells of the testis, granulosa cells of 

the ovary, and osteoclasts of the bone (Richards and Midgley 1976, Heckert and Griswold 1991, 

Dankbar, Brinkworth et al. 1995, Sun, Peng et al. 2006). Binding to the receptor elicits a number 

of cellular activities, especially the activation of adenyl cyclase, increased cAMP levels, 

activation of PKA and phosphorylation of a number of transcriptional activators (Flores, 

Veldhuis et al. 1990, Tena-Sempere, Manna et al. 1999, Seger, Hanoch et al. 2001). Since FSH 

acts exclusively through FSHR, greater understanding of its regulation can provide insight on 

how the cells respond to the hormone, as changes in the receptor level will influence response. 

Furthermore, absence of FSH or its receptor is known to cause arrest in folliculogenesis and 

infertility(Huhtaniemi and Themmen 2005). Over the past two decade studies conducted in rat, 

mouse, porcine, and human have identified a number of regulatory elements and proteins that are 

crucial for the proper transcription of Fshr (Huhtaniemi, Eskola et al. 1992, Gromoll, Dankbar et 

al. 1994, Goetz, Lloyd et al. 1996, Sairam and Subbarayan 1997, Simoni, Gromoll et al. 1997, 

Heckert, Daggett et al. 1998, Kim and Griswold 2001). However, transgenic studies directed by 

either 5.0kbp or 143bp of rat Fshr promoter sequence were unable to replicate Sertoli and 

granulosa cell specific expression (Heckert, Sawadogo et al. 2000). Furthermore, transgenic mice 

carrying yeast artificial chromosomes containing 413-kbp region of the rat Fshr gene and its 

encompassing regions were found to be insufficient to direct proper spatial and temporal 
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expression (Hermann, Hornbaker et al. 2007). These data suggest that distal cis-acting elements 

present outside this region were required for proper specific expression.  

Evolutionary conserved regions of DNA indicate that they are under pressure to retain functional 

significance. These highly conserved non-coding regions imply that they might play a role in 

gene regulation (Bejerano, Pheasant et al. 2004, Shin, Priest et al. 2005, Pennacchio, Ahituv et 

al. 2006). They are often home to regulatory elements involved in spatial and temporal gene 

regulation (Maston, Evans et al. 2006). Among these regulatory elements is the CCCTC-binding 

factor (CTCF), a highly conserved and versatile regulatory factor that plays a varied role in 

genome regulation. CTCF can act as enhancer blocking, gene activator/repressor, hormone-

responsive silencing, long-range chromatin interactions, X-chromosome inactivation, genomic 

imprinting and in regulating chromatin architecture (Phillips and Corces 2009, Ohlsson, 

Bartkuhn et al. 2010). Recently microarray data analysis of CTCF depleted mice identified Fshr 

was among the genes that were up regulated (Wan, Pan et al. 2008). The current study explores 

the possible CTCF binding sites in the highly conserved regions identified by computational 

analysis and looks at the regulation of Fshr in rat granulosa cells depleted of CTCF. 
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Materials and Methods 

Animal Use. 
 
All experiments using animals were approved by the Institutional Animal Care and Use 

Committee of the University of Kansas Medical Center and performed in accordance with 

National Institute of Health guide for the care and use of laboratory animals.  

Rat granulosa Cell culture  

23 day old Immature Sprague Dawley female rats (Harlan, Indianapolis, IN) were injected 

subcutaneously with 1.5mg 17β-estradiol once daily at 24 ,25, and 26 days of age. Ovaries were 

isolated on day 27 and granulosa cells harvested as previously described (Alliston, Maiyar et al. 

1997). Briefly, ovaries were harvested, cleaned of fat pads and placed into the M199 collection 

media containing M199 media (Sigma M2520), 10mM HEPES and 0.2% BSA. The collection 

media was then slowly aspirated and the ovaries were incubated in 1ml of Sucrose solution 

media (M199 collection media, 1.8mM EGTA and 0.5M Sucrose) for 15 minutes at 37  ̊C.  The 

ovaries were rinsed three times with M199 collection media and poked gently with a 22-gauge 

needle to isolate the granulosa cells. The cells were centrifuged, counted and 100,000 cells were 

plated in each well of a six well plate coated with fibronectin and grown with Dulbecco modified 

Eagle medium/F12 (10% fetal bovine serum, 1% gentamicin).  

siRNA transfection 

Various amounts of CTCF siRNA and scrambled siRNA control ( siGenome, rat CTCF, 

NM_031824, Dharmacon) were transfected into each well with 5μl of Lipofectamine RNAimax 

(Invitrogen). The transfection media was aspirated 6 hours later and replaced with rat granulosa 

media and the cells were harvested 48 hours post transfection. 
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RNA isolation and quantitative real time PCR 

Total RNA was isolated using Trizol according to manufactures protocol (Life Technology). 

Total RNA (100ng) was reverse transcribed using iScript cDNA synthesis kit (Bio-Rad) 

according to manufactures protocol. 1ul of the of the cDNA was assayed using the SYBR Green 

PCR master mix (Applied Biosystems) and primers for rat CTCF 

(F:TGCCAGTGTAGAAGTCAGCAAATT; R: TGTATGTGTCCCTGCTGGCATA); Fshr (F: 

GCCAAGACAGCAAGGTGACA; R: GAGCACAAACCTCAGTTCAATGG); Lhcgr (F: 

GGTCGCCACGCTGACCTA; R: TCTGTTCTTTCTTCGGCAAATTC) and normalized to the 

internal control L7 ( F: GCTAGGATGGCGAGGAAAGC; R: 

TGATACCTCGGATTCTGATGACA). Real time was carried out in a 7900HT Sequence 

Detection real-time analyzer (Applied Biosystems) as described (Gifford, Racicot et al. 2007). 

Samples and negative control (Hatano, Takayama et al.) were run in triplicate and gene 

expression was quantified using the delta delta C(T) method in comparison with L7.  
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Results  

Computational identification of conserved regions and CTCF binding sites 

To identify distal conserved regions, Fshr locus and its flanking areas encompassing a region of 

1.4 Mb was analyzed for conservation using the UCSC genome browser 

(http://genome.ucsc.edu/cgi--‐bin/hgGateway) and associated software (King, Taylor et al. 2005, 

King, Taylor et al. 2007). Potential regulatory elements were identified by using human FSHR as 

the base genome and Gallus gallus (chicken) as the most distant. In addition to alignment, 7X 

regulatory potential was employed to increase predictive measure of regulatory regions. 7X 

regulatory potential displays potential predictive scores by aligning the genome of human, 

chimpanzee, macaque, mouse, rat, dog, and cow and comparing the frequencies of short 

alignment patterns between known regulatory elements and neutral DNA, allowing for the 

identification of new putative regulatory element(Kolbe, Taylor et al. 2004). This analysis led to 

the identification of 30 evolutionary conserved regions (ECR) of which seventeen were mapped 

upstream to Fshr, seven to the intergenic region, six downstream (Table 1).  

These sequences were then analyzed in the CTCF database CTCFBSD 2.0 using the CTCFBS 

prediction tool (http://insulatordb.uthsc.edu/)(Bao, Zhou et al. 2008, Ziebarth, Bhattacharya et al. 

2013). CTCF employs different combinations of its zinc finger proteins to bind to divergent 

regulatory DNA sequences. Recent studies have identified the core regulatory regions bound by 

CTCF and these motifs were assigned position weight matrices (PWM). Six such PWM were 

identified and the CTCFBS prediction tool scores these PWM in the query sequence. Motifs with 

an overall high positive score indicating favorable match were chosen as probable CTCF binding 

sites(Ziebarth, Bhattacharya et al. 2013). Of the 30 conserved regions, ECR1, ECR1d, ECR1f, 
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ECR2, ECR5, and ECR15 had overall positive scores greater than 3, indicating high probability 

of CTCF binding (Table 2).  
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Table 1: Genomic location of ECRs in Rattus norvegicus (Rat) genome. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

ECR Chromosome Location Size (bp) 

ECR 1 Chr6:   23036890--‐23037477 588 

ECR 1c Chr6:  22585376--‐22586088 713 

ECR 1d Chr6:   22597052--‐22597262 211 

ECR 1f Chr6:  22614761--‐22616669     1909 

ECR 1g Chr6:   22590321--‐22590502 182 

ECR 2 Chr6:  22626739--‐22629962      3224 

ECR 3 Chr6:   22596865--‐22597324 460 

ECR 4 Chr6:   23287153--‐23287391 239 

ECR 5 Chr6:  23423202--‐23423600 399 

ECR 6 Chr6:   23219667--‐23220065 399 

ECR 7 Chr6:  23437816--‐23438244 429 

ECR 8 Chr6:   22771058--‐22771652 595 

ECR 9 Chr6:   22776439--‐22777106 668 

ECR 9b Chr6:  22785969--‐22786300 332 

ECR 10 Chr6:   22813283--‐22813805 523 

ECR 11 Chr6:   22826398--‐22826718 321 

ECR 12 Chr6:   22826285--‐22826757 473 

ECR 13 Chr6:  22845802--‐22846436 635 

ECR 14 Chr6:   23024900--‐23025427 528 

ECR 15 Chr6:   23048424--‐23049218 795 

ECR 16 Chr6:  23055601--‐23056494 894 

ECR 17 Chr6:   23148636--‐23149418 783 

ECR 18 Chr6:  23153766--‐23154371 606 

ECR 19 Chr6:   23167660--‐23168222 563 

ECR 20 Chr6:   23173974--‐23174670 697 

ECR 21 Chr6:  23180610--‐23181272 663 

ECR 22 Chr6:   23188053--‐23188745 693 

ECR 23 Chr6:   23195435--‐23196040 606 

ECR 24 Chr6:   23212514--‐23213040 527 

ECR 25 Chr6:   23259302--‐23260347      1046 
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Table 2: ECRs predicted to have CTCF binding sites 

 

 

 

 

 

 

 

 

 

 

Input 

Sequence 

 

Motif Sequence 

Motif 

Start 

Location 

 

Motif 

Length 

 

Score 

ECR 1 CACCATCAGCTGCC 
1104 14 

7.5 

ECR 1d AAAACAATAATAGGGATGTG
165 20 

22.9 

ECR 1f TGGCAAGCAGAGGGGAGTCT
44 20 

13.7 

ECR 2 TTCCATCTGCTGGA 
98 14 15.0 

ECR 5 AGCCATCTCCTGGC 
69 14 

14.3 

ECR 15 TAGCCACAGGGTGGCATTC 
139 19 

16.0 

ECR 19 GGAACAGCC 
512 9 

10.7 
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Figure 1: Expression of Fshr and Lhcgr in estrogen treated rat granulosa cells depleted 
of CTCF. Granulosa cells harvested from estrogen treated immature female rats were 
transfected with various amount of CTCF siRNA 60nm, 80nm, and 100nm. RNA was 
isolated 48 hours post transfection, reverse transcribed, and real time was done using 
primers against CTCF ; Fshr; Lhcgr and normalized to the internal control L7. CTCF 
was downregulated by approximately 70% (A), and Fshr levels was found to be 
increased roughly two-fold (B). No change was seen in Lhcgr levels (C). * p< 0.05  

C
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Knockdown of CTCF in rat granulosa cells increases transcription of Fshr 

To test if CTCF plays a role in regulation of Fshr, rat granulosa cells were transiently transfected 

with CTCF siRNA or control siRNA and qPCR was performed using primers specific for each 

gene (Figure 1). CTCF was downregulated by approximately 70% and the results showed that 

granulosa cells in which CTCF was knocked down, expression of Fshr increased two-fold, while 

the levels of Lhcgr remained unchanged. This data indicate that CTCF can modulate the level of 

Fshr mRNA.  

Discussion 

Following the initial characterization of the Fshr gene, a number of studies have identified 

regulatory elements at the promoter and its proximal regions (Heckert, Sawadogo et al. 2000, 

Heckert and Griswold 2002). These studies while highlighting important factors required for 

proper transcription of the Fshr gene, were unable to explain the mechanism for the genes cell 

specific expression (Heckert, Sawadogo et al. 2000, Nordhoff, Gromoll et al. 2003). In a bid to 

identify regions required for the cell specific expression, efforts were made encompassing the 

Fshr promoter and its surrounding regions, this body of work summarized that Fshr belonged to 

the class of genes that employed distal regions for transcriptional control. Previous studies from 

our laboratory identified seven such distal ECR regions, which were shown to possess 

transcriptional activity in vitro (Hermann, Hornbaker et al. 2007). With the advent of the UCSC 

genome browser and inclusion of genome sequences from a number of species, ranging from 

human to chicken, we were able to identify thirty ECRs, which were highly conserved indicating 

that these sequences likely harbor regulatory elements. Among the distal regulatory elements 

identified to play a role in distal regulation is the ubiquitous, multivalent protein CTCF that binds 
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to multiple DNA sequences by using different combinations of the twelve zinc finger proteins 

(Filippova, Fagerlie et al. 1996). Earlier work in CTCF depleted transgenic mouse using 

microarrays a number of misregulated genes, among which Fshr was found to be upregulated 

(Wan, Pan et al. 2008). Building on this finding and identification of highly conserved regions, 

we utilized the CTCF binding site prediction tool. Among the 30 ECR regions tested, seven were 

found to have overall high positive scores indicative of probable CTCF binding. Among the ECR 

regions predicted to be bound by CTCF, ECR1d, ECR1f, and ECR2 are located 3’ to the Fshr 

gene, while ECR1, ECR5, ECR15 and ECR 19 are 5’ to the gene. The intergenic location of 

these predicted binding sites corresponds to a study done by Kim et al, who mapped global 

distribution of CTCF and reported 46% of CTCF binding sites to be intergenic, similar to where 

our predicted CTCF bound ECR regions are located (Kim, Abdullaev et al. 2007, Jothi, 

Cuddapah et al. 2008).  

To analyze if CTCF does play a role in regulating Fshr, CTCF was knocked down in rat 

granulosa cells leading to relief of inhibition and increase of Fshr transcription by two-fold. This 

data indicates that CTCF binds within the Fshr locus, possibly at the predicted regions, inhibiting 

transcription, thus acting as a repressor. CTCF is a well-known repressor of gene transcription as 

documented in the chicken-myc gene and hTERT transcription (Filippova, Fagerlie et al. 1996, 

Renaud, Loukinov et al. 2005). It is possible that in vivo, CTCF activity keeps Fshr transcription 

level in check, optimizing binding of FSH to the receptor thus limiting ovarian response to 

gonadotropin stimulation. CTCF could mediate its repressor activity by homodimerizing as 

shown in Figure 2, isolating enhancers, and bound activators, physically blocking the interaction 

between these activator elements and the Fshr promoter. CTCF plays a major role in 

transcriptional activity, silencing, insulation and imprinting control (Phillips and Corces 2009, 
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Ohlsson, Bartkuhn et al. 2010). Concerning Fshr, CTCF possibly keeps Fshr regulation in check 

and thus indirectly regulating the delicate balance of folliculogenesis and oocyte development.  

In summary, computational analysis identified putative CTCF binding sites within highly 

conserved regions. Knockdown of CTCF relieved repressor activity on Fshr in granulosa cells, 

thus establishing that CTCF could regulate transcription of Fshr. Future experiments designed to 

identify CTCF binding regions and the chromatin architecture both in the presence and absence 

of CTCF will reveal the role played by this protein in regulating transcription of Fshr.  
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Figure 2: Possible mechanism of CTCF action on Fshr locus:  CTCF (green ovals) 
homodimerize leading to chromatin looping and altering its conformation. This altered 
conformation inhibits enhancers (blue ovals) from interacting with Fshr (red solid 
line), leading to repressed transcriptional activity.  
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Part 2: Steroidogenic Factor 1 
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Chapter 3: Introduction 
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Identification of Steroidogenic Factor -1  

 In the early 1990’s, analysis of the 5’ flanking region of genes encoding steroid hydroxylases, 

identified a common AGGTCA DNA recognition motif that interacted with the same DNA-

binding protein. This protein was designated as steroidogenic factor-1 (SF-1) or adrenal 4-

binding protein (Ad4BP) (Rice, Mouw et al. 1991, Morohashi, Honda et al. 1992). The unique 

expression profile of SF-1 in the adrenal gland, gonad and the pituitary, and its regulation of 

distinct genes encoding steroid hydroxylases provided the first clue to its important role in 

directing cellular expression of steroidogenic enzymes (Rice, Mouw et al. 1991, Morohashi, 

Honda et al. 1992, Hatano, Takayama et al. 1994, Morohashi and Omura 1996, Sadovsky and 

Crawford 1998). Cloning of SF-1 cDNA from mouse and bovine adrenals revealed that it 

belongs to the nuclear hormone receptor family and shared homology to the Drosophila nuclear 

receptor fushi tarazu factor 1 (FTz-F1), hence, the gene encoding SF-1 was originally designated 

but is now referred to as Nr5A1, in compliance with Nuclear Receptors Nomenclature 

Committee of 1999 (Scott and Weiner 1984, Lala, Rice et al. 1992, Morohashi, Honda et al. 

1992, Honda, Morohashi et al. 1993, 1999) .  

Structure of SF-1 

Like other nuclear hormone receptors, SF-1 harbors a DNA binding domain (DBD), a hinge 

region, a ligand-binding domain, and activation function 2 (AF-2) sequence activation domain 

(Figure 1). The DNA binding domain is the most conserved part of SF-1 and is comprised of two 

zinc-chelating modules, which coordinates binding to its DNA response element. The hinge 

region plays a role in homo-or heterodimerization of SF-1, and is a docking site for 

miscellaneous cofactors that affect transcriptional activity of SF-1 (Tan, Hall et al. 2002). The C-
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terminal ligand-binding domain is composed of a ligand binding pocket, dimerization site, 

activation function 2 (AF-2) sequence and co-factor binding site. This highly conserved site 

mediates dimerization with other receptors and contains ligand-induced activation as well as 

ligand-reversed transcriptional silencing domains (Sadovsky and Crawford 1998).   Unlike 

classic members of the nuclear receptor family, SF-1 lacks a ligand-independent activation 

function 1 sequence (AF-1) and depends on activation of AF-2 sequence for full transcriptional 

activity. Initially thought to function in absence of an exogenous ligand, X-ray crystallographic 

studies on bacterially expressed SF-1 has now identified phospholipids as ligands for SF-1 

(Krylova, Sablin et al. 2005, Li, Choi et al. 2005, Wang, Zhang et al. 2005). Mass spectrometry 

studies on SF1 immunoprecipitated from cAMP-stimulated H295R adrenocortical cells 

identified endogenous ligands, sphingosine (SPH) and lyso-sphingomyelin (lysoSM) which 

bound to the receptor. These ligands bind to SF-1 under basal conditions with decreased binding 

of sphingolipids to the receptor under cAMP treatment (Urs, Dammer et al. 2006). Hence, SF-1 

follows the basic structure of a classic nuclear receptor with the exception of the N-terminal AF-

1 domain and is a constitutively active lipid binding protein.  
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Figure 1: Structure of classic nuclear receptor and SF-1.  The classic nuclear receptor 
has two activation function (AF) domains, a DNA-binding domain (DBD), a hinge 
region and a ligand-binding domain (LBD). In contrast, SF-1 lacks a functional AF-1 
and transcriptional function rests on the conserved AF-2 (black box) located on the C-
terminal. SF-1 has a DBD containing two Zn fingers (gray boxes) followed by a Hinge 
region and a ligand-binding domain.  
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SF-1 Expression 

In developing embryos, in situ hybridization studies identified SF-1 expression as early as 

embryonic day 9.5 (E9.5) in the urogenital ridge, corresponding to the adrenogonadal 

primordium. During this time, the developing testes and the ovary are histologically 

indistinguishable and thus SF-1 represents the earliest marker of adrenal and gonadal 

differentiation. These groups of cells later give rise to two distinct populations of SF-1 

expressing cells; a group of cells adjacent to the dorsal aorta representing the adrenocortical 

precursors and cells adjacent to the coelomic epithelium that give rise to the bipotential gonad 

(Hatano, Takayama et al. 1994).  

SF-1 expression is first detected at E10-10.5 in the adrenal primordium preceding P450scc, 

which was not detected until E11, indicating that SF-1 is pivotal for the expression of steroid 

hydroxylases. The chromaffin cell precursors migrate to the adrenal primordium at E12.5-E13.5 

and SF-1 expression is limited to the outer cortical cells wherein it is expressed throughout 

gestation and postnatal life. SF-1 expression in the urogenital ridge at E9 precedes the onset of 

Sry expression during which the testes and the ovaries are indistinguishable and are termed as 

bipotential gonads (Parker and Schimmer 1997). Expression of Sry triggers testes specific gene 

to initiate differentiation of the testis. SF-1 expression persists in the testes, in both the interstitial 

region where steroidogenic Leydig cells reside and in the testicular cords, which contain fetal 

Sertoli cells and primordial germ cells. In contrast, SF-1 expression diminishes in the ovaries, 

both in transcript and protein levels, and does not resume until just before birth, when it is first 

detected in the theca and granulosa cells, indicating that decrease in SF-1 expression facilitates 

ovarian development (Hatano, Takayama et al. 1994, Takayama, Sasano et al. 1995).  
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SF-1 transcripts were also detected in the fetal spleen, anterior pituitary gland, and hypothalamus 

(Hatano, Takayama et al. 1994, Ikeda, Shen et al. 1994, Hatano, Takakusu et al. 1996, Hanley, 

Ball et al. 1999, Morohashi, Tsuboi-Asai et al. 1999, Hanley, Rainey et al. 2001).  In adults, SF-1 

is highly expressed in major steroidogenic cells; the three zones of adrenal cortex, testicular 

Leydig cells, and ovarian theca cells and granulosa cells and luteal cells (Honda, Morohashi et al. 

1993, Ikeda, Lala et al. 1993, Morohashi, Iida et al. 1994, Ramayya, Zhou et al. 1997, Morohashi 

1999). It is also expressed in pituitary gonadotrophs (Barnhart and Mellon 1994), ventromedial 

hypothalamic neurons, a subset of hippocampal neurons that co-express steroidogenic acute 

regulatory protein and aromatase. and the endothelial linings of the venous sinuses and pulp 

veins of the spleen (Ramayya, Zhou et al. 1997, Morohashi, Tsuboi-Asai et al. 1999). Low levels 

of SF-1 transcripts were also detected in the placenta (Morohashi, Hatano et al. 1995). Taken 

together these findings indicate that SF-1 plays a major role in all components of the 

hypothalamus-pituitary-adrenal (HPA) and gonadal (HPG) axis.  

Function of SF-1 

Global knockout of SF-1 

The expression pattern of SF-1 suggests that it acts at multiple levels of the HPG axis, and is 

required for adrenal and gonadal steriodogenesis. To understand the in-vivo role of SF-1, three 

separate laboratories utilized gene disruption models in embryonic stem cells to generate SF-1 

knockout mice, all of which showed similar findings (Luo, Ikeda et al. 1995, Luo, Ikeda et al. 

1995, Sadovsky, Crawford et al. 1995, Shinoda, Lei et al. 1995). Homozygous SF-1 knockout 

mice were born at expected Mendelian frequency of 1:4, establishing that SF-1 is not essential 

for prenatal survival. SF-1 null mice exhibited male to female sex reversal and adrenocortical 
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insufficiency due to complete absence of the adrenal glands and the gonads. Embryonic analysis 

of SF-1 null mice revealed an initial development of adrenogonadal primordia followed by 

apoptosis resulting in complete loss of adrenal glands and gonads. SF-1 is a known regulator of 

the Mullerian inhibiting substance (MIS), which is crucial for the regression of the Mullerian 

duct. These SF-1 null mice also lack testosterone resulting in regression of the Wolfian duct. The 

combination of these causes male-to-female sex reversal and these SF-1 knockout mice are born 

female irrespective of genetic sex. Interestingly, the gonadotropes of these SF-1 null mice 

showed impaired expression of a number of genes including LH-β, FSH-β, αGSU, and GnRHr, 

which are essential for reproduction. One of the surprising features was these knockout mice 

lacked the Ventral Medial Hypothalamus (VMH), a homeostatic relay center linked to metabolic 

and female reproductive behavior. Finally, these knockout mice also had defects in their splenic 

parenchyma. (Ingraham, Lala et al. 1994, Luo, Ikeda et al. 1994, Sadovsky, Crawford et al. 1995, 

Shinoda, Lei et al. 1995).  These global knockout mice died shortly after birth owing to 

adrenocortical insufficiency since they were rescued by administration of exogenous steroids 

(Ikeda, Luo et al. 1995).  

Tissue-specific knockout of SF-1 

Combined with the expression pattern and global knockout of SF-1, mice further underlined the 

role of SF-1 in adrenal and gonadal development and function. However, these SF-1 knockout 

mice died soon after birth complicating the effort to identify the role of SF-1 at specific sites. To 

define the role of SF-1 at specific tissues, Cre/LoxP system was used to produce tissue specific 

knockouts. Pituitary specific deletion of SF-1 mice was carried out by cre recombinase 

expression directed to the anterior pituitary gland by the 5’ flanking sequences of the α-subunit 

of glycoprotein hormones.  These αGSU-Cre/loxP mice lacked SF-1 in the anterior pituitary but 
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displayed normal levels in other tissues. These mice displayed diminished levels of pituitary 

gonadotropins and exhibited severe gonadal hypoplasia. In males, testis showed some 

differentiation, however, the germ cells were severely decreased in number, and lacked mature 

sperm. The Leydig cells were low in number and devoid of steriodogenesis. In females, ovaries 

develop follicles through the antral stage but do produce preovulatory follicles and corpora lutea 

(Zhao, Bakke et al. 2001). The females had hypoplastic uteri, indicating a severe impairment on 

sex steroid production in pituitary specific SF-1 knockout mice. Administration of exogenous 

pregnant mares serum gonadotropins (PMSG) to these pituitary specific knockout mice induced 

sperm maturation and increased proliferation of Leydig cells. Female mice showed PMSG 

induced follicular maturation and formation of corpora lutea, establishing that gonads of these 

mice were functional. These findings indicate that SF-1 plays an important role in regulation of a 

number of genes involved in the HPG axis and is essential for normal pituitary gonadotrope 

function (Parker and Schimmer 1997, Schimmer and White 2010).  

Anti-Müllerian hormone type 2 receptor-Cre (Amhr2-Cre) driven recombinase transgene was 

used to generate mice with SF-1 deletion specifically in the testicular Leydig cells and ovarian 

granulosa cells. These SF-1 adult male mice had hypoplastic testes and the testes failed to 

descend (Jeyasuria, Ikeda et al. 2004). These mice also had decreased expression of cholesterol 

side-chain cleavage enzyme (Cyp11a) and absence of steroidogenic acute regulatory (StAR) 

protein, which form the essential components of testosterone biosynthesis. Female mice with 

Amhr2 Cre specific deletion of SF-1 were infertile, with ovaries lacking corpora lutea and 

hemorrhagic cysts. Granulosa cell-specific SF-1 knockout mice had reduced estrogen levels, due 

to decreased expression of Cyp19a1 or reduced follicle numbers, thus providing conclusive 
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evidence that SF-1 was required for normal reproductive function (Jeyasuria, Ikeda et al. 2004, 

Pelusi, Ikeda et al. 2008).   

Ablation of SF-1 from the central nervous system (CNS) was directed by using a nestin-Cre 

transgene. These mice displayed normal development and function of the adrenal glands, 

pituitary, and gonads but the VMH nuclei were disrupted. In multiple behavioral tests, these 

CNS-specific knockout mice, both males and females, displayed decreased locomotor activity, 

exhibited heightened anxiety and later onset of obesity (Majdic, Young et al. 2002, Zhao, Kim et 

al. 2008). CNS-specific SF-1 knockout female mice showed impaired follicular maturation and 

decrease in lordosis, ovulation, and fertility, thus highlighting the crucial role of SF-1 in female 

reproduction (Kim, Li et al. 2010).  

SF-1 gene and transcription  

The Nr5a1/NR5A1 is located on mouse chromosome 2 and human chromosome 9. The gene is 

flanked on its 5’ side by NR6A1, which codes for germ cell nuclear factor, a member of the 

nuclear receptor family and 3’ side by GPR144 that encodes for probable G Protein-Coupled 

Receptor 144 (Figure 2). In addition to SF-1, the genomic sequence of Nr5A1 also encodes for 

embryonal long-terminal repeat-binding protein, ELP 1 and its isoforms ELP2 and ELP3 through 

alternate promoter usage and splicing (Figure 1). Among these four transcripts, SF-1 has 

emerged as a key regulator of endocrine homeostasis. Function analysis of ELP transcripts have 

revealed ELP1 acts as a repressor while ELP2 and ELP3 function as transcriptional activators 

(Ninomiya, Okada et al. 1995).  

While there is no evidence of a TATA box in the first 110bp in the 5’-flanking region of NR5A1, 

a number of other regulatory elements such as SRY (sex determining region Y)-box (SOX) 
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binding site, an E box, a CCAAT box and Sp1/Sp3 site have been identified (Schimmer and 

White 2010). In addition, two other Sp1/Sp3 sites are located between the +10 and +30 region 

upstream of the transcriptional start site (Figure 3) (Scherrer, Rice et al. 2002). Numerous other 

transcription factors that regulate SF-1 transcription such as GATA-4, WT1, Lhx9, SOX15, 

SOX30, TEAD-4 and CBX2, have been identified (Schimmer and White 2010) . To examine 

transcriptional requirements for Nr5a1 in vivo, short promoter fragments were introduced into 

transgenic mice. Earlier work identified a 90bp proximal promoter fragment reporter construct 

that was sufficient to direct SF-1 expression in Y1 adrenocortical cells (Woodson, Crawford et 

al. 1997). 
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Figure 2: Schematic organization of the mouse Nr5a1 gene.  Located on 
chromosome 2, Nr5a1 is flanked by Nr6a1, encoding germ cell nuclear factor and 
Gpr144 probable G-protein coupled receptor 144. SF-1 is encoded by seven exons 
as depicted in B, and codes for 462 amino acids and bears 94% homology to the 
human SF-1. In addition to SF-1, Nr5a1 also gives rise to three other  mRNA 
transcripts named named embryonal long-terminal repeat binding proteins (ELP1-
3). These ELP proteins are encoded by exons as depicted in the figure. ELP3 bears 
a very close resemblance to SF-1 except for the starting exon. In mouse, ELP1 is 
expressed in the gonads and in Y1 mouse adrenocortical cell line. ELP2 is not 
expressed in any mouse tissue, but similar to ELP1 is expressed in Y1 cell line. 
ELP3 bears an expression profile very similar to SF-1 and is expressed in the 
pituitary, adrenal, ovary, testis, and spleen. ELP3 expression has also been found 
in the cerebrum, heart, kidney, spleen and Y-1. The potential biological role of 
these isoforms are unknown although in vitro studies have shown that ELP1 acts as 
a repressor while ELP2 and ELP3 function as transcriptional activators. Adapted 
from (Parker, 1997) 
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Figure 3: Schematic representation of SF-1 and its proximal promoter. The transcription start 
site (TSS) is depicted at base pair 0 and indicated by the bend arrow. The box regions 
represent conserved elements and their location from the TSS is depicted by the base pairs. 
Transcription factors that bind to these conserved regions are in ovals. Different SF-1 
expressing tissues utilize multiple combinations of transcription factors and include many 
more proteins than depicted here. Sx is the binding site for Sox which is required for SF-1 
expression in the Sertoli cells of the testes; The E-box is bound by the upstream stimulatory 
factors 1 and 2; C represents a CCAAT box that binds to nuclear factor Y (NFY) and Sp 
represents binding site for transcription factors Sp1 and Sp3. Adapted from (Schimmer and 
White 2010). 
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To analyze regions required for proper SF-1 expression, bacterial artificial chromosome (BAC) 

transgenic mouse were generated with the enhanced green fluorescent protein reporter gene 

(eGFP) under the control of 50kb of the Nr5a1 locus encoding for SF-1. Analysis of transgenic 

SF-1/eGFP mouse embryos indicated that this transgene was able to replicate the developmental 

profile of SF-1 in the gonads, adrenal cortex and VMH. In adult transgenic mouse, this fragment 

was able to replicate SF-1 expression in the adrenal cortex, testes, ovaries, and the VMH. 

However, expression was not seen in the corpora lutea or the anterior pituitary gland indicating 

that regulatory regions beyond those expressed in the construct were required (Stallings, Hanley 

et al. 2002).   A somewhat larger fragment that encompassed the -590 to +85 region cloned in 

front of the Lac Z gene was able to recapitulate expression of SF-1 only in the gonads (Wilhelm 

and Englert 2002). Transgenic mouse that expressed mouse genomic DNA extending from 

exon2 of Nr5a1 into the upstream Nr6a1 was created. This transgene showed SF-1 expression in 

the adrenal cortex, testicular Leydig cells, ovarian theca cells, the ventromedial hypothalamus 

and spleen, but not in the pituitary gland or corpus luteum (Stallings, Hanley et al. 2002). To 

recapitulate SF-1 expression, transgenic mouse expressing a much larger 500-kb yeast artificial 

chromosome (YAC) that contains the entire rat Nr5a1 locus plus 5′ and 3′ sequence extending 

into the Nr6a1 and the Psmb7 genes was developed. These mice were able to duplicate 

endogenous expression of SF-1 both spatially and quantitatively indicating that the transgene 

contained all necessary sequences for proper SF-1 expression (Karpova, Presley et al. 2005).  

In addition to the identified regulatory sequences and transcription factors, Nr5a1 expression is 

regulated by epigenetic modifications. In particularly DNA methylation appears to act as another 

layer of regulation. In endometriotic tissues, the CPG islands in the Nr5a1 promoter were found 

to be hypomethylated when compared to normal endometrial tissues leading to aberrant 
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expression of a number of steroidogenic genes including Nr5a1 (Xue, Lin et al. 2007). When 

normal endometrial cells were treated with 5-aza-deoxycytidine, a demethylating reagent, the 

Nr5a1 promoter was demethylated leading to transcription of Nr5a1, whereas methylation led to 

loss of activity (Hoivik, Aumo et al. 2008). The correlation between methylation of the Nr5a1 

promoter and activity is also seen in steroid-secreting cell lines and normal steroid-secreting 

tissues. The Nr5a1 proximal promoter is unmethylated in developing testis and ovary and 

hypermethylated in tissues that do not express for SF-1 (Mohn and Schubeler 2009).  
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Chapter 4: Analysis of Fast, Ftz-F1-associated transcript, suggests functional 

cooperation with the nuclear receptor Steroidogenic Factor 1 
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Abstract 

An evolutionarily conserved expressed sequence tag lacking an identifiable open reading frame 

was identified and named Ftz-F1 associated transcript (Fast) for its proximity and functional 

associations with Ftz-f1 (Nr5a1), the gene encoding steroidogenic factor-1 (SF-1).  SF-1 is a 

nuclear receptor and a key determinant and regulator of the adrenal and reproductive axes. 

Mammals with SF-1 mutations display a range of phenotypes, including absence of adrenal 

glands and gonads, diminished pituitary gonadotropins, disruption of the ventromedial 

hypothalamus, ovarian failure, and XY-sex reversal. Directional RT-PCR demonstrated Fast is 

transcribed in opposite direction to that of Ftz-F1 and 5’ and 3’ RACE showed Fast is composed 

of three exons, polyadenylated, and derived from multiple transcriptional start sites that border 

and extend into exon 1g of Ftz-F1.  In addition, sequence analysis revealed two possible spliced 

variants that lacked part of exon 3.  RT-PCR, using RNA from multiple mouse tissues and cell 

lines, revealed Fast and Ftz-f1 share the same expression profile. Furthermore, Fast transcript 

was located predominantly in cytoplasm, when analyzed in MA-10 Leydig cell lines. In addition, 

in P-19 embryonal-carcinoma cells, SF-1 and Fast transcript levels were similarly attenuated in 

response to retinoic acid, while in granulosa cells, both were induced by in vivo treatment with 

pregnant mare's serum gonadotropin.  To evaluate function, Fast knockdown and overexpression 

paradigms were used. Unexpectedly, neither strategy caused a change in SF-1 protein or mRNA 

levels.RNA structural analysis and preliminary northern blot suggests Fast gives rise to a small 

RNA and could possibly regulate other genes. Thus, Fast is a long non-coding RNA that is 

regulated like Ftz-F1 with respect to its tissue profile and hormone response, suggesting it acts 

within the same biological pathway and potentially, in conjunction with SF-1, regulate 

development and function of adrenal glands and gonads. 
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Introduction 

Steroidogenic factor 1 (SF-1, Ad4BP, NR5A1) is a nuclear hormone receptor and encoded by 

one of four known transcripts derived from Ftz-F1 gene, officially known as Nr5a1. Of the four 

Ftz-F1 gene products, SF-1 has received the most interest due to its critical roles in endocrine 

homeostasis and organ development (Luo, Ikeda et al. 1995, Ikeda 1996, Parker and Schimmer 

1997).  SF-1, first identified as a protein that bound a common regulatory motif 

(PyCAAGGTCA) within several genes associated with steroid biosynthesis, has emerged as a 

major regulator of the endocrine system (Lala, Rice et al. 1992, Morohashi, Honda et al. 1992, 

Schimmer and White 2010, Gardiner, Shima et al. 2012). Expression of SF-1 is limited to a 

discrete set of cells that are functionally linked by their role in the endocrine system. More 

specifically, SF-1 is produced in supporting cells of the testis (Sertoli) and ovary (granulosa 

cells), steroidogenic cells of the adrenal gland (adrenocortical), testis (Leydig), and ovary 

(theca), gonadotrope cells of the pituitary, and cells within the ventromedial hypothalamus 

(Honda, Morohashi et al. 1993, Ikeda, Lala et al. 1993, Barnhart and Mellon 1994, Ingraham, 

Lala et al. 1994, Morohashi, Iida et al. 1994, Morohashi 1999, Ngan, Cheng et al. 1999).  During 

development, SF-1 is first observed on embryonic day 9 (e9) in a single population of cells in the 

urogenital ridge that subsequently resolve into two discrete populations that give rise to 

adrenocortical cells and gonadal cells (Ikeda, Shen et al. 1994, Morohashi, Hatano et al. 1995, 

Hanley, Ball et al. 1999, Hanley, Rainey et al. 2001).  By e12.5, SF-1 transcripts are limited to 

the gonad, the adrenal primordium, and the diencephalon, as development continues, SF-1 

expression in the gonads becomes sexually-dimorphic with higher levels observed in the 

developing testis (Ikeda, Shen et al. 1994, Morohashi, Hatano et al. 1995, Hanley, Ball et al. 

1999). While SF-1’s expression profile implicated it in transcriptional roles unrelated to 



87 
 

steroidogenesis, it was not until mice lacking Ftz-F1 were generated that it was recognized as a 

mediator of organ development.  Four different SF-1 knockout models were created and the 

results from each demonstrated the requirement for SF-1 in development of the adrenal glands 

and gonads (Ingraham, Lala et al. 1994, Luo, Ikeda et al. 1994, Sadovsky, Crawford et al. 1995).  

Accordingly, SF-1 deficiency resulted in male-to-female sex reversal and early postnatal death, 

due to the loss of testicular and adrenal steroids, respectively.   Further evaluation of null 

embryos indicated that organ development initiated but regressed soon after mesenchymal 

thickening of the genital ridge (Luo, Ikeda et al. 1994).  

Considering the critical role of SF-1 in development and function of the endocrine system, there 

has been much enthusiasm to elucidate the regulatory mechanisms that specify SF-1 transcription 

in the appropriate temporal and spatial manner.  While DNA sequences comprising the SF-1 

promoter region have been thoroughly evaluated, transgenic analysis of the promoter region in 

mice, revealed it was insufficient to establish the tissue-, cell- and developmental specificity of 

SF-1 expression(Nomura, Bartsch et al. 1995, Woodson, Crawford et al. 1997, Daggett, Rice et 

al. 2000, Wilhelm and Englert 2002).   Other studies, using increasingly larger amounts of DNA 

as transgenes, expanded the location of regulatory sequences required for transcriptional 

competency to nearly 150kb spanning the Ftz-f1 locus (Stallings, Hanley et al. 2002, Karpova, 

Presley et al. 2005).  Results from these studies revealed a mechanism of SF-1 regulation that 

emphasizes the role of distal regulatory sequences in cell-specific expression. 

In an effort to resolve the location of cis-acting regulatory elements that control SF-1 expression, 

comparative genomics was used to identify highly conserved sequences between the mouse and 

human loci that serve as candidate regulatory elements.  While several conserved, non-coding 

sequences were identified in this analysis and are reported elsewhere, a conserved EST located 
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between Ftz-f1 and Gcnf was uncovered (Karpova, Presley et al. 2005).  The EST was 1377 bp 

long, encoded by three exons and was transcribed in the opposite orientation from Ftz-f1. 

Expression profile of Fast was nearly identical to SF-1 and lacked open reading frames, 

indicating it was a long noncoding RNA (lncRNA).  This study further characterizes the non-

coding RNA and provides preliminary evidence that it is a precursor to a small RNA of unknown 

function. 

 

Results 

Comparative genomics revealed two conserved ESTs upstream of Ftz-f1. To identify 

conserved, non-coding sequences in proximity to Ftz-F1, genomic sequences of human and 

mouse Ftz-F1 were compared using pair-wise blast analysis.  The identified conserved sequences 

were next compared to sequences in the expressed sequence tag databases, revealing that two of 

the conserved sequences corresponded to novel transcripts cataloged in a RIKEN testis cDNA 

library (Fig. 1, Accession #AK017050 and AK007201). BLAST analysis of AK007201 

confirmed its genomic location approximately 10kb 5’ to Ftz-F1 exon 1a and revealed its 

identity with another EST (Accession #AF390897S4), which indicated it was expressed from 

Nr6a1, the 5’ proximal gene to Ftz-F1 that encodes Germ-cell nuclear factor, Gcnf (Fig. 1). 

Alignment of AK017050 to mouse Ftz-F1 revealed two exons.  The larger exon (790bp) 

contained the identified conserved sequence, which localized 5.3kb 5’ to Ftz-F1. The smaller 

exon (125bp) localized just 5’ to Ftz-F1 exon 1g (Fig. 1).  The genomic location and transcript 

processing revealed EST AK017050 as a novel transcript derived from the Ftz-F1 locus and it 

was named Ftz-F1-associated-transcript or Fast.  
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Fast transcriptional orientation opposes that of Ftz-f1.   The novelty of Fast and its 

association with SF-1 prompted further investigation to determine its transcript characteristics 

and expression profile. Transcriptional orientation of Fast was determined by directional RT-

PCR, using cDNA generated with oligo-dT or primers of different orientations corresponding to 

sequences within the two identified Fast exons (Fig.2A).  Following PCR of cDNA generated 

from mouse testis RNA, Fast products were visualized by Southern blot analysis, using an 

internally located probe (Fig. 2B).  Two distinct amplified products were observed, when 

template cDNA was synthesized using oligo-dT or primer 2, but not primer 1, indicating Fast is 

transcribed in opposite orientation to Ftz-F1, proceeding from the shorter exon, closest to Ftz-F1 

exon 1g, towards the larger exon, located midway between Gcnf and Ftz-F1 (Fig. 2 A&B).  Fast 

expression and transcriptional orientation were also examined from human testis RNA, using 

primers directed to human sequence syntenic to the identified mouse exons.  No amplified 

product for human FAST was observed using primers located in the two putative exons (primers 

1 & 2, data not shown).  However, amplification of human FAST was observed using primers 

(primers 1 & 3) located within the single conserved exon and cDNA synthesized with either 

oligo-dT or primer 1 (Fig. 2 C&D).  Taken together, these data indicate that Fast is an 

evolutionarily conserved, poly-adenylated transcript that arises from syntenic regions of mouse 

chromosome 2 and human chromosome 9 in the opposite orientation to that of Ftz-F1 (Brian 

Hermann- Regulation of FSH-receptor and SF-1: transcriptional control in reproduction).  

Furthermore, the studies revealed that mature mouse Fast (mFast) is produced through splicing 

of at least two exons, while the complete exon structure of human FAST is currently unresolved.        

Fast is a noncoding RNA consisting of multiple transcript variants.  Further sequence 

analysis performed on PCR-amplified Fast products confirmed mFast as a poly-adenylated, 
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spliced transcript, and revealed a third exon and several potential splice variants within its 

transcript pool (Fig. 3). 5’RACE was used to map the transcriptional start site for mFast and 

revealed several distinct 5’ ends, three of which overlapped Ftz-f1 exon 1g (Fig. 3).  Similarly, 

3'RACE was used to identify the 3’ end of mFast transcripts and revealed the presence a non-

canonical poly-A signal sequence (CATAAA) that likely directs transcript poly-adenylation.  In 

addition to identification of a third mFast exon, sequence analysis revealed two amplified 

products lacking portions of exon 3. Variant 1 represents loss of 182bp from exon 3, while 

variant 2 lacks 71bp. While it is currently unknown if these represent true splice variants or 

amplification artifacts caused by strong secondary structure, it is interesting to note that the 

deleted sequences reside within the regions of greatest conservation. Regardless, the studies 

demonstrate the existence of multiple mFast transcript variants that result from the use of 

multiple transcriptional starts sites and at least one splice variant based on inclusion of the small 

exon 2 (Fig. 3).  Similar experiments showed the existence of human FAST and revealed that it 

contains only the large exon homologous to mouse exon 3 and has a non-canonical poly-A signal 

similar to mouse Fast (Brian Hermann- Regulation of FSH-receptor and SF-1: transcriptional 

control in reproduction).  

Fast is predominantly cytoplasmic. To delineate the function of the lncRNA, its sub-cellular 

location was determined (Fig. 4). RNA from mouse MA-10 cells was isolated from cytoplasmic 

and nuclear fractions, which were assayed by RT-PCR for Fast and Gapdh as control. RT-PCR 

was done subsequently using the gene-specific primers for the noncoding RNA (Table 1). PCR 

products of Fast were obtained predominantly in the cytoplasmic fraction, with a no-RT control 

to eliminate any false amplification that might arise due to DNA contamination.  
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Fast can produce a 7kd protein.  To determine if Fast is capable of producing smaller peptides, 

the RNA was used in an in vitro translation system and labeled proteins visualized by 35S 

methionine (Fig.5). A ~7 kd protein was detected in pcDNA3 Fast construct, indicating that a 

small protein maybe translated under in vitro conditions.  The control plasmid that harbors the 

luciferase and DMRT1 was transcribed in full length in vitro. Inspection of cDNA sequences for 

both human and mouse Fast failed to identify any open reading frames (ORFs) coding for 

proteins larger than 260 or 194 nucleotides, respectively.  Furthermore, none of these small 

ORFs were conserved between mouse and human Fast, nor did they share homology with any 

known protein. This characteristic is consistent with transcripts designated as noncoding RNAs 

(ncRNAs), in which the average length of the longest ORF is approximately 200 nucleotides  

(Numata, Kanai et al. 2003). Thus, the structural studies of Fast reveals it to be a conserved, 

polyadenylated, spliced transcript that does not code for a functional protein, suggesting it is a 

member of a growing class of ncRNAs that contribute to or are implicated in numerous 

biological processes.    

Fast is co-expressed with SF-1.   Fast expression was examined by RT-PCR of RNA isolated 

from adult mouse tissues and cell lines.   Interestingly, the tissue expression pattern for Fast was 

closely identical to that of SF-1, with both transcripts detected in adrenal, testis, pituitary, and 

ovary (Fig. 6).  Neither Fast nor SF-1 was consistently detected in mouse spleen, in contrast to 

previous reports of SF-1 in this tissue (Morohashi 1999, Kimura, Yoshii et al. 2000, Karpova, 

Presley et al. 2005). The conflict may reflect differences in the methodology used to detect Ftz-

F1 transcripts.  To determine specific Fast-expressing cell types, mRNA in situ hybridization 

was performed. However, high background hybridization precluded identification of cellular 

expression patterns, using this method.  To help circumvent this obstacle an alternative approach 
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was employed that examined Fast in SF-1-positive cell lines using RT-PCR.   The results 

showed Fast and SF-1 expression in many of the same tissues and cell line, including MA10 

Leydig cells (Fig. 6) (Brian Hermann- Regulation of FSH-receptor and SF-1: transcriptional 

control in reproduction). In summary, the expression data show identical expression patterns for 

Fast and SF-1, at both the tissue and cellular level. The similar expression patterns of SF-1 and 

Fast suggested they share similar regulatory mechanisms.  

To further explore this avenue, the response of SF-1 and Fast to retinoic acid (RA) was 

evaluated in P-19 embryonal carcinoma cells.  Previous studies have shown time-dependent 

declines in SF-1 expression in P-19 cells exposed to RA (Barnea and Bergman 2000, Gu, 

Goodwin et al. 2005).  RNA samples from P-19 treated cells obtained from Dr. Austin Cooney 

were evaluated for SF-1 and Fast expression by semi-quantitative PCR.  Results from the 

analysis revealed that both SF-1 and Fast transcripts decreased in response to RA, with notable 

decreases in transcript levels after 36 hours of treatment and nearly undetectable levels by 72 

hours (Fig. 7).  No change was observed in the L7 mRNA control (Brian Hermann- Regulation 

of FSH-receptor and SF-1: transcriptional control in reproduction). 

In addition, hormonal response of Fast in mouse granulosa cells was examined.  Expression 

analysis of Fast in RNA samples isolated from hormone-treated granulosa cells (graciously 

provided by Dr. Lane K. Christenson) was evaluated. This revealed an increase in Fast 

transcripts 48 hours after PMSG stimulation (Fig. 8).  In summary the expression studies show 

Fast expression is hormonally regulated, which together with its restricted tissue profile, strongly 

support its role as a functional ncRNA.  Its striking similarities to SF-1 suggest Fast and SF-1 

share an important functional relationship and act within the same biological pathways. 
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Fast does not regulate SF-1 mRNA stability.  Because shared expression and regulatory 

profiles of SF-1 and Fast, suggested a functional relationship, the effect of Fast knockdown on 

SF-1 mRNA was examined.  short hairpin RNAs (shRNAs) were introduced in MA10 Leydig 

cells to decrease Fast levels (Figure 9A).Semi-quantitative RT-PCR showed that despite 

reduction of Fast mRNA by >80%, there was no notable decrease in SF-1 mRNA. (Fig.9 B). 

Further RT-PCR analysis of genes under SF-1 regulation showed no change in Cyp17 and StAR, 

mRNA levels indicating that they are not regulated by Fast (Figure 10). Furthermore, over 

expression of the Fast transcript in MA 10 cells did not alter mRNA levels of SF-1 (Figure 11). 

Fast does not regulate SF-1 protein levels. SF-1 regulates steriodogenesis which is regulated 

by gonadotropins via cAMP. Thus, Fast may act in conjunction with the cAMP pathway to 

regulate SF-1. MA-10 cells were transfected with mu6 shRNA control and Fast shRNA 6, and 

48 hrs post transfection cells were treated with cAMP and harvested at various time points of  

0hr, 1hr, 2hr, and 6 hrs (Figure 10). No change in SF-1 protein was detected by Western blot 

with either mU6 or Fast shRNA or Fast over expression (Fig. 12, 13)  

Discussion 

In the current study, we characterized a conserved transcript within the Ftz-F1 locus that lacks an 

identifiable ORF expressed and is regulated in a manner that resembles SF-1. A ~7kd protein 

was detected in the pcDNA3 Fast construct in our in vitro transcription translation assay. On 

closer analysis of the Fast transcript we were able to identify an open reading frame that may 

contribute for the expressed protein. However, owing to the fact that it is an in vitro transcription 

translation assay, it is possible that what we are seeing is a spurious reaction (Dinger, Pang et al. 

2008). A number of bifunctional RNAs have been identified that have been found to function at 
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both the transcript level and at the protein level. Examples of such bifunctional RNA include 

Steroid Receptor Activator, VegT and Oskar mRNA [ reviewed in(Dinger, Pang et al. 2008) ]. 

While the data are intriguing on several levels, Fast’s close association with SF-1 and its status 

as a noncoding RNA (ncRNA) are features, which reveal its greatest potential.  In particular, its 

expression profile and response to retinoic acid and FSH suggest that, like SF-1, it too acts to 

control normal development and endocrine homeostasis.  Furthermore, the molecular 

characteristics of Fast place it in the family of mRNA-like ncRNAs, which not only contribute 

significantly to the transcribed genome but whose members are increasingly identified with 

functions in a variety of biological processes.  

With completion of the human genome came the surprising finding that only 25,000 or so 

protein-coding genes were required to direct such a complex biological program (Venter, Adams 

et al. 2001, 2004).  It was then revealed that the number of expressed transcripts was much 

greater than the number of protein coding genes predicted from genome annotation (Okazaki, 

Furuno et al. 2002, Carninci, Kasukawa et al. 2005, Mattick 2005).  Resolution of this 

discrepancy came with the discovery that a significant portion of the genome gives rise to 

transcripts that do not code for proteins.  Thus, tiling experiments across ten human 

chromosomes revealed approximately 10% of the genome is expressed as polyadenylated 

transcripts, a number ten times greater than that for protein-coding genes and extensive analysis 

of mouse transcriptional units revealed a similar difference in the number of transcripts to 

estimated protein-coding genes (Carninci, Kasukawa et al. 2005, Cheng, Kapranov et al. 2005).  

While there is evidence that many of these putative transcripts represent library contamination 

from genomic DNA or unprocessed pre-mRNA, or alternatively nonspecific transcriptional 

noise, a wealth of studies substantiate important biological roles for polyadenylated ncRNAs 
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(Ravasi, Suzuki et al. 2006).  The few well-characterized ncRNAs identify functions in X-

chromosome inactivation, chromatin structure, DNA imprinting, DNA methylation, 

transcription, environmental response, development, and cell differentiation, and has led to 

recognition of the potential magnitude of their biological importance [reviewed in (Kung, 

Colognori et al. 2013)].  Well known examples of such ncRNAs include Xist, TsiX, H19, 

Kcnq1ot1, Air, and MALAT1.   Xist, found in both mice and humans, localizes to the inactive X 

chromosome in females to control dosage compensation (Lyon 1961, Lee 2011).  It is also 

regulated by the ncRNA TsiX (Lee, Davidow et al. 1999).  H19, Kcnq1ot1, and Air are 

mammalian RNAs associated with genomic imprinting (Brannan, Dees et al. 1990, Bartolomei, 

Zemel et al. 1991, Lee, DeBaun et al. 1999, Lyle, Watanabe et al. 2000). MALAT1 a nuclear 

lncRNA, is associated with various cancers and regulates a number of cytoskeletal and 

extracellular matrix genes (Ji, Diederichs et al. 2003, Tano, Mizuno et al. 2010, Lin, 

Roychowdhury-Saha et al. 2011). 

While the concept of noncoding RNAs (ncRNAs) is not novel, their extensive contribution to the 

expressed portion of the genome came as a surprise and the resulting biological implications has 

brought new appreciation to these RNAs and intensified research in order to understand their 

functional potential. In addition to the traditional RNA polymerase III-derived transcripts, tRNA 

and rRNA, there are numerous classes of noncoding RNAs including; microRNA (miRNA), 

small interfering RNA (siRNA), small nuclear RNA (snRNA), small non-mRNA (snmRNA, 

a.k.a small ncRNA), small nucleolar RNA (snoRNA), small temporal RNA (stRNA), and large, 

mRNA-like ncRNA [reviewed in (Guil and Esteller 2012)] . While the mechanisms and 

characteristics of these RNAs are still being revealed, these non-coding RNA can be classified 

according to their nucleotide size and function.  For small noncoding RNAs, the most 
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extensively studied are the 21–25 nucleotide non-mRNAs, which include miRNAs, siRNAs, and 

the 100-200 nucleotide snoRNAs.  In animals, many miRNAs and all snoRNAs are located 

within introns [reviewed in (Mattick and Makunin 2005)].  Both siRNAs and miRNAs act to 

suppress gene expression by interacting in a sequence-specific manner with target mRNAs to 

regulate their stability and translation.  They are also both excised from larger ncRNAs by RNase 

III digestion, requiring the parent RNA to have double-stranded secondary structure [reviewed in 

(Ghildiyal and Zamore 2009)].  Small nucleolar RNAs function within the nucleolus to guide 

ribosome biogenesis  (Eddy 2001).  These RNAs fall into two general classes, C/D box and 

H/ACA snoRNAs, which direct ribose methylation and pseudo-uridylation of rRNA, 

respectively. Among small ncRNAs, miRNAs have received the greatest attention due to their 

participation in diverse regulatory pathways, including control of developmental timing, 

haematopoietic cell differentiation, apoptosis, cell proliferation and organ development 

(Pasquinelli 2012).  

While the above studies demonstrate important functional roles for these specific ncRNAs, they 

do resolve the question of function with respect to the numerous uncharacterized ncRNAs 

identified in expression libraries and if they, in general, are biologically important or an artifact 

of genome analysis. However, studies have begun to take more global approaches to determine if 

these ncRNAs represent functional RNAs.  In a study by Cawley et al. binding sites for the 

transcription factors Sp1, cMyc, and p53 were mapped along human chromosomes 21 and 22 to 

help identify promoters regulated by these proteins (Cawley, Bekiranov et al. 2004).  The results 

revealed the surprising finding that only 22% of the binding sites associated with protein-coding 

genes, while 36% of the sites were correlated with ncRNAs.  Further examination showed that 

the ncRNAs on these chromosomes acted similar to the coding genes in response to retinoic 
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acid-induced differentiation. Likewise, studies in mice showed that many cloned cDNAs lacking 

open reading frames (ORFs) were derived from genuine transcripts of unknown function and that 

these ncRNAs, in general, have larger exons and fewer introns than protein-coding transcripts.  

The study also revealed that a significant proportion of ncRNAs are expressed in a tissue-specific 

manner and were regulated by extracellular signals (Ravasi, Suzuki et al. 2006). More recently, a 

study by Willingham et al. used shRNAs to knockdown expression of selected ncRNAs from the 

RIKEN Fantom2 mouse cDNA collection that showed significant sequence conservation to 

human genomic sequence.   Eight new functional ncRNAs were identified, six essential for cell 

viability, one a repressor of Hedgehog signaling, and one a repressor of the transcription factor 

NFast called NRON  (Willingham, Orth et al. 2005).  Together, the findings indicated that 

ncRNAs are an important, regulated component of the mammalian genome and represent a 

largely uncovered level of gene regulation in complex organisms.    

Importantly, transcription of one Fast exon and its orientation was conserved between species, 

suggesting that Fast was not a merely non-functional artifact of abundant, nearby SF-1 

transcription.  The most intriguing feature of Fast was its shared expression profile with SF-1, 

which strongly implicates a functional relationship between their respective protein and RNA 

products.  Since Fast and SF-1 are expressed and regulated similarly, a concerted regulatory 

scheme for these two genes would be most efficient, and thus, the two genes may share some of 

the same transcriptional regulatory mechanisms.  While its expression is clear in the human 

testis, it is not known if the full extent of Fast expression completely mimics human SF-1 

expression.  

Although a functional relationship between Fast and SF-1 were suggested by their shared 

expression patterns, a cellular or molecular role for Fast was not immediately apparent.  At least 
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one possibility, however, was based on reports of other non-coding RNAs, which suggest that 

Fast mRNA could be processed to form a miRNA or siRNA.   These two types of small ncRNAs 

(generally 20-25nt) constitute a growing class of small regulatory RNAs that control expression 

of protein-coding genes via an antisense-RNA mechanism by blocking mRNA translation or 

directly targeting mRNA degradation by hybridization with the homologous sequence in other 

genes (reviewed in (Huttenhofer, Schattner et al. 2005)).  Although experiments in this study 

indicate that Fast does not regulate SF-1 expression via its homology to Ftz-f1 exon 1g, it is 

possible that another portion of Fast produces a small RNA that is homologous to one or more 

other genes.   

In support of this theory, RNA secondary structure modeling indicated several highly stable 

stem-loop and hairpin structures which in the Fast cDNA, which would form the precursors 

necessary for generating a small RNA by RNase III digestion.  Additional evidence was obtained 

experimentally by detection of a small RNA containing Fast sequence in Fast expressing cells 

within the highly conserved segment of the gene (data not shown).  Thus, these results raise the 

possibility that secondary structure in Fast is processed to form a small RNA which serves some 

function in SF-1 positive cells.  Although this possibility is intriguing, a significant number of 

non-coding RNAs are emerging that have no known associated function, raising the possibility 

that a large number of non-functional ncRNAs are produced in eukaryotic cells.  Although we 

cannot exclude Fast as a member of this latter non-functional class, its high level of evolutionary 

conservation, intriguing expression pattern, and opposite transcriptional orientation to Ftz-f1 

suggest that Fast is not merely coincidental.  Ongoing experiments are seeking to clarify the 

existence of a small RNA produced from Fast and to determine its function in expressing cells.   
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The extensive biological importance of small ncRNAs to a wide array of critical developmental 

and physiological processes has emerged over the last several years.  If subsequent studies 

demonstrate that Fast produces a small ncRNA, it may therefore play a fundamental regulatory 

role in expressing tissues.   Some examples of miRNAs which are expressed at specific 

developmental time-points or during particular processes include those shown to participate in 

the mechanisms controlling stem cell and hematopoietic lineage differentiation, insulin secretion, 

and some which are imprinted, just to name a few (Seitz, Youngson et al. 2003, Seitz, Royo et al. 

2004, Suh, Lee et al. 2004).  Based on these exciting findings, there is tremendous potential that 

Fast participates in a novel physiological or developmental process that is key to endocrine 

development and function. 
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Materials and Methods 

Assembly, annotation and comparative sequence analysis of the human and mouse Ftz-f1 

loci.  A 4187947bp subsequence of human chromosome 9 genomic contig (Accession 

#NT_008470) containing the entire human FTZ-F1 gene and roughly 2Mb each of 5’ and 3’ 

flanking sequence was identified in the NCBI Entrez Nucleotide search engine 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide). The mouse Ftz-f1 gene was 

identified within a single chromosome 2 genomic contig (Accession #NT_039206) in the same 

way.  Repetitive sequences were identified and masked using the Repeatmasker web server 

(http://ftp.genome.washington.edu/cgi-bin/RepeatMasker).  Exons were assigned using the 

Spidey mRNA-to-genomic alignment program within NCBI 

(http://www.ncbi.nlm.nih.gov/Sitemap/index.html#Spidey).  Two expressed sequence tags 

(ESTs) (Accession #AK017050 & #AK007201) were identified by sequence comparison of the 

rat and human FTZ-F1 loci using pairwise Blast alignment through the NCBI web site 

(http://www.ncbi.nlm.nih.gov/; Tatusova and Madden, 1999) under the program’s default 

parameters (Cost to open a gap [5], Cost to extend a gap [2], Penalty for a mismatch [-2], 

Reward for a match [1], Expectation value (E) [10], Word size, 11 for blastn) and a minimum 

conservation level of 75%.   

The analysis used a FTZ-F1-containing subsequence of a human chromosome 9 contig 

(Accession #NT_008470) and a mouse chromosome 2 contig (Accession #NT_039206) 

containing Ftz-F1.  Repetitive sequences were identified and masked using the web-based 

program Repeatmasker, exons assigned, and the sequences aligned using the BLAST sequence 

alignment program through the National Center for Biotechnology Information (NCBI).  All 
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identified conserved sequences were examined against the nonredundant and expressed sequence 

tag databases at NCBI.    

Cell culture conditions.  Mouse P19 embryonal carcinoma (EC) cells were maintained in 

Dulbecco’s modified Eagle medium supplemented with 10% fetal calf serum, 2 mM glutamine, 

100 U/ml penicillin, and 100 mg/ml streptomycin.  For retinoic acid (RA) treatment of P19 cells, 

1 uM RA was added to growth media for 12, 24, 36, 48 or 72 hours prior cell harvest. MA-10 

cells, a mouse Leydig tumor cell line were cultured as described (Ascoli 1981) . Mouse 

granulosa cells were isolated from ovaries of 19-day-old CF-1 mice at various time points after 

treatment with PMSG at various time points were a gift from Dr. Lane K. Christenson.  

RNA isolation and RT-PCR.  C57BL/6J mice were sacrificed at 6 weeks of age and total RNA 

was isolated from liver, kidney, spleen, stomach, heart, brain, lung, adrenal, testis, pituitary, and 

ovary, from immortalized cell lines MA-10, and from primary mouse Sertoli cells, mouse 

granulosa cells, and P-19 EC cells (with and without RA treatment) using Trizol reagent 

(Invitrogen Life Technologies, Carlsbad, CA) according to manufacturer recommendations.   

Human testis total RNA was purchased from BD Biosciences (San Jose, CA).  Samples of poly-

adenylated mRNA were enriched from MA10 Leydig cell total RNA by oligo-dT cellulose 

chromatography as described (Sambrook and Russell 2006).  Complementary DNA (cDNA) was 

synthesized from each RNA sample using 2 μg total RNA as described(Daggett, Rice et al. 

2000).  

For directional RT-PCR to determine transcriptional orientation, cDNA was synthesized from 

2μg adult mouse Testis total RNA using species-specific primer 1 or primer 2 (Table 1), and 

separately with oligo-dT17 in the presence and absence of reverse transcriptase as described 
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(Heckert et al., 2000).  PCR was then performed with the cDNA templates and species-specific 

oligodeoxynucleotide primers 1 and 2.  PCR-amplified products were visualized by agarose gel 

electrophoresis and analyzed by Southern blot hybridization using species-specific internal 

primers (primer 3, Table 1) radiolabeled using T4-polynucleotide kinase (New England Biolabs, 

Ipswich, MA) according to manufacturer recommendations.   

For expression profiling, PCR-amplification of Fast (primers 1 and 2) cDNAs were performed as 

described above, while SF-1 cDNA containing exon 1g was detected by PCR using a primer 

against exon 1g (primer 1; Table 1) and another against exon 5 (primer 2; Table 1).  

Amplification of L7 cDNA controlled for cDNA synthesis as described (Lei and Heckert, 2002).  

Amplified products were visualized by agarose gel electrophoresis and, in some cases, Fast and 

SF-1 products were analyzed by Southern blot hybridization with internal oligodeoxynucleotide 

primers (primer 3; Table 1).    

Fast cloning.  Mouse EST transcripts were also PCR-amplified with oligodeoxynucleotide 

primers (primers 4 and 5, Table 1), and cloned using the pGEM T-easy vector system (Promega).  

The PCR product was cleaned of residual reactions by GeneJet PCR purification kit (Thermo 

Scientific) and ligation reaction was set up as described by the manufacturer. 2 μl of the ligation 

reaction was used for transformation and grown on agar plate containing ampicillin/X-gal/IPTG. 

The white colonies containing the PCR product was chosen and plasmid DNAs were prepared 

from overnight bacterial cultures using DNA plasmid columns according to the supplier’s 

protocol (GeneJet Plasmid Mini-prep kit, Thermo Scientific).  All resulting clones were 

sequenced.  The PCR-amplified product from human testis cDNA was sequenced with human 

primers 1 and 2. 
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Mouse Fast transcripts were PCR-amplified with oligodeoxynucleotide primer sets engineered 

with Kpn1 (GCG CGG TAC CCT CGG CCT TCA CCC TCA CCT CCT GGC CCT CCA GTT 

CCA GCT CGA TC) /Xba1 (CGG CTC TAG ACC AGT TCT GTG CAC CCA CTT TAT GTC 

TGG) restriction endonuclease sites and double restriction digest performed using Kpn1/ Xba1. 

The cloning vectors, pcDNA3 (Invitrogen, Carlsbad, CA) was restriction digested with Kpn1/ 

Xba1; dephosphorylated with calf intestinal phosphatase (New England Biolabs, Ipswich, MA), 

and ligated with the Kpn1/ Xba1 digested PCR products, respectively, using T4 ligase (New 

England Biolabs, Ipswich, MA). 
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Table1: Oligodeoxynucleotide primers 

Target Primer name and sequence Use 

AK017050 & 

mouse Fast 

 

Primer 1; 5’-CACTCTACGGCATCCCAAGG -3’ 

Primer 2; 5’-CCAGGCAGGCACCAGACC-3’ 

Primer 3; 5’-CCATGTGGGCACAGGGAGGTT-3’ 

Directional RT- PCR, RT-PCR, southern blot 

human FAST  Primer 1; 5’-ACTTTATGTGTGGCAAGGTCC-3’ 

Primer 2; 5’-GGAAGCTGGGGCTGGAGGTCT-3’ 

Primer 3; 5’-gaaggaggctctcaggctggg-3’ 

Directional RT- PCR, southern blot 

mouse Fast  

 

Primer 4; 5’-CTCGGCCTTCACCCTCAC-3’ 

Primer 5; 5’- CCAGTTCTGTGCACCCACTT -3’ 

Cloning 

mouse SF-1 (exon1g) Primer 1; 5’-GTCCAGTTTTTCCTTGCTCACC-3’ 

Primer 2; 5’-GCGGTTAGAGAAGGCAGGATAG-3’ 

Primer 3; 5’-GGGGTCTAGAGACCTGGACGAGCTGTGTCC-3’ 

RT-PCR 

mouse Fast § 5’RACE1; 5’-GATGTCCCCGAGATTTGGTC-3’ 

5’RACE2; 5’-AGACCTTGGGATGCCGTAG-3’ 

5’RACE3; 5’-gcgcacgcgtgtggaattgaccatacatccc-3’ 

5’RACE 

human FAST # 5’RACE1h; 5’-GCCCAGCACCATTACAGGAGG-3’ 

5’RACE2h; 5’-CTGTACTATTTTAAGCCAGGG-3’ 

5’RACE3h; 5’-gcgcaagcttGTGGGCACAGGGAGGGTAG-3’ 

5’RACE 

mouse Fast 3’RACE1; 5’-ACTTTGGTCTGGTGCCTGC-3’ 

3’RACE2; 5’-gcgcaagcttGCCTGGCTTTCAACCAAAATG-3’ 

3’RACE 

Mouse Fast Primer 6; 5’- TCGCCACAGTCTGACTCTTC -3’ Southern blot 

mouse SF-1 exon 1g * SF-1 e1g; 5’-gcgcggatccGTCCAGTTTTTCCTTGCTCACC-3’ 

SF-1 e4; 5’- gcgcggatccCGTGTAATGCTTGTTGTTCTGG-3’ 

RNase protection probe 

mouse SF-1 exon 1a * SF-1 e1a; 5’-gcgcggatccGAAGTTTCTGAGAGCCCGC-3’ 

SF-1 e4; 5’- gcgcggatccCGTGTAATGCTTGTTGTTCTGG-3’ 

RNase protection probe 
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Mouse Gapdh mGapdh exon-exon primer F : 5’-AACTTTGGCATTGTGGAAGG-3’ 

mGapdh exon-exon primer R: 5’ TGTGAGGGAGATGCTCAGTG-3’ 

mGapdh splice primer F: 5’- GTGCAGGACCTCACTCATTG-3’ 

mGapdh splice primer R: 5’- CACATTGGGGGTAGGAACAC -3’ 

Subnuclear fractionation 

Mouse L7 F: GGGGGAAGCTTCGAAAGGCAAGGAGGAAGCT 

R:GGGGGGTCGACTCCTCCATGCAGATGATGCC 

RT-PCR 

Mouse StAR F: CCG GAG CAG AGT GGT GTC A 

R: GCC AGT GGA TGA AGC ACC AT 

RT-PCR 

Mouse Cyp17 F:GCC TGA CAG ACA TTC TG 

R: TCG TGA TGC AGT GCC CAG 

RT-PCR 
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Determination of transcriptional start site, polyadeylation site and transcript size.  5' Rapid 

amplification of cDNA ends (5’RACE) was performed as described elsewhere (Frohman, 

1993;Frohman, 1990) with modifications using nested oligodeoxynucleotide primers generated 

against mouse Fast.  cDNA was synthesized from mouse testis total RNA using a primer within 

the first exon of Fast (5’RACE1) and enhanced AMV reverse transcriptase (Promega) using a 

ramped synthesis incubation (55 C to 58 C over 55 minutes; Table 1).  The cDNA was used for 

two rounds of PCR amplification using gene-specific nested primers 5’RACE2 and 5’RACE3, 

and products were cloned and sequenced (Table 1).  Transcriptional start sites were assigned 

based on DNA sequence analysis of the RACE clones.  5’RACE to detect the transcriptional start 

site of human FAST was performed from human testis total RNA as above with primers 

5’RACE1h, 5’RACE2h and 5’RACE3h.  5’RACE was also performed to detect 5’ 7-

methylguanosine capped mRNAs using the same primers described above with the GeneRacer 

kit (Invitrogen) according to manufacturer recommendations.  3’RACE was performed to 

determine the polyadenylation site as described (Frohman, 1993;Frohman, 1990) with 

modifications.  In short, cDNA was synthesized from mouse testis RNA as described and used in 

two rounds of nested amplification using 3’RACE1 and 3’RACE2, and products were cloned and 

sequenced.   

RNAi-mediated Fast knockdown:  Targets for shRNAi were selected from within the Fast 

cDNA sequence as described (Elbashir et al., 2002) and short hairpin RNA (shRNA) double-

stranded oligodeoxynucleotide inserts for each target were designed and cloned into the mU6pro 

vector as described (Table 2; Yu et al., 2002).  A Bgl I-Pvu II fragment from each clone 

containing the U6 promoter-shRNA cassette or the control U6 promoter-GFP cassette was 

blunted with Klenow fragment (Roche).  Likewise, pcDNA3 (Invitrogen) was digested with Bgl 
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I to remove the CMV promoter, blunted with Klenow, dephosphorylated with calf intestinal 

phosphatase as above, and ligated with the U6 expression cassettes with Quick Stick ligase 

(Bioline).  Each U6 cassette- pcDNA3 plasmid was transiently transfected into MA10 Leydig 

cells as follows.  MA-10 cells were plated at a density of 400,000 cells per well in 6-well plates 

and transfected using 2µg vector DNA, 2µg vector DNA, 12µl lipofectamine (Invitrogen) and 

10μl PLUS reagent (Invitrogen).  Lipid/DNA complexes were removed after 24h, and the cells 

were incubated with complete growth media (Waymouth's supplemented with 20 mM Hepes, 

15% horse serum, and 50 µg/ml gentamicin).  Total RNA was harvested from the transfected 

MA10 cells and cDNA was synthesized as above and diluted 1:20 in nuclease-free H2O.  

Expression of Fast was analyzed by RT-PCR.  

Overexpression studies: Fast was cloned in a pcDNA3 vector under the CMV promoter. MA-

10 cells were plated at a density of 400,000 cells per well in 6-well plates and transfected using 

2µg vector DNA, 12µl lipofectamine (Invitrogen) and 10μl PLUS reagent (Invitrogen). The next 

day cells were fed with complete growth media. Cells were harvested 48 hr post-transfection, 

and protein was extracted in 50ul of freshly made RIPA solution.  

Western Blot: Western blot analysis was performed as described (Heckert, Sawadogo et al. 

2000). Briefly, whole cell extracts from transfected MA-10 cells were extracted in RIPA buffer 

and resolved by SDS-PAGE, transferred to polyvinylidene fluoride (Millipore Corp., Billerica, 

MA), blocked, and probed overnight at 4 C with SF-1 antibody (1:3,000 dilution) a kind gift 

from Dr. Kenichirou Morohashi, Japan,. After incubation with secondary antibody, protein 

complexes were visualized by chemiluminescence using the enhanced chemiluminescence 

(ECL) system (Amersham Life Sciences, Arlington Heights, IL). Horseradish peroxidase-
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conjugated secondary antibodies were donkey antirabbit IgG (Jackson ImmunoResearch 

Laboratories, Inc., West Grove, PA). Blots were stripped [100 mM 2-mercaptoethanol, 2% 

sodium dodecyl sulfate, and 62.5 mM Tris-HCl (pH 6.7)] for 30 min at 55 C according to 

manufacturer’s recommendations (Millipore), and reprobed for Mouse anti-α-Tubulin 

(Calbiochem, CP06) which was used as loading control.  

In vitro transcription translation: The in vitro coupled transcription/translation was done using 

the T7 rabbit reticulolysate system (Promega). Briefly, the gene was cloned in a pcDNA3 vector 

downstream of T7 polymerase and was added to rabbit reticulolysate along with 35S-methionine, 

and incubated for 90 min at 30°C. The in vitro translated products were separated in 15% SDS-

PAGE. The gel was dried and exposed to a PhosphorImager screen overnight. 

Subnuclear fractionation: Subnuclear fractionation of RNA was done using Norgen Biotek’s 

Cytoplasmic and Nuclear RNA isolation kit. In brief, MA-10, mouse Leydig cells were grown in 

a monolayer in 100cm plates. Confluent plates were washed with PBS, lysed, and lysates was 

spun down. The supernatant containing the cytoplasmic RNA was transferred to a new tube, and 

the nuclear RNA pellet was washed and eluted from the spin columns to a new eppendorf tube.  

Southern Blot: RNA was isolated from mouse granulosa cells at various time points post-

PMSG, and cDNA was generated as described earlier. RT-PCR was performed by using primers 

4 and 5 that span the entire Fast locus and products were resolved in a 1% Ethidium Bromide gel 

for two hours. The bands were then transferred to a Protran nitrocellulose membrane for 3 hours. 

The membrane was washed twice, pre-hybridized, and probed overnight with Primer 6 located 

on Fast exon3, which was 5’ end labeled with γ32P-ATP, by T4 Polynucleotide Kinase (New 
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England Biolabs). The following day the membrane was washed twice, and bands were detected 

by exposing it to film overnight.  
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Figure 1: Two highly conserved ESTs are located between Nr5A1 (Ftz-F1) and Gcnf loci. Two 
conserved ESTs located between the Ftz-f1 and Gcnf loci.Representation of mouse chromosome 
2 in the proximity of Ftz-f1 (Nr5a1; blue rectangles) and Gcnf (Nr6a1; grey rectangles). 
Conserved, non-coding ESTs identified by pairwise alignment of mouse and human genomic 
sequences are marked (Accession #AK007201= EST 12840611; red rectangles; and Accession# 
AK007201= EST 12840611; green rectangle, ). A Gcnf variant transcript with an extended exon 
12 is depicted by the hatched line extending the Nr6a1 locus. 
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Figure 2: Fast is transcribed opposite to Ftz-F1 (A) Diagram of mouse Fast and Ftz-f1 5' 
sequence, indicating exon positions of Ftz-f1 (blue) and FAT (red). (B) PCR amplification of 
Fast using primers 1 and 2 (locations shown in A) and cDNA synthesized with the indicated 
primer (top) in the presence (+) or absence (-) of reverse transcriptase. Upper panel shows the 
resulting ethidium bromide stained agarose gel and the lower panel an auto-radiogram of its 
Southern analysis hybridized with an internal primer (shown in A). C) Human FAST and FTZ-F1 
5' flanking sequence, indicating positions of FTZ-F1 (blue) and FAST exons (red). (D) PCR-
amplification of FAST using primers 1 and 3 (locations shown in C) and cDNA synthesized with 
the indicated primer (top) in the presence (+) or absence (-) of reverse transcriptase . Upper panel 
is the ethidium bromide stained agarose gel and the lower panel an autoradiogram of its Southern 
analysis hybridized with an internal primer (shown in C). Bent arrows indicate transcriptional 
orientation and start sites. The mouse SF-1 gene has multiple promoters accompanied by first 
exons, Ia, Ig, and Io, which have been identified in the figure below. (Brian Hermann- 
Regulation of FSH-receptor and SF-1: transcriptional control in reproduction) 
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Figure 3: Diagrammatic representation of the genomic location of Fast and its transcripts. Top 
shows the relative position of Ftz-f1 exons 1-4 (blue) and Fast exons 1-3 (orange). 
Transcriptional orientation and start sites are shown as bent arrows. Human FAST contains only 
the exon that corresponds to mouse exon 3. Bottom shows the two known Fast splice variants; 
one, containing all three known exons, indicates introns as solid lines and the other, lacking exon 
2, indicates the intron as a hatched line. (Brian Hermann- Regulation of FSH-receptor and SF-1: 
transcriptional control in reproduction) 
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Figure 4: Fast localizes predominantly in the cytoplasm. Nuclear and cytoplasmic RNA 
fractions were isolated from MA-10, mouse Leydig cells, and examined for the presence of Fast 
by RT-PCR (Top). Mouse Gapdh primers were designed located in different exons (middle) and 
within an intron and exon (bottom), to check for purity of cytoplasmic and nuclear fractions, 
respectively. Experimental repeats shown below with L7 as control. 
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Figure 5: Fast may code for a 7kd protein.   Top: In vitro transcription-coupled translation assay 
of no plasmid control; empty vector negative control; triplicate of Fast pcDNA3 (1.7-kb gene 
cloned into pcDNA3 vector downstream from T7 promoter); DMRT1 pcDNA3 encoding 39-kDa 
DMRT1 protein; and the positive control luciferase encoding 61-kDa protein. Below: The 
longest ORF highlighted in red, which may possibly encode for the 7kd protein. 
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Figure 6: Expression of Fast and SF-1 in adult mouse tissue and mouse Leydig cell line, MA10. 
(A) Top panel, adult mouse tissues and MA-10, cell line were examined for the presence of Fast, 
SF-1 and ribosomal protein, L7, in the presence (+) and (-) of reverse transcriptase. Southern blot 
utilizing an internal primer for Fast is shown in the lower panel. (Brian Hermann- Regulation of 
FSH-receptor and SF-1: transcriptional control in reproduction) 
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Figure 7: Fast and SF-1 respond to retinoic acid in P19 embryonial carcinoma cells. P19 
embryonal carcinoma cells were treated with 1μM retinoic acid. RNA was isolated at various 
time points (top). RT-PCR-amplified products were resolved by agarose gel electrophoresis and 
stained with ethidium bromide. Assays were performed in the presence (+) or absence (-) of 
reverse transcriptase (RT). (Brian Hermann- Regulation of FSH-receptor and SF-1: 
transcriptional control in reproduction) 
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Figure 8: Hormonal response of Fast in mouse granulosa cells. Granulosa cells were isolated 
from ovaries of 19-day-old CF-1 mice at various time points after treatment with PMSG at 
various time pointed as indicated.  RNA was isolated and assayed for fast by RT-PCR followed 
by Southern blot analysis.  
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Figure 9: Knocking down Fast does not affect transcription of SF-1: (A) Position of Fast 
shRNA 6 target used for RNAi-mediated Fast knockdown (blue boxes) is shown on this diagram 
of the Fat cDNA sequence. Fat and SF-1 exons (shaded boxes), EST sequence (red boxes), the 
highly conserved segment of exon3 (85% identity, orange box), and the poly-adenylation signal 
(red balloon) are shown. Expression vectors containing each shRNA target were transfected 
intoMA10 Leydig cells and cells were harvested 48 hours post-transfection. (B) RNA was 
isolated, reverse transcribed and assayed for the presence of Fast and mouse SF-1. Mouse Gapdh 
was used as internal control.  
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Figure 10: Knocking down Fast does not affect downstream targets of SF-1: RNA was isolated, 
reverse transcribed and assayed for the presence of  Cyp17, Cyp 11a, and StAR.Mouse Gapdh 
was used as internal control.  
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Figure 11: Over expressing Fast does not affect SF-1 mRNA levels: RNA was isolated from 
MA-10 Leydig cells transfected with empty pcDNA3  control and Fast pcDNA3. RNA was 
isolated, reverse transcribed and assayed for the Fast and SF-1 Gapdh served as internal control. 
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Figure 12: Knocking down Fast does not affect translation of SF-1: Protein was isolated from 
MA-10 Leydig cells transfected with mu6shRNA control and Fast shRNA#6 and probed for SF-
1 levels at various time points, post cAMP as indicated. Tubulin was used as internal control 
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Figure 13: Over expressing Fast does not affect SF-1 protein levels: Protein was isolated from 
MA-10 Leydig cells transfected with empty pcDNA3 control and Fast pcDNA3 and probed for 
SF-1 levels 48 hours post-transfection. Tubulin was used as internal control. 
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Figure 13: Over expressing Fast does not affect SF-1 protein levels: Protein was isolated from 
MA-10 Leydig cells transfected with empty pcDNA3 control and Fast pcDNA3 and probed for 
SF-1 levels 48 hours post-transfection. Actin was used as internal control. 
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Chapter 5: An upstream distal Evolutionary Conserved Region regulates the 
expression of nuclear Receptor Steroidogenic Factor 1 in the pituitary 
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ABSTRACT 

Steroidogenic factor 1 (SF-1/Ad4BP/NR5A1) is a nuclear receptor with a pivotal role in the 

development of adrenal glands and gonads. Despite many studies that describe transcriptional 

features of Nr5a1, the mechanisms associated with cell-specificity are incompletely resolved for 

many expressing cell types.  As revealed by studies in transgenic mice, these mechanisms require 

distal regulatory elements residing within a 153kb transgene containing the Nr5a1 locus.  This 

153kb transgene defined the initiation point for the current studies.  Thus, comparative sequence 

analysis of this region was used identify sequences of high evolutionary conservation as a means 

to identify candidate regulatory elements of Nr5a1.  This identified multiple evolutionarily 

conserved non-coding regions (ECRs) and four of the most highly conserved were selected for 

additional analysis to test their transcriptional potential.  Each ECR was cloned upstream of the -

734/+60 SF-1 promoter directing expression of a luciferase reporter and its transcriptional 

activity assessed in various cell types by transient transfection analysis. One of the ECRs, ECR3,  

upregulated SF-1 transcription in alpha T3 (gonadotrope cell line) and Y-1 (adrenal) cells, but 

downregulated SF-1 in MA-10(Leydig cell line) , MSC-1 (Sertoli cell line) and primary rat 

Peritubular Myoid and Sertoli cells. Our data indicate that ECR3 contains control elements 

necessary for SF-1 transcriptional induction in pituitary and adrenal cells and repression in MA-

10, MSC-1 cell lines and primary rat Peritubular Myoid and Sertoli cells. Mutagenesis and 

DNA/protein interaction studies of ECR3 identified sequences important for activity in alpha T3 

cells.  The ECR3 sequence contains an E box that binds class A basic-helix-loop-helix (bHLH) 

protein E2A, suggesting cell-specific class B bHLH protein as its likely dimeric partner. Co-

transfection studies identified Inhibitors of DNA binding, Id2 and Id3 downregulate SF-1 

transcription possibly by interacting with E2A, and preventing its binding to the E-box.  Thus, 



128 
 

these studies show that an E box present in the ECR is required for SF-1 expression in the 

pituitary and involves members of the bHLH protein family. 

INTRODUCTION 

Steroidogenic factor 1 (SF-1), also known as Ad4BP (adrenal 4 binding protein) and officially 

designated NR5A1, belongs to the nuclear receptor superfamily. The gene, NR5A1, encodes four 

different proteins, ELP1, ELP2, ELP3 and SF-1. In particular, the transcription factor SF-1 has 

emerged as a key regulator of reproductive tract development and endocrine homeostasis 

(Sadovsky, Crawford et al. 1995, Shinoda, Lei et al. 1995, Parker and Schimmer 1997). SF-1 

binds to a common regulatory motif (AGGTCA) within promoters and initiates and regulates the 

expression of various genes. SF-1 was first identified by its ability to regulate the promoter 

activity of several cytochrome P450 steroid hydroxylase genes (Rice, Mouw et al. 1991, 

Morohashi, Honda et al. 1992)  

The necessity of the SF-1 protein emerged from the development of the SF-1 knockout (KO) 

mice.  The SF-1 KO mice lacked adrenal glands and gonads and died shortly after birth due to 

adrenal insufficiency (Luo, Ikeda et al. 1994, Hammer, Parker et al. 2005). SF-1 KO mice also 

exhibited male to female sex reversal, impaired gene expression within pituitary gonadotropes 

and structural abnormalities of the ventromedial hypothalamic nucleus (VMH) (Ingraham, Lala 

et al. 1994). Data obtained from both global and pituitary-specific SF-1 KO mice support a role 

for SF-1 in gonadotrope function and transcriptional regulation of the gonadotropins, luteinizing 

hormone and follicle-stimulating hormone, as both are absent in mice deficient of SF-1(Zhao, 

Bakke et al. 2001). Gonad specific knockout mice demonstrated that SF-1 action in the gonads is 

essential for proper gonadal function in both male and female mice (Jeyasuria, Ikeda et al. 2004). 
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In humans, mutations in SF-1 resulting in a loss of activity are also associated with male to 

female sex reversal and adrenal failure (Achermann, Ito et al. 1999, Biason-Lauber and Schoenle 

2000, Achermann, Ozisik et al. 2002). Thus, both in vitro and in vivo evidence establish SF-1 as 

a critical regulator of development and endocrine homeostasis in humans and mice. 

Given the critical role played by SF-1 in development and endocrine homeostasis, many studies 

have focused on uncovering the regulatory mechanisms that specify SF-1 transcription in the 

appropriate spatio-temporal manner. However, despite the efforts, little has been revealed about 

the specific transcriptional mechanisms that drive tissue-specific SF-1 expression. Transient 

transfection studies, using the SF-1 promoter in front of a reporter, have revealed several cis-

regulatory elements that control basal transcription. In particular, the promoter has an E box, a 

CCAAT box, and three Sp1 binding sites (Barnhart and Mellon 1994, Nomura, Bartsch et al. 

1995, Daggett, Rice et al. 2000). Further studies on the proteins binding to these elements 

uncovered a variety of binding complexes as well as cell-specific interactions (Daggett, Rice et 

al. 2000, Scherrer, Rice et al. 2002). While these findings have shed light on basal function of the 

SF-1 promoter, they have not revealed any mechanisms to explain how SF-1 expression is 

restricted to different target tissues or how its transcriptional regulation contributes to its role in 

development and endocrine homeostasis. 

The development of transgenic mice has lead to the identification of specific DNA elements, 

which direct SF-1 transcription in vivo. Accumulated evidence indicates that proper expression 

of SF-1 requires a large genomic fragment that spans a 153kb region of the Nr5a1 locus.  

(Wilhelm and Englert 2002) identified a 674bp region on the SF-1 promoter that partially directs 

expression to the gonads. However, the study also revealed that the 674bp promoter region 
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lacked key regulatory sequences needed for SF-1 expression in most of its target tissues 

(Wilhelm and Englert 2002). A transgenic study by Stallings et al., targeted a 50kb region of 

mouse Nr5a1, including 45kb of 5’ flanking sequence, exon 1 and part of exon 2, to direct 

expression of green fluorescent protein (Stallings, Hanley et al. 2002). This 50kb transgene was 

able to direct expression to many but not all SF-1-expressing cells. Our laboratory demonstrated 

that a 153kb yeast artificial chromosome (YAC) transgene containing rat Nr5a1 completely 

mimicked expression of endogenous Nr5a1and rescued all known defects of SF-1 null mice 

(Karpova, Presley et al. 2005). Together, these studies indicate that tissue-specific expression of 

SF-1 is directed by regulatory elements located at significant distances from the transcription 

start site. Since the 153kb transgene used in our previous studies contains all the sequences 

necessary for proper SF-1 expression, we used this transgene to identify and characterize 

essential distal regulatory elements. Here, we report the identification and characterization of an 

Evolutionary Conserved Region (ECR), ECR 3.  ECR3 contains regulatory elements that 

enhance transcriptional activity of the SF-1 promoter specifically in gonadotrope and 

adrenocortical-derived cells. 

RESULTS 

Comparison of NR5A1 between human and chicken genomic sequences identifies Six 

Major Evolutionarily Conserved Regions. 

To help identify potential regulatory elements essential for SF-1 expression, a web-based 

sequence analysis tool, ECR browser was used (Ovcharenko, Nobrega et al. 2004). The ECR 

browser identifies sequence conservations between various species that have remained 

unchanged for millions of years, suggesting that the predicted sites are functionally important. 
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Comparison of rat, mouse, frog and chicken Nr5a1 identified more than twenty-five ECRs.  

(Figure 1). To improve functional prediction, a more distant genome (chicken) was included in 

the comparative analysis. This sequence conservation analysis  between chicken, mouse, and 

human led to a more stringent identification of 6 ECRs which were chosen for further analysis, 

as they represent the most conserved, and thus most likely, regions to contain essential regulatory 

elements.  

ECR3 differentially regulates SF-1 transcriptional activity in αT3 and Y-1 cells versus MA-

10, Myoid, MSC-1 and primary Sertoli cells. 

To identify functional importance of the ECR’s, four ECRs (ECRs 1-4) were cloned into a vector 

that contains the SF-1 promoter, from -734 to +60, directing expression of the firefly luciferase 

reporter. Transcriptional activity was tested by transiently transfecting the vector in mouse 

Leydig tumor cell line MA-10, mouse sertoli cell line MSC-1, Y-1 murine adrenocortical cells, 

and mouse gonadotroph-derived alpha T3 cells, as well as primary cultures of rat Sertoli and 

Peritubular Myoid cells. With TK-renilla as an internal control, firefly and renilla luciferase 

activities were compared to determine transcriptional activity. The luciferase/renilla values of the 

vectors containing ECRs were normalized to the values for the SF-1 promoter alone. Of the four 

ECRs, ECR3 had the most dramatic effect (Figure 2). ECR3 increased SF-1 transcriptional 

activity in αT3 and Y-1 cells, but decreased transcriptional activity in MA-10, MSC-1 and 

primary rat Peritubular Myoid and Sertoli cells. This data indicates that ECR 3 likely contains 

elements important for SF-1 regulation and acts in a cell-specific manner, activating SF-1 

transcription in pituitary and adrenal cells, while repressing its activity in Leydig, Sertoli, and 

myoid cells. 
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ECR3 contains potential regulatory elements and key regions necessary for full enhancer 

activity. 

Next, we decided to identify regions of ECR3 that are important for the enhancer activity seen in 

αT3 and Y-1 cells. To this effect, deletion mutants were generated by cloning varying lengths of 

ECR3 based on conservation profile and size, namely ECR3 LC(less conserved), ECR C (highly 

conserved), ECR3-300, ECR3-350, ECR3-504, and ECR3-580 into SF-1(-734+60)Luc vector. 

The transcriptional activities of these mutants were then assayed in αT3 pituitary cells, as ECR3 

showed highest enhancer activity in these cells (Figure 2). The less conserved region within 

ECR3 showed very minimal activity when compared to that of full-length ECR3 (Figure 3). 

ECR3 C showed increased activity compared to ECR3 LC, but not to the level of full-length 

ECR3. None of the additional constructs tested (ECR3-300, ECR3-350, ECR3-504, and ECR3-

580) reached the activity of full-length ECR3. These results suggest that regulatory elements 

reside within the ECR3 locus and their interactions are necessary for complete activity.  

To further categorize ECR3, DNase I footprinting was performed with and without αT3 cell 

nuclear extracts using a probe as indicated in Figure 4. Addition of nuclear proteins revealed a 

prominent hypersensitive site and two protected footprints. In silico sequence analysis using the 

web-based program rvista (http://rvista.dcode.org/) identified several evolutionarily conserved 

sequences that are potential transcription factor binding sites, E box, p53 tumor suppressor 

protein and E twenty-six (ETS)-like transcription factor 1, also known as Elk1 were chosen 

based on the scores. 
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An E box is required for full transcriptional activity of ECR3.  

To evaluate the effects of these transcriptional sites in αT3 cells, potential transcription factor-

binding sites identified above, E box, p53 and Elk1, were mutated and were transiently 

transfected in αT3 cells. These cells were then assayed for relative luciferase activity as before, 

and activities were graphed (Figure 5). Of the three transcription factor binding sites tested, 

mutation of the E box element significantly decreased the transcriptional activity, suggesting 

functional importance.  

The E box site identified was CATCTG (E box elements have the consensus sequence 

CANNTG), a sequence that binds basic helix-loop-helix (bHLH) proteins. bHLH proteins are 

transcription factors, divided into two broad functional groups by their patterns of expression. 

Class A bHLH members, often also referred to as E-proteins, which are ubiquitously expressed 

and bind DNA as homo-and hetero-dimers. In contrast, Class B proteins are expressed in cells of 

particular lineage (e.g., MyoD and Myogenin) and mainly bind as heterodimers . These proteins 

have a helix–loop-helix domain that mediates homo- and/or hetero- dimerization with other HLH 

proteins. To help identify the bHLH protein that binds to E box, we performed an electrophoretic 

mobility shift assay (EMSA) using αT3 nuclear extracts and a radiolabeled probe containing the 

ECR3 E box. Unlabeled competitors with sequence homology were added to the reaction at a 

concentration 100X that of probe. Similarly, antibodies to bHLH proteins, Upstream stimulatory 

factors 1 and 2, (USF1 and USF2) or transcription factor E2A, a ubiquitous bHLH protein, were 

added to specific reactions. Notably, formation of binding complexes was inhibited by inclusion 

of unlabeled homologous competitor DNA but not a non-specific (N sequence, indicating the 

proteins bind specifically to the ECR3 E-box probe sequence (Figure 6). However, a competitor 

containing a mutation in the E box did not compete for the fastest and slowest migrating 
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complexes and was a poorer competitor for some of the complexes in the middle. Thus, the top 

and bottom complexes are appear to be dependent on the E box sequence for binding and are 

candidates for eliciting the transcriptional activity associated with E box. As indicated by their 

cross-reactivity to included antibodies, these candidate proteins are USF1, USF2, and E2A, plus 

an unidentified binding partner. 

Chromatin immunoprecipitation (ChIP) analysis was employed to analyze transcription factor 

binding toSF-1 ECR3 site, in vivo. Formaldehyde cross-linked chromatin from αT3 cells was 

used for immunoprecipitation with antibodies to E2A, USF1, USF2, RNA polymerase II, p300, 

histone active mark H3Ac, and repressive histone marker H3K27me3. With chromatin prepared 

from αT3 cells, E2A, USF1 and USF2 were found to bind to the ECR3 region and were 

congruent with EMSA results (Fig 7). In contrast, p300 an enhancer marker was found not 

enriched at Sf-1 ECR3 site. Active histone mark H3Ac was found to be significantly enriched 

with lower binding of H3K27me3 indicating that the region was in an “open” chromatin state.  

 

Id2 and Id3 inhibit transcriptional activity through the ECR3 E box 

Having identified that bHLH proteins bind to the E-box, we then decided to establish whether Id 

proteins inhibit transcriptional activity by binding to the E-box. Ids are a group of HLH proteins 

that lack a DNA binding domain and act as negative regulators of bHLH proteins (Ruzinova and 

Benezra 2003, Perk, Iavarone et al. 2005) . To investigate Id proteins that inhibit transcriptional 

activity, Id1, Id2, and Id3 were cloned and co-transfected in αT3 cells. Increasing concentrations 

of empty vector or expression vectors for Id1, Id2, and Id3, were co-transfected into αT3 cells 

with luciferase reporters driven by wild type (Trompouki, Bowman et al.) or E box mutant 
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(mEbox) SF-1(-734+60)-ECR3. Relative reporter activity was assayed for each line (Figure 7). 

Co-transfection of SF-1(-734+60)-ECR3 with plasmids expressing Id2 and Id3 showed a dose 

dependant diminished SF-1 promoter activity and this change in transcription levels was 

completely lost when Id plasmids were transfected with mEbox SF-1(-734+60)-ECR3 construct. 

In contrast, expression of Id1 expression plasmid had little or no impact on the transcription level 

of SF-1. This data demonstrates that Id2 and Id3 proteins inhibit the activity of the SF-1 

transcription and it does so by inhibiting the binding of the bHLH proteins to the E-box in the 

ECR3 distal region.     
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DISCUSSION 

Nuclear hormone receptor, SF-1, is a key regulator of endocrine homeostasis and development.  

Many studies have investigated the expression profile of SF-1 and the mechanisms associated 

with its strict tissue specificity. However, our knowledge of the transcriptional regulatory 

mechanisms responsible for proper spatiotemporal expression of SF-1 has been limited. A 

previous study from our lab established that a 153kb region of the NR5A1 locus contains all the 

necessary control elements for SF-1 activity (Karpova, Presley et al. 2005). We identified 

Evolutionarily Conserved Regions that serve as potential regulatory sequences important for 

directing the spatiotemporal expression of SF-1. 

DNA sequence conservation is a characteristic that has long been associated with functional 

regions of the genome. More recently, the importance of conserved non-coding sequences in 

transcriptional regulation has been validated by numerous studies (Frazer, Sheehan et al. 2001, 

Visel, Blow et al. 2009, Blow, McCulley et al. 2010). Sequence comparisons between different 

species have often shown that functional non-coding sequences are highly conserved, whereas 

sequences that are not functional diverge (Hardison 2000). The location and function of 

regulatory sequences that orchestrate gene expression remain obscure, which makes it difficult to 

study their role in developmental processes (Pennacchio, Ahituv et al. 2006, Prabhakar, Poulin et 

al. 2006, Holland, Albalat et al. 2008, Visel, Prabhakar et al. 2008). A widely used approach is 

comparative genomics of both closely related and highly divergent organisms to identify specific 

control elements (Gottgens, Barton et al. 2000, Thomas, Touchman et al. 2003, Chapman, 

Donaldson et al. 2004). We employed the same approach in comparing different genomes 

ranging from human to chicken to identify six ECRs as potential regulators of SF-1. 
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While non-coding sequences under evolutionary pressure could predict the location of enhancer 

elements in the genome, they do not reveal when and where these enhancers are active in 

vivo(Visel, Blow et al. 2009). To test the functional importance of these sequences, one can use 

different experimental strategies, including in vitro or in vivo assays, like transient transfection or 

transgenic studies. In the present study, we tested the transcriptional activity of SF-1 as regulated 

by four ECRs, using transient transfection reporter assays in various cell types. Of these ECRs, 

ECR3 showed strong cell-specific up regulation in αT3 pituitary and Y-1 adrenal cell types; 

however, transcriptional repression was observed in testis cell types.  

ECR3, like other critical regulatory elements, contains elements identified through sequence 

conservation. For example, DNaseI hypersensitivity studies of cis-regulatory elements showed 

that about 70% of regulatory sequences are found at least 5kb from the transcriptional start site 

of the gene(Sabo, Humbert et al. 2004). Interestingly, ECR3 is located 8kb upstream of the 

transcriptional start site. The observed characteristics of ECR3, including evolutionary 

conservation, cell-specific activity and distance relative to SF-1 transcription start site, triggered 

us to further characterize ECR3. 

Previous studies employing transgenics from the laboratory of Ken Morohashi identified many 

tissue-specific regulatory regions within the SF-1 gene (Shima, Zubair et al. 2005, Zubair, Oka et 

al. 2009, Shima, Miyabayashi et al. 2012). Using a 5.8kb construct containing Exon 2 and the 

upstream promoter region, enhancers for fetal adrenal gonad and VMH were found in introns 4 

and 6, respectively, in two different studies (Shima, Zubair et al. 2008). Interestingly, these 

regions correspond to two of our ECRs, ECR2 and ECR1. Another transgenic study from the 

same group identified a 5kb fragment that contained Rathkes pouch -specific enhancer activity 
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(Shima, Zubair et al. 2008) . Further studies, uncovered a 486bp enhancer element in intron 6 of 

the gene, that is necessary for gonadotrope-specific enhancer. This enhancer element was 

reported to contain several conserved sequences. In contrast, however, the ECR we identified is a 

non-coding region (ECR3) that contains regulatory sequences specific for SF-1 expression in 

pituitary.  

In vitro foot printing identified binding sites for several proteins that, when mutated, revealed 

their importance for transcriptional activity of ECR3. In addition, in silico analysis of footprinted 

sequences identified potential transcription factor binding sites for p53 and members of the ETS- 

and bHLH families. Further analysis of these sites revealed that an E-box element is essential for 

the activity of ECR3 in pituitary gonadotropes. E-box elements have been known to play an 

important role in the expression of many genes in different organs. Our current study, combined 

with the study of Shima et al, demonstrates that, pituitary-specific expression of SF-1 involves a 

highly complex transcriptional regulatory network and involves multiple transcriptional control 

sequences (Shima, Zubair et al. 2008). 

We hoped to identify the protein that binds to the E-box (critical for pituitary-specific SF-1 

expression), and the most likely candidate is the ubiquitous E2A, a basic helix-loop-helix protein 

(bHLH). bHLH proteins are transcription factors that play important roles in various 

developmental processes, including sex determination (Zheng, Wang et al. 2009). They contain a 

basic DNA binding domain and two helices that are involved in interaction with other proteins 

during the formation of homo- or hetero-dimers (Massari and Murre 2000). E2A hetero-

dimerizes with other tissue-specific bHLH proteins before binding to DNA to regulate 

transcription. E2A has been extensively studied and is widely believed to play a central role in 
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transcriptional regulatory networks (Kee 2009). Although, E2A is expressed in pituitary, no 

studies account for the pituitary functions of E2A. Our current study indicates that E2A plays a 

transcriptional regulatory role in pituitary gonadotropes (Roberts, Steenbergen et al. 1993) . 

Inhibitors of DNA binding/differentiation are another type of bHLH proteins, which inhibit 

helix-loop-helix activators by acting as repressors (Ruzinova and Benezra 2003, Perk, Iavarone 

et al. 2005) . To test whether Ids repress SF-1 activity through ECR3, we performed a co-

transfection with ECR3, ECR3 mutant and increasing amounts of Id proteins. Out of three Ids 

tested Id1, Id2 and Id3 only Id2 and Id3 showed inhibitory effects on SF-1 promoter activity. As 

expected, co-transfection with the mutant ECR3 did not alter the activity of SF-1. Although, all 

Id proteins are closely related in structure and were thought to show similar binding affinity to 

other bHLH proteins, a recent study using gene targeting revealed the difference between these 

Id proteins. Id1 null mice were normal. However, Id2 null mice lacked lymph nodes and had 

severe defects in development of natural killer cell lineage, while Id3 null mice had defects in B-

cell immune response (Lyden, Young et al. 1999, Pan, Sato et al. 1999, Yokota, Mori et al. 

2001). Id2 and Id3, therefore have greater functional importance than Id1. The difference in the 

inhibitory effects of different Id proteins in the present study could be attributed to interactions 

of different Ids with E2A and its unidentified binding partner.  

In summary, our study identified a highly evolutionarily conserved region namely ECR3. Further 

characterization of the region revealed that an E-box within ECR3 is essential for pituitary 

expression of SF-1. Additional studies will identify more or all of the regulatory sequences that 

are important for pituitary expression of SF-1 and increase our understanding on SF-1 gene 

regulation in pituitary. 
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MATERIALS AND METHODS 

SF-1(-734+60)Luc vector preparation: The SF-1 promoter region from approximately -734 

to +60 was amplified by polymerase chain reaction (PCR) from rat primary Sertoli cell DNA 

using primers shown in Table 1 and Bio-X-act DNA polymerase (Bioline USA Inc.MA, USA) 

and standard procedures. An XhoI site was incorporated into the 5’ primer and a HindIII site was 

incorporated into the 3’ primer. The resulting PCR product was digested with XhoI and HindIII 

and cloned into pGL3 basic (Promega ) . 

Identification and cloning of ECRs:  

ECRs were identified using a web-based sequence analysis tool, ECR browser 

(http://ecrbrowser.dcode.org/),(Ovcharenko, Nobrega et al. 2004). The ECRs were amplified by 

PCR from rat genomic DNA isolated from primary Sertoli cells using primers shown in Table 2 

and Bio-X-act DNA polymerase (Bioline USA Inc.MA, USA) and standard procedures. The 

primers used contained sites for the restriction endonuclease KpnI. The amplified ECRs, 

following digestion with the Kpnl enzyme, were cloned into SF-1(-734+60) Luc which contains 

the rat SF-1 promoter, from -734 to +60, directing expression of the firefly luciferase reporter. 

The ECR DNA fragments were cloned upstream of the SF-1 promoter insert. All clones were 

confirmed by sequence analysis. 

Identification of potential transcription factor binding sites:  

The web-based tool “rVISTA,” which combines TFBS predictions, sequence comparisons and 

cluster analysis to identify non-coding DNA regions that are evolutionarily conserved, was used 

to analyze ECR3 sequence for potential transcription factor binding sites (Ovcharenko, Nobrega 

et al. 2004). 
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Site directed mutagenesis:  

For deletion mutagenesis, specific lengths (Highly conserved, Less conserved, 300, 363, 500, and 

580 bp) of the sequences of ECR3 were PCR amplified using primers containing KpnI sites and 

cloned into SF-1(-734+60)luc, as described above. For PCR based site-directed mutagenesis, a 

HindIII site was introduced into the potential transcription factor binding sites (E box element, p53 

and Elk1) and the mutant ECRs were amplified using primers containing KpnI sites and cloned 

into SF-1(-734+60)Luc as for the full length ECR3. All clones were confirmed by sequence 

analysis. 

 

DNase I footprint and EMSA analysis: 

The preparation of nuclear extracts and the generation of DNA probes were as described 

elsewhere (Lei and Heckert 2004, Hermann and Heckert 2005). DNase I foot printing assay 

using nuclear extracts from αT3 cells (containing 20 micrograms of protein) was performed as 

previously described (Lei and Heckert 2004). EMSAs were performed as previously described 

(Lei and Heckert 2004, Hermann and Heckert 2005). 

 

ChIP 

ChIP was performed as described (Hiroi, Christenson et al. 2004, Hermann and Heckert 2005). 

Cross-linked chromatin was prepared from αT3 gonadotrope cells. Antibodies were purchased 

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA), and 5 μg each was used for 

immunoprecipitation: rabbit anti-USF1 IgG (sc-229), rabbit anti-USF2 IgG (sc-862), rabbit 

E2A.E12 (V-18) X (sc-349X) , RNA polymerase II (sc-899), p300 (SC-6149), H3Ac (Millipore 

06-599), H3K27me3 (Millipore 07-449), and normal rabbit IgG (sc-2027). PCR was performed 
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using 5 μl immunoprecipitated DNA or 1 μl input material, and primers were directed to 

sequences within the mouse SF-1 ECR3  loci. For mouse SF-1 ECR3, the primer set spanned the 

ECR3 region, ECR F: AGCAGCAGAGGCTGTTTCC and ECR R: 

AGCTGAGGCTCCCTCCAC. Products were resolved by agarose gel electrophoresis.  

Cell Culture and Transfections: Primary cultures of rat Sertoli and peritubular myoid cells 

were prepared, and transfections performed, as previously described (Karl and Griswold 1990, 

Heckert, Daggett et al. 1998, Chen and Heckert 2001) Preparation and transient transfection of 

mouse MA-10 Leydig cells was performed as described, except that cells were plated at a density 

of 52,000 cells/well (Ascoli 1981). Preparation and transient transfection of the αT3 gonadotrope 

cells were performed as described, with modifications (Windle, Weiner et al. 1990, Wolfe and 

Call 1999). Preparation and transient transfection of the MSC-1 cells were performed as 

described earlier (Heckert, Daggett et al. 1998). Co-transfection of Ids was performed as 

described, with modifications (Scherrer, Rice et al. 2002).Transfection experiments included TK-

renilla as an internal control and the firefly and renilla luciferase activities were measured. The 

luciferase/renilla values of the vectors containing ECRs were made relative to the values for the 

SF-1 promoter alone.  

 

 

 

 

 

 



143 
 

 

 
 

Table 1. Oligos used to amplify SF-1 Promoter (-734+60) region 

 

Primer Sequence(5’-3’) 

SF-1 F GGGCTCGAGATCCGTCTAGGCCAGTTCAG 

SF-1 R GGGAAGCTTCTATCGGGCTGTCAGGAACT 

 

 
 

Table 2. Oligos used to amplify the ECRs 

 

Primer Sequence(5’-3’) 

ECR 1 F GCGCGGTACCACTTCCAGTCCGCCTGCTCGTG 

ECR 1 R GCGCGGTACCGGACTGGGACCCTTGCCGAG 

ECR 2 F GCGCGGTACCTGCTCGGAGAGATGGTTTATTA 

ECR 2 R GCGCGGTACCCCTGGCTTGGGGTCCCTGGC 

ECR 3 F GCGCGGTACCGGTAATGCTGGCAGGTTGGGAT 

ECR 3 R GCGCGGTACCTGGAGGCAGAAAATGAACTAA 

ECR 4 F GCGCGGTACCCTCTGCCCAGGACAAACCC 

ECR 4 R GCGCGGTACCCAACT TTGGTTTCTTCATTTACA 
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Figure 1: Alignment of NR5A1 region using ECR browser, depicting the Evolutionarily     

conserved regions (ECRs).Alignment of NR5A1 region using ECR browser, depicting the 

Evolutionarily conserved regions (ECRs). In this figure, red peaks depict regions of non-coding 

evolutionarily conserved sequence, NR5A1 and its neighboring gene NR6A1 are annotated at the 

top (arrows indicate transcription direction), and conserved exons and untranslated sequences are 

marked as blue and yellow peaks, respectively. 
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Figure 2: Schematic diagram of the vector SF-1(-734+60) Luc and the transcriptional   activity 

of each ECR. Schematic diagram of the vector SF-1(-734+60) Luc and the transcriptional 

activity of each ECR shown as determined in multiple cell types (noted to the right of the graph) 

by transient transfection analysis. The bar graph shows promoter activity as the ratio of 

firefly/renilla luciferase activity of each construct relative to that of the SF-1 promoter without 

the ECR and error bars represent the SD of mean.  
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Figure 3: Deletion mutants and analysis of transcriptional activity. Deletion mutants were 

generated by cloning varying lengths of highly conserved sequences (shown on the top of the 

diagram) in SF-1(-734/+60)Luc and their transcriptional activities tested individually in alpha T3 

cell type and graphed (bottom). 
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Figure 4: Dnase Footprinting gel of ECR3 region. Diagram showing the identified binding sites, 

hypersensitive site and footprints on the sequence of ECR3 (left and below). A picture of the 

footprinting gel is shown  along with a hypersensitive site, footprints and the associated sequence 

ladder. +NE and -NE represent with and without nuclear extract respectively. 
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Figure 5: Transient transfection analysis to check activity of potential transcription factor 

binding sites. Schematic diagram of the relative positions of the generated mutations and 

potential transcription factor binding sites within the ECR3 fragment (top). The activities of E-

box, p53 and Elk 1 mutants were tested by transient transfection analysis and compared to that of 

the base vector (bottom). 
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Figure 6: Electrophoretic mobility shift assay (EMSA) of ECR3 region. Electrophoretic mobility 

shift assay (EMSA) of ECR3 was performed using αT3 nuclear extracts and a radiolabeled probe 

containing the ECR3 E box (bottom). Where indicated competitors were added to the reaction at 

a concentration 100X that of probe. Similarly, indicated lanes contain antibodies to basic-helix-

loop-helix (bHLH) proteins (E2A, USF1 and USF2), transcription factors that bind to E box 

elements. The results are summarized at the top with a schematic diagram indicating E box 

binding of E2A and its binding partner, USF1 and USF2.  
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Figure 7:  Evaluation of transcription factor binding by ChIP in αT3 cells. Interactions between 

E2A, USF1, USF2, RNA polymerase II, p300, H3Ac, H3K27me3 and ECR3 , in vivo, were 

evaluated using ChIP with cross linked chromatin from αT3 cells. Immunoprecipitations for each 

antibody were compared with normal rabbit IgG.   
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Figure 8: Co-transfection analysis to determine role of Id proteins. Negative regulators of bHLH 
proteins Id1, Id2, and Id3 were co transfected into αT3 cells with luciferase reporters driven by 
wild type (Trompouki, Bowman et al.) or E box mutant (mEbox) SF-1(-734+60)-ECR3. Relative 
activities were assessed and are shown below. 
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Chapter 6: Implications and Future Directions 
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Implications 

This thesis delves in the transcriptional regulation of Fshr and SF-1 that form an important 

component for the proper functioning of the HPA/HPG axis. It is now clear that regions beyond 

the promoter and its proximal elements are required for proper gene transcription. To identify 

these distal regulatory elements, sequence conservation was employed to identify genomic 

sequences that have remained unchanged over millions of years of evolution, and hence indicate 

that these regions are under evolutionary pressure to remain constant and harbor transcriptional 

factor binding regions. Chapter 2 of this thesis identifies highly conserved regions in the Fshr 

locus and potential binding sites for CTCF, a protein known to regulate transcription and 

chromatin architecture, and insinuates to a role of CTCF in transcriptional regulation of the Fshr 

gene. Chapter 4 and Chapter 5 of this thesis deals with conserved elements identified at SF-1 

locus. A long non-coding RNA labeled Fast was found transcribed in opposite orientation of SF-

1 and displayed similar tissue expression and regulatory profile as of SF-1. Knockdown and 

over-expression of the Fast transcript did not modulate mRNA or protein level of SF-1, 

indicating that the very act of transcription of the non-coding RNA might contribute to the 

opening of the chromatin for transcription of SF-1. Comparative sequence analysis identified an 

evolutionary conserved non-coding region, ECR3, approximately 4kb from the transcriptional 

start site of SF-1. ECR3 were cloned upstream of a -734/+60 SF-1 promoter directing expression 

of a luciferase reporter and its transcriptional activity assessed in various cell types by transient 

transfection analysis. Transient transfection analysis identified an ECR in the SF-1 locus, which 

regulates expression of SF-1 in the pituitary. Further characterization of the ECR region 

identified an E-box and binding of USF-1 and USF-2, along with E2A transcription factor, 
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confirmed by EMSA and ChIP. In addition, co-transfection studies identified Inhibitors of DNA 

binding, Id2 and Id3 that interfere with bHLH proteins to downregulate SF-1 transcription.  

These studies highlight the importance of conserved elements and sequence conservation as a 

tool to identify regulatory elements distal to the promoter and lay the groundwork for further 

characterization of these identified regions and the role they might play in modulating gene 

transcription. 

 

Future directions 

Defining CTCF regions and its role in regulating Fshr transcription    

Initiation of transcription starts from the promoter and involves recruitment of general 

transcriptional factors (Lee and Young 2000, Butler and Kadonaga 2002). Since the 

characterization of Fshr, twenty years ago, we have come a long way in identifying 

transcriptional mechanisms that regulate gene expression (Heckert, Daley et al. 1992, Gromoll, 

Pekel et al. 1996, George, Dille et al. 2011). The extensive characterization of the Fshr gene, 

while underlining the importance of the promoter and its proximal regions, fall short in revealing 

cell-specific expression of the receptor. Multiple transgenic reporter studies expressing the 

promoter and large swathe of the surrounding region were unable to replicate the cell-specific 

expression, supporting the theory that distal regulatory elements are required for proper spatio-

temporal expression (Heckert, Sawadogo et al. 2000, Nordhoff, Gromoll et al. 2003, Hermann, 

Hornbaker et al. 2007). However, identification of distal regulatory elements possess great 

challenge as they can act over large distances and the Fshr gene is located in a long genomic 



155 
 

stretch devoid of protein-coding sequences and no known biological functions (Ovcharenko, 

Loots et al. 2005, Akalin, Fredman et al. 2009).  

To facilitate the search of these regulatory elements comparative genomics and web based 

prediction tools were employed as described in Chapter 2. Among the varied distal regulatory 

elements known to regulate gene transcription, we looked at the ubiquitously expressed 

“multivalent” protein CTCF, with known multiple functions, including transcription (Filippova, 

Fagerlie et al. 1996, Phillips and Corces 2009). Evaluation of these evolutionary conserved 

regions (ECR) in the CTCF prediction software led to the identification of six ECRs; ECR1, 

ECR1d, ECR1f, ECR2 and ECR15, with high probability of CTCF binding. Depletion of CTCF 

in rat granulosa cells increased transcription of Fshr two-fold while the Lhcgr remained 

unchanged; indicating that depletion of CTCF removed its repressor effect on Fshr transcription. 

While these findings implicate CTCF in regulating Fshr transcription, a series of experiments 

will have to be performed to evaluate the location and the mechanism involved.  

A good starting point will be to identify if CTCF binds to the ECR regions using electrophoretic 

mobility shift assay (EMSA) and further confirmation by chromatin immunoprecipitation 

(ChIP). ChiP-chip, a technique that combines ChIP with microarray technology (chip), can be 

used to identify a number of important DNA-protein interactions leading to important 

discoveries on transcriptional regulation (Ren, Robert et al. 2000). This technology will help 

identify CTCF binding regions on the Fshr locus.  

 Colony assay is an established assay to determine enhancer-blocking activity of insulator 

elements (Gombert, Farris et al. 2003). This assay employs a bacterial neomycin resistance gene 

(neo) reporter construct, stably integrated into the genomic site and measures the ability of the 

proposed insulator element to repress or stimulate transcription of selectable marker construct. 
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As shown in Figure 1, the insulator element will be placed between the enhancer and the 

promoter region or upstream of the enhancer. The number of colonies obtained after transfection 

into mouse transformed granulosa cells, GRMO2, will be proportional to the number of cells 

expressing the neomycin resistance gene (Neor) at levels sufficient to confer resistance to the 

drug (G418). CMV promoter and the enhancer run the Neor transcription. In absence of the 

enhancer, there will be reduced number of colonies. To test the ability of the construct to 

measure enhancer blocking activity, Drosophila scs and scs’ boundary elements will be 

introduced at E-scs-P-neo-scs’ and also as scs-E-P-Neo-scs’. Insertion of the scs should insulate 

the promoter activity and reduce the number of colonies. However, when the scs will be inserted 

upstream of the enhancer, the colony number will remain high. Insertion of the scs element will 

increase the distance between the enhancer and the promoter and this might be the cause of lower 

number of colonies.  
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To verify that the reduction in colony number seen is a result of enhancer blocking and not the 

increased distance between the enhancer and promoter, a similar length control (C) fragment will 

be inserted between the enhancer and the promoter. A reduction in the number of colonies will 

Figure 1: A schematic diagram depicting colony assay. As shown, the CMV promoter and 
neomycin resistance gene (neo) reporter construct denotes control and bar graph denotes 
expected trend for each reporter construct. Enhancer element placed upstream of the Promoter-
Neo construct should yield in increased G418 resistant mouse GRMO2 cell colonies. C; control 
should not affect the colony number. Drosophila scs and scs’ boundary elements will affect 
colonies when placed between the enhancer and the Promoter-Neo construct and will be another 
positive control. cHS4 a known insulator, when placed between the enhancer and promoter 
should have a similar affect as seen with Drosophila scs. This insulator effect shall be relieved 
when cHS4 will be placed upstream of the enhancer. To check if the regions identified function 
as insulators, they will be placed in both orientations and both upstream and in between the 
enhancer and promoter-Neo construct to check if they block enhancer activity, which will be 
measured by the number of resistant colonies.
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ascertain the enhancer blocking property of the insulator when placed between the CMV 

enhancer and the promoter. As a control, 1.2-kb chicken β-globin HS4 insulator sequence will be 

placed between the enhancer and the promoter. As HS4 is a previously reported enhancer-

blocking element, it will reduce the number of colonies (Chung, Bell et al. 1997).   

Chromosome conformation capture (3C) analysis is another method to evaluate the interaction 

between distal regulatory cis-acting elements and the promoter (Dekker, Rippe et al. 2002). In 

3C, transient chromatin interactions are stabilized by formaldehyde cross-linking, followed by 

restriction digestion and intramolecular ligation and subsequent analysis of the ligation products 

by PCR. 3C has been used successfully to analyze spatial organization of small genomic 

domains such as mouse interferon gamma gene domain to larger genomic areas as in the case of 

mammalian alpha and beta globin gene domains (Palstra, Tolhuis et al. 2003, Eivazova and Aune 

2004, Zhou, Xin et al. 2006). These techniques can identify CTCF binding regions on the Fshr 

locus, determine if there is a physical interaction between these distal regulatory elements and 

the Fshr promoter, and identify its role in modulating transcriptional regulation of Fshr.  

Identifying functional role of Fast 

The long noncoding RNA, Fast, identified at the Nr5a1 locus did not affect transcription or 

translation of SF-1 indicating that it could function by acting in trans as in the case of HOX 

antisense intergenic RNA (HOTAIR). HOTAIR does not affect at the site of its expression at the 

HOX C locus, but interacts with PRC2 and the (LSD1)–CoReST–ReST complex and represses 

HOXD and several other loci (Rinn, Kertesz et al. 2007, Tsai, Manor et al. 2010). To identify 

targets of Fast, mU6 ShRNA and Fast shRNA plasmids will be transfected into MA-10 Leydig 

cell line, selected for neomycin resistance, expanded, and RNA extracted using Trizol. RT-PCR 

will be utilized to analyze the efficacy of the RNAi construct, and constructs that decrease 
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expression of Fast by 80-90% will be used for further experimentation. Six samples will be used, 

three for Fast knockdown and three controls and expression profiling can be performed using 

Affymetrix Gene Chip Mouse Genome 430 2.0 platform. Ingenuity Pathway Analysis (IPA) can 

then be utilized to analyze the raw data and promising gene candidates can be identified on basis 

of minimum two-fold difference and p-value less than 0.05. Once identified, these candidate 

genes can be confirmed by utilizing RT-PCR.  

Fast shares similar expression and regulatory functions as SF-1 indicating a functional role of the 

non-coding RNA, which it might relay through interaction with cellular proteins. It has been 

frequently observed that a number of lncRNA recruit or interact with protein complexes to bring 

about their associated function. The lncRNA, RepA recruits the Polycomb Repressive Complex 2 

(PRC2) to the future inactivated X chromosome resulting in trimethylation of Histone 3 lysine27 

(H3K27me3)(Zhao, Sun et al. 2008). Similarly, lncRNA Air and Kcnqlot1 interact with H3K9 

histone methyltransferases G9a to epigenetically silence transcription. Identification of the 

proteins that interact with the non-coding RNA will help elucidate its functional significance and 

any potential mechanism involved in regulation (Nagano, Mitchell et al. 2008, Pandey, Mondal 

et al. 2008).  

In order to identify proteins interacting with Fast, a biochemical approach can be taken as 

described previously for purification of proteins interacting with non-coding RNA, NRON 

(Willingham, Orth et al. 2005). Full length Fast will be cloned into pGEM5z and in vitro 

transcribed, following which a 3-hairpin RNA (MS2 loop) epitope bound to a MS2-MBP will be 

added to the 3’ termini of the full length Fast RNA (Figure 2). MS2 is a bacteriophage coat 

protein that is bound to the maltose binding protein (MBP). MS2-MBP, Fast and a nonspecific 

(NS) RNA without the hairpin loop 
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Figure 2: Purification of RNA bound proteins by MS2-MBP pull down method. The Fast 
RNA will be tagged with the three MS2 stem loops and then bound with the MS2:MBP 
fusion protein. Nuclear extracts are now incubated with the Fast RNA-MS2 stem loop and 
MS2:MBP fusion will be then affinity selected by binding to amylose resin and eluted. 
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will be prebound and incubated with protein extract from mice granulosa cells (Fast expressing) 

and NIH3T3 cells (Fast non-expressing). Samples will then be washed and eluted in an amylose 

binding resin. The resulting proteins can then be concentrated, resolved, analyzed by Mass 

Spectrometry and peptide sequence identified.  

Over the past decade, the role of non-coding RNA in gene transcription and regulation has been 

appreciated. The so called “dark matter” has been resolved to play important biological role in 

proper regulation of the cellular machinery and our appreciation grows as new functions are 

described. The identification of a long non-coding RNA transcribed from the same locus as SF-1, 

in the opposite direction, with similar expression profile and tissue-specific transcript variants 

indicates a functional role. The data generated will provide insight to the functional role of the 

non-coding RNA and the role it may play in adrenal and gonadal development and will reveal a 

new chapter both in the role of the non-coding RNA and of SF-1 function. 

Further characterization of ECR3 and role of identified transcription factors  

Comparative genome sequencing between chicken, mouse, and human led to the identification 

and characterization of ECR3 located upstream of SF-1. An E-box was identified and it was 

found to be bound by upstream stimulatory factors 1 and 2 (USF1 and USF2), and transcription 

factor E2A, a ubiquitous bHLH protein. bHLH proteins contain a basic DNA binding domain 

and two helices that are involved in interaction with other proteins during the formation of 

homo- or hetero-dimers and play important roles in various developmental processes, including 

sex determination and is widely believed to play a central role in transcriptional regulatory 

networks (Massari and Murre 2000, Kee 2009, Zheng, Wang et al. 2009). Although, E2A is 

expressed in pituitary, no studies account for the pituitary functions of E2A. Our current study 
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indicates that E2A plays a transcriptional regulatory role in pituitary gonadotropes (Roberts, 

Steenbergen et al. 1993) . The bHLH protein, E2A hetero-dimerizes with other tissue-specific 

bHLH proteins before binding to DNA to regulate transcription. This protein can be identified by 

employing proteomics of isolated chromatin segments (PICh), that allows isolation and 

identification of proteins bound at a chromatin locus (Dejardin and Kingston 2009). PICh 

involves fixing cells with formaldehyde, followed by solubilization of chromatin, hybridization 

of a specific probe, capture using magnetic beads, elution of hybrids and identifying associated 

proteins by Mass spectrometric analysis. Once the proteins are identified, they can be confirmed 

by standard ChIP. PICh has been used successfully to identify binding of orphan nuclear receptor 

COUP-TF2 at telomeres (Dejardin and Kingston 2009).  

Earlier work in mouse and rat, identified an E box motif in the proximal promoter region of SF-1 

and it was found to be bound by USF1 and USF2 (Harris and Mellon 1998, Daggett, Rice et al. 

2000). In the current study, another E-box was identified in the distal regions upstream of SF-1. 

ECR3 lies ~4kb upstream of the SF-1 promoter region, indicating that distal looping is involved 

and the two E-box might work in concert to regulate SF-1 transcription in the gonadotrope 

pituitary. 3C can be employed, as described earlier, to evaluate the interaction between ECR3 

and the SF-1 promoter.  

This is the first time that E2A has been implicated to play a role in transcriptional regulation of 

SF-1 in the pituitary gonadotropes. To identify the role of E2A in the transcriptional regulation 

of SF-1 in the pituitary gonadotropes, α-T3 cells stably transfected with shRNA directed against 

E2A, can be analyzed to identify the function of E2A on SF-1 transcription. 
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In summary, our study identified a highly evolutionarily conserved region namely ECR3 and an 

E-box within ECR3 that is essential for pituitary expression of SF-1. Additional studies will 

identify more or all of the regulatory sequences that are important for pituitary expression of SF-

1 and increase our understanding on SF-1 gene regulation in pituitary. 
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