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Abstract: This paper studies continuous-time stock pricing models
with stochastic volatility driven by fractional Brownian motion. We com-
pare two ways for simulating the paths of stochastic volatility and stock
price when the Hurst parameter of fractional Brown motion is between
0.5 and 1. The first approach, is to use truncated fractional Brownian
motion to approximate the fractional Brownian motion and estimate the
volatility by Monte Carlo integral and symbolic integral. In the second
one, Euler method is employed in simulation, without truncating the frac-
tional Brownian process. Simulating the fractional Brownian motion in
the second approach, we use spectral representation. Simulation results
show that the latter is more efficient than using the symbolic integral and
Monte Carlo integral is the worst. The application of the stochastic model
is illustrated through real financial data.
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1 Introduction

To make investment dedsions in finandal markets, critical concerns
are the returns and the risks. To capture the feature of risks, one measure
is to calculate the volatilities. For security prices, especially bond prices,
existence of long range dependence in volatilities is well-documented.
With a slight abuse of concept, in this paper we will use stock price to
represent security price. Backus and Zin (1995) used fractional difference
model to model the features of the volatility of long term interest rate
and introduced discrete bond pricing model. Continuous-time stochastic
differential equations (SDEs) are most frequently employed in finance to
quantitatize assets returns, interest rates and investment risks, and are
extended to capture the feature of long dependence in the volatilities of
stock prices.

In the basic case, we assume the interest rate and the volatility of stock
price are time-invariant. In Black-Scholes-Merton (BSM) model for stock
prices, with constant interest rate r and constant volatility ¢, the stock price

St is modeled by a geometric Brownian motion (GBM)
dSt = T’Stdf =+ GStth

where W; is a standard Brownian motion(SBM).

The stock price is
S = SeexploW; + (r - %oz)t}.

Generally, the interest rate and volatility are time-varying. Thus, with
instantaneous rate of return #(t) and volatility ¢(t), both deterministic, one

obtains a generalized geometric Brownian motion model

dS, = r(HSdt + o(H)S,dW,.

The stock price is given by
} }
S¢ = S(0)exp| f o ($)dW, + f (r(s) — %Gz(s))ds}.
0 0
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In complicated stock markets, time-evolution volatilities, more often
than not, are non-deterministic. In literature, stochastic differentiation e-
quations are frequently applied to model continuous-time volatilities in
finance. Hull and White (1987), Scott(1987) as well as Melino and Turnbul-
1{1990) proposed a standard stochastic differentiation volatility model, in
which therandom partis driven by a standard Brownian motion. Inreality,
a standard stochastic differential process doesn’t capture the characteristics
of all volatilities. To model the volatility exhibiting long range dependence,
it is natural to extend the standard stochastic differential volatility mod-
el to be fractional stochastic differential volatility(FSDV) model, which is
driven by a fractional Brownian motion. For simplification, Comte and Re-
nault (1998), proposed truncated fractional stochastic differential volatility
(TFSDV) model for modeling the dependence.

The main focus of this research, is to investigate the quantitative aspects
of a class of stock price models with fBm driven volatilities and improve
the simulating method for the trajectories of stock prices and volatilities.
We compare two simulating methods. One is to adopt truncated fractional
Brownian motion to approximate fractional Brownian motion as the mod-
el in Comte and Renault (1998). We specify how Monte Carlo integral
works in implementing the process. Also, we also use symbolic integral to
calculate the integral in truncated fBm. The other approach is to employ
Euler algorithm in simulating the paths of stock price and volatility, which
is showed to be an improvement for the first method.

Another motivation of this research is to apply the stock price mod-
el driven by fractional Brownian motion to analyze real financial data.
We estimate the parameter in fractional Brownian motion by periodgram
method.

The paper is organized as follows. Stock price models with standard
stochastic volatility model, fractional stochastic differential volatility (FSD-
V) meodel and truncated stochastic differentiation volatility (TFSDV) model

are investigated in Section 2. Section 3 studies specific simulation proce-



dure for paths of stock price and volatility which is driven by truncated
fBm. Section 4 specifies Euler method to improve the simulation by simu-
lating fBm directly. Section 5 presents the methods for parameter estima-
tion and applies the method to analyze real financial dataset. In section 6,

we try to explore the trajectory of European call price.

2 Model

2.1 Fractional Brownian Motion
2.1.1 Standard Brownian Motion

Definition 2.1.1: Let (2,7, P) be a probability space. A continuous
real-valued process (W,);., is called a standard Brownian motion or Wiener
process if
(i) Wy = 0, and the sample paths of W, are continuous function of t.

(i)W, has independent increments, i.e. for any sequence of times 0 <
t) <t, <--- <t the increments W, - W, , W, — W, ,..- , W, — W, are
independent random variables; W, is time homogeneous, i.e. for t > s the
distribution of W, — W; depends only ont — s, and W, — W, 4 W, .
(iii) For 0 < s < ¢,

W, — W, ~ N(0,t —s).

Definition 2.1.1'(n-dimensional): An n-dimensional stochastic process

(W)= 1s called a standard Brownian motion if
(Wf)t20 = (thr szr ] W?)tzo;

where the processes (Wf)tzo, i=1,2,.-- ,nareindependent standard Brow-

nian motions.



2.1.2 Fractional Brownian Motion

Definition 2.1.2: A continued-time Gaussian stochastic process WH

with Hurst parameter H, is called fraction Brownian motion (fBm) if

1 0 1 1 ' :
WH = r(H—Jr%)(LO[(t_S)H 2 — (—s) z]dws+f0(t—s)H LAW,),

where T'(ax) = fooo x* lexp(—x)dx, H € (0,1) is called Hurst parameter, and
W = (W})s=0 is a standard Brownian motion.

The covariance function of fBm is given by
1
Covyy,(s,t) = E(tZH + s — |t — g2y

for every s,t € [0, T].

The fractional Brownian motion is a continuous Gaussian process with
stationary increment and is self-similar. W is H self-similar, which means
that (uiH Wiy, o and (WH).., have identical probability distributions, for any
uelk’.

2.1.3 Truncated Fractional Brownian Motion, a Proxy to W

Definition 2.1.3: Let W, be standard Brownian motion, and &« = H — %

Define

¢
. (t—s)*
Wi _\fo F(1+a)dws.

Then WY is a truncated fractional Brownian motion of order a.
Being said truncated, means that the first integral term in fractional Brow-
nian motion Wy(f) is chopped. W,(?) is a simplified approximate form to
WHwhena 0. Ifa=0,ie H= %, We = WH = W, a standard Brownian
motion.

Unlike Brownian motion, Wy does not have stationary increments.
However, the truncated Brownian motion has conditional stationary in-

crements. Let 7, be a filtration generated by Wy

Fr = o(W,,0 <5 < B).

4



Following is to calculate the mean and the variance of increment for
W conditional on ;.
Conditional on 77, the expectation of the increment W{, — WY is given by

[Wfih WeIF|
=E | foml t+:}lt+;) dW; — tli)j)dw |97]
=B V J‘Hh H?ﬂi) dw ft (Hi:;)adw f 1"(1+oz dw |9jt]
= B[ [ g 7] + | [ S g |7
(t+h—s 8y
B e
J(; (1+oz) dw

Conditional on 77, the variance of the increment W7, — W} is given by
Var(Wg,, - Wil

= E[(we, - We — BV2, — Wi |7

=B[( " L= aw, - f) W, - f%dW)lﬁ]
= E[( ;7" S aw, - [ S aw,) |7

= E[( [ a7

- |

~ Qa+DT(lta)?"

2.2 Stock Price Model with Volatility Driven by Standard
Brownian Motion

Hull and White (1987), Scott (1987), as well as Melino and Turnbull

(1990) proposed a stock price model, by assuming that the volatility not

only depends on time f but also an adapted stochastic process, which is
the standard stochastic volatility(S5V) model

S = r(t, SOt + o)W}
d(lno(t)) = k(6 — Ino(B)dt + ydW2,

1

where (W}, W?) is a bivariate Brownian process.



2.3 Stock Price Model with Volatility Driven by Fractional

Brownian Motion

The above model can be extended, by replacing W? in the volatility
equation by a fractional Brownian motion with Hurst parameter H, as

follows.

S = r(t, S(E)dE + o (AW} &
d(Ina(#)) = k(6 — Ina())dt + ydWE.

As such, the model accommodates to a wider range of volatility features.

2.4 Stock Price Model with Volatility Driven by Truncated

Fractional Brownian Motion

By substituting the standard Brownian process W? with a truncated
fractional Brownian motion(fBm) W of order «, Comte and Renault (1998)
extended model (1) to the following model with volatility driven by trun-
cated fractional Brownian motion.

BO = #(t, St + o (HAW!

v (3)
d(Ina () = k(0 — Ino(#))dt + yd W=

For -1 < & < 0, the volatility is of short memory. With 0 < & < 1, the
model captures the persistent stochastic feature, or long memory feature

of stochastic volatility.

3 Numerical Estimate of Stock Price Model with
Volatility Driven by W

This section presents procedures to simulate the paths of the stock
and truncated fBm driven volatility. In particular, Monte Carlo integral is

specified.



3.1 Long-memory Volatility Driven by Truncated Fraction-

al Brownian Process

Consider first-order fractional stochastic differential equation with long-

memory
dX(#) = —kX(B)dt + ydW2, x(0) = 0,k > 0,0 < o < %

The solution is, X(#) = fot e M=y dWe,

According to Comte and Renault (1996),

3
X(t) = f A(t = s)dW,,
0
where A(t — s) is given by

d * - a o4 — * i, 0
A(x):F(l):—a)ﬁ[Jo‘ e (x — u) du]:F(lﬁ—a)(x —kekxjo‘ ekudu).

3.2 Approximate the Volatility Process

In the same spirit of Comte and Remault (1998), to approximate the
volatility X(t) process, discrete time numerical method is employed to
estimate the integrals, specifically, using step functions to approximate
integrands. Let 0 = #) < f; < -+ < #; < -+ < fpg < t be a partition of
[0,f]. § =0,1,---,[nt], where [nt] is the greatestn integer not exceeding
nt. In particular, in the rest of this paper, we divide [0, [’;—ﬂ] into equal

subintervals with length t; — ;1 = <

+
f At — 9)dW,
0

[#t] p
-1
AG—]
- "

X(#)

Jaw, + At~ Py, - i),

El
n

i

=

where



AW = Wi — Wiy

(]

For large n, t — == is very small, so that the last term in approximating

expression of X(t) is negligible. Thus,

[2] .
X(H) = Xult) = Y At - ——)AW,.
=1

3.3 Monte Carlo Method to Approximate A(f — %)

; : : 2 i1
To approximate above X(f), we need to estimate the integral in A(t—+>).

; s -1
]_1 _ ¥ _]_1 o —k(t—ﬁ) g U, 0
n)‘ra+mm — )"~ ke : & udu).

Unless a = 0, it is impossible to derive the integration analytically. An

Alt -

alternative approach to deal with the integral in A(f— %) is to using Monte
Carlo Integration.
To compute 6 = fol f(x)dx, observe that 6 = E[f(U)], where U ~ U(0, 1).
With this,
(i) Generate Uy, Uy, --- , U, ~ U0, 1)iid.;
(ii) Estimate 8 with
5 _ JUD+ f(UD +- f(Un)

W
m

~

0, is a good estimator of 0, since
(1)8,, is unbiased, i.e. £[8,,] = 6 and
(ii)ém is consistent, i.e., 8,, — 6 with probability 1 as m — oo, following

strong law of large numbers.

For more general case, 0 = fﬂ ’ fx)dx = fa ’ h(x)w(x)dx,
where i(x) = f(x)(b —a), w(x) = bfla, w(x)is the p.d.f ofU(a, b).
5 _ AU+ (Ug) + -+ 1(Uy)

O , Ui ~ Ula, b).
> @)




; — ;
To estimate fo *Mutdu, one writes

o« 1 _ _
6= [ utdu = (t - LHE[exp(kU)U*, with U ~ U(0, ¢ — L),

Generate m iid. U(0,1), convert them to U(0, { — %) multiplying by the
coefficient f — %, and then take the average of the sum of the integrand at

the converted random values.

3.4 Symbolic Integral to Estimate A(f - L1

n

8
To estimate fot * My du, use the function int() in MATLAB, as follows.

_=t ;
fot " Mutdu = int(@*u,u,0,t — ];—1), where u is specified as symbolic

variable by syms u.

3.5 Approximate Stock Price, with Volatility Driven by W'

With the above preparation steps, we can simulate the stock price path.
Suppose that InS(f) is a martingale and Let Y () = InS(f). We are interested
in the paths of stock price and volatility the model

dY(t) = o(H)dW!

(4)
d(Ino(t)) = —kIno(t)dt + yd WY,
where ,
a (t—s)*
i JO‘ I'(1+ a)dw‘?’
and W}, W? are two independent standard Brownian processes.
In analogue to volatility, Y(#) is estimated by
'
Y(t) = f o(t)dW} (5)
0
e (U " (VR
~ Z o . )AW% + G(T)(Wi - Wiy ) (6)

=



in which AW} =W, - W/ For large #, the last term is neglected.
jtn jin =Dn

Note that, in (6), o(:) is estimated. Use the previous proxy X_n(t), then

[nt]

7.0 = o] Y, A= S, |

=

[7it]

n(t)—Zf 5= DA,
L

3.6 Experiment to Simulate the Paths of Volatility and S-

tock Price

Simulate a standard Brownian motion W, in Matlab:
(a)Sett, =0,W, =0.
(b) For j=1,2,3,---, [nt], generate AWtj ~N(O,t; = ti1),
Le. AW, = normrnd(V, (; — f;1)/n).
(c)Set Wy, = W, _, + AW,..
Remark 1: When we generate a standard Brownian motion, actually, we
generate a correlated random vector (W,, Wy, -+~ , W, ).

Simulate bivariate standard Brownian motion W(t) = (W}, W?):
(a)Setty =0, W, = (W1 Wz) = (0,0).
(b) For j =1,2,3,--- , [nt], generate AWtj = normrnd(0, t;—¢;_4, [1, 2]). AWtj
is a 1 by 2 matrix, containing two independent random numbers from
normal distribution N(0,#; — #;_4).
(c)Set Wy, = W, |, + AW,
By above construction process, itis obvious, (Wl1 Lo th[m] Yy and (Wfl, . t[nt Yy

are two independent random vectors, while each vector itself is Correlated.

Given # and [0, ], for evenly partitioned [0, [”t]] here is the procedure
to estimate stock price and volatility.
Step 1, generate bivariate standard Brownian motion W, = (W},Wf) as
follows.

(a) Set Wy = (W, Wg) =(0,0).

10



(b) For j=1,2,3,-- , [nt], generate AW/, = normrnd(0, j/n,[1,2]).
(c) Set Wiy = Wiiiym + AW,

Step 2, Estimate each A(t — =)

Step 3, Estimate o,(t)

Step 4, Estimate Y(t)

Consider on time interval [0,20], with discretion step size 7 = 0.02,
n =1000, (a, k, 1) = (0.1,1,0.05). To implement above embedded algorithm
on a computer with core 2 Duo CPU T64000 @ 2.GHz, it took 144 hours
to produce 98 simulated data of stock price. In practice, it is inefficient
and impractical to conduct the simulation. Another shortcoming of the
simulationis that, in each step calculating A(#), it introduces approximating
errors. As a result, the simulation is not only tremendously computing
intensive, but less precise due to accumulated errors.

By symbolic integral, we obtain the paths of logvolatility and log stock
price as the Hurst parameter changes from 0.6 to 0.99. Here are parameter
setups for experiments 1-5 to simulate the paths for logvolatility and log-
stockprice by employing symbolic integral.

Simulation1: k =1,y =0.01, H = 0.6.

Simulation 1: k=1, =001, H=0.7.

Simulation 3: k =1,y =0.01, H = 0.8.

Simulation4: k=1, =0.01, H =0.9.

Simulation 5: k =1,y =0.01, H = 0.99.

It is worth noticing that, for each parameter setup, 1000 paths of logvolatil-
ity are generated. Then, we take the sample mean of the paths and produce
the graph. Similar averaging work is done for logstock price. Simulation
results are displayed as graphs 1-5in appendix. Based on the ranges shown
on the graphs, as H increases, logvolatility becomes smoother, although

graphs appear similar shape.

11



4 Euler Algorithm

In this section, a modified method for simulating the paths of stock price
and fractional Brownian motion driven volatility is presented. Instead of
using truncated fBm as an approximate process to fBm, fBm is simulated
from spectral density. Also, rather than finding an integral expression for

volatility, we use Euler method.

4.1 The Dzhaparidze and van Zanten Method to Simulate
fBm

Based on spectral theory, Dzhaparidze and van Zanten proposed to use
series representations to simulate fbm.

Definition 4.1: The differential equation

d? d
zzd—z‘g + zd—z +(z2* -1y =0

for a real constant v, is called Bessel’s differential equation of order v, and
its solutions are called Bessel functions.

Remark:

1. The order v must be real. The argument z can be complex. The solutions
are real if z is positive.

2. Bessel’s differential equation is of second-order differential equation,
thus there are two linearly independent solutions, that is, two Bessel func-
tions.

3. Bessel functions of the first genre is

(=)

Z\W e 4
@) = (3) ;m '

where I'(:) is the gamma function.
Bessel functions of the second genre can be expressed by the first genre as

_ ]V(Z)COS(VT() - ]ﬂ/(z)

Yo(z) = sin(v7)

r

12



for noninteger v. For integer order #, Y,(z) = lim,_.,, Y,(z).

The procedures to simulate fBm by spectral method are as follows.
Case 1: For t € [0,1], the fractional Brownian motion Wy(t) can be simu-
lated according to following steps.

Given Hurst parameter H,

(a) Find the positive zeros of Bessel function [ y(z), x; <ap <--- < ---,and
the positive zeros of Bessel function [i_n(z), y1 < y» <---.(Note, [_u(z) =0
has infinite solutions and so does for [, g(z) = 0.)

(b) Generate independent Gaussian random variables, X;, X;, X5, -+ and
Y1, Y, -+, such that E(X;) = E(Y;) =0, and

VarX; = 2cHx;2H]fH(xn), VarY,; = 2c12{y;2H]:%I(yi),

where ¢ = 7 'T(1 + 2H)sinrH.

(c) The fractional Brownian motion is calculated as

— = 1 — cosy;t
WH(f) = Z Slmtij+Z ﬂyz .

Xi i-1 Yi

i=1
The two series above is absolutely and uniformly convergent for ¢ € [0,1].
In simulation, we don’t really sum up to infinity items. Instead, we take a

finite number N, then calculate

X sinxt Xo1- cosy;t
WH(t):Z - XﬁZ—Yf .

ra J =1 Yi

Case 2: Fort € [0, T], T > 1, to guarantee Wf{ is convergent, use the follow-
ing procedure.

Given Hurst parameter H,

(a) Find the positive zeros of first genre Bessel function Ji-x, w1 < wp < ---.
(b) X,Y, Y5, ,Z1,25,-+, are i.i.d. standard Gaussian distributed ran-
dom variables.

(c) For n € N, calculate o, which is defined by

071_1—HF2(1—H)F(%—H)
" H TH+LHre-2H)
2

()" Pt .

13



(d) Fractional Brownian motion with Hurst parameter H is represented as

[s2e) [ese)

t sin(2w,t/T) cos(Qu,t/T) -1
WH = —X . V nYn V T'IZ?I:
’* > _2H +Z wJT ¥ +Z W/ T :

n=1 n=1

which converges uniformly for f € [0, T]. Choose N large, sum up finite N

terms instead of infinite terms in above formula.

4.2 Euler Algorithm

Following is an improved algorithm.
Step 1: We simulate the fractional Brownian motion by Dzhaparidze and
van Zanten method by Case 2, instead of using the explicit integral expres-
sion for X(t) in Section 3.
Step 2. Simulate standard Brownian process W,.
Step 3: Use Euler method to simulate X(t) in formula (4):
X(tns1) = X(tn) = —kX(Ea)(tner — £) + YOV} = W)
Step 4: o(t,) = exp(X(t,))
step 5 Y(t,..1) — Y(t,) = o(t, ) (W,
sept 6: 5(1,) = exp(Y(#.))

In simulation, set £,,1 — #, to be equal distance %

- W)

n+1

Here are parameter setups for experiments 6-10 to simulate the paths
for fractional Brownian motion, standard Brownian motion, logvolatility
and logstockprice.

Simulation6: k =1,y =0.01, H = 0.6.
Simulation7: k=1, =0.01, H =0.7.
Simulation 8 k=1, =0.01, H = 0.8.
Simulation 9: k=1, =0.01, H =0.9.
Simulation 10: k =1,y =0.01, H = 0.99.

Refer to graphs 6-10 in appendix for the simulation results by Euler

method. Simulations 6-10 show that, as H increases, the tendency of

14



logvolatility depends more on the past. The path of logstockprice is a
martingale, as we assumed. Logvolatility and logstockprice don’t have
similar path, since the former is driven by fBm, and the latter by SBM,
which is independent of the SBM of the fBm.

5 Parameter Estimation

This section explores methods to estimate volatility and Hurst param-
eter in fractional Brownian motion giving a series of observed stock price.

For illustration, we analyze the case of Google.

5.1 Estimate ¢?(t), Using Quadratic Variation Method

Given stock price, estimate the volatility o(t), at given time f.
Following Comte and Renault(1998), fot 0%(s)ds =< Y >, that is to say,

StEpsmeHO Z(Ytk Y 1) =Y &)=1

where step=maxiicm{|f; — fi1|}. Thus, limy, g % = a2(t) a.s.

Let [0, T] be the observation time interval, # = £, and Y,,k=0,--- ,N
is the observed centered natural log stock prlces. Set N = np, ie, the
observations are separated to # blocks with p observation of each block.
There is trade-off between n and p and one suggested method in statistical
reference is to set both to be of order VN.

</17§ =% [(EN)/1T] (Y, —Y,,_,)? and thus, in practice, estimate o2(t) with
" 4
6121,;9 (8) = T Z (Ytk - Yfk—l)z
k=[41-p+1

Take Google’s stock prices between Oct. 16 2005 and Oct.15th 2012 as
observation data sample of size 1261. In this case, the observation is on
daily base, set T =1, N = 1261. Ufw(t) measures the the estimated centered

15



log-prices variation on [0, T]. n = V1261 = 35, %T =k,k=0,---,N,

Note that, we can still calculate ofw(t) for each day, despite the breaking

of blocks, this is an exciting phenomenon.

5.2 Estimating the Hurst Parameter in fBm by Periodogram
Method

This section use the spectral density of fBm, which is a Fourier transform

of the density of f{Bm, to estimate the Hurst parameter.

5.2.1 Spectral Density of Fractional Brownian Motion Process

Fourier transform converts a time-domain function into a frequency-
domain function without losing any information. And the reserve process
is realized by inverse Fourier transform. For stationary processes, it is
believed that, autocovariance function contains all the frequency informa-
tion. The spectral density for frequencies —w < x < 7 is

o0

fo) =Y d(explifx),

jzfoo

where d(-) denotes the autocovariance function. By reverse process, the

autocovariance function is

1 7T
i)= 57 [ f@exp-ijx.

By 5inai(1976) and Fox and Taqqu (1986), the spectral density of frac-

tional Brownian motion f(x, H) is given by
f(x, Hy = 2sin(mH)T(2H + 1)(1 — cosx)[|x] ! + B(x, H)];

where I'(-) is Gamma function and

o0

B(x,H) = Y [@nj+x) 21+ @mj—x) 27
=1
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for-m<x<m.

Since 1 — cosx = % + O(x*) as |x| — 0, then

flx,H) ~ lxF2 as x| = 0.

5.2.2 Periodogram

To approximate the spectral density of {Bm, we use the truncated sum
in B(x, H).
Definition 5.2.2: The periodogram of a spectral density is defined to be

N
I(x) = Z d(jexp(ijx),
=N

with the autocovariance

N-jl N
1 5 I WEp. ¢
d(j) = 5 ;(Xk = X)Xy = X), X = =5

Priestley (1981), Fox and Taqqu (1986) have showed that, the above

definition of periodgram is equivalent to

2 X = Z;\LIX]'
’ = N #

N
1 B —
— 1]x R
In(x) _ZRN‘ jzle (%, - %)

Use Iy(x) approximate the f(x, H). With f(x, H) ~ x!=2 as shown in section
5.2.1, one obtains log(In(x)) ~ (1 — 2H)log(x).

In data analysis, x is the estimated o, Iy(x) is calculated above. 1 -2H
is the estimated by fitting a linear regression to the data. It’s worth noting
that, the estimator of Hurst parameter obtained from periodogram is not of
high-quality. Modified periodogram methods in literature show no much
better in precision.

For Google’s stock price dataset, Hurst parameter H is estimated to be
0.5739 with log-Periodogram regression , which is between 0.5 and 1, with

weak long-range dependence.
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6 Option Pricing

With stock price and volatility model, itis possible to track the European
call price? This topic is open for further exploration. Following are some
adventurous attempts.

Let (Q2, 7, IP) Be the fundamental probability space.(¥;)ic0,r] denotes the
P-augmentation of the filtration. By Harrison and Kreps(1981)there exists
a probability distribution Q on (Q2, ), equivalent to P, under which the
discounted price processes are martingales.

Let C; be the call premium, i.e. the price at an European call option on
the financial asset of price S; at ¢ < T, with strike K and maturing at time T.

Assume the instantaneous interest rate is r(#), a deterministic function
of at time f, then the price at time ¢ of a zero coupon bond of maturity T is
B(t,T) = exp(= [ r(w)du)

With the defined Q, on (Q2, P, Q), the call option price is

= B(t, T)E®[Max(0, St — K)[77]

. By Comte and Renault(1998), conditioned on the volatility path,

ut’f utT

= SOEX @+ 5D - "B @ - D))

where m; = In(g), U = | 00, and®() = k= [* et

Inabove conditional expectation, only U, r contains the future. It would
be very interesting to explore how to calculate the conditional expectation.

Let (Z; : t € (—00, ™)) denote the normalized fractional Brownian mo-
tion with parameter o € (0, %). So far, the theory available is to predict
Zy(h > 0) on the values obtained by Z; in an interval (—T,0), in another
word, to predict the conditional expectation of difference Z,,,— Z; on the ba-
sis of the differences Z; - Z,,s € (t - T, t). By G. Gripenberg and . Normmos
(1996), the predictor Zh,T = E[Z;|Z:,s € (-T,0)] = f_ (; gr(h, t)dZ,, where,

18



for T < c0,t€(0,T),

SRR o 520 + T
gr(h,~t) = ———+"*(T ~ 1) fo—a+t do

for T =c0,t>0

_sin(m:r) 7{1 a g
gr(h,—t) = = YT - 1) f06+tda

The function gr(%, .) is a solution of the integral equation

T
20 f gr(h, —t)|t — s ldt = (h + )™ — 52,5 € (0, T),
0

with the scaling property gr(f, ) = grm(1,t/h).

7 Conclusion and Further Topic

The main contribution of this paper is to propose a modified method,
Euler method, to simulate the stock price model with stochastic volatility
driven by fractional Brownian motion. Euler method, together with spec-
tral series representation of fBm, speeds up the simulation quickly. Comte
and Renault (1998)’s method is very computational intensive when using
Monte Carlo integral for the integration in truncated fBm, and introduces
errors. Symbolic integral for truncated fbm is practical, but still cost more
time than Euler method.

The fractional Brownian volatility is applied to model real stock prices.
For stock prices with feature of persistence, by periodogram method, we
identify the Hurst parameter based on data. A topic of interest for further

exploration is to find the trajectories of European call option prices.
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Appendices

Fgure 1 Figure 2

«10™ Logrolatility using inti) to calculats A, with k=1, gamma=0.01, H=0.6 « 10 Logwolatility using int{) to calculate A, with k=1, gamma=0.01, H=0.7

Figure 1 contains sample paths for logvolatility and logstockprice, on
time interval [0,20]. The function int() in matlab is used to calculate the
integral part in logvolatility, with parameter k=1, ¥ = 0.01, H=0.6. In
simulation, 1000 paths of logvolatility and logstockprice are generated
separately, then we take the mean of the 1000 paths respectively to form
the graphs.

Similarly, Figure 2 to Figure 5 contain the paths for logvolatility and
logstockprice with H=0.7, 0.8, 0.9, 0.99, respectively. Due to averaging
process, the shape of the graphs are the same. However, as H increases
from 0.6 to 0.99, the graphs of logvolatility become smoother and smoother,
as can be seen that the range of logvolatility shrinks from [-2x107%,2x1074]
to [-5.5%x 107,55 x 107°].
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Figure 6: Paths with parameters k = 1, = 0.01, H = 0.6, by Euler method

fractional Brownian motion with H=0.8 logvolatility with H=0.8 k=1,gamma=0.01
002 T T T

0oy

o

lagvaolatility

-0.01F

-0o2f

-0.03

standard Brownian motion logstock price
0.02 T T T 0.0z T

0oy

logstockprice

-0.01F

-0o2f

0.03 L : - -003
0

Above are sample paths for SBM, FBM, logvolatility and logstock-
price,on time interval [0,20], using Euler method, with parameter k=1,
y = 0.01, H=0.6. In simulation, 'BM is simulated by spectral method, in

which the number of finite summation N=1000.

Note that, FBM with Hurst parameter H is represented as

[s2e) [ese)

0o t sin(2w,t/T) cos(Qu,t/T) -1
W= gt LT Rt LT Ve

n=1 n=1

which converges uniformly for ¢ € [0, T]. Choose N large, sum up finite N

terms instead of infinite terms in above formula.
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Figure 7: Paths with parameters k = 1, = 0.01, H = 0.7, by Euler method

fractional Brownian motion with H=0.7 logvolatility with H=0.7 k=1,gamma=0.01

lagvolatility

standard Brownian motion logstock price

-0.01F

logstockprice

-0.02F

-0D03f

0.04 - : : -004
0

Above are sample paths for SBM, FBM, logvolatility and logstockprice,
on time interval [0,20], using Euler method, with parameter k=1, y = 0.01,
H=0.7. In simulation, FBM is simulated by spectral method, in which the

number of finite summation N=1000.
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Figure 8: Paths with parameters k = 1, = 0.01, H = 0.8, by Euler method

fractional Brownian motion with H=0.8 |logvolatility with H=0.8 k=1,gamma=0.01
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Above are sample paths for SBM, FBM, logvolatility and logstockprice,
on time interval [0,20], using Euler method, with parameter k=1, y = 0.01,
H=0.8. In simulation, FBM is simulated by spectral method, in which the

number of finite summation N=1000.
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Figure 9: Paths with parameters k = 1, = 0.01, H = 0.9, by Euler method

fractional Brownian motion with H=0.9 logvolatility with H=0.9 k=1,gamma=0.01
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anr 0025}
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Above are sample paths for SBM, FBM, logvolatility and logstockprice,
on time interval [0,20], using Euler method, with parameter k=1, y = 0.01,
H=0.9. In simulation, BM is simulated by spectral method, in which the

number of finite summation N=1000.
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Figure10: Paths with parametersk = 1,y = 0.01, H = 0.99, by Euler method

fractional Brownian motion with H=0.98 logvolatility with H=0.99 k=1 gamma=0.01
0 T T T 0 T T T
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-0.04

Above are sample paths for SBM, FBM, logvolatility and logstockprice,
on time interval [0,20], using Euler method, with parameter k=1, y = 0.01,
H=0.99. In simulation, FBM is simulated by spectral method, in which the

number of finite summation N=1000.
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% Consider stochastic differential logvolatility driven by truncated fBm
% This is the procedure to simulate logvolatility and logstockprice by
% using symbolic integration int() in matlab for H=0.6

H=0.6; N=1000;
% N is the number of paths for logvolatility and logstockprice.
% We generate N paths separately then take the mean.

log_sigma=zeros(1,1001); % The initial value is a vector of zeros. 1001 is
% the same as the length of the vector t=[0:0.02:T] when T=20
% It will be updated by the formula before the last "end"
log sto _price=zeros(1,1001);
for p=1:N % Utmost loop, in order to calculate the mean of different paths
% for logvolatility and logstockprice

k=1;
r=0.01; % note, r here represent \gamma in the volatility model
%dX (t)=kX(t)dt+\gammadW\alpha_t
% Avoid using gamma as the name of gamma function as variable.
alpha=H-1/2;

n=50;

T=20;

%[0,T]=[0,20] is time interval we would like to
%observefunction[]=direct_int_method(H,N)

t=[0:0.02:T]; % discretize the interval

DBm=normrnd(0,1/n,[n*T,2]); % generate n*T by 2 Gaussian random variables,
%with mean 0, variance j/n-(j-1)/n=1/n

X=[1; % X here respresents the logsigma matrix.
X(1)=0; % since t(1)=0
A=[1;

for 1=2:n*T+1

for j=fFloor(n*t(i-1))+1:Floor(n*t(i))
syms u

AQ)=r/gamma(1l+alpha)*((t(i)-(-1)/n) alpha-k*exp(-k*(t(i)-(J-1)/n))*int(
exp(k*u)*utalpha,0,t(i)-(-1)/n));
format short
A(g)=round(A(J)*10000)*0.0001; % round A to four decimals
end

X(1)=A*DBm(1:floor(n*t(i1)).2);
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end

% Following is to simulate the path of logstock price
sigma=exp(X);

Y_est=[];
t=[0:0.02:T];
Y _est(1)=0; % according to the integral form of logstockprice
Y_est(2)=0;
for 1=3:T*n+1
Y_est(i)=sigma(l:Floor(n*t(i)))*DBm(1l:Floor(n*t(i)),1);
end

log _sigma=1/p*((p-1)*log_sigma+X); % take the mean of the paths of log _sigma.
%This is designed to update log sigma

log sto _price=1/p*((p-1)*log_sto price+Y_est); % take the mean of
%log_sto _price. This is designed to update log sto price
p % print out p, the number of sample paths.

end % end of utmost loop.

subplot(2,1,1); plot([0:0.02:20],log_sigma)

xlabel("t")

ylabel (" logvolatility”®)

title(" Logvolatility using int() to calculate A, with k=1, gamma=0.01,
H=0.6")

subplot(2,1,2); plot([0:0.02:20],log_sto _price)
xlabel("t")

ylabel (" logstockprice®)

title("Logstockprice with k=1, gamma=0.01, H=0.6%)
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% Consider stochastic differential logvolatility driven by truncated fBm
% This is the procedure to simulate logvolatility and logstockprice by
% using symbolic integration int() in matlab for H=0.7.

H=0.7; N=1000;
% N is the number of paths for logvolatility and logstockprice.
% We generate N paths separately then take the mean.

log_sigma=zeros(1,1001); % The initial value is a vector of zeros. 1001 is
% the same as the length of the vector t=[0:0.02:T] when T=20

% It will be updated by the formula before the last "end"

log sto _price=zeros(1,1001);

for p=1:N % Utmost loop, in order to calculate the mean of different paths
% for logvolatility and logstockprice

k=1;
r=0.01; % note, r here represent \gamma in the volatility model
%dX (t)=kX(t)dt+\gammadW\alpha_t
% Avoid using gamma as the name of gamma function as variable.
alpha=H-1/2;

n=50;

T=20; %[0,T]=[0,20] is time interval we would like to
%observefunction[]=direct_int_method(H,N)

t=[0:0.02:T]; % discretize the interval

DBm=normrnd(0,1/n,[n*T,2]); % generate n*T by 2 Gaussian random variables,
%with mean 0, variance j/n-(j-1)/n=1/n

X=[1; % X here respresents the logsigma matrix.
X(1)=0; % since t(1)=0
A=[1;

for 1=2:n*T+1

for j=fFloor(n*t(i-1))+1:Floor(n*t(i))
syms u

AQ)=r/gamma(1+alpha)*((t(i)-(-1)/n) alpha-k*exp(-k*(t(i)-{J-1)/n))*int(
exp(k*u)*utalpha,0,t(i1)-(-1)/n));
format short
A(g)=round(A(J)*10000)*0.0001; % round A to four decimals
end

X(1)=A*DBm(1:floor(n*t(i1)).2);
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end

% Following is to simulate the path of logstock price
sigma=exp(X);

Y_est=[];
t=[0:0.02:T];
Y _est(1)=0; % according to the integral form of logstockprice
Y_est(2)=0;
for 1=3:T*n+1
Y_est(i)=sigma(l:Floor(n*t(i)))*DBm(1l:Floor(n*t(i)),1);
end

log_sigma=1/p*((p-1)*log_sigma+X); % take the mean of the paths of log _sigma.
%This is designed to update log sigma

log sto _price=1/p*((p-1)*log_sto price+Y_est); % take the mean of
%log_sto _price. This is designed to update log sto price

p % print out p, the number of sample paths.

end % end of utmost loop.

subplot(2,1,1); plot([0:0.02:20],log_sigma)

xlabel("t")

ylabel (" logvolatility®)

title(" Logvolatility using int() to calculate A, with k=1, gamma=0.01,
H=0.7%)

subplot(2,1,2); plot([0:0.02:20],log_sto _price)
xlabel("t")

ylabel (" logstockprice®)

title("Logstockprice with k=1, gamma=0.01, H=0.7%)
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% Consider stochastic differential logvolatility driven by truncated fBm
% This is the procedure to simulate logvolatility and logstockprice by
% using symbolic integration int() in matlab for H=0.8.

H=0.8; N=1000;
% N is the number of paths for logvolatility and logstockprice.
% We generate N paths separately then take the mean.

log_sigma=zeros(1,1001); % The initial value is a vector of zeros. 1001 is
%the same as the length of the vector t=[0:0.02:T] when T=20
% It will be updated by the formula before the
% last "‘end"
log sto_price=zeros(1,1001);
for p=1:N % Utmost loop, in order to calculate the mean of different paths
%for logvolatility and logstockprice

k=1;

r=0.01; % note, r here represent \gamma in the volatility model
%dX (t)=kX(t)dt+\gammadW\alpha_t

alpha=H-1/2;

n=50;

T=20; %[0, T]=[0,20] is time interval we would like to
%observefunction[]=direct_int_method(H,N)

t=[0:0.02:T]; % discretize the interval

DBm=normrnd(0,1/n,[n*T,2]); % generate n*T by 2 Gaussian random variables,
%with mean 0, variance j/n-(j-1)/n=1/n

X=[1; % X here respresents the logsigma matrix.
X(1)=0; % since t(1)=0
A=[1;

for 1=2:n*T+1

for j=fFloor(n*t(i-1))+1:Floor(n*t(i))
syms u

AQ)=r/gamma(1l+alpha)*((t(i)-(-1)/n) alpha-k*exp(-k*(t(i)-(J-1)/n))*int(
exp(k*u)*utalpha,0,t(i)-(-1)/n));
format short
A(g)=round(A(J)*10000)*0.0001; % round A to Tfour decimals
end

X(1)=A*DBm(1:floor(n*t(i1)).2);
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end

% Following is to simulate the path of logstock price
sigma=exp(X);

Y_est=[];
t=[0:0.02:T];
Y _est(1)=0; % according to the integral form of logstockprice
Y_est(2)=0;
for 1=3:T*n+1
Y_est(i)=sigma(l:Floor(n*t(i)))*DBm(1l:Floor(n*t(i)),1);
end

log_sigma=1/p*((p-1)*log_sigma+X); % take the mean of the paths of log _sigma.
% This is designed to update log sigma

log sto _price=1/p*((p-1)*log_sto price+Y_est); % take the mean of
%log_sto _price. This is designed to update log sto price
p % print out p, the number of sample paths.

end % end of utmost loop.

subplot(2,1,1); plot([0:0.02:20],log_sigma)

xlabel("t")

ylabel (" logvolatility®)

title(" Logvolatility using int() to calculate A, with k=1, gamma=0.01,
H=0.8")

subplot(2,1,2); plot([0:0.02:20],log_sto _price)
xlabel("t")

ylabel (" logstockprice®)

title("Logstockprice with k=1, gamma=0.01, H=0.8%)
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% Consider stochastic differential logvolatility driven by truncated fBm
% This is the procedure to simulate logvolatility and logstockprice by
% using symbolic integration int() in matlab for H=0.9.

H=0.9; N=1000;
% N is the number of paths for logvolatility and logstockprice.
% We generate N paths separately then take the mean.

log_sigma=zeros(1,1001); % The initial value is a vector of zeros. 1001 is
%the same as the length of the vector t=[0:0.02:T] when T=20
% It will be updated by the formula before the
% last "‘end"
log sto_price=zeros(1,1001);
for p=1:N % Utmost loop, in order to calculate the mean of different paths
%for logvolatility and logstockprice

k=1;

r=0.01; % note, r here represent \gamma in the volatility model
%dX (t)=kX(t)dt+\gammadW\alpha_t

alpha=H-1/2;

n=50;

T=20; %[0, T]=[0,20] is time interval we would like to
%observefunction[]=direct_int_method(H,N)

t=[0:0.02:T]; % discretize the interval

DBm=normrnd(0,1/n,[n*T,2]); % generate n*T by 2 Gaussian random variables,
%with mean 0, variance j/n-(j-1)/n=1/n

X=[1; % X here respresents the logsigma matrix.
X(1)=0; % since t(1)=0
A=[1;

for 1=2:n*T+1

for j=fFloor(n*t(i-1))+1:Floor(n*t(i))
syms u

AQ)=r/gamma(1l+alpha)*((t(i)-(-1)/n) alpha-k*exp(-k*(t(i)-(J-1)/n))*int(
exp(k*u)*utalpha,0,t(i)-(-1)/n));
format short
A(g)=round(A(J)*10000)*0.0001; % round A to Tfour decimals
end

X(1)=A*DBm(1:floor(n*t(i1)).2);
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end

% Following is to simulate the path of logstock price
sigma=exp(X);

Y_est=[];
t=[0:0.02:T];
Y _est(1)=0; % according to the integral form of logstockprice
Y _est(2)=0;
for 1=3:T*n+1
Y_est(i)=sigma(l:Floor(n*t(i)))*DBm(1l:Floor(n*t(i)),1);
end

log _sigma=1/p*((p-1)*log_sigma+X); % take the mean of the paths of log _sigma.
%This is designed to update log sigma

log sto _price=1/p*((p-1)*log_sto price+Y_est); % take the mean of
%log_sto _price. This is designed to update log sto price
p % print out p, the number of sample paths.

end % end of utmost loop.

subplot(2,1,1); plot([0:0.02:20],log_sigma)

xlabel("t")

ylabel (" logvolatility®)

title(" Logvolatility using int() to calculate A, with k=1, gamma=0.01,
H=0.9%)

subplot(2,1,2); plot([0:0.02:20],log_sto _price)
xlabel("t")

ylabel (" logstockprice®)

title("Logstockprice with k=1, gamma=0.01, H=0.9%)
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% Consider stochastic differential logvolatility driven by truncated fBm
% This is the procedure to simulate logvolatility and logstockprice by
% using symbolic integration int() in matlab for H=0.99.

H=0.99; N=1000;
% N is the number of paths for logvolatility and logstockprice.
% We generate N paths separately then take the mean.

log_sigma=zeros(1,1001); % The initial value is a vector of zeros. 1001 is
%the same as the length of the vector t=[0:0.02:T] when T=20
% It will be updated by the formula before the
% last "‘end"
log sto_price=zeros(1,1001);
for p=1:N % Utmost loop, in order to calculate the mean of different paths
%for logvolatility and logstockprice

k=1;

r=0.01; % note, r here represent \gamma in the volatility model
%dX (t)=kX(t)dt+\gammadW\alpha_t

alpha=H-1/2;

n=50;

T=20; %[0, T]=[0,20] is time interval we would like to
%observefunction[]=direct_int_method(H,N)

t=[0:0.02:T]; % discretize the interval

DBm=normrnd(0,1/n,[n*T,2]); % generate n*T by 2 Gaussian random variables,
%with mean 0, variance j/n-(j-1)/n=1/n

X=[1; % X here respresents the logsigma matrix.
X(1)=0; % since t(1)=0
A=[1;

for 1=2:n*T+1

for j=fFloor(n*t(i-1))+1:Floor(n*t(i))
syms u

AQ)=r/gamma(1l+alpha)*((t(i)-(-1)/n) alpha-k*exp(-k*(t(i)-(J-1)/n))*int(
exp(k*u)*utalpha,0,t(i)-(-1)/n));
format short
A(g)=round(A(J)*10000)*0.0001; % round A to Tfour decimals
end

X(1)=A*DBm(1:floor(n*t(i1)).2);
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end

% Following is to simulate the path of logstock price
sigma=exp(X);

Y_est=[];
t=[0:0.02:T];
Y _est(1)=0; % according to the integral form of logstockprice
Y_est(2)=0;
for 1=3:T*n+1
Y_est(i)=sigma(l:Floor(n*t(i)))*DBm(1l:Floor(n*t(i)),1);
end

log_sigma=1/p*((p-1)*log_sigma+X); % take the mean of the paths of log _sigma.
%This is designed to update log sigma

log sto _price=1/p*((p-1)*log_sto price+Y_est); % take the mean of
%log_sto _price. This is designed to update log sto price
p % print out p, the number of sample paths.

end % end of utmost loop.

subplot(2,1,1); plot([0:0.02:20],log_sigma)

xlabel("t")

ylabel (" logvolatility®)

title(" Logvolatility using int() to calculate A, with k=1, gamma=0.01,
H=0.99%)

subplot(2,1,2); plot([0:0.02:20],log_sto _price)
xlabel("t")

ylabel (" logstockprice®)

title("Logstockprice with k=1, gamma=0.01, H=0.99%)
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% This is Matlab code for the simulation of BM, fBm logvolatility

% and logstock price. Bessel function is used to generate fBm with H=0.6.
H=0.6;

k=1;

r=0.01;

n=1000;

s=0.02;

h=0.02;

% Generate fractional Brown motion on [0,20]by by spectral method
T=20;
N_0=2000;%N_0O is the number of steps for approximating fBm

Wb=zerobess("J", 1-H, N_0);

Wb=Wb*"; % change Wb to be 1 by N matrix

% Generate N positive zeros of first kind bessel function J {1-H}

B=besselj(-H,Wb); % calculate the bessel function of first kind at each
%element of vector W.

X_0=normrnd(0,1);
Yg=normrnd(0,1,1,N_0); % generate 1 by N standard Gaussian random numbers
Zg=normrnd(0,1,1,N_0);

% calculate the inverse of standard variance
inv_sta_var=[];

sr_sta var=[];

for 1=1:N_O

inv_sta_var(i)=(1-H)/H*gamma(1-H)*gamma(1l-H)*gamma(1.5-H)/(gamma(H+0.5)*g
amma(3-2*H))*(Wb(1)/2)"N(2*H)*B(i)"2*T (2-2*H) ;
end

sta var=1./inv_sta var;
sr_sta var=sqrt(sta var);

% t=[0:0.02:20] <---> j=1:1001, calculate fBm(t), actually, we calcualate
% discretized fBm

t=[0:0.02:T];

Bm=[1];

Bm(1)=0; % Conclude from the series expression. Note, since when t=0,

% the numerators and denominators in the series are O.

for jJ=2:1001
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Bm()=t(G)/sqgrt(2-2*H)*X_0+sum((sin(2*Wb*t(J)/T))./(Wb/T).*sr_sta var.*Y
g)+sum((cos(2*Wb*t(§J)/T)-1)./(Wb/T) .*sr_sta var.*Zg);
end
DfBm=[];
DfBm(1)=0;
for j=2:1000
DFBm(§)=fBm()-fBm(-1);
end

subplot(2,2,1); plot([0:0.02:T],fBm);
title("fractional Brownian motion with H=0.6")
xlabel("t")
ylabel ("fBm™)

% now use Euller algorithm to calculate logvolatility price
X=L1;
X(1)=0;
for j=2:floor(n)
X())=Xg-D-k*X(G-1)*h+r*DFfBm(j);
end

subplot(2,2,2);plot([0:0.02:T-0.02],X);
title("logvolatility with H=0.6,k=1,gamma=0.01")
xlabel ("t")

ylabel (" logvolatility®)

% generate a Brownian motion, which is used to simulate the logstock price
W=L1:
wW(1)=0;
for j=2:n
w@)=w@g-1)+normrnd(0,1/n);
end

subplot(2,2,3); plot(J0:0.02:T-0.02],W) % plot W against t
title("standard Brownian motion *)

xlabel("t")

ylabel("W(E) ")

% simulate the logstock price model
DBm=L1;
DBm(1)=W(1);
for j=2:n;
DBm(@)=W{A)-WU-1);

end
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sigma_est=exp(X); % sigma estimated

Y=L1;

Y(1)=0;

for j=2:n
Y(g)=Y(-1)+sigma_est(J-1)*DBm(J);

end

subplot(2,2,4); plot([0:0.02:T-0.02],Y);
title("logstock price )

xlabel("t")

ylabel (" logstockprice®)
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% This is Matlab code for the simulation of BM, fBm logvolatility

% and logstock price. Bessel function is used to generate fBm with H=0.7.
H=0.7;

k=1;

r=0.01;

n=1000;

s=0.02;

h=0.02;

% Generate fractional Brown motion on [0,20]by by spectral method
T=20;
N_0=2000;%N_0O is the number of steps for approximating fBm

Wb=zerobess("J", 1-H, N_0);

Wb=Wb*"; % change Wb to be 1 by N matrix

% Generate N positive zeros of fFirst kind bessel function J {1-H}

B=bessel j(-H,Wb); % calculate the bessel function of first kind at each
%element of vector W.

X_0=normrnd(0,1);
Yg=normrnd(0,1,1,N_0); % generate 1 by N standard Gaussian random numbers
Zg=normrnd(0,1,1,N_0);

% calculate the inverse of standard variance
inv_sta_var=[];

sr_sta var=[];

for 1=1:N_O

inv_sta_var(i)=(1-H)/H*gamma(1-H)*gamma(1l-H)*gamma(1.5-H)/(gamma(H+0.5)*g
amma(3-2*H))*(Wb(1)/2)"N(2*H)*B(i)"2*T (2-2*H) ;
end

sta var=1./inv_sta var;
sr_sta var=sqrt(sta var);

% t=[0:0.02:20] <---> j=1:1001, calculate fBm(t), actually, we calcualate
% discretized fBm

t=[0:0.02:T];

Bm=[1;

Bm(1)=0; % Conclude from the series expression. Note, since when t=0,

% the numerators and denominators in the series are O.

for jJ=2:1001

Bm(@)=t(()/sqrt(2-2*H)*X_O0+sum((sin(2*Wb*t(J)/T))./(Wb/T) .*sr_sta_var.*Y
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g)+sum((cos(2*Wb*t(§J)/T)-1)./(Wb/T) .*sr_sta var.*Zg);
end
DfBm=[];
DfBm(1)=0;
for j=2:1000
DFBm(§)=fBm()-Bm(-1);
end

subplot(2,2,1); plot([0:0.02:T],fBm);
title("fractional Brownian motion with H=0.7")
xlabel("t")
ylabel ("fBm™)

% now use Euler algorithm to calculate logvolatility price
X=[1;
X(1)=0;
for j=2:floor(n)
X())=Xg-1)-k*X(g-1)*h+r*DfBm(J) ;
end

subplot(2,2,2);plot([0:0.02:T-0.02],X);
title("logvolatility with H=0.7,k=1,gamma=0.01")
xlabel("t")

ylabel (" logvolatility®)

% generate a Brownian motion, which is used to simulate the logstock price
w=[1;
wW(1)=0;
for j=2:n
w@)=w@g-1)+normrnd(0,1/n);
end

subplot(2,2,3); plot(J0:0.02:T-0.02],W) % plot W against t
title("standard Brownian motion *)

xlabel("t")

ylabel("W(E) ")

% simulate the logstock price model
DBm=L1;
DBm(1)=W(1);
for j=2:n;
DBm(@)=W{A)-WU-1);

end
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sigma_est=exp(X); % sigma estimated

Y=[1;

Y(1)=0;

for j=2:n
Y(g)=Y(-1)+sigma_est(j-1)*DBm(J);

end

subplot(2,2,4); plot([0:0.02:T-0.02],Y);
title("logstock price )

xlabel("t")

ylabel (" logstockprice®)
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% This is Matlab code for the simulation of BM, fBm logvolatility

% and logstock price. Bessel function is used to generate fBm with H=0.8.
H=0.8;

k=1;

r=0.01;

n=1000;

s=0.02;

h=0.02;

% Generate fractional Brown motion on [0,20]by by spectral method
T=20;
N_0=2000;%N_0O is the number of steps for approximating fBm

Wb=zerobess("J", 1-H, N_0);

Wb=Wb*"; % change Wb to be 1 by N matrix

% Generate N positive zeros of first kind bessel function J {1-H}

B=besselj(-H,Wb); % calculate the bessel function of first kind at each
%element of vector W.

X_0=normrnd(0,1);
Yg=normrnd(0,1,1,N_0); % generate 1 by N standard Gaussian random numbers
Zg=normrnd(0,1,1,N_0);

% calculate the inverse of standard variance
inv_sta_var=[];

sr_sta var=[];

for 1=1:N_O

inv_sta_var(i)=(1-H)/H*gamma(1-H)*gamma(1l-H)*gamma(1.5-H)/(gamma(H+0.5)*g
amma(3-2*H))*(Wb(1)/2)"N(2*H)*B(i)"2*T (2-2*H) ;
end

sta var=1./inv_sta var;
sr_sta var=sqrt(sta var);

% t=[0:0.02:20] <---> j=1:1001, calculate fBm(t), actually, we calcualate
% discretized fBm

t=[0:0.02:T];

Bm=[1];

Bm(1)=0; % Conclude from the series expression. Note, since when t=0,

% the numerators and denominators in the series are O.

for jJ=2:1001
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Bm()=t(G)/sqgrt(2-2*H)*X_0+sum((sin(2*Wb*t(J)/T))./(Wb/T).*sr_sta var.*Y
g)+sum((cos(2*Wb*t(§J)/T)-1)./(Wb/T) .*sr_sta var.*Zg);
end
DfBm=[];
DfBm(1)=0;
for j=2:1000
DFBm(§)=fBm()-fBm(-1);
end

subplot(2,2,1); plot([0:0.02:T],fBm);
title("fractional Brownian motion with H=0.8")
xlabel("t")
ylabel ("fBm™)

% now use Euller algorithm to calculate logvolatility price
X=L1;
X(1)=0;
for j=2:floor(n)
X())=Xg-D-k*X(G-1)*h+r*DFfBm(j);
end

subplot(2,2,2);plot([0:0.02:T-0.02],X);
title("logvolatility with H=0.8,k=1,gamma=0.01")
xlabel ("t")

ylabel (" logvolatility®)

% generate a Brownian motion, which is used to simulate the logstock price
W=L1:
wW(1)=0;
for j=2:n
w@)=w@g-1)+normrnd(0,1/n);
end

subplot(2,2,3); plot(J0:0.02:T-0.02],W) % plot W against t
title("standard Brownian motion *)

xlabel("t")

ylabel("W(E) ")

% simulate the logstock price model
DBm=L1;
DBm(1)=W(1);
for j=2:n;
DBm(@)=W{A)-WU-1);

end
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sigma_est=exp(X); % sigma estimated

Y=L1;

Y(1)=0;

for j=2:n
Y(g)=Y(-1)+sigma_est(J-1)*DBm(J);

end

subplot(2,2,4); plot([0:0.02:T-0.02],Y);
title("logstock price )

xlabel("t")

ylabel (" logstockprice®)
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% This is Matlab code for the simulation of BM, fBm logvolatility

% and logstock price. Bessel function is used to generate fBm with H=0.9.
H=0.9;

k=1;

r=0.01;

n=1000;

s=0.02;

h=0.02;

% Generate fractional Brown motion on [0,20]by by spectral method
T=20;
N_0=2000;%N_0O is the number of steps for approximating fBm

Wb=zerobess("J", 1-H, N_0);

Wb=Wb*"; % change Wb to be 1 by N matrix

% Generate N positive zeros of first kind bessel function J {1-H}

B=besselj(-H,Wb); % calculate the bessel function of first kind at each
%element of vector W.

X_0=normrnd(0,1);
Yg=normrnd(0,1,1,N_0); % generate 1 by N standard Gaussian random numbers
Zg=normrnd(0,1,1,N_0);

% calculate the inverse of standard variance
inv_sta_var=[];

sr_sta var=[];

for 1=1:N_O

inv_sta_var(i)=(1-H)/H*gamma(1-H)*gamma(1l-H)*gamma(1.5-H)/(gamma(H+0.5)*g
amma(3-2*H))*(Wb(1)/2)"N(2*H)*B(i)"2*T (2-2*H) ;
end

sta var=1./inv_sta var;
sr_sta var=sqrt(sta var);

% t=[0:0.02:20] <---> j=1:1001, calculate fBm(t), actually, we calcualate
% discretized fBm

t=[0:0.02:T];

Bm=[1];

Bm(1)=0; % Conclude from the series expression. Note, since when t=0,

% the numerators and denominators in the series are O.

for jJ=2:1001
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Bm()=t(G)/sqgrt(2-2*H)*X_0+sum((sin(2*Wb*t(J)/T))./(Wb/T).*sr_sta var.*Y
g)+sum((cos(2*Wb*t(§J)/T)-1)./(Wb/T) .*sr_sta var.*Zg);
end
DfBm=[];
DfBm(1)=0;
for j=2:1000
DFBm(§)=fBm()-fBm(-1);
end

subplot(2,2,1); plot([0:0.02:T],fBm);
title("fractional Brownian motion with H=0.9%)
xlabel("t")
ylabel ("fBm™)

% now use Euller algorithm to calculate logvolatility price
X=L1;
X(1)=0;
for j=2:floor(n)
X())=Xg-D-k*X(G-1)*h+r*DFfBm(j);
end

subplot(2,2,2);plot([0:0.02:T-0.02],X);
title("logvolatility with H=0.9,k=1,gamma=0.01")
xlabel ("t")

ylabel (" logvolatility®)

% generate a Brownian motion, which is used to simulate the logstock price

W=[1;

w(1)=0;

for j=2:n
w@)=w@g-1)+normrnd(0,1/n);

end

subplot(2,2,3); plot(J0:0.02:T-0.02],W) % plot W against t
title("standard Brownian motion *)

xlabel("t")

ylabel("W(E) ")

% simulate the logstock price model
DBm=L1;
DBm(1)=W(1);
for j=2:n;
DBm(@)=W{A)-WU-1);
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end

sigma_est=exp(X); % sigma estimated

Y=L1;

Y(1)=0;

for j=2:n
Y()=Y(-1)+sigma_est(j-1)*DBm(J);

end

subplot(2,2,4); plot([0:0.02:T-0.02],Y);
title("logstock price )

xlabel ("t")

ylabel (" logstockprice®)
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% This is Matlab code for the simulation of BM, fBm logvolatility

% and logstock price. Bessel function is used to generate fBm with H=0.99.
H=0.99;

k=1;

r=0.01;

n=1000;

s=0.02;

h=0.02;

% Generate fractional Brown motion on [0,20]by by spectral method
T=20;
N_0=2000;%N_0O is the number of steps for approximating fBm

Wb=zerobess("J", 1-H, N_0);

Wb=Wb*"; % change Wb to be 1 by N matrix

% Generate N positive zeros of first kind bessel function J {1-H}

B=besselj(-H,Wb); % calculate the bessel function of first kind at each
%element of vector W.

X_0=normrnd(0,1);
Yg=normrnd(0,1,1,N_0); % generate 1 by N standard Gaussian random numbers
Zg=normrnd(0,1,1,N_0);

% calculate the inverse of standard variance
inv_sta_var=[];

sr_sta var=[];

for 1=1:N_O

inv_sta_var(i)=(1-H)/H*gamma(1-H)*gamma(1l-H)*gamma(1.5-H)/(gamma(H+0.5)*g
amma(3-2*H))*(Wb(1)/2)"N(2*H)*B(i)"2*T (2-2*H) ;
end

sta var=1./inv_sta var;
sr_sta var=sqrt(sta var);

% t=[0:0.02:20] <---> j=1:1001, calculate fBm(t), actually, we calcualate
% discretized fBm

t=[0:0.02:T];

Bm=[1];

Bm(1)=0; % Conclude from the series expression. Note, since when t=0,

% the numerators and denominators in the series are O.

for jJ=2:1001
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Bm()=t(G)/sqgrt(2-2*H)*X_0+sum((sin(2*Wb*t(J)/T))./(Wb/T).*sr_sta var.*Y
g)+sum((cos(2*Wb*t(§J)/T)-1)./(Wb/T) .*sr_sta var.*Zg);
end
DfBm=[];
DfBm(1)=0;
for j=2:1000
DFBm(§)=fBm()-fBm(-1);
end

subplot(2,2,1); plot([0:0.02:T],fBm);
title("fractional Brownian motion with H=0.99%)
xlabel("t")
ylabel ("fBm™)

% now use Euller algorithm to calculate logvolatility price
X=L1;
X(1)=0;
for j=2:floor(n)
X())=Xg-D-k*X(G-1)*h+r*DFfBm(j);
end

subplot(2,2,2);plot([0:0.02:T-0.02],X);
title("logvolatility with H=0.99,k=1,gamma=0.01")
xlabel ("t")

ylabel (" logvolatility®)

% generate a Brownian motion, which is used to simulate the logstock price
W=L1:
wW(1)=0;
for j=2:n
w@)=w@g-1)+normrnd(0,1/n);
end

subplot(2,2,3); plot(J0:0.02:T-0.02],W) % plot W against t
title("standard Brownian motion *)

xlabel("t")

ylabel("W(E) ")

% simulate the logstock price model
DBm=L1;
DBm(1)=W(1);
for j=2:n;
DBm(@)=W{A)-WU-1);

end
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sigma_est=exp(X); % sigma estimated

Y=L1;

Y(1)=0;

for j=2:n
Y(g)=Y(-1)+sigma_est(J-1)*DBm(J);

end

subplot(2,2,4); plot([0:0.02:T-0.02],Y);
title("logstock price )

xlabel("t")

ylabel (" logstockprice®)
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