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Abstract

The problem of stochastic integration with respect to fractional Brownian motion
(fBm) with H < 1/2 and other ‘rough path’ Gaussian processes is considered. We
use a Riemann sum approach to construct stochastic integrals. It is known, for ex-
ample, that a Midpoint Riemann sum converges in probability to a stable integral for
fBm with H > 1/4, but not in general if H < 1/4. We consider four different types of
Riemann sums and their associated critical values: Midpoint (2 types), Trapezoidal,
and Simpson’s rule. At the critical value (H = 1/4,1/6, and 1/10, respectively), the
sums converge only in distribution. Convergence in distribution is proved by means of
theorems and techniques of Malliavin calculus. We consider asymptotic behavior of
a specific stochastic integral with respect to fBm with H > 1/2. This result approxi-
mates an fBm version of Spitzer’s theorem for planar Brownian motion.
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Chapter 1

Introduction

The main topic of this dissertation is a study of different constructions of the stochastic integral,
where the integration is with respect to continuous Gaussian process. More specifically, we are
interested in Gaussian processes that are characterized as by trajectories that are ‘rougher’ than
standard Brownian motion.

The roughness of a stochastic process can be characterized by the p-variation, defined as fol-
lows. Let X = {X;,7 € [0,1]} be a Gaussian process. For real p > 1 (usually an integer) the

p-variation is defined as
n—1

y (xﬂ—xl)p.

J=0

In the case of Brownian motion, it is well known that the 2-variation, usually called quadratic

variation, we have
2 1
E|:(BJ+1_BJ> :| )
n n n

hence the expectation of the quadratic variation is 1 over the interval [0, 1]. Compared to this result,
a simple definition for a rougher-path process is one for which the quadratic variation diverges.

We will consider a variety of Gaussian processes in Chapters 4 and 5, but the best known
example of a rough path process is the fractional Brownian motion (fBm). Many aspects of this
process have been studied elsewhere [5, 13, 22, 27]. Let B = {Bf’ ,1 2} denote fBm with Hurst
parameter H. For our purposes, it is enough to note that fBm is a Guassian process with continuous
trajectories and covariance given by

Ry(s,t):=E [BfBﬂ = (s2H+t2H — |t —s|2H) .

| =

2
It follows that E l(BZ )/ —B’;.{/n> } =1/ n*H hence if H > 1 /2, then the quadratic variation

tends to zero in probability for large n, but the quadratic variation diverges if H < 1/2. In this
way, we say that fBm is smoother than standard Brownian motion when H > 1/2, and rougher for
H<1)2.



1.1 Stochastic calculus with respect to Gaussian processes.

We refer first to the traditional It6 calculus as presented by, for example, Durrett [15], @ksendal
[30] or Shreve [35]. In this setting, the Itd stochastic integral for a suitable function f is defined as
the limit of a forward Riemann sum:

|nt|—1

/Otf(Bs) dB, := lim Z 7(B (B,H— ,)

n

A consequence of the forward construction is the It6 formula:

+/f dB+2/f”

A sketch of the derivation of this formula is as follows: On a nonnegative interval [0,7], Let
f = f(t, ) be a €2 function satisfying

EVOTdeu] < oo,

For some 0 <t < T, we consider a standard Brownian motion B = {By,s € [0,¢]} and a uniform
partition of the interval [0,7] given by {j/n,0 < j < |nt]}. Then by a Taylor formula we have

F(B i) = F(B))+FB)) (Bi) ~By) + 27" () (Bios) - B,)

for some intermediate value &; between B; /n and B(;1y/,. Hence, we can write the Riemann sum
|nt|—1 1 |nt]—1
FBu)=fO0)+ Y f(B)AB;+2 Y ["(§)AB, (L.1)
" Jj=0 " " Jj=0 "

where AB;,, = B(j.1)/n — Bj/u- Taking n — oo, by definition the first sum converges to fo f'(By)dBs.
Then it can be shown (see [15], section 2.7), that the term

1 lnl=
2 Z a2 1@

where this integral is a standard Lebesgue integral. From (1.1), we can see that if B is replaced
with a fBm B with H < 1/2, then the Ito integral is unsuitable, since the quadratic variation term
in general will not converge.

Our approach to this problem is choose an alternate construction of the stochastic integral, each
arising from a different type or Riemann sum. Four different constructions are considered.

e Midpoint (type 1) integral. This construction uses a Riemann sum of the form:

S0 = X, £(8h) (8- ).



It was shown in [8] and [25] that this sum converges in probability when H > 1/4, and can
diverge when H < 1/4. For the case H = 1/4, [8] and [25] proved independently that S¥!(r)
converges weakly as n — oo, so that

M1 H //
S ) s 81 - 5(0) 5 [ 1!

where W is a scaled Brownian motion, independent of B. This weak convergence results
in the It6-like change-of-variable formula

F(B +/f H)gMIgH | 2/f//

It was subsequently shown in [37] that a similar weak limit (the scaling for W is different)
holds when B is replaced with a Gaussian process essentially similar to bifractional Brow-
nian motion with parameters H = K = 1/2. In Chapter 4 (which follows [17]) we prove a
similar theorem for a generalized Gaussian process meeting certain conditions. In particular
this generalized family of processes includes the above B with H = 1/4 and the bifractional
Brownian motion with H = K = 1/2, in fact it is extended to the bifractional family with
H < 1/2, HK = 1/4. This theorem also extends the results of [8, 25, 37] in that it proves
convergence in the Skorohod space D|[0, o).

e Trapezoidal rule integral. This has the form

s0="3 (o) (s s).

J=0

The stochastic integral arising from this sum is also known as the Stratonovich integral, and
this form has been studied for many years. In the case of fBm with H < 1/2, it is proved
independently in [10] and [16] that ST (¢) converges in probability if and only if H > 1/6.
For the case H = 1/6, ST (¢) converges weakly, and as in the Midpoint (type 1) case above,
we have a weak change-of-variable formula:

(B f+/f d°BH+7/f Wi,

where 7 is a known constant and again W is a scaled Brownian motion, independent of B,
This weak convergence was first proved in [26]. In Chapter 5, we prove a more general
version, that applies to a class of Gaussian processes which includes fBm with H = 1/6, as
well as other known processes.

e Midpoint (type 2) integral. This has the form

|nt|—1
- (1) ()



It is proved in [16] that $¥2(¢) converges in probability when H > 1/6, and indeed this sum
behaves very similarly to the Trapezoidal sum above. In Chapter 5, we prove that for the
case H = 1/6, we have the change-of-variable formula,

L p+ [ @B o [ O Bhaw,
0 0

that is, the result only differs from the Trapezoidal case by the scaling factor for the variance
term.

e Simpson’s rule integral. This has the form

) =1 B +BY,
i)=Y | S BI+4f | =5 |+ (Bi) (BH —Bﬁ’) :
j=0 n n n n
In [16] and Chapter 3, it is proved that S5(¢) converges in probability when H > 1/10. In
Chapter 6, we prove that S5 (¢) converges weakly in the case H = 1/10, with a result similar
to the above cases:

& t t
rE L+ [ eI+ [ O Eaw,
where 3 is a known constant and W is a Brownian motion, independent of B

The above sums S (), SM2(z), S$3(¢) are described more generally in [16], as cases of an object
they define as the (v, 1)-integral:

t t 1
/ o(X) 4" Xy = Plim - [ du(Xere — X / e(Xu+ 0 (Xure — X))V (dew),
0 elo € Jo 0

where g is a locally bounded function, X is a stochastic process, and Vv is a probability measure.
Chapters 5 and 6 are essentially dedicated to three of the ‘critical value’ cases for this (v,1)-
integral, where we consider the end point cases for which convergence in probability does not
hold, but weak convergence holds under certain circumstances.

A common property of the sums S7 (¢), S¥2(z), S5(¢) and the v, 1 integral in general is that
the integral depends on the values of B';.{/n and BZ. )/ but not on any process values inside the
subinterval (j/n,(j+ 1)/n). In numerical analysis, we have the general rule that more sample
points yield a better estimate on the approximate integral. This explains why, for example, that
Simpson’s rule has a smaller error term than the Trapezoidal rule. In the stochastic case, one might
expect a similar result, that more sample points allows control over a rougher path, but this is not
exactly the case. Note here that S5(¢) is stable for rougher paths (down to H > 1/10 rather than
H > 1/6) compared to the Trapezoidal and Midpoint (type 2) rules, but when 7 is fixed, all sums
use the same set of process sample points.



1.2 On an approximation of Spitzer’s theorem for fBm

In Chapter 7 we consider a stochastic integral with respect to fBm with H > 1/2. The goal of
this chapter is not to study the construction of the integral, indeed, integration when H > 1/2
is relatively well developed (see, for example [13, 27]). In Chapter 7, the goal is to study the
asymptotics of a particular integrand.

Let W, = W,! +iW;?? denote a standard Brownian motion in the complex plane, where we assume
Wy = 1. From complex analysis, the integral

tdW,
6 := Im/ >
0 WS‘

gives the swept angle, or windings, of the trajectory of W;. There is a famous theorem by Spitzer
[36] about this integral, namely that as t — oo, the scaled random variable 26, /logt converges in
distribution to a Cauchy random variable with parameter 1. The proof of Spitzer’s result uses the
time-change property of Brownian motion, and hence is not applicable to fBm with H # 1/2.

To our knowledge, there is no comparable fBm version of Spitzer’s theorem. In Chapter 7, we
consider the asymptotic behavior of an approximation to the windings,

K qBH
Im / —,
| 2H

where B is a complex fBm with Hurst parameter H > 1/2. We actually study a generalization,
which is a stochastic integral of the form

K sy 21 | i1 1na
/1/1/1 7B, ...dB \dBY,.

where each Bf;l_ is an independent fBm. For technical reasons, this integral is not the generalized
Weiner-1t6 integral, but a symmetric integral in the sense of Russo and Vallois. In Chapter 7, it is
proved that when scaled by (log k)_%, the integral converges in distribution to a Gaussian random
variable. This result follows a previously published result in [19].

1.3 Malliavin calculus

The results discussed in Sections 1.1 and 1.2, and proved in Chapters 3 - 7 are central limit theo-
rems, that is, theorems showing that a sequence of random variables converge in distribution to a
random variable with Gaussian law, which may be univariate or multivariate Gaussian. To show
convergence, we use the techniques of Malliavin calculus.

Malliavin calculus, also called the stochastic calculus of variations, is a differential calculus on
the space generated by a Gaussian stochastic process. It was introduced in the 1970s as a method to
investigate the probability laws of solutions to stochastic differential equations driven by Brownian
motion. Its scope has since been expanded. In particular, Malliavin calculus gives a way to extend
the 1t6 calculus from Brownian motion to non-adapted stochastic processes. Areas of application
include mathematical finance [12], and statistics of stochastic processes [11]. A thorough treatment
of the subject can be found in [27]. The first chapters of [24] give a gentle introduction.



The basic object of study is an isonormal Gaussian process on a Hilbert space 5¢. That is,
{X(h),h € 57} is a family of mean-zero Gaussian random variables, such that E [X (h)X(g)] =
(h,8) s for all h,g € 5. For example, a Brownian motion {B;,t € [0,T]} can be extended to an
isonormal Gaussian process on the Hilbert space L?([0, T]). Here we identify B; with the indicator
function 1), and for an arbitrary / in 7#’, we define B(h) by the Wiener-Itd integral I h(s) dBs.

Recently, researchers have used Malliavin calculus to prove central limit theorems for func-
tionals of Gaussian processes. Most notable is the Fourth Moment Theorem of Nualart and Peccati
[29], which gives conditions under which a sequence of random variables in the form of diver-
gence integrals will converge in distribution to a Gaussian random variable. As described in [24],
there is a natural connection between Malliavin calculus and Stein’s Lemma, which gives a way to
measure the distance in law between a random variable Z and a .#"(0, 1) random variable.

Some necessary definitions and identities of the Malliavin calculus are presented in Chapter
2. Also in Chapter 2, we provide the two convergence theorems that are the main theoretical
machinery for Chapters 4 - 7.



Chapter 2

Theoretical background

2.1 Definitions and notation

Let f : R — R be a function and N be a Gaussian random variable with mean zero and variance
o2. We say that f satisfies moderate growth conditions if there exist constants A,B > 0, and a
constant o¢ < 2 such that | f(x)| < AeB“. Note that this implies E[| f(N)|?] < oo for all p > 1. We
use the symbol 1., to denote the indicator function for a set 7. The symbol C denotes a generic
positive constant, which may vary from line to line. In general, the value of C will depend on
and the growth conditions of a test function f and the properties of a stochastic process. Unless
otherwise specified, we will use the symbols X, W, and Z to denote a generic, Gaussian stochastic
process. The symbols B, B will denote fractional Brownian motion, which may include standard
Brownian motion. For a process X indexed by a real interval [0, 7], we will use the notation X; and
X (t) interchangeably.

2.2 Elements of Malliavin calculus

Following is a brief description of some identities that will be used. The reader may refer to [27]
for detailed coverage of this topic. Let Z = {Z(h),h € '} be an isonormal Gaussian process
on a probability space (,.%#,P), and indexed by a real separable Hilbert space .7°. That is, Z is
a family of Gaussian random variables such that E[Z(h)] = 0 and E[Z(h)Z(g)] = (h,g) ,» for all
h,g € .

For integers g > 1, let 7“7 denote the ¢'" tensor product of .77, and .77 denote the subspace
of symmetric elements of .7#"“4. We will also use the notation @/_, h; to denote an arbitrary tensor
product, with the convention that ®?:1 is the empty set. Given a real function f € %4, we define
the symmetrization f € J#4 as

- 1
f(xl7---7xq):aZf(xG(l)v"wxG(q))? (2.1)
e
where o includes all permutations of {1,...,q}.

Let {e,,n > 1} be a complete orthormal system in . For functions f,g € #“Y and p €



{0,...,q}, we define the p'"-order contraction of f and g as that element of J# ®2(q—p) given by

ferg= Y (frei @ Qi) ey @(8 e R Rei,) e, (2.2)

11,...,ip:1

where f®og = f®g and, if f,g € 7, fR,8 = (f,8) ypeq. While f,g are symmetric, the
contraction f ®, g may not be. We denote its symmetrization by f®,g.

Let %, be the ¢ Wiener chaos of Z, that is, the closed linear subspace of L?(Q) generated by
the random variables {H,(Z(h)),h € 57, ||h|| ,» = 1}, where H,(x) is the ¢ Hermite polynomial,
defined as

_(C1ytes
H(I('x)_( 1) e dxqe )
and we follow the convention of Hermite polynomials with unity as a leading coefficient. Equiva-

lently, it can be shown (see [24]) that the Hermite polynomials can be defined recursively by
Hy(x) =1, Hi(x) =x, and H,4(x) =xH,(x) —nH,_i(x) forn > 2. (2.3)
For g > 1, it is known that the map
Iy(h™) = Hy(Z(h)) 2.4)

provides a linear isometry between 7“4 (equipped with the modified norm /q!|| - || s=¢) and 57,
where I, (-) is the Wiener-Itd stochastic integral. By convention, %) = R and Iy(x) = x. It follows
from (2.4) and the properties of the Hermite polynomials that for f € 7P, g € 5“1 we have

0 otherwise

vaﬁ@@ﬂ:{p“ﬂ@%“ o @)

Let .7 be the set of all smooth and cylindrical random variables of the form F = g(Z(¢y),...,Z(¢,)),
where n > 1; g : R” — R is an infinitely differentiable function with compact support, and ¢; € 7.
The Malliavin derivative of F with respect to Z is the element of L*(Q;.7#) defined as
" J
8
DF = Z E(Z((Pl)? s Z(0n)) 9

i=1

By iteration, for any integer ¢ > 1 we can define the ¢'" derivative DYF, which is an element of
L2(Q; %),
We let D%2 denote the closure of .# with respect to the norm || - || ¢ defined as

q .
IF (|32 = E[F?] + Y E[IDF|[3pei] -
i=1

More generally, let D7 ($5%%) denote the corresponding Sobolev space of $¥*-valued random
variables.

We denote by 6 the Skorohod integral, which is defined as the adjoint of the operator D. A
random element u € LZ(Q; ) belongs to the domain of §, Dom 9, if and only if,

[E[(DF,u) ]| < cullFll 20



for any F € D2, where ¢, is a constant which depends only on u. If u € Dom &, then the random
variable 8(u) € L?(Q) is defined for all F € D!? by the duality relationship,

E[Fo(u)] =E[(DF,u) ,).

This is sometimes called the Malliavin integration by parts formula. We iteratively define the
multiple Skorohod integral for g > 1 as §(89~!(u)), with 8°(«) = u. For this definition we have,

E[F89(u)] = E[(DIF,u) ey, (2.6)

where u € Dom 87 and F € D?%2. The adjoint operator 89 is an integral in the sense that for a
(non-random) h € 5“4, we have 69(h) = I,(h).

The following results will be used extensively in this paper. The reader may refer to [23] and
[27] for proofs and details.

Lemma 2.1. Let g > 1 be an integer, and r, j,k > 0 be integers.

(a) Assume F € D92, uis a symmetric element of Dom 8%, and <D’F, 5j(u)>
forall0 <r+ j<gq. Then (D"F,u) =, € Dom 8" and

por € LH(Q; 729777

F&4(u) = é (2) 59" ((D'F,u) per).

(b) Suppose that u is a symmetric element of DIH52 (A®)). Then we have,

DS (u) = jﬁ‘zi! (]l‘) ({) 5/~ (D"—"u) .

(c) Meyer inequality: for p > 1 and integers k > g > 1, we have,
167 () p-ap < ciplltllprr(geq) 2.7)

for all u € D*P($%) and some constant cy. .

(d) Letuc 7P andv € 5 “4. Then

8P (u)89(v) = gz! (’Z’ ) (Z) SPTIE (@, v),

where ®, is the contraction operator defined in (2.2).

We will use the following hypercontractivity property of iterated integrals (see [29], Theorem
2.7.2, or [27], Sec. 1.4.3 for complete details). Let f € 5“9 and p > 2. Then there exists a
positive constant C,, ;, < oo, depending only on p and g, such that

P

E [|l,(/)IP] <Cpyq (B [1,(f)?])7 (2.8)
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2.3 Convergence theorems

We begin with an illustrative example, which shows how the Malliavin duality may be exploited
to to establish a central limit theorem. Suppose {F,,n > 1} is a bounded sequence of R-valued
random variables of the form F, = 6(u,) for a sequence {u,} C 7. For a real value ¢, consider
the function

(Pn(t) . o) [eitFn:| .
We have the derivative A .
on(t) = E [iFe"™] = iE [e" 8 (uy)] .
By the Malliavin duality, this is

iE <De”F",un -E <tei’F”DFn, Uy, tE [e”F” (DFy,up) ] -

>;f: >;f:_ %

Now, if it happens that the term (DF,,u,) ,, converges in probability to a real number 62 >0, then

as n — oo we have for large n that ¢, (r) Z —t62¢,(t), that is, ¢,(¢) converges in probability to
a function satisfying ¢/ = —t>¢, which is to be recognized as the Gaussian characteristic func-
tion. Hence, the Malliavin duality allows us to express the characteristic function as a differential
equation. Theorem 2.3, below, is a vector-valued, multiple integral version of the above example.

The first version of the following central limit theorem appeared in [23]. In [17], we extended
this to a multi-dimensional version, where the sequence was a vector of d components all in the
same Wiener chaos. For this version, we lay out conditions for stable convergence of a sequence of
vectors, where the vector components are not necessarily in the same Wiener chaos. This theorem
will be the main theoretical tool of Chapters 4 - 6. We begin with a definition of a form of weak
convergence. Note that this definition implies the usual convergence in distribution.

Definition 2.2. Assume F;, is a sequence of d—dimensional random variables defined on a prob-
ability space (Q,.%,P), and F is a d—dimensional random variable defined on (Q,%,P), where
F C Y. We say that F, converges stably to F as n — oo, if, for any continuous and bounded
function f : R4 — R and R-valued, .% —measurable random variable M, we have

lim B (f (F)M) = E(f(F)M).

n—yoo

Theorem 2.3. Let d > 1 be an integer, and qy, . . . ,qq be positive integers with ¢* = max{qy,...,qq4}-
Suppose that F, is a sequence of random variables in R? of the form F, = (89 (u}),...,8% (ud)),

where each u', is a R—valued symmetric function in D24 24i (%%). Suppose that the sequence F,
is bounded in L' (Q) and that:

(a) <u£,®2”:1(D“‘Fnj‘) ®h>%ﬂ®q converges to zero in L'(Q) for all integers 1 < j, j; < d, all
integers 1 < ay,...,am,r < qj—1suchthata;+---+an+r=gqj; andall h € JOCT
(b) Foreach1<i,j<d, <u£l,inF,f > pea; CONVErges in L' (Q) to a nonnegative random variable

2 s i paiE] ool
sz, and for i # J, <u§1,D‘1 F >%®qi converges to zero in L' (Q).

Then F, converges stably to a random vector in R¢, whose components each have independent
Gaussian law A (0,s?) given Z.
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Proof. We use the conditional characteristic function. Given any Ay, ...h, € 7, we want to show
that the sequence

gn:<ELHWEiZUu%”wzmm0

converges in distribution to a vector (F.,...F%,Z(h),...,Z(hy)), where, for any vector A € RY,
F.. satisfies

E (ef“Fm\z(hl), . ,Z(hm)) = exp <—%ATS/1> , (2.9)

where S is the diagonal d x d matrix with entries s7.

Since F,, is bounded in L' (Q), the sequence &, is tight in the sense that for any & > 0, there
is a K > 0 such that P (F, € [-K,K]? ) > 1 — €, which follows from Chebyshev inequality. Drop-
ping to a subsequence if necessary, we may assume that &, converges in distribution to a limit
(Fl,...F4,Z(hy),...Z(hy)). LetY :=g(Z(h),...,Z(hy)), where g € €;°(R™), and consider

on(A)=0(1,&) =E (e"lTF”Y > for A € R, The convergence in law of &, implies that for each
1<j<d
lim 2% — fim iE (F,{e’”FnY> _iE (Foz,e’“FmY) : (2.10)

n—oo al‘/ n—oo

where convergence in distribution follows from a truncation argument applied to Fn] .
On the other hand, using the duality property of the Skorohod integral and the Malliavin deriva-

tive:
N gi}; =i (54j(u£)ei’lTF”Y> = ik (<”£’qu <6MTFHY) >5§®q-’>
=i (9)e (w0 (78 S0y )

. . Gl g o~
- i{E<ué,Yque’”F”>%®qj + Z (%)E <u£,DaellTFn ® qu‘—aY>%®qj} (2.11)

a=0 a

By condition (a), we have that <u£, Daeir & Dq-/'_"Y> 54 converges to zero in L! (Q) when
J

a < qj, so the sum term vanishes as n — oo, and this leaves

d
im iE { u/ yDIe* Fr — lim i At o (i y D9iFk
nlgrololE<un,YD e >%®qj —nlggll;]EO/lke ul ,YDUF, e

=-F (kje’%TF‘”s?Y>

because the lower-order derivatives in D%e*" Fr also vanish by condition (a), and cross terms

(j # k) terms vanish by condition (b). Combining this with (2.10), we obtain:

iE (Fle Ty ) = —AE (e ).
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This leads to the PDE system:

J iATF, _ 2 iATF,
a—le<e |Z(h1),...,Z(hm))_—ljsjE(e \Z(hl),...,Z(hm))

which has unique solution (2.9). [

Remark 2.4. It suffices to impose condition (a) for 1 € ., where . is a total subset of JZ®".

If it can be shown that F;, also satisfies a relative compactness condition, then we can prove
convergence in the Skorohod space D0, ).

Corollary 2.5. Suppose {G,(t),t > 0} is a sequence of R-valued processes of the form Gy(t) =
8% (u,(t)), where u,(t) is a sequence of symmetric functions in D*4>4($y%4). Assume that for any
finite set of times {0 =1y < t; < --- <1y}, the sequence

(Gn(tl) - Gn(t0>7 .- -;Gn(td) - Gn(td—l))

satisfies Theorem 2.3; where the d x d matrix X is diagonal with entries s*(t;) — s(t;_1). Suppose
further that there exist real numbers C > 0, ¥y > 0, and B > 1 such that for each n and for any
0<t <t <ty we have
B
nty | — | nh
B Gy (1)~ Gult)1Gu(12)— Guo)7) < € (L2120

Then the family of stochastic processes {G,,n > 1} converges as n — o to the process G = {G;,t >
0}, where G(t) is a Gaussian random variable with mean zero and variance s*(t). Equivalently,

we can say that G,(t) N \/$2(t) Z as n — oo, where Z ~ (0, 1).

This convergence criteria in D is well known (see, e.g, Theorem 13.5 of Billingsley [6]).

In Chapter 7 we will use a version of the Fourth Moment Theorem, which is stated below.
This theorem, first published in 2005, has inspired an extensive body of literature, and provided
solution techniques to a new class of problems. This first version (which was 1-dimensional) of this
theorem was proved in [29]. Since then, other equivalent conditions have been added [24, 28]. The
multi-dimensional version stated above was proved by Peccati and Tudor [31]. A key advantage
of this theorem is that, unlike the standard method of moments, it is not necessary to know about
moments of any order higher than four.

Theorem 2.6. Fix integersn>2andd > 1. Let { ( fl(k), e, ﬁk)) k> 1} be a sequence of vectors
such that fl-(k) € A" foreachkandi=1,...,d; and
:Cii, Vi= 1,...,d;

b (f"(k)) 12(Q)
1im E [ (1) (7)) =y vi<i<j<a.

2

. k2 g
tim ! £)2c0 = Jim

Then the following are equivalent:
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(i) As k — oo, the vector (In( fl(k)), . A ftgk))) converges in distribution to a d-dimensional

Gaussian vector with distribution A (0,Cy), where Cy is a symmetric, d X d matrix with
entries Cij;

(ii) Foreachi=1,...,d, I, (fl( )) converges in distribution to N;, where N; is a centered Gaussian
random variable with variance C;;;

(iii) Foreachi=1,...,d,
4
lim E {In ( fl.(k)> } =3¢

k—oo

(iv) Foreachi=1,...,d, and each integer 1 < p <n—1, limy_, ‘ fl.(k) ®pfi(k)H

=0.
®2(n—p)

2.4 Stochastic calculus for a specific Gaussian process
For some 7 > 0, let X = {X;,0 <t < T} be a centered Gaussian process with covariance
E[X;X;] = R(s,1) (2.12)

for 5, € [0,T]. Let & denote the set of R-valued step functions on [0,7]. We then let §) be the
Hilbert space defined as the closure of & with respect to the inner product

(Lo Toup) g = R(5:0)-

The mapping 1y 4 — X; can be extended to a linear isometry between ) and the Gaussian space
spanned by X. In this way, {X(h),h € $} is an isonormal Gaussian process as in Section 2.2.

For an integer n > 2, we consider a uniform partition of [0,e0) given by {j/n,j > 1}. Define
the following notation:

[ J AXl :Xﬂ—Xl,Xl:

n

D=

(Xl —|—Xﬂ),andf( = X2j+1

J
n 2n

° 8£ = l[l s & = l[o,z]

n’> n

o & =3 (Lot ) and & =Ly

' 2n

This notation will be used extensively in the chapters to follow.
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Chapter 3

Stochastic integration and fBm

Let B = {Bf t > 0} be a fractional Brownian motion with Hurst parameter H. That is, B is a
centered Gaussian process with covariance given by

Ry(s,t) =121 420 _|r — 5?1 (3.1)

for s,# > 0 and some value H € (0,1). FBm is a well-known process that generalizes the standard
Brownian motion, indeed, it can be seen from the form of Ry that H = 1/2 corresponds to standard
Brownian motion. It is also known that for parameter values 1/2 < H < 1, the trajectories are
‘smoother’ that standard Bm, while the paths are ‘rougher’ for H < 1/2. In Chapters 4 and 5, we
consider a generalized Gaussian process, for which fBm can be considered the prototype, and the
results of those theorems hold for fBm with an appropriate values of H. In Chapter 7, we provide
more specific details about stochastic calculus based on fBm with H > 1/2.
The following fBm properties follow from (3.1).

B.1) E {(AB?)z} - <ai,a£>ﬁ - L.

n

n

B.2) E [AB?ABJ-H] = <a%,a% >ﬁ _ (22H _2) oM.

(B.3) If [k — j| > 2,

E [AB’}AB@’]

does not depend on j.

— ‘<8,-,8k>5‘ < Cn~2H|j — k|*'=2, where the constant C

(B.4) Foranyr € [0,T] and integer 1 < j,

‘E [ABIZIB?] ’ = ’<8,~,8;>ﬁ‘ <cn M (jZH*1 + \j—nt|2H*l) .
In particular, supjy 7 ‘E [ABf/anI } ‘ <20 2 andif [k— j| > 2,

B - ()| 7 2 i

(B.5) For any integer 1 < j, ‘E {ABI/{BI/{}

n n

_ ‘<8j,§j>ﬁ‘ < p2H pH-1,

n n



As a result of properties (B.1) - (B.5), we have the following technical results.

Lemma 3.1. Let H < 1/2and 0 <t < T, and let n > 2 be an integer. Then
(a) For fixed 0 < s < T and integerr > 1,
|nr|—1

Y [(%e),

J

< Cn—2(r—1)H‘

(b) For integerr > 1,

and consequently
[nt|—1
< C|nt|n 2!,

(9p01),

J k=0

15

Proof. For (a), first note that we have ‘ (0o, &) ﬁ’ < THp=H by (B.1) and Cauchy-Schwarz. Further,

if
and note that | ¢ “| < 2. Then for the case r = 1 we have
@pe),|+ L [(%e),]

jes
|nt]—1

J_
i

|nr|—1

L [(2pe), = lnes|+ ¥

j=0 jere

STanH_'_CanH_i_CanH Z J-2H71+’j_ns|2H71

j=1
< C|nt] 2H,—2H < .

For the case r > 1, we have by (B.4)
|nt]—1

Y [(9e)

Jj=0 %

|nt|—1

r

< sup
0<j<|n]

(ap8),,

J=0

Z ’<(9£,8§>5‘ < Cp2-DH

< %,then by (B.4) we have ‘<8£,£s>ﬁ‘ <Cn M Let I ={1<j<m],|j—ns|>1}
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For (b), we have by (B.4) and (3.1)

|nt|—1 o\ i ™ .
JZE) ’<8£,e%> Sosiilfmj <8'{’8£>5§ 2‘6 ‘<ai’gi>ﬁ‘
2(r-1)H A
<Cn L E‘E[AB%<B%+B%)”
LntJ—ll
—on ey e | -
j=0 2 n n
LmJ*11 1 2H N 2H
_ ,—2(r—-DH i+ (]
=Cn Zz) 2 ( n ) (n> ]
j=
< Cl’l_z(r_])HLn_tJ < Cn—Z(r—l)H'
n

For (c), we note that ‘< /n780>f)‘ ‘< /n:el/n>ﬁ‘ < n—2H. Also note that by (B.1) and

Cauchy-Schwarz we have ’<8,~/n,<9k/n> ﬁ‘ <n 2 for any 1 < j,k < |nt]. To begin the proof,
we consider the case when 1 < k < |nt] — 1 is fixed. Then
r
Z ’<81,8k> ‘g sup sup

r—1
<al;ak>
=0 noonl 9 o<e< ] |0<k<[me| | N "9

<2 (nzu’g\@,aﬁm Y (2.0 |+

j=k—1 Jj= k+2

1

FE (),

J=0

|nt]|—1

|nt|—1

(2,0,

Then we use (B.2) and (B.3) to write

Sl (s | VTS TRV TRV
= J

1 =k+2

- ket
S n2(r—l)H n—2H + Cn—ZH Z (k . j)ZH—Z + n—2H + Cn—ZH Z (] . k)2H—2
j=1 j=k—1 j=k+2

S Cn*ZVH 4+ 2 Z m2H72 S Cnfer,
m=1
where we note the sum is finite because H < 1/2. For the double sum result we have

‘<a£,aﬁ>; gtn%_l sup {L%‘, ]<a,,ak> ‘}SCLntJn_er.

k=0 0<k<|nt|

|nt]—1

r

Js

0
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In order to identify the ‘critical’ cases, we will use the following theorem that was first proved
by Nualart and Ortiz-Latorre [28]:

Theorem 3.2. Fix H < 1/2 and an odd integer k > 1. For integers n > 2 define

) _ gt U )
7" =nk=5 Y (aBT)
=

Then as n — oo, the two-dimensional process (B™,Z\")) converges in distribution in the Skorohod

space D([0,T])? to (B ,cB 2 ), where B? is a standard Brownian motion independent of BY, and

02 =K [Xlzk] +2 Z E [(X1X1:j)k] ) for X] :B7_37_1
j=1

3.1 Cases with H < 1/2

In this section we consider the different integral constructions discussed in Chapter 1, and show
how each has an associated critical case, for which the given Riemann sum does not converge
in general. The following proposition summarizes some known results about stochastic integrals
with respect to fBm, when the integrals arise from a Riemann sum construction. A comprehensive
treatment can be found in an important paper by Gradinaru, Nourdin, Russo & Vallois [16].

Proposition 3.3. Let g € € (R), such that g and its derivatives have moderate growth. The

following Riemann sums converge in probability as n — oo to g(B;) — g(0) for the given ranges of
H:

(a) Midpoint (type 2) rule: for 1/6 <H < 1/2,

wheregl :%<Bl+Bm).
(b) Trapezoidal rule: For 1/6 <H < 1/2,

|nr|—1 1
Y o (¢B)+gBu))AB,.
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(d) Milne’s rule: For 1/14 <H < 1/2,

|nr|—1 1 _ 3
Z % <7gl(Bj) +32g/(B j +ZAB )+ 12g/(Bl)+32g/(Bl +ZABj)+7g/(Bj+]>> AB;.
j:o n n n n n n

3~
I I~

All of these results follow from Theorem 4.4 of [16], in fact they are also proved there for
H > 1/2. However, here we give a different proof of part (c). By similar techniques, results (a),
(b) and (d) could also be done in this way. This proof will contain some results that will be used in
Chapter 6, and help set up the proof of the main result. We begin with a technical result.

Lemma 3.4. Let r=1,3,5,... and n > 2 be an integer. Let ¢ : R — R be a € function such that
¢ and all derivatives up to order 2r have moderate growth, and let {B;,t > 0} be fBm with Hurst
parameter H. Then for each r, there is a constant C > 0 such that

2

¢(B;)

LntJ n—ZrH7

D2n2

-1 2
E (Z ¢(BJ)AB?) <C sup
j:O n n

0<j<|nt]

where C depends on r and H.

Proof. To simplify notation, let ¥; := ¢ (B ;). Note that by (B.1), we have ||AB; l20) = 19; 1l =

n~H. For Hermite polynomials H,(x), r > 1, it can be shown by induction on the relation Hy 1 (x) =
xH,(x) — gH,—1(x) that

2]
x' = Zoc(rvp)Hr—ZP (x)7

where each C(r, p) is an integer constant. From Section 2.1, we use (2.4) withx=AB; /||AB, || ;2(q) =

nf!AB; to write

n

H, <nHAB%) =0 (nrHa;@’) .

n

It follows that

4] 1)
n PZO n [7:0 1

which implies

5]
AB'; = Z C(r,p)nle’HSr*zp (31@2p) )
n p:() n

n
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With this representation for AB; Jn> WE then have

|nt]—1 2
E ( )y YJAB’f)

]:0 n

I
~
<
~
<

Lﬁj / \‘m‘Jil / /
Y., Clrp)C(rp)n2Hrr) ¥ B {YijS"zp (3,@“2”) 5r2p (3%—21’)}

p,p'=0 J:k=0 i "

15) a1 , :
< Y [C(rp)C(r,p) 2 H) Y E[YijS’_ZP (a?’—zf’) 520 (a,?’—zl’)”. (32)

p,0'=0 7. k=0

By Lemma 2.1.d, the product
- ®r—2 —2p @r-2p
5r 2p (ajr P) 5r 2p (akr P)
consists of terms of the form

C52r—2(P+P/)_ZZ (a;@r—zp—z ® afi)r—zp/_z> <al , aﬁ >; , (33)

n n

where z > 0 is an integer satisfying 2r —2(p+ p’) — 2z > 0. Using (3.3), we can write that (3.2)
consists of nonnegative terms of the form
|nt|—1
J:k=0

E |:Yij52r2(p+p/)22 (a;@r—Zp—z ® af@r—Zpl_z) <8j,9k>;} ‘ . (3.4)

n n

To address terms of this type, suppose first that z > 1. Lemma 2.1.c implies that

i

J— J— — /7
<c (1915l > )

n n

62r—2(p—|—p’)—2z (a;}?r2pz®a§§r2p’z>

LX(Q)
2r=2(p+p')—2z

<c|a I
= g
Hence, for z > 1, (3.4) is bounded by
, 2r—2(p+p')—2z L] 1 z
Ca ) sup Y] 02 Y |(9.:)
0<j<|nt) 9 =

<C sup HYjH]%)Z,AQ |nt | n 2
0<j<|nt]

which follows from Lemma 3.1.c.
On the other hand, for the terms with z = 0, by (2.6) we have

e 200 (972 )|

n n

—E <D2’2<P+P’>ijk, " @ a,?’zp'> . (3.5)
n n HO2r=2(p+p')

n n
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By definition of the Malliavin derivative and Leibniz rule, D*" *z(pﬂ’,)Yij consists of terms of
the form D*Y; ® DY, where a+b = 2r —2(p + p’). Without loss of generality, we may assume
b > 1. By assumptions on ¢ and the definition of the Malliavin derivative, we know that D’Y; =
o) (B, /n)E,S’,’l , and we know that for each b < 2r, D*Y; € L?(Q; $H*?). It follows that we can write,

']E <D“Yj @DV, Y T ® a?’zl">
n n §HPatb

~ o
< ClY; Iyl ¥ellpe |(21.0;)

Y

<|(Ea),l @&,

for integers 0 < ¢ < a, 0 < y < b. Without loss of generality, we may assume Yy > 1, and by
implication b > 1. Then using (B.4),

'E <D"YJ~DbYk, 07 @ ak®’2’">
n n H@atb

n n

<C sup ||YJHJ%>2r,2n72H(a+bil)‘<§k;al> )
0<j<|mt] nonih

Thus, for each pair (a,b), the corresponding term of (3.4) is bounded by
|nt]—1

Cn~2H(p+p") Y
Jjk=0

B [Yij §2r—2(ptp) (a}®r2p ® 8?2”/)} ‘
) |nt]—1
< Cn ) R, Y |(809,) |
0<j<[n) =T

|nt]—1
—2H / b—1 2 P
0<j<nt] = R

By Lemma 3.1.a,

|nt|—1
y )<’ék,al> ( < Clmt)Mn~2 < C
=0 n nl 9

for all 0 < k < |nt], so that

) |nt|—1 |nt]—1
Cn~2H(p+p'+a+b-1) sup ||Yj’|%>2r,2 Z sup Z ’<EE781> ‘
0<j<|nt] k=0 |0<k<|nt] j=0 noonl9

J— / —
<C sup Y| Ra|nt|n 0P abTD),
0<j<|nt]

where p+p'+a+b—1=2r—(p+p')—1>r,since p+p'+1<2|5]| +1 <r, for odd integer
r. This concludes the proof. [

Now for the convergence of the Simpson’s rule sum. We begin with some elementary results
from the calculus of deterministic functions. For x,4 € R and a ¥ function g, we have the
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following integral form for the Simpson’s rule sum:

gteth) gl 1) = [ glctu) du
h

= 2 (g (x— )+ 48 () + ¢/ (v + ) 6/ ) — g (v+u)) ulh—u)du

See Talman [40] for a nice discussion of the Simpson’s rule error term. Next, we consider a Taylor
expansion of order 7 for g¥:

Adding the above equations, we obtain

gD xtu)—gW(x—u)=2 )

It follows that we can write

3 S@H2v=1)(y) rh
el 1)~ gl =) = 5 (&= 40+ 1) =3 T S [
@) ) g
— 61 /Ou(h—u) du
_t / 280D s D T — Aoe® (20
(e 1) 49 () 4 ) — S5 g (W — Ao (o
~ oo [ @+ V] - e

where A7,Ag are positive constants, and & = &(u) € [x — h,x + h], with similar for . With this
relation, we now return to Proposition 3.3.c. We begin with the telescoping series,

¢(B)—0)= Y (s(Bi)~8(B)))+ (8(B)—g(Buu))

n

. /B(j+1)/n ¢ (u) du+ (g(Bt) —&(B )> .

n

By continuity, the term (g(B,) —g(B |t /,,)) tends to zero uniformly on compacts in probability
(ucp) as n — oo, and may be neglected. For each integral term, we use (*) with x = B j/n and
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h=1 5AB;/, to obtain
|nt]—1 B(j11)/n |nt]—1 1 _ 1 |nr|—1 _
’ o ! ) ! . 'ip 3) ) 5
guydu= Y —(g'(B;)+48'(B,)+g (Bjn))— g®)(B,)AB
j;, /Bj/n j;) 6( n n n ) 2590 ]; n z
[nt]—1 |nt|—1
— A7 Z g( )(BJ)ABZ —Ag Z 8(9)(BJ)AB%
]:0 n n ]_0 n n
1 Lntj 1 AB/n
—emm X[ (e ) (A8, —uPdu. (3.6)
6(7') j—O 0 n
By Lemma 3.4, the terms
) -1 g®)(B))
n 5 A AB7 A (9)

all tend to zero in L?() as n — oo. For the last term, we have the L?(Q) estimate

|nr|—1 ) i 2
’ ( Y e )] ug(AB,g‘Wzdu)

Jj=0
<C (E

11
because ||AB}1,,||L4( <C <E|A82 |> * < cn 1" by (B.1) and the Gaussian moments formula.
Thus, we have

N 2 2
2 [|nt]—1
sup g (B,)* ) ( Z 148 ll14(@ ) < Clut|’n™ 2 < Cn™H,

s€[0,¢]

|nt|—1
Plim ) é<g’(35)+4g’(3 )+g(BJ+1))AB%=f(Bt)—f(0),

n—oo =0

when H > 1/10, and Proposition 3.3.c is proved. U

As a converse to Proposition 3.3.c (and parts (a), (b) and (d) by similar computation), let
g(x) = f(x) be a polynomial such that g®) = f(>) = 1. Then

|nr]—1

A L S
S0 = FB1) 1O+ g X A8%,

By Theorem 3.2, the sequence ( B, Zlnt(J) AB? /n> converges in distribution to (B;, W), where W is

a Gaussian random variable, independent of B. It follows that S5 (¢) does not, in general, converge
in probability when H < 1/10.

Since Proposition 3.3 is restricted to odd powers, we need a different proof to address the
Midpoint (type 1) case.
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Proposition 3.5. Let t > 0, let g be a €°(R) function such that g and its first 6 derivatives satisfy
moderate growth conditions, and let {B t > 0} be a fractional Brownian motion with Hurst
parameter H. Then if H > 1/4, we have

Z 0 (- ) 2 6l - 00),

as n — oo. The sum does not, in general, converge if H < 1/4.

Proof. In this proof, we write B; instead of BY to simplify notation. For each 1 < j < L%J , We
consider two Taylor expansions of order 4:

3
1 1
8(32/)28(32_/'—1)4'Z;8 )<BZJ JABY; o1+ g8 g (&j-1)ABY,
n n r:1 . n
.| r+1 1
e(Bo) = 5B 1) Y, g (B 1 )ABE o — L) sy 2)ABE,
n n r:1 n n n

for intermediate values { j—1,M2j—2. Subtracting the above, we obtain

1
8(B2j) —g(B2j2) = g(sz )(B,—szz)+§g”(szl)<AB%jl—AB%jz)

1 1
+ 68(3) (B2j-1) (ABsz,—l +AB321—2) + ﬁgw(Czjfl)ABL
1
—ﬁg( )(772]' 2)AB3; 5,
so that
7
L ¢ (8- ) =683 5) 0
| L%J ) | 2] . . | 2] \ s
~ Bz, ) AB AB3 , ) ==Y ¢¥(By)AB,  —— ¥ ¥ (By2)AB,,
258 =) 6 & I St
| Lz 1 2] o
— AB — ABY.
24j:18 (&2j-1) +24,-:1 (M2j-2) 22

(13 lE
8 8(3)(3£)AB32,71 = g g(3) (5 <szfz +sz>> AB%,q
j=1 " " J=1 " " n
3] .
+8 {g( )(BZH) g (5 (Bﬁ +sz>)]AB
j:1 n n
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By Lemma 3.4,

2

15
E Z ( (sz 2+Bz,>)AB32j1 < Clnt|n %,
which vanishes for H > 1/4. For the other term, we have by Mean Value theorem and (B.1)

]EFBNBN1>_g@)<l<BU2‘%BN>)‘§EZ <cn "

1
sup g (By) {5 (szn;z +B%) —Asznl:|

s€[0,¢]

—3H by (B.1) and Holder inequality, hence we can

Moreover, supg< j<|,/2| E ‘AB?ZJ._ 1)/

1% ] |
EY |g¥(By.)—g? (5 (BM +32/>>' <C
j:] n n n

write

I’l_4H < [ntjn_‘w

Y

. | —
Nl
— | I—

which tends to zero if H > 1/4. The computation for

4] . .
Y ¥ (B2y1)ABY,,
= ’

n

1s similar. Next, for the 4th order terms we have the estimate

s€[0,t]
so that
1 & 4H
_4 Z ‘ (G2j- IABZJ < Clnt|n™™",

with a similar estimate for the term with g( ) (M2 J;Z)AB‘(‘2 j—2)/n> SO these terms tend to zero. Hence,
it is enough to study the term

1% ]
Y §"(B2i1) (AB%_,-, — AB%M> . (3.7)
j:1 n n n

As in the proof of Lemma 3.4, we use the Hermite polynomials, in this case H>(x):

n?HAB3, | —n*fABy; 2 = Hy(n? AB2j1 ) — Hy(n AB2; ).
n n n n

Using (2.4), this equals n* §2 (8;‘?21) —n?t§? (8%%) , so that we can write (3.7) as

% g"(Ba1) (52 <a§%,> -8 (agg)) .
j=1 " z z
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To prove the result when H > 1/4, it is enough to prove that

E <Clnt|n~*H,

nt|—1 2
Z g//<Btj)52 (a/@Z)

j=0

where j/n <t; < (j+1)/n for each j. By Lemma 2.1.d,

<t ="F [ e (77) 2 (o)

J:k=0

2

[nt]—
Z Btj 32 (a®2>

|nt|—1

=Y & [m e, (64 (8?2@@8?2) +48°(3,09,) (3,.9,), +2(9,.21), )]

j k=0 9
|nt|—1
<Y E {g'/(B,j)g(B,k)54 (3?2@@&?2)1
],kZO n n
) |nt]—1
4 1 B a a .
S LT BN LS Y ICEIN

2 "(B,)? N d;.0 ?
+2 s B, gy X (900),

< ¥ B0 (¢B,)6(8,)). 9 007)  +clayl
]’k:() n n 37)@4 n

|nt]—1

ey (),
k=

Jk=0

|nt]—1

r

J>

‘<8i,8§>ﬁ‘

0

where we used Lemma 2.1.c for the estimate H 5%(d; ® i)
3.1.b,

’Lz(g) < C!@H%. By (B.1) and Lemma

|nr|—1 |nt]—1

EAE chZ—O (<ai,aﬁ>ﬁ\ ) <a,,ak> < Clnt|n,

For the first term we have

|nt|—1

Y 5 (04 (¢ (B)e(8) 9703 ) < Clarl
n 55@

J,k=0 n

by the argument applied to (3.5) in the proof of Proposition 3.3. Hence, we have that (3.7) tends to
zero in L*>(Q) if H > 1/4.
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Conversely, suppose g(x) = x, then

2

) B

Z BZ/ < 2j — B> _2> = Z E[(BQ—sz—z)(B%—BM)]

j=1 n n jk=1 n n n n
%] . .

2n2H Y (12— 2k+2H —2[2j - 2k| + |2 — 2k — 2|*),
J,k=0
which diverges if H < 1/4. =

3.2 ThecaseH >1/2

In this section, we provide some background material which will be used in Chapter 7. Here,
we assume throughout that H > 1/2. We work with a multi-dimensional process, and consider
integration in the Russo-Vallois sense rather than based on the Riemann sum approach of Section
3.1.

Let F =g(B(¢1),...,B(¢n)), wheren > 1, g : R" - R, ¢; € H4, and g is a smooth function. The
Malliavin derivative of F is an element of £),; (which is isomorphic to the product space () )d),
and we can write D = (D1 ... D), where

P X 5 B0 B 50,

where we use the notation D( Vg =pOF (). We define the ‘component integral’ 51 as the adjoint
of DU, and use the notation

. T .
80 (u) = / u8B!; and (3.8)
0

5(@:/ 5B, — 25

where u € Dom 8 ¢ L2(Q, ) forevery i = 1,...,d implies u € Dom & C L2(Q,$,).
Fix T >0 and an integer d > 1. Let B={B,,0<t <T} = (B},...,.Bf) be a d-dimensional
fBm, that is, each B; is an independent, centered Gaussian process with B, = 0 and covariance

E [BiB}] := R(s,t) = %

for t,5 > 0. We will use the following elementary properties of Ry (s,1):

(82H+[2H— ‘S—t|2H)

(R.1) Ry (s,t) =Rpu(t,s); and for any € >0, Ry (s + €,t) > Ru(s,t).
(R.2) There are constants 1 < cg < ¢ < 2 such that co(st)? <Ry (s,t) < cy(st)H.
(R.3) As an alternate bound, if s < ¢ then the Mean Value Theorem implies

Ry(s,t) < s 4120 — (1 —5)2H < 1 L ogg?H 1
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Let & denote the set of R—valued step functions on [0,7] x {1,...,d}. Note that any f =
f(t,i) € & may be written as a linear combination of elementary functions e’ = Lio (k) Let Ha
be the Hilbert space defined as the closure of & with respect to the inner product

(el =EIBB]=Ru(s.03,
d

where & is the Kronecker delta. The mapping ek — BK(t) can be extended to a linear isometry
between $),; and the Gaussian space spanned by B. In this way, {B(h),h € $),;} is an isonormal
Gaussian process.

Let ay = H(2H —1). It is well known that we can write

N t
Ry (s,1) = aH/ / In —6*~2dn de. (3.9)
0 JO
Consequently, for f,g € & we can write
d ot 2H-2
Fgho, =0 Y. [ [ Flsg)lr =5 2ds dr. (3.10)
i=1

We recall (see [27], Sec. 5.1.3) that $, contains the linear subspace of measurable, R-valued
functions ¢ on [0, 7] x {1,...,d} such that

d T (T
Y [ [ lots il o0l — 5P 2ds de <o
i=170 70

We denote this space by |$4|. Let [$7”| be the space of symmetric functions f: ([0,7] x {1,...,d})? —
R such that

! P
) /[OTW 1F (i), (Mgeig)) | 1f ((B1,1),- -, (84,1g)) | I-[l|nj_9j|zﬂ_zdn 16 <o
, L

i1ymig=1

Then |F)Z,7s C 9“4, and for f,g € |Jr’)d7s we can write (2.2) as

d p
fepg=ay ), /[O o (1R (000 ((0.4), (0. 0)) [ Iy — 0, B, 3.1
k=1 )

=1

where
(n?k) = (nlak)r"a(npvk); (97k) = (917k)?"'7(epak); (t1>i1) = <t17i1>7""(t(I*P7iCI*I’); and
(t27i2) = (tqu+laiqu+l)7 SRR (t2(qu)ai2(qu))'

The pathwise stochastic integral with respect to fBm with H > 1/2 has been studied extensively
[1, 13, 27]. For our purposes, we will use the symmetric Stratonovich integral discussed by Russo
and Vallois [34]:



28

Definition 3.6. For some 7' > 0, let u = {u;,0 <t < T} be a stochastic process with integrable
trajectories. The symmetric integral with respect to the fBm B is defined as

t 1t
/0 usdBs = 1;18%/0 Us (B(s+e)/\t _B(sfe)\/o) ds,

where the limit exists in probability.
This theorem was first proved in [1].

Theorem 3.7. Let u = {u,,t > 0} be a stochastic process in D' ($)1) such that, for some T > 0,
T T
E {/ / g |us| |t — 5|22 ds dt| < oo
0 Jo
I [/[ " \Dyug| |Dsun | |t — 5?7210 —n[*2du dt d6 dn| < oo
0,7
T T
and / / |Dsuy| |t —s]ZH*Z ds dt < = a.s.
0 JO

Then the limit of definition 2.1 exists in probability, and we have

T T T T
/ u;dB; = / u;0B; + OCH/ / Dguy |t — s]ZHfzds dt,
0 0 0 JO

where oy = H(2H — 1).
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Chapter 4
CLT for a Midpoint Stochastic Integral

4.1 Introduction

In this chapter, we consider the Midpoint (type 1) integral of Proposition 3.5. Most of the material
in this chapter is nearly identical to that published in [17]. The aim is to obtain a change-of-
variable formula in distribution for a class of Gaussian stochastic processes W = {W;,7 > 0} under
certain conditions on the covariance function. The model for this generalized process is fBm with
H = 1/4, but it will be shown that this is not the only suitable process. For the process and a
suitable function f we study the behavior of the ‘type 1’ midpoint Riemann sum

%]
SMI Z W2]1)(W2] sz 2).

The limit of this sum as n tends to infinity is the midpoint (type 1) integral, denoted by

(MP1) /Ot 1 (Wy)dw

We show that the couple of processes {(W,, sMi (t)) > O} converges in distribution in the Sko-
rohod space (ID[0,))? to {(W,,®(t)),t > 0}, where

O(1) = F(W) — f(Wo) ——/f”

and B = {B;,t > 0} is a Gaussian martingale independent of W with variance 1(¢), depending
on the covariance properties of W. This limit theorem can be reformulated by saying that the
following It6 formula in distribution holds

Fn)Z F(wo) +/ £(W. dM1W+2/ F"(W,)dB,. @.1)

The above mentioned convergence is proven by showing the stable convergence of a random
vector (SM1(z),...,8M1(z;)) and a tightness argument. Convergence in law of the finite dimen-
sional distributions follows from Theorem 2.3, once we verify that S¥!(¢) satisfies the conditions.
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Recent papers by Swanson [37], Nourdin and Réveillac [25], and Burdzy and Swanson [8]
presented results comparable to (4.1) for a specific stochastic process. In [37], a change-of-variable
form was found for a process equivalent to the bifractional Brownian motion with parameters
H = K = 1/2, arising as the solution to the one-dimensional stochastic heat equation with an
additive space-time white noise. This result was proven mostly by martingale methods. In [8] and
[25], the respective authors considered fractional Brownian motion with Hurst parameter 1/4. In
[8], the authors covered integrands of the form f(¢, W;), which can be applied to fBm on [€,0). The
authors of [25] proved a change-of-variable formula that holds on [0,) in the sense of marginal
distributions. The proof in [25] uses Malliavin calculus; several similar methods were used in the
present chapter.

It happens that the conditions on the process W are satisfied by a bifractional Brownian motion
with parameters H < 1/2, HK = 1/4. In this case 1(¢) = Ct and the process B is a Brownian
motion. This includes both cases studied in [25] and [37], and extends to a larger class of processes.
For another example, we consider a class of centered Gaussian processes with twice-differentiable
covariance function of the form

E[W,W,]=r¢ (;) , t>r

where ¢ is a bounded function on [1, ) such that

4G
Va—1  x’

and y is bounded, differentiable and |y’ (x)| < C(x— 1)’%. This class of Gaussian processes in-
cludes the process arising as the limit of the median of a system of independent Brownian motions
studied by Swanson in [38]. For this process,

¢'(x) =

0 (x) = /¥ arctan ( \/%) |

It is surprising to remark that in this case 1 (¢) = Ct. This is related to the fact that the variance of
the increments of W on the interval [t — s, ] behaves as C+/s, when s is small, although the variance
of W(t) behaves as Ct. Our third example is another Gaussian process studied by Swanson in
[39]. This process also arises from the empirical quantiles of a system of independent Brownian
motions. Let B = {B(t),t > 0} be a Brownian motion, where B(0) is a random variable with
density f € €. Given certain growth conditions on f, Swanson proves there is a Gaussian process
F = {F(t),t > 0} with covariance given by

P (B(r) < q(r), B(t) < q(t)) — o’
u(q(r),r) u(q(t),r) ’

)
where a € (0,1) and ¢(¢) are defined by P(B(r) < ¢(¢)) = a. It is shown that this family of
processes satisfies the required conditions, where 1 (¢ ) is determined by f and a.

E[F(rF@)]=p(rt) =
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4.2 Central limit theorem for the Midpoint (type 1) integral

Suppose that W = {W;,¢ > 0} is a centered Gaussian process, as in Chapter 2, that meets conditions
(M.1) through (M.5), below, for any 7" > 0, where the constants C; may depend on 7.

(M.1) Forany 0 < s <t < T, there is a constant C; such that

B[ -W)?] <Cist.

(M.2) For any s > 0 and 2s < r;t < T with |t —r| > 2s,
IE [(W, — W) (W, — W,_y)]| < Cis2[t —r| "%t Ar—s) P+ 52|t —r| 3,
for positive constants o, 3,7, such that 1 < @ < % and a +f3 = %
M.3) ForO<t<Tand0<s<r<T,

1
Cys2 if r<2sor|t—r|<2s

E W Wr s_2Wr+Wr7A S
[ W (W ol {c2s2(<r_s>—%+|z—r|—%) if r>2sand |t —r| > 25

for some positive constant C;.

MA4) Forany0<s<t<T—s

Cgs% ift<2s

E[W, (Wits = Wi—s)]| < {C3S(t —5)71 ift>2s

and foreachO0<s<r<T,

1
Css2 ift<2sorl|t—r| <2s

]EWrW S_Wfs S
B W, (Woees = Wil {C3s(t—s)—é+c3s|z—r|—% ift>2sand |t—r|>2s

for some positive constant Cz. In addition, for ¢ > 2s,
[E [W,(W, — Wi—y)]| < C3s2+Y( —25)
for some y > 0.

(M.5) Consider a uniform partition of [0, o) with increment length 1/n. Define for integers j,k >0
and n > 1:

Bulisk) = E[ (Wi =W, ) (Waes =W )|
Next, define
2
M) =Y Bu(2j—1,2k— 1)+ B(2j—2,2k—2)%;
Jk=1

—
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%
M () =Y Ba(2j—2,2k—1)"+Bu(2j — 1,2k —2)°.
jk=1

| I

Then for each t > 0,

limn, (1) =n"(r) and limn, (1) =n"(¢)

n—oo n—oo

both exist, where 1 (¢),11™ (¢) are nonnegative and nondecreasing functions.

Consider a real-valued function f € €°(R), such that f and all its derivatives up to order 9
satisfy moderate growth conditions, as defined in Section 2.1. We will refer to this as Condition
(M.0).

In the following, the term C represents a generic positive constant, which may change from
line to line. The constant C may depend on 7" and the constants in conditions (M.0) - (M.5) listed
above.

The results of the next lemma follow from conditions (M.1) and (M.2).

Lemma 4.1. Using the notation described above, for integers 0 < a < b and integers r,n > 1, we

have the estimate,
b

Y BRI <Cb—at+1)n s,
Jk=a
Proof. Suppose firstthat r = 1. Let I = {(j,k):a < j,k<b,|k—j| >2,jAk>2},and J = {(j,k) :
a< j,k<b,(j,k) ¢ I}. Consider the decomposition
b

Z |Bn(]ak>|: Z |Bn(]ak)|+ Z |Bn(]7k)|

Jik=a (J.k)el (j.k)es
Then by condition (M.2), the first sum is bounded by

Y a3k % <Cni(b—a+1),
kel

and the second sum, using condition (M.1) and Cauchy-Schwarz, is bounded by Cn? (b—a+1).

For the case r > 1, condition (M.1) implies |B,(j,k)| < Cyn~2 for all J,k. It follows that we can
write,

b r r—1 b r
Y BRI <Cin 7 Y |Ba(ji k)| < Cb—a+1)n"2.
J.k=a J.k=a

Corollary 4.2. Using the notation of Lemma 4.1, for each integer r > 1,

¥

| E—

(1Bn(2j = 1,2k = )|+ [Ba(2) = 1,2k = 2)|" + |Bn(2j — 2,2k = )" + [ Ba(2) — 2,2k = 2)[")

jH=1
t

NI~
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Proof. Note that
%]
Y (IBu(2j = 1,2k = )"+ |Bu(2) = 1,2k = 2)|" +Bu(2)j = 2,2k = 1)|" + [ Ba(2) — 2,2k = 2)[)
a1
= 1Bn(J, )"
[

Consider a uniform partition of [0,0) with increment length 1/n. The Stratonovich midpoint
integral of f'(W) will be defined as the limit in distribution of the sequence (see [37]):

1%
SML(r) Z (Waizt ) (Wa = Wai2). (4.2)

Recall the notation of Section 2.4: & :=1jg,; and dj =1 {

S~

]
The following is the major result of this section.

Theorem 4.3. Let [ be a real function satisfying condition (M.0), and let W = {W;,t > 0} be a
Gaussian process satisfying conditions (M.1) through (M.5). Then:

.52100) 5> (W ov) — gm0~ 3 [ 0% a, )

as n — oo in the Skorohod space (D[0,0))?, where 1(t) =07 (t) — 1~ (¢) for the functions defined
in condition (v); and B = {B;,t > 0} is scaled Brownian motion, independent of W, and with
variance E [B}] = 1(t).

The rest of this section consists of the proof of Theorem 4.3, and is presented in a series of
lemmas. The proofs of Lemmas 4.4, 4.5, and 4.9, which are rather technical, are deferred to Section
4.4. We begin with an expansion of f(W;), following the methodology used in [37]. Consider the
telescoping series

%)
FOW) = S00) + 1 [7(W) = F(Woca)| 1) = S (W ),
]:

where the sum is zero by convention if L%J = 0. Using a Taylor series expansion of order 2, we
obtain
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where Ry, R; represent the third-order remainder terms in the Taylor expansion, and can be ex-
pressed in integral form as:

1 W

Ro(Wyy) =5 | 7 (Way = u)” £ (u) du; and (4.3)
1 W21
R(Wa2) = — . I Waps — u)2fS) () du. (4.4)
n 2j-2 n

n

By condition (0) we have for any 7" > 0 that

lim E sup

e 0<t<T

JWe) = f(W2 w )| =0,

so this term vanishes uniformly on compacts in probability (ucp), and may be neglected. Therefore,
it is sufficient to work with the term

Balt) 1= FOW) — F(Wo) — 3% (1) + R, @5)

where

1%]
Pu(t) =Y (W) (AWZ% —AW%,-I); and
j:1 n n n

4

—

5]
Ry(t)=Y (Rl(W%;z) —RO(W5)>-

n

j=1
We will first decompose the term W, (¢), using a Skorohod integral representation. Using (2.4) and
the second Hermite polynomial, one can write AW?(h) = 2H, (W (h)) + 1 = 8%(h®?) 41 for any
h € $ with ||h||s = 1. It follows that,

kd

j=1 ! s

From Lemma 2.1.a, we have for random variables u, F’
F&*(u) = 8% (Fu)+28 ((DF,u)g) + (D*F,u) ¢ oo
SO we can write:

15 ]
0,0 =8 (1) (352, -05% ))
= " "

n

+
—
SR
—

26 (f(3)(W211) <82,’1,8§?31 - a%Ez> )
n n T n f‘:)

+ 3 SV Wai) <<£2’182’1>; - <8Maw>;>

SN
[ERE

<
I
_
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:Fn(t)+Bn<t> +Cn(l)'

Hence, we have A, (1) = f(W;) — f(Wp) — % (Fu(t) 4+ Byu(t) + Cy(t)) + Ry (2). In the next two lemmas,
we show that the terms By, (1), C,(t), and R, (¢) converge to zero in probability as n — co. The proofs
of these lemmas are deferred to Section 4.4.

Lemma 4.4. Let 0 < r <t <T. Using the notation defined above,

nt nr _3
E[(Ra() - Ra(n)] <€ (5|~ | 5] )7
2 2
for some positive constant C, which may depend on T. It follows that for any 0 <t < T, R,(¢)

converges to zero in probability as n — oo.

Lemma 4.5. Let 0 < r <t < T. Using the above notation, there exist constants Cg,Cc such that

3018007 <o (2] 2]
sG] sce(|2] - 2))n t
It follows that for any 0 <t < T, B,(t) and C,(t) converge to zero in probability as n — .

Corollary 4.6. Let Z,(t) := R,(t) — 3B, (t) — 3C,(t). Then given 0 < t; <t < t, < T, there exists
a positive constant C such that

N\w

E[|Z1(1) = Zu(t)] |Z4(12) = Zu(0)]] < Clra—11)2.
Proof. By Lemmas 4.4 and 4.5,
E | (Z4(t2) = Za(1))? ]| < 3E | (Ra(t2) = Ra(1))’] +2E | (Ba(t2) = Ba(11))’]
+2E [(Culr2) ~ Colt1))’]
e(|]- %)

Then by Cauchy-Schwarz inequality,

D=

E(|1Z0(0) = Zaltn)| 1Za(t2) = Za(0)]] < (E|(Za(0) = Za(01))?| B[ (Zal0) = Zu(e))?])

<c(|%2] - )

3
2

This estimate implies the required bound C(r, —11)?2, see, for example [6], p. 156. [

Next, we will develop a comparable estimate for differences of the form F,(¢) — F;,(r). In order
to prove this estimate, we need a technical lemma which will be used here and also in Section 4.4.
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Lemma 4.7. Suppose a,b are nonnegative integers such that a+b < 9. For fixed T > 0 and
interval [ty,t;] C [0,T], let

|2 ]
= Y f<“><ww>(a§%—a;%).
e=|)+1 o

Then we have for 1 < p < oo

= [HDbgaHg@erb} < C(LL?J _ L%J)gng

Proof. We may assume t; = 0 with #; < T'. For each b we can write

P
E |:<HDbgaH52§®2+b> 21

— P A
nty 2
2
b b b b 2 2 2 2
—5 || X e ) (et it ) (05 - 05052, - 95, )
Z.,m:l n n n n _65917 n n n n j;'JGQZ
p ntp g
— (a+b) b A% {TJ ®2 ®2  ®2 ®2
<E| sup |f“ (Ws) sup <£N7—1;8M> ‘ Z <azz1 _8M782m—1 _a2m—2>
_OSSSI‘ &m n n 3’) €7m=1 n n n n ﬁ®2

Recall that (M.0) covers f and its first 9 derivatives, so the first two terms are bounded. For the
last term, note that by Corollary 4.2 with r = 2,

2

{m=1

n n n

®2 ®2 ®2 ®2
<azé—1 - aze—z 9 aszl - aszz >
n fj@Z

ity

= Y |Bu(20—1,2m—1)* — B, (20— 1,2m —2)* — B,(20 —2,2m — 1)* + B (20 — 2,2m — 2)?|
{,m=1

t
e[

Lemma 4.8. For 0 <s <t <T, write

3]
Fn(t) — Fn(s) = Z 52 (f//(sz—l) (858;21 — 858;22))
=5+ et

Then given 0 <t; <t <ty <T, there exists a positive constant C such that

E [|F(1) = Fa (1) P | Fu(12) = Fa(t)]] < Clta—11)*. (4.6)
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Proof. First, for each n > 1, we want to show that there is a C such that,

s < (2] - 2]

By the Meyer inequality (6.4) there exists a constant ¢; 4 such that
4
E|(8%(1)) | < caalltallfs ez,

where in this case,

=Y f"(szl>(a?§%l—a?;%z)

n n

and
a4 5y22) = Ellttnll g2 + El|Dutn | &5 + Bl D[ o4

From Lemma 4.7 we have EHM,ZH%@z, E||Dun||j%®3, IE*Z,||D2u,,||?§®4 <C(|%-%] )2n,2, and so it

follows that, ) ?
(6] <[] - [2]) '

From this result, given 0 <t <t <1, it follows from the Holder inequality that

—
D=

E [|Fa(t) = Fa(00) P[Fa(t2) = Fa(0)*] < (B[|Fa(t) = Fa(11)[*])* (E [|Fa(22) = Fa(1)[*])
nt nty \%2 _
<c([F]-13])
As in Corollary 4.6, this implies the required bound C(t, —t1)>. N

By Corollary 4.6 and Lemma 4.8, it follows that A, (t) = f(W;) — f(Wo) — 5Fu(t) + Za(t) is
tight, since both sequential parts F,(¢),Z,(t) are tight. Further, we have that Z,(¢) tends to zero in
probability, and F;(¢) is in a form suitable for Theorem 2.3. In the next lemma, we show that the
conditions of Theorem 2.3 are satisfied by F,(¢) evaluated at a finite set of points.

Lemma 4.9. Fix 0 =1y <t] <ty < --- < tq. Set F' = F,(t;) — F,(t;_1) for i = 1,...d, and let
F, = (F,f,...,Fnd). Then under conditions (M.0) - (M.5), F, satisfies conditions (a) and (b) of
Theorem 2.3, and so given W, F, converges stably as n — oo to a random variable § = (&, ..., &)
with distribution A (0,X), where ¥ is a diagonal d x d matrix with entries:

2= [" Frw)Pnds),

li-1
where 1(t) =N (n) — N~ (t) is as defined in condition (v).

Remark 4.10. As we will see later, 1(¢) is continuous, nonnegative, and nondecreasing.
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It follows from the structure of ¥ that, given W, F; converges stably to a d-dimensional vector
with conditionally independent components of the form

where each §; ~ .#7(0,1). Thus, we may conclude that for each i,

A 1
E! = [ (W) dB

tiq
for a scaled Brownian motion B = {B;,t > 0} that is independent of W;, with E [Bﬂ =n(1).

Proof of Theorem 4.3 1t is enough to show that for any finite set of times 0 =1y <t} <tr <--- <ty
we have

(An(t1),An(12) — Ap(t1)y .o, An(ty) — An(ta—1)) Z, (A(t1),A(t2) — A1), .., A(tg) — Atg—1))

as n — oo; and that A, (¢) satisfies the tightness condition
E [[An(1) = An(t1)]" |An(12) = An(1)|"] < Ct2 —11)* 4.7)

for0<t <t<tp<oo,y>0,and ¢ > 1.
For Ay(t) = f(W,) — f(Wo) — F,(t) + Z,(t), we have shown in Lemmas 4.4 and 4.5 that

Zu(t) = Ro(t) — % (Ba(t) +Calt)) <25 0

foreach 0 <t < T, and hence Z,(t;) — Z,(t;—1) 24 0 for each ti, 1 <i<d.ByLemma 4.9, the pair
(W, F,) converges in law to (W, F..), where F, is a d —dimensional random vector with conditional
Gaussian law and whose covariance matrix is diagonal with entries

l

si= [ ' (We)*n(ds).

li1

It follows that, conditioned on W, each component may be expressed as an independent Gaussian
random variable, equivalent in law to

1" (Ws)dBy

ti—1

where B = {B;,1 > 0} is a scaled Brownian motion independent of W with E [B| = 1(¢). Finally,
tightness follows from Lemma 4.8 and Corollary 4.6. Theorem 4.3 is proved. [
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4.3 Examples

4.3.1 Bifractional Brownian Motion

The bifractional Brownian motion is a generalization of fractional Brownian motion, first intro-
duced by Houdré and Villa [20]. It is defined as a centered Gaussian process B7'X = {B7:X (1)t >
0},with covariance defined by,

1 K 1
H K
]E[Bt , BISV-I,K] 5 (t2H SZH) 5 ‘t S|2HK,

where H € (0,1), K € (0,1] (Note that the case K = 1 corresponds to fractional Brownian motion
with Hurst parameter H). The reader may refer to [21] and its references for further discussion of
properties.

In this section, we show that the results of Section 4.2 are valid for bifractional Brownian
motion with parameter values H, K such that H < 1/2 and 2HK = 1/2. In particular, this includes
the end point cases H = 1/4, K = 1 studied in [25], and H = 1/2, K = 1/2 studied in [37].

Proposition 4.11. Let {BfI’K,t > 0} denote a bifractional Brownian motion. The covariance

conditions (M.1) - (M.4) of Section 4 are satisfied for values of 0 < H < 1/2 and 0 < K < 1 such
that 2HK = 1/2.

Proof. Condition (M.1).

2 2 kK 2
HK pHK 2HK 2HK _ [,2H 2H 2HK
E[(Bt — B S) } =170 4 (=) —[t +(t—s) } — %S

< H\/?— ZLK (1 + (t—s)ZH)K’ + ’\/th— ZLK (12 + (t—s)ZH)K' + ZLKS%:|
< Cs%,
where we used the inequality a” —b™ < (a—b)" fora> b >0and m < 1.
Condition (M.2).
E (B~ B (B — B

= ZLK ([tzHJrrzH]K_ [I2H+(r_s)2H}K _ Kt_s)zHJrrzH}KJr (=)™ + (},_S>2H}K)

1 2 2 2
+2—K(]t—r+s\ HK _o)r — rPHK 1 |r — r — 5] HK)

This can be interpreted as the sum of a position term, ZLKQD(I, r,s), and a distance term, 2LK y(t—
r,s), where

0t,1.) = [P+ 2] = [P 4 (r— 5] = [(1 =) ) (=) + (= )] and

vt —rs) = |t —r+s2 K — 2|t — rPHE 1 |r — p — 52HK,
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We begin with the position term. Note that if K = 1, then ¢(¢,r,5) = 0, so we may assume K < 1
and H > %. Assume 0 < s < r <t, and let p :=t — r. By Fundamental Theorem of Calculus, we
can write @(t, — p,s) as

2HK/OS ([IZH—}—(t—p_é)ZH}K—] _ [(t—s)2H+(t—p_§)2H}K—l) (r—p—&)H-14¢

S K-2 - _
= [ [Pk =K [1=0) (= p =) == p =8 dE an
<AHK(1—K)s> [(1— )™ 4 (r—s)?H) 72 (1= )21 (= )2
< CSZ (t . r)ZHK—ZH—l (l"— S)ZH—I )
This implies condition (M.2) for the position term taking & = % +2H >1and p=1-2H.

Next, consider the distance term y/(r — r,s). Without loss of generality, assume r < . Again
using an integral representation, we have

|2HK—2’1‘—I"‘2HK—|—| I’—S|2HK

y(t—rs)=|t—r+s t—

= /OSZHK [(t —r+ &K — (¢ —r— &K gg

s €

:/ /§2HK(2HK—1)[t—r+n]2HK_2dn dé
0 —

§Cs2(t—r—s)2HK_2§Cs2]t—r|_%,

since |t —r| > 2s implies (f — r—s)"3 <23 It — r|f%,
Condition (M.3).

B[ BB 288K 1 B |

1
— 2_K|[t2H+ (F+S)2H]K _2[t2H+r2H]K+ [IZH—|— (r_S)ZH]K

1
o % Ut_r S‘ZHK—2|1‘—}"’2HK |t—r—s\2HK} ’
Take first the term, ¢(z,r,s). If r < 2s, then

|[12H + (r—{-S)ZH]K - 2[12H +r2H]K_|_ [Z‘ZH + (r_S)ZH]K| < CSZHK _ CS%

Y

based on the inequality aX — bX < (a — b)X for a > b > 0 and K < 1. Hence, we will assume
r>2s. f K=1,then H = %, and we have

Vrts—2Vr+Vr—s|=

S 1 S 1
—d —/ —
/0 24/r+x o 0 24/r—s—+x o

1 /5 1
:—// > dydx
4Jo Jo (r—s+x+y)?

1
< Zsz(r—s)_%;




41

and if K < 1,
[o(t,1,5)|
/ZHK[IZH + (r4x) K )2 gy — /2HK (127 4 (r— s+ x) 2K (r — s 4 )21 Lax

/ AH*K(K — D)[P7 + (r— s+ x+ )52 (r —s +x+ )72 dy dx

/ 2H(2H — VK[t + (r—s+x+y) )X r—s+x+ )12 dy dx
0

< 4H*K(1— K)s*(r — )82 4 2H (1 — 2H)K 2 (r — s)2HK -2 < 52 (r —5) 2.
This bound for ¢(z,r,s) also holds in the case |t — r| < 2s, so the bound of Cs? is valid for this
case. Next for the second term. Note that if |f — r| < 2s, then

6 — r+s|PHK — 20 — r[PHK | — r — s PHK) | < 2(35)2K < Cs7.

1
e

If | — r| > 2s, then we have

Vir=r+s =2Vl =rl+ = —s| =

s 1 s 1
—dx—/ dx
2\/|t—r|+x 2\/lt—r|—s+x

// y dx
|t—r|—s—|—x+y

(|t—r|—s) 2\t—r|2

using the inequality ;—-— 2  for |t — r| > 2s. This bound for y(z — r,s) holds even in the case

<
| s = Jt—r]
r < 2s, so the bound of Cs2 When r < 2s is verified as well.

Condition (M.4).
For the first part, we have for all ¢ > s,
1
[+ (1 +5)*]

HK ( oHK pHK
[ (85 - 5)]| = |5k
This is bounded by Cs? if # < 2s. On the other hand, if 1 > 2s,

1 (2 4 (¢ — 2] ‘ 1

_ZLK [tzHJr(t_s)zH}K’.

1 K K—1 _
Z—K[t2H+(t+s)2H] —o% x| 2HK[ By +x))" (e +x)* 1 ax

< Cs(r— )K" = Cs(t—s)~

Bl —

For0 < s <r<T witht > 2sand |t —r| > 2s,

1 2 2 K 1 2 2 K
BB (B =B || < |5 [P+ (4 9)%) " = o [P 4 (1))
+ Z—K]r—t+s\2HK—2—K|r—t—s]2HK

< Cs(t—s)_% +Cs|r—t|_%.
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If t < 2s or |t —r| < 2s, then we have an upper bound of Cs? by condition (M.1) and Cauchy-
Schwarz.
For the third bound, if # > 2s,

1
‘IE [B?”K (B?K—Bfﬁf)] ‘ < |3% [s2H 4 2H]%

2LK [S2H+(I—S)2H}K’

)ZHK -

s (l . ZS)ZHK

1
(t—s

+2K

2
< 2_K/ HK [s2H+(t—s+x)2H}K(t—s+x)2H—1 dx
0

1 s 1
+W/()(I—ZS+X) de
< Cs(t— 2s)_% = Cs%ﬂl(t —25)77
fory=5
[l

Proposition 4.12. Let B"'X be a bifractional Brownian motion with parameters H < 1/2 and
HK = 1/4. Then Condition (M.5) holds, with the functions N (t) = 2C{t and n~(t) = 2Cxt,
where

Ci = 4i1< <2+ i (Vam+ —2\/%+\/2m—1>2> ,

c= 2-V2F +e L (V22 T4 van)

22K+1

Proof. As in Proposition 4.11, we use the decomposition,

. 1 k1 1 —k 1 S S N B
i = g0 (L n) o gew (50 ) =2 bk +2 S by - )

n'n’'n 2K n 'n

The first task is to show that -
nt
Tim Y nle(jk1)* = 0. (4.8)
Jj.k=1
Proof of (4.8). We consider two cases, based on the value of H. First, assume H < % Then
0,k 1) = [+ 1) + (k+ 127" = [(j+ 1) +&27]
) K . K

1 _
:/ DHK [+ 12 4 (k225" (k402 dx
/ZHK 2H+(k+x)2H} " (k4 x)2H 1 gx
- / / 4HK (1= K) [G+3)2 4 (k227572 (k21 (49)27 ) dy dix

1
< CkZHK 2H— 1J2H 1 :Ck_j_ZHjZH_l.
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With this bound, it follows that

1 . 2 cl AH-2 N ,—1—4H
=Y 0(jk1)P<=Y ] Y k
k=1 = k=1

[

S

=~
I
a

S

which tends to zero as n — o because H < %
Next, the case H = % Note that this implies K = %, and we have

0(j,k, 1) = ‘\/j+k+2—2\/j+k+1+\/j+k) <C(j+h)73.

So with this bound,

[n2] | 2 C |t ] 3
Y ek ) <= ) (j+k)T
Jik=1 jk=1
C i’l [} C }’l
SRR I

which tends to zero as n — oo because j_2 is summable. Hence, (4.8) is proved.

From (4.8), it follows that to investigate the limit behavior of n,f (¢),n, (¢), it is enough to
consider

1 =] ) L2
=Y w(2j-2k 1) +y(2j-2k1)> ==Y w(2j—2k1)% and
n. l’l

Jk=1 Jk=1

1 =] 5 12]
= Y w2 -2k+ 1,17+ yw(2j—2k—1,1)* ==Y w(2j—2k+1,1)%
n n

Jk=1

~.

5
I

—_
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since the sums of y(2j —2k+1,1)? and y(2j — 2k — 1,1)? are equal by symmetry. We start with

Z <\/2j—2k+1—2\/2j—2k+ \/2j—2k—1>2

\/W—2\/_+\/W)

T 4Ky m]lml<
= 4k T3k, Hm;l(”””_” mEvam= )
5] o
—% Y (Vam+T-2v2m+vom—1)
=]

where the last term tends to zero since
Z (Vam+1 2\/2m+\/2m—1> Y @m—1)3<c2j—1)2
— m—j

and,

<

%]

Jj=1

2j—1)""—0

=IQ

as n — oo. We therefore conclude that,

4
. . 2 . 2
= lim 'kZl(Bn(ZJ—lﬂk—l) +Bn(2)—2,2k—2)7)
JKk=
) 1
=1lim = Y w(2j—2k1)> =2C{rt,

n—oo
J k=1

| —

| —

where

Ci = 4LK <2+ y (Vom+ —2\/%+\/2m—1>2>.
m=1



For the other term,

&
Y w(2j-2k+1,1)?
jk=1

| E—

1
n

:T i 2 V224 T i i<\/2j—2k+2—2\/2j—2k+1—\/2j—2k>2.

Hence, by a similar computation,
& 2
= lim ;; (27 — 1,2k —2)% 4 B,(2) — 2,2k — 1)? = 2Cgt,

where

CK:% %i( 2m+2 2\/W+\/_>

m=1
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]

As a concluding remark, it is easy to show that C}(F > Cy, and in general we have n*(r) >

n- ().

4.3.2 A Gaussian process with differentiable covariance function

Consider the following class of Gaussian processes. Let {F;,0 < < T} be a mean-zero Gaussian

process with covariance defined by,
t
E[F.F]|=r¢ (—), t>r
r

where ¢ : [1,00) — R is twice-differentiable on (1,e) and satisfies the following:

(0.1) [[@]leo := sUp> [§(x)| < €0 < oo.

(0.2) For 1 < x < oo,
€91

Vi1

0'(x)] <

(¢.3) For 1 <x < oo,

[SI[O8}

10" (x)] < cpox 2 (x—1)"

where ¢y j, j =0, 1,2 are nonnegative constants.

4.9)

Proposition 4.13. The process {F;,0 <t < T} described above satisfies conditions (M.1) - (M.4).
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Proof. Condition (M.1). By Conditions (¢.1) and (¢.2),

E [(Ft —FH)z} =t¢(1)+ (t—9)p(1) —2(t — )¢ (1 +L)

t—s

<2(t—y)

o(1+,2) -otm| +slon)
/IH—ISS o' (x) dx
I+ Co.1
1 Vx—1
< Cs2 i —s5+5]|6
Cs2,

<2(t—s) + 5[0l

<2(r—s) dx+ 50|

IN
(ST [S1]

where the constant C depends on max {v/T, || |- }.
Condition (M.2). For 2s < r <t — 2s we have by the Mean Value Theorem,

Qe () () - ()]

<s sup |¢)”(x)‘( ! _t;s)

5] S

Sc‘f”zs(t?)_z (t;s‘l)_% (r(rtiw)

CVT s ‘
< \/_S3 :C\/Ts2|t—r|_%.
(r—r)2

“E [FtFr —F—sFy—FFr— +thsFrfs” =

—_

Condition (M.3). By symmetry we can assume r < t. Consider the following cases: First, suppose

2s <r <t—2s. Then we have
a0 () 2o (L) =90 (1)

9o (i) o ()] -9 o () -0 (-5)]

< sup }(P"(x)\( : t )

r—s r—+s

|E[E(Fr+s_2Fr+Fr—s)]| =

" s
1 3
< 2s2t20¢72 r+s)\?2 r+s 2
“r(r—s)(r+s) \ t t—r—s
Cs2t?

r(t—r)%‘
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There are two possibilities, depending on the value of r. If r > %, then § < 2, and we have a bound

of
Cs2<£>( VT ><2C\/_s2|t—r| z,

r (t—r)2

on the other hand, if r < %, then ﬁ <2 and r <t — r. Then the bound is

Csz( ! )(rﬁ )gzcﬁSZ[(r—s>%+|z—r|i].

t—r Vi—r
For the case |f — r| < 2s, assume that 7 = r + ks for some 0 < k < 2. Then

|E[F; (Fris —2F + Fr)]|
(r—+

<m<rs>>¢(”f —2r9 (f)““”"’(ris)‘
tV(r
+

+ +

)
)0 (s ) = o) ~2r (1) 42000+ =900

(k+1)s
r—s

1+

+ +

¢>(1 (kr_lss)—wl)‘ < 3(r+s)

<3(r+s) ¢’ (x) dx

1

dx < C\/_s2

For the last case, note that if # A r < 2s, then we have an upper bound of Cs%, since E [F;F] <
sl
Condition (M.4). Take first the bound for E [F;(F,+s — F;_s)]. Note that if r < 2s, then an upper
bound of Cs% is clear, so we will assume ¢ > 2s5. We have

E[FFy, — FF_ = ‘ 9 (t“) (t—5)é (L)

t—s

t+s t t+s
<(t— _—— —
( S)ffsuP, @ = - s‘(p(t)‘
_¢1_\/Z—|—s\/7
<CS\/_ t—s*j

For the case r # ¢, first assume r < t — 2s. By condition (¢.2),

ro(“5) <ro(S0) <20 swp oo
' [5.5]

- 25\/T ¢y 1 C\/Ts

- \/t—r—s Vi—r

’E[FFE+Y FE s”—
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If r >t +2s, then

E[FFs— FF]| =

i+99 ()~ -5 (:)\

Pl dx+2
<t [e]
<o [ (=t ) avrastol

- 2stcy 1\t +s N 2sc¢70\/7
B \VF—t Vi—s
< Cs(r—t)*% +Cs(t —s)*%.

For the case t < 2s or |r —t| < 2s, the bound follows from condition (M.1) and Cauchy-Schwarz.
For the third part of condition (M.4), we have for t > 2s,

E[FyF, — FsF—5] = s¢ (2) — 50 (l‘—s>

s

<5 sup (o' (£ =57

[t—s t
s s

€915

B[ —

where ¥ =

Proposition 4.14. Suppose ¢ (x) satisfies conditions (¢.1), (¢.3) and in addition ¢(x) satisfies:

. i\ K W(x)
04): 0= Y,

where Kk € R and y : (1,00) — R is a bounded differentiable function satisfying |y'(1+x)| <
wa_% Jfor some positive constant Cy. Then Condition (v) of Section 4 is satisfied, with nt@) =
Cgtz, and N~ (t) = CEt2 for positive constants CE,CE.

Remark 4.15. Observe that condition (¢.4) implies (¢.2) but not (¢.3).

Proof. We want to show

.
j

5]
Bu(2j—2,2k—2)* — Cp»t*; and (4.11)
jk=1

vl
| I

Ba(2j—1,2k—1)? —>cﬁ7112; (4.10)
1

o
I
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<
| I

1%
Bn(2j—1,2k—2)* — cmtz; (4.12)
k=1

so that CE =Cp,1+Cp o, and Cﬁ = 2Cp 3. We will show computations for (4.10), with the others
being similar. As in Prop. 5.2,

) 2] 2=
Y Bu(2j—1,2k—1)? Zﬁn 2j—1,2j—1)? ZZ (2j—1,2k—1)2,
J.k=1 j=1 k=1
so it is enough to show
ntJJ 1 ,
ggojzl;ﬁn —1,2k—1)* = Cy#*; and (4.13)
K3
lim Z Ba(2j—1,2j—1)% = Cot>. (4.14)

Proof of (4.13). For 1 <k < j—1 we have

w0 (2) - (51)) 25 o () + (D)

2% % 2% —1 2
=— ¢’ (x) dx — /2 o' (x) dx.

2j-1 j-1
n 2k n 2k—1

Using the change of index j = k+ m and a change of variable for the two integrals, this becomes,

1 2m 1 [2m+1 y
(2 —1,2k—1) =~ (1 )d ——/ 1+ ay. 4.15
P2 ) n/2m1¢ "ok n Jom ¢(+2k 1) g 1)

With the decomposition of (¢.4), we will address (4.15) in two parts. Using the first term, we

have
/ 2m+1 l2k_1
2m—1

_ 27" [m(m_wm_l) _wzk_l(\/zmﬂ_m)] .

We are interested in the sum,

LZ“Z_, [ €(Vam—vam 1) V21 (Vam i 1 vam)] . (4.16)

We can write

V2k (Vam—am=1) = V2k=1 (Vam+1-/2m)
= —x/zk—l(\/2m+1—2\/%+\/m) + (x/ﬁc—\/ﬁ) (m—m)
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Observe that
1
[(@—vz"—l) (\/% V:am = )} 2k—1)(2m—1)’
and so )
412 L5 [5]-* 1 4x?2 3] 1 Clog(nt)?
n? = mz::l (2k—1)(2m—1)S n2 ,lezk_l =72

Therefore the contribution of this term is zero, and it follows by Cauchy-Schwarz that the only
significant term is

ST Y Y k- (vt —2@+\/zm—1)2

=1 me
2] (4]
—a Y (Vamr T -2vamevan—1) Y, 20l
m=1 =1 "
N\ > (4] -m)’
=4 Y (VI 1= 2v2m Vo —1) " AT

3
I

which converges as n — oo to
o 2
2 Y (V2ma1=2v2m+vam—1)
m=1
Next, we consider the term \/l;cl// (x). The contribution of this term to (4.15) is
2k 2m+1 2k—1
—1//(1 o dy——/ w(1+L> dy. (417
2m

2k+y 2k—1+y 2k—1
We can bound (4.17) by

2% ) a it [ g1 ) .
%ty 2k Yo N2y Y\ T ) #

1 2k
< L sup [y () Viv
(1,00) 2k+2m—1

2%k 2m y 2m+1 y
1+ 2) ay— 1y
2m_1‘”< +2k> dy /zm "’( +21<—1> dy']

_|_

2k+2m—1

1
= Z (Ak,m +Bk,m) .

Since |y/(x)| is bounded, we have

C C
Akmg < .
’ V2k—12k+2m—1 "~ /2k—1+2m—1

(4.18)




8=

For By, using that |y/(x+1)| <Cx ™2,

2m 2m—+1
y y

2m u u+1
/ZmIV’(Hﬁ) _W<1+2k—1) du

2m 2l
</ W (14 v)dv| du
2m—1 u—H1
2k 1
<C v “2dvdu < <\/2m—|— —?2 )
2m—1.J 4 \/2k

<
T V2k—12m—1

/ 2k C C
’ 2k+2m—1 \2k—12m—1 " 2k—1y/2m—1

Hence, from (4.18) and (4.19), we obtain
3 JECH (N B
— 2 \V2k—1\2m— 1

5] 2
C 1 Clog(n)
n2k2 n—Dk—1) = 2

so that

<

51

(4.19)

so the portion represented by (4.17) tends to zero as n — oo. Since this term is not significant, it

follows by Cauchy-Schwarz that the behavior of

nIJJ 1

ZZ;},, —1,2k—1)*

j=1k=
is dominated by eq. (4.16), and we have the result (4.13), with

G=xY (Vam+ —2\/%+\/2m—1)2.
m=1

Proof of (4.14). For each j,
2j

n n

ﬁn(zj_ 172j_ 1)2 = (

2j—1 n

:% [¢(1)+(4J—2) (¢(1)_¢ (sz;—l))r

O IO () g (14 ]

n? n?

mn—f**¢(?i)+”‘W002
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Since ’(p(l) —¢ (1 +T1_1)’ < \/Cz‘%l by (¢.3), we see that

[qm)z L 42i-1e(1) ‘¢<1>—¢> <1+;)H et

n? n? 2j—1

which implies only the last term is significant in the limit. Again we use (¢.4) to obtain:

1 1457 .
¢(1)—¢(1+m):—/1 o' (x) dx

= =
= —K dx—/ —y(x) dx
1 Vx—1 1 ﬁW( )

- 2K 1o 1 )
V21 2j—1)°

.12 2 2(7:_ 1)\2 %
R (pm-o(144:)) =525 +o<}’1—2),

and taking n — oo,
L5 1 620n; 1
16K°(2j—1
lim M—{—O (ﬁ) = 4K%?,

hence

n2

which gives (4.14). Thus (4.10) is proved with

> 2
Cp1 =4 +262 Y (Vam+1-2v2m+v2m—1).
m=1

By similar computations,

s

2
Cpo=42+2k2 Y (VIm+1-2v2m+v2m—1) ; and

1

3
I

8

2
Cpa=42+26> ¥ (V2m+2-2v2m+1+V2m)
1

m

and so

>° 2
Cf = Cpa+Cpa=82+42 Y (Vam+1-2V2m+V2m—1)
m=1

>° 2
Cg =205 =82 +4K> Y. (V2m+2-2v2m+ 1+ V2m) .

m=1

Note that CE > Cg, and it follows that 11(¢) = n"(¢) — ™~ (¢) is nonnegative, and strictly positive
if x #£ 0.

]
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For a particular example, we consider a mean-zero Gaussian process {F;, > 0}, with covari-
ance given by

E[FF] = v/rt sin™! (r—\;\r_tt) .

This process was studied by Jason Swanson in a 2007 paper [38], and it appears in the limit of
normalized empirical quantiles of a system of independent Brownian motions.

Corollary 4.16. The process {F;,0 <t < T} with covariance described above satisfies conditions
(M.1) - (M.5), with n(t) = (CE —CE) 12, where CE, CE are as given in Proposition 4.15, with
K2 =1/4.

Proof. Assume 0 < r <t <T. We can write,

() () ).

(Z)(x) _ {\/}tan (ﬁ) y lf x>1 . (420)
z, if x=1

Condition (¢.1) is clear by continuity and L’Hépital. Conditions (¢.2) and (¢.3) are easily
verified by differentiation. For (¢.4) we can write,

e A R

where

w1)

v =3 (s ()
satisfies (¢.4). 0

so that Kk = —1/2, and

4.3.3 Empirical quantiles of independent Brownian motions

For our last example, we consider a family of processes studied by Jason Swanson in [39]. Like
[38], this Gaussian family arises from the empirical quantiles of independent Brownian motions,
but this case is more general, and does not have a covariance representation (4.9).

Let B = {B(t),t > 0} be a Brownian motion with random initial position. Assume B(0) has a
density function f € €*°(R) such that

sup(1+ [x|™)[ 1" (x)] < o0
xeR

for all nonnegative integers m and n. It follows that for # > 0, B has density

u(x,t) /f (t,x—y) dy,
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2
where p(t,x) = (27rt)’%e’f. For fixed a € (0, 1), define the a-quantile ¢(¢) by
q(t)
/ u(x,t) dx = a,

where we assume f(g(0)) > 0. It is proved in [39] (Theorem 1.4) that there exists a continuous,
centered Gaussian process {F(t), > 0} with covariance

P (B(r) < q(r),B(1) < q(t)) — o
u(q(r),r) u(q(t),t)

In [39], the properties of p are studied in detail, and we follow the notation and proof methods
given in Section 3 of that paper. Swanson defines the following factors:

p(rt) =P(B(r) <q(r),B(t) < q(r)) —a; and  8(t) = (u(q(r),1)) ™"

so that p(r,t) = 0(r)0(¢)p(r,t). For fixed T > 0and 0 < r <t < T, the first partial derivatives of
p are calculated in [39](see egs. (3.4), (3.7)):

E[FF]=p(rt) = @.21)

()
%ﬁ(nt) =4(1) /q p(t—rx—q(1)) u(x,r) dy dx

L )
—Ep(t—r,q(")—q(t))u(Q(r),r)+M(Q(r),r)q (r)/ p(t—r,q(r)—y)dy

1 ra) ralr) 92 .
+§/_w /_‘><> P(f—rax—y)wu(x,r) xdy, (4.22)

d 1

3,P(r1) = 5p(t—r.q(t) =q(r)) u(q(r),r). (4.23)
Lemma 4.17. Let 0 < T, and 0 < r <t < T. Then there exist constants C;, i = 1,2,3,4, such that:
(a) 5
o] <Gilr—r
(b)
2 3
Saplrn)| <l
(c) 5
1
S| <cil—r
(d) o
3
’wp(r,t) < Cylt—r| 2.
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Proof. Results (a) and (c) are proved in Theorem 3.1 of [39]. Bounds for (b) and (d) follow by
differentiating the expressions for d,p(r,7) and d;p(r,t) given in the proof of that theorem. O

Proposition 4.18. Let T >0, 0<s<T A1, and s <r <t <T. Then p(rt) satisfies conditions
(M.1) - (M.4).

Proof. Conditions (M.1) and (M.2) are proved in [39] (Corollaries 3.2, 3.5 and Remark 3.6). For
condition (M.3), there are several cases to consider.
Case 1: s <r <t—2s. Using Lemma 5.7(a),

B [F(Fris = 2F+ F )] < |p(rts,0) = p(rt) |+ [p(r1) — p(r—s,1)|

sl g 0
<)l

—p(r+x,t)| dx +
-
N
§2/ C1|t—r—x|_% dx < Cs?.
0

—S

d
a—rp(r+y,t) dy

Case 2: If |t — r| < 2s, the computation is similar to Case 1, where we use the fact that

S 1
X 2 dx=2s2.
0

Case 3: For r, t > 2s and |t — r| > 2s, the results follow from Lemma 5.7 (b) and (d) for r < ¢ and
r > t, respectively.

Now to condition (M.4). For the first part, we first assume ¢ > 2s. Then using the above
decomposition,

E[Ft(FtJrs_ths)] (t7t+s)_p(tat_s)
() [0 +5)p(t,t+s)—6(1r—s)p(r,t )]

t
(1) [B(t,1 +5)AO + Ot — 5)AP],

P
0
0

where AG = 0(t) — 0(t —s) and Ap = p(t,t+s) — p(t,¢ —s). First, note that

4 (g().0)| = | Lul(0).0)4'(0) + 2-ula(0).0)] < C.

where we used that ¢/(¢) is bounded (see Lemma 1.1 of [39]). Since u(q(t),t) is continuous and
strictly positive on [0, T], it follows that 6(¢) is bounded and

[u'(q(2),1)]

190 = g

<C, (4.24)
hence,

S
A6 g/ 16/ (1 +x)| dx < Cs.
—S
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For Ap we have

|Ap| = |]P’( () q(t),B(t+s) < q(t+5)) —P(B(1) < q(1),B(t —5) < ¢(t —))|

H—s ts t
—/ / p(s,x—y)u(x,t) dy dx— / / p(s,x—y)u(x,t —s) dy dx

qlt— S
'/ / p(s,x—y)u(x,t) — p(s,x —y)u(x,t —s) dy dx| +Cs
—/ | (XI_S)—M(X l)|dx—|—Cs
oo td t 82
S/ /tsar (x,r)dr dx+Cs-2/ - u(x,r)dr| dx+Cs

Si/ / / ‘f”()’)|l?(”ax_y) dr dy dx+ Cs < Cs.
—o0J—c0 Jt—s

When t < 2s, we write

[EF(Fros = F-s)l| < |p (e, +5) = p(t,0) |+ [p(1,1) = p(t = 5,1)]

sa 0
s/—
0

éh‘p(t,H—x) dx+
<Cs?,

dy

d
a—rp(t+y,t)

—S

using Lemma 4.17 and the fact that

S _l l
X 2 dx=2s2.
0

For the second part of condition (M.4), we consider
|E[F(Fivs — Fi—y)]| and |E[Fy(F — F—)]|.

When r < t — s (including r = s), an upper bound of Cs|r — rl’% is proved in [39] (see Corollary
3.4 and Remark 3.6). When r > ¢+ 2s, or |t — r| < 2s, the bounds follow from Lemma 4.17.  [J

The rest of this section is dedicated to verifying condition (M.5). We start with two useful
estimates. As in Proposition 5.8, suppose 0 < s < r <t < T. It follows from Lemma 1.1 of [39]
that for some positive constant C,

lq(t) —q(r)| < C(t —r). (4.25)
Using this estimate and the fact that e — e’ <b—afor0<a< b, we obtain

(g()—q(r)? (g()—q(r—s))?

e 2(t—r) —e 2(t—r+s) S CS S 1 (426)
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Recalling the definitions in condition (M.5), we can write for 7 € [0,

2|9 ]
i) —n, ()= Y Bu(t—1,0—-1+2 Y B2k—1,2j—1)*+2 Y B.(2k—2,2j-2)*
(=1 k<j—1 k<j—1
2 ¥ Bu(2k—2,2j-1) =2 Y Bu(2k—1,2j-2)%
k<j—1 k<j—1

For the first sum, since Fr — F—; is Gaussian, we have

n n

R SRR e (RN

By Theorem 3.7 of [39],
nt | 4 6 [
Y (- Fr) 2 [ (ug(s),) 7 ds
n n TJo

=1

in L? as n — oo. For the second sum, assume 1 < k < J» and we study the term

) 2k 2j 2k—1 2j 2k 2j—1 2k—1 2j—1
n’'n n ' n n’ n n n
25\ (% [, 2j [ 2j
= (7) /21(1 [9 (r)p r— +6(r)d.p rn— dr

2i—1\ (% [, ( 2j—1 _( 2j—1
_9< p )/21{1 [9 (rp|r " +0(r)dp | " dr.
We can write this as

6 (2—J) / 6(r) <a,§ (r,ﬂ> —ap (r, 2~ 1>) dr (4.27)
n 2k—1 n n

n

+ [9 (ﬁ) —9(2j_1>] " 0(r) (843 (r, 2j_l>) dr (4.28)
n n =l n
[ e {9 (2—1) ] (rz—]) —6 (2j_ 1> p (r, 2= 1)} dr.  (4.29)
2/:1 n n n n

The first task is to show that components (4.28) and (4.29) have a negligible contribution to 7 (%).
For (4.28), it follows from (4.24) that

‘9<§>—9(2j_1>'§c7n—‘, (4.30)
n n

2%k 2k

n ~ 2_]—1 n 2]—1 2]—1 _1
/Zkle(r)&l)(r, n )dr:/Zklp< " —r,q( " )—q(r)) dr<Cn 2.

n n

and using (4.23), we have
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2
Hence, the contribution of (4.28) to the sum of 3,(2k — 1,2 — 1)? is bounded by C (n_%> <

Cn~'. We can write component (4.29) as

oo () () o)) o (2)-o () (o

2k—1 Zk]

n 'n

'5 <r,2—]) —;o“(r, 2]_1)‘ <Cnz(2j—2k—1)"2
n n

Then, using (4.30) and (4.24), we have (4.29) bounded by

Using (4.23), we have for each r € [~

c [n—%(zj ~2k—1)"2 +n_1] n
Hence, the contribution of (4.29) to the sum of f3,(2k — 1,2 — 1)? is bounded by

&)
Z Z j-2%k-1)""4n? <Cn

We now turn to component (4.27). By (4.23),

o(r )aip <r 2—’) = %p <% —1q (%) —q(r)) :

To simplify notation, define

_ (aG)—q(r)?
Yu(j,r)=e 2
By (4.25), we have for the interval I, = [%-1, an} ,
. 2
2
((q (7 —q(r)) C(2j —2k+1)

sup 57 < .
re&ly 2(7] — 7") n

c2- 2k1

This implies that inf{y,(2j,r),r € I} > e~
|y| is close to unity. We can write,

2k 2k
% Y [ 2j—1 R R
/anl 9(}’) (arp (n;) arp <r7 n )) dr— 2 —27[ L;l \/2_] , \/E . dr

n n

, hence, when j,k are small compared to n,

4.31)
/ (2j—1,r)) ! ! d (4.32)
. — r .
2 /271- 21 ~Va(2j - \/ﬂ—r \/2j—1 B
1 0 V(2] r)_‘//n(zj_lr)
’ 2 dr. (4.33)

+
22w J &L 2j _,

n
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For component (4.32), by the above estimate for inf{y,,(2j,r),r € I,;} we have
sup [1 - y(2j,r)| <Cn '(2j—2k+1) <1,

rely

hence (4.32) is bounded by

Cn3(2j = 2k+1) (V2] = 2K+ 1-2/2] =2k +/2j =2k~ 1),

Given € > 0, we can find an M > 1 such that

Y (Vamti-2vamvan—1) <e

m=M

The contribution of (4.32) to the sum of B,(2k — 1,2 — 1)? is thus bounded by,

FTPgs
(27m)_1292(2—])Jisup(l—llln(2j, <\/2] 2k+1-21/2j—2k++/2j— 2k—1)

j=1 nj 1 Zrely
L5 j-m-1
<cn 'Y % Wz] 2kt 1—2v/2) —2k++\/2j— 2k—1>
j=1 k=1
5] -1
ron! Cn 1 (2j — 2k +1 (\/21 2kt 1—2/2) —2k++/2) 2k—1>
j=1 k=M
%] 5] 102
M
<cn”! e+Cn! —5s
- — n
j=1 j=1

which is less than Ce as n — oo, since 0(¢) is bounded.

For (4.33), by we have sup {|y,,(2j,7) — W,(2j — 1,7)|,r € Iy} <Cn~!, hence (4.33) is bounded
by Cn*%(2 Jj—2k— 1)’%. Therefore the contribution of the term including (4.33) to the sum of
B.(2k — 1,2 — 1)? is bounded by

i i (2j—2k—1)"" < Cn*log(nt),

because 0(¢) is bounded.
It follows that the sum of B,(2k — 1,2 — 1)? is dominated by (4.27), and the significant term
in (4.27) is given by (4.31). Hence, it is enough to consider

2 2 (2] . ; - 2
=Y 6 (n><\/2]—2k+1—2\/2]—2k+\/2]—2k—1> .

<kt

Using the change of index j = k + m, this is

%%92 @)i (V2 +T-2vam+ vam—1)

j=1 m=1
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Taking n — oo, this behaves like

%/OZGZ(S) ds
where .
= Y (Vam i 1-2vam 4 Vam 1) .

m=1

By similar computation,

Y Bu(2k—2,2j-2)* — = /92

k<j—1
b
Y Bu(2k—2,2j— 12— ‘/92 ) ds, and
k<j—1
b2 2
Y Bu(2k—1,2j-2)> — = /9
k<j—1

where,

(\/2m+2 2\/2m—|—1—|—\/_)

ﬁMg ﬁMsz

(J_ 2V2m —1 4/ 2m— 2) .

We have proved the following result:

Proposition 4.19. Under the above assumptions, p(r,t) satisfies condition (M.5), where

ni) = 2 (), 2 ds

The coefficient 2 +4a — 2b| — 2b; is approximately 1.3437, while u(g(t),t) depends on f and
.

4.4 Proof of the technical Lemmas

We begin with two technical lemmas. The first is a version of Corollary 4.2 with disjoint intervals.

Lemma 4.20. For0 <ty <t; <tp <t3<T,

. 5] 5]
m oL )

j=| e |+ rk= LR

=0.

2 2 2 2
<a§?1—ag@;2,a® a®>
ﬁ®2

n n
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Proof. We may assume ty = 0 and #; = 1,. Observe that

<a®2 —(9%22,(9@2 _a§22>
.(‘/’J(XZ

n

= Bu(2j— 1,2k — 1)2 = Bu(2j — 1,2k — 2)% — Bp(2j — 2,2k — 1)2 + B,(2j — 2,2k — 2)2.

Therefore, it is enough to show that,

m‘z nt3
Y Y Bn(J, k)? <Cn¢ (4.34)
J=0 k=|ntp |+

for some € > 0. We can decompose the sum in (4.34) as:
\_m‘g, nt3 LntzJ 1 Lnt3j
Z B (0, k) + Z Bu([nt2], k + Z Z B/, ) .
1

k=|nn |+1 k=|ntp |+1 k=|nt |+

By condition (M.4), for some y > 0 we have

|nt3 | ) nt3 |
Y Bu0,0)*< sup (B0, Y [Ba(0,k)]
k=|nts | +1 1< j<|nt3] k=|nts | +1
Lnt3J
<cn! Z (k— 1)*7/—|—Cn*1 <Cn77.
k:|_nt2J+2

By condition (M.2), for some 1 < o < %,

nt3 m3

Z Bu(nt2],k)* < Bu(lnta], [nta] +1)>+Cn~" Y Bu(|nt2] k)

k=|nty|+1 k=|nt;]+2
[n3 ]
<cn'+en' Y (k—|mn))"*<Cn!,
k=|nty]|+1

and again by condition (M.2), for f = % —-a,

lntz]—1  |nt3] Lmz Lnt3 |

L L Abkrsor Z Y [ty P - )]
k=|nt |+ j=1 k=|ntr|+1
nt3 [nt2 |nty | )
(Zk )(ZJ )+Cn-1 Y (lnn]—j)2
=1
SCn_ﬁ-i-Cn_?;

hence the sum is bounded by Cn ¢ for € = min { B.v, %} [
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Lemma 4.21. For 0 <t < T and integer j > 1,

1

’<£,,8hl >5§’ <Cn2

for a positive constant C which depends on T.

Proof. By conditions (M.1) and (M.2), we have for j > 1 and ¢t > 0,

(CENRED RICENRE RN

<C2n 2 (li—k"*A1)+0O(n~ )SCn*.

t]—1

k=0

D=

(4.35)

4.4.1 Proof of Lemma 4.4

By the Lagrange theorem for the Taylor expansion remainder, the terms Ro(Wz i), R (Waja i 2) can
be expressed in integral form:

AE 2 4(3)
Ro(W2;) " (W —u)"f(u)du; and
n 2 sz n
1 Wa-1
Ri(Waa) ——/ T (Wa2 — ) () du
2 Waj 2
After a change of variables, we obtain
o L2 e3) s W) dy
R0<Wﬁ)—2( 2j sz ) Vf (Wajm1 + (1 = v)Wa; ) dv;
and . |
Ri(Waj2) = E(szz—szl)3/ VO (3Wait + (1= v)Waia ) dv,
n n n 0 n n
Define -
Go(2) =5 [V FI Was 4 (1= )W) d:
0 n n
and

1 r!
G1(2j=2) =5 [ VFI(6Wars + (1= v)Waa) d
0 n n

We may assume r = 0. Define AW, = W, —W,. We want to show that
nt 2
15 ] wi s
El|lY {Go(zj)AWg_1 1 Gi(2)j— 2)AW§;_2} <C L—J n3. (4.36)

j:1 n n
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This part of the proof was inspired by a computation in [25] (see Lemma 4.2). Consider the
Hermite polynomial identity x* = H3(x) +3H) (x). We use (2.4) for h € §) with ||h|| = 1. For each

Joletwj:= ||AW% |5, and note that condition (M.1) implies w; < Cn~1 for all j. Then

AW} AW, AW, 057 )
L =Hy | —2 | +3H =8| | +35( =
W] W] WJ W] Wj

AW = 28%(07%) +w35(3,).

n n

so that

It follows that we can write,
Go(2 ]')AW;,T,1 —Gi1(2j— 2)AW§’,T,2
= Go(2))8°(952,) - G1 (2] = 2)8°(952,)
+3w3;Go(2/)8(92i-1) = 3w3;1G1(2 —2)8(021-2).

It is enough to verify the individual inequalities

n 2
7
E Z 0(2/)8(957)] | <€ {%IJ n2, (4.37)
nt 2
1% ] wi
E G1(2j-2)8%(95%,)| | <cC bJ n3, (4.38)
= "
n 2
7
E Z s(0x)| | |5 |n (4.39)
and
nt 2
1% ] wi
E||Y w} 1G1(2j—2)8(322) ngJ nol. (4.40)
= "

We will show (4.37) and (4.39), with (4.38) and (4.40) essentially similar.
Proof of (4.37). Using Lemma 2.1.d and the duality property,

nl

&=
u M”
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2
=E
jk=1

| I

H

Go(2j)Go(2k) (Z §6—2r 85331 ’®8§’,§7§f’) <82]nl,82knl>r>]

%
< Y Y (921,00 ) EH<D6—2’(GO(2J')G0(21<)) 2 ’®8§?ﬁ31‘r> }
9 HE6-2r

Jk=1r=0 "

For integers r > 0, we have

]
D'Gy(2j)=D" / Evz 3 <sz,;1 +(1 —V)Wﬂ) dv
0 n n

1
= %/ vzf(3+r) (VW@ +(1 —V)Wg) (ngj (1 —V)S?}') dv. (4.41)
0 n n 2j

n

By product rule and (4.41) we have

E H <D62’(G0(2 7)Go(2k)), 057" ® 95, ’>
fj®6 2r

n n

1 (4.42)

<(V82/ 1+ 1_")8%‘1) ® (W82k (1= )S%b) a®3 r®a®3 r>
n n ﬁ®672r

p
Notice that by condition (0), E [sup ‘ F3+r) (& )’ ] < oo, where the supremum is taken over the ran-

dom variables {& = vW, + (1 —v)W,,,0 <v < 1,0 <sy,50 < T}. From Lemma 4.21, for integers
a and b with a+ b = 6 — 2r, we have the following estimate

<(v82] =+ ( 1—v)8%’-a) ® (wsﬁ’fl +(1 _W)82k > 8®3 r®8§j3] r>
n n n ﬁ®672r
<Ccn B, (4.43)

sup | £ (Wit + (1= v)Wai2) /O (WWaics + (1= w)Wasz)

0<v,w<l1

<C Z E
a+b

dvdw.

dvdw

It follows that if r # 0, then by Lemma 4.1, Equation (4.42), and Equation (4.43)

5]
cy <az,1(92k1> EH<D6r(Go(Zj)Go@k)),a?ﬁlr 85‘231’> }
J.k=1 9 n n HO6-2r
%] ,
r—3 .
<Cn _,~,k§1 <8zjnl,&2kn_l>f)
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which satisfies (4.36) because 5 5—3< —%. On the other hand, if » = 0, then

Z <cl3)

and we are done with (4.37).

Proof of (4.39). Proceeding along the same lines as above,

n 2
7
E szjGo 2))8 (9211
1% ]
=E Z W%jW%kGo(2j)Go(2k){52 ((92,7—1 ®8zk71>+<82j7_1,&2k;1> }
k=1 n n n n K3}
2] 2
<ot Y E[E s [GoOF|(dx0.0) |
= 0<e<| %) oo rh
5]
+en ' Y E| Y ]E‘<D“GO(2j)DbG0(2k),52 ((9@@8@» -
jh=1  |latb=2 " mlS®

By Lemma 4.1 we have an estimate for the second term:

¥ [(on ), | <2

n! Z
i,k
Then the first term has the same estimate as (4.42) when r = 2, which proves (4.39) and the lemma.

—

8]

Jk=1

4.4.2 Proof of Lemma 4.5
As in Lemma 4.4, we may assume r = (. Start with B, (¢). Define
5]
Yn(t) = Z f(3)(W£) <82lea%21 - a%22>
= n n I /g

L
= f(3)(W2,/71 ) <82

JZI n

™
=

O =0 ) (P —0u2),

n
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so that B,,(t) =206 (7,(¢)). By Lemma 2.1.c, we have ||6(%,(2)) ||%2(Q) < IE||}/,,(I)||‘2§,J +]E||D}/n(t)||%®2.
We can write

%
OIS WAUEH O Wair) (820,02 — D22 )
= n n n n H

X <82k;1,92k—1 —32k2>fJ <3£ — 02j-2,0%-1 _8M>
nt
, 13

Jk=1

)

2
sup <82j—1 ,82,-71 — azjf >
J n n H

1<j<|nt n

<a2, | = D22, Ot — O 2>35 .

Note that T [supo, <, | /¥ (W) | = C by (M.0), and by Lemma 4.21,

<8r,3£ —3£> ‘ <
n n 9

Czn*% for all j,z. By Corollary 4.2 we know,

¥
)y
Jk=1

| I

D=

) el

Hence, it follows that E[|,(1)[|5 < C |4 |n~'n~ 2 <C|%|n” 3. Next,

<82j71 — 022 , Ou-1 — O
n n n

7]
D0 = LS Wap) (ens, 2 =02 ) (o0 (90 =022 )

and this implies

4

2| 12

Jj.k=1

X <82j71 & <8£ —82,;2) ,E€2%-1 (3@ —aﬁ)>
n n n n n n He?2

? (Sup<€21 1 82, 1—32, >;>

IDH()[3e2 < sup |FH (W,

0<s<t

<8£,9£ —9£> <8M;1,9M;1 _8M>
n n n 9 n n n H

Y w)

J

Vlt

2

X sup |(g &) \Z

0<s,r<t =

<3£ — 02j2,0u-1 _aZH>3§ :

By condition (M.0), E [supogsgt Vs (WS)\} is bounded, and sup) <, | (&, &) | is bounded.

Hence, it can be seen that E||Dy,(t) ||52§®2 gives the same estimate as ¥, ().
For C,,(t), using condition (M.0) and the identity a®> — b> = (a — b)(a+b), we can write

2]
ol &

2

E[C.(t)*] <E

<8£,32H + 3£> ‘
n n n K3}

<82/‘;1,9@ - 92f72>
n n

n

sup |f(4)(Ws)!2] sup
0<s<t 1<j<n
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< Czn’%, and by condition (M.4),

By Lemma 4.21,

<8£79£—9£>
n n n

)

L%IJ 1 1 L%J 1 nt % 1
Z <82j;1,1[£ 2j)>ﬁ‘ <Cn 2+4Cn 2 Z (2j—-2)2<C LEJ n 2.
j:1 n n ’n j:2

Hence it follows that E [C,(¢)?] < C|% | n~2 for some constant C, and the lemma is proved.

4.4.3 Proof of Lemma 4.9

Fori=1,...,d, set

. %]
W= Y (Wan) (8%%, — 8%%2) ,

N — n n
J=l 7 lJ'H

and recall that F/ = 8%(u',). We want to show:
Condition (a). For each 1 <i < d, the following converge to zero in L (Q):
(@.1) (ul,hy @ hy) e forall p,hy € §) of the form & (see Remark 2.4).

@.2) <ui DFf®h> _ foreach 1<j<d andhe$.

(a.3) <u DF;} <§g>DF’<>ﬁ®2 for each 1< j.k <d.
Condition (b).
(b.1) <uf1,D2Fn]>ﬁ®2 L 0inLlifi # .

(b.2) (ul,, D*F}) o2 converges in L! to a random variable of the form

Fl=c f”( 1)?1(ds).
ti—1
The proofs of (a.1) and (a.2) are essentially the same as given in [23] (see Theorem 5.2) but the
proof of (a.3) is new.

Proof of (a.1). We may assume i = 1. Let hj ® hy = & ® &; € $H*? for some values s,7 € [0,1].
Then

Lnt]

(tty 1 @ ) o0 = Z f'(Wai <8211_8212:85>ﬁ <9@ —9212,8r>5;
so that

3]

)

J=1

< sup |f"(Ws)| sup  sup <3@—3zz‘7—2,&>

0<s<t 1<j< L’"l | 0<s<t;

)<un7h1 ®h2>,¢)®2

n

<(92j—1 —(92]’,—2,85>55

ﬁ"



68

It follows from condition (M.3) that for fixed 7 > 0

sl sl
Z Z ‘ |:W‘L' Wz, —2W2] 1—|—sz )”
j=1 j=1

(P2 =0 z.6r)

)

l
T
2(2] 2) z+|r—2j|—%m)
j:

I/\
N\

IA

Q

=|
NI—

(4.44)

and Lemma 4.21 implies,

(S

sup  sup
1<j< L’"l ] 0<s<t

E(
Proof of (a.2). As in (a.l), assume i = 1. Using the same technique as in (a.1), we can write

DFJ ® h as DF;] @ & for some 7 € [0,T]. By Lemma 2.1.b, DF; = D&%(uj}) = 86%(Du}) + 8 (u}),
which gives

<82j—l - 82]'—2,85>ﬁ‘ <Cn~

n

so that

<urll,h1 ®h2>5§®2 ) < Ctln_l — 0.

<u}”DFnj (9 8T>§7)®2 = <I/l}” 62(Dl/l£) & 87>57)®2 + <M}” 5(1/!}{1) ®8‘C>y)®2 .

For the first term,

E’<u,1”52(Du£) ®8T>5®2

W) (Ors = 02 80))) (9 =Pz o) |

<2E| sup [f"(Wy)]

OSSSH

E| sup ’<ag,52(Du{;)>ﬁ‘

1<e<| "

X i ‘<azf 1—(9% 2 8T>f3"

(=1
. 1
By (4.44), the sum has estimate Cn™ 2, and for the second term we can take

(2,87 0u))) | < sup )15 18% (i) 5,

It follows from condition (M.1) that ||d¢ || < Cn—%. This leaves the 182(Du)| 5 term. By the
Meyer inequality for a process taking values in £,

E[[|6%(Duf)||3] < 1Bl Duj||Z s + 2Bl D) |2 s + B[ D |2 o5 (4.45)
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so that by Lemma 4.7, E [||6%(Du) ||%} < C, and we have

E ‘ <u,ll, 8%(Dul) ® 87>ﬁ®2 <Cn i,

Then similarly,

(s 8(u) @)
0<s<t; ¢ !

<2 [ sup |f" (W sup’<8z u’)>ﬁ’ ZK&@ —8215278t>ﬁ‘] :
Similar to the above case, for each 1 </ < L%J ,

E(|(2:.80h)_[] <E[12: I8l
< Cn™ 3+ (B ) o + B[ Du o) < Cn™3,

hence with (4.44) we have

B

Proof of (a.3). For this term we consider the product <uZ,DF,{ ® DEF >ﬁ®2. Lemma 4.20 shows

that scalar products of this kind are small in absolute value when the time intervals are disjoint,
therefore it is enough to consider the worst case <u,ll,DFn1 ® DF] > 2> and assume 7; = 7. We have

(0, 8(u)) @ c) | | < €73,

E[ <Lt,11,DFn1 ®DFnl>55®2 ] < ni {< ) (8221 ag?zz) ’DF"I ®DF"1> 2}
=1 n §®
<[ (2n 0, (308
%J H<(9zz 1—(9% 2,DF, > ‘ ’< anvzf]’DF”l>5H'

Using the decomposition DF,! = 8%(Du)) + & (u}), the above summand expands into four terms:

0 (3= 5500, | 15000 |
) (s o)) 3500,
(3) <azm—am§ >,~3H<1[;7i (Dwy)) |
) (02 =0z, 600 | (12 g 80m)) |
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We will show computations for the terms (1) and (4) only, with the others similar. For (1) we have
7]

CZEH<(9%;1—82572, > ‘ ‘<

Z:l n n

1% ]

=C ) E‘<9241 — Jy,8” (f(3)(W2m—1)82m—1 (3%21 —3%22)>>
£7m7m/:1 " " n n n n k5]
<1[2zn_2%,52 ( f(3)(W2,,,l/1,1 e (ag} 922 >) >ﬁ’

<C sup (]E H
1<k<L”7J

52 <f(3)(W2k—l) (858221 a?fz))
5]

x Y ‘<9@—9@78m> H<1
Gl = n n n 9

1

2=2 211 52 Du )> H
n7n H

X

n

TN 2
o)

[2=2 E}7€2m/71>
n 'n n f_)

By Lemmas 2.1.c and 4.7, the Skorohod integral term is bounded by Cn_%, and we use conditions
(M.3) and (M.4) for the scalar products to obtain an estimate of the form

1% ]
<(2m— )73+ yzz—zmr%) ((26— 2)"7 4|20 2m’\—%) <Cn™
Lmm' =1

For term (4), we have by a computation similar to the proof of Lemma 4.7

¢l (00 (35132 0

and by conditions (M.1) and (M.2) we have

2]

Cn?

Dl

[SI[O8}

Cn~

£mm'=1

(922 022,00 =0z | ’<1m-aaéwawl “Ouiz),

%]
<cn i Y (l20—2m[7%) (]26—2m|7%)
{mm'=1

D=

<Cn~

Proof of (b.1). By Lemma 2.1.b, we can expand D*F, as follows

(pyy D*F ) oo = (tty, 82 (D?1))) o +4 (1t 8 (D)) o + 2 (uty 14]) o (4.46)

Without loss of generality, we may assume that u/, is defined on [0,#] and F, J is defined on
[t1,12] for t; < 1, so that the sums are over

5]
= Zf”(Ww)<3§?21 %‘%) and
(=1 "

n n

2m—1
m=|"L|+1

n

Y

wy= Y, f"(WMI)<9®2 —953122>
u n
2
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First term

E|{ul, 52(D2u£)>ﬁ®2

2
_E<Z 1 W (a;@;a a;@;zz),az

n n
22

<ez,n (a2 -0 )| [ (roma (022, - 952, ) ) u
n f.)®2 n
12117 > >
SupH5 84 HLz ; g] [<£zmn1,82{11>ﬁ—<82mn1,82€nz>5}

First we need an estimate for the 52(g4) term, where in the notation of Lemma 4.7,

n

f(4)(W2m—1)£§121®(9§321 353122) >

1= 10 (952, - 052, )

By Lemma 2.1.c, H62(g4)HLz < c1E| g4l ge2 + 2E||Dgallges + c3E|[D?g4 e+, and so
2 _1
16°(g4)l|z2(q) < Cn~2
for each | %5t | < m < |%2]. We can write,
2]

<Cn_% Z

{,m=1

2 2
<82m—1 ,ab> — <82m—1 ,(9@>
n n 9 n n H

We need an estimate for the double sum. We have by condition (M.3),

2 2
<8M78b> - <872m—1 782£;2>
n n H n n K3)

E |(u,, 82(D%}))

22

2]
oy

{m=1
| %]
< sup <€zm;1,1 22 % > ‘ ’<8M,82571 —82472> ’
&m n [ n n K3} &mz—l n n n 9

1 7] 1 3 3

<cnd Y Con [ (J=m[TE 4 (e=1)7F) A
{,m=1
.

<cn 'Y Y pic<c
(=1 p=1

This provides an upper bound for the double sum, hence the first term of (4.46) is O(n_%).
Note that in the above estimate the double sum is taken over 1 < /,m < L%J . It follows that this

estimate also holds for the case i = j, that is, E |{u!,, §*(D*u)) <Cn .
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Second Term
Using #; < fp as above,

<u 8(Du) >55®2
] Ed
< Z f” (8®2 _8®2 ) ’6 Z f(3)(WM)82k;l ® (858;21 _85222) >
n k:L%J n n n n -

= Zf”(W£><82k 1 321 1—32 > <§2J 1—82, 2, aZk | — Odu 2>

’6( Wzkl)(82k1—8zk ))‘
Ltz ] (1]
Oil;gt\f”(Ws)!] (sup’<8s,8/> D (supHrS (&3)ll20 ) ) <3i735>ﬁ )

j=0 k=0

where in this case, g3 Corresponds to the term including f© ( ) It follows from Lemma 4.21 that
sup | <8s, I /n> 5 | <Cn~ 3 ; and the double sum is bounded by Cn? by Corollary 4.2. This leaves an
estimate for [6(g3)l,2(q) 5(83)ll12(q) < c1llgalls + c2[|Dgsl| 2. For this case,

83}

<CE

2 (3) 2 2 —1
lgaly <E | sup [fSWPR| [t = dua| < Cn7,
0<s<t " n 119
hence ||g3]|s < Cn~. Similarly,
1
D83 e < | sup |f(4)(Ws)|] sup [l 021~ dus | <,
0<s<t 0<s<t n no 119

hence the second term is O(n™4
result also holds for (u!,, §(DF}!)

n
Third Term
We can write

). As in the first term, the double sum estimate shows that this
Jgo-

2 2 2 2
]} g <a§3 05,952, 05, > 2
57)@

n n n

0<s<t

EYEy
SRy Y
o 5]+

and it follows from Lemma 4.20 that £ ‘ <uﬁl, M,J1.>ﬁ%2

< Cn~¢, for some € > 0.

Proof of (b.2). As in case (b.1), this has the expansion (4.46). From remarks in the prqof Qf (b.1),
the first two terms have the same estimate as the i # j case, hence only the term <u§l, uil> 552 is
significant.
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Third Term
Assume for the summation terms that the indices run over L

L] +1 < j,k<[%]. We have

n

<”Zv”f1>s§®2:Zf”(WZj—l)f”(Wﬂcl><a®2 —85‘?22,&@ _a§22> o
Jk " " 9°

Expanding the product, observe that,

n n

<3§21 —358}2279@ 95’222> = Bu(2j = 1.2k — 1)~ B (2 1.2~ 2)
ﬁ@
— Ba(2j — 2,2k — 1) + B (2 — 2,2k — 2)?,

where 3,(¢,m) is as defined for condition (M.5). For each n, define discrete measures on {1,2,...}%?
by

(o)

whi="Y Bu(2j—1,2k—1)%+ Bu(2j — 2,2k —2)* 5
jk=1

(o)

=Y Ba(2j—1,2k—2)%+ Bu(2j — 2,2k — 1)*5.
jk=1

where in this case j; denotes the Kronecker delta. In the following, we show only n,", with 17,
being similar. It follows from condition (M.5) that for each ¢ > 0,

w (o) = im (| 5] 5])

_hm%ﬁn (2j —1,2k— 1)+ B,(2j — 2,2k —2)* =T ().
jk=1
Moreover, if 0 < s < t then
(IR P () RS i M TR R YRR,

J=lk=%]+1

which converges to u*([0,s]?) because the disjoint sum vanishes by Lemma 4.21. Hence, we
can conclude that y, converges weakly to the measure given by u™([0,s] x [0,7]) =T (sAf). It
follows by continuity of f”(W;) and Portmanteau Theorem that

14
Y £ (Wais 1" (W wit) (Ba(2 — 1,2k — 1)* 4 Bu(2j — 2,2k — 2)?)
k=1

..,
| I

Js

f//( )" (W) LsarLucr ) (ds, du)

converges to

/ FW)Pn " (ds).
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Combining this result with a similar integral defined for y—, we have for r > 0,

1% ]
lim Z 1/ Wai) " (Wa 1><a®2 952,05 35222>
57382

n—oo j n

/ F(W,) wt(ds) / F(W,) w(ds) / W

where we define 11(¢) =17 (t) — 1~ (¢). It follows that on the subinterval [t;_1,;] we have the result

. i
(it — [ 1 (W) ()
i—1

in L'(Q) as n — o0, O
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Chapter 5

Two constructions with critical value
H=1/6

5.1 Introduction

In this chapter, we consider two Riemann sum constructions that have similar characteristics,
namely the Trapezoidal sum,

JZ ( (X ) + (X n)) (XM_X£> (5.1)

n

l\.)l'—‘

and the Midpoint (type 2) sum,

|nt]—1

SP0= Y fE) (XX, ). (52)

j:() n n n

where we assume a uniform partition of [0, ) of increment length 1/n, and we recall the notation
fj/n = %(Xj/n +X(j+1)/n) from Section 2.4. As discussed in Chapter 3, in the case of fBm both
sums have a critical value of H = 1/6. It will be shown that for the critical case H = 1/6, both
sums converge weakly to a similar random variable, where the correction terms differ only by a
factor of 2.

The fractional Brownian motion case with H = 1/6 was first studied in [26] for the trapezoidal
case, which coincides with the classical Stratonovich integral. That paper was followed by [18],
where, as in Chapter 4, we used a version of Theorem 2.3 to show the Riemann sum converges
in law to a Gaussian random variable. The Midpoint (type 2) was not considered in the papers
[18, 26], but the proof is quite similar. As in Chapter 4 and [17], the result of [18] was proved
for a generalized Gaussian process X = {X;,# > 0}, which includes fBm as well as others. In fact,
the outlines of Chapters 4 and 5 are essentially the same, but the technical details of the respective
proofs are so different that nearly all of the results must be re-created for this chapter.

The outline of this paper essentially follows Sections 3-5 of [18], with the exception that we
expanded the main theorem to include the Midpoint (type 2) case as well. This had very little
impact on most of the supporting lemmas.
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5.2 Weak convergence of the trapezoidal and midpoint (type 2)
sums

5.2.1 Covariance conditions

Consider a Gaussian stochastic process X := {X;,# > 0} with covariance function E [X,X;] = R(s,1).
Assume R(s,¢) satisfies the following bounds: forany 7 > 0,0 <s < 1l,and s < r¢ < T:

(T.D) E[(X —X—)?] < Cys3, for a positive constant Cj.

(T2) Ift>s,
1
IE[X? —X2,]| < Cos3tO(t—s)7°
for some Cr and 1/2 < 6 < 1.

(T.3) Fort > 4s,
1 _
E[(X —Xi—5)* — (Xi—s — Xo—25)*]| S G353V (1 —25) "

for some constants C3 and v > 1.

(T.4) There is a constant C4 and a real number A € (%, %] such that

Cys ((t — ) - r|l_1> if|t—r|>2sandt > 2s

EX- (X — X )] < h\ .
Cys otherwise

(T.5) There is a constant Cs and a real number ¥ > 1 such that for r Ar > 2s and |t — r| > 2s,
1 _
E[(X — Xi—s)(Xr — Xr—)]] < Css3 Mt —r|77.

(T.6) For integers n > 0 and integers 0 < j,k < nT, define B,(j,k) :=E |(X;11 —X,; ) (X1 —Xx)|.
Then for each real number 0 <¢ <T, ’

n n n

1

Bu(j,k)> =n(1), (5.3)
0

,i
3
=

[

|

lim
n—oo
Js

il ag

where 7(¢) is a continuous and nondecreasing function with 11(0) = 0. As we will see, 1(7)
is comparable to the ‘cubic variation’ [X, X, X], discussed in [16] and [26]. As described in
[26], these terms are related by Theorem 10 of [28].

In particular, it can be shown that the above conditions are satisfied by fBm with Hurst param-
eter H = 1/6. In Section 5.3 we show additional examples.

In addition to conditions (T.1) - (T.6) on X, we will also assume the following condition (T.0)

on the test function f:

(T.0) Let f: R — R be a ¥~ function, such that f and all its derivatives satisfy moderate growth
conditions.
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The € condition is stronger than necessary, though derivatives of order higher than 15 appear in
the proofs.

The following is the major result of this section.

Theorem 5.1. Let f be a real function satisfying condition (T.0), and let X = {X;,t > 0} be a
Gaussian process satisfying conditions (T.1) through (T.6). Then:

(Xt,S;{(t)) i <Xt7f(Xt) XO +_/ f >
and
(Xtusyz(t)) =, (Xtaf(Xt) f(Xo) ——/ A )

as n — oo in the Skorohod space D[0,0), where B = {B;,t > 0} is a scaled Brownian motion,
independent of X, and with variance E [B,Z} = n(¢) for the function N defined in condition (T.6).

The proof follows from Theorem 2.3 and Corollary 2.5; and is given in a series of lemmas. Fol-
lowing is an outline of the proof. After a preliminary technical lemma, we use a Taylor expansion
to decompose
[nr|—1
Y XA - AT (),

J=0

ST(0) = F0%) — (%) + 15

and
1 |nt]—1

SO =(X) = f(X0) = 5 X fPX)AX] - A ().
J=0 "

We first show that |AT ()| 4 |AM2(1)| 7, 0.as n— oo; then we show that the sumZLmJ_lf( )(X )AX3

satisfies Theorem 2.3. Next we show that the sequences are relatively compact in the sense of "
Corollary 2.5, and the results follow.

We begin with the following technical results, which follow from conditions (T.1) through
(T.5).

Lemma 5.2. Let T > 0, and assume {X;,0 <t < T} satisfies conditions (T.1), (T.2), (T.4) and
(T.5). Forintegersn > 1, r > 1 and integers 0 < a < b < ¢ < |nT |, there exists a constant C > 0,
which does not depend on a,b,c or r, such that:

(a)
sup ‘<8],8k> ‘gCn_%; and sup  sup ‘<8M, > ‘<Cn_’l.
0<j,k<|nT] " 0<u<T 0<j<|nT|
(b)
Z‘<E,-,a,>ﬁ‘ <Cn3(b—a+1)""% and (5.4)
J:[l n n

(5.5)




78

(c) ForO<u,v<T,

(e, <c: n
=
i ‘<8”’a£ >5§ <8V’a£>s§‘ <Cn (5.7)
=
(d) .
)y ‘<9;79§>ﬁr§6‘(b—a+l)n‘5. (5.8)
jk=a
(e) o
k£1;‘<3#9£>5 < Cle—b)nS (5.9)

where € = max{l — 0,2 —y}.

Proof. We may assume a = 0. For part (a), the first inequality follows immediately from condition
(T.1) and Cauchy-Schwarz; and the second inequality is just a restatement of condition (T.4). For
(b), applying condition (T.1) for j = 0 and condition (T.2) for j > 1, we have:

b b
Y E{XJZH —ij} <cn 3y jO+cns
j=0 o j=1

1 b 0 1
SCn3/ u du+Cn”3
0
<Cn 3(b+1)°.

Then if r > 2,

b r ;& r
Y E {X%ﬂ —X%] <Cn 5y jr+cCns
j:() n n j:]

<Cn’%

because > 1/2 implies j "% is summable.
For (c), define the set J. = {j: 0 < j < b, j=0o0r |j—nu| <2 or|j—nv| <2}, and note that

|[J:| <7. Then we have by (a) and condition (T.4),

b

Y ‘<8”’a£>53‘ <) Cn* 4 cnt ) (j’l_1+]j—nu|’l_1>

j:0 je‘lﬂ j¢Jc
<cn*+cntb+1)* <,
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and

b
‘<su,a,>ﬁ <8V,8j>f)‘ < Z Cn~* +cn~? Z (jz’l_z%—]j—nu\za_z—l—\j—nv\zl_z)
.:O n n

J JeJe jgé]c
S Cn*Zl _i_Cn*ZA Z p2172
p=1
<o

because A < 1/3.
For (d), define the set: J; = {j,k: jAk < 1or|j—k| <2}, and note that |/;| <6(b+1). Then
we have by (a) and condition (T.5)

. [(2000), [ < (2.2,

’<a£’aﬁ>5§‘ SCn_% kf’_ ‘<8£,8§>5’

J k=0 J k=0 J k=0
SCn_rgl( ) n 4 ) |j—k|_7>
(J.k)EJa (k) ¢Ja
<Cb+1)n3

In particular, if r =3 and b = [nr| — 1 (as in condition (T.6)), the sum converges absolutely, and
the sum vanishes if r > 3.
For (e), we consider the maximal case, which occurs when a = O:

Sy < r ¢ b-l .
k£1;‘<3£,9§>5 gy ‘<ao’8k>ﬁ iy Z‘<ai’a§>ﬁ’ +

k=b+1' " " k=b+1 j=1

r r

XC: ‘<82’a]2>5

k=b+1

Note that do = €,. By part (c) and condition (T.5), respectively, this is

c c

c . b1
<y ‘<£}l,8i>ﬁ‘ +en s Y Y(k—j)T+cn 5 Y (k—b)"

k=b+1 k=b+1 j=1 k=b+1
<Cn3(c—b)""+Cn i (c—b)> TV +Cn73
<Cn~3(c—b)E,

where € = max{1 — 0,2 —7v} < 1. O

5.2.2 Taylor expansion of f(X;)

The details of this expansion were mainly inspired by Lemma 5.2 of [26] in the trapezoidal case,
and Theorem 4.4 of [16] in the Midpoint (type 2) case. We begin with the telescoping series,

|nt]—1

PO = F(O)+ F06) — X)X [F(Ki) = FX,

J
=0 n n

)] .
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By continuity of f and X, we know that for large n, f(X;) — f(X |« ) — O uniformly on compacts
in probability (ucp), so this term may be neglected. For each j, we use a Taylor expansion of order
6 with residual term. Let h; := % [XM —Xl] . Then:

6 hk k
— k) (y . y_J _ _1Yerpt) oy T -
—kg,lf (Xﬁ)k' +R;(j) (];1( Df (Xﬁ)k‘ +R, (J))
, 1 ! .
= PR, + O F)AX 9 (8, XS 4By ()~ By ()

where AX; = 2h;; and R} (), R, (j) are Taylor series remainder terms of order 7. From this we

get the result

|
sP0=Y (Fxe)-r)) -5 Y OE)Ax

]:O n n j:o
1 |nr|—1 5 S |nt]—1
2551 Z f( )(XJ)AXJ_ (R:(])_R]?/(]))
Jj=0 oo j=0
1 el -1 3 3 M2
=) S0 -5y Y SR A - AY0),
j=0 "

where AY2(1) = (2°51) "' £ PO X )AXS+ X (RE ()~ Ry () — (X)) + £ (X)- On

the other hand, for the trapezoidal case we use 6th order Taylor expansions of f'(X;/,), f'(X(j41) /n)
to write:

J(Xp) + f(X)) . 1/, . 1/, = .
PR = 5 (P& ) = X)) 45 (F&—n) - £ (X))
1 _ (e H
=5 LI KT () 5 Y (DX K ()
k=1 ' k=1 :
1 ~ 1 ~ 1 _
= 5/ @A+ o O Eaxt 45 (K] 45 ).

R 4 ,
AX; — — 3 (X))AX] — 2_',-—5!f(5)(Xj)AX15

+R, () =R, (j) — 1 K () + K, (1)] AX.
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so that
; |nt|—1 antj—l . ; 4 |nr|—1 5, S
S0=3 (FX) = 1)) = 15 L /@A -5 3 SOE A
|nt]—1 1Lm‘j—1
- L RiD =Ry +7 X (K ()+K, (1)AX;
j=0 j=0 "
1Lntj—1 N 5 .
=fX) = f(X0) =57 Y I XAX] —AT(0),
j=0 oo
where
- 4 |lm]-1 . S [nt]—1 | L)1
A =055 Y FOXDAG+ Y (RIGD-Ry() =7 X (K () +K, (1) AX;
© =0 n n j=0 =0 n

+F (X)) = 1),

Our first task is to show that the terms A7 (¢), AM2(¢) vanish in probability for each . We do
this by checking each component in Lemmas 5.3, 5.4.

Lemma 5.3. For each integer n > 1 and real numbers 0 <t} <t) <T,

lntr |1 2 \
E ( )y f“)(Xj)Axf-) <Cn~3 (|nty) — | ). (5.10)

Jj=ln1]

The proof of this lemma is technical, and is deferred to Section 5.4.

Lemma 5.4. For integers n > 1, let
|nr|—1 1
20 = X |REGD =Ry () 5 (K G)+ K, () A%
j=0 !
Then for real numbers 0 <t; <ty < T, we have
_1
E [(znaz) —znm))z] <cn 3 ([nn) — [nn))2. (5.11)

Proof. We may assume ¢; = 0. Observe that each term in the sum Z,(¢) has the form

cr(g)ax],

where &; is an intermediate value between X, and X;1. Using the Holder inequality, for each
0 < j,k < |nty] we have

E |77 (G)AX]AX]
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1
E “AXk

1)

By condition (T.0), the first two terms are bounded. By condition (T.1), E {AX 2] < Cln’ﬁ and

‘M

O<u<l1 n Oo<v<l1

< ( sup E [fm(qu—f—(l—u)Xm)ﬂ sup E [f( )(VXk+(1—V)Xk+1

we have by the Gaussian moments formula that
N\ 14
E {AX%S} <27n (Cln_§> :

hence it follows that

nt2J 1 Lnlszl
c Y 5 |ME) e <c Y
k=0 k=0

[SVEN ]

<C Ll’ll‘zJ zn_% .

]

Since | £ (Xt | /) — f(X:)| = O ucp as n — oo, it follows from Lemmas 5.3 and 5.4 that AY (1), AY?(1)
both tend to zero in L?(Q), where we take K (¢), K, (t) = 0 in Lemma 5.4 when applied to AM?(¢).

5.2.3 Malliavin calculus representation of 3rd order term

From Lemmas 5.3 and 5.4, we see that proof of both results of Theorem 5.1 depend on the behavior

of the term
[nt|—1

Y, rPX)Ax
=0
It may happen that the upper bound of condition (T.5) is such that
|nt]—1

()] < h Z ‘ﬁn(j,k)3‘=0
k=

= jk=0

nt|—1 N 2
lim E (Z f(3)(Xj)AXJ3-> =0
n JZO n n

for any function f satisfying condition (T.0). This is a generalization of the fBm case H > 1/6 and
the case of zero cubic variation in [16]. As in Proposition 3.3, the sums ST (¢), S¥2(¢) will then
converge in probability to f(X;) — f(Xo), and we can say that the stochastic integrals

[rayex, [y e,

exist in probability. In the rest of this section, we will assume that 11(¢) is non-trivial.

for all ¢, which implies
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Consider the 3¢ Hermite polynomial H3(x) = x> — 3x. For x = i Aﬁ > it follows that
L
|nt]—1 _ |nt|—1 " AXl
Y X HAxI = Y Ax; |13, X)) H; Al
j=0 N " " I 111'|| 2

) -
+3 Z 14X, {172/ (X

JAX
Jj=0 !

J
n

The second term is dealt with in the next lemma. The proof is technical, and is deferred to Section
5.4.

Lemma 5.5. For integers n > 1 and integers 0 < a < b < nT,

1

i 72/% (X)AX; | < Cn73.

n

:\\.

Next, we consider the H3 term. By (2.4) and Lemma 2.1.a we have

nt] =1 AX; [nt] ~1 263
AXJ 2 J J /
EINEEATS <|1Ax,||Lz> Y s (a7)

j=0 " "

Lnt] —
- 3 8 (e )+352(<Df( 7))
- n ool
+38 (<sz<3><;?j>,a;®3> ) + <D3f<3>()?j),a;®3>
A T [ 53

n%163< X, 8®3) FP,(1).

n

:

As n — oo, we show that the term P, () vanishes in probability.

Lemma 5.6. For integers n > 1 and real numbers 0 <t; <t <T,

.;;

E[P()}<C(Lnt2J—Lnt1J) BER

Proof. We may assume t; = 0. We want to show

[nta|—1 2 .
E (52< ) <Df (X;), ®3>5>> < Clnty|n"3; (5.12)
j=0 "o

[ntx] —1 2 '
E 5( Y <sz<3>( ), a®3> )) < Claty|n~5%; (5.13)
n 5§®2

j=0 "
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and

[nt2] —1 2
]E{( Y <D3f (X)), a?3> ) ] < Clnty|n2. (5.14)
§ )

j=0 "

Proof of (5.12). By Lemma 2.1.d we have

[ ()]

lntx|—1 _
<E| ) <<Df< (X)), a®3> ,<Df<3><Xk),8z®3> > ]
k=0 "o ls oIl ge
[nty] -1 ~
v Y (0@ ) (DrPE.0) )
j,kZO n n 57J®2 n n 57)032 b5
I_nlzj—l " .
2| Y (DOE)00) (D PE).0)
k=0 n n fJ®3 n n fJé@S
@) % 2 <N 5 >2 b1t2J1<a 5 >2
< sup E|f7(X;)°| sup (€;,9; ir0k
0<j<|nnr] [ z }0<J'<W2J il chz:O nls
o] s (0, T (0,9
+ sup E|fY(X; sup  (€;,0; 50k
0<j<|nt2] z 0<j<|nt2] 2 il s Jj k=0 2l
_ Lntszl 3 3
+ sup E f(6)(X; 2 57,8; E&,a& .

By condition (T.0) and Lemma 5.2.a and 5.2.d,

o B ] s (5.9,), Lj,tj_;l<‘9f""’k> < Cn73lnn]; and
L B (50 8 (000,),[ <ot

Then by condition (T.0), Lemma 5.2.a and 5.2.b,

. 3
<€k,3k>
n nl$H

sup E[fO%,2] Y

0<j< |ntr ] " jk=0
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Proof of (5.13) and (5.14). The same estimates apply for the other terms, since by Lemma 2.1.c,

lnta]—1 _ 2
E (6( Y <sz<3>(x,»),a;®3> ))
j=0 n n H®2

Lnl‘zJ*l _
<El X ((2ro@pop)  (oroE)or) ) ]
j k=0 n n .V)®2 n n 5>J®2 K
\_ntzJ—l "
| X (DOE0) (D@95
j,k=0 n n ﬁ®3 n n f_)®3
and (5.14) is bounded in the above computation as well. OJ

5.2.4 Weak convergence of non-trivial part of 3rd order term

We are now ready to apply Theorem 2.3 to the term

i o (#0Epap).

Let0=1y <t; <--- <ty <T be afinite set of real numbers. Fori =1,...,d define

|nt; | —

u, = Z 3 X, 3®3

] Lntl lJ

and define the d—dimensional vector F, = (E!,... F%), where each F! = §3(u',).
To satisfy the conditions of Theorem 2.3, we must deal with terms of the following forms:

L. (uy,h) gos for h e H=3,
i J ®2
2. <un,DFn ®h>ﬁ®3 for h € H72,
3. <uﬁl,D2Fnj®h1> + <uﬁl,DFnj ®DF,f®h2> for hy, hy € $, and
53@3 55@3

4 (ul DF}) oo +<u;,D3F,{'>

53@3

+ <M§@D2Fnj ®DFJ‘>5®3 + <uf,,Dan ® DFF ®DF,f>

H®3 :

We must show that all terms converge to zero except for the terms <un7D F ’> i=1,...,d,

which will converge stably to a Gaussian random vector (Lemma 5.11).

5333’

Lemma 5.7. For each i, j,k,{ = 1,...,d, the following terms vanish in L' (Q) as n — oo:

(a) <u;,h>ﬁ®3 for each h € $H%3.
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(b) <u;,,DF,{ ® h>ﬁ®3 for each h € H22.

(c) <u;,D2an ®h>ﬁ®3 + <u;,Dan © DF} ®h>ﬁ®3 forhe 9.

Proof. We begin with two estimates that will be needed. For each 1 <i <d,

E||DF!|[; < C: and (5.15)
E||D?F||;.. <C. (5.16)

Proof of (5.15). Let a; = |nt;—1 | and b; = |nt;|. By Lemma 2.1.b,
DF! = 83(Du' ) +38%(ul).

Hence, using Lemma 2.1.c,

bi—1 )
E|DF[; <2 ¥ ]E[53 (f( (X ,)a®3> 53 (f(“)(xk)a,@)} <'é/,’ék>ﬁ
Jk=a; "o non non
bi—l
T8 ) E [52 (f(3)(gf)a?2) 8 (f( )(Xk)aﬁ?z)] <81>8k>
jk=ai "o noon n nl$
bi—1 3 2 N .
=0 (x .\ £(7-0) ‘ |
=2 ¥ 2() sbrraps] (0,0, (5 2),
+ 18 ble 2 (2)2 [ 5 é)(X )f(S—K)()?k)] <8- 3k>3 <§- Ek>£
==\l ; )| (91,0 ) (E1:8)

<cC

by (T.0) and Lemma 5.2.d. The proof of (5.16) follows the same lines, using Lemma 2.1.b to
obtain . ‘ . .
D2Fn’ = 53(D2u§1) + 652(Duﬁ,) + 60 (uy,).
Now for the main proof. Without loss of generality, we may assume that each 4 € §) is of the
form &; for some 0 < 7 < T (see Remark 2.4). Then for (a) we have:

bi—1

)3 <f<3)(§’,’7’)a%®3787®8u®8v>

m=a;

E (i, ) gos| = B

57J®3 55@3

EACEA

(w2

< s {E|/OF)

a; <m<b;

< Cn—Zl

)

where we used Lemma 5.2.a and Lemma 5.2.c. For (b),

1

. . . 2biz1 . 2 \2
E‘<u;,DF,{®£T®£u>5®3 <./ sup E‘f@(xm) y <E<8S?3,DF,{®£T®£M> >
a; <m<b; = " H®3
- bi—1
<Csu ‘3@ E||DFJ|2 <am,8> <am,8> (
- mp n 53 H anJ Z n g f) n u YJ

m=a;
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By condition (T.1), [[dn || < Cn~ ¢, and so by (5.15) and Lemma 5.2.c we have an upper bound of

Cn—5~2*, For (c), by similar reasoning along with Lemma 5.2.c and (5.16),

2 bi—1 ;

~ . 2 2
<,/ sup E|fO(Xu)l Y <E<&,§‘?3,D2F,{®£T> )
a;<m<b; = " H?
bi—1
(3c.2),
m=a; " 'S’J

E |(u, D*F] @ ¢)

fJ®3

E[D2F|I.

SCsup‘
m

O
"5

CN

<Cn"

The estimate is similar for the term E ,and Lemma 5.8 is proved. [l

<u;'l,Dan ®DFF® s,>ﬁ®3

Now we focus on the terms <”Z’D3F’lj>ﬁ®a . By Lemma 2.1.b,
D’F) = 83(D*u)) +98°(D*u)) + 185 (Dul) + 6u,
so that <uﬁl,D3Fnj >;sz can be written as,

3

Zf (Xn)S ( (6) (iﬁ)a?3) <ar:,zﬁ>5
+9Z%f(3)(5?7:)62 (f<5>(i’ﬁ)a§3) <a¢,:§ﬁ>z <a%,a%>
+ 18%1‘(3)(%3)5 (f<4>(525)a£) <a'3’§ﬁ>sa <a,;,a5>; +6 (1,1 ¢ o

9

where m, ¢ are the indices for uﬁ,,Dg’Fnj , respectively, with [nt;_1] <m < |nt;], and |ntj_1] <<
[z

Lemma 5.8. Foreach 1 <i,j<d we have

)

<unaD3FJ>fJ®% -6 51] <uf1>u£>y)®3
as n — oo, where &; j is the Kronecker delta.
Proof. We will show that foreach 1 <i,j <d

Jim E 14,(G.)| = im E B, (i.J)| = lim B |C,(¢./)| =0

and moreover, if i # j then lim,, .. [E ) <“5w “il> 593
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To begin with, observe that if g(x) is a function satisfying (T.0), then it follows from condition
(T.1) and Lemma 2.1.c that that for g = 1,2,3,

sup || 8 (g(ij)a?") o, II" <ent. (5.17)
P n n 12 n
For the terms A, (i, j),Bn(i, j),Cn(i, j) we include the case i = j. We have
I T A e LY LA I [CTAN) MO
m " /¢ nooq 12 ¢m noon

Using (T.0), (5.17), and Lemma 5.2.a, respectively, we have

2

-
E|A,(i, j)| < Cn~ 2 ezn;<8 8/>ﬁ,

so that Lemma 5.2.c gives E |A,,(i, j)| < Cn—2~34 Next, using (T.0), (5.17) and Lemma 5.2.a,

52 (f<5)()?ﬁ)a;®2) sup<8m 84> ZK&’" 074> ’

n L2 Zm

E|[B, (i, /)| < 9sup | /¥ (%)

sup
‘Lz ¢

1
< Cn 3724 Z ‘ <84,8m>
{m notes

and so by Lemma 5.2.d,

b

E|B, (i, j)| < Cn~ 3 max{|nt;], |nt; ]},

which converges to zero since 2A > 1/3. Similarly for C,(i, j) using Lemma 5.2.d,

ol (090, sl (3, | 2.,

I‘l

E|C,(i, /)| < 18sup|| ¥ (%)

<Cns ’IZ<84,8m> <Cn o~ Amax{{ntiJ,Lntjj}SCn*)WE.

For the second part, we may assume i < j. Using Lemma 5.2.¢,

o, (o))

E

()| <0 R
<Cn '),
which converges to zero because € < 1. [

Lemma 5.9. Using the above notation, for each 1 < i, j,k,l < d we have
n—oo

. . 2
lim E [<u;,Danf ®DFnk>ﬁ®31 =0, and (5.18)

n—oo

. . 2
lim E [<u;,DF,{®DF,f®DFf>ﬁ®3} = 0. (5.19)
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The proof of this lemma is deferred to Section 5.4.
Lemmas 5.8, 5.9 and 5.10 show that condition (a) of Theorem 2.3 is satisfied, and moreover
that the only non-trivial terms are of the form 6 (uj,, u;,) . .. It remains to establish the convergence

of these terms to a non-negative random variable 6sl-2. With this result, it follows from Theorem
2.3 that the couple (X, F,) converges stably to (X,{), where § = ({j,...,&,) is a vector whose

components are conditionally independent Gaussian random variables with mean zero and variance

2
6s7.

Lemma 5.10. For each 1 <i <d, conditioned on X,

lim <un,u >5.)®3 s,2

)
n—yoo

where each 51‘2 has the form
s; = s(t;)? —s(ti1)* = ) " g0 /(X,)*n(ds).
i—1
It follows that on the subinterval [t;_1,t;| we have the conditional result
6<u£nu£l>3§®3 —6 ; f ( ) (dS)
i—1

almost surely as n — oo, which implies

. @ t

Fi =6 [ O (x,)dB, (5.20)
ti—1

where {B;,t > 0} is a Brownian motion, independent of X, with variance 1(t).

Proof. Leta = |nt;_| and b = |nt;], and recall B,(j,k) = <8 i, 0k >ﬁ, from condition (T.6). We
have

unau >5:J®3 Z f Iz Xk)ﬁn(]> ) :

Jk=a

:&..

For each 7, define a discrete measure on {1,2,...}%? by

Hn = Z Bn ]a jk7

J,k=0
where d; denotes the Kronecker delta. It follows from condition (T.6) that for each t > 0,

p([0,17) = lim py ([ne], |t ])

|nt]—1
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Moreover, if 0 < s < t then

lns| =1 |nt]—
ta([ns], [nt]) = wa ([ns]; [ns]) Z —ZMﬁ n(J.k)°,

which converges to zero because the disjoint sum vanishes by Lemma 5.2.e. Hence we can con-
clude that u, converges weakly to the measure given by p([0,s] x [0,¢]) = (s At). It follows by
continuity of f3)(X;) and Portmanteau theorem that

|nt]—1

FOE) DR = [ )X L (s, )

J k=0

converges in L' (Q, ) to

t
| o0 nas).
0
It follows that on the subinterval [f;_1,;] we have the result
ti
(U ) g3 — / 3 (X,)2n (ds)
1
in L'(Q, ) as n — oo. Using the Itd isometry for the above integral, we conclude (5.20). [

5.2.5 Relative compactness of the sequences

To establish convergence of S (¢) and S¥?(¢) in D[0, ), we need to show that {S%(¢)} is relatively
compact in the sense of Corollary 2.5, where S’ (¢) denotes either ST () or SM2(t) as appropriate.
For this, it is enough to show that there exist real numbers o > 0, B > 1 such that for each T > 0
and any 0 <t <t <t <T we have,

n —\n B
E [|S5() = Sp(e0)| %S5 (r2) = $3.(1)]] SC(M) |

n

We will do this in several parts. From the preceding section we have,

:
S~

Sp(t) = f(Xim) — f(Xo) +_ Z 53( X, a®3>

2 1

+ Pl — AT(0),

and

A, |7 7O (R,)8(0,) — 5zBale) — A20).
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By Lemmas 5.3, 5.4, and 5.7 we have

|ty | —1 N 2 \
E ( Y f(s)(Xi)AXE) <Cn73 ([na] — [nn]);

j=ln1]

[SSEN]

(|lntz] — |nt; ])*; and

E[P(t)*] < Cn73 (|nn| — [nn1)),

E [(Zn(tz) —zn(rl))z} <Cn~

Wl

where we recall the first two items are components of A% (z). Each of these estimates has the form

nty| — |nt1 | )ﬁ

n

E | (Un(t2) - Un(rl))z} <cn P (lnn) —|nn ) <C <
where { < 8 and > 1, hence it follows by Cauchy-Schwarz that for 7; <t < t, we have

|ty | — |nt1 | >ﬁ

n

E[Un(2) = Un(11)[ |Un(22) = Un(t)[] < C (

so each of these individual sequences is relatively compact. For the term,

2
2 n

|nr|—1
b= L [lax,
j=0

we have by Lemma 5.6 that Y,,(7) vanishes in probability. However, to show relative compactness
we need a different estimate.

Lemma 5.11. For 0 <t <ty < T such that |nty| — |nt; | > 1, we have
3 4
E (Yn(tZ) - Yn(t]))4 < Cniz(VUZJ N Lntlj)z —I—Cnigiéu (UlfzJ - LntlJ)3+4)L .

It follows that the sequence {Y,(t)} is relatively compact.
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Proof. Let ®, := ®,(j1, ja, j3,ja) = [ fO) (X)), and let a = |nt, |, b = |ty |. We have

:L

L B[R 95(0,)52,)52,)50, )

asj<b J1,J2,J35J3

SCn_% Z

J15J25J3,J4

<ot ¥ 3 Jefss0,050,050,)] (5 24),

J15J2,J3,Jar=1

+3cn5 Y ]E:q)"‘s(ajl)a(a”)} <a"3’a"4>ﬁ‘

J1,J2:J35J4

—ort ¥ ZE:<D[¢£’>5<an>6<ah>}78{;>ﬁ} <’5f~9f4>5’

J1:2:J3,dar=1

+3cns Y [E :<D [cb,,é(an )} 10> >yj <3na3m>ﬁ‘

J1,J2,J3,J4

where

Continuing this process, we obtain terms of the form:
Y E[q>n]<9a7ag> <a§,a£> ’
J1,J2:03,J4 mooml sl

et Y [a2q>]< s aﬂ> <’éﬁ,,aj2>ﬁ<ajn3,aﬁ>ﬁ‘, and

n n!$H n n

Wl

Cn~

J1,J2,J3:J4
_4 ~ ~ ~
Cn 3 Z E[84(I)n] <e&,8ﬂ> <8j7b,8j72> <e,c,8i> <8,~7d,8,;4> ,
J15J2:73J4 noonltH N n/ 9N n nlH

where 9%®, represents the appropriate k" derivative of ®,. By Lemma 5.2.c and 5.2.d, the sums
of each type have, respectively, upper bounds of the form

Cn2(b—a) 2+ Cn3 (b—a)+ Cn3 4 (b—a)**,
hence we conclude that

E|(Ya(2) _Yn(tl))ﬂ <C (”_Z(L”fﬂ - Lnflj)z—kn_%_‘u(tmzj _ LmlJ)%H/'L) ’
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As for above terms, it follows by Cauchy-Schwarz that
- 4 4
E[1¥,(r) = Y(e)P Wa(t2) = Yo (0)P| <€ (w2 (Lnta) = [nna )2 03744 (Lnts | = [ )34 )

and thus {Y,(r)} is relatively compact. O

Tightness of F,.
To conclude the proof of Theorem 5.1, we want to show that the sequence {F;(¢)} satisfies the
relative compactness condition.

Lemma 5.12. For 0 <t; <t <T, write
Lntzjfl _
Re-Rn= Y, & (10F)97)
j=|nti|+1 oo

Then given 0 <t <t <ty <T, there exists a positive constant C such that

n

E [|Fa(0) — Fu(1) PIFut) — Fa(0) 2] < (M)z (521)

Proof. We begin with a general claim about the norm of DF,,. Suppose a,b are nonnegative inte-

gers. Let
LnlzJ —1

8a = Z f(a)(gl)al@S-
j:Lnllj " n
Then we have 5
| — |nt
E[IDgall4o50] < € (M) . (5.22)
n

Proof of (5.22). For each b we can write

2
E {(HDbga ||_%®3+b> ]

|nt2] 1 B B 2
—E ( y f(“+b)(Xj)f(“+”)(Xk)<5?”,5?”> <85‘»§3,8§’3> )
j n n 55@2)!; n n 5@3

j k=nt1 | " TN mooon

1 nip | — 2
<o ()Y (sl ) () 00,

Lty |<j<|nt2] Jjok=|nt |

<cn~?(|nty] — |11 ])?,

by Lemma 5.2.d.
Proof of (5.21). By the Meyer inequality (6.4) there exists a constant ¢; 4 such that

E ) (33(un))4‘ < c3.atnllBsa 505



94

where in this case,
[nta]—1 _
=Y [OX;)95
Lntlj " n
and
et T34 g503) = Ellttnll o5 +Ell Ditn |3 o + Bl D%t o5 +E | Dt g6

From (5.22) we have ]E||Dbun||iij®3+b < Cyn 2 (|ntz) — |nty|)? for b= 0,1,2,3. From this result,
given 0 < 1] <t < 1, it follows from the Holder inequality that

2
E [|F(t) = Fa(t1) PIFa(r2) = Ba()P] < € <M> .

n

5.2.6 Proof of Theorem 5.1

Here we give a brief summary of the preceding lemmas. For S (¢) we have

[nr|—1

ST = %)~ FX0) + 15 X FIRAX] AT (),
j=0 oo

where we can CXPress

|nt]—1 _ |nt]—1 _ |nr|—1 _
Y EAG = Y8 (FOE)I) + R0+ L 1Y g F Y,

j=0 j=0

S~

From Lemmas 5.3 - 5.6 and 5.11, we have that the terms Z}LZJO_I HAXj/n||i2(Q)f(3)(ij/n)AXj/n,

AT'(¢), and P,(t) tend to zero in L'(Q) for each ¢, and moreover these terms satisfy the tightness
condition of Corollary 2.5. By Lemmas 5.7 - 5.10, the random vector F, = (F!, ..., F¢) satisfies
the conditions of Theorem 2.3, where

) LnliJfl .
Fi- Yy & <f(3>(Xj)8f3’3) |

Jj=|nt;i-1] "

and Theorem 5.1 follows from Theorem 2.3 and Corollary 2.5. For SM2(t), the proof is the same

except that
1 |nt|—1 B
S0 = (X)) = F(X0) =57 Y fOENAT - a2 (0),
J=0 oo

and this concludes the proof of Theorem 5.1.
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5.3 Examples of suitable processes

5.3.1 Bifractional Brownian motion

The bifractional Brownian motion is a generalization of fractional Brownian motion, first intro-
duced by Houdré and Villa [20]. It is defined as a centered Gaussian process B7 X = {BfI’K,t >
0},with covariance given by,

L (t2H —|—s2H)K

E[BZH-,KBSH,K] — s —S|2HK,

1
_Z_K‘t

where H € (0,1), K € (0,1] (Note that the case K = 1 corresponds to fractional Brownian motion
with Hurst parameter H). The reader may refer to [33] and [21] for further discussion of properties.

In this section, we show that the results of Section 5.2 are valid for bifractional Brownian
motion with parameter values H, K such that HK > 1/6.

Proposition 5.13. Let B; = {BfI’K,t > 0} be a bifractional Brownian motion with parameters H,K

satisfying HK = 1/6. Then conditions (T.1) - (T.5) are satisfied, with 6 =2/3; L =1/3;

[5/3 FH<12 [2/3+2H ifH<1/2andK <1
B AH—% ifH>1/2’ 5/3 otherwise '

Proof. Condition (T.1). From Proposition 3.1 of [20] we have

E[(B;—Bi)?] < Cs*K = Cs5.

Condition (T.2). By Fundamental Theorem of Calculus,

Wi

0
B [B2 — B2,)| = 2K — (1 — 5)HK = [ 2HK(t +&)2K1aE < Cs(t —5) 3.

—S
Condition (T.3).
E [(B; — Bi—s)* — (Bi—s — B—25)*] = E[(B; — Bi—2,)(B; — 2Bi—s + Bi_2y))]

— t2HK i [tZH + (l‘ _S)zH]K+ i [l‘2H + (l‘ _ ZS)ZH]K

- 7K 7K
1 K 2 K
~ 5% (127 + (1 —25)*] +ox [(t =) + (¢ —25)*1]" .
In absolute value, this is bounded by
1 K K K
o ‘ [tzH—I—tZH} 9 [tZH—i— (1 _S)ZH] n [ZZH-I- (1 _25)2H} )

+ %K [P (0= 255 2 (=) (1= 25)) % 4 [0 — 257 (1= 251 .

Both terms have the form

27K |g(t) —2g(t —s)+g(t—2s5)| <Cs* sup |g"(x)],

X€E[t—2s,1]
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for g(x) = (¢ +x*")X. We show an upper bound for the first term g”(x), with the other one similar.
We have

wp 18" ()] < 4H2K(1— K) [2H + 2H) S22 Lofk pE — 1| [2H 4 2H]) K 22
XE[t—2s,t

For the above values of H,K we have

sup  2HK [2H — 1| [12H 4 2H] " 71202 < ¢ — 2)2HK2,
XE[t—2s,1]

For the first term, if H < 1/2 then

sup 4H2K(1 _K) [ZZH +x2H] K*2x4H—2 <C(r— 2S)2HK—4H+4H—2
X€E[t—2s,t]

= C(r —25)2HK2,
On the other hand, if H > 1/2, then t > 4s implies t > 2(¢ — 2s), hence

sup  AHK(1—K) [12H 4 PH] K722 < 4B K (1 — K)3K 2 (1 — 25)2H(K-2) y4H -2
XE[t—2s,t]

< C(t —25)2HK=4H — (1 — 25)34H

Condition (T.4). First, for the case |t —r| < 2sort < 2s, we have
|E [B(B; — B,—s)]| = |E [B,B; — ByB:]|
! K K 1
< 7K ([FZH +t2H] - [rZH +(t —S)ZH} ) + oK ‘|r—t+s|2HK — ’V—t|2HK‘
< csHK = Cs?

using the inequality a" —b" < (a—b)" for 0 < r < 1. For |t —r| > 25, t > 25, we consider two
cases. First, assume r > ¢ + 2s.

|E [B/(B: — B;—)]| = |E [B/B: — BB,

< 2LK<[F2H+I2H]K_ [r2H+(Z_S>2H]K)+2LK‘|r_t+s|2HK_|r_t|2HK‘

10 2H 2H1K—
=% 2HK [P + (14 &)™
—S

1 S
+ —/ 2HK (r—t+n)*&"1an
2K [y

Yere)lag

<2 KHKs(t - s)_% + 21" KHKs(r - t)_%,

where we used the fact that r —¢ > 2s implies r —¢ > 2(r — ¢ — s). On the other hand, if r <1 —2s,

then the estimate for {
% <[r2H _HzH}K_ [rZH n (t—s)ZH]K)
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is the same, and for the other term we have,

1 0 _
S llr =14 5K — | — K| < Z—K/_SzHK(t_r_g)ZHK g

[

<2'""KHKs(t —r—5)2K-1 < 2%_KHKs(t —r) 3

Y

hence for either case we have an upper bound of C's <(t — ) - r|l_1> for A = 1.
Condition (T.5). Assume t Ar > 2s and |t — r| > 2s. We have
E[(B = Bi—s)(Br = Br—s)]
= 2LK ([t2H+r2H]K— [IZH—}—(r—s)ZH}K — [(I—S)ZH—}—rZH}K—F [(t—s)* + (r—s)ZH]K>

1
+—= (|t—r—|—s|2HK—2|t—r|2HK

oK +|t—r—s|2HK).

This can be interpreted as the sum of a position term, zi,((p(t, r,s), and a distance term, 2% y(t—rs),
where

ot,1.) = [P+ 2]~ [P 4 (r— 5] = [ =) ) (=) + (r—5)2] " and

vt —r,s) = |t —r+s?AK — 2|t — rPHE 1 |r — r — 52HK,

We begin with the position term. Note that if K = 1, then ¢(z,r,5) = 0, so we may assume K < 1
and H > %. Without loss of generality, assume 0 < 2s < r < r. We can write ¢(¢,r,s) as

K-1

L R e e 4 e (e e e R M R S P
— [ [amrk =) [e-m 4 - 6P - mp - &P ag an,

so that

K-2

\@(t,r,5)] < 4H?*K(1 — K)s* G —s5)?H 4 (r—s)ZH} (t—s)H 1 (r—g)?H- 1, (5.23)

Using (5.23), there are 3 cases to consider:

e If H < 1/2,then for2s <r <r—2s,wehaver—r <t—sand

Cs? [<t_s)2H+(r_S)2H}K*2 (t_S)ZH—l(r_S)ZH—l SCsz(t_r)zﬂK—zH—l(’,_S)zy—l

S =28, 2
:C( ) S§+§+2H<t_r)7§72H
r—s

< Cs3M|r—p| 77,

where y:%+2H> 1.
e IfH=1/2,then K =1/3 and for2s <r <t—2s

52 [(t—s)zH—i— (r—s)ZH]K_2 (t—s) 1 (r—s)?-1 < sz\t—rr%.
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e If H > 1/2, then note that for 2s < r <t —2s
) [(t _S)2H+ (r_S)ZH} K-2 (1 _S)2H71(r_s)2H71 < sz(t _S)ZHKfZ < s2]t _rlfg.
Next, consider the distance term y/(f — r,s). Without loss of generality, assume 2s < r < —2s.
We have
lw(t—rs)| = } It — r 452K — 20 — r|PHE | — p — 5 PHK |
- '/Os/i 2HK(2HK —1) [t — r4+n)*"% 2 dn aé&

< Cs?(t—r—s) K2 < 5?1 — r|f§

Y

since |[r —r| > 2s implies (t —r — s)_% <23 It — r|_%. Note that when K < 1, then H < 1/2 implies
Y < 5/3, so the upper bound is controlled by ¢(¢,r,s) in this K = 1 case. O

Proposition 5.14. Let {B”X t > 0} be a bifractional Brownian motion with parameters H < 1/2
and HK = 1/6. Then Condition (T.6) holds, with the function 1 (t) = Cgt, where

1 1 1 1\3
Ck=gx (8+2Z<m+1)3 2m 3—|—(m—1)3> >
Proof. First of all, we write
|nt|—1 |nt|—1 |nt|—1
Bu(jk)*=2"Y Bu(j,0 + Y Bu(jik)’.
J k=0 Jj=0 jk=1

When j > 2, we have

1B, 0)| = [ [, (X1 = X)]|

1 K 1
< <1+ +1 1_|_'2H >_|_ -_12HK_-2HK
2Kn3 (14 G+ 1)) = 14 29] e 1(j—1) JHK
1 1
/ 2HK [14 (42" (J'+X)2H1dx+—1/ 2HK(j—1+y)** lay
2Kn3 2Kn§ 0

<Cn3 (-1~ 3,
Therefore, using Lemma 5.2.a for f3,(0,0) and f3,(1,0),

[nt]—1 |nr|—1
Z |.Bn(]a0)3| <2cn '+ Z Cn_l(j—l)_2 <cn
j=0 =

and in the rest of the proof we will always assume j, k > 1.
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As in Proposition 5.14, we use the decomposition,

L (JHl kLI 1k

n
2[(

O+ 1 k+1,1)+2 Kn Sy (j— k1),

w\~

which gives
1
Bu(j.k)* = 5 (@’ +30°y+30y” +y°).
To begin, we want to show that

|nt|—1
lim n e+ 1,k+1,1)] = 0, (5.24)

T =1

2
I

Proof of (5.24). Note that ¢ = 0 if K = 1, so we may assume K < 1 and H > 1/6. From (5.23),
when t Ar > 2s and |t — r| > 2s we have

0(t,7,5)] < 4H?K (1 — K)s> [(t — )27 4 (r— 5)H]" 72 (1 — )21 (r — 5)2
< Csz(t _S)HKfl(r_s)HKfl

Y

so that
lo(j+1,k+1,1)] < Cn~2HK jHK =1 HK=1

Recalling the notation J; from Lemma 5.2.d, we have

|nt]—1
n Y e+ Lk+1LD[=n"" Y JeG+Lk+1,D)[+n" Y Je(i+1,k+1,1)]
J?k:O (]7k) EJd (]~k) ¢Jd

1 2
-HK—1
] )

<Cn 3,

,_
S

- =

1+
|

wua ,U)

4 4
<Cl|ntln"3+4+Cn 3 (
J

w\'—

< CLntJn% +Clnt 2Ky~

where we used the fact (which follows from Lemma 5.2.a and the definition of ¢ and y) that
lo(j+1,k+1,1)| is bounded. Hence, (5.24) is proved. It follows from (5.24) that

|nt|—1

1
o L |07 +30%w 30y’ =0, (5.25)
jh=1

since ¢ and y are both bounded. Hence, it is enough to consider

|nt]—1
n(t) —hm— Z v(j—k1)3 (5.26)
k=

oo QK
n—>8nj’0



To evaluate (5.26), we have

1 |nr|—1
Y, wii—k1)
n],k:()
[nt]— 3
o ¥ (\J k13 =20kl +[j—k—1]%)
k=0
|t |— |nt]—1j—1
2 1 . 1 .
; to L, Z,(J k+1)5 —2(j k)3 +(j—k—1)
SL Lntj 1]—1 1 3
= — (m+1) 3—2m3—|—( —1)3
8Kn 8Kn = m1< )
[nt]—1 o 3
:88L Z Z(m+1 3_2m3_|_( —])%>

—

m

We therefore conclude that 1(7) = Cgt, where

Ck (8+2Z<m+1%— §+(m—1)§)3>.

7. 188

W —
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]

As an immediate consequence of our proof of Theorem 5.1, we have an alternate proof and
extension of previous results in Gradinaru et al. In [16], it was proved that S () converges in
probability for any fractional Brownian motion with H > 1/6, that is, the correction term vanishes.

Following Remark 3.5, we may conclude the following:

Corollary 5.15. Let B, = {BH K> 0} be a bifractional Brownian motion with parameters 1/6 <

HK < 1. Then on a fixed mterval [0,T] and for 0 < s < 1, B satisfies Corollary 3.4.

Proof. Notice that s < 1 implies s*#X < s3. With small modifications to the proof of Proposition
5.14, it is easy to verify that conditions (T.1) - (T.5) are satisfied when HK > 1/6. We want to

show that
|nt]—1

lim AVRSHES

T k=0

[

T
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We may assume K < 1. From Proposition 3.1 of [20], we have that
E[(B: — B,—y)*] < Cs*HK.

Recalling the notation J; from Lemma 5.2.d, Cauchy-Schwarz implies for (j,k) € J;, we have
1Ba(j, k)| < Cn= 2K For (j,k) ¢ J;, by (5.23) we have

QU+ 1k 1,1)] < 4H2K (1 = K) [ 4] 21t

)

and similar to Proposition 5.14, we have
W=k D) < Clj— k2

hence for (j, k) ¢ J; we have |B,(j,k)| < Cn=2HK|j —k|~Y for y=min{1 +2H(1 —K),2HK —2}.
It follows that

|nr|—1
Y BRI Y BGRY Y IBK)
J:k=0 (j,k)ely (Jk)¢EJa
< Z Cn 20K | cp~6HK Z lj—k|77
(j7k)€‘]d (]vk)¢]d

< Cn oK g |

so [n(t)| = 0 because HK > 1/6. O

5.3.2 Extended bifractional Brownian motion

This process is discussed in a recent paper by Bardina and Es-Sebaiy [2]. The covariance has the
same formula as standard bBm, but it is ‘extended’ in the sense that 1 < K < 2, with H restricted
to satisfy 0 < HK < 1. Within the context of this paper, this allows us to consider values of
1/12 < H < 1/6. As in section 5.3.1, we show computations only for the case HK = 1/6. A result
similar to Corollary 5.16 can also be shown by modification to the proposition below.

Proposition 5.16. Let Y = {Y,H’K, t > 0} be an extended bifractional Brownian motion with param-
eters | <K <2, HK = 1/6. ThenY satisfies conditions (T.1) - (T.6), with 6 =2/3, L = (2H) \ %,
and with v, y and 1 (t) as given in Proposition 5.14.

Proof. Conditions (T.2) and (T.5) are the same as for standard bBm, as shown in Proposition 5.14.
In particular, the decomposition into @(z,r,s) and y(t — r,s) for condition (T.5) is the same, so it
follows that 11(¢) of condition (T.6) has the same form. The proofs for conditions (T.1), (T.3) and
(T.4) require some modifications to accept the case K > 1.

Condition (T.1). From Prop. 3 of [2] we have

1

E[(Y, —Y,_,)? SszHK:s§.
B [(¥ = Yi)7]|
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Condition (T.3). First, we have

E[(Y = Yis)? — (Yi—s — Yi—2s)?]

:tzHK_ziK [l‘2H+(l‘—s)2H]K—|—2£K [(t_s)2H+(t_2s)2H]K_%(t_zs)2HK
< 22HK _ ziK [2H 4 (¢ — 5)2H]" —2(r — 25)2K 4 23,( [(t—5)%H 4 (¢t —25)2H]"
— 4HK 0(z+e§)2”K“—(t—s+§)2HK‘1 dé&
< Csz(t—SZS)ZHK’Z.
On the other hand,
tzHK_ziK [12H 4 (1 — 5)2H] +2£1< [(t_s)2H+(t_2S)2H}K_ziK(t_zs)ZHK
> 2(r — 5)2HK 2% [tzH +t2H]K+ 231( [(r —25)H 4 (¢ —2s)2H}K—2(t _ 5)2HK

— —4HK/ (t_s+n)2HK71_(t_zs_’_n)ZHKfl dn
0

hence the term is bounded in absolute value as required, with v =2 —2HK =5/3.

Condition (T.4).

EY-(Y; —Y—)]| = 2LK ([rZH_HZH}K_ [rZH_i_(t_S)ZH}K) n ZLK (|r—t+s\2HK— |r—t]2HK)
< ZLK ([r2H +I2H}K_ [r2H+(t—s)2H}K) —|—2LK ((’r_t’ _|_S>ZHK_ ’I’—t|2HK) .

We consider two cases for the first term. If # < 2s, then by Fundamental Theorem of Calculus,

ZLK ([r2H+t2H]K_ [rzﬂ_i_(t_s)zH]K) < 2LK <[r2H+(2s>2H}K_r2HK>
_ 2EK/O(zs)ZH [rzH_i_u}K—]duSCSZH.
If £ > 2s, then
2LK <[r2H+t2H]K_ [rZH—i-(t—s)ZH}K) _2HK _OS [rzH_l_(t_i_u)ZH}KA (t+u)2H_1du

< CsTZH(K*I)(t —s)?H=t < Cs(r —s)?H 1,

In particular, if |[r —#| < 2s then this is bounded by

Ccs* S < cs*,
t—s/)
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For the second term, if |r —z| < 2s, then it easily follows that

1
2—K((]r—t|—|—s)2HK—\r—t\2HK) SCSZHK SCSzH;

and if |[r —¢| > 2s, then by Mean Value

1
2—K((|F—l|+s)2HK—|r—f|2HK) SCSlr—t|2HK_] SCstH(K_1)|r—t|2H_1 SCS|I’—Z|2H_1.

In particular, if # < 2s then

s
Cslr—tH~1 = cs?H (|r—t|) <cst,

Hence, we have shown that

Cs[(t—s) =1 |r—¢?H=1)  if T >2s and |r—t| >2s
Bt (1 1) < | ST AT 2 20 and )2
Cs otherwise
and so condition (T.4) is satisfied by taking A = min{2H, %}, where K € (1,2) implies A > 1/6.
[

5.3.3 Sub-fractional Brownian motion

Another variant on fBm is the process known as sub-fractional Brownian motion (sfBm). This is a
centered Gaussian process {Z;,7 > 0}, with covariance defined by:

1
Ris,) =" +1" =3 (s+t)h+ys—tyh] , (5.27)

with real parameter / € (0,2). Some properties of sfBm are given in [7] and [9]. Note that 2 = 1 is
a standard Brownian motion, and also note the similarity of R (z,s) to the covariance of fBm with
H = h/2. Indeed, in [9] it is shown that sSfBm may be decomposed into an fBm with H = 1/2 and
another centered Gaussian process.

Similar to Section 5.3.1, we discuss only the case # = 1/3. For h > 1/3, it can be shown that
conditions (T.1)-(T.6) are satisfied with 1(¢) = 0, hence S} (¢) converges in probability.

Proposition 5.17. Let Z = {Z;,t > 0} be a sub-fractional Brownian motion with covariance (5.27)
and parameter h = 1/3. Then Z satisfies conditions (T.1) - (T.6) of Section 3; hence Theorem 3.1
holds. For condition (T.6) we have 1 (t) = Cyt, where

I & 1 1 13
Ci=1+7 Y ((m+1)3—2m3+(m—1)3> .

m=1
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Proof. Condition (T.1). We have

E[(Z —Zi—)*] = Ru(t,t) + Rp(t — s,t —s) — 2Ry (t,t —s)
2h 1 2h 1

= 2 —s)'— = (t—s)" =

5 +2( s)' =t =)+ 5 (

= —% (2n) = 2r—s)")| - % (20— 2s)" = (20 = )] 4"

2t —s)t + 5"

This is bounded in absolute value by Cs”, using the inequality a* — b" < (a — b)".
Condition (T.2).

> U P o o 2
E[Z; -7 ]| = |2 >t 2(t—s5)"+—=(t—s)

2

_ ‘4_22}1‘ [rh—(t—s)h} .

By Mean Value this is bounded by

S5}

Cs(t—s)" 1 =Cs(t—s)73,

which implies (T.2) with 6 =2/3.
Condition (T.3).

E[(Z — Zi—s)* = (Zi—s — Zi—25)*] = R (t,t) — 2Ry (t,t — 5) + 2Ry (t — 5,1 — 25) — Ry (t — 25,1 — 25)

__@ (2t—s)h—(2t—3s)h—|—1(2t—4s)h
2 2
% [ 2(2t—s)h+ (2t—2s)h}
ot -at-s o]

By Mean Value, these terms are bounded in absolute value by
Cs*(2t —4s)"2 < Cs3tY (r—s)7"
forv=15/3.
Condition (T:4).
[E(Z(Zi = Z—s)]| = [Ru(r,1) — Ry (r,t = 5)]

1 1
=" (1=s)" =3 (r+t)h—(r+t—s)h} +3 (yr_t+syh—yr—tyh)

Note that the above expression is always bounded by Cs” by the inequality a" — b* < (a — b)".
Hence, the bound is satisfied for the cases r < 2s or |t —r| < 2s. Assuming ¢ > 2s, |r —t| > 2s, we
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have
h w1 h w1 h h
" —(t—s) —E[O’—H) —(r+t—ys) }+§(|”_I+S’ _|”_f’)
0 h ro h [s
<h [ () ldut s (r+t+u)h1du—i—§/ (7 —1] +u)"du
s s 0

wIN

<Cs(t—s) 3 +Cs(|r—t]—s)73.

For [r—t| > 25, we have (|r—t| —s) > 3|r—1], so

SN[}

Cs(t—s) 3 +Cs(|r—t| —s)73 < Cs(t —s)* 1+ Cslr— ]!

for A =1/3.
Condition (T.5).

E((Z —Zi—5)(Zy — Z,—5)] = Rp(t,r) — Rp(t —s,7) — Ry (t,r —5) + Ry(t — 5,7 —5)
1

=5 [(t+r)h_2(t+r—s)h—i—(t+r—2s)h}

1
+5 [|t—r+s|h—2|t—r|+|t—r—s|h}.

Assuming that |f —r| > 2s, by Mean Value this is bounded in absolute value by
Cs?|t—r—s|" 2 < Cs?r—r| 2

since | — r| > 2s implies |t —r—s| > 1|t —r|. If h < 1, then we take y =2 —h =5/3, and we have
an upper bound of
Cs" 2 — P2 = Cs" Y — |77

Condition (T.6). First assume h = 1/3. Referring to condition (T.5) above, we can decompose
Bn(Jj.k) as

. 1 . 1 .
Bn(],k) - Z_nha)(J,k’ 1)+2_nhlV(]_k> 1)7

where @(j,k, 1) = —(j+k+2)" +2(j+k+1)" = (j+k)" and y(j —k,1) = |j —k+ 1" =2]j -
k| +|j —k—1|". Note that y(j—k, 1) is identical to the y used in Proposition 5.14, where in this
case h = 2HK. Following the proof of Proposition 5.15, it is enough to show

1
lim n~! lo(j,k,1)| =0, (5.28)

n—yoo k=0

ﬁ
3
s

=

|

o
Il

so that, similar to (5.26) in the proof of Proposition 5.15, we have

1 |nr|—1

)= lim o3 'kz'o w(j—k1)* =Cu,
]7 p
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where

I & 1 1 13
Ch:1+zn§] <(m+1)3—2m3+(m—1)3> .

That is, C;, corresponds to the constant Cx from Proposition 5.15 with K = 1.

Proof of (5.28). By Mean Value and the above computation for condition (T.5), |@(j,k,1)| <
C(j+k)~7 for some y > 1. Hence, for each j > 2,

[nt|—1 |nt|—1
Y JoG.k1)<C Y (j+k)77

k=0 k=0
< C/ u¥du < C(j—1)7
j—1

It follows that we have
|t |—1 |nt|—1 |nt|—1|nt]—1
! oG,k D) =n"" Y (|00, 1)|+|o(1,k 1)) +n~" j@(j,k,1)|
J k=0 k=0 =2 k=0
|nt]—1
—n 'Y ([(k+2)h_z(k+1)h+kh}+[(k+3)h_2(k+z)h+(k+1)h})
k=0
|nt]—1
LY G-nt
j=2
<cn'4-Cn )Y

+Cn~

which converges to 0 since y > 1. [

5.4 Proof of Technical Lemmas

5.4.1 Proof of Lemma 5.3

We may assume #; = 0. For this proof we use Malliavin calculus to represent AX f as a Skorohod

integral. Consider the Hermite polynomial identity x> = Hs(x) + 10H;(x) + 15H (x). Using the
isometry H,(X (h)) = 67(h®P) (when |||/ = 1) we obtain for each 0 < j < |nf | — 1,

AXS = 5°(35%) + 10]AX; [2.8°(97°) + 15[ AX, [[£:8(3,). (5.29)
With this representation, we can expand
ntzj 1
Y E[ U(Xk)AXSAXk]
j k=0 n n

into 9 sums of the form

Lnl‘zJ —1

“ L

I

S~

n

18X, 751X 17, “E [f(s)(?'f )1 )(Xk)al’(a@f’)sq(a@)] (5.30)

0
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where p, g take values 1, 3, or 5. By Lemma 2.1.d and (2.6), each term of the form (5.30) can be
further expanded into terms of the form

[nt2] -1 r > -

cy <3f73k>ﬁ JAX, 1377 1A% 137 /E {f‘s)(Xj)f(S)(Xk)6’”*"‘2’(9? e 8?"")}
jk=0 " ’ ' " '
nl‘zj 1

=C Y (0,.00), 1A%, 15" |axe 3;
J,k=0

< E {<Dp+q—2r <f(5)(X“l)f(5)<X”k)> ’a?Pfr(g) a§4r> }
n n n n HOp+q—2r
where 0 <r < pAgand p,q € {1,3,5}. For 0 <m= p+¢—2r < 10, we have

D" [fOE) %) = ¥ D (f<5><)§>) D (f9(%1))

a+b=m
_ Z f 5+a 5+b) (Xl)é'@a ®~®b_
a+b=m "o n

Hence, we expand (5.30) again into terms of the form:

\_m‘zJ—l e il
C X (5.3 ) IAX, 337 X 578 [ () £ Ry )|
)

J:k=0

024 r Xg—r
<€®a ®8;®b,a] pP— ak q > ,
n HOatb

n n n n

where a+ b = p+ g — 2r. With this representation, we are now ready to develop estimates for each
term. By condition (T.0),

E £S5 &) ])<< sup E[f“*“)(ifj)})z( sup E[f<5+b><fk>}>2sc;

0<j<|nt | " 0<k<|[ntr] "
and by condition (T.1),
5—p 5—g _ 10—(p+q)
sup [JAX [, sup  [|AXk|l;, " <Cnm e
0<j<|nty| " 0<k<|nty] "

Ifa>1witha+b = p+qg—2r, by condition (T.4)

b

<8®a ® 8,?1), a;X)P r alf?q—”>
ﬁ@a-‘rb

n n n

< cp(atb=1A ‘<8“an>5

with a similar term in k if a = 0 and » > 1. Hence, assuming a > 1, each term in the expansion of
(5.30) has an upper bound of

LntzJ -1

¢ Z ‘<a;i’ak>5§

Jjk=0 !

r 10—(p+q) ~
L (atb—1)A ‘<81,31> ‘
n nl$H
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To show each term has the desired upper bound, first assume r > 1. Then ‘<£ i 0 ,> ’ < Cn_’l,

n

and by Lemma 5.2.d we have an upper bound of

I’ll‘zJ 1

10— p+t] b A
Cl’l — a+ Z
k=

’<8j,8k> ’r <C ntzjn*f“”q = (a+b)A :CLntzjn*%*(“er)(A*%)
2wl g
J,

0

which is less than or equal to CLntzjn_% because A > 1/6. For cases with r = 0, then either a > 1
or b > 1, so without loss of generality assume a > 1. For this case with Lemma 5.2.c we have an
upper bound of

[nia] =1 10—(p+q)
C n—f—(a+b—1)a‘<gl 1> ’<Cnt2Jn 3—(a+b)(A— )+/1,
Jk=0 S

—

T

4
3

which is less than C|nf, |[n~3 since A < 1/3.

5.4.2 Proof of Lemma 5.6

Without loss of generality, assume a = 0. First we want to show that for each integer 0 <k < b—1,

<C. (5.31)

Using the Taylor expansion similar to Section 5.2,
X)) = X0 = (/) = (%)) = (£/00) = (X))
= PO A, + o 7O (A + 35 O (R)AXT + B ()~ B, ()
where B, (j),B; (j) have the form Cf() (£/)AX]. Hence we can write,

n

k _ k
E|Y fOE)AX; | <E|Y (f/(X) =1/ (X0) |+ 55 X)) 3‘
j:O n n j:O n n n
1 k .
+ g5 | L S XA +EFZO\B:<J'>| 18, ().

We have the following estimates: By condition (T.0),

E <E

k
Y (") = (X)) | SE|f () = " (X0) | < C:

J=0

by Lemma 5.3,
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and by Lemma 5.4,
k
Y E[B (j)| +E|By (j)| < Cn 3 (k+1)%.
=0

This leaves the AX3 term. Using the Hermite polynomial identity x> = Hj(x) + 3H;(x), we can
write

k

Y X8 (9)7)

j=0 "

<E +E

k k 2
; ﬁ % J;OHAXi L?

FOX)8(9,)|-

For the first term we have

k 2
E| Y fO(X;)8%0;7)
J=0 ! !
k ~
Aot
jA=0 n n n n
k - B
Z Z 7! (3) { )(Xﬁ)5672r (a}@(%r R, a;@3r>}
j=0r=0 " n n
k r
—yye()) KDﬁ r[OE)OE)] o) [ (0,9,)
7 0=0r=0 3 n n n n HP6-2r no nl$
ko3 .
<X Y) <8®“®8;®”78;®3 ’ az‘“—r> (2:,0:)
J=07—=0a+ }72: n H@R6-2r no nl$

For this sum, if » = 0 we use Lemma 5.2.a and 5.2.b for each pair (a, ) to obtain terms of the form

k
Z <§§3a®§;®b,81®3®82®3> < sup <Elaaﬁ> ’ Sup‘<817 > ’ Z <8haf>
j =0 n n n n H®6 jl n nl$H n

<Cn ' k+1),

where we use the fact that r =0 impliesa > 3 or b > 3. If r > 1, we use Lemma 5.2.a and 5.2.d to
obtain terms of the form
(5,09,

0

r

S Cn—(6—2r)l—§(k+ 1)7

—(6—-2r)A Ek:
r
—

Js

noting that (6 —2r)A + 5 > 1.
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For the other term, we have by Lemma 5.2.b,

LG URATRE ALY

n n

< ®a®82®b,a ®(94>
=0 a+b=2 n H&2

<ort (Bl ) (S0, ) « (B ean, ) +orens

J=0

ool | F

<on ' k+ D)0 Cn S (k+ 1) 20 4 onl(k+1) < C

where the estimates follow from Lemma 5.2.c and 5.2.d. Hence, by Cauchy-Schwarz

(X;)8(9,)| <C.

which proves (5.31). Now we define
J _
Ga(j) = Y, /¥ (Xi)AXy,
k:O n n

and by Abel’s formula and condition (T.3) we have

2 2
ZHAX, (X))AX, | < HAXb E|Gu(b—1) !—I—ZE]G (HAX,+1 L2—HAX1 L2>
n O n
1b*l
<Cn 3+Cn73)Y (j—1)7"
=4
SCn_%

5.4.3 Proof of Lemma 5.10
Proof of (5.18). Letaj = |ntj_1] and b; = |nt;|. By Lemma 2.1.b,

. bi—l _
D’Fj =Y D*&° ( f<3>(xk)a,§’3)

e n
k=a;

bj—1 B _
-y {53 (f<5>(xk)a;®3) £92 46 52 (f< (X k)afﬂ) o D& +65 (f(3)(Xk)8k> 3?2}

—. noon
k=a;
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and
DF* = bki {53 ( @ ()@)3?3) & 136 ( e (i%)agz) a%} . (5.32)

m=ay,

With these two expansions, it follows that the expectation
i N2 K\ 2
E [<un,D FJ @ DF >5®3}

consists of terms of the form

bi—1  bj=1 b1

Y Y Y Elc

p.p'=a; q.9'=a; mm'=ay

X <az[’a81:1’>3_r2 <§%,85 >;3 N <am ap>3 R <8,,:l/,apn/>r4_2 <8,,:l/,8l:;>3_r4 (5.33)

) ) )
where G(p,p') := f0 )(Xp )fG )(XL/), ri,ry take values 1,2 or 3; r3,r4 take values 2 or 3; each

A . _, ro—1
r)]]é" (gé()?{f)aj?”)] <§3’a’2>.@1 ]<83’85>; 1<E‘i,’a'3«/> |

H

gi represents the appropriate derlvatlve of f, and (j1, jo,j3,ja) = (¢,¢',m,m’). Without loss of
generality, we will assume that i/, D2F,{ , and DFEF are all defined over the interval [0,¢], and that
all sums are over the set {0, ..., [ntJ —1}. Let R=r+rp+r3+rsg, and note that 6 <R < 12. Tt
follows from Lemma 5.2.a, 5.2.c, and/or 5.2.d that

|nt|—1

p,pz’:zo‘<gz,ag>; <aq ap>3 rl <E‘ﬁ’8’1>:1<3‘{’aﬁ>;rz <EZ’>3Z>§_2

3y [ rq—2 3—ry
<(away) " (Eway) (2ay) )
n/ $ n n 9 n n 9

53 <5Z"95>; (a. ap>3 " <8’:"95>§ 2<a¢,aﬁ>;”

}”271 37}”2 r472 37?‘4
n n k5] n n k5) n n k5) n n K5)

where the exponent A is determined by {ry,...,rs} as follows: First, suppose r; = 3. Then by
Lemma 5.2.a and 5.2.c,

CEARCRANNC

|nt]|—1

)}

p=0

L]~

Z

=3

. r3—2 3—r3
<sup <8m,ag> <am ap>
m,p noonl

< Cn—le—(r3—2)/l—%(3—r3)

3—r3
7a£>
nl 5

(000,

— O (nArs=3)A—3(6-r1—r3)
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On the other hand, if r; = 1 or 2 then by Lemma 5.2.a and 5.2.d,

T |Gy (oo, (o) (ona)y

)
<Eivaﬁ>;_] <E’£’aﬁ>§_2<8¢,ag>;—m LnJ_OI

p=0
13
< Cn—(r1+r3—3)l—%(6—r1 —r3) .

< sup
q.p

sup
m.p

CE

p=

Combining this with a similar computation for the sum over p’, we obtain
1 1
A:A(R—6)+§(12—R) =2—- (5 —/l) (R—6).

In particular, A=2if R=6and A = % + A for R =7. It follows that we want to find bounds for
terms of the form

cnsup Y |E

PP ji.j2.J3.ja

Ji
n

4 ~
G(p,r)[]9" (gi<xj<>8;‘?”)] ‘ : (5.34)
i=1 n

By repeated use of Lemma 2.1.d, we can expand each product of the form
4 ~
[ (wi9;")
i=1 noon

into a sum of terms of the form

ag (04 o
Cu 8™ (\y,,a??bl a2 Ao @a,%:zu) (91:05) " (9n.95) " (2.9 )

(o, 00 (00,)"

where C) is a combinatorial constant from Lemma 2.1.d, ¥,, = H?:l gi(ffv ji); each o € {0,1,2},

such that A := Z?: , 0 < R/2; each nonnegative integer b; satisfies b; < r;; and the exponent M
satisfies:
M=by+by+b3+by=R—2A.

With this representation, and using the Malliavin duality (2.6), we want to bound terms of the form

(%] (07

Cn “sup Y EKDMG(p?p’),‘Pnaf?bl®---®8§”4> }<311an2> "'<‘9L37‘9L4> _
PP’ jisj2.dssia n n HOM nonl$ ol
(5.35)

Consider first the case A = 0. Then M = R > 6, and each b; = r; > 1. Hence

Cn M sup Z E KDMG(p,p/),‘Pnaf?bl R ® a§b4> }
PP’ j1,j2,J3.J4 - [ M

R N R_4 |t |—1 B 4
cortapliz ), (0%, 09,
p.J "o P j=0 tod
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By Lemma 5.2.a and 5.2.c, this is bounded by Cnfl’z’l, since A>1forall Rand R > 6.
If A > 1, by permutation of indices we may assume that o > 1, so (5.35) may be bounded
using Lemma 5.2.c and 5.2.d:

|nt]—1

Ccn A sup sup Z
PP 152 j3,ja=0

n

E KDMG(P, DI e a§b4> }
" j‘/_’)@@M

_q )1

<cmn tupl (), "apl 000,

Jk "
< |nt|’n°,
where
R—-A 1
O=4+(R—- 6+M)7L—T:4+(R—A)(27L—§)—6/1.

Since A <R/2,R> 6,and A > 1/6, we have ® > 3 for all cases except when R = 6, A = 3. This
case has the form,

nsup Z

PP ji,j2.J3.Ja

<Cn? sup Z
jl’j2j37j4

, lnt|—1 2 |1
<Clnt|n"3 (sup Y ‘<8j,3§>5‘) +sup <8j,8§>5 Z

k j=0 n

<C|nt)*n73,

by Lemma 5.2.d.
Proof of (5.19). For this term, we see that

2
~ - k ¢
E [<u§l,DFﬁ/ ® DF,; ® DF, >ﬁ®31

consists of terms with the form

T LYY o (ampap) e (o)

p.p'=a; ji,j2=a; j3,js=ar js,je=ay

() (opar)) (B o)

SIS
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where each r; € {2,3} and G(p, p’), gi(x) are as defined above. As with (5.18) above, we assume
that all components are defined over the time interval [0,7] for some # < T. As above, let R =
21'6:1 ri, and note that for this case 12 < R < 18. Similar to the above case, we obtain

L |Epa), (@), " Eudy)) Gptr) "

p/
where A’ =2 — (3 — A)(R— 12). It follows that, similar to (5.34), we want to obtain bounds for
terms of the form

i
<cn?,

)

. |nt]—1
Cn sup Z E

PP i, jo=0

G(p,p/)i]iy" (gi(fj')f?ff”")] ‘

Ji
n n

Using Lemma 2.1.d and the Malliavin duality as before, we obtain terms of the form

|nt]—1 N
E [<DMG(p,p),5M <‘Pnaffbl ®---®85§bﬁ)> ]
n n 57_)®M

cn A sup

PP ji,....je=0

Y

<aL£ ) am >

n n/l§
~ ~ (5.36)
where ¥, =[1%_, gi(X}; ), each @; and each b, take values from {0, 1,2,3}; and the product includes

n n

{J1de}

all 15 possible pairs from the set {ji,. .., j¢} such that A := ¥'13, oy < R/2. As in the above case,
for each R we have M and A satisfying M = Z?:l b; and M =R —2A.

In the product
~ @i
<DMG(p,p),6M (\Pnaf?”l ®---®a;‘§”6)> I1 <&Q,a,ﬂ> (5.37)
n n QM G ey S
each of the indices {ji,..., o} must appear at least once. Note that by Lemma 5.2.a we have

(possibly up to a fixed constant)

sup
0<j,k<|nt]

(3,:00) | < sup

nooni S o< p<|nt)

<E£’afj{>yj"

and by Lemmas 5.2.c and 5.2.d we have

[nt] —1 |nt|—1

2 B o)< e 8 [(E2), |

Hence, we may conclude that (5.37) contains terms less than or equal to

(), (), (0,
n n!$H n n!$ n n! 5

and, by Lemma 5.2.c, (5.36) is bounded in absolute value by

|nt]—1

L 3
cnN Z suP)<Eﬁ731>g‘M3sup <8,-,8§>5‘A (Supt%l!@ﬁ?ai%‘)

j47j57j6:O psJ " ]7k " p ]:0
/
<Clnt|’n?,
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where, using the fact that R = M + 2A,

(E)'=2—(§—7L)(R—12)+(M—3)l+% =6+(R—A)(21—%)—157L.

Observe that ® > 3 whenever R — A > 6. The case R —A = 6 occurs only when R =12, A = 6,
and M = 0; so in this case we have an upper bound of

Cn2 Ln%’—‘ sup <8j,8ﬁ>ﬁ‘3 <Sl;ptn%,]<aj;ak>ﬁ)>3

j47j57j6:0 j’k " jZO "

< CLntPn_Z_% <cn .
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Chapter 6

Simpson’s rule and fBm with # = 1/10

6.1 Introduction

In this chapter we consider another critical case from Proposition 3.3, which was also mentioned
in [16]. This is the Simpson’s rule Riemann sum, defined as

\_ntJ—ll _
S0 = Y o (F/(B)+47(B))+F (Bin)) 8B,

j=0

where B = {B,t > 0} is fBm, and we recall the notation from Section 2.4,

~ 1
Bl :E(BJ+BM> andABl- ZBE—BJ.
As shown in Proposition 3.3.c, given ¢ > 0, S5(¢) converges in probability to f(B;) — f(0) for fBm
with H > 1/10, but generally does not converge in probability for H < 1/10. Similar to the main
theorems of Chapters 4 and 5, here we consider the critical case of H = 1/10, and we employ
Theorem 2.3 to show that, conditioned on the path {B;,s <}, we have

15300 5 (18~ £0) - 55 [ 798 awe )

where 3 is a known constant, and W is a standard Brownian motion, independent of B.

This result is similar in form to the preceding results for S¥!(z), SM2(¢) and ST (¢). Indeed,
the result was not suprising, though the explicit value of the constant  was previously unknown.
Moreover, this case was different in that the integral correction term arises from a sum of two,
independent Gaussian random variables instead of only one in the previous cases.

Unlike Chapters 4 and 5, this case was done for fBm only, though it could be extended to a
generalized Gaussian process using an approach similar to Chapters 4 and 5. This generalization
would likely include some types of bifractional Brownian motion with some range of values for
parameters H,K such that HK = 1/10. In addition, weak convergence was only estabilished for
the pointwise case (i.e. fixed t). A finite-dimensional distributions argument should be possible
using a version of Corollary 2.5, though this was not pursued in the present writing.
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It is also expected that the techniques of this chapter could be applied to the ‘Milne’s rule’ sum
for the case H = 1/14, see Proposition 3.3.d. In that case, we would expect an integral correction
term involving f(7)

The organization of this chapter is as follows: in Section 2 we state and prove the main result,
which is Theorem 6.1. Finally, Section 6.3 contains proofs of three of the longer lemmas from
Section 6.2.

6.2 Results

Throughout the rest of this paper, we will assume that f: R — R is a ¢ function, such that f and
]
<

Theorem 6.1. Let f : R — R be a € function such that f and its derivatives have moderate
growth conditions, and let {B;,t > 0} be a fractional Brownian motion with H = 1/10. Fort >0
and integers n > 2, Define

$0=5, £ (16447 (8 802) +10,)) (81 -,).

all derivatives satisfy moderate growth conditions. Note that this implies [E [sup,E 0,7] ‘ F(By)
coforalln=20,1,2,... and 1 < p < oo,

Then as n — oo

(B1.550)) = (Bt,f(B» 50+ 55 [ 18 dWs) ,

where W = {W,,t > 0} is a Brownian motion, independent of B, and

B =502 w575k, for w5 = X ((p+ 1)} =294+ (p—1)}) ana

pEZL
1 1 3
K3 = Z ((p+1)5 —2p5s+(p— 1)5> )
PEZ
Consequently,
f
= ) d
+/ f'(By) d°Bs 2880/ 7o We,

where [} f'(By) d°By denotes the weak limit of the ‘Simpson’s rule’ sum S;f(t).

The rest of this section is given to proof of Theorem 6.1, and follows in Sections 6.2.1 - 6.2.3.
Following the telescoping series argument given in the proof of Proposition 3.3.c (see (3.6)), we
can write

| - ; )1 )1 .
50 & [T BIAB A7 Y, fOBAB] —Ay ) 10(B,)AB)

j=0 j= J= z

f(Br) = £(0) = S,(1) —

|nt]—1 i/
—ﬁ )3 /OAB/ (f“”(€)+f<“)<n>)u8(AB%—u)zdu+(f(B,)—f(BL,%J)).

J=0
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As in the proof of Proposition 3.3.c, for H = 1/10 it follows from Lemma 3.4 that the terms includ-
ing A7, Ag and the integral term all tend to zero in L?(€2) as n — oo, and the term (f(B;) — f(B (nt|/n))
also tends to zero ucp as n — oo. The main task to prove Theorem 6.1, then, is to show convergence

in law of the error term
|nt]—1

Y f9(B;)ABS. (6.1)

J=0 "

6.2.1 Malliavin calculus representation.

In order to apply our convergence theorem (Theorem 2.3), we wish to find a Malliavin calculus rep-
resentation for the term (6.1). Consider the Hermite polynomial identity Hs(x) = x°> — 10H3(x) —
15x. Taking x = AB;,/||AB; /|l 12() = n" AB 1, We have

" ABS, = Hs(n' AB ;) + 10H;(n" AB ;) + 150" AB;;.
Using (2.4), this gives

|nt]—1 |nt|—1
Y fOB)AB =Y fO(B)8(97)
j=0 . n j=0 "
|nt|—1 |nt|—1
+10n 2 Y fOBHSB ) +15n7 Y OB

j=0 n j=0

S~

JAB ;.

S I~
S I~

We first show that the last term tends to zero in L' (Q).

Lemma 6.2. Under the assumptions of Theorem 6.1, there is a constant C > 0 such that

=~

|nt]—1 N 2
E|(n* Y fB)AB; | | <cn .
]:0 n

Proof. We start with a 2-sided Taylor expansion of f (4) of order 7. That is,
(4+0)(p .
~ 6 fUT(B;) FOD(E)

4 4 _ 7 ARl 7
f()(B’t‘)_f()(B,’;)_ZZZI T R TR
and 0+1 p(4+0)
N (=D (B ) a0
f(4)(3%)—f(4)(3£): Y 2001 - ABi"’T,jABZa
(=1 " "
for some intermediate values §;,7; between B; /n and B(;, 1)/, Adding the above equations, we
obtain

N FD(B)) fOB))

f(4)(B,i1)—f(4)(B£) :f(s)(Bﬁ)AB%Jr—% n AB%+—245! ABS,
(1) (g, + (11) .
+f (5/)277{ mj)ABz. 6.2)
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It follows that we can write

-1 2 el -1 ’
B (n“‘H ) f(S)(B,g)AB) <4E (”_4H Y (/-1 (4)(3")>>
j=0 ' ' n

S~

j=0
lnt)—1 f)(B)) lnt)—1 FO)(B)
+4E (n Y o AB | | AR | [ty o AB)
J=0 ! j=0
=1 (1) (g 4 £(1D)(p. 2
4 fUUE)+ 1 (n))
+4FE <n H ng f277! JAB; :

By growth assumptions on f (4),
|| —1 2 i
’ (”m Y, (1B s ’>>> = | (791 - r0) | <0
]:0 n n

By Lemma 3.4,

-1 fO(B)) _
E|(n* ) T”ABi <C sup |[f7(B))|3sz|ntJn "4,
j=0 " 0<j<|nt] "

and

0<j<|nt]

2
) 1 fO)(B)) _
E (n4H Y f'ABi <C sup [|fOB})|3 s 0t n 181,

. [<n4H ) ) )2]

277!
c (E

This proves the lemma.

IN

2 nt|—1 2
f“”(Bs)“)D n8H< Y ||ABZ-||L4<Q>> < Clmt|?n 2 < Cn 2,
=

]

s€[0,t]

Lemma 6.2 shows that only the terms

|nt]—1 _ Lnt]—1 N
L e (858 5)“0”‘_”' IMNAICALICHS
=0 ! " j=0 n n
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are significant. Using Lemma 2.1.a, we can write the first term as

Ln%_165 <f( ; a®5)+2() Z 55 r( 5+r( )a;@(s_")) <’§]’a]>;
j:() n l’l n n n

n

By Lemma 2.1.c and (B.1), we have the estimate

"S(S—r) (f(5+r) (El)a]@(S—r))

n ;

a®(5—’)

n

e

L(Q)

It follows that for r = 1,...,5, we can use Lemma 3.1.b,

() Z 50 ( £+ (B ,f;)af(s_r)) <~é£’a£>;

By a similar computation,

|nt|—1 _ Lnt]—1 -
on—2H y f(s)(31)53(3l®3)= L10n—2H y 53 <f(5)(B_,-)a]®3>
j=0 n
1

where

n R

3 3 LntJ—l " B B ,
GB=n) ( 5+ (B 192B~") -y
L () L o (@) (o)

Therefore, we define

|nt|— lnr|—1
Z ( B, 8®5) :55(un), where u, = Z f 8®5 nd

j Vl

[nr] -1 _ |nt]—1
G,:=10n2" )" &3 (f(5>(3j)aj®5) = §%(vy), where v, =10n"2" Y fOI(B;)97".
j=0 non j=0 non
It follows that for large n, the term (6.1) may be represented as F, + G, + €,, where €, — 0 in
L'(Q). Hence, we will apply Theorem 2.3 to the vector sequence (F,,G,,).

6.2.2 Conditions of Theorem 2.3.

Our main task in this step is to show that the sequence of random vectors (F;,,G,) satisfies the
conditions of Theorem 2.3. The first condition is that (F},,G,) is bounded in L'(Q). In fact, we
have a stronger result that will also be helpful with later conditions.
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Lemma 6.3. Fix real numbers 0 <t <T and p > 2, and integer n > 2. Let ¢ : R — R be a €
function such that ¢ and all its derivatives have moderate growth. For integer 1 < g <5, define

|nt|—1
Wn = Z ¢( ﬁ)a@tl

j=0 n

Then for integers 0 < a < 5, there exists a constant ¢y, such that

~ 12
107890 20 usoe) < Caa sup ||0BN||  [nt]n 2 < cn 29,
0<j<|nt] n- [\Darar
In particular,
D Fal| 1y (@s92a) + 1D Gl 1 (@ 5920) < C- (6.3)

Proof. This proof follows a similar result in [23], see Theorem 5.2. First, note that by Lemma
3.1.c and growth conditions on ¢, for each integer b > 0,

2
b |17 . (B) (B 9% o b
HD Wn 5®q+b_ Z ¢ ( ﬁ)a ®8
j=0 " n §Oa+b
®) (5 [* AR IZIERY
< su B; su E£j, € i, Ok
~ 2
<Clnt|n 2" sup |9 (B))| .

0<j<|nt]

It follows that for p > 2,

2
< C|nt|n 1R

sup

Hwan
0<j<|nt]

LP(Q;ﬁ®q+b)

Then, using the Meyer inequality (see [23], Proposition 1.5.7),

~ 2

D84 2 o esay < |67 2 < Cl|nt|n2H B, < Clnt|n 244,

| (Wa)llzr(@:.92e) < 169 (Wn)l[par < Clnt]n osi?fm l§ %) Desan(se) [nt |n
(6.4)
For (6.3), we have
2 ~ 2

DF, |2 ey, cm :HD“SS <Clnt|n~\H (5)(B, <C
Il gy = [P0 gy = LI S I B sty =
and

2
—2H 3 10H

1D“Gullis sy = lIn~2D%8% ()| g0y < Clne ™ sup \f Bl psranggen <€

0<j< I’lt
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The fact that (F,, G,) is bounded in L! (Q) follows by taking a = 0. Next, we consider condition
(a) of Theorem 2.3.

Lemma 6.4. Under the assumptions of Theorem 6.1, (F,,G,) satisfies condition (a) of Theorem
2.3. That is, we have

(a) For arbitrary h € H%° and g € $H©3,

lim E [, h) yos| = lim B [(vy, ) 03] = 0.

n—oo

(b) llmn_onRun, ?:IDaiFn ®;:S+] Dath®h>§)®5 =0, where 0 <a; < 51 <ai+--+a <
5, and h € 3~ (@t-Fa) gpd lim, .. E ’<Vn, ®_ D"F, /.1 DG, ®8>5®3

0<b; <3, 1<bj+--+b, <3, and g € H*3~(r1+=+br),

=0, where

(c) lim, .. E
5; and

im0 E ‘ (v, @y DV Fy @41 DGy o
3.

<un, leD“iFn®f:S+1D“iGn>ﬁ®5 =0, wherer>2,0<a;<5anda;+---+a, =

=0, wherer>2,0<b;<3andb;+---+b, =

The proof of this lemma is deferred to Section 6.3 due to its length. To verify condition (b) of
Theorem 2.3, we have four terms to consider:

° <un,D5Gn>ﬁ®5

e (vy,D’F,) i

. <un,D51~“n>ﬁ®5

o (vi,D’Gp) s

We deal with the first two terms in the following lemma. The proof is given in Section 6.3.
Lemma 6.5. Under the assumptions of Theorem 6.1, we have

(@) limy e B | (00, DGy ) 5| =0

() 1My B[ (0, DFy) g | = .

This leaves the variance terms. Lemma 2.1.b allows us to write
|nr|—1

(0 D°R) = ¥ (B9 0%5 (19395 ))
GES nooq noon §H®5

k=0 "

4 2 |nt]—1 - _
_ <z) 7! Z <f(5)(Bj)8J®5, 65—z (f(lo—z) (Bk>8](€§95—z) ag@z ®g§5—z>
n n n 37)@5

z=0 k=0 " " "

Lnt]—1 N ~
N W ORICATANCIEAD S
n n HES

k=0 n n n n
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We first deal with the case 0 < z < 4. We have

|nt|—1 B B
E Z <f(5)(B,,-)8j®5, 55—z <f(10—z) (Bk)afzﬁ—z> alt?z ®E§5_Z>
ji k=0 "o "o n n H®5
<c sp |G|,  swp |67 (f“O—@(B’k)a;@S—Z)
0<j<|nt] n N2(Q) g<k< | e "o 12(Q)

CEIRCEY

By (B.1) and Lemma 2.1.c, we have

sup
0<k<|nt|

< Cloy |5 < en= I,

n n

8§52 (f(lo—z) (Ek )a;{?@S—Z)

2(Q)

so for the case z = 0, we have

OB))

n

sup

sup
0<j<|nt]

‘LZ(Q) 0<k<|nt]

<cnH sup sup
0<j<|nt| | s€[0,]

(3,0,

n

By (B.4) and Lemma 3.1.a, respectively,

CO)

}gCn_SH and sup Z ‘<8;,Ek>ﬁ <C,

sup sup
0<j<|nt| | s€[0y] 0<k<|nt] j=0

so this gives

(9,

If 1 <z <4, then by (B.1), (B.4) and Lemma 3.1.c we have an upper bound of

cnoH sup sup
0<j<|nr| | s€[0,]

[nt]—1 [nt|—1
} ro e oY ’<3175k> \SCLnrJn‘””gCn—w.
k=0 0<k<|nt] j=0 n onl$H

=~ ~ ) -1 z 5-z
(5) ) 5—z (10—z) ®5—2 ) s
su B su o ( Bi)od ) dj,o dj,€
OSjSIEmJ 4 ’;) LZ(Q)ng;EmJ ! ( é) " Q) jio < n ﬁ>5§< 0 ﬁ>5§
5— \_l’ltJ—l
<Cloillys sup { sup [(9.6) (2,,00) | <Clanjn= 15794 < ca¥,
n 0<j<|nt] | s€[0] " j.k=0 nonlH
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because z < 5. It follows that the term corresponding to each z = 0, ..., 4 vanishes in L!(Q), and
we have that only the term with z =5 is significant. For the case z = 5, we use a result from [23],
see proof of Theorem 5.2.

|nt]—1
st} <f(5)(§j)9,®5,f( (B k)8®5>
7, k=0 nooon noon HES
|nt|—1 - _
=51 ) 9B, B

n

(e [as )

jh=0
51 o ([nt]=1)A(|nt]=1-p) 5/ A £(5) o o JHS
= 35,100 Y Y f (Bﬁ)f (Bﬁp)(\lﬂ'l\ —2|pl*" +p—1"")",
p==ee j=(0v—p)
which (for H = 1/10) converges in L' (Q) to
1 1 1\?
K5/ FO)(B,)? ds, where ks = ) <|p+1|5 —2|p|5+|p—1|5> . (6.5)
PEZ
Hence, we have that
- 5 )2
’}gg@,,,DF o 25 s / £0)(B,)2ds. 6.6)

Similarly, we have

3 2 |nt]—1
<Vn,D3Gn>ﬁ®3 — 102n74H Z (z) Z! Z <f( )( l)a®3 63 4 (f( )( k)a®3 Z) a®z®£®3 Z> .
n n 5@3

ZZO j,k:O n n I'l l’l
For z =0,
|nr|—1
100n*E| Y <f<>( l)a®3 5 (f<)(3k)a®3>~®3>
J k=0 " n HO3
2
<100n~*  su (B, su 53 < ®)(B 8®3> sup|(d;,€
B ogjﬁrfntj A %) ‘L2(9)0<k<rfntj AN 5) n 12(Q) jf < " ,]§>yg

|nt|—1 |nr|—1

< Lo Y |(9p),

<Clnt|n M <cnH
Forz=1orz=2, by (B.4) and Lemma 3.1.c,

3 2 |nr|—1
100< ) n YR
Z

Z <f ( n)a®3 33 z(f( ( )a®3 z) a®2®8®3 z>ﬁ®3

k=0 "

~ 3—z
<cn M g 5)(B; su 53_2( (8- 093~ Z) sup [{ d;,€
B ogjglimj AN %> Lz(Q)ng;EntJ AT 5) n [2(Q) j,l? < " ﬁ>~‘73
|nr|—1 z
X a;aak
j,kZ:O ’< }{l n>57)‘

Clnt|n~ B39 < cp=H

b
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because z < 2. Then for z = 3, we have

|nt|—1
oo % (1997 B )

jvk:() n

600 Lnl‘J*I _ 5

= 23,100 Y FOBIB) (1 —k+ 1P 20—k 4 [ —k— 1)
k=0 n n

Similar to (6.5), this converges in L' (Q) to
1 1 1\3
75K3/f > ds, where k3 = ) (|p+1|5—2|p|5+\p—1|5) . (6.7)
PEZ

Hence, we have that
lim (v, D’Gp) g5 = 75K3 / £ (By)%ds. (6.8)

n—oo

6.2.3 Proof of Theorem 6.1.

By Sections 6.2.1, the term (6.1) is dominated in probability by Tlgo(Fn + G,). By the results of
Section 6.2.2, the vector (Fy, G,) satisfies Theorem 2.3, that is, (F;, G,) converges stably as n — oo
to a mean-zero Gaussian random vector (F., G..) with independent components, whose variances
are given by (6.6) and (6.8), respectively. It follows that F, + G, converges in distribution to a
centered Gaussian random variable with variance

K5/f a’s+751c3/f )2 ds— /f

where 2 = (5!)27 ks + 75k3. The result of Theorem 6.1 then follows from the Ito isometry. This
concludes the proof.

6.3 Proof of Technical Lemmas

6.3.1 Proof of Lemma 6.4.
For 6 € {0,2} define

[nt] -1
wn(0) _n’eH Z f B)) 8®5 9, and Cbn(9)255’9(wn(6)).
Jj=0 n

3

This allows us to write u, = wy,(0), F, = ®,(0), v, = 10w, (2), and G, = 109,(2). Following
Remark 2.4, we may assume that i € $®5-9 has the form & @ - Q& ,, for some set of times
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{t1,...,ts_g} in [0,T]>~9. Then for (a), using (B.4) and Lemma 3.1.a,
nt]—

1
B[O s | =B Y, (9B )07 0 e 5 e )

S~

j=0 n 33@579
|nt|—15-0
<n HE ) (B, d;,€
<n szlﬁ)l,jt] f )] ];) HK i tk>ﬁ‘

< CnB-OH < cp6H

where the last inequality follows because 6 < 2.
Next, for (b), consider integers 0 < a; <5—0,0<s<r<5—0,r>1and g, suchthats <r,
1<aj+-+a,<5—0andg=5—0—(a;+---+a,) > 1. We have

s r
<Wn(9)’®DaiFn ® DaiGn®h>
53@576

i=1 i=s+1

|nt|—1 s ,
Lo oon) (1 (o"076,) ) (ajn) |
" i=1 n H®ai \ j=s+1 n H®a; n H®4q

E

79HE Z

Using (B.1), Lemma 6.3, and Lemma 3.1.a, this is bounded by

n " sup || fO)(B)) ’ Hsup 9% H||DaF 0 (@529
0<j< nt] n Jj n H®a; =
r |nt|—1
< 110" Gulinaney X [(970) [ <cwtrom,
i=s+1 =0 " 74
where p =r+1.

For (c¢), we want to consider terms of the form

.
E <w,,(90),®1)“fq>n(e,~)>
i=1 ﬁ®5790

where 6; € {0,2},2<r<5-—6y,0<a; <4—6p, and a| + ---+a, =5 — 6y. For example, the
term

)

(1, D’y @ D* G g o

corresponds to the case (6, 01,602) = (0,0,2), a; = 3, ap = 2. We will show that terms of this type
tend to zero in L2(Q) as n — oo. Using the above definitions for w,(6;), ®,(6;), we have

, 2
E <wn(90),®D”iCI>n(9,-)>

i=1

n . n
i=1 n

x <f( )( a®5 6o ®Da155 6; (f(S)(Ekl)a@)S 9)> . (6.9)
73560

|nt|—1 |nt|—1  |nt]-1 r
—p 2Ot O)E Y Y <f<5><§p>a?5‘9°,®1)“f659f (f<5><1’§,,)8f?5 9)>
j f)®5 6o

i=i n
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By Lemma 2.1.b,

(-0)nai /50N (ar\ <5 64 | -
i A G [0 e G U

£;=0

Applying this to each term, we can expand the inner product
)9}~ 9‘) ®--- @D & <f(5)(§ﬁ)9§8i59’) >
n n ﬁ®5790

n

(r9Ba" . oma>0 (1B,

into terms of the form

Cgf(5)<§%)5l’l <f(/h)(§jl)3;§1@bl) o §br <f(/l)( %)a@@b >
2] a;—{y 4y ar—4,
“(20n), ), 00%)g (%),

¢,) is an integer constant, each b; =5—6; — {;, and each A; =5+a; — ¢;. It

where Cp = Cy({y,...,4,
follows that (6.9) is a sum of terms of the form

[ne) -1
Ovt00g Y FO(By) fO(B,)

n

p:p'=0
et (M) b b ai—h
X () (ay)) (308,

CgCg/I’lizH

71
n n

2, a,—2,
(Z 6”’( A7) N,)affbr) <ap/,akr> <a,,,,’§k,> ) (6.10)
n N n n b n n 9

n

For 0 < ji,...,jr < |nt] we have the estimate

L’:i‘bl <8p anl>: <az,§jnl>;1_él "'<95,8j;>: <aﬁ7§j;>:—€r
nz] -
<Sl{ppz, H< > <8P8J>5€7
2H(5—6p)

|nt|}. By Lemma 3.1.a and/or 3.1.c, this is bounded by Cn
cee = er = 0.

where & ={0<ji,...,j, <
if /1 +---+/¢, > 1, and bounded by Cn2H(5-60—1) — cp=2H(4=60) if and only if /| =

Hence, we can write

|nt]—1
sup < cnM (6.11)
I p.p'=0
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where 4H (4 —6)) < A <4H(5— 6).
It follows that terms of the form (6.10) can be bounded in absolute value by
_ |nt|—1 0 ar—2,
Cn 2O 400 sup || £ (Bo) |2ariaqy sup Y. <ag .0, > . <a,,, ,Ek,>
n n ) w n

0< p<Lnt | IS T 9
r -1 |nt]—1 . ,
<1 Z o (14,)0,") ¥ o (54,)0.")
i=1 n Q) Il k=0 "o L2+1(Q)

By (6.11) and Lemma 6.3, this is bounded by
Clnt) 7y~ 2H (B0++6,)—AH—H (b ++br+by ++b])
We have A > 4H (4 — 6)), and
bi+-+b=5r—(01+-+6,)— (b1 +---+1).
Since ¢; < a; for each i, then {1 +---+ /¢, < ay+---+a, =5 — 0y, it follows that the exponent
2H(6g+---+6,) +AH+H(by+---+b,+ b\ +---+b)

> 2H (B4 +6,) + 4H (4 — 60) + H(10r —2(6, + -+ 6,) —2(5— 6p))
> 16H + 10(r—1)H > 10rH + 6H.

Hence, we have an upper bound of
C|_I’ll‘J rn—lOrH—6H < Cn—6H

for each term of the form (6.10), so this term tends to zero in L?(2), and we have (c). This
concludes the proof of Lemma 6.4. []

6.3.2 Proof of Lemma 6.5.

Starting with (a), Lemma 2.1.b gives

3 |nt|—1 o . . .
[ (n06,), | =Y (3) (D) X (5o 6 (100 By o) o)
HES =0 \1 1 =0 n’oy n’oy n n H®5
3
<cn sup ||/%(B)) sup ||637 (f(lo_i)(§k>a®3_i>
,Z:’)oqqmj z L*(Q) 0<k<|nt] " 12(Q)
Lnt] = 5-i
d; ,ak d; ,Sk ‘
kz < 111 n> < }ll >f)
By moderate growth conditions and (6.4), we have Hf (B,) ’ <Cand ||83 (f(lo)( K)8®3 ) <
n I (Q) o 2(Q)
CHa ||3 i = cn~B=DH; 50 we have terms of the form
] -1 i 5—i
Cn_(s_i)H 81,8k 81,5k ‘ .
j,kZ—O < n n>5’)< n n>f_]




129

If i > 0, then (B.4) and Lemma 3.1.c give an estimate of

|nt]—1

Cn~ (S—i)H Z
J,k=0

5—i

<az7‘9ﬁ>; (0:8)

|nt|—1
< cp~(15-30H y
J k=0

<al7ak >;‘ < CLntJnf(IS*%)H < CanH7

because i < 3. On the other hand, if i = 0, then by (B.4) and Lemma 3.1.a,

5 |nr|—1 |nt|—1
<8‘,'§k>yj <cn M Z { sup Z

k=0 0<k<|[nt] j=0

|nt]—1

Cn*SH Z

jk=0

S I~

hence (a) is proved.
For (b), again using Lemma 2.1.b we can write

3 |nr|—1 o . ' '
E <va3Fn>ﬁ®3 ) Z (5) <3)l' Z <f( )( 1)9@’3 §3-1 <f(81) (Bk)alfzﬁz) a](fzn ®§§3z>
i—0 l l jk—O n n n n n f_)®3
—2H 2 -t 5 (8—) ®5— i o\ 3—i
<Cn ;)E ]J(Z_:Of B/ 5 (f ( %)8'1 )<8£,8£>5<82,8ﬁ>ﬁ

We deal with three cases. First, assume i = 0. Then we have a bound of

|nt]—1 3

Cn 2 Z E'f(5)(§j)55 <f( )( B: a®5>’ ' a/,Sk
.]7k:0 n n n f)
55 (f( )( ﬁ)&)@s)

n

sup

sup
L2(Q) jk

FOED] g 22, (o),
|nt]—1 |nt|—1 B e ;e
X ZO { sup Z ’<8i,eﬁ>ﬁ‘}§CLnIJn <Cn "7,

k= 0<k<|[nt] j=0
) 0 ®5>

<cn M sup
0<j< nt]

<
L(Q)

< C and ‘55 (f()(

5\??"

12(Q)

where, as above, we use the estimates H 0 )

<‘94’8k>

follows from (B.4) and Lemma 3.1.a.

CnH: and

Zi: gl‘<ai7’éﬁ>ﬁ’ < Clnt|nH

sup
Jk
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The next case is for i = 1 or i = 2. Using similar estimates we have

|nr|—1

Cl’l_2H Z E'f(s)(gj)Ss_l(f(_)( k a®5 )‘ ‘ 81,8k ﬁ<8,,£k>

55— (f( (Bk)a®5 )
1

3—i

)
\3—i
<8173k>
n nl$

sup
L2(Q) Jjk

n

because 7—i+6 > 11 fori < 2.
For the case i = 3, we will use a different estimate, and show that the term with i = 3 vanishes
in L?(Q). Using Lemma 2.1.d we have,

|nt|—1 2
( —2H Z f (f(5)< n)a@Z) <84=‘9§>;>

|nt]—1 N ~ 3 3
T E| OB, B,)s? <f( )(B k)8®2> 52 (f(s)(Bk’)&f?z) <31,3k> <31’,3k/> ]
JjJ RK=0 z ; e AR IR AN

2\ 2 p 3 3

— ! JE{ 7 642”( kK a®2 ”®a®2 P)} i, 0¢ ) (9;,9 <a.,,a,> :

where g(j,j)) = fO (B f ()(B ). Then by the Malliavin duality (2.6), this results in a sum of

three terms of the form

3 3
Cn Z E [<D42pg( i), ek, k’)8®2 p®a®2 p> ]<8k,3k/>p <3z,3k> <8,-/,8k/> |
JiJ K n H®A=2p n nl$H n nl$ wn 9

(6.12)
for p =0,1,2. When the index p = 0, then EKD“Pg(j,j) g(k, k’)8®2 P©a5* 1’>
5:)@4 2p

I’l

consists of terms of the form

84 ~ ~ a 2—a b 2-b
/ i’ " {(E; € € / - /
(ax?axlz’\y(B']”BJn)) s(kK) <gi’aﬁ>ﬁ <£’n’afi> <gi’akn>ﬁ <8’n’a"n>

by )

E

, (6.13)

where W(x1,x;) = f(S)(xl)f(S)(xz) and a + b = 4. By moderate growth and (B.4), we see that
(6.13) is bounded by Cn~8H | and so for the case p =0, (6.12) is bounded in absolute value by
|nt]—1
— Cn—le ( Z

2
<8£,8§>; <8{:,85>3 k=0 <8’2,8§> D

)
<Clnt|’n= 2 < cn~H

Cn—le Z

JoJ' koK
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By a similar estimate, when p = 1, then

B[ (06t ) etk)9, 00y )| <o

so that for p = 1, then (6.12) is bounded in absolute value by

(2000 (or.01), <a-’;{’a’f1>

3

Ccn 81 Z

j?j,7k7k/ 3;:)

|nt]—1 "%
<cn 8 sup <8k,8k/> ‘ < Z <8l,8k >5§ ) <C|nt] 220 < o2
k,k/ n n 37) j,k=0 n n

Last, the term in (6.12) with p = 2 has the form

Cn™ Y E[g(j,/)8(k.K)] <aﬁ’a’;’>2 <a”aﬁ>; <a]’:,a,§;>3-

oKk HAoe 9

3
o
n n/ g

This is bounded in absolute value by

|nt]—1 5 nt]—1

Y () %

4 3
O B)) 9,0
k=0 =0 < n n >f_)

—4H .
Cn sup )

0<j<|nt]

. (6.14)

|nt|—1
>
J'=0

By Lemma 3.1.c, for every 0 < k < |nt| we have

|nt]—1

3
5 (5, e
j=0 1Y momid
hence (6.14) is bounded by
Cn~ oM Z <8k,8&/> < Clnt|n 2" < cn~ 198,
k=0 " "9

Lemma 6.5 is proved. [
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Chapter 7

CLT for an iterated integral with respect to
fBm with H > 1/2

7.1 Introduction

Let B={(B!,...,B?),t > 0} be a multidimensional fractional Brownian motion (fBm) with Hurst
parameter H > 1/2. 1In this chapter, we study the asymptotic behavior as k — oo of multiple
stochastic integrals of the particular form:

kt
. H 1 —1
th .—/ / / S 4 dB .a’B?q_1 dB;Iq

where ¢ > 0 and each iterated integral is a pathwise symmetric integral in the sense of Russo and
Vallois [34]. We show that the pathwise symmetric integral is identical to the Malliavin divergence
integral in this case. Our main result is a central limit theorem for the process {¥;:,# > 0}, namely

that \/ﬁ converges in distribution as k — o to a scaled Brownian motion. Our approach uses
the techniques of Malliavin calculus, where we express Yj: in terms of the divergence integral
0, which coincides with the multiple Wiener-It6 stochastic integral in this case. In our proof,
convergence of finite-dimensional distributions follows from a multi-dimensional version of the
Fourth Moment Theorem [29, 31], which gives conditions for weak convergence to a Gaussian
random variable (see section 2.4). Functional convergence to a Brownian motion is proved by
investigating tightness. In addition to the proof, we are able to comment on the rate of convergence
(which is fairly slow: ~ (log k)’%), using a result from Nourdin and Peccati [24] in their recent
book on the Stein method.

The original motivation for this paper was [3], where Baudoin and Nualart studied a complex-
valued fBm with H > 1/2. For B, = B! +iB?, By = 1, they studied the integral

/tdB _/BdB' + B2dB? _/fBgdB}—Bs‘dBf D)
A :

|Bs[? |Bs[?
When B is written in the form p;e’%, the angle 6, is given by the imaginary part of (7.1). For

standard Brownian motion, a well-known theorem by Spitzer [36] holds that as # — oo, the random
variable 26, /(logt) converges in distribution to a Cauchy random variable with parameter 1. In
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the case of Brownian motion, this integral in the complex plane has been studied in several papers
[4, 14, 32]. We are not aware of a corresponding fBm version of Spitzer’s theorem. In [3], the
functional

' B2dB! — BldB?
Z[ = /1 S

o (7.2)

was proposed as an asymptotic approximation for 6; as t — oco. It was shown (see Proposition 22
of [3]) that \/% converges in distribution to a Gaussian random variable, with an expression for

variance similar to our own result. Their proof also used Malliavin calculus, but did not use the
Fourth Moment Theorem. For g = 2, since B; = fé dBy, Z; 1s asymptotically equal in law to

21— /f /s dB;dB; /f /S dBldB?
t v N s2H v N §2H 0

and we have a new (and shorter) proof of the result in [3].

7.2 Main result

Fix g > 2. Fort > 0 and integer k > 2, define

K rsq 52
Yi = / / / s,"dB,...dBL ! dBY,
1 1 1

where the stochastic integrals are iterated symmetric integrals in the sense of Definition 3.6. Theo-
rem 3.7 and the diagonal structure of Y} allow us to identify the pathwise and Skorohod integrals.

Lemma 7.1. For each g > 2, we have

K psa 2 _gH spl -1
th:/l /1 /1 sq? OB, ...0B] " OB . (7.3)

Proof. This follows from iterated application of Theorem 3.7, where the correction term is zero
due to independence. Indeed, in the notation of (3.8), this is

Yu = 5(q) o 6(1) <S;qH1{1SS1<'“<Sq§kt}> ’

Following is the main result of this section.

Theorem 7.2. Fort > 0, define

Y
X (0)=0; Xu(t) = \/k’)‘@, 1> 0.

Then as k — oo, the family {X;(t),t > 0} converges in distribution to the process X = {X (t),t > 0},
where X is a scaled Brownian motion with variance qut, and

1
o5 = OCH/O x2HR(1,x)(1 —x)*12dx; and for g > 2, (7.4)
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1 g—1
62 = oy ! /0 x;qH(l —xq)sz2 ///R(xz,yz) H |x; —yi\zH*Z dxy dy...dyg—1 dxg, (7.5)
i=2

where M ={0<x) < <x550<yy <--- <yg1 <1}
The proof of Theorem 7.2 follows the lemmas in Sections 7.2.1 and 7.2.2. Our first task is to

investigate the covariance (Section 7.2.1), then verify two other conditions for weak convergence
(Section 7.2.2).

7.2.1 Convergence of the covariance function

Let A= {1<s1<---<sg<k'}, and A= {(i1,...,ig) = (1,...,9)}. Lemma 7.1 allows us to
write Yr = 89(fi ), where fiu : ([0,00) x {1,...,4})? — R is given by

S ((s1201)5- - (sqsig)) = s, A (s1, - 5g)AA (i - - - g)- (7.6)

Here, fi. € $%9, where §) := $)4 1s the Hilbert space associated with a g—dimensional fBm (see
Section 3.2). Clearly, fj: is not symmetric. Instead, we will work with the symmetrization defined
in (2.1):

ﬁt ((sl,il), Sq,lq ZS_ qH --756(q))1A(i0(1)a---7io(q))a (7.7)

where o covers all permutations of {1,...,¢}. This gives equivalent results, by the relation I, (f) =
1,(f) (see [27], Sec. 1.1.2).

By definition sz is nonzero only if 1 <sq5(1) <+ <Sg(y) <k and (ig(1),---»is(g) = (1,---,9),
hence it is possible to express ﬁr without a sum. Let ¢ be an arbitrary permutation of {1,...,q},

and let Ag = {1 < s5(1),< -+ < 5g(y) < k'}. Since the sets {Ag} form an almost-everywhere
partition of [1,k'], we can write (7.7) as

1

fk’ ((S17i1)7-"=(SQ7iq)) = as(;;)]HlA] ((s17i1>7'-'7(SQ7i6]))7 (7.8)

where S(g) = max{sy,...,S}, and the set A; is defined by the following condition: when sy, ...,s4
are arranged in [1, k'] such that sy < -+ <s(,), then (i(y),...,iy)) = (1,...,9).
In the next three results, we check the conditions of Theorem 2.6 for 89(fy ).

Lemma 7.3. For each g > 2 andt > 0,

tG = lim I [X;(¢) }

k—roo
exists, where Gg is given by (7.4) and (7.5) for ¢ =2 and q > 2, respectively.
Proof. Since fj: is deterministic, we use (2.5) and (3.10):

1

|
E [X(t)*] = @E [69(fu)?] = loqﬁc <fkfafkf>ﬁ®q
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Z 1)y, (1) 14, (s, H‘I’g so|72 dr ds, (7.9)
..... ig=1 /=1

where (r,i) = ((r1 : z,-), - (rq,iq)), and similar for (s,i). To evaluate (7.9), we decompose [1,k]>
into the union of the sets {As X A/}, which form a partition almost everywhere. Since 14, (r, i)
is nonzero only if rg(1) < -+ <7g(g) and (ig(1),---»is(g)) = (1,-..,q), and similar for 14, (s, 1), it
follows that we integrate only over the diagonal sets, that is, when ¢ = o’. Hence, (7.9) can be
integrated as a sum of ¢! equal terms, and we have

OCq 7 q _
E [X(t)?] :ﬁ M(rqsq) qu‘!yri—s,-yZH 2dry dsy...drydsg, (7.10)

where the integral is over the set
A ={1<r < <rg<k,1<si<---<sy<Kk}.

Integrating over ry,s;, we have by L'Hopital,

qg—1 q—1

H —qH 2H-2 . 2H-2
im — R | I — drrdsy...dr, d
k—o logk [1,k’}z<rqsq) I7g = 4] /,Qf (r2,52) izzyrl si 2452 Ta 59

K g—1

= lim tk' atf, 1/ (r k")~ (K — rq)ZH_z/ R(ry,5) [] ri— i1 dry dsy .. .ds, 1 dry,
k—re0 1 o Pt

where the set &' = {1 <r <--- <1y, 1 <50 <+ <541 <K'} (& is empty if ¢ = 2). Using

the change of variable r; = K'x;, s; = k'y;, this may be written

1 g—1
limtag, : /1 x;qH(l —xq)ZH*2 ////,R(xz,YZ) H |x; —yi|2H*2 dxy dys...dy,1dxg  (7.11)
/ i=2

k—>oo S
It

q—1

= tag ! /0 X, qH(l —xq)ZHfz ///{R(xz,yz) H |x; —y,-\ZH*z dxy dyy...dyg—1 dxg,
i=2
where . #' = {% <xp < een <xq;% <yr <o <yg—1 <1}, A is as in (7.5) for g > 2, and we
have (7.4) if ¢ = 2. To show (7.4) and (7.5) are convergent, we use properties (R.1) and (R.2), so

that
1

1
Gzzzay/ x 21 (1 —x)H72R(1,x) dxgclocg/ xH(1—x) 2 dx < 0
0 0
and for g > 2
1

1
5 <a /0 xq_qH(l —x) " 2R(1,x,) 1 dx, < C‘flOCH/O xq_H(l —x,)*2 dxy < oo,
This concludes the proof. [
Lemma 7.4. Let 0 < 7 <t. Foreachq > 2,

lim E[X;(1)Xx ()] = 627;

k—boo 1

and consequently limy_,. E [Xi (s)Xi (1)] = Gg(s/\t)for all 0 <s,t < oo,
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Proof.

E [Xi ()X (7)] = E[(Xi(t) — Xk (T) + X (7)) Xi(7)]

_ @E [(Ye — Yie)Yie) +E [Xe(7)?],

where E [X;(7)?] — qur by Lemma 7.3. Note that Yy — Y = 89(fi) — 84(fir), where, recalling
the notation of (7.8),

- ~ 1 1 .
3q(fk,)_5q(fkf):/“ g EIglAl( ,i) 6B; — e g ?}glA ,(s,i) 6B;

Cpe oL sp0) | splay ¢ (1) 5p(@)
:/1 /1 /1 q‘S?'i S 1) / / / vqu 63 )+ 0Bs 1) 9Bsy
(g
= (¢=1) splg)
B /kr /1 h /1 Vqu 6BS(1) o SBs(qfl) SBs(q)'
45(q)

Hence, we can write Yj: — Yr = 89 (fAk), where

~ 1 -
fAk = WIA] l{kTSS((”Skt} — fkl‘l{k‘cgs((ngkt}. (712)

75(q)

With this notation, it follows that

1

_ q! A
@E[(th Yee)Yie] = —— <fAk7fkT>5®

q
H . . _

Z /kt]zq 4 1A1(r,l)lAl(s,1)1{1§S<q)§krgr(q)§kt}H]rg—SAZH 2ds dr.

Hig=1 /=1

'logk
As in Lemma 7.3, we decompose [1,k']%¢ into the union of the sets {As x Ag/}. Since 14, (r,i)
is nonzero only if rg(1) < -+ <7g(g) and (ig(1),---»ig(g)) = (1,-..,q), and similar for 14, (s,i), it
follows that we integrate only over the diagonal sets, that is, when ¢ = ¢’. Hence, we have ¢!
equal terms of the form

k* q
2H-2
'logk /kf / /1 K22 (rasq) 1{r1< <rq}1{51<"'<sq}éIJ1 [re —s¢[*""ds dr. (7.13)

By (R.1) and (R.2), for each ry < ry, s¢ < 54, we have the estimate

(0) _
OCH/ / ri—1) = - |? " 2dr_y) dsgy)

T, S
= aH/o <q)/o ! [r—s[*"2dr ds =R(rg),5(¢)) < Cl(rqsq)H- (7.14)
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It follows that

kT
-1 2H-2
@E[(Ykz Ykr Ykr < @/kf /1 rqsq I’q,sq)q |”q—5q| drq dSq

< logk/kf /k (rg8q) 2R (rg,59)|rq —sq "' 2dry dsq.
Using the change-of-variable s, = k*x, r, = k*y, this is bounded by
/kI T/ “2HR(x,y)(y —x)*2dx dy.
logk
Using (R.3), we obtain the estimate,
L/k”/l (=2 (y — )22 4 120\~ 1 (22 gy gy,
logk Ji 0
where
KT on 2H-2 2 om [? 2H-2 L -2
| [y = vy < [ [y —x Rardy+ [ -1y

2 o
SC/ y_ldy+C/ y_zdy<oo,
1 1

kt T kt T
/ / 1 I-2H () 2H- 2dxdy</ / 12y _ y)2H~ 2dxdy—l—/ _ 1)y

SC/ yldy—l—/ Y3y < o,
1 1

Hence, this term vanishes and Lemma 7.4 is proved. O]

7.2.2 Conditions for weak convergence of {X; ()}
)

In the next two lemmas we verify additional properties of {X;(¢)}. In Lemma 7.5 we check condi-
tion (iv) of Theorem 2.6, and Lemma 7.6 is a tightness result.

Lemma 7.5. Fix g > 2 andt > 0. For each integer 1 < p <q—1,
. 217 2
]};ngo (logk) kat ®P fkt Hﬁ@Z(qu) - O

Proof. Let1 < p < g— 1. To compute the p’h contraction of ﬁz, we use (3.11).

~ ~ q
Jie @p fir = ) Z /1 o (q)) af 14, (r, l)lA1 H |re — Sg|2H 2d}’l dsy...dryds).
: wig /=1

(7.15)
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Using (7.15), we want to compute

1fie @p fie | 5e2ta-n) = <f1<t Dp fies fio ®pfkf>

®2(p—q)

—aH U 2H-2
Z / "4 Q)S/(q)) (14, (r,) -1, (8 H |rj—s;llri— jl)
llv 7lq—1 k ! ]:1
q
x TT (Irj=rills;—si)*" % drdsar'as’. (7.16)
j=p+1

As in the proof of Lemma 7.3, we view integration over the set [1,k/]* as a sum of integrals over
various cases corresponding to the orderings of the real variables ry,...,r, (as in Lemma 7.3, the
variables s,r’,s’ must follow the same ordering). Up to permutation of indices, each integral term
has the form

o _H T W2 2H-2
(ql!’-l)4 /g(r(q)s(q)”zq)sl(q)) T (Irj = sl 7 = s51) IT (ri=rills;—5l) drdsdr’ ds',

j=1 j=p+1

(7.17)

where ¥ = {1 <rgy <o <rg <Kl < s’(l) << s’(q) < k’}. To evaluate (7.17), there
are two cases to consider. The first case is if r(,) € {ri,...,rp}, thatis, (7.17) contains the terms

7(q) = S(q)5 ]rEq) — s’(q)\. In this case, using (7.14) we can bound (7.17) by

i/ (rep)s ros )*qH<R(r s )R(r' Y ))p_l (R(r r )R(s s ))q_p
(g))* Jpaps' @@ @%@ () %(@) " (q)3(q) ()27 ()5 (q) 25 (g)
/ / 2H-2 / /
X (|r<q> =59l I7g) —S<q>‘> dr(g) ds(g) drig) ds(y)

<C [ ]4(rsr/s')_2HR(r, ) R(s,s") (|r—s| |F —s’|)2H72dr dsdr' ds', (7.18)
1kt

where we used (R.2) in the last estimate. The second case is the complement, that is, r(,) €
{rp+1,: .->7q}» 0 that (7.17) contains the terms |r(,) — rEq)], |5(g) — s’(q)\. If this is the case, then
(7.17) 1s bounded by

az —gH p
@ /[]7k,}4(r(9)s(¢1)rzq)sl(q)) M (R(rig)00)R (T80 ) (RO 7 R 500)550,)) )
s NV dr, dsy dr ds,
% (1) =t g =5l r(g) ds(g) dr(g) d5(y)

<C 4(rsr/s’)_ZHR(r, s) R(r,s") (|r—7'| |s—sl|)2H72dr dsdr' ds'. (7.19)
[1.K]

The result then follows by a change of variable and applying Lemma 7.8 to (7.18) and (7.19). [
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Lemma 7.6. There is a constant 0 < C < oo such that for each k > 2 and any 0 < T <t < o we
have

E [|X(t) — Xe(7)[*] < C(t — 7).

Proof. Based on the hypercontractivity property (2.8), it is enough to show
E [|Xe(t) — X (7)[?] < C(t — 7).

Using the notation of (7.12), we can write

1 1 e~
E[|Xc(t) — Xk (7)]}] = @E [V — Yie|*] = lj?{ <fAkafAk>

5%

o z / —qH . . . 2H-2
1 1 | 9% ‘ ds dr.
g'logk il,.%l S ZEIIW s

In the same manner as (7.13), this can be decomposed into a sum of ¢! equal terms of the form

q
—qH 2H-2
'logk/r / /1kt]2q  (745q) 1{r1g~--grq}1{slg-~-ssq}€|:|1W—se| ds dr.

Similar to Lemma 7.5, we use (7.14) and a change-of-variable to obtain

1 ~1 2H-2
logk Uth ka‘ _logk c /kr rg8q) T R(rg,54)T " rg — s4] drq dsy

—2H 2H-2
R( - dx dy.
logk/k“/k“ (x,3)[x =yl x dy

Without loss of generality, assume x < y. By (R.3), we have the estimate
L/l /1 (x )fZHR(x )|x— |2H*2dxd _L/l /y (x )fZHR(x )‘x_ |2H72dxd
Togk Jue—rt Jyes y )Y y y= logk Jie—t Juer y )Y y y

C o oy 2H-2 | 1-2H.—1 2H-2
< — — — dx d
_logk/kf—f/o O o= =) drdy
C 1

< = SAH2HL 1Y gy < Ot — 7).
< Togk L O ) dy<Ce—1)

This concludes the proof. [

7.2.3 Proof of Theorem 7.2

Fix integers ¢ > 2 and d > 1, and choose a set of times 0 <#; < --- <1t;. Lemmas 7.3 and 7.4
show that the random vector sequence {(Xi(t1),...,Xk(ts)),k > 1} meets the covariance condi-
tions of Theorem 2.6. Moreover, Lemma 7.5 verifies condition (iv) of Theorem 2.6. Therefore, we
conclude that as k — oo,

(Xi(t), - Xe(ta)) 2 (X (11),... X (1)), (7.20)
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where each X (#;) has distribution .4 (0, th,-), and E (X (1;)X (1)) = qu(t,- Nty) forall 1 <i k <d.By
Lemma 7.6, the sequence {X(¢)} is tight, hence it follows from (7.20) that the sequence converges
in the sense of finite-dimensional distributions (see, for example, Theorem 13.5 of [6]). Thus, we
conclude that the family {X;(¢),r > 0} converges in distribution to the process {X(z),r > 0} Z
{o,W;,t > 0}, where W; is a standard Brownian motion. This concludes the proof of Theorem 7.2.

7.2.4 Rate of convergence

Let t+ > 0 be fixed. By Theorem 7.2, it follows that the sequence {Xy(z),k > 1} converges in
distribution to a random variable N(t), where N(¢) ~ .47(0, qut). Recent work by Nourdin and
Peccati [24] has produced a stronger form of the Fourth Moment Theorem for the 1-dimensional
case, that is, that the conditions of the Fourth Moment Theorem also imply convergence in the
sense of total variation (as well as other metrics - see Theorem 5.2.6). The result below follows
from Corollary 5.2.10 of [24].

Proposition 7.7. Lett > 0. Then for sufficiently large k, there is a constant 0 < C < oo such that

C
Viogk’

where dry (-,-) is total variation distance. Hence X;(t) converges as k — oo to Gaussian in the
sense of total variation.

drv (Xi(1),N(1)) <

Proof. The result follows from an estimate in [24] (Cor. 5.2.10):

E[X(1)*] - 3E[X,(1)?) | 2|E [Xi(t)’] — 01|
3E [X,(1)2] E[X(1)?] Vot

dry (X(1),N(1)) <2 (7.21)

To simplify notation, we will assume ¢t = 1. To help interpret this estimate, the following identity
is computed in [24] (see Lemma 5.2.4):

q—1 4 e
E [X(1)*] —3E [X,(1)’]” = m ), p(p!)z(f,) (29 =2p)!Ifk ©p fellforigr-  (7:22)
p=1

From Lemma 7.5, we know (logk) 2| f; <§N§p ka"%@?Z(w) — 0 at a rate C/logk, hence it follows

the first term of (7.21) is of order C(logk)’%. The second term depends on the covergence rate
of (7.10). In the proof of Lemma 7.3, convergence follows from a limit of the form E [Ykz] /logk.
By L’Hopital’s rule, it follows the rate of convergence has the form C/logk, hence the first term
controls. [
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7.3 A technical lemma

Lemma7.8. FixT > 0. Let 1 /2 < H < 1, and for nonnegative x,y, let R(x,y) = % (xZH +y?H —|x —y|2H).

Then there is a constant 0 < K < oo such that

/1 (xyuv) AR (x,y) R(u,v)|x — u* 2|y —v|*2dx dy du dv < KlogT.

(7,14

Proof. In the following computations, we will obtain estimates based on the order of integration.
Due to the symmetries of the integral, it is enough to consider four distinct cases. We will make
frequent use of (R.3), and for a second estimate, note that for x < y < u we can write (1 — x)2H 2L
(u—y)~%(y—x)"B, where a, B > 0 satisfy a + 8 =2 —2H.

Case 1: x <y <u <v We can write

I rv u Y
/1 /1 (uv) 21 R(u, v)/1 y 2y —y)sz/1 x 2HR(x,y)(u—x)*7% dx dy du dv
TIT T

T

SC/I /V(uv)_ZHR(u,v)/uy_ZH(V_y)ZH_z(M—y)_a/y(y—x)_ﬁ+x1_2Hy2H_1(y—x)_ﬁ dr. .

T

I pv u
<[] ) 2R =)@ [P )P ay duay
T*“T T
I pv
<c [ ] )2 R0 =) P duay
T T
1 v
SC/I VzH/l W2 ()~ (i 4 ) dudy
T T

1
< Cﬁ v ldv < KlogT.
T

Case 2: x <y < v < u For this case, we use constants &, > 0 such that « + § =2H — 2, and
¥,6 > 0 such that y+ 6 = «.

| u y
/1 /1 (uv)_ZHR(u,v) /1 y_zH(v —y)ZH_Z/1 x_ZHR(x,y)(u —x)ZH_2 dx dy dv du
/T T T

T

1 u u
SC/1 /1 (MV)_zHR(u,V)ﬁ VP (v )22 (4 —y) "% dy dv du
T T

T

1 ru u
< C/1 /1 (uv)_H“[R(u,v)(u—\/)_7’/1 YI2H=B (y —y)V2H=278 gy dy du
T T

T

1 u
< C/1 u_zH/1 y2H-p=s (vzH —|—vu2H_l) (u—v)"dvdu
T T

1
< C/1 u ! <KlogT.

T

dv
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Case3: x<u<y<v
/ / w) =) / R (w,) / xR, y) (u =222 dx du dy dv

<C/ / )2 (3 — y)2H - 2/ H (2 4 1) (211 421 du dy d

< Cﬁ ﬁ ()’V)_ZH(V—)’)ZH_Z[ (qu—l P2 +u1_2H(vy)2H_l) du dy dv
TYT T
1 prv

<C [ [ )Py (P ) dy
TYT

1
Scﬁ yl dv < KlogT.
T

Case4: x<v<u<y

1 ry u %
/1 /1 (uy)ZH/1 v 2HR(u,v)(y — V)2H2/1 x2HAR(x,y)(u—x)*72 dx dv du dy
T/T T T

T

Lory u v
SC/1 /1 (uy)—zﬂ/l V—2HR(M7V)(y_V)2H—2(u_v)—a/l 2H (x2H+xy2H—1)(v_x)_ﬁ dx dv du dy
T YT T 1

T

L ory u
Sc/l /1 (uy)ZH(y—u)“/l v (H oy 2 ()P <vlfﬁ+v272H7ﬁy2H71) dv du dy
TYT T
<C 1 y(u )—2H( ) (2HB L\ 2H-1 0B g
T/T
1
Sc/l Y2 (ylf(xfﬁ_f_yZHfl) dr
T

1
SC/1 y 1dy<KlogT.
T
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