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Abstract

The problem of stochastic integration with respect to fractional Brownian motion
(fBm) with H < 1/2 and other ‘rough path’ Gaussian processes is considered. We
use a Riemann sum approach to construct stochastic integrals. It is known, for ex-
ample, that a Midpoint Riemann sum converges in probability to a stable integral for
fBm with H > 1/4, but not in general if H ≤ 1/4. We consider four different types of
Riemann sums and their associated critical values: Midpoint (2 types), Trapezoidal,
and Simpson’s rule. At the critical value (H = 1/4,1/6, and 1/10, respectively), the
sums converge only in distribution. Convergence in distribution is proved by means of
theorems and techniques of Malliavin calculus. We consider asymptotic behavior of
a specific stochastic integral with respect to fBm with H > 1/2. This result approxi-
mates an fBm version of Spitzer’s theorem for planar Brownian motion.
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Chapter 1

Introduction

The main topic of this dissertation is a study of different constructions of the stochastic integral,
where the integration is with respect to continuous Gaussian process. More specifically, we are
interested in Gaussian processes that are characterized as by trajectories that are ‘rougher’ than
standard Brownian motion.

The roughness of a stochastic process can be characterized by the p-variation, defined as fol-
lows. Let X = {Xt , t ∈ [0,1]} be a Gaussian process. For real p ≥ 1 (usually an integer) the
p-variation is defined as

n−1

∑
j=0

(
X j+1

n
−X j

n

)p
.

In the case of Brownian motion, it is well known that the 2-variation, usually called quadratic
variation, we have

E
[(

B j+1
n
−B j

n

)2
]
=

1
n
,

hence the expectation of the quadratic variation is 1 over the interval [0,1]. Compared to this result,
a simple definition for a rougher-path process is one for which the quadratic variation diverges.

We will consider a variety of Gaussian processes in Chapters 4 and 5, but the best known
example of a rough path process is the fractional Brownian motion (fBm). Many aspects of this
process have been studied elsewhere [5, 13, 22, 27]. Let BH =

{
BH

t , t ≥
}

denote fBm with Hurst
parameter H. For our purposes, it is enough to note that fBm is a Guassian process with continuous
trajectories and covariance given by

RH(s, t) := E
[
BH

s BH
t
]
=

1
2
(
s2H + t2H−|t− s|2H) .

It follows that E
[(

BH
( j+1)/n−BH

j/n

)2
]
= 1/n2H , hence if H > 1/2, then the quadratic variation

tends to zero in probability for large n, but the quadratic variation diverges if H < 1/2. In this
way, we say that fBm is smoother than standard Brownian motion when H > 1/2, and rougher for
H < 1/2.
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1.1 Stochastic calculus with respect to Gaussian processes.
We refer first to the traditional Itô calculus as presented by, for example, Durrett [15], Øksendal
[30] or Shreve [35]. In this setting, the Itô stochastic integral for a suitable function f is defined as
the limit of a forward Riemann sum:∫ t

0
f (Bs) dBs := lim

n→∞

bntc−1

∑
j=0

f (B j
n
)
(

B j+1
n
−B j

n

)
.

A consequence of the forward construction is the Itô formula:

f (Bt) = f (0)+
∫ t

0
f ′(Bs) dBs +

1
2

∫ t

0
f ′′(Bs) ds.

A sketch of the derivation of this formula is as follows: On a nonnegative interval [0,T ], Let
f = f (t,ω) be a C 2 function satisfying

E
[∫ T

0
f 2du

]
< ∞.

For some 0 < t ≤ T , we consider a standard Brownian motion B = {Bs,s ∈ [0, t]} and a uniform
partition of the interval [0, t] given by { j/n,0≤ j ≤ bntc}. Then by a Taylor formula we have

f (B j+1
n
) = f (B j

n
)+ f ′(B j

n
)
(

B j+1
n
)−B j

n

)
+

1
2

f ′′(ξ j)
(

B j+1
n
)−B j

n

)2
,

for some intermediate value ξ j between B j/n and B( j+1)/n. Hence, we can write the Riemann sum

f (B bntc
n
) = f (0)+

bntc−1

∑
j=0

f ′(B j
n
)∆B j

n
+

1
2

bntc−1

∑
j=0

f ′′(ξ j)∆B2
j
n
, (1.1)

where ∆B j/n =B( j+1)/n−B j/n. Taking n→∞, by definition the first sum converges to
∫ t

0 f ′(Bs)dBs.
Then it can be shown (see [15], section 2.7), that the term

1
2

bntc−1

∑
j=0

f ′′(ξ j)∆B2
j
n

P−→
∫ t

0
f ′′(Bs) ds,

where this integral is a standard Lebesgue integral. From (1.1), we can see that if B is replaced
with a fBm BH with H < 1/2, then the Itô integral is unsuitable, since the quadratic variation term
in general will not converge.

Our approach to this problem is choose an alternate construction of the stochastic integral, each
arising from a different type or Riemann sum. Four different constructions are considered.

• Midpoint (type 1) integral. This construction uses a Riemann sum of the form:

SM1
n (t) =

b nt
2 c

∑
j=1

f ′(BH
2 j−1

n
)

(
BH

2 j
n
−BH

2 j−2
n

)
.
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It was shown in [8] and [25] that this sum converges in probability when H > 1/4, and can
diverge when H < 1/4. For the case H = 1/4, [8] and [25] proved independently that SM1

n (t)
converges weakly as n→ ∞, so that

SM1
n (t) L−→ f (BH

t )− f (0)− 1
2

∫ t

0
f ′′(BH

s )dWs,

where W is a scaled Brownian motion, independent of BH . This weak convergence results
in the Itô-like change-of-variable formula

f (BH
t )

L
= f (0)+

∫ t

0
f ′(BH

s )d
M1BH

s +
1
2

∫ t

0
f ′′(BH

s )dWs.

It was subsequently shown in [37] that a similar weak limit (the scaling for W is different)
holds when BH is replaced with a Gaussian process essentially similar to bifractional Brow-
nian motion with parameters H = K = 1/2. In Chapter 4 (which follows [17]) we prove a
similar theorem for a generalized Gaussian process meeting certain conditions. In particular
this generalized family of processes includes the above BH with H = 1/4 and the bifractional
Brownian motion with H = K = 1/2, in fact it is extended to the bifractional family with
H ≤ 1/2, HK = 1/4. This theorem also extends the results of [8, 25, 37] in that it proves
convergence in the Skorohod space D[0,∞).

• Trapezoidal rule integral. This has the form

ST
n (t) =

bntc−1

∑
j=0

1
2

(
f ′(BH

j
n
+ f ′(BH

j+1
n
)

)(
BH

j+1
n
−BH

j
n

)
.

The stochastic integral arising from this sum is also known as the Stratonovich integral, and
this form has been studied for many years. In the case of fBm with H < 1/2, it is proved
independently in [10] and [16] that ST

n (t) converges in probability if and only if H > 1/6.
For the case H = 1/6, ST

n (t) converges weakly, and as in the Midpoint (type 1) case above,
we have a weak change-of-variable formula:

f (BH
t )

L
= f +

∫ t

0
f ′(BH

s )d
◦BH

s + γ

∫ t

0
f (3)(BH

s )dWs,

where γ is a known constant and again W is a scaled Brownian motion, independent of BH .
This weak convergence was first proved in [26]. In Chapter 5, we prove a more general
version, that applies to a class of Gaussian processes which includes fBm with H = 1/6, as
well as other known processes.

• Midpoint (type 2) integral. This has the form

SM2
n (t) =

bntc−1

∑
j=0

f ′
(

1
2

(
BH

j
n
+BH

j+1
n

))(
BH

j+1
n
−BH

j
n

)
.
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It is proved in [16] that SM2
n (t) converges in probability when H > 1/6, and indeed this sum

behaves very similarly to the Trapezoidal sum above. In Chapter 5, we prove that for the
case H = 1/6, we have the change-of-variable formula,

f (BH
t )

L
= f +

∫ t

0
f ′(BH

s )d
M2BH

s +α

∫ t

0
f (3)(BH

s )dWs,

that is, the result only differs from the Trapezoidal case by the scaling factor for the variance
term.

• Simpson’s rule integral. This has the form

SS
n(t) =

bntc−1

∑
j=0

1
6

 f ′(BH
j
n
+4 f ′

BH
j
n
+BH

j+1
n

2

+ f ′(B j+1
n
)

(BH
j+1
n
−BH

j
n

)
.

In [16] and Chapter 3, it is proved that SS
n(t) converges in probability when H > 1/10. In

Chapter 6, we prove that SS
n(t) converges weakly in the case H = 1/10, with a result similar

to the above cases:

f (BH
t )

L
= f +

∫ t

0
f ′(BH

s )d
SBH

s +β

∫ t

0
f (3)(BH

s )dWs,

where β is a known constant and W is a Brownian motion, independent of BH .

The above sums ST
n (t), SM2

n (t), SS
n(t) are described more generally in [16], as cases of an object

they define as the (ν ,1)-integral:∫ t

0
g(Xu) dν ,1Xu := P lim

ε↓0

1
ε

∫ t

0
du(Xu+ε −Xu)

∫ 1

0
g(Xu +α(Xu+ε −Xu))ν(dα),

where g is a locally bounded function, X is a stochastic process, and ν is a probability measure.
Chapters 5 and 6 are essentially dedicated to three of the ‘critical value’ cases for this (ν ,1)-
integral, where we consider the end point cases for which convergence in probability does not
hold, but weak convergence holds under certain circumstances.

A common property of the sums ST
n (t), SM2

n (t), SS
n(t) and the ν ,1 integral in general is that

the integral depends on the values of BH
j/n and BH

( j+1)/n, but not on any process values inside the
subinterval ( j/n,( j + 1)/n). In numerical analysis, we have the general rule that more sample
points yield a better estimate on the approximate integral. This explains why, for example, that
Simpson’s rule has a smaller error term than the Trapezoidal rule. In the stochastic case, one might
expect a similar result, that more sample points allows control over a rougher path, but this is not
exactly the case. Note here that SS

n(t) is stable for rougher paths (down to H > 1/10 rather than
H > 1/6) compared to the Trapezoidal and Midpoint (type 2) rules, but when n is fixed, all sums
use the same set of process sample points.
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1.2 On an approximation of Spitzer’s theorem for fBm
In Chapter 7 we consider a stochastic integral with respect to fBm with H > 1/2. The goal of
this chapter is not to study the construction of the integral, indeed, integration when H > 1/2
is relatively well developed (see, for example [13, 27]). In Chapter 7, the goal is to study the
asymptotics of a particular integrand.

Let Wt =W 1
t + iW 2

t denote a standard Brownian motion in the complex plane, where we assume
W0 = 1. From complex analysis, the integral

θt := Im
∫ t

0

dWs

Ws

gives the swept angle, or windings, of the trajectory of Wt . There is a famous theorem by Spitzer
[36] about this integral, namely that as t → ∞, the scaled random variable 2θt/ log t converges in
distribution to a Cauchy random variable with parameter 1. The proof of Spitzer’s result uses the
time-change property of Brownian motion, and hence is not applicable to fBm with H 6= 1/2.

To our knowledge, there is no comparable fBm version of Spitzer’s theorem. In Chapter 7, we
consider the asymptotic behavior of an approximation to the windings,

Im
∫ kt

1

dBH
s

s2H ,

where BH is a complex fBm with Hurst parameter H > 1/2. We actually study a generalization,
which is a stochastic integral of the form∫ kt

1

∫ sq

1
· · ·
∫ s2

1

1
s2H dB1

s1
. . .dBq−1

sq−1
dBq

sq
,

where each Bi
si

is an independent fBm. For technical reasons, this integral is not the generalized
Weiner-Itô integral, but a symmetric integral in the sense of Russo and Vallois. In Chapter 7, it is
proved that when scaled by (logk)−

1
2 , the integral converges in distribution to a Gaussian random

variable. This result follows a previously published result in [19].

1.3 Malliavin calculus
The results discussed in Sections 1.1 and 1.2, and proved in Chapters 3 - 7 are central limit theo-
rems, that is, theorems showing that a sequence of random variables converge in distribution to a
random variable with Gaussian law, which may be univariate or multivariate Gaussian. To show
convergence, we use the techniques of Malliavin calculus.

Malliavin calculus, also called the stochastic calculus of variations, is a differential calculus on
the space generated by a Gaussian stochastic process. It was introduced in the 1970s as a method to
investigate the probability laws of solutions to stochastic differential equations driven by Brownian
motion. Its scope has since been expanded. In particular, Malliavin calculus gives a way to extend
the Itô calculus from Brownian motion to non-adapted stochastic processes. Areas of application
include mathematical finance [12], and statistics of stochastic processes [11]. A thorough treatment
of the subject can be found in [27]. The first chapters of [24] give a gentle introduction.
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The basic object of study is an isonormal Gaussian process on a Hilbert space H . That is,
{X(h),h ∈H } is a family of mean-zero Gaussian random variables, such that E [X(h)X(g)] =
〈h,g〉H for all h,g ∈H . For example, a Brownian motion {Bt , t ∈ [0,T ]} can be extended to an
isonormal Gaussian process on the Hilbert space L2([0,T ]). Here we identify Bt with the indicator
function 1[0,t], and for an arbitrary h in H , we define B(h) by the Wiener-Itô integral

∫ T
0 h(s) dBs.

Recently, researchers have used Malliavin calculus to prove central limit theorems for func-
tionals of Gaussian processes. Most notable is the Fourth Moment Theorem of Nualart and Peccati
[29], which gives conditions under which a sequence of random variables in the form of diver-
gence integrals will converge in distribution to a Gaussian random variable. As described in [24],
there is a natural connection between Malliavin calculus and Stein’s Lemma, which gives a way to
measure the distance in law between a random variable Z and a N (0,1) random variable.

Some necessary definitions and identities of the Malliavin calculus are presented in Chapter
2. Also in Chapter 2, we provide the two convergence theorems that are the main theoretical
machinery for Chapters 4 - 7.



7

Chapter 2

Theoretical background

2.1 Definitions and notation
Let f : R→ R be a function and N be a Gaussian random variable with mean zero and variance
σ2. We say that f satisfies moderate growth conditions if there exist constants A,B > 0, and a
constant α < 2 such that | f (x)| ≤ AeB|x|α . Note that this implies E [| f (N)|p]< ∞ for all p≥ 1. We
use the symbol 1A to denote the indicator function for a set A . The symbol C denotes a generic
positive constant, which may vary from line to line. In general, the value of C will depend on
and the growth conditions of a test function f and the properties of a stochastic process. Unless
otherwise specified, we will use the symbols X ,W, and Z to denote a generic, Gaussian stochastic
process. The symbols B,BH will denote fractional Brownian motion, which may include standard
Brownian motion. For a process X indexed by a real interval [0,T ], we will use the notation Xt and
X(t) interchangeably.

2.2 Elements of Malliavin calculus
Following is a brief description of some identities that will be used. The reader may refer to [27]
for detailed coverage of this topic. Let Z = {Z(h),h ∈H } be an isonormal Gaussian process
on a probability space (Ω,F ,P), and indexed by a real separable Hilbert space H . That is, Z is
a family of Gaussian random variables such that E[Z(h)] = 0 and E [Z(h)Z(g)] = 〈h,g〉H for all
h,g ∈H .

For integers q≥ 1, let H ⊗q denote the qth tensor product of H , and H �q denote the subspace
of symmetric elements of H ⊗q. We will also use the notation

⊗r
i=1 hi to denote an arbitrary tensor

product, with the convention that
⊗0

i=1 is the empty set. Given a real function f ∈H ⊗q, we define
the symmetrization f̃ ∈H �q as

f̃ (x1, . . . ,xq) =
1
q! ∑

σ

f (xσ(1), . . . ,xσ(q)), (2.1)

where σ includes all permutations of {1, . . . ,q}.
Let {en,n ≥ 1} be a complete orthormal system in H . For functions f ,g ∈H �q and p ∈
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{0, . . . ,q}, we define the pth-order contraction of f and g as that element of H ⊗2(q−p) given by

f ⊗p g =
∞

∑
i1,...,ip=1

〈
f ,ei1⊗·· ·⊗ eip

〉
H ⊗p⊗

〈
g,ei1⊗·· ·⊗ eip

〉
H ⊗p (2.2)

where f ⊗0 g = f ⊗ g and, if f ,g ∈H �q, f ⊗q g = 〈 f ,g〉H ⊗q . While f ,g are symmetric, the
contraction f ⊗q g may not be. We denote its symmetrization by f ⊗̃qg.

Let Hq be the qth Wiener chaos of Z, that is, the closed linear subspace of L2(Ω) generated by
the random variables {Hq(Z(h)),h ∈H ,‖h‖H = 1}, where Hq(x) is the qth Hermite polynomial,
defined as

Hq(x) = (−1)qe
x2
2

dq

dxq e−
x2
2 ,

and we follow the convention of Hermite polynomials with unity as a leading coefficient. Equiva-
lently, it can be shown (see [24]) that the Hermite polynomials can be defined recursively by

H0(x) = 1, H1(x) = x, and Hn+1(x) = xHn(x)−nHn−1(x) for n≥ 2. (2.3)

For q≥ 1, it is known that the map

Iq(h⊗q) = Hq(Z(h)) (2.4)

provides a linear isometry between H �q (equipped with the modified norm
√

q!‖·‖H ⊗q) and Hq,
where Iq(·) is the Wiener-Itô stochastic integral. By convention, H0 = R and I0(x) = x. It follows
from (2.4) and the properties of the Hermite polynomials that for f ∈H �p, g ∈H �q we have

E
[
Ip( f )Iq(g)

]
=

{
p!〈 f ,g〉H ⊗p i f p = q
0 otherwise

. (2.5)

Let S be the set of all smooth and cylindrical random variables of the form F = g(Z(φ1), . . . ,Z(φn)),
where n≥ 1; g : Rn→R is an infinitely differentiable function with compact support, and φi ∈H .
The Malliavin derivative of F with respect to Z is the element of L2(Ω;H ) defined as

DF =
n

∑
i=1

∂g
∂xi

(Z(φ1), . . . ,Z(φn))φi.

By iteration, for any integer q > 1 we can define the qth derivative DqF , which is an element of
L2(Ω;H �q).

We let Dq,2 denote the closure of S with respect to the norm ‖ · ‖Dq,2 defined as

‖F‖2
Dq,2 = E

[
F2]+ q

∑
i=1

E
[
‖DiF‖2

H ⊗i

]
.

More generally, let Dk,p(H⊗k) denote the corresponding Sobolev space of H⊗k-valued random
variables.

We denote by δ the Skorohod integral, which is defined as the adjoint of the operator D. A
random element u ∈ L2(Ω;H ) belongs to the domain of δ , Dom δ , if and only if,

|E [〈DF,u〉H ]| ≤ cu‖F‖L2(Ω)
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for any F ∈ D1,2, where cu is a constant which depends only on u. If u ∈ Dom δ , then the random
variable δ (u) ∈ L2(Ω) is defined for all F ∈ D1,2 by the duality relationship,

E [Fδ (u)] = E [〈DF,u〉H ] .

This is sometimes called the Malliavin integration by parts formula. We iteratively define the
multiple Skorohod integral for q≥ 1 as δ (δ q−1(u)), with δ 0(u) = u. For this definition we have,

E [Fδ
q(u)] = E [〈DqF,u〉H ⊗q] , (2.6)

where u ∈ Dom δ q and F ∈ Dq,2. The adjoint operator δ q is an integral in the sense that for a
(non-random) h ∈H �q, we have δ q(h) = Iq(h).

The following results will be used extensively in this paper. The reader may refer to [23] and
[27] for proofs and details.

Lemma 2.1. Let q≥ 1 be an integer, and r, j,k > 0 be integers.

(a) Assume F ∈Dq,2, u is a symmetric element of Dom δ q, and
〈
DrF,δ j(u)

〉
H ⊗r ∈L2(Ω;H ⊗q−r− j)

for all 0≤ r+ j ≤ q. Then 〈DrF,u〉H ⊗r ∈Dom δ r and

Fδ
q(u) =

q

∑
r=0

(
q
r

)
δ

q−r (〈DrF,u〉H ⊗r) .

(b) Suppose that u is a symmetric element of D j+k,2(H ⊗ j). Then we have,

Dk
δ

j(u) =
j∧k

∑
i=0

i!
(

k
i

)(
j
i

)
δ

j−i
(

Dk−iu
)
.

(c) Meyer inequality: for p≥ 1 and integers k ≥ q≥ 1, we have,

‖δ q(u)‖Dk−q,p ≤ ck,p‖u‖Dk,p(H⊗q) (2.7)

for all u ∈ Dk,p(H⊗k) and some constant ck,p.

(d) Let u ∈H �p and v ∈H �q. Then

δ
p(u)δ q(v) =

p∧q

∑
z=0

z!
(

p
z

)(
q
z

)
δ

p+q−2z(u⊗z v),

where ⊗z is the contraction operator defined in (2.2).

We will use the following hypercontractivity property of iterated integrals (see [29], Theorem
2.7.2, or [27], Sec. 1.4.3 for complete details). Let f ∈H �q and p ≥ 2. Then there exists a
positive constant Cp,q < ∞, depending only on p and q, such that

E
[
|Iq( f )|p

]
≤Cp,q

(
E
[
Iq( f )2]) p

2 . (2.8)
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2.3 Convergence theorems
We begin with an illustrative example, which shows how the Malliavin duality may be exploited
to to establish a central limit theorem. Suppose {Fn,n ≥ 1} is a bounded sequence of R-valued
random variables of the form Fn = δ (un) for a sequence {un} ⊂H . For a real value t, consider
the function

φn(t) = E
[
eitFn

]
.

We have the derivative
φ
′
n(t) = E

[
iFneitFn

]
= iE

[
eitFnδ (un)

]
.

By the Malliavin duality, this is

iE
〈
DeitFn,un

〉
H

=−E
〈
teitFnDFn,un

〉
H

=−tE
[
eitFn 〈DFn,un〉H

]
.

Now, if it happens that the term 〈DFn,un〉H converges in probability to a real number σ2 ≥ 0, then

as n→ ∞ we have for large n that φ ′n(t)
P
= −tσ2φn(t), that is, φn(t) converges in probability to

a function satisfying φ ′ = −tσ2φ , which is to be recognized as the Gaussian characteristic func-
tion. Hence, the Malliavin duality allows us to express the characteristic function as a differential
equation. Theorem 2.3, below, is a vector-valued, multiple integral version of the above example.

The first version of the following central limit theorem appeared in [23]. In [17], we extended
this to a multi-dimensional version, where the sequence was a vector of d components all in the
same Wiener chaos. For this version, we lay out conditions for stable convergence of a sequence of
vectors, where the vector components are not necessarily in the same Wiener chaos. This theorem
will be the main theoretical tool of Chapters 4 - 6. We begin with a definition of a form of weak
convergence. Note that this definition implies the usual convergence in distribution.

Definition 2.2. Assume Fn is a sequence of d−dimensional random variables defined on a prob-
ability space (Ω,F ,P), and F is a d−dimensional random variable defined on (Ω,G ,P), where
F ⊂ G . We say that Fn converges stably to F as n→ ∞, if, for any continuous and bounded
function f : Rd → R and R-valued, F−measurable random variable M, we have

lim
n→∞

E( f (Fn)M) = E( f (F)M) .

Theorem 2.3. Let d≥ 1 be an integer, and q1, . . . ,qd be positive integers with q∗=max{q1, . . . ,qd}.
Suppose that Fn is a sequence of random variables in Rd of the form Fn =

(
δ q1(u1

n), . . . ,δ
qd(ud

n)
)
,

where each ui
n is a R−valued symmetric function in D2q∗,2qi(H ⊗qi). Suppose that the sequence Fn

is bounded in L1(Ω) and that:

(a)
〈

u j
n,
⊗m

`=1(D
a`F j`

n )⊗h
〉

H ⊗q
converges to zero in L1(Ω) for all integers 1 ≤ j, j` ≤ d, all

integers 1≤ a1, . . . ,am,r ≤ q j−1 such that a1 + · · ·+am + r = q j; and all h ∈H ⊗r.

(b) For each 1 ≤ i, j ≤ d,
〈
ui

n,D
qiF i

n
〉
H ⊗qi converges in L1(Ω) to a nonnegative random variable

s2
i , and for i 6= j,

〈
ui

n,D
qiF j

n

〉
H ⊗qi

converges to zero in L1(Ω).

Then Fn converges stably to a random vector in Rd , whose components each have independent
Gaussian law N (0,s2

i ) given Z.
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Proof. We use the conditional characteristic function. Given any h1, . . .hm ∈H , we want to show
that the sequence

ξn =
(

F1
n , . . . ,F

d
n ,Z(h1), . . . ,Z(hm)

)
converges in distribution to a vector

(
F1

∞, . . .F
d
∞ ,Z(h1), . . . ,Z(hm)

)
, where, for any vector λ ∈ Rd ,

F∞ satisfies

E
(

eiλ T F∞|Z(h1), . . . ,Z(hm)
)
= exp

(
−1

2
λ

T Sλ

)
, (2.9)

where S is the diagonal d×d matrix with entries s2
i .

Since Fn is bounded in L1(Ω), the sequence ξn is tight in the sense that for any ε > 0, there
is a K > 0 such that P

(
Fn ∈ [−K,K]d

)
> 1− ε , which follows from Chebyshev inequality. Drop-

ping to a subsequence if necessary, we may assume that ξn converges in distribution to a limit(
F1

∞, . . .F
d
∞ ,Z(h1), . . .Z(hm)

)
. Let Y := g(Z(h1), . . . ,Z(hm)), where g ∈ C ∞

b (Rm), and consider

φn(λ ) = φ(λ ,ξn) := E
(

eiλ T FnY
)

for λ ∈ Rd . The convergence in law of ξn implies that for each
1≤ j ≤ d:

lim
n→∞

∂φn

∂λ j
= lim

n→∞
iE
(

F j
n eiλ T FnY

)
= iE

(
F j

∞eiλ T F∞Y
)
, (2.10)

where convergence in distribution follows from a truncation argument applied to F j
n .

On the other hand, using the duality property of the Skorohod integral and the Malliavin deriva-
tive:

∂φn

∂λ j
= iE

(
δ

q j(u j
n)e

iλ T FnY
)
= iE

(〈
u j

n,D
q j
(

eiλ T FnY
)〉

H
⊗q j

)
= i

q j

∑
a=0

(
q j

a

)
E
(〈

u j
n,D

a
(

eiλ T Fn
) ∼
⊗ Dq j−aY

〉
H
⊗q j

)

= i

{
E
〈

u j
n,Y Dq jeiλ T Fn

〉
H ⊗q j

+
q j−1

∑
a=0

(
q j

a

)
E
〈

u j
n,D

aeiλ T Fn
∼
⊗ Dq j−aY

〉
H ⊗q j

}
(2.11)

By condition (a), we have that
〈

u j
n,Daeiλ T Fn

∼
⊗ Dq j−aY

〉
H ⊗q j

converges to zero in L1(Ω) when
a < q j, so the sum term vanishes as n→ ∞, and this leaves

lim
n→∞

iE
〈

u j
n,Y Dqeiλ T Fn

〉
H ⊗q j

= lim
n→∞

i
d

∑
k=1

E
(

iλkeiλ T Fn
〈

u j
n,Y Dq jFk

n

〉
H ⊗q j

)
=−E

(
λ jeiλ T F∞s2

jY
)

because the lower-order derivatives in Dq jeiλ T Fn also vanish by condition (a), and cross terms
( j 6= k) terms vanish by condition (b). Combining this with (2.10), we obtain:

iE
(

F j
∞eiλ ·F∞Y

)
=−λ jE

(
eiλ ·F∞s2

jY
)
.
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This leads to the PDE system:

∂

∂λ j
E
(

eiλ T F∞ |Z(h1), . . . ,Z(hm)
)
=−λ js2

jE
(

eiλ T F∞|Z(h1), . . . ,Z(hm)
)

which has unique solution (2.9).

Remark 2.4. It suffices to impose condition (a) for h ∈S0, where S0 is a total subset of H ⊗r.

If it can be shown that Fn also satisfies a relative compactness condition, then we can prove
convergence in the Skorohod space D[0,∞).

Corollary 2.5. Suppose {Gn(t), t ≥ 0} is a sequence of R-valued processes of the form Gn(t) =
δ q (un(t)), where un(t) is a sequence of symmetric functions in D2q,2q(H⊗q). Assume that for any
finite set of times {0 = t0 < t1 < · · ·< td}, the sequence

(Gn(t1)−Gn(t0), . . . ,Gn(td)−Gn(td−1))

satisfies Theorem 2.3; where the d×d matrix Σ is diagonal with entries s2(ti)− s2(ti−1). Suppose
further that there exist real numbers C > 0, γ > 0, and β > 1 such that for each n and for any
0≤ t1 < t < t2, we have

E
[
|Gn(t)−Gn(t1)|γ |Gn(t2)−Gn(t)|γ

]
≤C

(
bnt2c−bnt1c

n

)β

.

Then the family of stochastic processes {Gn,n≥ 1} converges as n→∞ to the process G= {Gt , t ≥
0}, where G(t) is a Gaussian random variable with mean zero and variance s2(t). Equivalently,

we can say that Gn(t)
L−→
√

s2(t) Z as n→ ∞, where Z ∼N (0,1).

This convergence criteria in D is well known (see, e.g, Theorem 13.5 of Billingsley [6]).

In Chapter 7 we will use a version of the Fourth Moment Theorem, which is stated below.
This theorem, first published in 2005, has inspired an extensive body of literature, and provided
solution techniques to a new class of problems. This first version (which was 1-dimensional) of this
theorem was proved in [29]. Since then, other equivalent conditions have been added [24, 28]. The
multi-dimensional version stated above was proved by Peccati and Tudor [31]. A key advantage
of this theorem is that, unlike the standard method of moments, it is not necessary to know about
moments of any order higher than four.

Theorem 2.6. Fix integers n≥ 2 and d ≥ 1. Let
{(

f (k)1 , . . . , f (k)d

)
,k ≥ 1

}
be a sequence of vectors

such that f (k)i ∈H �n for each k and i = 1, . . . ,d; and

lim
k→∞

n!‖ f (k)i ‖
2
H ⊗n = lim

k→∞

∥∥∥In

(
f (k)i

)∥∥∥2

L2(Ω)
=Cii, ∀i = 1, . . . ,d;

lim
k→∞

E
[
In

(
f (k)i

)
In

(
f (k)j

)]
=Ci j, ∀1≤ i < j ≤ d.

Then the following are equivalent:
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(i) As k → ∞, the vector
(

In( f (k)1 ), . . . , In( f (k)d )
)

converges in distribution to a d-dimensional
Gaussian vector with distribution N (0,Cd), where Cd is a symmetric, d× d matrix with
entries Ci j;

(ii) For each i = 1, . . . ,d, In( f (k)i ) converges in distribution to Ni, where Ni is a centered Gaussian
random variable with variance Cii;

(iii) For each i = 1, . . . ,d,

lim
k→∞

E
[

In

(
f (k)i

)4
]
= 3C2

ii;

(iv) For each i = 1, . . . ,d, and each integer 1≤ p≤ n−1, limk→∞

∥∥∥ f (k)i ⊗p f (k)i

∥∥∥
H ⊗2(n−p)

= 0.

2.4 Stochastic calculus for a specific Gaussian process
For some T > 0, let X = {Xt ,0≤ t ≤ T} be a centered Gaussian process with covariance

E [XsXt ] = R(s, t) (2.12)

for s, t ∈ [0,T ]. Let E denote the set of R-valued step functions on [0,T ]. We then let H be the
Hilbert space defined as the closure of E with respect to the inner product〈

1[0,s],1[0,t]
〉
H
= R(s, t).

The mapping 1[0,t] 7→ Xt can be extended to a linear isometry between H and the Gaussian space
spanned by X . In this way, {X(h),h ∈ H} is an isonormal Gaussian process as in Section 2.2.

For an integer n ≥ 2, we consider a uniform partition of [0,∞) given by { j/n, j ≥ 1}. Define
the following notation:

• ∆X j
n
= X j+1

n
−X j

n
, X̃ j

n
= 1

2

(
X j

n
+X j+1

n

)
, and X̂ j

n
= X2 j+1

2n

• ∂ j
n
= 1

[ j
n ,

j+1
n ]

, εt = 1[0,t]

• ε̃ j
n
= 1

2

(
1
[0, j

n ]
+1

[0, j+1
n ]

)
, and ε̂ j

n
= 1

[0, 2 j+1
2n ]

This notation will be used extensively in the chapters to follow.
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Chapter 3

Stochastic integration and fBm

Let BH = {BH
t , t ≥ 0} be a fractional Brownian motion with Hurst parameter H. That is, BH is a

centered Gaussian process with covariance given by

RH(s, t) = t2H + s2H−|t− s|2H , (3.1)

for s, t ≥ 0 and some value H ∈ (0,1). FBm is a well-known process that generalizes the standard
Brownian motion, indeed, it can be seen from the form of RH that H = 1/2 corresponds to standard
Brownian motion. It is also known that for parameter values 1/2 < H < 1, the trajectories are
‘smoother’ that standard Bm, while the paths are ‘rougher’ for H < 1/2. In Chapters 4 and 5, we
consider a generalized Gaussian process, for which fBm can be considered the prototype, and the
results of those theorems hold for fBm with an appropriate values of H. In Chapter 7, we provide
more specific details about stochastic calculus based on fBm with H > 1/2.

The following fBm properties follow from (3.1).

(B.1) E
[
(∆BH

j
n
)2
]
=
〈

∂ j
n
,∂ j

n

〉
H
= 1

n2H .

(B.2) E
[

∆BH
j
n

∆BH
j+1
n

]
=
〈

∂ j
n
,∂ j+1

n

〉
H
= (22H−2)/2n2H .

(B.3) If |k− j| ≥ 2,
∣∣∣∣E[∆BH

j
n

∆BH
k
n

]∣∣∣∣ = ∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣ ≤ Cn−2H | j− k|2H−2, where the constant C

does not depend on j.

(B.4) For any t ∈ [0,T ] and integer 1≤ j,∣∣∣E[∆BH
j
n

BH
t

]∣∣∣= ∣∣∣〈∂ j
n
,εt

〉
H

∣∣∣≤Cn−2H ( j2H−1 + | j−nt|2H−1) .
In particular, sup[0,T ]

∣∣∣E[∆BH
j/nBH

t

]∣∣∣≤ 2n−2H , and if |k− j| ≥ 2,∣∣∣E[∆BH
j
n

B̃H
k
n

]∣∣∣= ∣∣∣〈∂ j
n
, ε̃ k

n

〉
H

∣∣∣≤ n−2H ( j2H−1 + | j− k|2H−1) .
(B.5) For any integer 1≤ j,

∣∣∣∣E[∆BH
j
n

B̃H
j
n

]∣∣∣∣= ∣∣∣〈∂ j
n
, ε̃ j

n

〉
H

∣∣∣≤ n−2H j2H−1.
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As a result of properties (B.1) - (B.5), we have the following technical results.

Lemma 3.1. Let H < 1/2 and 0 < t ≤ T , and let n≥ 2 be an integer. Then

(a) For fixed 0≤ s≤ T and integer r ≥ 1,

bntc−1

∑
j=0

∣∣∣〈∂ j
n
,εs

〉r

H

∣∣∣≤Cn−2(r−1)H .

(b) For integer r ≥ 1,
bntc−1

∑
j=0

∣∣∣〈∂ j
n
, ε̃ j

n

〉r

H

∣∣∣≤Cn−2(r−1)H .

(c) For integers r ≥ 1 and 0≤ k ≤ bntc,

bntc−1

∑
j=0

∣∣∣〈∂ j
n
,∂ k

n

〉r

H

∣∣∣≤Cn−2rH ,

and consequently
bntc−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉r

H

∣∣∣≤Cbntcn−2rH .

Proof. For (a), first note that we have
∣∣〈∂0,εt〉H

∣∣≤ T Hn−H by (B.1) and Cauchy-Schwarz. Further,

if
∣∣∣ j

n − s
∣∣∣< 2

n , then by (B.4) we have
∣∣∣〈∂ j

n
,εs

〉
H

∣∣∣≤Cn−2H . Let J = {1≤ j≤ bntc, | j−ns|> 1};
and note that |J c| ≤ 2. Then for the case r = 1 we have

bntc−1

∑
j=0

∣∣∣〈∂ j
n
,εs

〉
H

∣∣∣= ∣∣〈∂0,εt〉H
∣∣+ ∑

j∈J c

∣∣∣〈∂ j
n
,εs

〉
H

∣∣∣+ ∑
j∈J

∣∣∣〈∂ j
n
,εs

〉
H

∣∣∣
≤ T Hn−H +Cn−2H +Cn−2H

bntc−1

∑
j=1

j2H−1 + | j−ns|2H−1

≤Cbntc2Hn−2H ≤C.

For the case r > 1, we have by (B.4)

bntc−1

∑
j=0

∣∣∣〈∂ j
n
,εs

〉r

H

∣∣∣≤ sup
0≤ j≤bntc

∣∣∣∣〈∂ j
n
,εs

〉r−1

H

∣∣∣∣ bntc−1

∑
j=0

∣∣∣〈∂ j
n
,εs

〉
H

∣∣∣≤Cn−2(r−1)H .
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For (b), we have by (B.4) and (3.1)

bntc−1

∑
j=0

∣∣∣〈∂ j
n
, ε̃ j

n

〉r

H

∣∣∣≤ sup
0≤ j≤bntc

∣∣∣∣〈∂ j
n
, ε̃ j

n

〉r−1

H

∣∣∣∣ bntc−1

∑
j=0

∣∣∣〈∂ j
n
, ε̃ j

n

〉
H

∣∣∣
≤Cn−2(r−1)H

bntc−1

∑
j=0

1
2

∣∣∣E[∆B j
n

(
B j

n
+B j+1

n

)]∣∣∣
=Cn−2(r−1)H

bntc−1

∑
j=0

1
2

∣∣∣∣E[B2
j+1
n
−B2

j
n

]∣∣∣∣
=Cn−2(r−1)H

bntc−1

∑
j=0

1
2

[(
j+1

n

)2H

−
(

j
n

)2H
]

≤Cn−2(r−1)H bntc
n
≤Cn−2(r−1)H .

For (c), we note that
∣∣∣〈∂ j/n,∂0

〉
H

∣∣∣ = ∣∣∣〈∂ j/n,ε1/n
〉
H

∣∣∣ ≤ n−2H . Also note that by (B.1) and

Cauchy-Schwarz we have
∣∣∣〈∂ j/n,∂k/n

〉
H

∣∣∣ ≤ n−2H for any 1 ≤ j,k ≤ bntc. To begin the proof,
we consider the case when 1≤ k ≤ bntc−1 is fixed. Then

bntc−1

∑
j=0

∣∣∣〈∂ j
n
,∂ k

n

〉r

H

∣∣∣≤ sup
0≤æ≤bntc

{
sup

0≤k≤bntc

∣∣∣∣〈∂ j
n
,∂ k

n

〉r−1

H

∣∣∣∣
}
bntc−1

∑
j=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣
≤ n−2(r−1)H

(
n−2H +

k−2

∑
j=1

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣+ k+1

∑
j=k−1

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣+ bntc−1

∑
j=k+2

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣)

Then we use (B.2) and (B.3) to write

n−2(r−1)H

(
n−2H +

k−2

∑
j=1

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣+ k+1

∑
j=k−1

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣+ bntc−1

∑
j=k+2

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣)

≤ n2(r−1)H

(
n−2H +Cn−2H

k−2

∑
j=1

(k− j)2H−2 +
k+1

∑
j=k−1

n−2H +Cn−2H
bntc−1

∑
j=k+2

( j− k)2H−2

)

≤Cn−2rH

(
4+2

∞

∑
m=1

m2H−2

)
≤Cn−2rH ,

where we note the sum is finite because H < 1/2. For the double sum result we have

bntc−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉r

H

∣∣∣≤ bntc−1

∑
k=0

sup
0≤k≤bntc

{
bntc−1

∑
j=0

∣∣∣〈∂ j
n
,∂ k

n

〉r

H

∣∣∣}≤Cbntcn−2rH .
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In order to identify the ‘critical’ cases, we will use the following theorem that was first proved
by Nualart and Ortiz-Latorre [28]:

Theorem 3.2. Fix H < 1/2 and an odd integer k ≥ 1. For integers n≥ 2 define

Z(n)
t = nkH− 1

2

bntc−1

∑
j=0

(
∆BH

j
n

)k
.

Then as n→ ∞, the two-dimensional process (BH ,Z(n)) converges in distribution in the Skorohod
space D([0,T ])2 to (BH ,cB

1
2 ), where B

1
2 is a standard Brownian motion independent of BH , and

c2 = E
[
X2k

1

]
+2

∞

∑
j=1

E
[
(X1X1= j)

k
]
, for X j = BH

j −BH
j−1.

3.1 Cases with H < 1/2

In this section we consider the different integral constructions discussed in Chapter 1, and show
how each has an associated critical case, for which the given Riemann sum does not converge
in general. The following proposition summarizes some known results about stochastic integrals
with respect to fBm, when the integrals arise from a Riemann sum construction. A comprehensive
treatment can be found in an important paper by Gradinaru, Nourdin, Russo & Vallois [16].

Proposition 3.3. Let g ∈ C ∞(R), such that g and its derivatives have moderate growth. The
following Riemann sums converge in probability as n→ ∞ to g(Bt)−g(0) for the given ranges of
H:

(a) Midpoint (type 2) rule: for 1/6 < H < 1/2,

bntc−1

∑
j=0

g′(B̃ j
n
)∆B j

n
,

where B̃ j
n
= 1

2

(
B j

n
+B j+1

n

)
.

(b) Trapezoidal rule: For 1/6 < H < 1/2,

bntc−1

∑
j=0

1
2

(
g′(B j

n
)+g′(B j+1

n
)
)

∆B j
n
.

(c) Simpson’s rule: For 1/10 < H < 1/2,

bntc−1

∑
j=0

1
6

(
g′(B j

n
)+4g′(B̃ j

n
)+g′(B j+1

n
)
)

∆B j
n
.
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(d) Milne’s rule: For 1/14 < H < 1/2,

bntc−1

∑
j=0

1
90

(
7g′(B j

n
)+32g′(B j

n
+

1
4

∆B j
n
)+12g′(B̃ j

n
)+32g′(B j

n
+

3
4

∆B j
n
)+7g′(B j+1

n
)

)
∆B j

n
.

All of these results follow from Theorem 4.4 of [16], in fact they are also proved there for
H ≥ 1/2. However, here we give a different proof of part (c). By similar techniques, results (a),
(b) and (d) could also be done in this way. This proof will contain some results that will be used in
Chapter 6, and help set up the proof of the main result. We begin with a technical result.

Lemma 3.4. Let r = 1,3,5, . . . and n≥ 2 be an integer. Let φ : R→R be a C 2r function such that
φ and all derivatives up to order 2r have moderate growth, and let {Bt , t ≥ 0} be fBm with Hurst
parameter H. Then for each r, there is a constant C > 0 such that

E

(bntc−1

∑
j=0

φ(B̃ j
n
)∆Br

j
n

)2
≤C sup

0≤ j≤bntc

∥∥∥φ(B̃ j
n
)
∥∥∥2

D2r,2
bntcn−2rH ,

where C depends on r and H.

Proof. To simplify notation, let Y j := φ(B̃ j
n
). Note that by (B.1), we have ‖∆B j

n
‖L2(Ω) = ‖∂ j

n
‖H =

n−H . For Hermite polynomials Hr(x), r≥ 1, it can be shown by induction on the relation Hq+1(x)=
xHq(x)−qHq−1(x) that

xr =
b r

2c
∑
p=0

C(r, p)Hr−2p(x),

where each C(r, p) is an integer constant. From Section 2.1, we use (2.4) with x=∆B j
n
/‖∆B j

n
‖L2(Ω)=

nH∆B j
n

to write

Hr

(
nH

∆B j
n

)
= δ

r
(

nrH
∂
⊗r
j
n

)
.

It follows that

nrH
∆Br

j
n
=
b r

2c
∑
p=0

C(r, p)Hr−2p(nH
∆B j

n
) =
b r

2c
∑
p=0

C(r, p)δ r−2p
(

n(r−2p)H
∂
⊗r−2p
j
n

)
,

which implies

∆Br
j
n
=
b r

2c
∑
p=0

C(r, p)n−2pH
δ

r−2p
(

∂
⊗r−2p
j
n

)
.
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With this representation for ∆Br
j/n, we then have

E

(bntc−1

∑
j=0

Y j∆Br
j
n

)2


=
b r

2 c

∑
p,p′=0

C(r, p)C(r, p′)n−2H(p+p′)
bntc−1

∑
j,k=0

E
[
YjYkδ

r−2p
(

∂
⊗r−2p
j
n

)
δ

r−2p′
(

∂
⊗r−2p′
k
n

)]

≤
b r

2c

∑
p,p′=0

|C(r, p)C(r, p′)|n−2H(p+p′)
bntc−1

∑
j,k=0

∣∣∣∣E[YjYkδ
r−2p

(
∂
⊗r−2p
j
n

)
δ

r−2p′
(

∂
⊗r−2p′
k
n

)]∣∣∣∣ . (3.2)

By Lemma 2.1.d, the product

δ
r−2p

(
∂
⊗r−2p
j
n

)
δ

r−2p′
(

∂
⊗r−2p′
k
n

)
consists of terms of the form

Cδ
2r−2(p+p′)−2z

(
∂
⊗r−2p−z
j
n

⊗∂
⊗r−2p′−z
k
n

)〈
∂ j

n
,∂ k

n

〉z

H
, (3.3)

where z ≥ 0 is an integer satisfying 2r− 2(p+ p′)− 2z ≥ 0. Using (3.3), we can write that (3.2)
consists of nonnegative terms of the form

Cn−2H(p+p′)
bntc−1

∑
j,k=0

∣∣∣∣E[YjYkδ
2r−2(p+p′)−2z

(
∂
⊗r−2p−z
j
n

⊗∂
⊗r−2p′−z
k
n

)〈
∂ j

n
,∂ k

n

〉z

H

]∣∣∣∣ . (3.4)

To address terms of this type, suppose first that z≥ 1. Lemma 2.1.c implies that∥∥∥∥δ
2r−2(p+p′)−2z

(
∂
⊗r−2p−z
j
n

⊗∂
⊗r−2p′−z
k
n

)∥∥∥∥
L2(Ω)

≤C
(
‖∂ j

n
‖r−2p−z
H ‖∂ k

n
‖r−2p′−z
H

)
≤C

∥∥∥∂ 1
n

∥∥∥2r−2(p+p′)−2z

H
=Cn−2H(r−p−p′−z).

Hence, for z≥ 1, (3.4) is bounded by

Cn−2H(p+p′) sup
0≤ j≤bntc

∥∥Yj
∥∥2

L2(Ω)

∥∥∥∂ 1
n

∥∥∥2r−2(p+p′)−2z

H

bntc−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉z

H

∣∣∣
≤C sup

0≤ j≤bntc

∥∥Yj
∥∥2
D2r,2 bntcn−2rH ,

which follows from Lemma 3.1.c.
On the other hand, for the terms with z = 0, by (2.6) we have

E
[
YjYkδ

2r−2(p+p′)
(

∂
⊗r−2p
j
n

⊗∂
⊗r−2p′
k
n

)]
= E

〈
D2r−2(p+p′)YjYk,∂

⊗r−2p
j
n

⊗∂
⊗r−2p′
k
n

〉
H⊗2r−2(p+p′)

. (3.5)
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By definition of the Malliavin derivative and Leibniz rule, D2r−2(p+p′)YjYk consists of terms of
the form DaYj⊗DbYk, where a+ b = 2r− 2(p+ p′). Without loss of generality, we may assume
b ≥ 1. By assumptions on φ and the definition of the Malliavin derivative, we know that DbYk =
φ (b)(B̃k/n)ε̃

⊗b
k/n, and we know that for each b≤ 2r, DbYk ∈ L2(Ω;H⊗b). It follows that we can write,∣∣∣∣E〈DaYj⊗DbYk,∂

⊗r−2p
j
n

⊗∂
⊗r−2p′
k
n

〉
H⊗a+b

∣∣∣∣
≤C‖Yj‖D2r,2‖Yk‖D2r,2

∣∣∣∣〈ε̃ j
n
,∂ j

n

〉φ

H

∣∣∣∣ ∣∣∣∣〈ε̃ j
n
,∂ k

n

〉a−φ

H

∣∣∣∣
×
∣∣∣〈ε̃ k

n
,∂ j

n

〉ψ

H

∣∣∣ ∣∣∣∣〈ε̃ k
n
,∂ k

n

〉b−ψ

H

∣∣∣∣ ,
for integers 0 ≤ φ ≤ a, 0 ≤ ψ ≤ b. Without loss of generality, we may assume ψ ≥ 1, and by
implication b≥ 1. Then using (B.4),∣∣∣∣E〈DaYjDbYk,∂

⊗r−2p
j
n

⊗∂
⊗r−2p′
k
n

〉
H⊗a+b

∣∣∣∣≤C sup
0≤ j≤bntc

‖Yj‖2
D2r,2n−2H(a+b−1)

∣∣∣〈ε̃ k
n
,∂ j

n

〉
H

∣∣∣ .
Thus, for each pair (a,b), the corresponding term of (3.4) is bounded by

Cn−2H(p+p′)
bntc−1

∑
j,k=0

∣∣∣∣E[YjYkδ
2r−2(p+p′)

(
∂
⊗r−2p
j
n

⊗∂
⊗r−2p′
k
n

)]∣∣∣∣
≤Cn−2H(p+p′+a+b−1) sup

0≤ j≤bntc
‖Yj‖2

D2r,2

bntc−1

∑
j,k=0

∣∣∣〈ε̃ k
n
,∂ j

n

〉
H

∣∣∣
≤Cn−2H(p+p′+a+b−1) sup

0≤ j≤bntc
‖Yj‖2

D2r,2

bntc−1

∑
j,k=0

∣∣∣〈ε̃ k
n
,∂ j

n

〉
H

∣∣∣ .
By Lemma 3.1.a,

bntc−1

∑
j=0

∣∣∣〈ε̃ k
n
,∂ j

n

〉
H

∣∣∣≤Cbntc2Hn−2H ≤C

for all 0≤ k ≤ bntc, so that

Cn−2H(p+p′+a+b−1) sup
0≤ j≤bntc

‖Yj‖2
D2r,2

bntc−1

∑
k=0

{
sup

0≤k≤bntc

bntc−1

∑
j=0

∣∣∣〈ε̃ k
n
,∂ j

n

〉
H

∣∣∣}
≤C sup

0≤ j≤bntc
‖Yj‖2

D2r,2bntcn−2H(p+p′+a+b−1),

where p+ p′+a+b−1 = 2r− (p+ p′)−1≥ r, since p+ p′+1≤ 2
⌊ r

2

⌋
+1≤ r, for odd integer

r. This concludes the proof.

Now for the convergence of the Simpson’s rule sum. We begin with some elementary results
from the calculus of deterministic functions. For x,h ∈ R and a C ∞ function g, we have the
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following integral form for the Simpson’s rule sum:

g(x+h)−g(x−h) =
∫ h

−h
g′(x+u) du

=
h
3
(
g′(x−h)+4g′(x)+g′(x+h)

)
+

1
6

∫ h

0

(
g(4)(x−u)−g(4)(x+u)

)
u(h−u)2du.

See Talman [40] for a nice discussion of the Simpson’s rule error term. Next, we consider a Taylor
expansion of order 7 for g(4):

g(4)(x+u)−g(4)(x) =
6

∑
`=1

g(4+`)(x)
`!

u` +
g(11)(ξ )

7!
u7; and

g(4)(x)−g(4)(x−u) =
6

∑
`=1

(−1)`+1g(4+`)(x)
`!

u` +
g(11)(η)

7!
u7

Adding the above equations, we obtain

g(4)(x+u)−g(4)(x−u) = 2
3

∑
ν=1

g(4+2ν−1)(x)
(2ν−1)!

u2ν−1 +
g(11)(ξ )+g(11)(η)

7!
u7.

It follows that we can write

g(x+h)−g(x−h) =
h
3
(
g′(x−h)+4g′(x)+g′(x+h)

)
− 1

3

3

∑
ν=1

g(4+2ν−1)(x)
(2ν−1)!

∫ h

0
u2ν(h−u)2du

− g(11)(ξ )+g(11)(η)

(6)(7!)

∫ h

0
u8(h−u)2du

=
h
3
(
g′(x−h)+4g′(x)+g′(x+h)

)
− g5)(x)

90
h5−A7g(7)(x)h7−A9g(9)(x)h9

− 1
6(7!)

∫ h

0

[
g(11)(ξ )+g(11)(η)

]
u8(h−u)2du, (*)

where A7,A9 are positive constants, and ξ = ξ (u) ∈ [x− h,x+ h], with similar for η . With this
relation, we now return to Proposition 3.3.c. We begin with the telescoping series,

g(Bt)−g(0) =
bntc−1

∑
j=0

(
g(B j+1

n
)−g(B j

n
)
)
+
(

g(Bt)−g(B bntc
n
)
)

=
bntc−1

∑
j=0

∫ B( j+1)/n

B j/n

g′(u) du+
(

g(Bt)−g(B bntc
n
)
)
.

By continuity, the term
(
g(Bt)−g(Bbntc/n)

)
tends to zero uniformly on compacts in probability

(ucp) as n→ ∞, and may be neglected. For each integral term, we use (*) with x = B̃ j/n and
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h = 1
2∆B j/n to obtain

bntc−1

∑
j=0

∫ B( j+1)/n

B j/n

g′(u) du =
bntc−1

∑
j=0

1
6

(
g′(B j

n
)+4g′(B̃ j

n
)+g′(B j+1

n
)
)
− 1

25 90

bntc−1

∑
j=0

g(5)(B̃ j
n
)∆B5

j
n

−A7

bntc−1

∑
j=0

g(7)(B̃ j
n
)∆B7

j
n
−A9

bntc−1

∑
j=0

g(9)(B̃ j
n
)∆B9

j
n

− 1
6(7!)

bntc−1

∑
j=0

∫
∆B j/n

0

(
g(11)(ξ )+g(11)(η)

)
u8(∆B j

n
−u)2du. (3.6)

By Lemma 3.4, the terms

bntc−1

∑
j=0

g(5)(B̃ j
n
)

2880
∆B5

j
n
, A7

bntc−1

∑
j=0

g(7)(B̃ j
n
)∆B7

j
n
, A9

bntc−1

∑
j=0

g(9)(B̃ j
n
)∆B9

j
n

all tend to zero in L2(Ω) as n→ ∞. For the last term, we have the L2(Ω) estimate

E

(bntc−1

∑
j=0

∫
∆B j/n

0

[
g(11)(ξ )+g(11)(η)

]
u8(∆B j

n
−u)2du

)2


≤C

(
E

[
sup

s∈[0,t]
|g(11)(Bs)

4|

]) 1
2
(
bntc−1

∑
j=0
‖∆B11

j
n
‖L4(Ω)

)2

≤Cbntc2n−22H ≤Cn−2H ,

because ‖∆B11
j/n‖L4(Ω) ≤C

(
E|∆B2

j/n|
) 11

2 ≤Cn−11H by (B.1) and the Gaussian moments formula.
Thus, we have

P lim
n→∞

bntc−1

∑
j=0

1
6

(
g′(B j

n
)+4g′(B̃ j

n
)+g′(B j+1

n
)
)

∆B j
n
= f (Bt)− f (0),

when H > 1/10, and Proposition 3.3.c is proved. �

As a converse to Proposition 3.3.c (and parts (a), (b) and (d) by similar computation), let
g(x) = f (x) be a polynomial such that g(5) = f (5) = 1. Then

SS
n(t) = f (B bntc

n
)− f (0)+

1
2880

bntc−1

∑
j=0

∆B5
j
n
.

By Theorem 3.2, the sequence
(

Bt ,∑
bntc−1
j=0 ∆B5

j/n

)
converges in distribution to (Bt ,W ), where W is

a Gaussian random variable, independent of B. It follows that SS
n(t) does not, in general, converge

in probability when H ≤ 1/10.
Since Proposition 3.3 is restricted to odd powers, we need a different proof to address the

Midpoint (type 1) case.
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Proposition 3.5. Let t > 0, let g be a C 6(R) function such that g and its first 6 derivatives satisfy
moderate growth conditions, and let {BH

t , t ≥ 0} be a fractional Brownian motion with Hurst
parameter H. Then if H > 1/4, we have

b nt
2 c

∑
j=1

g′(BH
2 j−1

n
)

(
BH

2 j
n
−BH

2 j−2
n

)
P−→ g(BH

t )−g(0),

as n→ ∞. The sum does not, in general, converge if H < 1/4.

Proof. In this proof, we write Bt instead of BH
t to simplify notation. For each 1 ≤ j ≤

⌊nt
2

⌋
, we

consider two Taylor expansions of order 4:

g(B 2 j
n
) = g(B 2 j−1

n
)+

3

∑
r=1

1
r!

g(r)(B 2 j−1
n
)∆Br

2 j−1
n

+
1
24

g(4)(ζ2 j−1)∆B4
2 j−1

n

g(B 2 j−2
n
) = g(B 2 j−1

n
)

3

∑
r=1

(−1)r+1

r!
g(r)(B 2 j−1

n
)∆Br

2 j−2
n
− 1

24
g(3)(η2 j−2)∆B4

2 j−2
n
,

for intermediate values ζ2 j−1,η2 j−2. Subtracting the above, we obtain

g(B 2 j
n
)−g(B 2 j−2

n
) = g′(B 2 j−1

n
)(B 2 j

n
−B 2 j−2

n
)+

1
2

g′′(B 2 j−1
n
)

(
∆B2

2 j−1
n
−∆B2

2 j−2
n

)
+

1
6

g(3)(B2 j−1)

(
∆B3

2 j−1
n

+∆B3
2 j−2

n

)
+

1
24

g(4)(ζ2 j−1)∆B4
2 j−1

n

− 1
24

g(4)(η2 j−2)∆B4
2 j−2

n
,

so that

b nt
2 c

∑
j=1

g′(BH
2 j−1

n
)

(
BH

2 j
n
−BH

2 j−2
n

)
= g(B 2

nb nt
2 c)−g(0)

− 1
2

b nt
2 c

∑
j=1

g′′(B 2 j−1
n
)

(
∆B2

2 j−1
n
−∆B2

2 j−2
n

)
− 1

6

b nt
2 c

∑
j=1

g(3)(B 2 j−1
n
)∆B3

2 j−1
n
− 1

6

b nt
2 c

∑
j=1

g(3)(B 2 j−2
n
)∆B3

2 j−2
n

− 1
24

b nt
2 c

∑
j=1

g(4)(ζ2 j−1)∆B4
2 j−1

n
+

1
24

b nt
2 c

∑
j=1

g(4)(η2 j−2)∆B4
2 j−2

n
.

We want to show that the 3rd and 4th order terms vanish in probability. We can write

1
6

b nt
2 c

∑
j=1

g(3)(B 2 j−1
n
)∆B3

2 j−1
n

=
1
6

b nt
2 c

∑
j=1

g(3)
(

1
2

(
B 2 j−2

n
+B 2 j

n

))
∆B3

2 j−1
n

+
1
6

b nt
2 c

∑
j=1

[
g(3)(B 2 j−1

n
)−g(3)

(
1
2

(
B 2 j−2

n
+B 2 j

n

))]
∆B3

2 j−1
n
.
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By Lemma 3.4,

E


b nt

2 c
∑
j=1

g(3)
(

1
2

(
B 2 j−2

n
+B 2 j

n

))
∆B3

2 j−1
n

2
≤Cbntcn−6H ,

which vanishes for H > 1/4. For the other term, we have by Mean Value theorem and (B.1)

E
∣∣∣∣g(3)(B 2 j−1

n
)−g(3)

(
1
2

(
B 2 j−2

n
+B 2 j

n

))∣∣∣∣≤E

∣∣∣∣∣ sup
s∈[0,t]

g(4)(Bs)

[
1
2

(
B 2 j−2

n
+B 2 j

n

)
−∆B 2 j−1

n

]∣∣∣∣∣≤Cn−H .

Moreover, sup0≤ j≤bnt/2cE
∣∣∣∆B3

(2 j−1)/n

∣∣∣ ≤ Cn−3H by (B.1) and Hölder inequality, hence we can
write

E
b nt

2 c
∑
j=1

∣∣∣∣g(3)(B 2 j−1
n
)−g(3)

(
1
2

(
B 2 j−2

n
+B 2 j

n

))∣∣∣∣≤C
b nt

2 c
∑
j=1

n−4H ≤ bntcn−4H ,

which tends to zero if H > 1/4. The computation for

1
6

b nt
2 c

∑
j=1

g(3)(B 2 j−1
n
)∆B3

2 j−2
n

is similar. Next, for the 4th order terms we have the estimate

E
∣∣∣∣g(4)(ζ2 j−1)∆B4

2 j−1
n

∣∣∣∣≤CE

[
sup

s∈[0,t]
|g(4)(Bs)|

]
n−4H ,

so that
1
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b nt
2 c

∑
j=1

E
∣∣∣∣g(4)(ζ2 j−1)∆B4

2 j−1
n

∣∣∣∣≤Cbntcn−4H ,

with a similar estimate for the term with g(4)(η2 j−2)∆B4
(2 j−2)/n, so these terms tend to zero. Hence,

it is enough to study the term

b nt
2 c

∑
j=1

g′′(B 2 j−1
n
)

(
∆B2

2 j−1
n
−∆B2

2 j−2
n

)
. (3.7)

As in the proof of Lemma 3.4, we use the Hermite polynomials, in this case H2(x):

n2H
∆B2

2 j−1
n
−n2H

∆B 2 j−2
n

= H2(nH
∆B 2 j−1

n
)−H2(nH

∆B 2 j−2
n
).

Using (2.4), this equals n2Hδ 2
(

∂
⊗2
2 j−1

n

)
−n2Hδ 2

(
∂
⊗2
2 j−2

n

)
, so that we can write (3.7) as

b nt
2 c

∑
j=1

g′′(B 2 j−1
n
)

(
δ

2
(

∂
⊗2
2 j−1

n

)
−δ

2
(

∂
⊗2
2 j−2

n

))
.
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To prove the result when H > 1/4, it is enough to prove that

E

∣∣∣∣∣bntc−1

∑
j=0

g′′(Bt j)δ
2
(

∂
⊗2
j
n

)∣∣∣∣∣
2

≤Cbntcn−4H ,

where j/n≤ t j ≤ ( j+1)/n for each j. By Lemma 2.1.d,

E

∣∣∣∣∣bntc−1

∑
j=0

g′′(Bt j)δ
2
(

∂
⊗2
j
n

)∣∣∣∣∣
2

≤Cbntcn−4H =
bntc−1

∑
j,k=0

E
[

g′′(Bt j)g(Btk)δ
2
(

∂
⊗2
j
n

)
δ

2
(

∂
⊗2
k
n

)]

=
bntc−1

∑
j,k=0

E
[

g′′(Bt j)g(Btk)

(
δ

4
(

∂
⊗2
j
n
⊗∂

⊗2
k
n

)
+4δ

2
(

∂ j
n
⊗∂ k

n

)〈
∂ j

n
,∂ k

n

〉
H
+2
〈

∂ j
n
,∂ k

n

〉2

H

)]

≤
bntc−1

∑
j,k=0

E
[

g′′(Bt j)g(Btk)δ
4
(

∂
⊗2
j
n
⊗∂

⊗2
k
n

)]

+4 sup
0≤ j≤bntc

∥∥g′′(Bt j)
2∥∥

L2(Ω)
sup

0≤ j,k≤bntc

∥∥∥δ
2(∂ j

n
⊗∂ k

n
)
∥∥∥

L2(Ω)

bntc−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣
+2 sup

0≤ j≤bntc

∥∥g′′(Bt j)
2∥∥

L2(Ω)

bntc−1

∑
j,k=0

〈
∂ j

n
,∂ k

n

〉2

H

≤
bntc−1

∑
j,k=0

E
〈

D4 (g′′(Bt j)g(Btk)
)
,∂⊗2

j
n
⊗∂

⊗2
k
n

〉
H⊗4

+C‖∂ 1
n
‖2
H

bntc−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣
+C

bntc−1

∑
j,k=0

〈
∂ j

n
,∂ k

n

〉2

H
,

where we used Lemma 2.1.c for the estimate
∥∥∥δ 2(∂ j

n
⊗∂ k

n
)
∥∥∥

L2(Ω)
≤C‖∂ 1

n
‖2
H. By (B.1) and Lemma

3.1.b,

‖∂ 1
n
‖2
H

bntc−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣+ bntc−1

∑
j,k=0

〈
∂ j

n
,∂ k

n

〉2

H
≤Cbntcn−4H .

For the first term we have

bntc−1

∑
j,k=0

E
〈

D4 (g′′(Bt j)g(Btk)
)
,∂⊗2

j
n
⊗∂

⊗2
k
n

〉
H⊗4
≤Cbntcn−4H

by the argument applied to (3.5) in the proof of Proposition 3.3. Hence, we have that (3.7) tends to
zero in L2(Ω) if H > 1/4.
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Conversely, suppose g(x) = x, then

E

∣∣∣∣∣∣
b nt

2 c
∑
j=1

g′(B 2 j−1
n
)
(

B 2 j
n
−B 2 j−2

n

)∣∣∣∣∣∣
2

=
b nt

2 c
∑

j,k=1
E
[
(B 2 j

n
−B 2 j−2

n
)(B 2k

n
−B 2k−2

n
)
]

=
1

2n2H

b nt
2 c

∑
j,k=0

(
|2 j−2k+2|2H−2|2 j−2k|+ |2 j−2k−2|2H) ,

which diverges if H < 1/4.

3.2 The case H > 1/2

In this section, we provide some background material which will be used in Chapter 7. Here,
we assume throughout that H > 1/2. We work with a multi-dimensional process, and consider
integration in the Russo-Vallois sense rather than based on the Riemann sum approach of Section
3.1.

Let F = g(B(φ1), . . . ,B(φn)), where n≥ 1, g :Rn→R,φi ∈Hd , and g is a smooth function. The
Malliavin derivative of F is an element of Hd (which is isomorphic to the product space (H1)

d),
and we can write D = (D(1), . . . ,D(d)), where

D(i)
t F =

n

∑
j=1

∂g
∂x j

(B(φ1), . . . ,B(φn))φ j(t, i),

where we use the notation D(i)
t F = D(i)F(t). We define the ‘component integral’ δ (i) as the adjoint

of D(i), and use the notation

δ
(i)(u) =

∫ T

0
utδBi

t ; and (3.8)

δ (u) =
∫ T

0
utδBt =

d

∑
i=1

δ
(i)(u).

where u ∈ Dom δ (i) ⊂ L2(Ω,H1) for every i = 1, . . . ,d implies u ∈ Dom δ ⊂ L2(Ω,Hd).

Fix T > 0 and an integer d ≥ 1. Let B = {Bt ,0 ≤ t ≤ T} = (B1
t , . . . ,B

d
t ) be a d-dimensional

fBm, that is, each Bi
t is an independent, centered Gaussian process with Bi

0 = 0 and covariance

E
[
Bi

sB
i
t
]

:= R(s, t) =
1
2
(
s2H + t2H−|s− t|2H)

for t,s≥ 0. We will use the following elementary properties of RH(s, t):

(R.1) RH(s, t) = RH(t,s); and for any ε > 0, RH(s+ ε, t)≥ RH(s, t).

(R.2) There are constants 1≤ c0 < c1 ≤ 2 such that c0(st)H ≤ RH(s, t)≤ c1(st)H .

(R.3) As an alternate bound, if s≤ t then the Mean Value Theorem implies

RH(s, t)≤ s2H + t2H− (t− s)2H ≤ s2H +2Hst2H−1.
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Let E denote the set of R−valued step functions on [0,T ]×{1, . . . ,d}. Note that any f =
f (t, i) ∈ E may be written as a linear combination of elementary functions ek

t = 1[0,t]×{k}. Let Hd
be the Hilbert space defined as the closure of E with respect to the inner product〈

ek
s ,e

j
t

〉
Hd

= E[Bk
sB j

t ] = RH(s, t)δk j,

where δk j is the Kronecker delta. The mapping ek
t 7→ Bk(t) can be extended to a linear isometry

between Hd and the Gaussian space spanned by B. In this way, {B(h),h ∈ Hd} is an isonormal
Gaussian process.

Let αH = H(2H−1). It is well known that we can write

RH(s, t) = αH

∫ s

0

∫ t

0
|η−θ |2H−2dη dθ . (3.9)

Consequently, for f ,g ∈ E we can write

〈 f ,g〉Hd
= αH

d

∑
i=1

∫ T

0

∫ T

0
f (s, i)g(t, i)|t− s|2H−2ds dt. (3.10)

We recall (see [27], Sec. 5.1.3) that Hd contains the linear subspace of measurable, R-valued
functions ϕ on [0,T ]×{1, . . . ,d} such that

d

∑
i=1

∫ T

0

∫ T

0
|ϕ(s, i)| |ϕ(t, i)| |t− s|2H−2ds dt < ∞.

We denote this space by |Hd|. Let |Hq,s
d | be the space of symmetric functions f : ([0,T ]×{1, . . . ,d})q→

R such that

d

∑
i1,...,iq=1

∫
[0,T ]2q

| f
(
(η1, i1), . . . ,(ηq, iq)

)
| | f
(
(θ1, i1), . . . ,(θq, iq)

)
|

p

∏
j=1
|η j−θ j|2H−2dη dθ < ∞.

Then |Hq,s
d | ⊂ H�q, and for f ,g ∈ |Hq,s

d | we can write (2.2) as

f ⊗p g = α
p
H

d

∑
k=1

∫
[0,T ]2p

f ((η ,k),(t1, i1))g((θ ,k),(t2, i2))
p

∏
j=1
|η j−θ j|2H−2dη dθ , (3.11)

where

(η ,k) = (η1,k), . . . ,(ηp,k); (θ ,k) = (θ1,k), . . . ,(θp,k); (t1, i1) = (t1, i1), . . . ,(tq−p, iq−p); and
(t2, i2) = (tq−p+1, iq−p+1), . . . ,(t2(q−p), i2(q−p)).

The pathwise stochastic integral with respect to fBm with H > 1/2 has been studied extensively
[1, 13, 27]. For our purposes, we will use the symmetric Stratonovich integral discussed by Russo
and Vallois [34]:
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Definition 3.6. For some T > 0, let u = {ut ,0 ≤ t ≤ T} be a stochastic process with integrable
trajectories. The symmetric integral with respect to the fBm B is defined as∫ t

0
usdBs = lim

ε↓0

1
2ε

∫ t

0
us
(
B(s+ε)∧t−B(s−ε)∨0

)
ds,

where the limit exists in probability.

This theorem was first proved in [1].

Theorem 3.7. Let u = {ut , t ≥ 0} be a stochastic process in D1,2(H1) such that, for some T > 0,

E
[∫ T

0

∫ T

0
|ut | |us| |t− s|2H−2 ds dt

]
< ∞;

E
[∫

[0,T ]4
|Dtuθ | |Dsuη | |t− s|2H−2 |θ −η |2H−2du dt dθ dη

]
< ∞;

and
∫ T

0

∫ T

0
|Dsut | |t− s|2H−2 ds dt < ∞ a.s.

Then the limit of definition 2.1 exists in probability, and we have∫ T

0
utdBt =

∫ T

0
utδBt +αH

∫ T

0

∫ T

0
Dsut |t− s|2H−2ds dt,

where αH = H(2H−1).
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Chapter 4

CLT for a Midpoint Stochastic Integral

4.1 Introduction
In this chapter, we consider the Midpoint (type 1) integral of Proposition 3.5. Most of the material
in this chapter is nearly identical to that published in [17]. The aim is to obtain a change-of-
variable formula in distribution for a class of Gaussian stochastic processes W = {Wt , t ≥ 0} under
certain conditions on the covariance function. The model for this generalized process is fBm with
H = 1/4, but it will be shown that this is not the only suitable process. For the process and a
suitable function f we study the behavior of the ‘type 1’ midpoint Riemann sum

SM1
n (t) :=

b nt
2 c

∑
j=1

f ′(W2 j−1
n
)(W2 j

n
−W2 j−2

n
).

The limit of this sum as n tends to infinity is the midpoint (type 1) integral, denoted by

(MP1)
∫ t

0
f ′(Ws)dWs.

We show that the couple of processes
{(

Wt ,SM1
n (t)

)
, t ≥ 0

}
converges in distribution in the Sko-

rohod space (D[0,∞))2 to {(Wt ,Φ(t)), t ≥ 0}, where

Φ(t) = f (Wt)− f (W0)−
1
2

∫ t

0
f ′′(Ws)dBs

and B = {Bt , t ≥ 0} is a Gaussian martingale independent of W with variance η(t), depending
on the covariance properties of W . This limit theorem can be reformulated by saying that the
following Itô formula in distribution holds

f (Wt)
L
= f (W0)+

∫ t

0
f ′(Ws)dM1Ws +

1
2

∫ t

0
f ′′(Ws)dBs. (4.1)

The above mentioned convergence is proven by showing the stable convergence of a random
vector (SM1

n (t1), . . . ,SM1
n (td)) and a tightness argument. Convergence in law of the finite dimen-

sional distributions follows from Theorem 2.3, once we verify that SM1
n (t) satisfies the conditions.
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Recent papers by Swanson [37], Nourdin and Réveillac [25], and Burdzy and Swanson [8]
presented results comparable to (4.1) for a specific stochastic process. In [37], a change-of-variable
form was found for a process equivalent to the bifractional Brownian motion with parameters
H = K = 1/2, arising as the solution to the one-dimensional stochastic heat equation with an
additive space-time white noise. This result was proven mostly by martingale methods. In [8] and
[25], the respective authors considered fractional Brownian motion with Hurst parameter 1/4. In
[8], the authors covered integrands of the form f (t,Wt), which can be applied to fBm on [ε,∞). The
authors of [25] proved a change-of-variable formula that holds on [0,∞) in the sense of marginal
distributions. The proof in [25] uses Malliavin calculus; several similar methods were used in the
present chapter.

It happens that the conditions on the process W are satisfied by a bifractional Brownian motion
with parameters H ≤ 1/2, HK = 1/4. In this case η(t) = Ct and the process B is a Brownian
motion. This includes both cases studied in [25] and [37], and extends to a larger class of processes.
For another example, we consider a class of centered Gaussian processes with twice-differentiable
covariance function of the form

E [WrWt ] = rφ

( t
r

)
, t ≥ r,

where φ is a bounded function on [1,∞) such that

φ
′(x) =

κ√
x−1

+
ψ(x)√

x
,

and ψ is bounded, differentiable and |ψ ′(x)| ≤C(x− 1)−
1
2 . This class of Gaussian processes in-

cludes the process arising as the limit of the median of a system of independent Brownian motions
studied by Swanson in [38]. For this process,

φ(x) =
√

x arctan
(

1√
x−1

)
.

It is surprising to remark that in this case η(t) =Ct2. This is related to the fact that the variance of
the increments of W on the interval [t−s, t] behaves as C

√
s, when s is small, although the variance

of W (t) behaves as Ct. Our third example is another Gaussian process studied by Swanson in
[39]. This process also arises from the empirical quantiles of a system of independent Brownian
motions. Let B = {B(t), t ≥ 0} be a Brownian motion, where B(0) is a random variable with
density f ∈C ∞. Given certain growth conditions on f , Swanson proves there is a Gaussian process
F = {F(t), t ≥ 0} with covariance given by

E [F(r)F(t)] = ρ(r, t) =
P(B(r)≤ q(r),B(t)≤ q(t))−α2

u(q(r),r) u(q(t), t)
,

where α ∈ (0,1) and q(t) are defined by P(B(t) ≤ q(t)) = α . It is shown that this family of
processes satisfies the required conditions, where η(t) is determined by f and α .
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4.2 Central limit theorem for the Midpoint (type 1) integral
Suppose that W = {Wt , t ≥ 0} is a centered Gaussian process, as in Chapter 2, that meets conditions
(M.1) through (M.5), below, for any T > 0, where the constants Ci may depend on T .

(M.1) For any 0 < s≤ t ≤ T , there is a constant C1 such that

E
[
(Wt−Wt−s)

2
]
≤C1s

1
2 .

(M.2) For any s > 0 and 2s≤ r, t ≤ T with |t− r| ≥ 2s,

|E [(Wt−Wt−s)(Wr−Wr−s)]| ≤C1s2|t− r|−α(t ∧ r− s)−β + s2|t− r|−
3
2 ;

for positive constants α,β ,γ, such that 1 < α ≤ 3
2 and α +β = 3

2 .

(M.3) For 0 < t ≤ T and 0 < s≤ r ≤ T ,

|E [Wt(Wr+s−2Wr +Wr−s)]| ≤

{
C2s

1
2 i f r < 2s or |t− r|< 2s

C2s2
(
(r− s)−

3
2 + |t− r|− 3

2

)
i f r ≥ 2s and |t− r| ≥ 2s

for some positive constant C2.

(M.4) For any 0 < s≤ t ≤ T − s

|E [Wt(Wt+s−Wt−s)]| ≤

{
C3s

1
2 i f t < 2s

C3s(t− s)−
1
2 i f t ≥ 2s

and for each 0 < s≤ r ≤ T ,

|E [Wr(Wt+s−Wt−s)]| ≤

{
C3s

1
2 i f t < 2s or |t− r|< 2s

C3s(t− s)−
1
2 +C3s|t− r|− 1

2 i f t ≥ 2s and |t− r| ≥ 2s

for some positive constant C3. In addition, for t > 2s,

|E [Ws(Wt−Wt−s)]| ≤C3s
1
2+γ(t−2s)−γ

for some γ > 0.

(M.5) Consider a uniform partition of [0,∞) with increment length 1/n. Define for integers j,k≥ 0
and n≥ 1:

βn( j,k) = E
[(

W j+1
n
−W j

n

)(
Wk+1

n
−Wk

n

)]
.

Next, define

η
+
n (t) =

b nt
2 c

∑
j,k=1

βn(2 j−1,2k−1)2 +βn(2 j−2,2k−2)2;
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η
−
n (t) =

b nt
2 c

∑
j,k=1

βn(2 j−2,2k−1)2 +βn(2 j−1,2k−2)2.

Then for each t ≥ 0,

lim
n→∞

η
+
n (t) = η

+(t) and lim
n→∞

η
−
n (t) = η

−(t)

both exist, where η+(t),η−(t) are nonnegative and nondecreasing functions.

Consider a real-valued function f ∈ C 9(R), such that f and all its derivatives up to order 9
satisfy moderate growth conditions, as defined in Section 2.1. We will refer to this as Condition
(M.0).

In the following, the term C represents a generic positive constant, which may change from
line to line. The constant C may depend on T and the constants in conditions (M.0) - (M.5) listed
above.

The results of the next lemma follow from conditions (M.1) and (M.2).

Lemma 4.1. Using the notation described above, for integers 0≤ a < b and integers r,n≥ 1, we
have the estimate,

b

∑
j,k=a
|βn( j,k)|r ≤C(b−a+1)n−

r
2 .

Proof. Suppose first that r = 1. Let I = {( j,k) : a≤ j,k≤ b, |k− j| ≥ 2, j∧k≥ 2}, and J = {( j,k) :
a≤ j,k ≤ b,( j,k) /∈ I}. Consider the decomposition

b

∑
j,k=a
|βn( j,k)|= ∑

( j,k)∈I
|βn( j,k)|+ ∑

( j,k)∈J
|βn( j,k)| .

Then by condition (M.2), the first sum is bounded by

∑
( j,k)∈I

n−
1
2 | j− k|−α ≤Cn−

1
2 (b−a+1),

and the second sum, using condition (M.1) and Cauchy-Schwarz, is bounded by Cn−
1
2 (b−a+1).

For the case r > 1, condition (M.1) implies |βn( j,k)| ≤C1n−
1
2 for all j,k. It follows that we can

write,
b

∑
j,k=a
|βn( j,k)|r ≤C1n−

r−1
2

b

∑
j,k=a
|βn( j,k)| ≤C(b−a+1)n−

r
2 .

Corollary 4.2. Using the notation of Lemma 4.1, for each integer r ≥ 1,

b nt
2 c

∑
j,k=1

(|βn(2 j−1,2k−1)|r + |βn(2 j−1,2k−2)|r + |βn(2 j−2,2k−1)|r + |βn(2 j−2,2k−2)|r)

≤C
⌊nt

2

⌋
n−

r
2 .
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Proof. Note that

b nt
2 c

∑
j,k=1

(|βn(2 j−1,2k−1)|r + |βn(2 j−1,2k−2)|r + |βn(2 j−2,2k−1)|r + |βn(2 j−2,2k−2)|r)

=

2b nt
2 c−1

∑
j,k=0

|βn( j,k)|r .

Consider a uniform partition of [0,∞) with increment length 1/n. The Stratonovich midpoint
integral of f ′(W ) will be defined as the limit in distribution of the sequence (see [37]):

SM1
n (t) :=

b nt
2 c

∑
j=1

f ′(W2 j−1
n
)(W2 j

n
−W2 j−2

n
). (4.2)

Recall the notation of Section 2.4: εt := 1[0,t]; and ∂ j
n

:= 1[ j
n ,

j+1
n

].
The following is the major result of this section.

Theorem 4.3. Let f be a real function satisfying condition (M.0), and let W = {Wt , t ≥ 0} be a
Gaussian process satisfying conditions (M.1) through (M.5). Then:(

Wt ,SM1
n (t)

) L−→
(

Wt , f (Wt)− f (W0)−
1
2

∫ t

0
f ′′(Ws) dBs

)
as n→ ∞ in the Skorohod space (D[0,∞))2, where η(t) = η+(t)−η−(t) for the functions defined
in condition (v); and B = {Bt , t ≥ 0} is scaled Brownian motion, independent of W, and with
variance E

[
B2

t
]
= η(t).

The rest of this section consists of the proof of Theorem 4.3, and is presented in a series of
lemmas. The proofs of Lemmas 4.4, 4.5, and 4.9, which are rather technical, are deferred to Section
4.4. We begin with an expansion of f (Wt), following the methodology used in [37]. Consider the
telescoping series

f (Wt) = f (W0)+
b nt

2 c
∑
j=1

[
f (W2 j

n
)− f (W2 j−2

n
)
]
+ f (Wt)− f (W2

n b
nt
2 c
),

where the sum is zero by convention if
⌊nt

2

⌋
= 0. Using a Taylor series expansion of order 2, we

obtain

Φn(t) = f (Wt)− f (W0)−
1
2

b nt
2 c

∑
j=1

f ′′(W2 j−1
n
)

(
∆W 2

2 j
n
−∆W 2

2 j−1
n

)

−
b nt

2 c
∑
j=1

R0(W2 j
n
)+
b nt

2 c
∑
j=1

R1(W2 j−2
n
)−
(

f (Wt)− f (W2
n b

nt
2 c
)
)
,
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where R0,R1 represent the third-order remainder terms in the Taylor expansion, and can be ex-
pressed in integral form as:

R0(W2 j
n
) =

1
2

∫ W2 j
n

W2 j−1
n

(W2 j
n
−u)2 f (3)(u)du; and (4.3)

R1(W2 j−2
n
) =−1

2

∫ W2 j−1
n

W2 j−2
n

(W2 j−2
n
−u)2 f (3)(u)du. (4.4)

By condition (0) we have for any T > 0 that

lim
n→∞

E sup
0≤t≤T

∣∣∣ f (Wt)− f (W2
nb nt

2 c)
∣∣∣= 0,

so this term vanishes uniformly on compacts in probability (ucp), and may be neglected. Therefore,
it is sufficient to work with the term

∆n(t) := f (Wt)− f (W0)−
1
2

Ψn(t)+Rn(t), (4.5)

where

Ψn(t) =
b nt

2 c
∑
j=1

f ′′(W2 j−1
n
)

(
∆W 2

2 j
n
−∆W 2

2 j−1
n

)
; and

Rn(t) =
b nt

2 c
∑
j=1

(
R1(W2 j−2

n
)−R0(W2 j

n
)
)
.

We will first decompose the term Ψn(t), using a Skorohod integral representation. Using (2.4) and
the second Hermite polynomial, one can write ∆W 2(h) = 2H2 (W (h))+ 1 = δ 2(h⊗2)+ 1 for any
h ∈ H with ‖h‖H = 1. It follows that,

Ψn(t) =
b nt

2 c
∑
j=1

f ′′(W2 j−1
n
)δ 2
(

∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n

)
.

From Lemma 2.1.a, we have for random variables u,F

Fδ
2(u) = δ

2(Fu)+2δ
(
〈DF,u〉H

)
+
〈
D2F,u

〉
H⊗2 ,

so we can write:

Ψn(t) =
b nt

2 c

∑
j=1

δ
2
(

f ′′(W2 j−1
n
)

(
∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n

))

+
b nt

2 c

∑
j=1

2δ

(
f (3)(W2 j−1

n
)

〈
ε 2 j−1

n
,∂⊗2

2 j−1
n
−∂

⊗2
2 j−2

n

〉
H

)

+
b nt

2 c

∑
j=1

f (4)(W2 j−1
n
)

(〈
ε 2 j−1

n
,∂ 2 j−1

n

〉2

H
−
〈

ε 2 j−1
n
,∂ 2 j−2

n

〉2

H

)
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:= Fn(t)+Bn(t)+Cn(t).

Hence, we have ∆n(t)= f (Wt)− f (W0)− 1
2 (Fn(t)+Bn(t)+Cn(t))+Rn(t). In the next two lemmas,

we show that the terms Bn(t),Cn(t), and Rn(t) converge to zero in probability as n→∞. The proofs
of these lemmas are deferred to Section 4.4.

Lemma 4.4. Let 0≤ r < t ≤ T. Using the notation defined above,

E
[
(Rn(t)−Rn(r))2]≤C

(⌊nt
2

⌋
−
⌊nr

2

⌋)
n−

3
2

for some positive constant C, which may depend on T . It follows that for any 0 ≤ t ≤ T , Rn(t)
converges to zero in probability as n→ ∞.

Lemma 4.5. Let 0≤ r < t ≤ T. Using the above notation, there exist constants CB,CC such that

E
[
(Bn(t)−Bn(r))

2
]
≤CB

(⌊nt
2

⌋
−
⌊nr

2

⌋)
n−

3
2 ; and

E
[
(Cn(t)−Cn(r))

2
]
≤CC

(⌊nt
2

⌋
−
⌊nr

2

⌋)
n−

3
2 .

It follows that for any 0≤ t ≤ T , Bn(t) and Cn(t) converge to zero in probability as n→ ∞.

Corollary 4.6. Let Zn(t) := Rn(t)− 1
2Bn(t)− 1

2Cn(t). Then given 0≤ t1 < t < t2 ≤ T , there exists
a positive constant C such that

E [|Zn(t)−Zn(t1)| |Zn(t2)−Zn(t)|]≤C(t2− t1)
3
2 .

Proof. By Lemmas 4.4 and 4.5,

E
[
(Zn(t2)−Zn(t1))

2
]
≤ 3E

[
(Rn(t2)−Rn(t1))

2
]
+2E

[
(Bn(t2)−Bn(t1))

2
]

+2E
[
(Cn(t2)−Cn(t1))

2
]

≤C
(⌊nt2

2

⌋
−
⌊nt1

2

⌋)
n−

3
2 .

Then by Cauchy-Schwarz inequality,

E [|Zn(t)−Zn(t1)| |Zn(t2)−Zn(t)|]≤
(
E
[
(Zn(t)−Zn(t1))

2
]
E
[
(Zn(t)−Zn(t1))

2
]) 1

2

≤C
(⌊nt2

2

⌋
−
⌊nt1

2

⌋) 3
2

n−
3
2 .

This estimate implies the required bound C(t2− t1)
3
2 , see, for example [6], p. 156.

Next, we will develop a comparable estimate for differences of the form Fn(t)−Fn(r). In order
to prove this estimate, we need a technical lemma which will be used here and also in Section 4.4.
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Lemma 4.7. Suppose a,b are nonnegative integers such that a+ b ≤ 9. For fixed T > 0 and
interval [t1, t2]⊂ [0,T ], let

ga =
b nt2

2 c

∑
`=b nt1

2 c+1

f (a)(W2`−1
n
)

(
∂
⊗2
2`−1

n
−∂

⊗2
2`−2

n

)
.

Then we have for 1≤ p < ∞

E
[
‖Dbga‖p

H⊗2+b

]
≤C

(⌊nt2
2

⌋
−
⌊nt1

2

⌋) p
2

n−
p
2 .

Proof. We may assume t1 = 0 with t2 ≤ T . For each b we can write

E
[(
‖Dbga‖2

H⊗2+b

) p
2
]

= E



⌊

nt2
2

⌋
∑

`,m=1
f (a+b)(W2`−1

n
) f (a+b)(W2m−1

n
)

〈
ε
⊗b
2`−1

n
,ε⊗b

2m−1
n

〉
H⊗b

〈
∂
⊗2
2`−1

n
−∂

⊗2
2`−2

n
,∂⊗2

2m−1
n
−∂

⊗2
2m−2

n

〉
H⊗2


p
2


≤ E

[
sup

0≤s≤t

∣∣∣ f (a+b)(Ws)
∣∣∣p](sup

`,m

∣∣∣〈ε 2`−1
n
,ε 2m−1

n

〉
H

∣∣∣b) p
2


⌊

nt2
2

⌋
∑

`,m=1

∣∣∣∣〈∂
⊗2
2`−1

n
−∂

⊗2
2`−2

n
,∂⊗2

2m−1
n
−∂

⊗2
2m−2

n

〉
H⊗2

∣∣∣∣


p
2

.

Recall that (M.0) covers f and its first 9 derivatives, so the first two terms are bounded. For the
last term, note that by Corollary 4.2 with r = 2,⌊

nt2
2

⌋
∑

`,m=1

∣∣∣∣〈∂
⊗2
2`−1

n
−∂

⊗2
2`−2

n
,∂⊗2

2m−1
n
−∂

⊗2
2m−2

n

〉
H⊗2

∣∣∣∣
=

⌊
nt2
2

⌋
∑

`,m=1

∣∣βn(2`−1,2m−1)2−βn(2`−1,2m−2)2−βn(2`−2,2m−1)2 +βn(2`−2,2m−2)2∣∣
≤C

⌊nt2
2

⌋
n−1.

Lemma 4.8. For 0≤ s < t ≤ T , write

Fn(t)−Fn(s) =
b nt

2 c
∑

j=b ns
2 c+1

δ
2
(

f ′′(W2 j−1
n
)

(
∂
⊗2
2 j−1

2
−∂

⊗2
2 j−2

n

))
Then given 0≤ t1 < t < t2 ≤ T , there exists a positive constant C such that

E
[
|Fn(t)−Fn(t1)|2|Fn(t2)−Fn(t)|2

]
≤C(t2− t1)2. (4.6)
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Proof. First, for each n≥ 1, we want to show that there is a C such that,

E
[
(Fn(t2)−Fn(t1))

4
]
≤C

(⌊nt2
2

⌋
−
⌊nt1

2

⌋)2
n−2.

By the Meyer inequality (6.4) there exists a constant c2,4 such that

E
∣∣∣(δ 2(un)

)4
∣∣∣≤ c2,4‖un‖4

D2,4(H⊗2),

where in this case,

un =
b nt2

2 c

∑
j=b nt1

2 c+1

f ′′(W2 j−1
n
)

(
∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n

)
and

‖un‖4
D2,4(H⊗2) = E‖un‖4

H⊗2 +E‖Dun‖4
H⊗3 +E‖D2un‖4

H⊗4.

From Lemma 4.7 we have E‖un‖4
H⊗2, E‖Dun‖4

H⊗3, E‖D2un‖4
H⊗4 ≤C

(⌊nt2
2

⌋
−
⌊nt1

2

⌋)2 n−2, and so it
follows that,

E
[(

δ
2(un)

)4
]
≤C

(⌊nt2
2

⌋
−
⌊nt1

2

⌋)2
n−2.

From this result, given 0≤ t1 < t < t2, it follows from the Hölder inequality that

E
[
|Fn(t)−Fn(t1)|2|Fn(t2)−Fn(t)|2

]
≤
(
E
[
|Fn(t)−Fn(t1)|4

]) 1
2
(
E
[
|Fn(t2)−Fn(t)|4

]) 1
2

≤C
(⌊nt2

2

⌋
−
⌊nt1

2

⌋)2
n−2.

As in Corollary 4.6, this implies the required bound C(t2− t1)2.

By Corollary 4.6 and Lemma 4.8, it follows that ∆n(t) = f (Wt)− f (W0)− 1
2Fn(t)+ Zn(t) is

tight, since both sequential parts Fn(t),Zn(t) are tight. Further, we have that Zn(t) tends to zero in
probability, and Fn(t) is in a form suitable for Theorem 2.3. In the next lemma, we show that the
conditions of Theorem 2.3 are satisfied by Fn(t) evaluated at a finite set of points.

Lemma 4.9. Fix 0 = t0 < t1 < t2 < · · · < td. Set F i
n = Fn(ti)− Fn(ti−1) for i = 1, . . .d, and let

Fn = (F i
n, . . . ,F

d
n ). Then under conditions (M.0) - (M.5), Fn satisfies conditions (a) and (b) of

Theorem 2.3, and so given W, Fn converges stably as n→∞ to a random variable ξ = (ξ1, . . . ,ξd)
with distribution N (0,Σ), where Σ is a diagonal d×d matrix with entries:

s2
i =

∫ ti

ti−1

f ′′(Ws)
2
η(ds),

where η(t) = η+(n)−η−(t) is as defined in condition (v).

Remark 4.10. As we will see later, η(t) is continuous, nonnegative, and nondecreasing.
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It follows from the structure of Σ that, given W , Fn converges stably to a d-dimensional vector
with conditionally independent components of the form

F i
∞ = ζi

√∫ ti

ti−1

f ′′(Ws)2η(ds),

where each ζi ∼N (0,1). Thus, we may conclude that for each i,

F i
n

L−→
∫ ti

ti−1

f ′′(Ws) dBs

for a scaled Brownian motion B = {Bt , t ≥ 0} that is independent of Wt , with E
[
B2

t
]
= η(t).

Proof of Theorem 4.3 It is enough to show that for any finite set of times 0 = t0 < t1 < t2 < · · ·< td
we have

(∆n(t1),∆n(t2)−∆n(t1), . . . ,∆n(td)−∆n(td−1))
L−→ (∆(t1),∆(t2)−∆(t1), . . . ,∆(td)−∆(td−1))

as n→ ∞; and that ∆n(t) satisfies the tightness condition

E
[
|∆n(t)−∆n(t1)|γ |∆n(t2)−∆n(t)|γ

]
≤C(t2− t1)α (4.7)

for 0≤ t1 < t < t2 < ∞, γ > 0, and α > 1.
For ∆n(t) = f (Wt)− f (W0)− 1

2Fn(t)+Zn(t), we have shown in Lemmas 4.4 and 4.5 that

Zn(t) = Rn(t)−
1
2
(Bn(t)+Cn(t))

P−→ 0

for each 0≤ t ≤ T, and hence Zn(ti)−Zn(ti−1)
P−→ 0 for each ti, 1≤ i≤ d. By Lemma 4.9, the pair

(W,Fn) converges in law to (W,F∞), where F∞ is a d−dimensional random vector with conditional
Gaussian law and whose covariance matrix is diagonal with entries

s2
i =

∫ ti

ti−1

f ′′(Ws)
2
η(ds).

It follows that, conditioned on W , each component may be expressed as an independent Gaussian
random variable, equivalent in law to ∫ ti

ti−1

f ′′(Ws)dBs,

where B = {Bt , t ≥ 0} is a scaled Brownian motion independent of W with E
[
B2

t
]
= η(t). Finally,

tightness follows from Lemma 4.8 and Corollary 4.6. Theorem 4.3 is proved. �
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4.3 Examples

4.3.1 Bifractional Brownian Motion
The bifractional Brownian motion is a generalization of fractional Brownian motion, first intro-
duced by Houdré and Villa [20]. It is defined as a centered Gaussian process BH,K = {BH,K(t), t ≥
0},with covariance defined by,

E[BH,K
t BH,K

s ] =
1

2K

(
t2H + s2H)K

+
1

2K |t− s|2HK,

where H ∈ (0,1), K ∈ (0,1] (Note that the case K = 1 corresponds to fractional Brownian motion
with Hurst parameter H). The reader may refer to [21] and its references for further discussion of
properties.

In this section, we show that the results of Section 4.2 are valid for bifractional Brownian
motion with parameter values H, K such that H ≤ 1/2 and 2HK = 1/2. In particular, this includes
the end point cases H = 1/4, K = 1 studied in [25], and H = 1/2, K = 1/2 studied in [37].

Proposition 4.11. Let
{

BH,K
t , t ≥ 0

}
denote a bifractional Brownian motion. The covariance

conditions (M.1) - (M.4) of Section 4 are satisfied for values of 0 < H ≤ 1/2 and 0 < K ≤ 1 such
that 2HK = 1/2.

Proof. Condition (M.1).

E
[(

BH,K
t −BH,K

t−s

)2
]
= t2HK +

2
2K (t− s)2HK−

[
t2H +(t− s)2H]K− 2

2K s2HK

≤
[∣∣∣∣√t− 1

2K

(
t2H +(t− s)2H)K

∣∣∣∣+ ∣∣∣∣√t− s− 1
2K

(
t2H +(t− s)2H)K

∣∣∣∣+ 1
2K s

1
2

]
≤Cs

1
2 ,

where we used the inequality am−bm ≤ (a−b)m for a > b > 0 and m < 1.

Condition (M.2).

E
[
(BH,K

t −BH,K
t−s )(B

H,K
r −BH,K

r−s )
]

=
1

2K

([
t2H + r2H]K− [t2H +(r− s)2H]K − [(t− s)2H + r2H]K +

[
(t− s)2H +(r− s)2H]K)

+
1

2K

(
|t− r+ s|2HK−2|t− r|2HK + |t− r− s|2HK) .

This can be interpreted as the sum of a position term, 1
2K ϕ(t,r,s), and a distance term, 1

2K ψ(t−
r,s), where

ϕ(t,r,s)=
[
t2H + r2H]K−[t2H +(r− s)2H]K−[(t− s)2H + r2H]K+[(t− s)2H +(r− s)2H]K ; and

ψ(t− r,s) = |t− r+ s|2HK−2|t− r|2HK + |t− r− s|2HK.
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We begin with the position term. Note that if K = 1, then ϕ(t,r,s) = 0, so we may assume K < 1
and H > 1

4 . Assume 0 < s ≤ r ≤ t, and let p := t− r. By Fundamental Theorem of Calculus, we
can write ϕ(t, t− p,s) as

2HK
∫ s

0

([
t2H +(t− p−ξ )2H]K−1−

[
(t− s)2H +(t− p−ξ )2H]K−1

)
(t− p−ξ )2H−1dξ

=
∫ s

0

∫ s

0
4H2K(1−K)

[
(t−η)2H +(t− p−ξ )2H]K−2

(t−η)2H−1(t− p−ξ )2H−1 dξ dη

≤ 4H2K(1−K)s2 [(t− r)2H +(r− s)2H]K−2
(t− r)2H−1(r− s)2H−1

≤Cs2 (t− r)2HK−2H−1(r− s)2H−1.

This implies condition (M.2) for the position term taking α = 1
2 +2H > 1 and β = 1−2H.

Next, consider the distance term ψ(t− r,s). Without loss of generality, assume r < t. Again
using an integral representation, we have

ψ(t− r,s) = |t− r+ s|2HK−2|t− r|2HK + |t− r− s|2HK

=
∫ s

0
2HK

[
(t− r+ξ )2HK−1− (t− r−ξ )2HK−1] dξ

=
∫ s

0

∫
ξ

−ξ

2HK(2HK−1) [t− r+η ]2HK−2 dη dξ

≤Cs2(t− r− s)2HK−2 ≤Cs2|t− r|−
3
2 ,

since |t− r| ≥ 2s implies (t− r− s)−
3
2 ≤ 2

3
2 |t− r|− 3

2 .

Condition (M.3).

∣∣∣E[BH,K
t (BH,K

r+s −2BH,K
r +BH,K

r−s )
]∣∣∣

=
1

2K |[t
2H +(r+ s)2H ]K−2[t2H + r2H ]K +[t2H +(r− s)2H ]K

− 1
2K

[
|t− r+ s|2HK−2|t− r|2HK + |t− r− s|2HK] |.

Take first the term, ϕ(t,r,s). If r < 2s, then

|[t2H +(r+ s)2H ]K−2[t2H + r2H ]K +[t2H +(r− s)2H ]K| ≤Cs2HK =Cs
1
2 ,

based on the inequality aK − bK ≤ (a− b)K for a > b > 0 and K < 1. Hence, we will assume
r ≥ 2s. If K = 1, then H = 1

4 , and we have∣∣√r+ s−2
√

r+
√

r− s
∣∣= ∣∣∣∣∫ s

0

1
2
√

r+ x
dx−

∫ s

0

1
2
√

r− s+ x
dx
∣∣∣∣

=
1
4

∫ s

0

∫ s

0

1

(r− s+ x+ y)
3
2

dy dx

≤ 1
4

s2(r− s)−
3
2 ;
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and if K < 1,

|ϕ(t,r,s)|

=

∣∣∣∣∫ s

0
2HK[t2H +(r+ x)2H ]K−1(r+ x)2H−1dx−

∫ s

0
2HK[t2H +(r− s+ x)2H ]K−1(r− s+ x)2H−1dx

∣∣∣∣
≤
∣∣∣∣∫ s

0

∫ s

0
4H2K(K−1)[t2H +(r− s+ x+ y)2H ]K−2(r− s+ x+ y)4H−2 dy dx

∣∣∣∣
+

∣∣∣∣∫ s

0

∫ s

0
2H(2H−1)K[t2H +(r− s+ x+ y)2H ]K−1(r− s+ x+ y)2H−2 dy dx

∣∣∣∣
≤ 4H2K(1−K)s2(r− s)2HK−2 +2H(1−2H)Ks2(r− s)2HK−2 ≤Cs2(r− s)−

3
2 .

This bound for ϕ(t,r,s) also holds in the case |t − r| < 2s, so the bound of Cs
1
2 is valid for this

case. Next for the second term. Note that if |t− r|< 2s, then∣∣∣∣ 1
2K

(
|t− r+ s|2HK−2|t− r|2HK + |t− r− s|2HK)∣∣∣∣≤ 2(3s)2HK ≤Cs

1
2 .

If |t− r| ≥ 2s, then we have∣∣∣√|t− r|+ s−2
√
|t− r|+

√
|t− r|− s

∣∣∣= ∣∣∣∣∣
∫ s

0

1
2
√
|t− r|+ x

dx−
∫ s

0

1
2
√
|t− r|− s+ x

dx

∣∣∣∣∣
=
∫ s

0

∫ s

0

1
(|t− r|− s+ x+ y

dy dx

≤ s2

4(|t− r|− s)
3
2
≤ s2

2|t− r| 32
,

using the inequality 1
|t−r|−s ≤

2
|t−r| for |t− r| ≥ 2s. This bound for ψ(t− r,s) holds even in the case

r < 2s, so the bound of Cs
1
2 when r < 2s is verified as well.

Condition (M.4).
For the first part, we have for all t ≥ s,∣∣∣E[BH,K

t

(
BH,K

t+s −BH,K
t−s

)]∣∣∣= ∣∣∣∣ 1
2K

[
t2H +(t + s)2H]K− 1

2K

[
t2H +(t− s)2H]K∣∣∣∣ .

This is bounded by Cs
1
2 if t < 2s. On the other hand, if t ≥ 2s,∣∣∣∣ 1

2K

[
t2H +(t + s)2H]K− 1

2K

[
t2H +(t− s)2H]K∣∣∣∣= ∣∣∣∣ 1

2K

∫ s

−s
2HK

[
t2H +(t + x)2H]K−1

(t + x)2H−1 dx
∣∣∣∣

≤Cs(t− s)2HK−1 = Cs(t− s)−
1
2 .

For 0 < s≤ r ≤ T with t ≥ 2s and |t− r| ≥ 2s,∣∣∣E[BH,K
r

(
BH,K

t+s −BH,K
t−s

)]∣∣∣≤ ∣∣∣∣ 1
2K

[
r2H +(t + s)2H]K− 1

2K

[
r2H +(t− s)2H]K∣∣∣∣

+

∣∣∣∣ 1
2K |r− t + s|2HK− 1

2K |r− t− s|2HK
∣∣∣∣

≤Cs(t− s)−
1
2 +Cs|r− t|−

1
2 .
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If t < 2s or |t − r| < 2s, then we have an upper bound of Cs
1
2 by condition (M.1) and Cauchy-

Schwarz.
For the third bound, if t > 2s,∣∣∣E[BH,K

s

(
BH,K

t −BH,K
t−s

)]∣∣∣≤ ∣∣∣∣ 1
2K

[
s2H + t2H]K− 1

2K

[
s2H +(t− s)2H]K∣∣∣∣

+

∣∣∣∣ 1
2K (t− s)2HK− 1

2K (t−2s)2HK
∣∣∣∣

≤ 2
2K

∫ s

0
HK

[
s2H +(t− s+ x)2H]K (t− s+ x)2H−1 dx

+
1

2K+1

∫ s

0
(t−2s+ x)−

1
2 dx

≤Cs(t−2s)−
1
2 =Cs

1
2+γ(t−2s)−γ

for γ = 1
2 .

Proposition 4.12. Let BH,K be a bifractional Brownian motion with parameters H ≤ 1/2 and
HK = 1/4. Then Condition (M.5) holds, with the functions η+(t) = 2C+

K t and η−(t) = 2C−K t,
where

C+
K =

1
4K

(
2+

∞

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
)
,

C−K =
(2−
√

2)2

22K+1 +
1

4K

∞

∑
m=1

(√
2m+2−2

√
2m+1+

√
2m
)2

.

Proof. As in Proposition 4.11, we use the decomposition,

βn( j,k) =
1

2K ϕ

(
j
n
,

k
n
,
1
n

)
+

1
2K ψ

(
j− k

n
,
1
n

)
= 2−Kn−

1
2 ϕ( j,k,1)+2−Kn−

1
2 ψ( j− k,1).

The first task is to show that

lim
n→∞

bntc

∑
j,k=1

n−1
ϕ( j,k,1)2 = 0. (4.8)

Proof of (4.8). We consider two cases, based on the value of H. First, assume H < 1
2 . Then

ϕ( j,k,1) =
[
( j+1)2H +(k+1)2H]K− [( j+1)2H + k2H]K
−
[

j2H +(k+1)2H]K +
[

j2H + k2H]K
=
∫ 1

0
2HK

[
( j+1)2H +(k+ x)2H]K−1

(k+ x)2H−1dx

−
∫ 1

0
2HK

[
j2H +(k+ x)2H]K−1

(k+ x)2H−1dx

=
∫ 1

0

∫ 1

0
4H2K(1−K)

[
( j+ y)2H +(k+ x)2H]K−2

(k+ x)2H−1( j+ y)2H−1 dy dx

≤Ck2HK−2H−1 j2H−1 =Ck−
1
2−2H j2H−1.
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With this bound, it follows that

1
n

bntc

∑
j,k=1

ϕ( j,k,1)2 ≤ C
n

bntc

∑
j=1

j4H−2
∞

∑
k=1

k−1−4H

≤ C
n
bntc4H−1 ≤Ctn4H−2,

which tends to zero as n→ ∞ because H < 1
2 .

Next, the case H = 1
2 . Note that this implies K = 1

2 , and we have

|ϕ( j,k,1)|=
∣∣∣√ j+ k+2−2

√
j+ k+1+

√
j+ k

∣∣∣≤C( j+ k)−
3
2 .

So with this bound,

bntc

∑
j,k=1

n−1
ϕ( j,k,1)2 ≤ C

n

bntc

∑
j,k=1

( j+ k)−3

≤ C
n

bntc

∑
j=1

∞

∑
m= j+1

m−3 ≤ C
n

bntc

∑
j=1

j−2

which tends to zero as n→ ∞ because j−2 is summable. Hence, (4.8) is proved.

From (4.8), it follows that to investigate the limit behavior of η+
n (t),η−n (t), it is enough to

consider

1
n

b nt
2 c

∑
j,k=1

ψ(2 j−2k,1)2 +ψ(2 j−2k,1)2 =
2
n

b nt
2 c

∑
j,k=1

ψ(2 j−2k,1)2; and

1
n

b nt
2 c

∑
j,k=1

ψ(2 j−2k+1,1)2 +ψ(2 j−2k−1,1)2 =
2
n

b nt
2 c

∑
j,k=1

ψ(2 j−2k+1,1)2;
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since the sums of ψ(2 j−2k+1,1)2 and ψ(2 j−2k−1,1)2 are equal by symmetry. We start with

1
n

b nt
2 c

∑
j,k=1

ψ(2 j−2k,1)2

=
1

4Kn

b nt
2 c

∑
j,k=1

(√
|2 j−2k+1|−2

√
|2 j−2k|+

√
|2 j−2k−1|

)2

=
1

4Kn

b nt
2 c

∑
j=1

4+
2

4Kn

b nt
2 c

∑
j=1

j−1

∑
k=1

(√
2 j−2k+1−2

√
2 j−2k+

√
2 j−2k−1

)2

=
4
⌊nt

2

⌋
4Kn

+
2

4Kn

b nt
2 c

∑
j=1

j−1

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2

=
4
⌊nt

2

⌋
4Kn

+
2

4Kn

b nt
2 c

∑
j=1

∞

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2

− 2
4Kn

b nt
2 c

∑
j=1

∞

∑
m= j

(√
2m+1−2

√
2m+

√
2m−1

)2
,

where the last term tends to zero since
∞

∑
m= j

(√
2m+1−2

√
2m+

√
2m−1

)2
≤

∞

∑
m= j

(2m−1)−3 ≤C(2 j−1)−2,

and,

C
n

b nt
2 c

∑
j=1

(2 j−1)−2 −→ 0

as n→ ∞. We therefore conclude that,

η
+(t) = lim

n→∞

b nt
2 c

∑
j,k=1

(
βn(2 j−1,2k−1)2 +βn(2 j−2,2k−2)2)

= lim
n→∞

2
n

b nt
2 c

∑
j,k=1

ψ(2 j−2k,1)2 = 2C+
K t,

where

C+
K =

1
4K

(
2+

∞

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
)
.
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For the other term,

1
n

b nt
2 c

∑
j,k=1

ψ(2 j−2k+1,1)2

=
1

4Kn

b nt
2 c

∑
j=1

(2−
√

2)2 +
2

4Kn

b nt
2 c

∑
j=1

j−1

∑
k=1

(√
2 j−2k+2−2

√
2 j−2k+1−

√
2 j−2k

)2
.

Hence, by a similar computation,

η
−(t) = lim

n→∞

b nt
2 c

∑
j,k=1

βn(2 j−1,2k−2)2 +βn(2 j−2,2k−1)2 = 2C−K t,

where

C−K =
(2−
√

2)2

22K+1 +
1

4K

∞

∑
m=1

(√
2m+2−2

√
2m+1+

√
2m
)2

.

As a concluding remark, it is easy to show that C+
K > C−K , and in general we have η+(t) ≥

η−(t).

4.3.2 A Gaussian process with differentiable covariance function
Consider the following class of Gaussian processes. Let {Ft ,0≤ t ≤ T} be a mean-zero Gaussian
process with covariance defined by,

E [FrFt ] = rφ

( t
r

)
, t ≥ r (4.9)

where φ : [1,∞)→ R is twice-differentiable on (1,∞) and satisfies the following:

(φ .1) ‖φ‖∞ := supx≥1 |φ(x)| ≤ cφ ,0 < ∞.

(φ .2) For 1 < x < ∞,
|φ ′(x)| ≤

cφ ,1√
x−1

.

(φ .3) For 1 < x < ∞,
|φ ′′(x)| ≤ cφ ,2x−

1
2 (x−1)−

3
2 .

where cφ , j, j = 0,1,2 are nonnegative constants.

Proposition 4.13. The process {Ft ,0≤ t ≤ T} described above satisfies conditions (M.1) - (M.4).
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Proof. Condition (M.1). By Conditions (φ .1) and (φ .2),

E
[
(Ft−Ft−s)

2
]
= tφ(1)+(t− s)φ(1)−2(t− s)φ

(
1+

s
t− s

)
≤ 2(t− s)

∣∣∣∣φ (1+
s

t− s

)
−φ(1)

∣∣∣∣+ s |φ(1)|

≤ 2(t− s)
∣∣∣∣∫ 1+ s

t−s

1
φ
′(x) dx

∣∣∣∣+ s‖φ‖∞

≤ 2(t− s)
∫ 1+ s

t−s

1

cφ ,1√
x−1

dx+ s‖φ‖∞

≤Cs
1
2
√

t− s+ s‖φ‖∞

≤Cs
1
2 ,

where the constant C depends on max
{√

T ,‖φ‖∞

}
.

Condition (M.2). For 2s≤ r ≤ t−2s we have by the Mean Value Theorem,

|E [FtFr−Ft−sFr−FtFr−s +Ft−sFr−s]|=
∣∣∣∣r [φ

( t
r

)
−φ

(
t− s

r

)]
− (r− s)

[
φ

(
t

r− s

)
−φ

(
t− s
r− s

)]∣∣∣∣
≤ s sup

[ t−s
r , t

r−s ]

∣∣φ ′′(x)∣∣( t
r− s

− t− s
r

)

≤ cφ ,2s
(

t− s
r

)− 1
2
(

t− s
r
−1
)− 3

2
(

ts
r(r− s)

)
≤ C
√

T s2

(t− r)
3
2
=C
√

T s2|t− r|−
3
2 .

Condition (M.3). By symmetry we can assume r ≤ t. Consider the following cases: First, suppose
2s≤ r ≤ t−2s. Then we have

|E [Ft(Fr+s−2Fr +Fr−s)]|=
∣∣∣∣(r+ s)φ

(
t

r+ s

)
−2rφ

( t
r

)
+(r− s)φ

(
t

r− s

)∣∣∣∣
=

∣∣∣∣(r+ s)
[

φ

(
t

r+ s

)
−φ

( t
r

)]
− (r− s)

[
φ

( t
r

)
−φ

(
t

r− s

)]∣∣∣∣
≤ st

r
sup

[ t
r+s ,

t
r−s ]

∣∣φ ′′(x)∣∣( t
r− s

− t
r+ s

)

≤
2s2t2cφ ,2

r(r− s)(r+ s)

(
r+ s

t

) 1
2
(

r+ s
t− r− s

) 3
2

≤ Cs2t
3
2

r(t− r)
3
2
.
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There are two possibilities, depending on the value of r. If r ≥ t
2 , then t

r ≤ 2, and we have a bound
of

Cs2
( t

r

)( √
T

(t− r)
3
2

)
≤ 2C

√
T s2|t− r|−

3
2 .

on the other hand, if r < t
2 , then t

t−r ≤ 2 and r < t− r. Then the bound is

Cs2
(

t
t− r

)( √
T

r
√

t− r

)
≤ 2C

√
T s2

[
(r− s)−

3
2 + |t− r|−

3
2

]
.

For the case |t− r|< 2s, assume that t = r+ ks for some 0≤ k < 2. Then

|E [Ft (Fr+s−2Fr +Fr−s)]|

=

∣∣∣∣(t ∧ (rs))φ

(
t ∨ (r+ s)
t ∧ (r+ s)

)
−2rφ

( t
r

)
+(r− s)φ

(
t

r− s

)∣∣∣∣
=

∣∣∣∣(t ∧ (rs))φ

(
t ∨ (r+ s)
t ∧ (r+ s)

)
− (r+ s)φ(1)−2rφ

( t
r

)
+2rφ(1)+(r− s)φ

(
t

r− s

)
− (r− s)φ(1)

∣∣∣∣
≤ 3(r+ s)

∣∣∣∣φ (1+
(k+1)s

r− s

)
−φ(1)

∣∣∣∣ ≤ 3(r+ s)

∣∣∣∣∣
∫ 1+ (k+1)s

r−s

1
φ
′(x) dx

∣∣∣∣∣
≤ 3(r+ s)

∫ 1+ (k+1)s
r−s

1

cφ ,1√
x−1

dx ≤ C
√

T s
1
2 .

For the last case, note that if t ∧ r < 2s, then we have an upper bound of Cs
1
2 , since E [FsFt ] ≤

s‖φ‖∞.

Condition (M.4). Take first the bound for E [Ft(Ft+s−Ft−s)]. Note that if t < 2s, then an upper
bound of Cs

1
2 is clear, so we will assume t ≥ 2s. We have

|E [FtFt+s−FtFt−s]|=
∣∣∣∣tφ (t + s

t

)
− (t− s)φ

(
t

t− s

)∣∣∣∣
≤ (t− s) sup

[ t+s
t , t

t−s ]

∣∣φ ′(x)∣∣ ∣∣∣∣t + s
t
− t

t− s

∣∣∣∣+ s
∣∣∣∣φ (t + s

t

)∣∣∣∣
≤ cφ ,1

s2

t

√
t

t + s

√
t
s
+ cφ ,0 s

√
T√

t− s

≤Cs
√

T (t− s)−
1
2 .

For the case r 6= t, first assume r ≤ t−2s. By condition (φ .2),

|E [FrFt+s−FrFt−s]|=
∣∣∣∣rφ

(
t + s

r

)
− rφ

(
t− s

r

)∣∣∣∣≤ 2s sup
[ t−s

r , t+s
r ]

|φ ′(x)|

≤
2s
√

r cφ ,1√
t− r− s

≤ C
√

T s√
t− r

.
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If r ≥ t +2s, then

|E [FrFt+s−FrFt−s]|=
∣∣∣∣(t + s)φ

(
r

t + s

)
− (t− s)φ

(
r

t− s

)∣∣∣∣
≤ t

∫ 2s

0

∣∣∣∣φ ′( r
t− s+ x

)∣∣∣∣ dx+2s‖φ‖∞

≤
2stcφ ,1

√
t + s

√
r− t

+
2scφ ,0

√
T

√
t− s

≤Cs(r− t)−
1
2 +Cs(t− s)−

1
2 .

For the case t < 2s or |r− t|< 2s, the bound follows from condition (M.1) and Cauchy-Schwarz.
For the third part of condition (M.4), we have for t > 2s,

E [FsFt−FsFt−s] = sφ

( t
s

)
− sφ

(
t− s

s

)
≤ s sup

[ t−s
s , t

s ]
|φ ′(x)|

(
t
s
− t− s

s

)
≤

cφ ,1s√
t−s

s −1

≤Cs
3
2 (t−2s)−

1
2

=Cs
1
2+γ(t−2s)−γ

where γ = 1
2 .

Proposition 4.14. Suppose φ(x) satisfies conditions (φ .1), (φ .3) and in addition φ(x) satisfies:

(φ .4) : φ
′(x) =

κ√
x−1

+
ψ(x)√

x
,

where κ ∈ R and ψ : (1,∞)→ R is a bounded differentiable function satisfying |ψ ′(1+ x)| ≤
Cψx−

1
2 for some positive constant Cψ . Then Condition (v) of Section 4 is satisfied, with η+(t) =

C+
β

t2, and η−(t) =C−
β

t2 for positive constants C+
β
,C−

β
.

Remark 4.15. Observe that condition (φ .4) implies (φ .2) but not (φ .3).

Proof. We want to show
b nt

2 c
∑

j,k=1
βn(2 j−1,2k−1)2 −→Cβ ,1t2; (4.10)

b nt
2 c

∑
j,k=1

βn(2 j−2,2k−2)2 −→Cβ ,2t2; and (4.11)



49

b nt
2 c

∑
j,k=1

βn(2 j−1,2k−2)2 −→Cβ ,3t2; (4.12)

so that C+
β
=Cβ ,1 +Cβ ,2, and C−

β
= 2Cβ ,3. We will show computations for (4.10), with the others

being similar. As in Prop. 5.2,

b nt
2 c

∑
j,k=1

βn(2 j−1,2k−1)2 =
b nt

2 c
∑
j=1

βn(2 j−1,2 j−1)2 +2
b nt

2 c
∑
j=1

j−1

∑
k=1

βn(2 j−1,2k−1)2,

so it is enough to show

lim
n→∞

b nt
2 c

∑
j=1

j−1

∑
k=1

βn(2 j−1,2k−1)2 =C1t2; and (4.13)

lim
n→∞

b nt
2 c

∑
j=1

βn(2 j−1,2 j−1)2 =C2t2. (4.14)

Proof of (4.13). For 1≤ k ≤ j−1 we have

βn(2 j−1,2k−1) =
2k
n

(
φ

(
2 j
2k

)
−φ

(
2 j−1

2k

))
− 2k−1

n

(
φ

(
2 j

2k−1

)
−φ

(
2 j−1
2k−1

))
=

2k
n

∫ 2 j
2k

2 j−1
2k

φ
′(x) dx− 2k−1

n

∫ 2 j
2k−1

2 j−1
2k−1

φ
′(x) dx.

Using the change of index j = k+m and a change of variable for the two integrals, this becomes,

βn(2 j−1,2k−1) =
1
n

∫ 2m

2m−1
φ
′
(

1+
y

2k

)
dy− 1

n

∫ 2m+1

2m
φ
′
(

1+
y

2k−1

)
dy. (4.15)

With the decomposition of (φ .4), we will address (4.15) in two parts. Using the first term, we
have

κ

n

∫ 2m

2m−1

√
2k
y

dy− κ

n

∫ 2m+1

2m

√
2k−1

y
dy

=
2κ

n

[√
2k
(√

2m−
√

2m−1
)
−
√

2k−1
(√

2m+1−
√

2m
)]

.

We are interested in the sum,

b nt
2 c

∑
k=1

b nt
2 c−k

∑
m=1

4κ2

n2

[√
2k
(√

2m−
√

2m−1
)
−
√

2k−1
(√

2m+1−
√

2m
)]2

. (4.16)

We can write √
2k
(√

2m−
√

2m−1
)
−
√

2k−1
(√

2m+1−
√

2m
)

=−
√

2k−1
(√

2m+1−2
√

2m+
√

2m−1
)
+
(√

2k−
√

2k−1
)(√

2m−
√

2m−1
)
.
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Observe that [(√
2k−

√
2k−1

)(√
2m−

√
2m−1

)]2
≤ 1

(2k−1)(2m−1)
,

and so

4κ2

n2

b nt
2 c

∑
k=1

b nt
2 c−k

∑
m=1

1
(2k−1)(2m−1)

≤ 4κ2

n2

b nt
2 c

∑
k=1

1
2k−1

2

≤ C log(nt)2

n2 .

Therefore the contribution of this term is zero, and it follows by Cauchy-Schwarz that the only
significant term is

4κ2

n2

b nt
2 c

∑
k=1

b nt
2 c−k

∑
m=1

(2k−1)
(√

2m+1−2
√

2m+
√

2m−1
)2

= 4κ
2
b nt

2 c
∑

m=1

(√
2m+1−2

√
2m+

√
2m−1

)2 b
nt
2 c−m

∑
k=1

2k−1
n2

= 4κ
2
b nt

2 c
∑

m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
(⌊nt

2

⌋
−m

)2

n2 ,

which converges as n→ ∞ to

κ
2t2

∞

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
.

Next, we consider the term 1√
xψ(x). The contribution of this term to (4.15) is

1
n

∫ 2m

2m−1

√
2k

2k+ y
ψ

(
1+

y
2k

)
dy− 1

n

∫ 2m+1

2m

√
2k−1

2k−1+ y
ψ

(
1+

y
2k−1

)
dy. (4.17)

We can bound (4.17) by

1
n

∣∣∣∣∣
∫ 2m

2m−1

√
2k

2k+ y
ψ

(
1+

y
2k

)
dy−

∫ 2m+1

2m

√
2k−1

2k−1+ y
ψ

(
1+

y
2k−1

)
dy

∣∣∣∣∣
≤ 1

n
sup
(1,∞)

|ψ(x)|
√

2k−
√

2k−1√
2k+2m−1

+

[√
2k

2k+2m−1

∣∣∣∣∫ 2m

2m−1
ψ

(
1+

y
2k

)
dy−

∫ 2m+1

2m
ψ

(
1+

y
2k−1

)
dy
∣∣∣∣
]

=
1
n

(
Ak,m +Bk,m

)
.

Since |ψ(x)| is bounded, we have

Ak,m ≤
C√

2k−1
√

2k+2m−1
≤ C√

2k−1
√

2m−1
. (4.18)
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For Bk,m using that |ψ ′(x+1)| ≤Cx−
1
2 ,∣∣∣∣∫ 2m

2m−1
ψ

(
1+

y
2k

)
dy−

∫ 2m+1

2m
ψ

(
1+

y
2k−1

)
dy
∣∣∣∣

=

∣∣∣∣∫ 2m

2m−1
ψ

(
1+

u
2k

)
−ψ

(
1+

u+1
2k−1

)
du
∣∣∣∣

≤
∫ 2m

2m−1

∣∣∣∣∣
∫ u

2k

u+1
2k−1

ψ
′(1+ v)dv

∣∣∣∣∣du

≤C
∫ 2m

2m−1

∫ u+1
2k−1

u
2k

v−
1
2 dv du≤ C√

2k−1

(√
2m+1−

√
2m
)

≤ C√
2k−1

√
2m−1

so that

Bk,m ≤
√

2k
2k+2m−1

· C√
2k−1

√
2m−1

≤ C√
2k−1

√
2m−1

. (4.19)

Hence, from (4.18) and (4.19), we obtain

b nt
2 c

∑
k=1

b nt
2 c−k

∑
m=1

C
n2

(
1√

2k−1
√

2m−1

)2

≤ C
n2

b nt
2 c

∑
k,m=1

1
(2m−1)(2k−1)

≤ C log(n)2

n2

so the portion represented by (4.17) tends to zero as n→ ∞. Since this term is not significant, it
follows by Cauchy-Schwarz that the behavior of

b nt
2 c

∑
j=1

j−1

∑
k=1

βn(2 j−1,2k−1)2

is dominated by eq. (4.16), and we have the result (4.13), with

C1 = κ
2

∞

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
.

Proof of (4.14). For each j,

βn(2 j−1,2 j−1)2 =

(
2 j
n

φ(1)−2
2 j−1

n
φ

(
2 j

2 j−1

)
+

2 j−1
n

φ(1)
)2

=
1
n2

[
φ(1)+(4 j−2)

(
φ(1)−φ

(
1+

1
2 j−1

))]2

=
φ(1)2

n2 +
4(2 j−1)φ(1)

n2

(
φ(1)−φ

(
1+

1
2 j−1

))
= +

4(2 j−1)2

n2

(
φ(1)−φ

(
1+

1
2 j−1

))2

.
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Since
∣∣∣φ(1)−φ

(
1+ 1

2 j−1

)∣∣∣≤ cφ ,3√
2 j−1 by (φ .3), we see that

b nt
2 c

∑
j=1

[
φ(1)2

n2 +
4(2 j−1)φ(1)

n2

∣∣∣∣φ(1)−φ

(
1+

1
2 j−1

)∣∣∣∣]≤Cn−
1
2 ;

which implies only the last term is significant in the limit. Again we use (φ .4) to obtain:

φ(1)−φ

(
1+

1
2 j−1

)
=−

∫ 1+ 1
2 j−1

1
φ
′(x) dx

=−κ

∫ 1+ 1
2 j−1

1

1√
x−1

dx−
∫ 1+ 1

2 j−1

1

1√
x

ψ(x) dx

=− 2κ√
2 j−1

+O
(

1
2 j−1

)
;

hence
4(2 j−1)2

n2

(
φ(1)−φ

(
1+

1
2 j

))2

=
16κ2(2 j−1)2

n2(2 j−1)
+O

(
j

1
2

n2

)
,

and taking n→ ∞,

lim
n→∞

b nt
2 c

∑
j=1

16κ2(2 j−1)
n2 +O

(
j

1
2

n2

)
= 4κ

2t2,

which gives (4.14). Thus (4.10) is proved with

Cβ ,1 = 4κ
2 +2κ

2
∞

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
.

By similar computations,

Cβ ,2 = 4κ
2 +2κ

2
∞

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
; and

Cβ ,3 = 4κ
2 +2κ

2
∞

∑
m=1

(√
2m+2−2

√
2m+1+

√
2m
)2

;

and so

C+
β
=Cβ ,1 +Cβ ,2 = 8κ

2 +4κ
2

∞

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
,

C−
β
= 2Cβ ,3 = 8κ

2 +4κ
2

∞

∑
m=1

(√
2m+2−2

√
2m+1+

√
2m
)2

.

Note that C+
β
≥C−

β
, and it follows that η(t) = η+(t)−η−(t) is nonnegative, and strictly positive

if κ 6= 0.
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For a particular example, we consider a mean-zero Gaussian process {Ft , t ≥ 0}, with covari-
ance given by

E [FrFt ] =
√

rt sin−1
(

r∧ t√
rt

)
.

This process was studied by Jason Swanson in a 2007 paper [38], and it appears in the limit of
normalized empirical quantiles of a system of independent Brownian motions.

Corollary 4.16. The process {Ft ,0≤ t ≤ T} with covariance described above satisfies conditions
(M.1) - (M.5), with η(t) =

(
C+

β
−C−

β

)
t2, where C+

β
, C−

β
are as given in Proposition 4.15, with

κ2 = 1/4.

Proof. Assume 0≤ r < t ≤ T . We can write,

√
rt sin−1

(√
r
t

)
=
√

rt tan−1
(√

r
t− r

)
= rφ

( t
r

)
,

where

φ(x) =

{√
x tan−1

(
1√
x−1

)
, i f x > 1

π

2 , i f x = 1
. (4.20)

Condition (φ .1) is clear by continuity and L’Hôpital. Conditions (φ .2) and (φ .3) are easily
verified by differentiation. For (φ .4) we can write,

φ
′(x) =− 1

2
√

x−1
+

1
2
√

x

(√
x−1√
x−1

− tan−1
(

1√
x−1

))
,

so that κ =−1/2, and

ψ(x) =
1
2

(√
x−1√
x−1

− tan−1
(

1√
x−1

))
satisfies (φ .4).

4.3.3 Empirical quantiles of independent Brownian motions
For our last example, we consider a family of processes studied by Jason Swanson in [39]. Like
[38], this Gaussian family arises from the empirical quantiles of independent Brownian motions,
but this case is more general, and does not have a covariance representation (4.9).

Let B = {B(t), t ≥ 0} be a Brownian motion with random initial position. Assume B(0) has a
density function f ∈ C ∞(R) such that

sup
x∈R

(1+ |x|m)| f (n)(x)|< ∞

for all nonnegative integers m and n. It follows that for t > 0, B has density

u(x, t) =
∫
R

f (y)p(t,x− y) dy,
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where p(t,x) = (2πt)−
1
2 e−

x2
2t . For fixed α ∈ (0,1), define the α-quantile q(t) by∫ q(t)

−∞

u(x, t) dx = α,

where we assume f (q(0)) > 0. It is proved in [39] (Theorem 1.4) that there exists a continuous,
centered Gaussian process {F(t), t ≥ 0} with covariance

E [FrFt ] = ρ(r, t) =
P(B(r)≤ q(r),B(t)≤ q(t))−α2

u(q(r),r) u(q(t), t)
. (4.21)

In [39], the properties of ρ are studied in detail, and we follow the notation and proof methods
given in Section 3 of that paper. Swanson defines the following factors:

ρ̃(r, t) = P(B(r)≤ q(r),B(t)≤ q(t))−α
2; and θ(t) = (u(q(t), t))−1;

so that ρ(r, t) = θ(r)θ(t)ρ̃(r, t). For fixed T > 0 and 0 < r < t ≤ T , the first partial derivatives of
ρ̃ are calculated in [39](see eqs. (3.4), (3.7)):

∂

∂ t
ρ̃(r, t) = q′(t)

∫ q(r)

−∞

p(t− r,x−q(t)) u(x,r) dy dx

− 1
2

p(t− r,q(r)−q(t))u(q(r),r)+u(q(r),r)q′(r)
∫ q(t)

−∞

p(t− r,q(r)− y) dy

+
1
2

∫ q(t)

−∞

∫ q(r)

−∞

p(t− r,x− y)
∂ 2

∂x2 u(x,r) dx dy; (4.22)

∂

∂ r
ρ̃(r, t) =

1
2

p(t− r,q(t)−q(r)) u(q(r),r). (4.23)

Lemma 4.17. Let 0 < T , and 0 < r < t ≤ T . Then there exist constants Ci, i = 1,2,3,4, such that:

(a) ∣∣∣∣ ∂

∂ r
ρ(r, t)

∣∣∣∣≤C1|t− r|−
1
2

(b) ∣∣∣∣ ∂ 2

∂ r2 ρ(r, t)
∣∣∣∣≤C2|t− r|−

3
2

(c) ∣∣∣∣ ∂

∂ t
ρ(r, t)

∣∣∣∣≤C3|t− r|−
1
2

(d) ∣∣∣∣ ∂ 2

∂ t2 ρ(r, t)
∣∣∣∣≤C4|t− r|−

3
2 .
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Proof. Results (a) and (c) are proved in Theorem 3.1 of [39]. Bounds for (b) and (d) follow by
differentiating the expressions for ∂rρ(r, t) and ∂tρ(r, t) given in the proof of that theorem.

Proposition 4.18. Let T > 0, 0 < s < T ∧ 1, and s ≤ r ≤ t ≤ T . Then ρ(r, t) satisfies conditions
(M.1) - (M.4).

Proof. Conditions (M.1) and (M.2) are proved in [39] (Corollaries 3.2, 3.5 and Remark 3.6). For
condition (M.3), there are several cases to consider.
Case 1: s≤ r ≤ t−2s. Using Lemma 5.7(a),

|E [Ft(Fr+s−2Fr +Fr−s)]| ≤ |ρ(r+ s, t)−ρ(r, t)|+ |ρ(r, t)−ρ(r− s, t)|

≤
∫ s

0

∣∣∣∣ ∂

∂ r
ρ(r+ x, t)

∣∣∣∣ dx +
∫ 0

−s

∣∣∣∣ ∂

∂ r
ρ(r+ y, t)

∣∣∣∣ dy

≤ 2
∫ s

0
C1|t− r− x|−

1
2 dx ≤ Cs

1
2 .

Case 2: If |t− r|< 2s, the computation is similar to Case 1, where we use the fact that∫ s

0
x−

1
2 dx = 2s

1
2 .

Case 3: For r, t ≥ 2s and |t− r| ≥ 2s, the results follow from Lemma 5.7 (b) and (d) for r < t and
r > t, respectively.

Now to condition (M.4). For the first part, we first assume t ≥ 2s. Then using the above
decomposition,

E [Ft(Ft+s−Ft−s)] = ρ(t, t + s)−ρ(t, t− s)
= θ(t) [θ(t + s)ρ̃(t, t + s)−θ(t− s)ρ̃(t, t− s)]
= θ(t) [ρ̃(t, t + s)∆θ +θ(t− s)∆ρ̃] ,

where ∆θ = θ(t)−θ(t− s) and ∆ρ̃ = ρ̃(t, t + s)− ρ̃(t, t− s). First, note that

∣∣u′(q(t), t)∣∣= ∣∣∣∣ ∂

∂x
u(q(t), t)q′(t)+

∂

∂ t
u(q(t), t)

∣∣∣∣≤C,

where we used that q′(t) is bounded (see Lemma 1.1 of [39]). Since u(q(t), t) is continuous and
strictly positive on [0,T ], it follows that θ(t) is bounded and

∣∣θ ′(t)∣∣= |u′(q(t), t)|
u2(q(t), t)

≤C, (4.24)

hence,

|∆θ | ≤
∫ s

−s
|θ ′(t + x)| dx≤Cs.
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For ∆ρ̃ we have

|∆ρ̃|= |P(B(t)≤ q(t),B(t + s)≤ q(t + s))−P(B(t)≤ q(t),B(t− s)≤ q(t− s))|

=
∫ q(t)

−∞

∫ q(t+s)

−∞

p(s,x− y)u(x, t) dy dx−
∫ q(t−s)

−∞

∫ q(t)

−∞

p(s,x− y)u(x, t− s) dy dx

≤
∣∣∣∣∫ q(t−s)

−∞

∫ q(t)

−∞

p(s,x− y)u(x, t)− p(s,x− y)u(x, t− s) dy dx
∣∣∣∣+Cs

≤
∫ q(t−s)

−∞

|u(x, t− s)−u(x, t)| dx+Cs

≤
∫

∞

−∞

∣∣∣∣∫ t

t−s

∂

∂ r
u(x,r)dr

∣∣∣∣ dx+Cs =
1
2

∫
∞

−∞

∣∣∣∣∫ t

t−s

∂ 2

∂x2 u(x,r)dr
∣∣∣∣ dx+Cs

≤ 1
2

∫
∞

−∞

∫
∞

−∞

∫ t

t−s

∣∣ f ′′(y)∣∣ p(r,x− y) dr dy dx+Cs≤Cs.

When t < 2s, we write

|E [Ft(Ft+s−Ft−s)]| ≤ |ρ(t, t + s)−ρ(t, t)|+ |ρ(t, t)−ρ(t− s, t)|

≤
∫ s

0

∣∣∣∣ ∂

∂ t
ρ(t, t + x)

∣∣∣∣ dx+
∫ 0

−s

∣∣∣∣ ∂

∂ r
ρ(t + y, t)

∣∣∣∣ dy

≤Cs
1
2 ,

using Lemma 4.17 and the fact that ∫ s

0
x−

1
2 dx = 2s

1
2 .

For the second part of condition (M.4), we consider

|E [Fr(Ft+s−Ft−s)]| and |E [Fs(Ft−Ft−s)]| .

When r < t− s (including r = s), an upper bound of Cs|t− r|− 1
2 is proved in [39] (see Corollary

3.4 and Remark 3.6). When r ≥ t +2s, or |t− r|< 2s, the bounds follow from Lemma 4.17.

The rest of this section is dedicated to verifying condition (M.5). We start with two useful
estimates. As in Proposition 5.8, suppose 0 < s ≤ r ≤ t ≤ T . It follows from Lemma 1.1 of [39]
that for some positive constant C,

|q(t)−q(r)| ≤C(t− r). (4.25)

Using this estimate and the fact that e−a− e−b ≤ b−a for 0≤ a≤ b, we obtain∣∣∣∣e− (q(t)−q(r))2

2(t−r) − e−
(q(t)−q(r−s))2

2(t−r+s)

∣∣∣∣≤Cs≤ 1. (4.26)
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Recalling the definitions in condition (M.5), we can write for t ∈ [0,T ]

η
+
n (t)−η

−
n (t) =

2b nt
2 c

∑
`=1

βn(`−1, `−1)2 +2 ∑
k≤ j−1

βn(2k−1,2 j−1)2 +2 ∑
k≤ j−1

βn(2k−2,2 j−2)2

−2 ∑
k≤ j−1

βn(2k−2,2 j−1)2−2 ∑
k≤ j−1

βn(2k−1,2 j−2)2.

For the first sum, since F`
n
−F`−1

n
is Gaussian, we have

βn(`−1, `−1)2 =

(
E
[(

F`
n
−F`−1

n

)2
])2

=
1
3
E
[(

F`
n
−F`−1

n

)4
]
.

By Theorem 3.7 of [39],

bntc

∑
`=1

(
F`

n
−F`−1

n

)4
−→ 6

π

∫ t

0
(u(q(s),s))−2 ds

in L2 as n→ ∞. For the second sum, assume 1≤ k < j, and we study the term

βn(2k−1,2 j−1) = ρ

(
2k
n
,
2 j
n

)
−ρ

(
2k−1

n
,
2 j
n

)
−ρ

(
2k
n
,
2 j−1

n

)
+ρ

(
2k−1

n
,
2 j−1

n

)
= θ

(
2 j
n

)∫ 2k
n

2k−1
n

[
θ
′(r)ρ̃

(
r,

2 j
n

)
+θ(r)∂rρ̃

(
r,

2 j
n

)]
dr

−θ

(
2 j−1

n

)∫ 2k
n

2k−1
n

[
θ
′(r)ρ̃

(
r,

2 j−1
n

)
+θ(r)∂rρ̃

(
r,

2 j−1
n

)]
dr.

We can write this as

θ

(
2 j
n

)∫ 2k
n

2k−1
n

θ(r)
(

∂rρ̃

(
r,

2 j
n

)
−∂rρ̃

(
r,

2 j−1
n

))
dr (4.27)

+

[
θ

(
2 j
n

)
−θ

(
2 j−1

n

)]∫ 2k
n

2k−1
n

θ(r)
(

∂rρ̃

(
r,

2 j−1
n

))
dr (4.28)

+
∫ 2k

n

2k−1
n

θ
′(r)
[

θ

(
2 j
n

)
ρ̃

(
r,

2 j
n

)
−θ

(
2 j−1

n

)
ρ̃

(
r,

2 j−1
n

)]
dr. (4.29)

The first task is to show that components (4.28) and (4.29) have a negligible contribution to η(t).
For (4.28), it follows from (4.24) that∣∣∣∣θ (2 j

n

)
−θ

(
2 j−1

n

)∣∣∣∣≤Cn−1, (4.30)

and using (4.23), we have∫ 2k
n

2k−1
n

θ(r)∂rρ̃

(
r,

2 j−1
n

)
dr =

∫ 2k
n

2k−1
n

p
(

2 j−1
n
− r,q

(
2 j−1

n

)
−q(r)

)
dr ≤Cn−

1
2 .
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Hence, the contribution of (4.28) to the sum of βn(2k−1,2 j−1)2 is bounded by C
(

n−
3
2

)2
·n2 ≤

Cn−1. We can write component (4.29) as∫ 2k
n

2k−1
n

θ
′(r)
[

θ

(
2 j
n

)(
ρ̃

(
r,

2 j
n

)
− ρ̃

(
r,

2 j−1
n

))
+

(
θ

(
2 j
n

)
−θ

(
2 j−1

n

))
ρ̃

(
r,

2 j−1
n

)]
dr.

Using (4.23), we have for each r ∈
[2k−1

n , 2k
n

]
,∣∣∣∣ρ̃(r,

2 j
n

)
− ρ̃

(
r,

2 j−1
n

)∣∣∣∣≤Cn−
1
2 (2 j−2k−1)−

1
2 .

Then, using (4.30) and (4.24), we have (4.29) bounded by

C
[
n−

1
2 (2 j−2k−1)−

1
2 +n−1

]
n−1.

Hence, the contribution of (4.29) to the sum of βn(2k−1,2 j−1)2 is bounded by

Cn−2
b nt

2 c
∑
j=1

j−1

∑
k=1

[
n−1(2 j−2k−1)−1 +n−2]≤Cn−1.

We now turn to component (4.27). By (4.23),

θ(r)
∂

∂ r
ρ̃

(
r,

2 j
n

)
=

1
2

p
(

2 j
n
− r,q

(
2 j
n

)
−q(r)

)
.

To simplify notation, define

ψn( j,r) = e
− (q( j

n )−q(r))2

2( j
n−r) .

By (4.25), we have for the interval I2k =
[2k−1

n , 2k
n

]
,

sup
r∈I2k


(
(q
(

2 j
n

)
−q(r)

)2

2(2 j
n − r)

≤ C(2 j−2k+1)
n

.

This implies that inf{ψn(2 j,r),r ∈ I2k} ≥ e−C 2 j−2k+1
n , hence, when j,k are small compared to n,

|ψ| is close to unity. We can write,∫ 2k
n

2k−1
n

θ(r)
(

∂rρ̃

(
r,

2 j
n

)
−∂rρ̃

(
r,

2 j−1
n

))
dr =

1
2
√

2π

∫ 2k
n

2k−1
n

1√
2 j
n − r

− 1√
2 j−1

n − r
dr

(4.31)

− 1
2
√

2π

∫ 2k
n

2k−1
n

(1−ψn(2 j−1,r))

 1√
2 j
n − r

− 1√
2 j−1

n − r

dr (4.32)

+
1

2
√

2π

∫ 2k
n

2k−1
n

ψn(2 j,r)−ψn(2 j−1,r)√
2 j
n − r

dr. (4.33)
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For component (4.32), by the above estimate for inf{ψn(2 j,r),r ∈ I2k} we have

sup
r∈I2k

|1−ψ(2 j,r)| ≤Cn−1(2 j−2k+1)≤ 1,

hence (4.32) is bounded by

Cn−
3
2 (2 j−2k+1)

(√
2 j−2k+1−2

√
2 j−2k+

√
2 j−2k−1

)
.

Given ε > 0, we can find an M > 1 such that
∞

∑
m=M

(√
2m+1−2

√
2m+

√
2m−1

)2
< ε.

The contribution of (4.32) to the sum of βn(2k−1,2 j−1)2 is thus bounded by,

(2πn)−1
b nt

2 c
∑
j=1

θ
2
(

2 j
n

) j−1

∑
k=1

sup
r∈I2k

(1−ψn(2 j,r))2
(√

2 j−2k+1−2
√

2 j−2k+
√

2 j−2k−1
)2

≤Cn−1
b nt

2 c
∑
j=1

j−M−1

∑
k=1

(√
2 j−2k+1−2

√
2 j−2k+

√
2 j−2k−1

)2

+Cn−1
b nt

2 c
∑
j=1

j−1

∑
k= j−M

Cn−1(2 j−2k+1)
(√

2 j−2k+1−2
√

2 j−2k+
√

2 j−2k−1
)2

≤Cn−1
b nt

2 c
∑
j=1

ε +Cn−1
b nt

2 c
∑
j=1

M2

n2 ,

which is less than Cε as n→ ∞, since θ(t) is bounded.
For (4.33), by we have sup{|ψn(2 j,r)−ψn(2 j−1,r)| ,r ∈ I2k}≤Cn−1, hence (4.33) is bounded

by Cn−
3
2 (2 j− 2k− 1)−

1
2 . Therefore the contribution of the term including (4.33) to the sum of

βn(2k−1,2 j−1)2 is bounded by

Cn−3
b nt

2 c
∑
j=1

j−1

∑
k=1

(2 j−2k−1)−1 ≤Cn−2 log(nt),

because θ(t) is bounded.
It follows that the sum of βn(2k− 1,2 j− 1)2 is dominated by (4.27), and the significant term

in (4.27) is given by (4.31). Hence, it is enough to consider

2
nπ

∑
j≤k−1

θ
2
(

2 j
n

)(√
2 j−2k+1−2

√
2 j−2k+

√
2 j−2k−1

)2
.

Using the change of index j = k+m, this is

2
nπ

b nt
2 c

∑
j=1

θ
2
(

2 j
n

) j−1

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
.
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Taking n→ ∞, this behaves like
a
π

∫ t

0
θ

2(s) ds,

where

a =
∞

∑
m=1

(√
2m+1−2

√
2m+

√
2m−1

)2
.

By similar computation,

∑
k≤ j−1

βn(2k−2,2 j−2)2 −→ a
π

∫ t

0
θ

2(s) ds,

∑
k≤ j−1

βn(2k−2,2 j−1)2 −→ b1

π

∫ t

0
θ

2(s) ds, and

∑
k≤ j−1

βn(2k−1,2 j−2)2 −→ b2

π

∫ t

0
θ

2(s) ds,

where,

b1 =
∞

∑
m=1

(√
2m+2−2

√
2m+1+

√
2m
)2

,

b2 =
∞

∑
m=1

(√
2m−2

√
2m−1+

√
2m−2

)2
.

We have proved the following result:

Proposition 4.19. Under the above assumptions, ρ(r, t) satisfies condition (M.5), where

η(t) =
2+4a−2b1−2b2

π

∫ t

0
(u(q(s),s))−2 ds.

The coefficient 2+4a−2b1−2b2 is approximately 1.3437, while u(q(t), t) depends on f and
α .

4.4 Proof of the technical Lemmas
We begin with two technical lemmas. The first is a version of Corollary 4.2 with disjoint intervals.

Lemma 4.20. For 0≤ t0 < t1 ≤ t2 < t3 ≤ T ,

lim
n→∞

b nt1
2 c

∑
j=
⌊

nt0
2

⌋
+1

b nt3
2 c

∑
k=b nt2

2 c+1

∣∣∣∣〈∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n
,∂⊗2

2k−1
n
−∂

⊗2
2k−2

n

〉
H⊗2

∣∣∣∣ = 0.
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Proof. We may assume t0 = 0 and t1 = t2. Observe that〈
∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n
,∂⊗2

2k−1
n
−∂

⊗2
2k−2

n

〉
H⊗2

= βn(2 j−1,2k−1)2−βn(2 j−1,2k−2)2−βn(2 j−2,2k−1)2 +βn(2 j−2,2k−2)2.

Therefore, it is enough to show that,

bnt2c

∑
j=0

bnt3c

∑
k=bnt2c+1

βn( j,k)2 ≤Cn−ε (4.34)

for some ε > 0. We can decompose the sum in (4.34) as:

bnt3c

∑
k=bnt2c+1

βn(0,k)2 +
bnt3c

∑
k=bnt2c+1

βn(bnt2c,k)2 +
bnt2c−1

∑
j=1

bnt3c

∑
k=bnt2c+1

βn( j,k)2.

By condition (M.4), for some γ > 0 we have

bnt3c

∑
k=bnt2c+1

βn(0,k)2 ≤ sup
1≤ j≤bnt3c

|βn(0,k)|
bnt3c

∑
k=bnt2c+1

|βn(0,k)|

≤Cn−1
bnt3c

∑
k=bnt2c+2

(k−1)−γ +Cn−1 ≤Cn−γ .

By condition (M.2), for some 1 < α ≤ 3
2 ,

bnt3c

∑
k=bnt2c+1

βn(bnt2c,k)2 ≤ βn(bnt2c,bnt2c+1)2 +Cn−1
bnt3c

∑
k=bnt2c+2

βn(bnt2c,k)

≤Cn−1 +Cn−1
bnt3c

∑
k=bnt2c+1

(k−bnt2c)−α ≤Cn−1,

and again by condition (M.2), for β = 3
2 −α ,

bnt2c−1

∑
j=1

bnt3c

∑
k=bnt2c+1

βn( j,k)2 ≤Cn−1
bnt2c−1

∑
j=1

bnt3c

∑
k=bnt2c+1

[
(k−bnt2c)−α j−β +(k− j)−

3
2

]
≤Cn−1

(
bnt3c

∑
k=1

k−α

)(
bnt2c

∑
j=1

j−β

)
+Cn−1

bnt2c

∑
j=1

(bnt2c− j)−
1
2

≤Cn−β +Cn−
1
2 ;

hence the sum is bounded by Cn−ε for ε = min
{

β ,γ, 1
2

}
.
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Lemma 4.21. For 0≤ t ≤ T and integer j ≥ 1,∣∣∣〈εt ,∂ j
n

〉
H

∣∣∣≤Cn−
1
2

for a positive constant C which depends on T .

Proof. By conditions (M.1) and (M.2), we have for j ≥ 1 and t > 0,∣∣∣〈εt ,∂ j
n

〉
H

∣∣∣≤ bntc−1

∑
k=0

∣∣∣〈∂ k
n
,∂ j

n

〉
H

∣∣∣+ ∣∣∣〈εt− εbntc,∂ j
n

〉
H

∣∣∣
≤C

∞

∑
k=0

n−
1
2
(
| j− k|−α ∧1

)
+O(n−

1
2 )≤Cn−

1
2 . (4.35)

4.4.1 Proof of Lemma 4.4
By the Lagrange theorem for the Taylor expansion remainder, the terms R0(W2 j

n
),R1(W2 j−2

n
) can

be expressed in integral form:

R0(W2 j
n
) =

1
2

∫ W2 j
n

W2 j−1
n

(W2 j
n
−u)2 f (3)(u)du; and

R1(W2 j−2
n
) =−1

2

∫ W2 j−1
n

W2 j−2
n

(W2 j−2
n
−u)2 f (3)(u)du.

After a change of variables, we obtain

R0(W2 j
n
) =

1
2
(W2 j

n
−W2 j−1

n
)3
∫ 1

0
v2 f (3)(vW2 j−1

n
+(1− v)W2 j

n
)dv;

and

R1(W2 j−2
n
) =

1
2
(W2 j−2

n
−W2 j−1

n
)3
∫ 1

0
v2 f (3)(vW2 j−1

n
+(1− v)W2 j−2

n
)dv.

Define

G0(2 j) =
1
2

∫ 1

0
v2 f (3)(vW2 j−1

n
+(1− v)W2 j

n
)dv;

and

G1(2 j−2) =
1
2

∫ 1

0
v2 f (3)(vW2 j−1

n
+(1− v)W2 j−2

n
)dv.

We may assume r = 0. Define ∆W `
n
=W`+1

n
−W `

n
. We want to show that

E


b nt

2 c
∑
j=1

{
G0(2 j)∆W 3

2 j−1
n

+G1(2 j−2)∆W 3
2 j−2

n

}2
≤C

⌊nt
2

⌋
n−

3
2 . (4.36)
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This part of the proof was inspired by a computation in [25] (see Lemma 4.2). Consider the
Hermite polynomial identity x3 = H3(x)+3H1(x). We use (2.4) for h∈H with ‖h‖H = 1. For each
j, let w j := ‖∆W j

n
‖H, and note that condition (M.1) implies w j ≤Cn−

1
4 for all j. Then

∆W 3
j
n

w3
j

= H3

(
∆W j

n

w j

)
+3H1

(
∆W j

n

w j

)
= δ

3

∂
⊗3
j
n

w3
j

+3δ

(
∂ j

n

w j

)

so that
∆W 3

j
n
=

1
2

δ
3(∂⊗3

j
n

)+w2
jδ (∂ j

n
).

It follows that we can write,

G0(2 j)∆W 3
2 j−1

n
−G1(2 j−2)∆W 3

2 j−2
n

= G0(2 j)δ 3(∂⊗3
2 j−1

n
)−G1(2 j−2)δ 3(∂⊗3

2 j−2
n
)

+3w2
2 jG0(2 j)δ (∂ 2 j−1

n
)−3w2

2 j−1G1(2 j−2)δ (∂ 2 j−2
n
).

It is enough to verify the individual inequalities

E


∣∣∣∣∣∣
b nt

2 c
∑
j=1

G0(2 j)δ 3(∂⊗3
2 j−1

n
)

∣∣∣∣∣∣
2
≤C

⌊nt
2

⌋
n−

3
2 , (4.37)

E


∣∣∣∣∣∣
b nt

2 c
∑
j=1

G1(2 j−2)δ 3(∂⊗3
2 j−2

n
)

∣∣∣∣∣∣
2
≤C

⌊nt
2

⌋
n−

3
2 , (4.38)

E


∣∣∣∣∣∣
b nt

2 c
∑
j=1

w2
2 jG0(2 j)δ (∂ 2 j−1

n
)

∣∣∣∣∣∣
2
≤C

⌊nt
2

⌋
n−

3
2 , (4.39)

and

E


∣∣∣∣∣∣
b nt

2 c
∑
j=1

w2
2 j−1G1(2 j−2)δ (∂ 2 j−2

n
)

∣∣∣∣∣∣
2
≤C

⌊nt
2

⌋
n−

3
2 . (4.40)

We will show (4.37) and (4.39), with (4.38) and (4.40) essentially similar.

Proof of (4.37). Using Lemma 2.1.d and the duality property,

E


b nt

2 c
∑
j=1

G0(2 j)δ 3(∂⊗3
2 j−1

n
)

2

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= E
b nt

2 c
∑

j,k=1

[
G0(2 j)G0(2k)

(
3

∑
r=0

δ
6−2r(∂⊗3−r

2 j−1
n
⊗∂

⊗3−r
2k−1

n
)
〈

∂ 2 j−1
n
,∂ 2k−1

n

〉r

H

)]

≤
b nt

2 c
∑

j,k=1

3

∑
r=0

∣∣∣∣〈∂ 2 j−1
n
,∂ 2k−1

n

〉r

H

∣∣∣∣E[∣∣∣∣〈D6−2r (G0(2 j)G0(2k)) ,∂⊗3−r
2 j−1

n
⊗∂

⊗3−r
2k−1

n

〉
H⊗6−2r

∣∣∣∣] .

For integers r ≥ 0, we have

DrG0(2 j) = Dr
∫ 1

0

1
2

v2 f (3)
(

vW2 j−1
n

+(1− v)W2 j
n

)
dv

=
1
2

∫ 1

0
v2 f (3+r)

(
vW2 j−1

n
+(1− v)W2 j

n

)(
vε
⊗r
2 j−1

n
+(1− v)ε⊗r

2 j
n

)
dv. (4.41)

By product rule and (4.41) we have

E
[∣∣∣∣〈D6−2r (G0(2 j)G0(2k)) ,∂⊗3−r

2 j−1
n
⊗∂

⊗3−r
2k−1

n

〉
H⊗6−2r

∣∣∣∣] (4.42)

≤C ∑
a+b=6−2r

E

[
sup

0≤v,w≤1

∣∣∣ f (a)(vW2 j−1
n

+(1− v)W2 j−2
n
) f (b)(wW2k−1

n
+(1−w)W2k−2

n
)
∣∣∣]

×
∫ 1

0

∫ 1

0

∣∣∣∣〈(vε
⊗a
2 j−1

n
+(1− v)ε⊗a

2 j
n

)
⊗
(

wε
⊗b
2k−1

n
+(1−w)ε⊗b

2k
n

)
,∂⊗3−r

2 j−1
n
⊗∂

⊗3−r
2k−1

n

〉
H⊗6−2r

∣∣∣∣ dvdw.

Notice that by condition (0), E
[
sup
∣∣∣ f (3+r)(ξ )

∣∣∣p]< ∞, where the supremum is taken over the ran-
dom variables {ξ = vWs1 +(1− v)Ws2,0≤ v≤ 1,0≤ s1,s2 ≤ T} . From Lemma 4.21, for integers
a and b with a+b = 6−2r, we have the following estimate

∫ 1

0

∫ 1

0

∣∣∣∣〈(vε
⊗a
2 j−1

n
+(1− v)ε⊗a

2 j
n

)
⊗
(

wε
⊗b
2k−1

n
+(1−w)ε⊗b

2k
n

)
,∂⊗3−r

2 j−1
n
⊗∂

⊗3−r
2k−1

n

〉
H⊗6−2r

∣∣∣∣ dvdw

≤Cn−(3−r). (4.43)

It follows that if r 6= 0, then by Lemma 4.1, Equation (4.42), and Equation (4.43)

C
b nt

2 c
∑

j,k=1

∣∣∣∣〈∂ 2 j−1
n
,∂ 2k−1

n

〉r

H

∣∣∣∣E[∣∣∣∣〈D6−r (G0(2 j)G0(2k)) ,∂⊗3−r
2 j−1

n
⊗∂

⊗3−r
2k−1

n

〉
H⊗6−2r

∣∣∣∣]

≤Cnr−3
b nt

2 c
∑

j,k=1

∣∣∣∣〈∂ 2 j−1
n
,∂ 2k−1

n

〉r

H

∣∣∣∣
≤C

⌊nt
2

⌋
n

r
2−3,
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which satisfies (4.36) because r
2 −3≤−3

2 . On the other hand, if r = 0, then

b nt
2 c

∑
j,k=1

Cn−3 ≤C
⌊nt

2

⌋
n−2,

and we are done with (4.37).

Proof of (4.39). Proceeding along the same lines as above,

E


b nt

2 c
∑
j=1

w2
2 jG0(2 j)δ

(
∂ 2 j−1

n

)2


= E

 b nt
2 c

∑
j,k=1

w2
2 jw

2
2kG0(2 j)G0(2k)

{
δ

2
(

∂ 2 j−1
n
⊗∂ 2k−1

n

)
+
〈

∂ 2 j−1
n
,∂ 2k−1

n

〉
H

}
≤Cn−1

b nt
2 c

∑
j,k=1

E

[
E sup

0≤`≤b nt
2 c
|G0(`)|2

∣∣∣∣〈∂ 2 j−1
n
,∂ 2k−1

n

〉
H

∣∣∣∣
]

+Cn−1
b nt

2 c
∑

j,k=1
E

[
∑

a+b=2
E
∣∣∣∣〈DaG0(2 j)DbG0(2k),δ 2

(
∂ 2 j−1

n
⊗∂ 2k−1

n

)〉
H⊗2

∣∣∣∣
]
.

By Lemma 4.1 we have an estimate for the second term:

Cn−1
b nt

2 c
∑

j,k=1

∣∣∣∣〈∂ 2 j−1
n
,∂ 2k−1

n

〉
H

∣∣∣∣≤C
⌊nt

2

⌋
n−

3
2 .

Then the first term has the same estimate as (4.42) when r = 2, which proves (4.39) and the lemma.

4.4.2 Proof of Lemma 4.5
As in Lemma 4.4, we may assume r = 0. Start with Bn(t). Define

γn(t) :=
b nt

2 c

∑
j=1

f (3)(W2 j−1
n
)

〈
ε 2 j−1

n
,∂⊗2

2 j−1
n
−∂

⊗2
2 j−2

n

〉
H

=
b nt

2 c

∑
j=1

f (3)(W2 j−1
n
)
〈

ε 2 j−1
n
,∂ 2 j−1

n
−∂ 2 j−2

n

〉
H

(
∂ 2 j−1

n
−∂ 2 j−2

n

)
,
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so that Bn(t)= 2δ (γn(t)). By Lemma 2.1.c, we have ‖δ (γn(t))‖2
L2(Ω)

≤ E‖γn(t)‖2
H+E‖Dγn(t)‖2

H⊗2 .
We can write

‖γn(t)‖2
H =

b nt
2 c

∑
j,k=1

f (3)(W2 j−1
n
) f (3)(W2k−1

n
)
〈

ε 2 j−1
n
,∂ 2 j−1

n
−∂ 2 j−2

n

〉
H

×
〈

ε 2k−1
n
,∂ 2k−1

n
−∂ 2k−2

n

〉
H

〈
∂ 2 j−1

n
−∂ 2 j−2

n
,∂ 2k−1

n
−∂ 2k−2

n

〉
H

≤ sup
0≤s≤t

∣∣∣ f (3)(Ws)
∣∣∣2 sup

1≤ j≤bntc

〈
ε 2 j−1

n
,∂ 2 j−1

n
−∂ 2 j−2

n

〉2

H

b nt
2 c

∑
j,k=1

∣∣∣∣〈∂ 2 j−1
n
−∂ 2 j−2

n
,∂ 2k−1

n
−∂ 2k−2

n

〉
H

∣∣∣∣ .
Note that E

[
sup0≤s≤t | f (3)(Ws)|2

]
= C by (M.0), and by Lemma 4.21,

∣∣∣∣〈εt ,∂ 2 j−1
n
−∂ 2 j−2

n

〉
H

∣∣∣∣ ≤
C2n−

1
2 for all j, t. By Corollary 4.2 we know,

b nt
2 c

∑
j,k=1

∣∣∣∣〈∂ 2 j−1
n
−∂ 2 j−2

n
,∂ 2k−1

n
−∂ 2k−2

n

〉
H

∣∣∣∣≤C
⌊nt

2

⌋
n−

1
2 .

Hence, it follows that E‖γn(t)‖2
H ≤C

⌊nt
2

⌋
n−1n−

1
2 ≤C

⌊nt
2

⌋
n−

3
2 . Next,

Dγn(t) =
b nt

2 c

∑
j=1

f (4)(W2 j−1
n
)
〈

ε 2 j−1
n
,∂ 2 j−1

n
−∂ 2 j−2

n

〉
H

(
ε 2 j−1

n
⊗
(

∂ 2 j−1
n
−∂ 2 j−2

n

))
and this implies

‖Dγn(t)‖2
H⊗2 ≤ sup

0≤s≤t

∣∣∣ f (4)(Ws)
∣∣∣2
∣∣∣∣∣∣
b nt

2 c
∑

j,k=1

〈
ε 2 j−1

n
,∂ 2 j−1

n
−∂ 2 j−2

n

〉
H

〈
ε 2k−1

n
,∂ 2k−1

n
−∂ 2k−2

n

〉
H

∣∣∣∣∣∣
×
∣∣∣∣〈ε 2 j−1

n
⊗
(

∂ 2 j−1
n
−∂ 2 j−2

n

)
,ε 2k−1

n
⊗
(

∂ 2k−1
n
−∂ 2k−2

n

)〉
H⊗2

∣∣∣∣
≤ sup

0≤s≤t

∣∣∣ f (4)(Wt)
∣∣∣2(sup

j

〈
ε 2 j−1

n
,∂ 2 j−1

n
−∂ 2 j−2

n

〉2

H

)

× sup
0≤s,r≤t

∣∣〈εs,εr〉H
∣∣ b nt

2 c
∑

j,k=1

∣∣∣∣〈∂ 2 j−1
n
−∂ 2 j−2

n
,∂ 2k−1

n
−∂ 2k−2

n

〉
H

∣∣∣∣ .
By condition (M.0), E

[
sup0≤s≤t | f (4)(Ws)|

]
is bounded, and sup0≤s,r≤t | 〈εr,εs〉H | is bounded.

Hence, it can be seen that E‖Dγn(t)‖2
H⊗2 gives the same estimate as γn(t).

For Cn(t), using condition (M.0) and the identity a2−b2 = (a−b)(a+b), we can write

E
[
Cn(t)2]≤E

[
sup

0≤s≤t
| f (4)(Ws)|2

] sup
1≤ j≤ nt

2

∣∣∣∣〈ε 2 j−1
n
,∂ 2 j−1

n
−∂ 2 j−2

n

〉
H

∣∣∣∣b
nt
2 c

∑
j=1

∣∣∣∣〈ε 2 j−1
n
,∂ 2 j−1

n
+∂ 2 j−2

n

〉
H

∣∣∣∣
2
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By Lemma 4.21,
∣∣∣∣〈ε 2 j−1

n
,∂ 2 j−1

n
−∂ 2 j−2

n

〉
H

∣∣∣∣≤C2n−
1
2 , and by condition (M.4),

b nt
2 c

∑
j=1

∣∣∣∣〈ε 2 j−1
n
,1

[ 2 j−2
n , 2 j

n )

〉
H

∣∣∣∣≤Cn−
1
2 +Cn−

1
2

b nt
2 c

∑
j=2

(2 j−2)−
1
2 ≤C

⌊nt
2

⌋ 1
2

n−
1
2 .

Hence it follows that E
[
Cn(t)2]≤C

⌊nt
2

⌋
n−2 for some constant C, and the lemma is proved.

4.4.3 Proof of Lemma 4.9
For i = 1, . . . ,d, set

ui
n =

b nti
2 c

∑
j=b nti−1

2 c+1

f ′′(W2 j−1
n
)

(
∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n

)
,

and recall that F i
n = δ 2(ui

n). We want to show:
Condition (a). For each 1≤ i≤ d, the following converge to zero in L1(Ω):

(a.1)
〈
ui

n,h1⊗h2
〉
H⊗2 for all h1,h2 ∈ H of the form ετ (see Remark 2.4).

(a.2)
〈

ui
n,DF j

n ⊗h
〉
H⊗2

for each 1≤ j ≤ d and h ∈ H.

(a.3)
〈

ui
n,DF j

n ⊗DFk
n

〉
H⊗2

for each 1≤ j,k ≤ d.
Condition (b).

(b.1)
〈

ui
n,D

2F j
n

〉
H⊗2
−→ 0 in L1 if i 6= j.

(b.2)
〈
ui

n,D
2F i

n
〉
H⊗2 converges in L1 to a random variable of the form

F j
∞ = c

∫ ti

ti−1

f ′′(Ws)
2
η(ds).

The proofs of (a.1) and (a.2) are essentially the same as given in [23] (see Theorem 5.2) but the
proof of (a.3) is new.

Proof of (a.1). We may assume i = 1. Let h1⊗ h2 = εs⊗ ετ ∈ H⊗2 for some values s,τ ∈ [0, t].
Then 〈

u1
n,h1⊗h2

〉
H⊗2 =

b nt1
2 c

∑
j=1

f ′′(W2 j−1
n
)
〈

∂ 2 j−1
n
−∂ 2 j−2

n
,εs

〉
H

〈
∂ 2 j−1

n
−∂ 2 j−2

n
,ετ

〉
H

;

so that

∣∣∣〈u1
n,h1⊗h2

〉
H⊗2

∣∣∣≤ sup
0≤s≤t

| f ′′(Ws)| sup
1≤ j≤b nt1

2 c
sup

0≤s≤t1

∣∣∣∣〈∂ 2 j−1
n
−∂ 2 j−2

n
,εs

〉
H

∣∣∣∣ b
nt1
2 c

∑
j=1

∣∣∣∣〈∂ 2 j−1
n
−∂ 2 j−2

n
,ετ

〉
H

∣∣∣∣ .
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It follows from condition (M.3) that for fixed τ ≥ 0

b nt1
2 c

∑
j=1

∣∣∣∣〈∂ 2 j−1
n
−∂ 2 j−2

n
,ετ

〉
H

∣∣∣∣ =
b nt1

2 c

∑
j=1

∣∣∣E[Wτ(W2 j
n
−2W2 j−1

n
+W2 j−2

n
)
]∣∣∣

≤Cn−
1
2 +Cn−

1
2

b nt1
2 c

∑
j=2

(
(2 j−2)−

3
2 + |τ−2 j|−

3
2 ∧1

)
≤Cn−

1
2 (4.44)

and Lemma 4.21 implies,

sup
1≤ j≤b nt1

2 c
sup

0≤s≤t

∣∣∣∣〈∂ 2 j−1
n
−∂ 2 j−2

n
,εs

〉
H

∣∣∣∣≤Cn−
1
2

so that
E
(∣∣∣〈u1

n,h1⊗h2
〉
H⊗2

∣∣∣)≤Ct1n−1 −→ 0.

Proof of (a.2). As in (a.1), assume i = 1. Using the same technique as in (a.1), we can write
DF j

n ⊗h as DF j
n ⊗ ετ for some τ ∈ [0,T ]. By Lemma 2.1.b, DF j

n = Dδ 2(u j
n) = δ 2(Du j

n)+δ (u j
n),

which gives 〈
u1

n,DF j
n ⊗ ετ

〉
H⊗2 =

〈
u1

n,δ
2(Du j

n)⊗ ετ

〉
H⊗2 +

〈
u1

n,δ (u
j
n)⊗ ετ

〉
H⊗2 .

For the first term,

E
∣∣∣〈u1

n,δ
2(Du j

n)⊗ ετ

〉
H⊗2

∣∣∣= b nt1
2 c

∑
`=1

E
∣∣∣ f ′′(W2`−1

n
)
〈

∂ 2`−1
n
−∂ 2`−2

n
,δ 2(Du j

n)
〉
H

〈
∂ 2`−1

n
−∂ 2`−2

n
,ετ

〉
H

∣∣∣
≤ 2E

[
sup

0≤s≤t1
| f ′′(Ws)|

]
E

 sup
1≤`≤b nt1

2 c

∣∣∣〈∂ `
n
,δ 2(Du j

n)
〉
H

∣∣∣


×
b nt1

2 c

∑
`=1

∣∣∣〈∂ 2`−1
n
−∂ 2`−2

n
,ετ

〉
H

∣∣∣ .
By (4.44), the sum has estimate Cn−

1
2 , and for the second term we can take∣∣∣〈∂ `

n
,δ 2(Du j

n)
〉
H

∣∣∣≤ sup
`
‖∂ `

n
‖H ‖δ 2(Du j

n)‖H.

It follows from condition (M.1) that ‖∂ `
n
‖H ≤ Cn−

1
4 . This leaves the ‖δ 2(Du j

n)‖H term. By the
Meyer inequality for a process taking values in H,

E
[
‖δ 2(Du j

n)‖2
H

]
≤ c1E‖Du j

n‖2
H⊗3 + c2E‖D2u j

n‖2
H⊗4 + c3E‖D3u j

n‖2
H⊗5 , (4.45)
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so that by Lemma 4.7, E
[
‖δ 2(Du)‖2

H

]
≤C, and we have

E
∣∣∣〈u1

n,δ
2(Du j

n)⊗ ετ

〉
H⊗2

∣∣∣≤Cn−
3
4 .

Then similarly,

∣∣∣〈u1
n,δ (u

j
n)⊗ εt

〉
H⊗2

∣∣∣≤ 2

[
sup

0≤s≤t1
| f ′′(Ws)| sup

`

∣∣∣〈∂ `
n
,δ (u j

n)
〉
H

∣∣∣∑
`

∣∣∣〈∂ 2`−1
n
−∂ 2`−2

n
,εt

〉
H

∣∣∣] .
Similar to the above case, for each 1≤ `≤

⌊nt1
2

⌋
,

E
[∣∣∣〈∂ `

n
,δ (u j

n)
〉
H

∣∣∣]≤ E
[
‖∂ `

n
‖H‖δ (u j

n)‖H
]

≤Cn−
1
4
(
E‖u j

n‖H⊗2 +E‖Du j
n‖H⊗3

)
≤Cn−

1
4 ,

hence with (4.44) we have
E
[∣∣∣〈u1

n,δ (u
j
n)⊗ ετ

〉
H⊗2

∣∣∣]≤Cn−
3
4 .

Proof of (a.3). For this term we consider the product
〈

ui
n,DF j

n ⊗DFk
n

〉
H⊗2

. Lemma 4.20 shows
that scalar products of this kind are small in absolute value when the time intervals are disjoint,
therefore it is enough to consider the worst case

〈
u1

n,DF1
n ⊗DF1

n
〉
H⊗2 , and assume t1 = t. We have

E
[∣∣∣〈u1

n,DF1
n ⊗DF1

n
〉
H⊗2

∣∣∣]≤ b nt
2 c

∑
`=1

∣∣∣∣E[〈 f ′′(W2`−1
n
)

(
∂
⊗2
2`−1

n
−∂

⊗2
2`−2

n

)
,DF1

n ⊗DF1
n

〉
H⊗2

]∣∣∣∣
≤C
b nt

2 c
∑
`=1

E
[∣∣∣∣〈∂ 2`−1

n
,DF1

n

〉2

H
−
〈

∂ 2`−2
n
,DF1

n

〉2

H

∣∣∣∣]

≤C
b nt

2 c
∑
`=1

E
[∣∣∣〈∂ 2`−1

n
−∂ 2`−2

n
,DF1

n

〉
H

∣∣∣ ∣∣∣〈1[ 2`−2
n , 2`

n ],DF1
n

〉
H

∣∣∣] .
Using the decomposition DF1

n = δ 2(Du1
n)+δ (u1

n), the above summand expands into four terms:

(1)
∣∣∣〈∂ 2`−1

n
−∂ 2`−2

n
,δ 2(Du1

n)
〉
H

∣∣∣ ∣∣∣〈1[ 2`−2
n , 2`

n ],δ
2(Du1

n)
〉
H

∣∣∣
(2)

∣∣∣〈∂ 2`−1
n
−∂ 2`−2

n
,δ 2(Du1

n)
〉
H

∣∣∣ ∣∣∣〈1[ 2`−2
n , 2`

n ],δ (u
1
n)
〉
H

∣∣∣
(3)

∣∣∣〈∂ 2`−1
n
−∂ 2`−2

n
,δ (u1

n)
〉
H

∣∣∣ ∣∣∣〈1[ 2`−2
n , 2`

n ],δ
2(Du1

n)
〉
H

∣∣∣
(4)

∣∣∣〈∂ 2`−1
n
−∂ 2`−2

n
,δ (u1

n)
〉
H

∣∣∣ ∣∣∣〈1[ 2`−2
n , 2`

n ],δ (u
1
n)
〉
H

∣∣∣ .
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We will show computations for the terms (1) and (4) only, with the others similar. For (1) we have

C
b nt

2 c
∑
`=1

E
[∣∣∣〈∂ 2`−1

n
−∂ 2`−2

n
,δ 2(Du1

n)
〉
H

∣∣∣ ∣∣∣〈1[ 2`−2
n , 2`

n ],δ
2(Du1

n)
〉
H

∣∣∣]

=C
b nt

2 c
∑

`,m,m′=1
E
∣∣∣∣〈∂ 2`−1

n
−∂ 2`−2

n
,δ 2
(

f (3)(W2m−1
n

)ε 2m−1
n

(
∂
⊗2
2m−1

n
−∂

⊗2
2m−2

n

))〉
H

∣∣∣∣
×
∣∣∣∣〈1[ 2`−2

n , 2`
n ],δ

2
(

f (3)(W2m′−1
n

)ε 2m′−1
n

(
∂
⊗2
2m′−1

n
−∂

⊗2
2m′−2

n

))〉
H

∣∣∣∣
≤C sup

1≤k≤b nt
2 c

(
E
[∥∥∥∥δ

2
(

f (3)(W2k−1
n
)

(
∂
⊗2
2k−1

n
−∂

⊗2
2k−2

n

))∥∥∥∥
H⊗2

])2

×
b nt

2 c
∑

`,m,m′=1

∣∣∣〈∂ 2`−1
n
−∂ 2`−2

n
,ε 2m−1

n

〉
H

∣∣∣ ∣∣∣∣〈1[ 2`−2
n , 2`

n ],ε 2m′−1
n

〉
H

∣∣∣∣ .
By Lemmas 2.1.c and 4.7, the Skorohod integral term is bounded by Cn−

1
2 , and we use conditions

(M.3) and (M.4) for the scalar products to obtain an estimate of the form

Cn−2
b nt

2 c
∑

`,m,m′=1

(
(2m−1)−

3
2 + |2`−2m|−

3
2

) (
(2`−2)−

1
2 + |2`−2m′|−

1
2

)
≤Cn−

1
2 .

For term (4), we have by a computation similar to the proof of Lemma 4.7,

E
[∥∥∥δ

(
f (3)(W2k−1

n
)
(

∂ 2k−1
n
−∂ 2k−2

n

))∥∥∥
H

]
≤Cn−

1
4 ,

and by conditions (M.1) and (M.2) we have

Cn−
3
2

b nt
2 c

∑
`,m,m′=1

∣∣∣〈∂ 2`−1
n
−∂ 2`−2

n
,∂ 2m−1

n
−∂ 2m−2

n

〉
H

∣∣∣ ∣∣∣∣〈1[ 2`−2
n , 2`

n ],∂ 2m′−1
n
−∂ 2m′−2

n

〉
H

∣∣∣∣
≤Cn−

3
2

b nt
2 c

∑
`,m,m′=1

(
|2`−2m|−α

) (
|2`−2m′|−α

)
≤Cn−

1
2 .

Proof of (b.1). By Lemma 2.1.b, we can expand D2Fn as follows:〈
ui

n,D
2F j

n
〉
H⊗2 =

〈
ui

n,δ
2(D2u j

n)
〉
H⊗2 +4

〈
ui

n,δ (Du j
n)
〉
H⊗2 +2

〈
ui

n,u
j
n
〉
H⊗2 (4.46)

Without loss of generality, we may assume that ui
n is defined on [0, t1] and F j

n is defined on
[t1, t2] for t1 < t2, so that the sums are over

ui
n =

b nt1
2 c

∑
`=1

f ′′(W2`−1
n
)

(
∂
⊗2
2`−1

n
−∂

⊗2
2`−2

n

)
; and u j

n =
b nt2

2 c

∑
m=b nt1

2 c+1

f ′′(W2m−1
n

)

(
∂
⊗2
2m−1

n
−∂

⊗2
2m−2

n

)
.
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First term

E
∣∣∣〈ui

n,δ
2(D2u j

n)
〉
H⊗2

∣∣∣
= E

∣∣∣∣∣∣
〈b nt1

2 c

∑
`=1

f ′′(W2`−1
n
)

(
∂
⊗2
2`−1

n
−∂

⊗2
2`−2

n

)
,δ 2

 b nt2
2 c

∑
m=b nt1

2 c+1

f (4)(W2m−1
n

)ε⊗2
2m−1

n
⊗
(

∂
⊗2
2m−1

n
−∂

⊗2
2m−2

n

)〉
H⊗2

∣∣∣∣∣∣
≤ E

[
sup

0≤s≤t
| f ′′(Ws)|

]
E

[
∑
`

∑
m

∣∣∣∣〈ε
⊗2
2m−1

n
,∂⊗2

2`−1
n
−∂

⊗2
2`−2

n

〉
H⊗2

∣∣∣∣ ∣∣∣∣δ 2
(

f (4)(W2m−1
n

)

(
∂
⊗2
2m−1

n
−∂

⊗2
2m−2

n

))∣∣∣∣
]

≤ E

[
sup

0≤s≤t
| f ′′(Ws)|

]
sup

m
‖δ 2(g4)‖L2(Ω)

b nt2
2 c

∑
`=1

b nt2
2 c

∑
m=1

[〈
ε 2m−1

n
,∂ 2`−1

n

〉2

H
−
〈

ε 2m−1
n

,∂ 2`−2
n

〉2

H

]
First we need an estimate for the δ 2(g4) term, where in the notation of Lemma 4.7,

g4 := f (4)(W2m−1
n

)

(
∂
⊗2
2m−1

n
−∂

⊗2
2m−2

n

)
.

By Lemma 2.1.c, ‖δ 2(g4)‖L2(Ω) ≤ c1E‖g4‖H⊗2 + c2E‖Dg4‖H⊗3 + c3E‖D2g4‖H⊗4, and so

‖δ 2(g4)‖L2(Ω) ≤Cn−
1
2

for each bnt1
2 c< m≤ bnt2

2 c. We can write,

E
∣∣∣〈ui

n,δ
2(D2ui

n)
〉
H⊗2

∣∣∣≤Cn−
1
2

b nt2
2 c

∑
`,m=1

∣∣∣∣〈ε 2m−1
n

,∂ 2`−1
n

〉2

H
−
〈

ε 2m−1
n

,∂ 2`−2
n

〉2

H

∣∣∣∣
We need an estimate for the double sum. We have by condition (M.3),

b nt2
2 c

∑
`,m=1

[∣∣∣∣〈ε 2m−1
n

,∂ 2`−1
n

〉2

H
−
〈

ε 2m−1
n

,∂ 2`−2
n

〉2

H

∣∣∣∣]

≤ sup
`,m

∣∣∣〈ε 2m−1
n

,1[ 2`−2
n , 2`

n ]

〉
H

∣∣∣ b nt2
2 c

∑
`,m=1

∣∣∣〈ε 2m−1
n

,∂ 2`−1
n
−∂ 2`−2

n

〉
H

∣∣∣
≤Cn−

1
2

b nt2
2 c

∑
`,m=1

C2n−
1
2

[(
|`−m|−

3
2 +(`−1)−

3
2

)
∧1
]

≤Cn−1
b nt2

2 c

∑
`=1

∞

∑
p=1

p−
3
2 ≤C

This provides an upper bound for the double sum, hence the first term of (4.46) is O(n−
1
2 ).

Note that in the above estimate the double sum is taken over 1 ≤ `,m ≤
⌊nt2

2

⌋
. It follows that this

estimate also holds for the case i = j, that is, E
∣∣∣〈ui

n,δ
2(D2ui

n)
〉
H⊗2

∣∣∣≤Cn−
1
2 .
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Second Term
Using t1 < t2 as above,

E
∣∣∣〈ui

n,δ (Du j
n)
〉
H⊗2

∣∣∣
= E

∣∣∣∣∣∣
〈b nt1

2 c

∑
j=1

f ′′(W2 j−1
n
)

(
∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n

)
,δ

 b nt2
2 c

∑
k=b nt1

2 c
f (3)(W2k−1

n
)ε 2k−1

n
⊗
(

∂
⊗2
2k−1

n
−∂

⊗2
2k−2

n

)〉
H⊗2

∣∣∣∣∣∣
= E

∣∣∣∣∣∑j,k f ′′(W2 j−1
n
)
〈

ε 2k−1
n
,∂ 2 j−1

n
−∂ 2 j−2

n

〉
H

〈
∂ 2 j−1

n
−∂ 2 j−2

n
,∂ 2k−1

n
−∂ 2k−2

n

〉
H

∣∣∣∣∣
×
∣∣∣δ ( f (3)(W2k−1

n
)
(

∂ 2k−1
n
−∂ 2k−2

n

))∣∣∣
≤CE

[
sup

0≤s≤t
| f ′′(Ws)|

](
sup
s, j

∣∣∣〈εs,∂ j
n

〉
H

∣∣∣)(sup
k
‖δ (g3)‖L2(Ω)

) bnt2c

∑
j=0

bnt2c

∑
k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣ ,
where in this case, g3 corresponds to the term including f (3)(Wt). It follows from Lemma 4.21 that
sup |

〈
εs,∂k/n

〉
H
| ≤Cn−

1
2 ; and the double sum is bounded by Cn

1
2 by Corollary 4.2. This leaves an

estimate for ‖δ (g3)‖L2(Ω). By Lemma 2.1, ‖δ (g3)‖L2(Ω) ≤ c1‖g3‖H+ c2‖Dg3‖H⊗2 . For this case,

‖g3‖2
H ≤ E

[
sup

0≤s≤t
| f (3)(Ws)|2

]∥∥∥∂ 2k−1
n
−∂ 2k−2

n

∥∥∥2

H
≤Cn−

1
2 ,

hence ‖g3‖H ≤Cn−
1
4 . Similarly,

‖Dg3‖H⊗2 ≤ E

[
sup

0≤s≤t
| f (4)(Ws)|

]
sup

0≤s≤t
‖εs‖H

∥∥∥∂ 2k−1
n
−∂ 2k−2

n

∥∥∥
H
≤Cn−

1
4 ,

hence the second term is O(n−
1
4 ). As in the first term, the double sum estimate shows that this

result also holds for
〈
ui

n,δ (DF i
n)
〉
H⊗2 .

Third Term
We can write

∣∣∣〈ui
n,u

j
n
〉
H⊗2

∣∣∣≤ sup
0≤s≤t

| f ′′(Ws)|2
b nt1

2 c

∑
`=1

b nt2
2 c

∑
m=b nt1

2 c+1

∣∣∣∣〈∂
⊗2
2`−1

n
−∂

⊗2
2`−2

n
,∂⊗2

2m−1
n
−∂

⊗2
2m−2

n

〉
H⊗2

∣∣∣∣
and it follows from Lemma 4.20 that E

∣∣∣〈ui
n,u

j
n

〉
H⊗2

∣∣∣≤Cn−ε , for some ε > 0.

Proof of (b.2). As in case (b.1), this has the expansion (4.46). From remarks in the proof of (b.1),
the first two terms have the same estimate as the i 6= j case, hence only the term

〈
ui

n,u
i
n
〉
H⊗2 is

significant.
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Third Term
Assume for the summation terms that the indices run over bnti−1

2 c+1≤ j,k ≤ bnti
2 c. We have

〈
ui

n,u
i
n
〉
H⊗2 = ∑

j,k
f ′′(W2 j−1

n
) f ′′(W2k−1

n
)

〈
∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n
,∂⊗2

2k−1
n
−∂

⊗2
2k−2

n

〉
H⊗2

.

Expanding the product, observe that,〈
∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n
,∂⊗2

2k−1
n
−∂

⊗2
2k−2

n

〉
H⊗2

= βn(2 j−1,2k−1)2−βn(2 j−1,2k−2)2

−βn(2 j−2,2k−1)2 +βn(2 j−2,2k−2)2,

where βn(`,m) is as defined for condition (M.5). For each n, define discrete measures on {1,2, . . .}⊗2

by

µ
+
n :=

∞

∑
j,k=1

βn(2 j−1,2k−1)2 +βn(2 j−2,2k−2)2
δ jk;

µ
−
n :=

∞

∑
j,k=1

βn(2 j−1,2k−2)2 +βn(2 j−2,2k−1)2
δ jk.

where in this case δ jk denotes the Kronecker delta. In the following, we show only η+
n , with η−n

being similar. It follows from condition (M.5) that for each t > 0,

µ
+
(
[0, t]2

)
:= lim

n→∞
µn

(⌊nt
2

⌋
,
⌊nt

2

⌋)
= lim

n

b nt
2 c

∑
j,k=1

βn(2 j−1,2k−1)2 +βn(2 j−2,2k−2)2 = η
+(t).

Moreover, if 0 < s < t then

µn

(⌊ns
2

⌋
,
⌊nt

2

⌋)
= µn

(⌊ns
2

⌋
,
⌊ns

2

⌋)
+
b ns

2 c

∑
j=1

b nt
2 c

∑
k=b ns

2 c+1
βn(2 j−1,2k−1)2 +βn(2 j−2,2k−2)2

which converges to µ+([0,s]2) because the disjoint sum vanishes by Lemma 4.21. Hence, we
can conclude that µn converges weakly to the measure given by µ+([0,s]× [0, t]) = η+(s∧ t). It
follows by continuity of f ′′(Wt) and Portmanteau Theorem that

b nt
2 c

∑
j,k=1

f ′′(W2 j−1
n
) f ′′(W2k−1

n
)
(
βn(2 j−1,2k−1)2 +βn(2 j−2,2k−2)2)

=
∫
R2

f ′′(Ws) f ′′(Wu)1s<t1u<t µ
+
n (ds,du)

converges to ∫ t

0
f ′′(Ws)

2
η
+(ds).
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Combining this result with a similar integral defined for µ−, we have for t > 0,

lim
n→∞

b nt
2 c

∑
j,k=1

f ′′(W2 j−1
n
) f ′′(W2k−1

n
)

〈
∂
⊗2
2 j−1

n
−∂

⊗2
2 j−2

n
,∂⊗2

2k−1
n
−∂

⊗2
2k−2

n

〉
H⊗2

=
∫ t

0
f ′′(Ws) µ

+(ds)−
∫ t

0
f ′′(Ws) µ

−(ds) =
∫ t

0
f ′′(Ws) η(ds)

where we define η(t) = η+(t)−η−(t). It follows that on the subinterval [ti−1, ti] we have the result

〈
ui

n,u
i
n
〉
H⊗2 −→

∫ ti

ti−1

f ′′(Ws)
2
η(ds)

in L1(Ω) as n→ ∞. �
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Chapter 5

Two constructions with critical value
H = 1/6

5.1 Introduction
In this chapter, we consider two Riemann sum constructions that have similar characteristics,
namely the Trapezoidal sum,

ST
n (t) :=

1
2

bntc−1

∑
j=0

(
f ′(X j+1

n
)+ f ′(X j

n
)
)(

X j+1
n
−X j

n

)
(5.1)

and the Midpoint (type 2) sum,

SM2
n (t) :=

bntc−1

∑
j=0

f ′(X̃ j
n
)
(

X j+1
n
−X j

n

)
, (5.2)

where we assume a uniform partition of [0,∞) of increment length 1/n, and we recall the notation
X̃ j/n =

1
2(X j/n +X( j+1)/n) from Section 2.4. As discussed in Chapter 3, in the case of fBm both

sums have a critical value of H = 1/6. It will be shown that for the critical case H = 1/6, both
sums converge weakly to a similar random variable, where the correction terms differ only by a
factor of 2.

The fractional Brownian motion case with H = 1/6 was first studied in [26] for the trapezoidal
case, which coincides with the classical Stratonovich integral. That paper was followed by [18],
where, as in Chapter 4, we used a version of Theorem 2.3 to show the Riemann sum converges
in law to a Gaussian random variable. The Midpoint (type 2) was not considered in the papers
[18, 26], but the proof is quite similar. As in Chapter 4 and [17], the result of [18] was proved
for a generalized Gaussian process X = {Xt , t ≥ 0}, which includes fBm as well as others. In fact,
the outlines of Chapters 4 and 5 are essentially the same, but the technical details of the respective
proofs are so different that nearly all of the results must be re-created for this chapter.

The outline of this paper essentially follows Sections 3-5 of [18], with the exception that we
expanded the main theorem to include the Midpoint (type 2) case as well. This had very little
impact on most of the supporting lemmas.
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5.2 Weak convergence of the trapezoidal and midpoint (type 2)
sums

5.2.1 Covariance conditions
Consider a Gaussian stochastic process X := {Xt , t ≥ 0}with covariance function E [XsXt ] =R(s, t).
Assume R(s, t) satisfies the following bounds: for any T > 0, 0 < s≤ 1, and s≤ r, t ≤ T :

(T.1) E
[
(Xt−Xt−s)

2]≤C1s
1
3 , for a positive constant C1.

(T.2) If t > s, ∣∣E[X2
t −X2

t−s
]∣∣≤C2s

1
3+θ (t− s)−θ

for some C2 and 1/2 < θ < 1.

(T.3) For t ≥ 4s, ∣∣E[(Xt−Xt−s)
2− (Xt−s−Xt−2s)

2]∣∣≤C3s
1
3+ν(t−2s)−ν

for some constants C3 and ν > 1.

(T.4) There is a constant C4 and a real number λ ∈ (1
6 ,

1
3 ] such that

|E [Xr(Xt−Xt−s)]| ≤

{
C4s
(
(t− s)λ−1 + |t− r|λ−1

)
if |t− r| ≥ 2s and t ≥ 2s

C4sλ otherwise

(T.5) There is a constant C5 and a real number γ > 1 such that for t ∧ r ≥ 2s and |t− r| ≥ 2s,

|E [(Xt−Xt−s)(Xr−Xr−s)]| ≤C5s
1
3+γ |t− r|−γ .

(T.6) For integers n> 0 and integers 0≤ j,k≤ nT, define βn( j,k) :=E
[
(X j+1

n
−X j

n
)(Xk+1

n
−X k

n
)
]
.

Then for each real number 0≤ t ≤ T ,

lim
n→∞

bntc−1

∑
j,k=0

βn( j,k)3 = η(t), (5.3)

where η(t) is a continuous and nondecreasing function with η(0) = 0. As we will see, η(t)
is comparable to the ‘cubic variation’ [X ,X ,X ]t discussed in [16] and [26]. As described in
[26], these terms are related by Theorem 10 of [28].

In particular, it can be shown that the above conditions are satisfied by fBm with Hurst param-
eter H = 1/6. In Section 5.3 we show additional examples.

In addition to conditions (T.1) - (T.6) on X , we will also assume the following condition (T.0)
on the test function f :

(T.0) Let f : R→ R be a C ∞ function, such that f and all its derivatives satisfy moderate growth
conditions.
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The C ∞ condition is stronger than necessary, though derivatives of order higher than 15 appear in
the proofs.

The following is the major result of this section.

Theorem 5.1. Let f be a real function satisfying condition (T.0), and let X = {Xt , t ≥ 0} be a
Gaussian process satisfying conditions (T.1) through (T.6). Then:

(
Xt ,ST

n (t)
) L−→

(
Xt , f (Xt)− f (X0)+

√
6

12

∫ t

0
f (3)(Xs) dBs

)
and (

Xt ,SM2
n (t)

) L−→

(
Xt , f (Xt)− f (X0)−

√
6

24

∫ t

0
f (3)(Xs) dBs

)
as n→ ∞ in the Skorohod space D[0,∞), where B = {Bt , t ≥ 0} is a scaled Brownian motion,
independent of X, and with variance E

[
B2

t
]
= η(t) for the function η defined in condition (T.6).

The proof follows from Theorem 2.3 and Corollary 2.5; and is given in a series of lemmas. Fol-
lowing is an outline of the proof. After a preliminary technical lemma, we use a Taylor expansion
to decompose

ST
n (t) = f (Xt)− f (X0)+

1
12

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
−∆

T
n (t),

and

SM2
n (t) = f (Xt)− f (X0)−

1
24

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
−∆

M2
n (t).

We first show that |∆T
n (t)|+|∆M2

n (t)| P−→ 0 as n→∞; then we show that the sum ∑
bntc−1
j=0 f (3)(X̃ j

n
)∆X3

j
n

satisfies Theorem 2.3. Next we show that the sequences are relatively compact in the sense of
Corollary 2.5, and the results follow.

We begin with the following technical results, which follow from conditions (T.1) through
(T.5).

Lemma 5.2. Let T > 0, and assume {Xt ,0 ≤ t ≤ T} satisfies conditions (T.1), (T.2), (T.4) and
(T.5). For integers n≥ 1, r ≥ 1 and integers 0≤ a < b < c≤ bnTc, there exists a constant C > 0,
which does not depend on a,b,c or r, such that:

(a)
sup

0≤ j,k≤bnTc

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣≤Cn−
1
3 ; and sup

0≤u≤T
sup

0≤ j≤bnTc

∣∣∣〈εu,∂ j
n

〉
H

∣∣∣≤Cn−λ .

(b)

b

∑
j=a

∣∣∣〈ε̃ j
n
,∂ j

n

〉
H

∣∣∣≤Cn−
1
3 (b−a+1)1−θ ; and (5.4)

b

∑
j=a

∣∣∣〈ε̃ j
n
,∂ j

n

〉
H

∣∣∣r ≤Cn−
r
3 for r > 1. (5.5)
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(c) For 0≤ u,v≤ T ,

b

∑
j=a

∣∣∣〈εu,∂ j
n

〉
H

∣∣∣≤C; and (5.6)

b

∑
j=a

∣∣∣〈εu,∂ j
n

〉
H

〈
εv,∂ j

n

〉
H

∣∣∣≤Cn−2λ . (5.7)

(d)
b

∑
j,k=a

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣r ≤C(b−a+1)n−
r
3 . (5.8)

(e)
c

∑
k=b+1

b

∑
j=a

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣r ≤C(c−b)εn−
r
3 (5.9)

where ε = max{1−θ ,2− γ}.

Proof. We may assume a = 0. For part (a), the first inequality follows immediately from condition
(T.1) and Cauchy-Schwarz; and the second inequality is just a restatement of condition (T.4). For
(b), applying condition (T.1) for j = 0 and condition (T.2) for j ≥ 1, we have:

b

∑
j=0

∣∣∣∣E[X2
j+1
n
−X2

j
n

]∣∣∣∣≤Cn−
1
3

b

∑
j=1

j−θ +Cn−
1
3

≤Cn−
1
3

∫ b

0
u−θ du+Cn−

1
3

≤Cn−
1
3 (b+1)1−θ .

Then if r ≥ 2,

b

∑
j=0

∣∣∣∣E[X2
j+1
n
−X2

j
n

]∣∣∣∣r ≤Cn−
r
3

b

∑
j=1

j−rθ +Cn−
r
3

≤Cn−
r
3

because θ > 1/2 implies j−rθ is summable.
For (c), define the set Jc = { j : 0≤ j ≤ b, j = 0 or | j−nu|< 2 or | j−nv|< 2}, and note that

|Jc| ≤ 7. Then we have by (a) and condition (T.4),

b

∑
j=0

∣∣∣〈εu,∂ j
n

〉
H

∣∣∣≤ ∑
j∈Jc

Cn−λ +Cn−λ
∑
j/∈Jc

(
jλ−1 + | j−nu|λ−1

)
≤Cn−λ +Cn−λ (b+1)λ ≤C,
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and

b

∑
j=0

∣∣∣〈εu,∂ j
n

〉
H

〈
εv,∂ j

n

〉
H

∣∣∣≤ ∑
j∈Jc

Cn−2λ +Cn−2λ
∑
j/∈Jc

(
j2λ−2 + | j−nu|2λ−2 + | j−nv|2λ−2

)
≤Cn−2λ +Cn−2λ

∞

∑
p=1

p2λ−2

≤Cn−2λ

because λ ≤ 1/3.
For (d), define the set: Jd = { j,k : j∧ k < 1 or | j− k|< 2} , and note that |Jd| ≤ 6(b+1). Then

we have by (a) and condition (T.5)

b

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣r ≤ sup
j,k

∣∣∣〈∂ j
n
,∂ k

n

〉∣∣∣r−1 b

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣≤Cn−
r−1

3

b

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣
≤Cn−

r−1
3

(
∑

( j,k)∈Jd

n−
1
3 +n−

1
3 ∑
( j,k)/∈Jd

| j− k|−γ

)
≤C(b+1)n−

r
3 .

In particular, if r = 3 and b = bntc− 1 (as in condition (T.6)), the sum converges absolutely, and
the sum vanishes if r > 3.

For (e), we consider the maximal case, which occurs when a = 0:

c

∑
k=b+1

b

∑
j=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣r = c

∑
k=b+1

∣∣∣〈∂ 0
n
,∂ k

n

〉
H

∣∣∣r + c

∑
k=b+1

b−1

∑
j=1

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣r + c

∑
k=b+1

∣∣∣〈∂ b
n
,∂ k

n

〉
H

∣∣∣r .
Note that ∂ 0

n
= ε 1

n
. By part (c) and condition (T.5), respectively, this is

≤
c

∑
k=b+1

∣∣∣〈ε 1
n
,∂ k

n

〉
H

∣∣∣r +Cn−
r
3

c

∑
k=b+1

b−1

∑
j=1

(k− j)−γ +Cn−
r
3

c

∑
k=b+1

(k−b)−γ

≤Cn−
r
3 (c−b)1−θ +Cn−

r
3 (c−b)2−γ +Cn−

r
3

≤Cn−
r
3 (c−b)ε ,

where ε = max{1−θ ,2− γ}< 1.

5.2.2 Taylor expansion of f (Xt)

The details of this expansion were mainly inspired by Lemma 5.2 of [26] in the trapezoidal case,
and Theorem 4.4 of [16] in the Midpoint (type 2) case. We begin with the telescoping series,

f (Xt) = f (0)+ f (Xt)− f (Xbntc
n
)+
bntc−1

∑
j=0

[
f (X j+1

n
)− f (X j

n
)
]
.
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By continuity of f and X , we know that for large n, f (Xt)− f (Xbntc
n
)→ 0 uniformly on compacts

in probability (ucp), so this term may be neglected. For each j, we use a Taylor expansion of order
6 with residual term. Let h j := 1

2

[
X j+1

n
−X j

n

]
. Then:

f (X j+1
n
)− f (X j

n
) =

(
f (X̃ j

n
+h j)− f (X̃ j

n
)
)
−
(

f (X̃ j
n
−h j)− f (X̃ j

n
)
)

=
6

∑
k=1

f (k)(X̃ j
n
)
hk

j

k!
+R+

n ( j)−

(
6

∑
k=1

(−1)k f (k)(X̃ j
n
)
hk

j

k!
+R−n ( j)

)
= f ′(X̃ j

n
)∆X j

n
+

1
24

f (3)(X̃ j
n
)∆X3

j
n
+

1
245!

f (5)(X̃ j
n
)∆X5

j
n
+R+

n ( j)−R−n ( j),

where ∆X j
n
= 2h j; and R+

n ( j),R−n ( j) are Taylor series remainder terms of order 7. From this we
get the result

SM2
n (t) =

bntc−1

∑
j=0

(
f (X j+1

n
)− f (X j

n
)
)
− 1

24

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n

− 1
255!

bntc−1

∑
j=0

f (5)(X̃ j
n
)∆X5

j
n
−
bntc−1

∑
j=0

(
R+

n ( j)−R−N ( j)
)

= f (Xt)− f (X0)−
1

24

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
−∆

M2
n (t),

where ∆M2
n (t)= (255!)−1

∑
bntc−1
j=0 f (5)(X̃ j

n
)∆X5

j
n
+∑

bntc−1
j=0

(
R+

n ( j)−R−N ( j)
)
− f (Xbntc/n)+ f (Xt). On

the other hand, for the trapezoidal case we use 6th order Taylor expansions of f ′(X j/n), f ′(X( j+1)/n)
to write:

f ′(X j+1
n
)+ f ′(X j

n
)

2
− f ′(X̃ j

n
) =

1
2

(
f ′(X̃ j

n
+h j)− f ′(X̃ j

n
)
)
+

1
2

(
f ′(X̃ j

n
−h j)− f ′(X̃ j

n
)
)

=
1
2

5

∑
k=1

f (1+k)(X̃ j
n
)
hk

j

k!
+K+

n ( j)+
1
2

5

∑
k=1

(−1)k f (1+k)(X̃ j
n
)
hk

j

k!
+K−n ( j)

=
1
8

f (3)(X̃ j
n
)∆X2

j
n
+

1
244!

f (5)(X̃ j
n
)∆X4

j
n
+

1
2

(
K+

j +K−j
)
,

where K+
n ( j),K−n ( j) are remainder terms of order 6. Combining the two expansions, we obtain

f (X j+1
n
)− f (X j

n
) =

f ′(X j+1
n
)+ f ′(X j

n
)

2
∆X j

n
− 1

12
f (3)(X̂ j)∆X3

j
n
− 4

255!
f (5)(X̂ j)∆X5

j
n

+R+
n ( j)−R−n ( j)− 1

4
[
K+

n ( j)+K−n ( j)
]

∆X j
n
.



81

so that

ST
n (t) =

bntc−1

∑
j=0

(
f (X j+1

n
)− f (X j

n
)
)
− 1

12

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
− 4

255!

bntc−1

∑
j=0

f (5)(X̃ j
n
)∆X5

j
n

−
bntc−1

∑
j=0

(
R+

n ( j)−R−N ( j)
)
+

1
4

bntc−1

∑
j=0

(
K+

n (t)+K−n (t)
)

∆X j
n

= f (Xt)− f (X0)−
1

24

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
−∆

T
n (t),

where

∆
T
n (t) =

4
255!

bntc−1

∑
j=0

f (5)(X̃ j
n
)∆X5

j
n
+
bntc−1

∑
j=0

(
R+

n ( j)−R−N ( j)
)
− 1

4

bntc−1

∑
j=0

(
K+

n (t)+K−n (t)
)

∆X j
n

+ f (Xbntc
n
)− f (Xt).

Our first task is to show that the terms ∆T
n (t), ∆M2

n (t) vanish in probability for each t. We do
this by checking each component in Lemmas 5.3, 5.4.

Lemma 5.3. For each integer n≥ 1 and real numbers 0≤ t1 < t2 ≤ T ,

E

(bnt2c−1

∑
j=bnt1c

f (5)(X̃ j
n
)∆X5

j
n

)2
≤Cn−

4
3 (bnt2c−bnt1c) . (5.10)

The proof of this lemma is technical, and is deferred to Section 5.4.

Lemma 5.4. For integers n≥ 1, let

Zn(t) =
bntc−1

∑
j=0

[
R+

n ( j)−R−n ( j)+
1
4
(
K+

n ( j)+K−n ( j)
)

∆X j
n

]
.

Then for real numbers 0≤ t1 < t2 ≤ T , we have

E
[
(Zn(t2)−Zn(t1))

2
]
≤Cn−

7
3 (bnt2c−bnt1c)2 . (5.11)

Proof. We may assume t1 = 0. Observe that each term in the sum Zn(t) has the form

C f (7)(ξ j)∆X7
j
n
,

where ξ j is an intermediate value between X j
n

and X j+1
n

. Using the Hölder inequality, for each
0≤ j,k < bnt2c we have

E
[

f (7)(ξ j) f (7)(ξk)∆X7
j
n
∆X7

k
n

]
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≤

(
sup

0<u<1
E
[

f (7)(uX j
n
+(1−u)X j+1

n
)4
]

sup
0<v<1

E
[

f (7)(vX k
n
+(1− v)Xk+1

n
)4
]
E

[∣∣∣∣∆X7
j
n

∣∣∣∣4
]
E
[∣∣∣∆X7

k
n

∣∣∣4]) 1
4

.

By condition (T.0), the first two terms are bounded. By condition (T.1), E
[

∆X2
j
n

]
≤ C1n−

1
3 ; and

we have by the Gaussian moments formula that

E
[

∆X28
j
n

]
≤ 27!!

(
C1n−

1
3

)14
,

hence it follows that

C
bnt2c−1

∑
j,k=0

E
[

f (7)(ξ j) f (7)(ξk)∆X7
j
n
∆X7

k
n

]
≤C

bnt2c−1

∑
j,k=0

n−
7
3 ≤Cbnt2c2n−

7
3 .

Since | f (Xbntc/n)− f (Xt)|→ 0 ucp as n→∞, it follows from Lemmas 5.3 and 5.4 that ∆T
n (t), ∆M2

n (t)
both tend to zero in L2(Ω), where we take K+

n (t),K−n (t) = 0 in Lemma 5.4 when applied to ∆M2
n (t).

5.2.3 Malliavin calculus representation of 3rd order term
From Lemmas 5.3 and 5.4, we see that proof of both results of Theorem 5.1 depend on the behavior
of the term

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
.

It may happen that the upper bound of condition (T.5) is such that

|η(t)| ≤ lim
n→∞

bntc−1

∑
j,k=0

∣∣βn( j,k)3∣∣= 0

for all t, which implies

lim
n

E

(bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n

)2
= 0

for any function f satisfying condition (T.0). This is a generalization of the fBm case H > 1/6 and
the case of zero cubic variation in [16]. As in Proposition 3.3, the sums ST

n (t), SM2
n (t) will then

converge in probability to f (Xt)− f (X0), and we can say that the stochastic integrals∫ t

0
f ′(Xs) d◦Xs,

∫ t

0
f ′(Xs) dM2Xs

exist in probability. In the rest of this section, we will assume that η(t) is non-trivial.
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Consider the 3rd Hermite polynomial H3(x) = x3−3x. For x = ∆X
‖∆X‖L2

, it follows that

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
=
bntc−1

∑
j=0
‖∆X j

n
‖3

L2 f (3)(X̃ j
n
)H3

(
∆X j

n

‖∆X j
n
‖L2

)

+3
bntc−1

∑
j=0
‖∆X j

n
‖2

L2 f (3)(X̃ j
n
)∆X j

n

The second term is dealt with in the next lemma. The proof is technical, and is deferred to Section
5.4.

Lemma 5.5. For integers n≥ 1 and integers 0≤ a < b≤ nT ,

E

∣∣∣∣∣b−1

∑
j=a
‖∆X j

n
‖2

L2 f (3)(X̃ j
n
)∆X j

n

∣∣∣∣∣≤Cn−
1
3 .

Next, we consider the H3 term. By (2.4) and Lemma 2.1.a we have

bntc−1

∑
j=0
‖∆X j

n
‖3

L2 f (3)(X̃ j
n
)H3

(
∆X j

n

‖∆X j
n
‖L2

)
=
bntc−1

∑
j=0

f (3)(X̃ j
n
)δ 3
(

∂
⊗3
j
n

)

=
bntc−1

∑
j=0

δ
3
(

f (3)(X̃ j
n
)∂⊗3

j
n

)
+3δ

2
(〈

D f (3)(X̃ j
n
),∂⊗3

j
n

〉
H

)
+3δ

(〈
D2 f (3)(X̃ j

n
),∂⊗3

j
n

〉
H⊗2

)
+

〈
D3 f (3)(X̃ j

n
),∂⊗3

j
n

〉
H⊗3

=
bntc−1

∑
j=0

δ
3
(

f (3)(X̃ j
n
)∂⊗3

j
n

)
+Pn(t).

As n→ ∞, we show that the term Pn(t) vanishes in probability.

Lemma 5.6. For integers n≥ 1 and real numbers 0≤ t1 < t2 ≤ T ,

E
[
Pn(t)2]≤C (bnt2c−bnt1c)n−

4
3 .

Proof. We may assume t1 = 0. We want to show

E

(δ
2

(
bnt2c−1

∑
j=0

〈
D f (3)(X̃ j

n
),∂⊗3

j
n

〉
H

))2
≤Cbnt2cn−

4
3 ; (5.12)

E

(δ

(
bnt2c−1

∑
j=0

〈
D2 f (3)(X̃ j

n
),∂⊗3

j
n

〉
H⊗2

))2
≤Cbnt2cn−

1
5 λ ; (5.13)
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and

E

(bnt2c−1

∑
j=0

〈
D3 f (3)(X̃ j

n
),∂⊗3

j
n

〉
H

)2
≤Cbnt2cn−2. (5.14)

Proof of (5.12). By Lemma 2.1.d we have

E

(δ
2

(
bnt2c−1

∑
j=bnt1c

〈
D f (3)(X̃ j

n
),∂⊗3

j
n

〉
H

))2


≤ E

[
bnt2c−1

∑
j,k=0

〈〈
D f (3)(X̃ j

n
),∂⊗3

j
n

〉
H

,

〈
D f (3)(X̃ k

n
),∂⊗3

k
n

〉
H

〉
H⊗2

]

+2E

[
bnt2c−1

∑
j,k=0

〈〈
D2 f (3)(X̃ j

n
),∂⊗3

j
n

〉
H⊗2

,

〈
D2 f (3)(X̃ k

n
),∂⊗3

k
n

〉
H⊗2

〉
H

]

+E

[
bnt2c−1

∑
j,k=0

〈
D3 f (3)(X̃ j

n
),∂⊗3

j
n

〉
H⊗3
·
〈

D3 f (3)(X̃ k
n
),∂⊗3

k
n

〉
H⊗3

]

≤ sup
0≤ j<bnt2c

E
[

f (4)(X̃ j
n
)2
]

sup
0≤ j<bnt2c

〈
ε̃ j

n
,∂ j

n

〉2

H

bnt2c−1

∑
j,k=0

〈
∂ j

n
,∂ k

n

〉2

H

+ sup
0≤ j<bnt2c

E
[

f (5)(X̃ j
n
)2
]

sup
0≤ j<bnt2c

〈
ε̃ j

n
,∂ j

n

〉4

H

bnt2c−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣
+ sup

0≤ j<bnt2c
E
[

f (6)(X̃ j
n
)2
] bnt2c−1

∑
j,k=0

∣∣∣∣〈ε̃ j
n
,∂ j

n

〉3

H

∣∣∣∣ ∣∣∣∣〈ε̃ k
n
,∂ k

n

〉3

H

∣∣∣∣ .
By condition (T.0) and Lemma 5.2.a and 5.2.d,

sup
0≤ j<bnt2c

E
[

f (4)(X̃ j
n
)2
]

sup
0≤ j<bnt2c

〈
ε̃ j

n
,∂ j

n

〉2

H

bnt2c−1

∑
j,k=0

〈
∂ j

n
,∂ k

n

〉2

H
≤Cn−

4
3 bnt2c; and

sup
0≤ j<bnt2c

E
[

f (5)(X̃ j
n
)2
]

sup
0≤ j<bnt2c

〈
ε̃ j

n
,∂ j

n

〉4

H

bnt2c−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣≤Cn−
5
3 bnt2c.

Then by condition (T.0), Lemma 5.2.a and 5.2.b,

sup
0≤ j<bnt2c

E
[

f (6)(X̃ j
n
)2
] bnt2c−1

∑
j,k=0

∣∣∣∣〈ε̃ j
n
,∂ j

n

〉3

H

∣∣∣∣ ∣∣∣∣〈ε̃ k
n
,∂ k

n

〉3

H

∣∣∣∣
≤C sup

0≤ j≤bnt2c

〈
ε̃ j

n
,∂ j

n

〉2

H

(
bnt2c−1

∑
j=0

〈
ε̃ j

n
,∂ j

n

〉2

H

)2

≤Cn−2.
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Proof of (5.13) and (5.14). The same estimates apply for the other terms, since by Lemma 2.1.c,

E

(δ

(
bnt2c−1

∑
j=0

〈
D2 f (3)(X̃ j

n
),∂⊗3

j
n

〉
H⊗2

))2


≤

∣∣∣∣∣E
[
bnt2c−1

∑
j,k=0

〈〈
D2 f (3)(X̃ j

n
),∂⊗3

j
n

〉
H⊗2

,

〈
D2 f (3)(X̃ k

n
),∂⊗3

k
n

〉
H⊗2

〉
H

]∣∣∣∣∣
+

∣∣∣∣∣E
[
bnt2c−1

∑
j,k=0

〈
D3 f (3)(X̃ j

n
),∂⊗3

j
n

〉
H⊗3
·
〈

D3 f (3)(X̃ k
n
),∂⊗3

k
n

〉
H⊗3

]∣∣∣∣∣
and (5.14) is bounded in the above computation as well.

5.2.4 Weak convergence of non-trivial part of 3rd order term
We are now ready to apply Theorem 2.3 to the term

bntc−1

∑
j=0

δ
3
(

f (3)(X̃ j
n
)∂⊗3

j
n

)
.

Let 0 = t0 < t1 < · · ·< td ≤ T be a finite set of real numbers. For i = 1, . . . ,d define

ui
n =

bntic−1

∑
j=bnti−1c

f (3)(X̃ j
n
)∂⊗3

j
n

;

and define the d−dimensional vector Fn = (F1
n , . . . ,F

d
n ), where each F i

n = δ 3(ui
n).

To satisfy the conditions of Theorem 2.3, we must deal with terms of the following forms:

1.
〈
ui

n,h
〉
H⊗3 for h ∈ H⊗3,

2.
〈

ui
n,DF j

n ⊗h
〉
H⊗3

for h ∈ H⊗2,

3.
〈

ui
n,D

2F j
n ⊗h1

〉
H⊗3

+
〈

ui
n,DF j

n ⊗DFk
n ⊗h2

〉
H⊗3

for h1, h2 ∈ H, and

4.
〈
ui

n,D
3F i

n
〉
H⊗3 +

〈
ui

n,D
3F j

n

〉
H⊗3

+
〈

ui
n,D

2F j
n ⊗DFk

n

〉
H⊗3

+
〈

ui
n,DF j

n ⊗DFk
n ⊗DF`

n

〉
H⊗3

.

We must show that all terms converge to zero except for the terms
〈
ui

n,D
3F i

n
〉
H⊗3 , i = 1, . . . ,d,

which will converge stably to a Gaussian random vector (Lemma 5.11).

Lemma 5.7. For each i, j,k, `= 1, . . . ,d, the following terms vanish in L1(Ω) as n→ ∞:

(a)
〈
ui

n,h
〉
H⊗3 for each h ∈ H⊗3.
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(b)
〈

ui
n,DF j

n ⊗h
〉
H⊗3

for each h ∈ H⊗2.

(c)
〈

ui
n,D

2F j
n ⊗h

〉
H⊗3

+
〈

ui
n,DF j

n ⊗DFk
n ⊗h

〉
H⊗3

for h ∈ H.

Proof. We begin with two estimates that will be needed. For each 1≤ i≤ d,

E
∥∥DF i

n
∥∥2
H
<C; and (5.15)

E
∥∥D2F i

n
∥∥2
H⊗2 <C. (5.16)

Proof of (5.15). Let ai = bnti−1c and bi = bntic. By Lemma 2.1.b,

DF i
n = δ

3(Dui
n)+3δ

2(ui
n).

Hence, using Lemma 2.1.c,

E
∥∥DF i

n
∥∥2
H
≤ 2

bi−1

∑
j,k=ai

E
[

δ
3
(

f (4)(X̃ j
n
)∂⊗3

j
n

)
δ

3
(

f (4)(X̃ k
n
)∂⊗3

k
n

)]〈
ε̃ j

n
, ε̃ k

n

〉
H

+18
bi−1

∑
j,k=ai

E
[

δ
2
(

f (3)(X̃ j
n
)∂⊗2

j
n

)
δ

2
(

f (3)(X̃ k
n
)∂⊗2

k
n

)]〈
∂ j

n
,∂ k

n

〉
H

= 2
bi−1

∑
j,k=ai

3

∑
`=0

(
3
`

)2

E
[

f (7−`)(X̃ j
n
) f (7−`)(X̃ k

n
)
]〈

∂ j
n
,∂ k

n

〉3

H

〈
ε̃ j

n
, ε̃ k

n

〉`
H

+18
bi−1

∑
j,k=ai

2

∑
`=0

(
2
`

)2

E
[

f (5−`)(X̃ j
n
) f (5−`)(X̃ k

n
)
]〈

∂ j
n
,∂ k

n

〉3

H

〈
ε̃ j

n
, ε̃ k

n

〉`
H

≤C

by (T.0) and Lemma 5.2.d. The proof of (5.16) follows the same lines, using Lemma 2.1.b to
obtain

D2F i
n = δ

3(D2ui
n)+6δ

2(Dui
n)+6δ (ui

n).

Now for the main proof. Without loss of generality, we may assume that each h ∈ H is of the
form ετ for some 0≤ τ ≤ T (see Remark 2.4). Then for (a) we have:

E
∣∣∣〈ui

n,h
〉
H⊗3

∣∣∣= E

∣∣∣∣∣bi−1

∑
m=ai

〈
f (3)(X̃m

n
)∂⊗3

m
n
,ετ ⊗ εu⊗ εv

〉
H⊗3

∣∣∣∣∣
≤ sup

ai≤m≤bi

{
E
∣∣∣ f (3)(X̃m

n
)
∣∣∣}sup

τ,m

{〈
ετ ,∂ m

n

〉2

H

} bi−1

∑
m=ai

∣∣∣〈ετ ,∂ m
n

〉
H

∣∣∣
≤Cn−2λ ,

where we used Lemma 5.2.a and Lemma 5.2.c. For (b),

E
∣∣∣〈ui

n,DF j
n ⊗ ετ ⊗ εu

〉
H⊗3

∣∣∣≤√ sup
ai≤m≤bi

E
∣∣∣ f (3)(X̃m

n
)
∣∣∣2 bi−1

∑
m=ai

(
E
〈

∂
⊗3
m
n
,DF j

n ⊗ ετ ⊗ εu

〉2

H⊗3

) 1
2

≤C sup
m

∥∥∥∂ m
n

∥∥∥
H

√
E‖DF j

n ‖2
H

bi−1

∑
m=ai

∣∣∣〈∂ m
n
,ετ

〉
H

〈
∂ m

n
,εu

〉
H

∣∣∣ .
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By condition (T.1), ‖∂ m
n
‖H ≤Cn−

1
6 , and so by (5.15) and Lemma 5.2.c we have an upper bound of

Cn−
1
6−2λ . For (c), by similar reasoning along with Lemma 5.2.c and (5.16),

E
∣∣∣〈ui

n,D
2F j

n ⊗ ετ

〉
H⊗3

∣∣∣≤√ sup
ai≤m≤bi

E
∣∣∣ f (3)(X̃m

n
)
∣∣∣2 bi−1

∑
m=ai

(
E
〈

∂
⊗3
m
n
,D2F j

n ⊗ ετ

〉2

H⊗3

) 1
2

≤C sup
m

∥∥∥∂ m
n

∥∥∥
H

√
E‖D2F j

n ‖2
H⊗2

bi−1

∑
m=ai

∣∣∣〈∂ m
n
,ετ

〉
H

∣∣∣
≤Cn−

1
6 .

The estimate is similar for the term E
∣∣∣〈ui

n,DF j
n ⊗DFk

n ⊗ εt

〉
H⊗3

∣∣∣, and Lemma 5.8 is proved.

Now we focus on the terms
〈

ui
n,D

3F j
n

〉
H⊗3

. By Lemma 2.1.b,

D3F j
n = δ

3(D3u j
n)+9δ

2(D2u j
n)+18δ (Du j

n)+6u j
n,

so that
〈

ui
n,D

3F j
n

〉
H⊗3

can be written as,

∑
`,m

f (3)(X̃m
n
)δ 3
(

f (6)(X̃ `
n
)∂⊗3

`
n

)〈
∂ m

n
, ε̃ `

n

〉3

H

+9∑
`,m

f (3)(X̃m
n
)δ 2
(

f (5)(X̃ `
n
)∂⊗3

`
n

)〈
∂ m

n
, ε̃ `

n

〉2

H

〈
∂ m

n
,∂ `

n

〉
H

+18∑
`,m

f (3)(X̃m
n
)δ
(

f (4)(X̃ `
n
)∂ `

n

)〈
∂ m

n
, ε̃ `

n

〉
H

〈
∂ m

n
,∂ `

n

〉2

H
+6
〈
ui

n,u
j
n
〉
H⊗3

:= An(i, j)+Bn(i, j)+Cn(i, j)+6
〈
ui

n,u
j
n
〉
H⊗3 ,

where m, ` are the indices for ui
n,D

3F j
n , respectively, with bnti−1c ≤ m≤ bntic, and bnt j−1c ≤ `≤

bnt jc.

Lemma 5.8. For each 1≤ i, j ≤ d we have∣∣∣〈ui
n,D

3F j
n
〉
H⊗3 − 6 δi j

〈
ui

n,u
j
n
〉
H⊗3

∣∣∣ P−→ 0

as n→ ∞, where δi j is the Kronecker delta.

Proof. We will show that for each 1≤ i, j ≤ d

lim
n→∞

E |An(i, j)|= lim
n→∞

E |Bn(i, j)|= lim
n→∞

E |Cn(i, j)|= 0.

and moreover, if i 6= j then limn→∞E
∣∣∣〈ui

n,u
j
n

〉
H⊗3

∣∣∣= 0.
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To begin with, observe that if g(x) is a function satisfying (T.0), then it follows from condition
(T.1) and Lemma 2.1.c that that for q = 1,2,3,

sup
j

∥∥∥∥δ
q
(

g(X̃ j
n
)∂
⊗q
j
n

)∥∥∥∥
L2
≤C sup

j

∥∥∥∂ j
n

∥∥∥q

H
≤Cn−

q
6 . (5.17)

For the terms An(i, j),Bn(i, j),Cn(i, j) we include the case i = j. We have

E |An(i, j)| ≤ sup
m

∥∥∥ f (3)(X̃m
n
)
∥∥∥

L2
sup
`

∥∥∥∥δ
3
(

f (6)(X̃ `
n
)∂⊗3

`
n

)∥∥∥∥
L2

sup
`,m

∣∣∣〈∂ m
n
, ε̃ `

n

〉
H

∣∣∣∑
`,m

〈
∂ m

n
, ε̃ `

n

〉2

H
.

Using (T.0), (5.17), and Lemma 5.2.a, respectively, we have

E |An(i, j)| ≤Cn−
1
2−λ

∑
`,m

〈
∂ m

n
, ε̃ `

n

〉2

H
,

so that Lemma 5.2.c gives E |An(i, j)| ≤Cn−
1
2−3λ . Next, using (T.0), (5.17) and Lemma 5.2.a,

E |Bn(i, j)| ≤ 9sup
m

∥∥∥ f (3)(X̃m
n
)
∥∥∥

L2
sup
`

∥∥∥∥δ
2
(

f (5)(X̃ `
n
)∂⊗2

`
n

)∥∥∥∥
L2

sup
`,m

〈
∂ m

n
, ε̃ `

n

〉2

H
∑
`,m

∣∣∣〈∂ m
n
,∂ `

n

〉
H

∣∣∣
≤Cn−

1
3−2λ

∑
`,m

∣∣∣〈∂ `
n
,∂ m

n

〉
H

∣∣∣ ;
and so by Lemma 5.2.d,

E |Bn(i, j)| ≤Cn−
2
3−2λ max{bntic,bnt jc},

which converges to zero since 2λ > 1/3. Similarly for Cn(i, j) using Lemma 5.2.d,

E |Cn(i, j)| ≤ 18sup
m

∥∥∥ f (3)(X̃m
n
)
∥∥∥

L2
sup
`

∥∥∥δ

(
f (4)(X̃ `

n
)∂ `

n

)∥∥∥
L2

sup
`,m

∣∣∣〈∂ m
n
, ε̃ `

n

〉
H

∣∣∣∑
`,m

∣∣∣∣〈∂ m
n
,∂ `

n

〉2

H

∣∣∣∣
≤Cn−

1
6−λ

∑
`,m

〈
∂ `

n
,∂ m

n

〉2

H
≤Cn−

5
6−λ max{bntic,bnt jc} ≤Cn−λ+ 1

6 .

For the second part, we may assume i < j. Using Lemma 5.2.e,

E
∣∣∣〈ui

n,u
j
n
〉
H⊗3

∣∣∣≤ sup
m

∥∥∥ f (3)(X̃m
n
)
∥∥∥2

L2 ∑
`,m

∣∣∣∣〈∂ m
n
,∂ `

n

〉3

H

∣∣∣∣
≤Cn−1bnt jcε ,

which converges to zero because ε < 1.

Lemma 5.9. Using the above notation, for each 1≤ i, j,k, l ≤ d we have

lim
n→∞

E
[〈

ui
n,D

2F j
n ⊗DFk

n

〉2

H⊗3

]
= 0, and (5.18)

lim
n→∞

E
[〈

ui
n,DF j

n ⊗DFk
n ⊗DF`

n

〉2

H⊗3

]
= 0. (5.19)
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The proof of this lemma is deferred to Section 5.4.

Lemmas 5.8, 5.9 and 5.10 show that condition (a) of Theorem 2.3 is satisfied, and moreover
that the only non-trivial terms are of the form 6

〈
ui

n,u
i
n
〉
H⊗3 . It remains to establish the convergence

of these terms to a non-negative random variable 6s2
i . With this result, it follows from Theorem

2.3 that the couple (X ,Fn) converges stably to (X ,ζ ), where ζ = (ζ1, . . . ,ζd) is a vector whose
components are conditionally independent Gaussian random variables with mean zero and variance
6s2

i .

Lemma 5.10. For each 1≤ i≤ d, conditioned on X,

lim
n→∞

〈
ui

n,u
i
n
〉
H⊗3 = s2

i ,

where each s2
i has the form

s2
i = s(ti)2− s(ti−1)

2 =
∫ ti

ti−1

f (3)(Xs)
2
η(ds).

It follows that on the subinterval [ti−1, ti] we have the conditional result

6
〈
ui

n,u
i
n
〉
H⊗3 −→ 6

∫ ti

ti−1

f (3)(Xs)
2
η(ds),

almost surely as n→ ∞, which implies

F i
n

L−→
√

6
∫ ti

ti−1

f (3)(Xs)dBs, (5.20)

where {Bt , t ≥ 0} is a Brownian motion, independent of X, with variance η(t).

Proof. Let a = bnti−1c and b = bntic, and recall βn( j,k) =
〈

∂ j
n
,∂ k

n

〉
H

, from condition (T.6). We
have 〈

ui
n,u

i
n
〉
H⊗3 =

b−1

∑
j,k=a

f (3)(X̃ j
n
) f (3)(X̃ k

n
)βn( j,k)3.

For each n, define a discrete measure on {1,2, . . .}⊗2 by

µn :=
∞

∑
j,k=0

βn( j,k)3
δ jk,

where δ jk denotes the Kronecker delta. It follows from condition (T.6) that for each t > 0,

µ
(
[0, t]2

)
:= lim

n→∞
µn (bntc,bntc)

= lim
n

bntc−1

∑
j,k=0

βn( j,k)3 = η(t).
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Moreover, if 0 < s < t then

µn (bnsc,bntc) = µn (bnsc,bnsc)+
bnsc−1

∑
j=0

bntc−1

∑
k=bnsc

βn( j,k)3,

which converges to zero because the disjoint sum vanishes by Lemma 5.2.e. Hence we can con-
clude that µn converges weakly to the measure given by µ([0,s]× [0, t]) = η(s∧ t). It follows by
continuity of f (3)(Xt) and Portmanteau theorem that

bntc−1

∑
j,k=0

f (3)(X̃ j
n
) f (3)(X̃ k

n
)βn( j,k)3 =

∫
R2

f (3)(Xs) f (3)(Xu)1s<t1u<t µn(ds,du)

converges in L1(Ω,H) to ∫ t

0
f (3)(Xs)

2
η(ds).

It follows that on the subinterval [ti−1, ti] we have the result〈
ui

n,u
i
n
〉
H⊗3 −→

∫ ti

ti−1

f (3)(Xs)
2
η(ds)

in L1(Ω,H) as n→ ∞. Using the Itô isometry for the above integral, we conclude (5.20).

5.2.5 Relative compactness of the sequences
To establish convergence of ST

n (t) and SM2
n (t) in D[0,∞), we need to show that {S∗n(t)} is relatively

compact in the sense of Corollary 2.5, where S∗n(t) denotes either ST
n (t) or SM2

n (t) as appropriate.
For this, it is enough to show that there exist real numbers α > 0, β > 1 such that for each T > 0
and any 0≤ t1 < t < t2 ≤ T we have,

E
[
|S∗n(t)−S∗n(t1)|

α |S∗n(t2)−S∗n(t)|
α
]
≤C

(
bnt2c−bnt1c

n

)β

.

We will do this in several parts. From the preceding section we have,

ST
n (t) = f (Xbntc

n
)− f (X0)+

1
12

bntc−1

∑
j=0

δ
3
(

f (3)(X̃ j
n
)∂⊗3

j
n

)

+
3

12

bntc−1

∑
j=0

∥∥∥∆X j
n

∥∥∥2

L2
f (3)(X̃ j

n
)δ (∂ j

n
)+

1
12

Pn(t)−∆
T
n (t),

and

SM2
n (t) = f (Xbntc

n
)− f (X0)−

1
24

bntc−1

∑
j=0

δ
3
(

f (3)(X̃ j
n
)∂⊗3

j
n

)

− 3
24

bntc−1

∑
j=0

∥∥∥∆X j
n

∥∥∥2

L2
f (3)(X̃ j

n
)δ (∂ j

n
)− 1

24
Pn(t)−∆

M2
n (t).
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By Lemmas 5.3, 5.4, and 5.7 we have

E

(bnt2c−1

∑
j=bnt1c

f (5)(X̃ j
n
)∆X5

j
n

)2
≤Cn−

4
3 (bnt2c−bnt1c) ;

E
[
(Zn(t2)−Zn(t1))

2
]
≤Cn−

7
3 (bnt2c−bnt1c)2 ; and

E
[
Pn(t)2]≤Cn−

4
3 (bnt2c−bnt1c) ,

where we recall the first two items are components of ∆∗n(t). Each of these estimates has the form

E
[
(Un(t2)−Un(t1))

2
]
≤Cn−β (bnt2c−bnt1c)ζ ≤C

(
bnt2c−bnt1c

n

)β

,

where ζ < β and β > 1, hence it follows by Cauchy-Schwarz that for t1 < t < t2 we have

E [|Un(t)−Un(t1)| |Un(t2)−Un(t)|]≤C
(
bnt2c−bnt1c

n

)β

,

so each of these individual sequences is relatively compact. For the term,

Yn(t) =
bntc−1

∑
j=0

∥∥∥∆X j
n

∥∥∥2

L2
f (3)(X̃ j

n
)δ (∂ j

n
),

we have by Lemma 5.6 that Yn(t) vanishes in probability. However, to show relative compactness
we need a different estimate.

Lemma 5.11. For 0≤ t1 < t2 ≤ T such that bnt2c−bnt1c ≥ 1, we have

E
[
(Yn(t2)−Yn(t1))

4
]
≤Cn−2 (bnt2c−bnt1c)2 +Cn−

4
3−4λ (bnt2c−bnt1c)

4
3+4λ .

It follows that the sequence {Yn(t)} is relatively compact.
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Proof. Let Φn := Φn( j1, j2, j3, j4) = ∏
4
i=1 f (3)(X̃ ji

n
), and let a = bnt1c, b = bnt2c. We have

E

(b−1

∑
j=a

∥∥∥∆X j
n

∥∥∥2

L2
f (3)(X̃ j

n
)δ (∂ j

n
)

)4


≤ sup
a≤ j<b

∥∥∥∆X j
n

∥∥∥8

L2 ∑
j1, j2, j3, j3

∣∣∣E[Φn( j1, j2, j3, j4)δ (∂ j1
n
)δ (∂ j2

n
)δ (∂ j3

n
)δ (∂ j4

n
)
]∣∣∣

≤Cn−
4
3 ∑

j1, j2, j3, j4

∣∣∣∣E[〈D
[
Φnδ (∂ j1

n
)δ (∂ j2

n
)δ (∂ j3

n
)
]
,∂ j4

n

〉
H

]∣∣∣∣
≤Cn−

4
3 ∑

j1, j2, j3, j4

4

∑
r=1

∣∣∣∣E[Φ(r)
n δ (∂ j1

n
)δ (∂ j2

n
)δ (∂ j3

n
)
]〈

ε̃ jr
n
,∂ j4

n

〉
H

∣∣∣∣
+3Cn−

4
3 ∑

j1, j2, j3, j4

∣∣∣∣E[Φnδ (∂ j1
n
)δ (∂ j2

n
)
]〈

∂ j3
n
,∂ j4

n

〉
H

∣∣∣∣
=Cn−

4
3 ∑

j1, j2, j3, j4

4

∑
r=1

∣∣∣∣E[〈D
[
Φ

(r)
n δ (∂ j1

n
)δ (∂ j2

n
)
]
,∂ j3

n

〉
H

]〈
ε̃ jr

n
,∂ j4

n

〉
H

∣∣∣∣
+3Cn−

4
3 ∑

j1, j2, j3, j4

∣∣∣∣E[〈D
[
Φnδ (∂ j1

n
)
]
,∂ j2

n

〉
H

]〈
∂ j3

n
,∂ j4

n

〉
H

∣∣∣∣
where

Φ
(r)
n = f (4)(X̃ jr

n
)

4

∏
i=1
i6=r

f (3)(X̃ ji
n
).

Continuing this process, we obtain terms of the form:

Cn−
4
3 ∑

j1, j2, j3, j4

∣∣∣∣E [Φn]
〈

∂ j1
n
,∂ j2

n

〉
H

〈
∂ j3

n
,∂ j4

n

〉
H

∣∣∣∣ ,
Cn−

4
3 ∑

j1, j2, j3, j4

∣∣∣∣E[∂ 2
Φn
]〈

ε̃ ja
n
,∂ j1

n

〉
H

〈
ε̃ jb

n
,∂ j2

n

〉
H

〈
∂ j3

n
,∂ j4

n

〉
H

∣∣∣∣ , and

Cn−
4
3 ∑

j1, j2, j3, j4

∣∣∣∣E[∂ 4
Φn
]〈

ε̃ ja
n
,∂ j1

n

〉
H

〈
ε̃ jb

n
,∂ j2

n

〉
H

〈
ε̃ jc

n
,∂ j3

n

〉
H

〈
ε̃ jd

n
,∂ j4

n

〉
H

∣∣∣∣ ,
where ∂ kΦn represents the appropriate kth derivative of Φn. By Lemma 5.2.c and 5.2.d, the sums
of each type have, respectively, upper bounds of the form

Cn−2(b−a)−2 +Cn−
5
3 (b−a)+Cn−

4
3−4λ (b−a)4λ ,

hence we conclude that

E
[
(Yn(t2)−Yn(t1))

4
]
≤C

(
n−2(bnt2c−bnt1c)2 +n−

4
3−4λ (bnt2c−bnt1c)

4
3+4λ

)
,
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As for above terms, it follows by Cauchy-Schwarz that

E
[
|Yn(t)−Yn(t1)|2 |Yn(t2)−Yn(t)|2

]
≤C

(
n−2(bnt2c−bnt1c)2 +n−

4
3−4λ (bnt2c−bnt1c)

4
3+4λ

)
,

and thus {Yn(t)} is relatively compact.

Tightness of Fn.
To conclude the proof of Theorem 5.1, we want to show that the sequence {Fn(t)} satisfies the

relative compactness condition.

Lemma 5.12. For 0≤ t1 < t2 ≤ T , write

Fn(t2)−Fn(t1) =
bnt2c−1

∑
j=bnt1c+1

δ
3
(

f (3)(X̃ j
n
)∂⊗3

j
n

)
Then given 0≤ t1 < t < t2 ≤ T , there exists a positive constant C such that

E
[
|Fn(t)−Fn(t1)|2|Fn(t2)−Fn(t)|2

]
≤C

(
bnt2c−bnt1c

n

)2

. (5.21)

Proof. We begin with a general claim about the norm of DFn. Suppose a,b are nonnegative inte-
gers. Let

ga =
bnt2c−1

∑
j=bnt1c

f (a)(X̃ j
n
)∂⊗3

j
n

.

Then we have

E
[
‖Dbga‖4

H⊗3+b

]
≤C

(
bnt2c−bnt1c

n

)2

. (5.22)

Proof of (5.22). For each b we can write

E
[(
‖Dbga‖2

H⊗3+b

)2
]

= E

( bnt2c−1

∑
j,k=bnt1c

f (a+b)(X̃ j
n
) f (a+b)(X̃ k

n
)

〈
ε̃
⊗b
j
n
, ε̃⊗b

k
n

〉
H⊗b

〈
∂
⊗3
j
n

,∂⊗3
k
n

〉
H⊗3

)2


≤ sup
bnt1c≤ j<bnt2c

(
E
∣∣∣ f (a+b)(X̃ j

n
)
∣∣∣4) 1

2
(

sup
j,k

∣∣∣〈ε̃ j
n
, ε̃ k

n

〉
H

∣∣∣2b
)(

bnt2c−1

∑
j,k=bnt1c

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣3)2

≤Cn−2 (bnt2c−bnt1c)2 ,

by Lemma 5.2.d.
Proof of (5.21). By the Meyer inequality (6.4) there exists a constant c2,4 such that

E
∣∣∣(δ 3(un)

)4
∣∣∣≤ c3,4‖un‖4

D3,4(H⊗3),
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where in this case,

un =
bnt2c−1

∑
j=bnt1c

f (3)(X̃ j
n
)∂⊗3

j
n

and
‖un‖4

D3,4(H⊗3) = E‖un‖4
H⊗3 +E‖Dun‖4

H⊗4 +E‖D2un‖4
H⊗5 +E‖D3un‖4

H⊗6 .

From (5.22) we have E‖Dbun‖4
H⊗3+b ≤ Cbn−2 (bnt2c−bnt1c)2 for b = 0,1,2,3. From this result,

given 0≤ t1 < t < t2, it follows from the Hölder inequality that

E
[
|Fn(t)−Fn(t1)|2|Fn(t2)−Fn(t)|2

]
≤C

(
bnt2c−bnt1c

n

)2

.

5.2.6 Proof of Theorem 5.1
Here we give a brief summary of the preceding lemmas. For ST

n (t) we have

ST
n (t) = f (Xt)− f (X0)+

1
12

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
−∆

T
n (t),

where we can express

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
=
bntc−1

∑
j=0

δ
3
(

f (3)(X̃ j
n
)∂⊗3

j
n

)
+Pn(t)+3

bntc−1

∑
j=0
‖∆X j

n
‖2

L2(Ω) f (3)(X̃ j
n
)∆X j

n
.

From Lemmas 5.3 - 5.6 and 5.11, we have that the terms ∑
bntc−1
j=0 ‖∆X j/n‖2

L2(Ω)
f (3)(X̃ j/n)∆X j/n,

∆T
n (t), and Pn(t) tend to zero in L1(Ω) for each t, and moreover these terms satisfy the tightness

condition of Corollary 2.5. By Lemmas 5.7 - 5.10, the random vector Fn = (F1
n , . . . ,F

d
n ) satisfies

the conditions of Theorem 2.3, where

F i
n =

bntic−1

∑
j=bnti−1c

δ
3
(

f (3)(X̃ j
n
)∂⊗3

j
n

)
,

and Theorem 5.1 follows from Theorem 2.3 and Corollary 2.5. For SM2
n (t), the proof is the same

except that

SM2
n (t) = f (Xt)− f (X0)−

1
24

bntc−1

∑
j=0

f (3)(X̃ j
n
)∆X3

j
n
−∆

M2
n (t),

and this concludes the proof of Theorem 5.1.
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5.3 Examples of suitable processes

5.3.1 Bifractional Brownian motion
The bifractional Brownian motion is a generalization of fractional Brownian motion, first intro-
duced by Houdré and Villa [20]. It is defined as a centered Gaussian process BH,K = {BH,K

t , t ≥
0},with covariance given by,

E[BH,K
t BH,K

s ] =
1

2K

(
t2H + s2H)K− 1

2K |t− s|2HK,

where H ∈ (0,1), K ∈ (0,1] (Note that the case K = 1 corresponds to fractional Brownian motion
with Hurst parameter H). The reader may refer to [33] and [21] for further discussion of properties.

In this section, we show that the results of Section 5.2 are valid for bifractional Brownian
motion with parameter values H, K such that HK ≥ 1/6.

Proposition 5.13. Let Bt = {BH,K
t , t ≥ 0} be a bifractional Brownian motion with parameters H,K

satisfying HK = 1/6. Then conditions (T.1) - (T.5) are satisfied, with θ = 2/3; λ = 1/3;

ν =

{
5/3 if H < 1/2
4H− 1

3 if H ≥ 1/2
; and γ =

{
2/3+2H if H ≤ 1/2 and K < 1
5/3 otherwise

.

Proof. Condition (T.1). From Proposition 3.1 of [20] we have

E
[
(Bt−Bt−s)

2]≤Cs2HK =Cs
1
3 .

Condition (T.2). By Fundamental Theorem of Calculus,∣∣E[B2
t −B2

t−s
]∣∣= t2HK− (t− s)2HK =

∫ 0

−s
2HK(t +ξ )2HK−1dξ ≤Cs(t− s)−

2
3 .

Condition (T.3).

E
[
(Bt−Bt−s)

2− (Bt−s−Bt−2s)
2]= E [(Bt−Bt−2s)(Bt−2Bt−s +Bt−2s)]

= t2HK− 2
2K

[
t2H +(t− s)2H]K +

1
2K

[
t2H +(t−2s)2H]K

− 1
2K

[
t2H +(t−2s)2H]K +

2
2K

[
(t− s)2H +(t−2s)2H]K .

In absolute value, this is bounded by

1
2K

∣∣∣[t2H + t2H]K−2
[
t2H +(t− s)2H]K +

[
t2H +(t−2s)2H]K∣∣∣

+
1

2K

∣∣∣[t2H +(t−2s)2H]K−2
[
(t− s)2H +(t−2s)2H]K +

[
(t−2s)2H +(t−2s)2H]K∣∣∣ .

Both terms have the form

2−K |g(t)−2g(t− s)+g(t−2s)| ≤Cs2 sup
x∈[t−2s,t]

|g′′(x)|,
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for g(x) = (c+x2H)K . We show an upper bound for the first term g′′(x), with the other one similar.
We have

sup
x∈[t−2s,t]

|g′′(x)| ≤ 4H2K(1−K)
[
t2H + x2H]K−2

x4H−2 +2HK |2H−1|
[
t2H + x2H]K−1

x2H−2.

For the above values of H,K we have

sup
x∈[t−2s,t]

2HK |2H−1|
[
t2H + x2H]K−1

x2H−2 ≤C(t−2s)2HK−2.

For the first term, if H < 1/2 then

sup
x∈[t−2s,t]

4H2K(1−K)
[
t2H + x2H]K−2

x4H−2 ≤C(t−2s)2HK−4H+4H−2

=C(t−2s)2HK−2.

On the other hand, if H ≥ 1/2, then t ≥ 4s implies t ≥ 2(t−2s), hence

sup
x∈[t−2s,t]

4H2K(1−K)
[
t2H + x2H]K−2

x4H−2 ≤ 4H2K(1−K)3K−2(t−2s)2H(K−2)x4H−2

≤C(t−2s)2HK−4H =C(t−2s)
1
3−4H .

Condition (T.4). First, for the case |t− r|< 2s or t < 2s, we have

|E [Br(Bt−Bt−s)]|= |E [BrBt−BrBt−s]|

≤ 1
2K

([
r2H + t2H]K− [r2H +(t− s)2H]K)+ 1

2K

∣∣|r− t + s|2HK−|r− t|2HK∣∣
≤Cs2HK =Cs

1
3

using the inequality ar− br ≤ (a− b)r for 0 < r < 1. For |t − r| ≥ 2s, t ≥ 2s, we consider two
cases. First, assume r ≥ t +2s.

|E [Br(Bt−Bt−s)]|= |E [BrBt−BrBt−s]|

≤ 1
2K

([
r2H + t2H]K− [r2H +(t− s)2H]K)+ 1

2K

∣∣|r− t + s|2HK−|r− t|2HK∣∣
=

1
2K

∫ 0

−s
2HK

[
r2H +(t +ξ )2H]K−1

(t +ξ )2H−1dξ

+
1

2K

∫ s

0
2HK(r− t +η)2HK−1dη

≤ 21−KHKs(t− s)−
2
3 +21−KHKs(r− t)−

2
3 ,

where we used the fact that r− t ≥ 2s implies r− t ≥ 2(r− t− s). On the other hand, if r ≤ t−2s,
then the estimate for

1
2K

([
r2H + t2H]K− [r2H +(t− s)2H]K)
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is the same, and for the other term we have,

1
2K

∣∣|r− t + s|2HK−|r− t|2HK∣∣≤ 1
2K

∫ 0

−s
2HK(t− r−ξ )2HK−1dξ

≤ 21−KHKs(t− r− s)2HK−1 ≤ 2
5
3−KHKs(t− r)−

2
3 ,

hence for either case we have an upper bound of Cs
(
(t− s)λ−1 + |t− r|λ−1

)
for λ = 1

3 .

Condition (T.5). Assume t ∧ r ≥ 2s and |t− r| ≥ 2s. We have

E [(Bt−Bt−s)(Br−Br−s)]

=
1

2K

([
t2H + r2H]K− [t2H +(r− s)2H]K − [(t− s)2H + r2H]K +

[
(t− s)2H +(r− s)2H]K)

+
1

2K

(
|t− r+ s|2HK−2|t− r|2HK + |t− r− s|2HK) .

This can be interpreted as the sum of a position term, 1
2K ϕ(t,r,s), and a distance term, 1

2K ψ(t−r,s),
where

ϕ(t,r,s)=
[
t2H + r2H]K−[t2H +(r− s)2H]K−[(t− s)2H + r2H]K+[(t− s)2H +(r− s)2H]K ; and

ψ(t− r,s) = |t− r+ s|2HK−2|t− r|2HK + |t− r− s|2HK.

We begin with the position term. Note that if K = 1, then ϕ(t,r,s) = 0, so we may assume K < 1
and H > 1

6 . Without loss of generality, assume 0 < 2s≤ r ≤ t. We can write ϕ(t,r,s) as

2HK
∫ s

0

([
t2H +(r−ξ )2H]K−1

(r−ξ )2H−1−
[
(t− s)2H +(r−ξ )2H]K−1

(r−ξ )2H−1
)

dξ

=
∫ s

0

∫ s

0
4H2K(1−K)

[
(t−η)2H +(r−ξ )2H]K−2

(t−η)2H−1(r−ξ )2H−1 dξ dη ,

so that

|ϕ(t,r,s)| ≤ 4H2K(1−K)s2 [(t− s)2H +(r− s)2H]K−2
(t− s)2H−1(r− s)2H−1. (5.23)

Using (5.23), there are 3 cases to consider:

• If H < 1/2, then for 2s≤ r ≤ t−2s, we have t− r < t− s and

Cs2 [(t− s)2H +(r− s)2H]K−2
(t− s)2H−1(r− s)2H−1 ≤Cs2(t− r)2HK−2H−1(r− s)2H−1

=C
(

s
r− s

)1−2H

s
1
3+

2
3+2H(t− r)−

2
3−2H

≤Cs
1
3+γ |t− r|−γ ,

where γ = 2
3 +2H > 1.

• If H = 1/2, then K = 1/3 and for 2s≤ r ≤ t−2s

s2 [(t− s)2H +(r− s)2H]K−2
(t− s)2H−1(r− s)2H−1 ≤ s2|t− r|−

5
3 .
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• If H > 1/2, then note that for 2s≤ r ≤ t−2s

s2 [(t− s)2H +(r− s)2H]K−2
(t− s)2H−1(r− s)2H−1 ≤ s2(t− s)2HK−2 ≤ s2|t− r|−

5
3 .

Next, consider the distance term ψ(t− r,s). Without loss of generality, assume 2s≤ r≤ t−2s.
We have

|ψ(t− r,s)|=
∣∣ |t− r+ s|2HK−2|t− r|2HK + |t− r− s|2HK ∣∣

=

∣∣∣∣∫ s

0

∫
ξ

−ξ

2HK(2HK−1) [t− r+η ]2HK−2 dη dξ

∣∣∣∣
≤Cs2(t− r− s)2HK−2 ≤Cs2|t− r|−

5
3 ,

since |t− r| ≥ 2s implies (t− r− s)−
5
3 ≤ 2

5
3 |t− r|− 5

3 . Note that when K < 1, then H < 1/2 implies
γ ≤ 5/3, so the upper bound is controlled by ϕ(t,r,s) in this K = 1 case.

Proposition 5.14. Let {BH,K
t , t ≥ 0} be a bifractional Brownian motion with parameters H ≤ 1/2

and HK = 1/6. Then Condition (T.6) holds, with the function η(t) =CKt, where

CK =
1

8K

(
8+2

∞

∑
m=1

(
(m+1)

1
3 −2m

1
3 +(m−1)

1
3

)3
)
.

Proof. First of all, we write

bntc−1

∑
j,k=0

βn( j,k)3 = 2
bntc−1

∑
j=0

βn( j,0)3 +
bntc−1

∑
j,k=1

βn( j,k)3.

When j ≥ 2, we have

|βn( j,0)|=
∣∣∣E[X1

n
(X j+1

n
−X j

n
)
]∣∣∣

≤ 1

2Kn
1
3

([
1+( j+1)2H]K− [1+ j2H]K)+ 1

2Kn
1
3

∣∣( j−1)2HK− j2HK∣∣
≤ 1

2Kn
1
3

∫ 1

0
2HK

[
1+( j+ x)2H]K−1

( j+ x)2H−1dx+
1

2Kn
1
3

∫ 1

0
2HK( j−1+ y)2HK−1dy

≤Cn−
1
3 ( j−1)−

2
3 .

Therefore, using Lemma 5.2.a for βn(0,0) and βn(1,0),

bntc−1

∑
j=0
|βn( j,0)3| ≤ 2Cn−1 +

bntc−1

∑
j=2

Cn−1( j−1)−2 ≤Cn−1;

and in the rest of the proof we will always assume j,k ≥ 1.
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As in Proposition 5.14, we use the decomposition,

βn( j,k) =
1

2K ϕ

(
j+1

n
,
k+1

n
,
1
n

)
+

1
2K ψ

(
j− k

n
,
1
n

)
= 2−Kn−

1
3 ϕ( j+1,k+1,1)+2−Kn−

1
3 ψ( j− k,1),

which gives

βn( j,k)3 =
1

8Kn

(
ϕ

3 +3ϕ
2
ψ +3ϕψ

2 +ψ
3) .

To begin, we want to show that

lim
n→∞

bntc−1

∑
j,k=1

n−1|ϕ( j+1,k+1,1)| = 0. (5.24)

Proof of (5.24). Note that ϕ = 0 if K = 1, so we may assume K < 1 and H > 1/6. From (5.23),
when t ∧ r ≥ 2s and |t− r| ≥ 2s we have

|ϕ(t,r,s)| ≤ 4H2K(1−K)s2 [(t− s)2H +(r− s)2H]K−2
(t− s)2H−1(r− s)2H−1

≤Cs2(t− s)HK−1(r− s)HK−1,

so that
|ϕ( j+1,k+1,1)| ≤Cn−2HK jHK−1kHK−1.

Recalling the notation Jd from Lemma 5.2.d, we have

n−1
bntc−1

∑
j,k=0

|ϕ( j+1,k+1,1)|= n−1
∑

( j,k)∈Jd

|ϕ( j+1,k+1,1)|+n−1
∑

( j,k)/∈Jd

|ϕ( j+1,k+1,1)|

≤Cbntcn−
4
3 +Cn−

4
3

(
bntc−1

∑
j=2

jHK−1

)2

≤Cbntcn
4
3 +Cbntc2HKn−

4
3 ≤Cn−

1
3 ,

where we used the fact (which follows from Lemma 5.2.a and the definition of ϕ and ψ) that
|ϕ( j+1,k+1,1)| is bounded. Hence, (5.24) is proved. It follows from (5.24) that

1
8Kn

bntc−1

∑
j,k=1

∣∣ϕ3 +3ϕ
2
ψ +3ϕψ

2∣∣→n 0, (5.25)

since ϕ and ψ are both bounded. Hence, it is enough to consider

η(t) = lim
n→∞

1
8Kn

bntc−1

∑
j,k=0

ψ( j− k,1)3. (5.26)
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To evaluate (5.26), we have

1
8Kn

bntc−1

∑
j,k=0

ψ( j− k,1)3

=
1

8Kn

bntc−1

∑
j,k=0

(
| j− k+1|

1
3 −2| j− k|

1
3 + | j− k−1|

1
3

)3

=
1

8Kn

bntc−1

∑
j=0

23 +
2

8Kn

bntc−1

∑
j=0

j−1

∑
k=0

(
( j− k+1)

1
3 −2( j− k)

1
3 +( j− k−1)

1
3

)3

=
8bntc
8Kn

+
2

8Kn

bntc−1

∑
j=1

j−1

∑
m=1

(
(m+1)

1
3 −2m

1
3 +(m−1)

1
3

)3

=
8bntc
8Kn

+
2

8Kn

bntc−1

∑
j=1

∞

∑
m=1

(
(m+1)

1
3 −2m

1
3 +(m−1)

1
3

)3

− 2
8Kn

bntc−1

∑
j=1

∞

∑
m= j

(
(m+1)

1
3 −2m

1
3 +(m−1)

1
3

)3
,

where the last term tends to zero since

Cn−1
bntc−1

∑
j=1

∞

∑
m= j

(
(m+1)

1
3 −2m

1
3 +(m−1)

1
3

)3
≤Cn−1

∞

∑
j=1

j−4→n 0.

We therefore conclude that η(t) =CKt, where

CK =
1

8K

(
8+2

∞

∑
m=1

(
(m+1)

1
3 −2m

1
3 +(m−1)

1
3

)3
)
.

This number is approximately 7.188
8K .

As an immediate consequence of our proof of Theorem 5.1, we have an alternate proof and
extension of previous results in Gradinaru et al. In [16], it was proved that S∗n(t) converges in
probability for any fractional Brownian motion with H > 1/6, that is, the correction term vanishes.
Following Remark 3.5, we may conclude the following:

Corollary 5.15. Let Bt = {BH,K
t , t ≥ 0} be a bifractional Brownian motion with parameters 1/6 <

HK < 1. Then on a fixed interval [0,T ] and for 0 < s≤ 1, B satisfies Corollary 3.4.

Proof. Notice that s ≤ 1 implies s2HK ≤ s
1
3 . With small modifications to the proof of Proposition

5.14, it is easy to verify that conditions (T.1) - (T.5) are satisfied when HK > 1/6. We want to
show that

lim
n→∞

bntc−1

∑
j,k=0

|βn( j,k)3|= 0.
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We may assume K < 1. From Proposition 3.1 of [20], we have that

E
[
(Bt−Bt−s)

2]≤Cs2HK.

Recalling the notation Jd from Lemma 5.2.d, Cauchy-Schwarz implies for ( j,k) ∈ Jd , we have
|βn( j,k)| ≤Cn−2HK . For ( j,k) /∈ Jd , by (5.23) we have

|ϕ( j+1,k+1,1)| ≤ 4H2K(1−K)
[

j2H + k2H]K−2
j2H−1k2H−1

≤C| j− k|−1−2H(1−K),

and similar to Proposition 5.14, we have

|ψ( j− k,1)| ≤C| j− k|2HK−2;

hence for ( j,k) /∈ Jd we have |βn( j,k)| ≤Cn−2HK| j−k|−γ for γ = min{1+2H(1−K),2HK−2}.
It follows that ∣∣∣∣∣bntc−1

∑
j,k=0

βn( j,k)3

∣∣∣∣∣≤ ∑
( j,k)∈Jd

|βn( j,k)3| + ∑
( j,k)/∈Jd

|βn( j,k)3|

≤ ∑
( j,k)∈Jd

Cn−2HK +Cn−6HK
∑

( j,k)/∈Jd

| j− k|−γ

≤Cn−6HKbntc

so |η(t)|= 0 because HK > 1/6.

5.3.2 Extended bifractional Brownian motion
This process is discussed in a recent paper by Bardina and Es-Sebaiy [2]. The covariance has the
same formula as standard bBm, but it is ‘extended’ in the sense that 1 < K < 2, with H restricted
to satisfy 0 < HK < 1. Within the context of this paper, this allows us to consider values of
1/12 < H < 1/6. As in section 5.3.1, we show computations only for the case HK = 1/6. A result
similar to Corollary 5.16 can also be shown by modification to the proposition below.

Proposition 5.16. Let Y = {Y H,K
t , t ≥ 0} be an extended bifractional Brownian motion with param-

eters 1 < K < 2, HK = 1/6. Then Y satisfies conditions (T.1) - (T.6), with θ = 2/3, λ = (2H)∧ 1
3 ,

and with ν , γ and η(t) as given in Proposition 5.14.

Proof. Conditions (T.2) and (T.5) are the same as for standard bBm, as shown in Proposition 5.14.
In particular, the decomposition into φ(t,r,s) and ψ(t− r,s) for condition (T.5) is the same, so it
follows that η(t) of condition (T.6) has the same form. The proofs for conditions (T.1), (T.3) and
(T.4) require some modifications to accept the case K > 1.

Condition (T.1). From Prop. 3 of [2] we have∣∣E[(Yt−Yt−s)
2]∣∣≤ s2HK = s

1
3 .
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Condition (T.3). First, we have

E
[
(Yt−Yt−s)

2− (Yt−s−Yt−2s)
2]

= t2HK− 2
2K

[
t2H +(t− s)2H]K +

2
2K

[
(t− s)2H +(t−2s)2H]K− 2

2K (t−2s)2HK

≤ 2t2HK− 2
2K

[
t2H +(t− s)2H]K−2(t−2s)2HK +

2
2K

[
(t− s)2H +(t−2s)2H]K

= 4HK
∫ 0

−s
(t +ξ )2HK−1− (t− s+ξ )2HK−1 dξ

≤Cs2(t−2s)2HK−2.

On the other hand,

t2HK− 2
2K

[
t2H +(t− s)2H]K +

2
2K

[
(t− s)2H +(t−2s)2H]K− 2

2K (t−2s)2HK

≥ 2(t− s)2HK− 2
2K

[
t2H + t2H]K +

2
2K

[
(t−2s)2H +(t−2s)2H]K−2(t− s)2HK

=−4HK
∫ s

0
(t− s+η)2HK−1− (t−2s+η)2HK−1 dη

≥−Cs2(t−2s)2HK−2,

hence the term is bounded in absolute value as required, with ν = 2−2HK = 5/3.

Condition (T.4).

|E [Yr(Yt−Yt−s)]|=
1

2K

([
r2H + t2H]K− [r2H +(t− s)2H]K)+ 1

2K

(
|r− t + s|2HK−|r− t|2HK)

≤ 1
2K

([
r2H + t2H]K− [r2H +(t− s)2H]K)+ 1

2K

(
(|r− t|+ s)2HK−|r− t|2HK) .

We consider two cases for the first term. If t < 2s, then by Fundamental Theorem of Calculus,

1
2K

([
r2H + t2H]K− [r2H +(t− s)2H]K)≤ 1

2K

([
r2H +(2s)2H]K− r2HK

)
=

K
2K

∫ (2s)2H

0

[
r2H +u

]K−1
du≤Cs2H .

If t ≥ 2s, then

1
2K

([
r2H + t2H]K− [r2H +(t− s)2H]K)= 2HK

∫ 0

−s

[
r2H +(t +u)2H]K−1

(t +u)2H−1du

≤CsT 2H(K−1)(t− s)2H−1 ≤Cs(t− s)2H−1.

In particular, if |r− t|< 2s then this is bounded by

Cs2H
(

s
t− s

)
≤Cs2H .
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For the second term, if |r− t|< 2s, then it easily follows that

1
2K

(
(|r− t|+ s)2HK−|r− t|2HK)≤Cs2HK ≤Cs2H ;

and if |r− t| ≥ 2s, then by Mean Value

1
2K

(
(|r− t|+ s)2HK−|r− t|2HK)≤Cs|r− t|2HK−1 ≤CsT 2H(K−1)|r− t|2H−1 ≤Cs|r− t|2H−1.

In particular, if t < 2s then

Cs|r− t|2H−1 =Cs2H
(

s
|r− t|

)
≤Cs2H .

Hence, we have shown that

|E [Yr(Yt−Yt−s)]| ≤

{
Cs
[
(t− s)2H−1 + |r− t|2H−1] if T ≥ 2s and |r− t| ≥ 2s

Cs2H otherwise

and so condition (T.4) is satisfied by taking λ = min{2H, 1
3}, where K ∈ (1,2) implies λ > 1/6.

5.3.3 Sub-fractional Brownian motion
Another variant on fBm is the process known as sub-fractional Brownian motion (sfBm). This is a
centered Gaussian process {Zt , t ≥ 0}, with covariance defined by:

Rh(s, t) = sh + th− 1
2

[
(s+ t)h + |s− t|h

]
, (5.27)

with real parameter h ∈ (0,2). Some properties of sfBm are given in [7] and [9]. Note that h = 1 is
a standard Brownian motion, and also note the similarity of Rh(t,s) to the covariance of fBm with
H = h/2. Indeed, in [9] it is shown that sfBm may be decomposed into an fBm with H = h/2 and
another centered Gaussian process.

Similar to Section 5.3.1, we discuss only the case h = 1/3. For h > 1/3, it can be shown that
conditions (T.1)-(T.6) are satisfied with η(t) = 0, hence S∗n(t) converges in probability.

Proposition 5.17. Let Z = {Zt , t ≥ 0} be a sub-fractional Brownian motion with covariance (5.27)
and parameter h = 1/3. Then Z satisfies conditions (T.1) - (T.6) of Section 3; hence Theorem 3.1
holds. For condition (T.6) we have η(t) =Cht, where

Ch = 1+
1
4

∞

∑
m=1

(
(m+1)

1
3 −2m

1
3 +(m−1)

1
3

)3
.
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Proof. Condition (T.1). We have

E
[
(Zt−Zt−s)

2]= Rh(t, t)+Rh(t− s, t− s)−2Rh(t, t− s)

=−2h

2
th +

1
2
(2t− s)h− 2h

2
(t− s)h +

1
2
(2t− s)h + sh

=−1
2

[
(2t)h− (2t− s)h

]
− 1

2

[
(2t−2s)h− (2t− s)h

]
+ sh.

This is bounded in absolute value by Csh, using the inequality ah−bh ≤ (a−b)h.

Condition (T.2).

∣∣E[Z2
t −Z2

t−s
]∣∣= ∣∣∣∣2th− 2h

2
th−2(t− s)h +

2h

2
(t− s)h

∣∣∣∣
=
|4−2h|

2

[
th− (t− s)h

]
.

By Mean Value this is bounded by

Cs(t− s)h−1 =Cs(t− s)−
2
3 ,

which implies (T.2) with θ = 2/3.

Condition (T.3).

E
[
(Zt−Zt−s)

2− (Zt−s−Zt−2s)
2]= Rh(t, t)−2Rh(t, t− s)+2Rh(t− s, t−2s)−Rh(t−2s, t−2s)

=−(2t)h

2
+(2t− s)h− (2t−3s)h +

1
2
(2t−4s)h

=−1
2

[
(2t)h−2(2t− s)h +(2t−2s)h

]
+

1
2

[
(2t−2s)h−2(2t−3s)h +(2t−4s)h

]
.

By Mean Value, these terms are bounded in absolute value by

Cs2(2t−4s)h−2 ≤Cs
1
3+ν(t− s)−ν

for ν = 5/3.

Condition (T.4).

|E [Zr(Zt−Zt−s)]|= |Rh(r, t)−Rh(r, t− s)|

=

∣∣∣∣th− (t− s)h− 1
2

[
(r+ t)h− (r+ t− s)h

]
+

1
2

(
|r− t + s|h−|r− t|h

)∣∣∣∣
Note that the above expression is always bounded by Csh by the inequality ah− bh ≤ (a− b)h.
Hence, the bound is satisfied for the cases t < 2s or |t− r|< 2s. Assuming t ≥ 2s, |r− t| ≥ 2s, we
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have ∣∣∣∣th− (t− s)h− 1
2

[
(r+ t)h− (r+ t− s)h

]
+

1
2

(
|r− t + s|h−|r− t|h

)∣∣∣∣
≤ h

∫ 0

−s
(t +u)h−1du+

h
2

∫ 0

−s
(r+ t +u)h−1du+

h
2

∫ s

0
(|r− t|+u)h−1du

≤Cs(t− s)−
2
3 +Cs(|r− t|− s)−

2
3 .

For |r− t| ≥ 2s, we have (|r− t|− s)≥ 1
2 |r− t|, so

Cs(t− s)−
2
3 +Cs(|r− t|− s)−

2
3 ≤Cs(t− s)λ−1 +Cs|r− t|λ−1

for λ = 1/3.

Condition (T.5).

E [(Zt−Zt−s)(Zr−Zr−s)] = Rh(t,r)−Rh(t− s,r)−Rh(t,r− s)+Rh(t− s,r− s)

=−1
2

[
(t + r)h−2(t + r− s)h +(t + r−2s)h

]
+

1
2

[
|t− r+ s|h−2|t− r|+ |t− r− s|h

]
.

Assuming that |t− r| ≥ 2s, by Mean Value this is bounded in absolute value by

Cs2|t− r− s|h−2 ≤Cs2|t− r|h−2

since |t− r| ≥ 2s implies |t− r− s| ≥ 1
2 |t− r|. If h < 1, then we take γ = 2−h = 5/3, and we have

an upper bound of
Csh+2−h|t− r|h−2 =Csh+γ |t− r|−γ .

Condition (T.6). First assume h = 1/3. Referring to condition (T.5) above, we can decompose
βn( j,k) as

βn( j,k) =
1

2nh ω( j,k,1)+
1

2nh ψ( j− k,1),

where ω( j,k,1) =−( j+ k+2)h +2( j+ k+1)h− ( j+ k)h and ψ( j− k,1) = | j− k+1|h−2| j−
k|h+ | j−k−1|h. Note that ψ( j−k,1) is identical to the ψ used in Proposition 5.14, where in this
case h = 2HK. Following the proof of Proposition 5.15, it is enough to show

lim
n→∞

n−1
bntc−1

∑
j,k=0

|ω( j,k,1)|= 0, (5.28)

so that, similar to (5.26) in the proof of Proposition 5.15, we have

η(t) = lim
n→∞

1
8n3h

bntc−1

∑
j,k=0

ψ( j− k,1)3 =Cht,
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where

Ch = 1+
1
4

∞

∑
m=1

(
(m+1)

1
3 −2m

1
3 +(m−1)

1
3

)3
.

That is, Ch corresponds to the constant CK from Proposition 5.15 with K = 1.

Proof of (5.28). By Mean Value and the above computation for condition (T.5), |ω( j,k,1)| ≤
C( j+ k)−γ for some γ > 1. Hence, for each j ≥ 2,

bntc−1

∑
k=0
|ω( j,k,1)| ≤C

bntc−1

∑
k=0

( j+ k)−γ

≤C
∫

∞

j−1
uγdu≤C( j−1)1−γ .

It follows that we have

n−1
bntc−1

∑
j,k=0

|ω( j,k,1)|= n−1
bntc−1

∑
k=0

(|ω(0,k,1)|+ |ω(1,k,1)|)+n−1
bntc−1

∑
j=2

bntc−1

∑
k=0
|ω( j,k,1)|

= n−1
bntc−1

∑
k=0

([
(k+2)h−2(k+1)h + kh

]
+
[
(k+3)h−2(k+2)h +(k+1)h

])
+Cn−1

bntc−1

∑
j=2

( j−1)1−γ

≤Cn−1 +Cn−1bntc2−γ

which converges to 0 since γ > 1.

5.4 Proof of Technical Lemmas

5.4.1 Proof of Lemma 5.3
We may assume t1 = 0. For this proof we use Malliavin calculus to represent ∆X5

j
n

as a Skorohod

integral. Consider the Hermite polynomial identity x5 = H5(x)+ 10H3(x)+ 15H1(x). Using the
isometry Hp(X(h)) = δ p(h⊗p) (when ‖h‖H = 1) we obtain for each 0≤ j ≤ bnt2c−1,

∆X5
j
n
= δ

5(∂⊗5
j
n

)+10‖∆X j
n
‖2

L2δ
3(∂⊗3

j
n

)+15‖∆X j
n
‖4

L2δ (∂ j
n
). (5.29)

With this representation, we can expand

bnt2c−1

∑
j,k=0

E
[

f (5)(X̃ j
n
) f (5)(X̃ k

n
)∆X5

j
n
∆X5

k
n

]
into 9 sums of the form

C
bnt2c−1

∑
j,k=0

‖∆X j
n
‖5−p

L2 ‖∆X k
n
‖5−q

L2 E
[

f (5)(X̃ j
n
) f (5)(X̃ k

n
)δ p(∂⊗p

j
n

)δ q(∂
⊗q
k
n

)

]
(5.30)
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where p,q take values 1, 3, or 5. By Lemma 2.1.d and (2.6), each term of the form (5.30) can be
further expanded into terms of the form

C
bnt2c−1

∑
j,k=0

〈
∂ j

n
,∂ k

n

〉r

H
‖∆X j

n
‖5−p

L2 ‖∆X k
n
‖5−q

L2 E
[

f (5)(X̃ j
n
) f (5)(X̃ k

n
)δ p+q−2r(∂⊗p−r

j
n

⊗∂
⊗q−r
k
n

)

]

=C
bnt2c−1

∑
j,k=0

〈
∂ j

n
,∂ k

n

〉r

H
‖∆X j

n
‖5−p

L2 ‖∆X k
n
‖5−q

L2

×E
[〈

Dp+q−2r
(

f (5)(X̃ j
n
) f (5)(X̃ k

n
)
)
,∂⊗p−r

j
n

⊗∂
⊗q−r
k
n

〉
H⊗p+q−2r

]
where 0≤ r ≤ p∧q and p,q ∈ {1,3,5}. For 0≤ m = p+q−2r ≤ 10, we have

Dm
[

f (5)(X̃ j
n
) f (5)(X̃ k

n
)
]
= ∑

a+b=m
Da
(

f (5)(X̃ j
n
)
)

Db
(

f (5)(X̃ k
n
)
)

= ∑
a+b=m

f (5+a)(X̃ j
n
) f (5+b)(X̃ j

n
)ε̃⊗a

j
n
⊗ ε̃
⊗b
k
n
.

Hence, we expand (5.30) again into terms of the form:

C
bnt2c−1

∑
j,k=0

〈
∂ j

n
,∂ k

n

〉r

H
‖∆X j

n
‖5−p

L2 ‖∆X k
n
‖5−q

L2 E
[

f (5+a)(X̃ j
n
) f (5+b)(X̃ k

n
)
]

×
〈

ε̃
⊗a
j
n
⊗ ε̃
⊗b
k
n
,∂⊗p−r

j
n

⊗∂
⊗q−r
k
n

〉
H⊗a+b

,

where a+b = p+q−2r. With this representation, we are now ready to develop estimates for each
term. By condition (T.0),

∣∣∣E[ f (5+a)(X̃ j
n
) f (5+b)(X̃ k

n
)
]∣∣∣≤( sup

0≤ j<bnt2c
E
[

f (5+a)(X̃ j
n
)
]) 1

2
(

sup
0≤k<bnt2c

E
[

f (5+b)(X̃ k
n
)
]) 1

2

≤C;

and by condition (T.1),

sup
0≤ j<bnt2c

‖∆X j
n
‖5−p

L2 sup
0≤k<bnt2c

‖∆X k
n
‖5−q

L2 ≤Cn−
10−(p+q)

6 .

If a≥ 1 with a+b = p+q−2r, by condition (T.4)∣∣∣∣〈ε̃
⊗a
j
n
⊗ ε̃
⊗b
k
n
,∂⊗p−r

j
n

⊗∂
⊗q−r
k
n

〉
H⊗a+b

∣∣∣∣≤Cn−(a+b−1)λ
∣∣∣〈ε̃ j

n
,∂ j

n

〉
H

∣∣∣ ,
with a similar term in k if a = 0 and b≥ 1. Hence, assuming a≥ 1, each term in the expansion of
(5.30) has an upper bound of

C
bnt2c−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣r n−
10−(p+q)

6 −(a+b−1)λ
∣∣∣〈ε̃ j

n
,∂ j

n

〉
H

∣∣∣ .
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To show each term has the desired upper bound, first assume r ≥ 1. Then
∣∣∣〈ε̃ j

n
,∂ j

n

〉
H

∣∣∣ ≤ Cn−λ ,

and by Lemma 5.2.d we have an upper bound of

Cn−
10−(p+q)

6 −(a+b)λ
bnt2c−1

∑
j,k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣r ≤Cbnt2cn−
5
3+

p+q−2r
6 −(a+b)λ =Cbnt2cn−

5
3−(a+b)(λ− 1

6 )

which is less than or equal to Cbnt2cn−
5
3 because λ > 1/6. For cases with r = 0, then either a≥ 1

or b ≥ 1, so without loss of generality assume a ≥ 1. For this case with Lemma 5.2.c we have an
upper bound of

C
bnt2c−1

∑
j,k=0

n−
10−(p+q)

6 −(a+b−1)λ
∣∣∣〈ε̃ j

n
,∂ j

n

〉
H

∣∣∣≤Cbnt2cn−
5
3−(a+b)(λ− 1

6 )+λ ,

which is less than Cbnt2cn−
4
3 since λ ≤ 1/3.

5.4.2 Proof of Lemma 5.6
Without loss of generality, assume a = 0. First we want to show that for each integer 0≤ k≤ b−1,

E

∣∣∣∣∣ k

∑
j=0

f (3)(X̃ j
n
)∆X j

n

∣∣∣∣∣≤C. (5.31)

Using the Taylor expansion similar to Section 5.2,

f ′′(X j+1
n
)− f ′′(X j

n
) =

(
f ′′(X j+1

n
)− f ′′(X̃ j

n
)
)
−
(

f ′′(X j
n
)− f ′′(X̃ j

n
)
)

= f (3)(X̃ j
n
)∆X j

n
+

1
24

f (5)(X̃ j
n
)∆X3

j
n
+

1
255!

f (7)(X̃ j
n
)∆X5

j
n
+B+

n ( j)−B−n ( j)

where B+
n ( j),B−n ( j) have the form C f (9)(ξ j)∆X7

j
n
. Hence we can write,

E

∣∣∣∣∣ k

∑
j=0

f (3)(X̃ j
n
)∆X j

n

∣∣∣∣∣≤ E

∣∣∣∣∣ k

∑
j=0

(
f ′′(X j+1

n
)− f ′′(X j

n
)
)∣∣∣∣∣+ 1

24
E

∣∣∣∣∣ k

∑
j=0

f (5)(X̃ j
n
)∆X3

j
n

∣∣∣∣∣
+

1
255!

E

∣∣∣∣∣ k

∑
j=0

f (7)(X̃ j
n
)∆X5

j
n

∣∣∣∣∣+E
k

∑
j=0

∣∣B+
n ( j)

∣∣+ ∣∣B−n ( j)
∣∣ .

We have the following estimates: By condition (T.0),

E

∣∣∣∣∣ k

∑
j=0

(
f ′′(X j+1

n
)− f ′′(X j

n
)
)∣∣∣∣∣≤ E

∣∣∣ f ′′(Xk+1
n
)− f ′′(X0)

∣∣∣≤C;

by Lemma 5.3,

E

∣∣∣∣∣ k

∑
j=0

f (7)(X̃ j
n
)∆X5

j
n

∣∣∣∣∣≤Cn−
2
3 (k+1)

1
2 ;
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and by Lemma 5.4,
k

∑
j=0

E
∣∣B+

n ( j)
∣∣+E

∣∣B−n ( j)
∣∣≤Cn−

7
3 (k+1)2.

This leaves the ∆X3 term. Using the Hermite polynomial identity x3 = H3(x)+ 3H1(x), we can
write

E

∣∣∣∣∣ k

∑
j=0

f (5)(X̃ j
n
)∆X3

j
n

∣∣∣∣∣≤ E

∣∣∣∣∣ k

∑
j=0

f (5)(X̃ j
n
)δ 3(∂⊗3

j
n

)

∣∣∣∣∣+E

∣∣∣∣∣ k

∑
j=0

∥∥∥∆X j
n

∥∥∥2

L2
f (5)(X̃ j

n
)δ (∂ j

n
)

∣∣∣∣∣ .
For the first term we have

E

∣∣∣∣∣ k

∑
j=0

f (5)(X̃ j
n
)δ 3(∂⊗3

j
n

)

∣∣∣∣∣
2

=
k

∑
j,`=0

E
[

f (5)(X̃ j
n
) f (5)(X̃ `

n
)δ 3
(

∂
⊗3
j
n

)
δ

3
(

∂
⊗3
`
n

)]

=
k

∑
j,`=0

3

∑
r=0

r!
(

r
3

)2

E
[

f (5)(X̃ j
n
) f (5)(X̃ `

n
)δ 6−2r

(
∂
⊗3−r
j
n

⊗r ∂
⊗3−r
`
n

)]

=
k

∑
j,`=0

3

∑
r=0

r!
(

r
3

)2

E
[〈

D6−2r
[

f (5)(X̃ j
n
) f (5)(X̃ `

n
)
]
,∂⊗3−r

j
n

⊗r ∂
⊗3−r
`
n

〉
H⊗6−2r

]〈
∂ j

n
,∂ `

n

〉r

H

≤
k

∑
j,`=0

3

∑
r=0

∑
a+b=
6−2r

∣∣∣∣〈ε̃
⊗a
j
n
⊗ ε̃
⊗b
`
n
,∂⊗3−r

j
n

⊗∂
⊗3−r
`
n

〉
H⊗6−2r

∣∣∣∣ ∣∣∣〈∂ j
n
,∂ `

n

〉
H

∣∣∣r .
For this sum, if r = 0 we use Lemma 5.2.a and 5.2.b for each pair (a,b) to obtain terms of the form

k

∑
j,`=0

∣∣∣∣〈ε̃
⊗a
j
n
⊗ ε̃
⊗b
`
n
,∂⊗3

j
n
⊗∂

⊗3
`
n

〉
H⊗6

∣∣∣∣≤ sup
j,`

∣∣∣〈ε̃ j
n
,∂ `

n

〉
H

∣∣∣3 sup
j

∣∣∣〈ε̃ j
n
,∂ j

n

〉
H

∣∣∣ k

∑
j,`=0

〈
ε̃ j

n
,∂ `

n

〉2

H

≤Cn−1−3λ (k+1),

where we use the fact that r = 0 implies a≥ 3 or b≥ 3. If r ≥ 1, we use Lemma 5.2.a and 5.2.d to
obtain terms of the form

Cn−(6−2r)λ
k

∑
j,`=0

∣∣∣〈∂ j
n
,∂ `

n

〉
H

∣∣∣r ≤Cn−(6−2r)λ− r
3 (k+1),

noting that (6−2r)λ + r
3 > 1.
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For the other term, we have by Lemma 5.2.b,

E

(
k

∑
j=0

∥∥∥∆X j
n

∥∥∥2

L2
f (5)(X̃ j

n
)δ (∂ j

n
)

)2

≤ sup
0≤ j≤k

∥∥∥∆X j
n

∥∥∥4

L2

k

∑
j,`=0

∣∣∣E[ f (5)(X̃ j
n
) f (5)(X̃ `

n
)
(

δ
2
(

∂ j
n
⊗∂ `

n

)
+
〈

∂ j
n
,∂ `

n

〉
H

)]∣∣∣
≤Cn−

2
3

k

∑
j,`=0

∣∣∣E[〈D2
[

f (5)(X̃ j
n
) f (5)(X̃ `

n
)
]
,∂ j

n
⊗∂ `

n

〉
H⊗2

]∣∣∣+ ∣∣∣E[ f (5)(X̃ j
n
) f (5)(X̃ `

n
)
]〈

∂ j
n
,∂ `

n

〉
H

∣∣∣
≤Cn−

2
3

k

∑
j,`=0

∑
a+b=2

∣∣∣∣〈ε̃
⊗a
j
n
⊗ ε̃
⊗b
`
n
,∂ j

n
⊗∂ `

n

〉
H⊗2

∣∣∣∣+Cn−
2
3

k

∑
j,`=0

∣∣∣〈∂ j
n
,∂ `

n

〉
H

∣∣∣
≤Cn−

2
3

(
k

∑
j=0

∣∣∣〈ε̃ j
n
,∂ j

n

〉
H

∣∣∣)( k

∑
`=0

∣∣∣〈ε̃ j
n
,∂ `

n

〉
H

∣∣∣)+

(
k

∑
j=0

∣∣∣〈ε̃ j
n
,∂ j

n

〉
H

∣∣∣)2

+Cn−1(k+1)

≤Cn−1(k+1)1−θ +Cn−
4
3 (k+1)2−2θ +Cn−1(k+1)≤C,

where the estimates follow from Lemma 5.2.c and 5.2.d. Hence, by Cauchy-Schwarz

E

∣∣∣∣∣ k

∑
j=0

∥∥∥∆X j
n

∥∥∥2

L2
f (5)(X̃ j

n
)δ (∂ j

n
)

∣∣∣∣∣≤C,

which proves (5.31). Now we define

Gn( j) =
j

∑
k=0

f (3)(X̃ k
n
)∆X k

n
,

and by Abel’s formula and condition (T.3) we have

E

∣∣∣∣∣b−1

∑
j=0

∥∥∥∆X j
n

∥∥∥2

L2
f (3)(X̃ j
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)∆X j
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n
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L2
−
∥∥∥∆X j

n

∥∥∥2

L2

)

≤Cn−
1
3 +Cn−

1
3

b−1

∑
j=4

( j−1)−ν

≤Cn−
1
3 .

5.4.3 Proof of Lemma 5.10
Proof of (5.18). Let a j = bnt j−1c and b j = bnt jc. By Lemma 2.1.b,

D2F j
n =

b j−1

∑
k=a j

D2
δ

3
(

f (3)(X̃ k
n
)∂⊗3

k
n

)

=
b j−1
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k=a j

{
δ

3
(

f (5)(X̃ k
n
)∂⊗3

k
n

)
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⊗2
k
n

+6 δ
2
(

f (4)(X̃ k
n
)∂⊗2

k
n

)
∂ k

n
⊗ ε̃ k

n
+6 δ

(
f (3)(X̃ k

n
)∂ k

n

)
∂
⊗2
k
n

}
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and

DFk
n =

bk−1

∑
m=ak

{
δ

3
(

f (4)(X̃m
n
)∂⊗3

m
n

)
ε̃ m

n
+3 δ

2
(

f (3)(X̃m
n
)∂⊗2

m
n

)
∂ m

n

}
. (5.32)

With these two expansions, it follows that the expectation

E
[〈

ui
n,D

2F j
n ⊗DFk

n

〉2

H⊗3

]
consists of terms of the form

bi−1

∑
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b j−1

∑
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E
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n
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〉3−r4

H

(5.33)

where G(p, p′) := f (3)(X̃ p
n
) f (3)(X̃ p′

n
), r1,r2 take values 1,2 or 3; r3,r4 take values 2 or 3; each

gi represents the appropriate derivative of f , and ( j1, j2, j3, j4) = (q,q′,m,m′). Without loss of
generality, we will assume that ui

n,D
2F j

n , and DFk
n are all defined over the interval [0, t], and that

all sums are over the set {0, . . . ,bntc−1}. Let R = r1 + r2 + r3 + r4, and note that 6 ≤ R ≤ 12. It
follows from Lemma 5.2.a, 5.2.c, and/or 5.2.d that
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∑
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,∂ p

n

〉3−r1

H

〈
ε̃ q′

n
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≤Cn−Λ,

where the exponent Λ is determined by {r1, . . . ,r4} as follows: First, suppose r1 = 3. Then by
Lemma 5.2.a and 5.2.c,

bntc−1
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n
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H

〈
ε̃ m

n
,∂ p
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〈
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n
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n
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n
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H
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≤Cn−2λ−(r3−2)λ− 1

3 (3−r3)

=Cn−(r1+r3−3)λ− 1
3 (6−r1−r3).
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On the other hand, if r1 = 1 or 2 then by Lemma 5.2.a and 5.2.d,
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n
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3 (6−r1−r3).

Combining this with a similar computation for the sum over p′, we obtain

Λ = λ (R−6)+
1
3
(12−R) = 2−

(
1
3
−λ

)
(R−6).

In particular, Λ = 2 if R = 6 and Λ = 5
3 +λ for R = 7. It follows that we want to find bounds for

terms of the form

Cn−Λ sup
p,p′

∑
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∣∣∣∣∣E
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ji
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)]∣∣∣∣∣ . (5.34)

By repeated use of Lemma 2.1.d, we can expand each product of the form

4

∏
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δ
ri

(
gi(X̃ ji

n
)∂⊗ri

ji
n

)
into a sum of terms of the form
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where CM is a combinatorial constant from Lemma 2.1.d, Ψn = ∏
4
i=1 gi(X̃ ji

n
); each αi ∈ {0,1,2},

such that A := ∑
6
i=1 αi ≤ R/2; each nonnegative integer bi satisfies bi ≤ ri; and the exponent M

satisfies:
M = b1 +b2 +b3 +b4 = R−2A.

With this representation, and using the Malliavin duality (2.6), we want to bound terms of the form
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(5.35)

Consider first the case A = 0. Then M = R≥ 6, and each bi = ri ≥ 1. Hence
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By Lemma 5.2.a and 5.2.c, this is bounded by Cn−1−2λ , since Λ≥ 1 for all R and R≥ 6.
If A ≥ 1, by permutation of indices we may assume that α1 ≥ 1, so (5.35) may be bounded

using Lemma 5.2.c and 5.2.d:

Cn−Λ sup
p,p′

sup
j1, j2

bntc−1

∑
j3, j4=0

∣∣∣∣E[〈DMG(p, p′),Ψn∂
⊗b1
j1
n

⊗·· ·⊗∂
⊗b4
j4
n

〉
H⊗M

]∣∣∣∣
× sup

j,k

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣A−1 bntc−1

∑
j1, j2=0

∣∣∣∣〈∂ j1
n
,∂ j2

n

〉
H

∣∣∣∣
≤Cbntc3n−Λ− 1

3 sup
p, j

∣∣∣〈ε̃ p
n
,∂ j

n

〉
H

∣∣∣M sup
j,k

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣A−1

≤ bntc3n−Θ,

where

Θ = 4+(R−6+M)λ − R−A
3

= 4+(R−A)(2λ − 1
3
)−6λ .

Since A≤ R/2, R≥ 6, and λ > 1/6, we have Θ > 3 for all cases except when R = 6, A = 3. This
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by Lemma 5.2.d.

Proof of (5.19). For this term, we see that
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where each ri ∈ {2,3} and G(p, p′),gi(x) are as defined above. As with (5.18) above, we assume
that all components are defined over the time interval [0, t] for some t ≤ T . As above, let R =

∑
6
i=1 ri, and note that for this case 12≤ R≤ 18. Similar to the above case, we obtain
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where Λ′ = 2− (1
3 −λ )(R− 12). It follows that, similar to (5.34), we want to obtain bounds for

terms of the form
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Using Lemma 2.1.d and the Malliavin duality as before, we obtain terms of the form
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(5.36)

where Ψ̃n =∏
6
i=1 gi(X̃ ji

n
), each αi and each bi take values from {0,1,2,3}; and the product includes

all 15 possible pairs from the set { j1, . . . , j6} such that A := ∑
15
i=1 αi ≤ R/2. As in the above case,

for each R we have M and A satisfying M = ∑
6
i=1 bi and M = R−2A.
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(5.37)

each of the indices { j1, . . . , j6} must appear at least once. Note that by Lemma 5.2.a we have
(possibly up to a fixed constant)
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and, by Lemma 5.2.c, (5.36) is bounded in absolute value by
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where, using the fact that R = M+2A,

Θ
′ = 2− (

1
3
−λ )(R−12)+(M−3)λ +

A
3
= 6+(R−A)(2λ − 1

3
)−15λ .

Observe that Θ′ > 3 whenever R−A > 6. The case R−A = 6 occurs only when R = 12, A = 6,
and M = 0; so in this case we have an upper bound of
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Chapter 6

Simpson’s rule and fBm with H = 1/10

6.1 Introduction
In this chapter we consider another critical case from Proposition 3.3, which was also mentioned
in [16]. This is the Simpson’s rule Riemann sum, defined as

SS
n(t) =

bntc−1

∑
j=0

1
6

(
f ′(B j

n
)+4 f ′(B̃ j

n
)+ f ′(B j+1

n
)
)

∆B j
n
,

where B = {BH
t , t ≥ 0} is fBm, and we recall the notation from Section 2.4,

B̃ j
n
=

1
2

(
B j

n
+B j+1

n

)
and ∆B j

n
= B j+1

n
−B j

n
.

As shown in Proposition 3.3.c, given t ≥ 0, SS
n(t) converges in probability to f (Bt)− f (0) for fBm

with H > 1/10, but generally does not converge in probability for H ≤ 1/10. Similar to the main
theorems of Chapters 4 and 5, here we consider the critical case of H = 1/10, and we employ
Theorem 2.3 to show that, conditioned on the path {Bs,s≤ t}, we have

(Bt ,SS
n(t))

L−→
(

f (Bt)− f (0)− β

2880

∫ t

0
f (5)(Bs) dWs

)
,

where β is a known constant, and W is a standard Brownian motion, independent of B.
This result is similar in form to the preceding results for SM1

n (t), SM2
n (t) and ST

n (t). Indeed,
the result was not suprising, though the explicit value of the constant β was previously unknown.
Moreover, this case was different in that the integral correction term arises from a sum of two,
independent Gaussian random variables instead of only one in the previous cases.

Unlike Chapters 4 and 5, this case was done for fBm only, though it could be extended to a
generalized Gaussian process using an approach similar to Chapters 4 and 5. This generalization
would likely include some types of bifractional Brownian motion with some range of values for
parameters H,K such that HK = 1/10. In addition, weak convergence was only estabilished for
the pointwise case (i.e. fixed t). A finite-dimensional distributions argument should be possible
using a version of Corollary 2.5, though this was not pursued in the present writing.
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It is also expected that the techniques of this chapter could be applied to the ‘Milne’s rule’ sum
for the case H = 1/14, see Proposition 3.3.d. In that case, we would expect an integral correction
term involving f (7).

The organization of this chapter is as follows: in Section 2 we state and prove the main result,
which is Theorem 6.1. Finally, Section 6.3 contains proofs of three of the longer lemmas from
Section 6.2.

6.2 Results
Throughout the rest of this paper, we will assume that f : R→R is a C ∞ function, such that f and
all derivatives satisfy moderate growth conditions. Note that this implies E

[
supt∈[0,T ]

∣∣∣ f (n)(Bt)
∣∣∣p]<

∞ for all n = 0,1,2, . . . and 1≤ p < ∞.

Theorem 6.1. Let f : R→ R be a C ∞ function such that f and its derivatives have moderate
growth conditions, and let {Bt , t ≥ 0} be a fractional Brownian motion with H = 1/10. For t ≥ 0
and integers n≥ 2, Define

SS
n(t) =

bntc−1

∑
j=0

1
6

(
f ′(B j

n
)+4 f ′

(
(B j

n
+B j+1

n
)/2
)
+ f ′(B j+1

n
)
)(

B j+1
n
−B j

n

)
.

Then as n→ ∞ (
Bt ,SS

n(t)
)

L−→
(

Bt , f (Bt)− f (0)+
β

25 ·90

∫ t

0
f (5)(Bs) dWs

)
,

where W = {Wt , t ≥ 0} is a Brownian motion, independent of B, and

β =
√

(5!)2−5κ5 +75κ3, for κ5 = ∑
p∈Z

(
(p+1)

1
5 −2p

1
5 +(p−1)

1
5

)5
, and

κ3 = ∑
p∈Z

(
(p+1)

1
5 −2p

1
5 +(p−1)

1
5

)3
.

Consequently,

f (Bt)
L
= f (0)+

∫ t

0
f ′(Bs) dSBs−

β

2880

∫ t

0
f (5)(Bs) dWs,

where
∫ t

0 f ′(Bs) dSBs denotes the weak limit of the ‘Simpson’s rule’ sum SS
n(t).

The rest of this section is given to proof of Theorem 6.1, and follows in Sections 6.2.1 - 6.2.3.
Following the telescoping series argument given in the proof of Proposition 3.3.c (see (3.6)), we
can write

f (Bt)− f (0)= SS
n(t)−

1
25 90

bntc−1

∑
j=0

f (5)(B̃ j
n
)∆B5

j
n
−A7

bntc−1

∑
j=0

f (7)(B̃ j
n
)∆B7

j
n
−A9

bntc−1

∑
j=0

f (9)(B̃ j
n
)∆B9

j
n

− 1
6(7!)

bntc−1

∑
j=0

∫
∆B j/n

0

(
f (11)(ξ )+ f (11)(η)

)
u8(∆B j

n
−u)2du+

(
f (Bt)− f (B bntc

n
)
)
.
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As in the proof of Proposition 3.3.c, for H = 1/10 it follows from Lemma 3.4 that the terms includ-
ing A7, A9 and the integral term all tend to zero in L2(Ω) as n→∞, and the term

(
f (Bt)− f (Bbntc/n)

)
also tends to zero ucp as n→∞. The main task to prove Theorem 6.1, then, is to show convergence
in law of the error term

bntc−1

∑
j=0

f (5)(B̃ j
n
)∆B5

j
n
. (6.1)

6.2.1 Malliavin calculus representation.
In order to apply our convergence theorem (Theorem 2.3), we wish to find a Malliavin calculus rep-
resentation for the term (6.1). Consider the Hermite polynomial identity H5(x) = x5−10H3(x)−
15x. Taking x = ∆B j/n/‖∆B j/n‖L2(Ω) = nH∆B j/n, we have

n5H
∆B5

j
n
= H5(nH

∆B j
n
)+10H3(nH

∆B j
n
)+15nH

∆B j
n
.

Using (2.4), this gives

bntc−1

∑
j=0

f (5)(B̃ j
n
)∆B5

j
n
=
bntc−1

∑
j=0

f (5)(B̃ j
n
)δ 5(∂⊗5

j
n

)

+10n−2H
bntc−1

∑
j=0

f (5)(B̃ j
n
)δ 3(∂⊗3

j
n

)+15n−4H
bntc−1

∑
j=0

f (5)(B̃ j
n
)∆B j

n
.

We first show that the last term tends to zero in L1(Ω).

Lemma 6.2. Under the assumptions of Theorem 6.1, there is a constant C > 0 such that

E

(n−4H
bntc−1

∑
j=0

f (5)(B̃ j
n
)∆B j

n

)2
≤Cn−2H .

Proof. We start with a 2-sided Taylor expansion of f (4) of order 7. That is,

f (4)(B j+1
n
)− f (4)(B̃ j

n
) =

6

∑
`=1

f (4+`)(B̃ j
n
)

2``!
∆B`

j
n
+

f (11)(ξ j)

277!
∆B7

j
n

and

f (4)(B̃ j
n
)− f (4)(B j

n
) =

6

∑
`=1

(−1)`+1 f (4+`)(B̃ j
n
)

2``!
∆B`

j
n
+

f (11)(η j)

277!
∆B7

j
n
,

for some intermediate values ξ j,η j between B j/n and B( j+1)/n. Adding the above equations, we
obtain

f (4)(B j+1
n
)− f (4)(B j

n
) = f (5)(B̃ j

n
)∆B j

n
+

f (7)(B̃ j
n
)

24
∆B3

j
n
+

f (9)(B̃ j
n
)

245!
∆B5

j
n

+
f (11)(ξ j)+ f (11)(η j)

277!
∆B7

j
n
. (6.2)
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It follows that we can write

E

(n−4H
bntc−1

∑
j=0

f (5)(B̃ j
n
)∆B j

n

)2
≤ 4E

(n−4H
bntc−1

∑
j=0

(
f (4)(B j+1

n
)− f (4)(B j

n
)
))2


+4E


n−4H

bntc−1

∑
j=0

f (7)(B̃ j
n
)

24
∆B3

j
n

2
+4E


n−4H

bntc−1

∑
j=0

f (9)(B̃ j
n
)

245!
∆B5

j
n

2


+4E

(n−4H
bntc−1

∑
j=0

f (11)(ξ j)+ f (11)(η j)

277!
∆B7

j
n

)2
 .

By growth assumptions on f (4),

E

(n−4H
bntc−1

∑
j=0

(
f (4)(B j+1

n
)− f (4)(B j

n
)
))2

= n−8HE
[(

f (4)(B bntc
n
)− f (4)(0)

)2
]
≤Cn−8H .

By Lemma 3.4,

E


n−4H

bntc−1

∑
j=0

f (7)(B̃ j
n
)

24
∆B3

j
n

2
≤C sup

0≤ j≤bntc
‖ f (7)(B̃ j

n
)‖2

D6,2bntcn−14H ,

and

E


n−4H

bntc−1

∑
j=0

f (9)(B̃ j
n
)

245!
∆B5

j
n

2
≤C sup

0≤ j≤bntc
‖ f (9)(B̃ j

n
)‖2

D10,2bntcn−18H .

Then by (B.1),

E

(n−4H
bntc−1

∑
j=0

f (11)(ξ j)+ f (11)(η j)

277!
∆B7

j
n

)2


≤C

(
E

[
sup

s∈[0,t]

∣∣∣ f (11)(Bs)
4
∣∣∣]) 1

2

n−8H

(
bntc−1

∑
j=0
‖∆B7

j
n
‖L4(Ω)

)2

≤Cbntc2n−22H ≤Cn−2H .

This proves the lemma.

Lemma 6.2 shows that only the terms

bntc−1

∑
j=0

f (5)(B̃ j
n
)δ 5
(

∂
⊗5
j
n

)
+10n−2H

bntc−1

∑
j=0

f (5)(B̃ j
n
)δ 3(∂⊗3

j
n

)
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are significant. Using Lemma 2.1.a, we can write the first term as

bntc−1

∑
j=0

δ
5
(

f (5)(B̃ j
n
)∂⊗5

j
n

)
+

5

∑
r=1

(
5
r

) bntc−1

∑
j=0

δ
5−r
(

f (5+r)(B̃ j
n
)∂
⊗(5−r)
j
n

)〈
ε̃ j

n
,∂ j

n

〉r

H
.

By Lemma 2.1.c and (B.1), we have the estimate∥∥∥∥δ
(5−r)

(
f (5+r)(B̃ j

n
)∂
⊗(5−r)
j
n

)∥∥∥∥
L2(Ω)

≤C
∥∥∥∥∂
⊗(5−r)
j
n

∥∥∥∥
H⊗5−r

≤Cn(r−5)H .

It follows that for r = 1, . . . ,5, we can use Lemma 3.1.b,

E

∣∣∣∣∣
(

5
r

) bntc−1

∑
j=0

δ
(5−r)

(
f (5+r)(B̃ j

n
)∂
⊗(5−r)
j
n

)〈
ε̃ j

n
,∂ j

n

〉r

H

∣∣∣∣∣
≤Cn(r−5)H

bntc−1

∑
j=0

∣∣∣〈ε̃ j
n
,∂ j

n

〉r

H

∣∣∣≤Cn−(3+r)H .

By a similar computation,

10n−2H
bntc−1

∑
j=0

f (5)(B̃ j
n
)δ 3(∂⊗3

j
n

) = 10n−2H
bntc−1

∑
j=0

δ
3
(

f (5)(B̃ j
n
)∂⊗3

j
n

)

+10n−2H
3

∑
r=1

(
3
r

) bntc−1

∑
j=0

δ
(3−r)

(
f (5+r)(B̃ j

n
)∂
⊗(3−r)
j
n

)〈
ε̃ j

n
,∂ j

n

〉r

H
,

where

n−2HE

∣∣∣∣∣ 3

∑
r=1

(
3
r

) bntc−1

∑
j=0

δ
(3−r)

(
f (5+r)(B̃ j

n
)∂
⊗(3−r)
j
n

)〈
ε̃ j

n
,∂ j

n

〉r

H

∣∣∣∣∣≤Cn−4H .

Therefore, we define

Fn :=
bntc−1

∑
j=0

δ
5
(

f (5)(B̃ j
n
)∂⊗5

j
n

)
= δ

5(un), where un =
bntc−1

∑
j=0

f (5)(B̃ j
n
)∂⊗5

j
n

; and

Gn := 10n−2H
bntc−1

∑
j=0

δ
3
(

f (5)(B̃ j
n
)∂⊗5

j
n

)
= δ

3(vn), where vn = 10n−2H
bntc−1

∑
j=0

f (5)(B̃ j
n
)∂⊗3

j
n

.

It follows that for large n, the term (6.1) may be represented as Fn +Gn + εn, where εn → 0 in
L1(Ω). Hence, we will apply Theorem 2.3 to the vector sequence (Fn,Gn).

6.2.2 Conditions of Theorem 2.3.
Our main task in this step is to show that the sequence of random vectors (Fn,Gn) satisfies the
conditions of Theorem 2.3. The first condition is that (Fn,Gn) is bounded in L1(Ω). In fact, we
have a stronger result that will also be helpful with later conditions.
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Lemma 6.3. Fix real numbers 0 < t ≤ T and p ≥ 2, and integer n ≥ 2. Let φ : R→ R be a C ∞

function such that φ and all its derivatives have moderate growth. For integer 1≤ q≤ 5, define

wn =
bntc−1

∑
j=0

φ(B̃ j
n
)∂
⊗q
j
n

.

Then for integers 0≤ a≤ 5, there exists a constant cq,a such that

‖Da
δ

q(wn)‖2
Lp(Ω;H⊗a) ≤ cq,a sup

0≤ j≤bntc

∥∥∥φ(B̃ j
n
)
∥∥∥2

Dq+a,p
bntcn−2qH ≤Cn1−2qH .

In particular,
‖DaFn‖Lp(Ω;H⊗a)+‖D

aGn‖Lp(Ω;H⊗a) ≤C. (6.3)

Proof. This proof follows a similar result in [23], see Theorem 5.2. First, note that by Lemma
3.1.c and growth conditions on φ , for each integer b≥ 0,

∥∥∥Dbwn

∥∥∥2

H⊗q+b
=

∥∥∥∥∥bntc−1
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j
n

∥∥∥∥∥
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∑
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〉q

H

∣∣∣
≤Cbntcn−2qH sup

0≤ j≤bntc

∣∣∣φ (b)(B̃ j
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It follows that for p≥ 2,

∥∥∥Dbwn

∥∥∥2

Lp(Ω;H⊗q+b)
≤Cbntcn−2qHE

[
sup

0≤ j≤bntc

∣∣∣φ (b)(B̃ j
n
)
∣∣∣p] 2

p

.

Then, using the Meyer inequality (see [23], Proposition 1.5.7),

‖Da
δ

q(wn)‖2
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(6.4)
For (6.3), we have
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∥∥∥ f (5)(B̃ j
n
)
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D3+a,p(H⊗3)
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The fact that (Fn,Gn) is bounded in L1(Ω) follows by taking a= 0. Next, we consider condition
(a) of Theorem 2.3.

Lemma 6.4. Under the assumptions of Theorem 6.1, (Fn,Gn) satisfies condition (a) of Theorem
2.3. That is, we have

(a) For arbitrary h ∈ H⊗5 and g ∈ H⊗3,

lim
n→∞

E
∣∣〈un,h〉H⊗5

∣∣= lim
n→∞

E
∣∣〈vn,g〉H⊗3

∣∣= 0.

(b) limn→∞E
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⊗s
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3.

The proof of this lemma is deferred to Section 6.3 due to its length. To verify condition (b) of
Theorem 2.3, we have four terms to consider:

•
〈
un,D5Gn

〉
H⊗5

•
〈
vn,D3Fn

〉
H⊗3

•
〈
un,D5Fn

〉
H⊗5

•
〈
vn,D3Gn

〉
H⊗3

We deal with the first two terms in the following lemma. The proof is given in Section 6.3.

Lemma 6.5. Under the assumptions of Theorem 6.1, we have
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We first deal with the case 0≤ z≤ 4. We have
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By (B.1) and Lemma 2.1.c, we have
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so for the case z = 0, we have
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If 1≤ z≤ 4, then by (B.1), (B.4) and Lemma 3.1.c we have an upper bound of

sup
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because z < 5. It follows that the term corresponding to each z = 0, . . . ,4 vanishes in L1(Ω), and
we have that only the term with z = 5 is significant. For the case z = 5, we use a result from [23],
see proof of Theorem 5.2.

5!
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〈
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n
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j
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,

which (for H = 1/10) converges in L1(Ω) to

5!
25 κ5

∫ t

0
f (5)(Bs)

2 ds, where κ5 = ∑
p∈Z

(
|p+1|

1
5 −2|p|

1
5 + |p−1|

1
5

)5
. (6.5)

Hence, we have that

lim
n→∞

〈
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〉
H⊗5

=
5!
25 κ5
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0
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2ds. (6.6)

Similarly, we have〈
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For z = 0,
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For z = 1 or z = 2, by (B.4) and Lemma 3.1.c,
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because z≤ 2. Then for z = 3, we have

600n−4H
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∑
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〈
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n
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j
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n
) f (5)(B̃ k
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(
| j− k+1|2H−2| j− k|2H + | j− k−1|2H)3

.

Similar to (6.5), this converges in L1(Ω) to

75κ3

∫ t

0
f (5)(Bs)

2 ds, where κ3 = ∑
p∈Z

(
|p+1|

1
5 −2|p|

1
5 + |p−1|

1
5

)3
. (6.7)

Hence, we have that

lim
n→∞

〈
vn,D3Gn

〉
H⊗3 = 75κ3

∫ t

0
f (5)(Bs)

2ds. (6.8)

6.2.3 Proof of Theorem 6.1.
By Sections 6.2.1, the term (6.1) is dominated in probability by 1

2880(Fn +Gn). By the results of
Section 6.2.2, the vector (Fn,Gn) satisfies Theorem 2.3, that is, (Fn,Gn) converges stably as n→∞

to a mean-zero Gaussian random vector (F∞,G∞) with independent components, whose variances
are given by (6.6) and (6.8), respectively. It follows that Fn +Gn converges in distribution to a
centered Gaussian random variable with variance

s2 =
5!
25 κ5

∫ t

0
f (5)(Bs)

2 ds+75κ3

∫ t

0
f (5)(Bs)

2 ds = β
2
∫ t

0
f (5)(Bs)

2 ds,

where β 2 = (5!)2−5κ5+75κ3. The result of Theorem 6.1 then follows from the Itô isometry. This
concludes the proof.

6.3 Proof of Technical Lemmas

6.3.1 Proof of Lemma 6.4.
For θ ∈ {0,2} define

wn(θ) = n−θH
bntc−1

∑
j=0

f (5)(B̃ j
n
)∂⊗5−θ

j
n

; and Φn(θ) = δ
5−θ (wn(θ)).

This allows us to write un = wn(0), Fn = Φn(0), vn = 10wn(2), and Gn = 10Φn(2). Following
Remark 2.4, we may assume that h ∈ H⊗5−θ has the form εt1 ⊗·· ·⊗ εt5−θ

, for some set of times
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{t1, . . . , t5−θ} in [0,T ]5−θ . Then for (a), using (B.4) and Lemma 3.1.a,

E
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where the last inequality follows because θ ≤ 2.
Next, for (b), consider integers 0≤ ai < 5−θ , 0≤ s≤ r < 5−θ , r ≥ 1 and q, such that s≤ r,

1≤ a1 + · · ·+ar < 5−θ and q = 5−θ − (a1 + · · ·+ar)≥ 1. We have
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Using (B.1), Lemma 6.3, and Lemma 3.1.a, this is bounded by
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0≤ j≤bntc
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where p = r+1.

For (c), we want to consider terms of the form

E
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DaiΦn(θi)

〉
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where θi ∈ {0,2}, 2 ≤ r ≤ 5−θ0, 0 ≤ ai ≤ 4−θ0, and a1 + · · ·+ ar = 5−θ0. For example, the
term 〈

un,D3Fn⊗D2Gn
〉
H⊗3

corresponds to the case (θ0,θ1,θ2) = (0,0,2), a1 = 3, a2 = 2. We will show that terms of this type
tend to zero in L2(Ω) as n→ ∞. Using the above definitions for wn(θi), Φn(θi), we have
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By Lemma 2.1.b,
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Applying this to each term, we can expand the inner product〈
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where C` =C`(`1, . . . , `r) is an integer constant, each bi = 5−θi− `i, and each λi = 5+ai− `i. It
follows that (6.9) is a sum of terms of the form
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For 0≤ j1, . . . , jr ≤ bntc we have the estimate
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where I = {0≤ j1, . . . , jr ≤ bntc}. By Lemma 3.1.a and/or 3.1.c, this is bounded by Cn−2H(5−θ0)

if `1+ · · ·+ `r ≥ 1, and bounded by Cn−2H(5−θ0−1) =Cn−2H(4−θ0) if and only if `1 = · · ·= `r = 0.
Hence, we can write
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where 4H(4−θ0)≤ Λ≤ 4H(5−θ0).
It follows that terms of the form (6.10) can be bounded in absolute value by
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By (6.11) and Lemma 6.3, this is bounded by

Cbntcrn−2H(θ0+···+θr)−ΛH−H(b1+···+br+b′1+···+b′r).

We have Λ≥ 4H(4−θ0), and

b1 + · · ·+br = 5r− (θ1 + · · ·+θr)− (`1 + · · ·+ `r).

Since `i ≤ ai for each i, then `1 + · · ·+ `r ≤ a1 + · · ·+ar = 5−θ0, it follows that the exponent

2H(θ0 + · · ·+θr)+ΛH +H(b1 + · · ·+br +b′1 + · · ·+b′r)
≥ 2H(θ0 + · · ·+θr)+4H(4−θ0)+H(10r−2(θ1 + · · ·+θr)−2(5−θ0))

≥ 16H +10(r−1)H ≥ 10rH +6H.

Hence, we have an upper bound of

Cbntcrn−10rH−6H ≤Cn−6H

for each term of the form (6.10), so this term tends to zero in L2(Ω), and we have (c). This
concludes the proof of Lemma 6.4. �

6.3.2 Proof of Lemma 6.5.
Starting with (a), Lemma 2.1.b gives
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By moderate growth conditions and (6.4), we have
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If i > 0, then (B.4) and Lemma 3.1.c give an estimate of
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because i≤ 3. On the other hand, if i = 0, then by (B.4) and Lemma 3.1.a,
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hence (a) is proved.
For (b), again using Lemma 2.1.b we can write

E
∣∣∣〈vn,D3Fn

〉
H⊗3

∣∣∣= n−2HE

∣∣∣∣∣ 3

∑
i=0

(
5
i

)(
3
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j
n
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n
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k
n

)
∂
⊗i
k
n
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⊗3−i
k
n

〉
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3

∑
i=0

E
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f (5)(B̃ j
n
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k
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)〈
∂ j

n
,∂ k

n

〉i

H

〈
∂ j

n
, ε̃ k

n

〉3−i

H

∣∣∣∣∣ .
We deal with three cases. First, assume i = 0. Then we have a bound of

Cn−2H
bntc−1

∑
j,k=0

E
∣∣∣∣ f (5)(B̃ j

n
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k
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where, as above, we use the estimates
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n
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k
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L2(Ω)

≤
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H
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n
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n

〉
H
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follows from (B.4) and Lemma 3.1.a.
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The next case is for i = 1 or i = 2. Using similar estimates we have

Cn−2H
bntc−1
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E
∣∣∣∣ f (5)(B̃ j
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because 7− i+6≥ 11 for i≤ 2.
For the case i = 3, we will use a different estimate, and show that the term with i = 3 vanishes

in L2(Ω). Using Lemma 2.1.d we have,
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,

where g( j, j′) = f (5)(B̃ j
n
) f (5)(B̃ j′

n
). Then by the Malliavin duality (2.6), this results in a sum of

three terms of the form
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(6.12)

for p = 0,1,2. When the index p = 0, then E
∣∣∣∣〈D4−2pg( j, j′),g(k,k′)∂⊗2−p

k
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where Ψ(x1,x2) = f (5)(x1) f (5)(x2) and a+ b = 4. By moderate growth and (B.4), we see that
(6.13) is bounded by Cn−8H , and so for the case p = 0, (6.12) is bounded in absolute value by
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By a similar estimate, when p = 1, then
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so that for p = 1, then (6.12) is bounded in absolute value by
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Last, the term in (6.12) with p = 2 has the form
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This is bounded in absolute value by
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By Lemma 3.1.c, for every 0≤ k ≤ bntc we have
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hence (6.14) is bounded by
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Lemma 6.5 is proved. �
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Chapter 7

CLT for an iterated integral with respect to
fBm with H > 1/2

7.1 Introduction
Let B = {(B1

t , . . . ,B
q
t ), t ≥ 0} be a multidimensional fractional Brownian motion (fBm) with Hurst

parameter H > 1/2. In this chapter, we study the asymptotic behavior as k → ∞ of multiple
stochastic integrals of the particular form:

Ykt :=
∫ kt

1

∫ sq

1
· · ·
∫ s2

1
s−qH

q dB1
s1
. . .dBq−1

sq−1
dBq

sq

where t > 0 and each iterated integral is a pathwise symmetric integral in the sense of Russo and
Vallois [34]. We show that the pathwise symmetric integral is identical to the Malliavin divergence
integral in this case. Our main result is a central limit theorem for the process {Ykt , t ≥ 0}, namely
that Ykt√

logk converges in distribution as k→ ∞ to a scaled Brownian motion. Our approach uses
the techniques of Malliavin calculus, where we express Ykt in terms of the divergence integral
δ , which coincides with the multiple Wiener-Itô stochastic integral in this case. In our proof,
convergence of finite-dimensional distributions follows from a multi-dimensional version of the
Fourth Moment Theorem [29, 31], which gives conditions for weak convergence to a Gaussian
random variable (see section 2.4). Functional convergence to a Brownian motion is proved by
investigating tightness. In addition to the proof, we are able to comment on the rate of convergence
(which is fairly slow: ∼ (logk)−

1
2 ), using a result from Nourdin and Peccati [24] in their recent

book on the Stein method.
The original motivation for this paper was [3], where Baudoin and Nualart studied a complex-

valued fBm with H > 1/2. For Bt = B1
t + iB2

t , B0 = 1, they studied the integral∫ t

0

dBs

Bs
=
∫ t

0

B1
s dB1

s +B2
s dB2

s
|Bs|2

+ i
∫ t

0

B2
s dB1

s −B1
s dB2

s
|Bs|2

. (7.1)

When B is written in the form ρteiθt , the angle θt is given by the imaginary part of (7.1). For
standard Brownian motion, a well-known theorem by Spitzer [36] holds that as t→∞, the random
variable 2θt/(log t) converges in distribution to a Cauchy random variable with parameter 1. In
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the case of Brownian motion, this integral in the complex plane has been studied in several papers
[4, 14, 32]. We are not aware of a corresponding fBm version of Spitzer’s theorem. In [3], the
functional

Zt :=
∫ t

1

B2
s dB1

s −B1
s dB2

s
s2H (7.2)

was proposed as an asymptotic approximation for θt as t → ∞. It was shown (see Proposition 22
of [3]) that Zt√

log t converges in distribution to a Gaussian random variable, with an expression for
variance similar to our own result. Their proof also used Malliavin calculus, but did not use the
Fourth Moment Theorem. For q = 2, since Bt =

∫ t
0 dBs, Zt is asymptotically equal in law to

Z′t =
∫ t

1

∫ s

1

dB2
r dB1

s
s2H −

∫ t

1

∫ s

1

dB1
r dB2

s
s2H ,

and we have a new (and shorter) proof of the result in [3].

7.2 Main result
Fix q≥ 2. For t > 0 and integer k ≥ 2, define

Ykt =
∫ kt

1

∫ sq

1
· · ·
∫ s2

1
s−qH

q dB1
s1
. . .dBq−1

sq−1
dBq

sq
,

where the stochastic integrals are iterated symmetric integrals in the sense of Definition 3.6. Theo-
rem 3.7 and the diagonal structure of Ykt allow us to identify the pathwise and Skorohod integrals.

Lemma 7.1. For each q≥ 2, we have

Ykt =
∫ kt

1

∫ sq

1
· · ·
∫ s2

1
s−qH

q δB1
s1
. . .δBq−1

sq−1
δBq

sq
. (7.3)

Proof. This follows from iterated application of Theorem 3.7, where the correction term is zero
due to independence. Indeed, in the notation of (3.8), this is

Ykt = δ
(q) · · ·δ (1)

(
s−qH

q 1{1≤s1<···<sq≤kt}

)
.

Following is the main result of this section.

Theorem 7.2. For t ≥ 0, define

Xk(0) = 0; Xk(t) =
Ykt√
logk

, t > 0.

Then as k→∞, the family {Xk(t), t ≥ 0} converges in distribution to the process X = {X(t), t ≥ 0},
where X is a scaled Brownian motion with variance σ2

q t, and

σ
2
2 = αH

∫ 1

0
x−2HR(1,x)(1− x)2H−2dx; and for q > 2, (7.4)



134

σ
2
q = α

q−1
H

∫ 1

0
x−qH

q (1− xq)
2H−2

∫
M

R(x2,y2)
q−1

∏
i=2
|xi− yi|2H−2 dx2 dy2 . . .dyq−1 dxq, (7.5)

where M = {0≤ x2 < · · ·< xq;0≤ y2 < · · ·< yq−1 ≤ 1}.

The proof of Theorem 7.2 follows the lemmas in Sections 7.2.1 and 7.2.2. Our first task is to
investigate the covariance (Section 7.2.1), then verify two other conditions for weak convergence
(Section 7.2.2).

7.2.1 Convergence of the covariance function
Let A =

{
1≤ s1 < · · ·< sq ≤ kt}, and Λ =

{
(i1, . . . , iq) = (1, . . . ,q)

}
. Lemma 7.1 allows us to

write Ykt = δ q( fkt ), where fkt : ([0,∞)×{1, . . . ,q})q→ R is given by

fkt
(
(s1, i1), . . . ,(sq, iq)

)
= s−qH

q 1A(s1, . . . ,sq)1Λ(i1, . . . , iq). (7.6)

Here, fkt ∈ H⊗q, where H := Hq is the Hilbert space associated with a q−dimensional fBm (see
Section 3.2). Clearly, fkt is not symmetric. Instead, we will work with the symmetrization defined
in (2.1):

f̃kt
(
(s1, i1), . . . ,(sq, iq)

)
=

1
q! ∑

σ

s−qH
σ(q)1A(sσ(1), . . . ,sσ(q))1Λ(iσ(1), . . . , iσ(q)), (7.7)

where σ covers all permutations of {1, . . . ,q}. This gives equivalent results, by the relation Iq( f̃ ) =
Iq( f ) (see [27], Sec. 1.1.2).

By definition f̃kt is nonzero only if 1≤ sσ(1)< · · ·< sσ(q)≤ kt and (iσ(1), . . . , iσ(q))= (1, . . . ,q),
hence it is possible to express f̃kt without a sum. Let σ be an arbitrary permutation of {1, . . . ,q},
and let Aσ = {1 ≤ sσ(1),< · · · < sσ(q) ≤ kt}. Since the sets {Aσ} form an almost-everywhere
partition of [1,kt ]q, we can write (7.7) as

f̃kt
(
(s1, i1), . . . ,(sq, iq)

)
=

1
q!

s−qH
(q) 1A1

(
(s1, i1), . . . ,(sq, iq)

)
, (7.8)

where s(q) = max{s1, . . . ,sq}, and the set A1 is defined by the following condition: when s1, . . . ,sq
are arranged in [1,kt ] such that s(1) < · · ·< s(q), then (i(1), . . . , i(q)) = (1, . . . ,q).

In the next three results, we check the conditions of Theorem 2.6 for δ q( f̃kt ).

Lemma 7.3. For each q≥ 2 and t > 0,

tσ2
q = lim

k→∞
E
[
Xk(t)2]

exists, where σ2
q is given by (7.4) and (7.5) for q = 2 and q > 2, respectively.

Proof. Since fkt is deterministic, we use (2.5) and (3.10):

E
[
Xk(t)2]= 1

logk
E
[
δ

q( fkt )2]= q!
logk

〈
f̃kt , f̃kt

〉
H⊗q
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=
α

q
H

q! logk

q

∑
i1,...,iq=1

∫
[1,kt ]2q

(r(q)s(q))
−qH1A1(r, i)1A1(s, i)

q

∏
`=1
|r`− s`|2H−2 dr ds, (7.9)

where (r, i) =
(
(r1, ii), . . . ,(rq, iq)

)
, and similar for (s, i). To evaluate (7.9), we decompose [1,kt ]2q

into the union of the sets {Aσ ×Aσ ′}, which form a partition almost everywhere. Since 1A1(r, i)
is nonzero only if rσ(1) < · · · < rσ(q) and (iσ(1), . . . , iσ(q)) = (1, . . . ,q), and similar for 1A1(s, i), it
follows that we integrate only over the diagonal sets, that is, when σ = σ ′. Hence, (7.9) can be
integrated as a sum of q! equal terms, and we have

E
[
Xk(t)2]= α

q
H

logk

∫
A
(rqsq)

−qH
q

∏
i=1
|ri− si|2H−2 dr1 ds1 . . .drq dsq, (7.10)

where the integral is over the set

A =
{

1≤ r1 < · · ·< rq ≤ kt , 1≤ s1 < · · ·< sq ≤ kt} .
Integrating over r1,s1, we have by L’Hôpital,

lim
k→∞

α
q−1
H

logk

∫
[1,kt ]2

(rqsq)
−qH |rq− sq|2H−2

∫
A

R(r2,s2)
q−1

∏
i=2
|ri− si|2H−2 dr2 ds2 . . .drq dsq

= lim
k→∞

tkt
α

q−1
H

∫ kt

1
(rqkt)−qH(kt− rq)

2H−2
∫
A ′

R(r2,s2)
q−1

∏
i=2
|ri− si|2H−2 dr2 ds2 . . .dsq−1 drq,

where the set A ′ = {1 ≤ r2 < · · · < rq, 1 ≤ s2 < · · · < sq−1 ≤ kt} (A ′ is empty if q = 2). Using
the change of variable ri = ktxi, si = ktyi, this may be written

lim
k→∞

tαq−1
H

∫ 1

1
kt

x−qH
q (1− xq)

2H−2
∫
M ′

R(x2,y2)
q−1

∏
i=2
|xi− yi|2H−2 dx2 dy2 . . .dyq−1 dxq (7.11)

= tαq−1
H

∫ 1

0
x−qH

q (1− xq)
2H−2

∫
M

R(x2,y2)
q−1

∏
i=2
|xi− yi|2H−2 dx2 dy2 . . .dyq−1 dxq,

where M ′ = { 1
kt < x2 < · · · < xq; 1

kt < y2 < · · · < yq−1 ≤ 1}, M is as in (7.5) for q > 2, and we
have (7.4) if q = 2. To show (7.4) and (7.5) are convergent, we use properties (R.1) and (R.2), so
that

σ
2
2 = αH

∫ 1

0
x−2H(1− x)2H−2R(1,x) dx≤ c1αH

∫ 1

0
x−H(1− x)2H−2 dx < ∞

and for q > 2

σ
2
q ≤ αH

∫ 1

0
x−qH

q (1− xq)
2H−2R(1,xq)

q−1dxq ≤ cq−1
1 αH

∫ 1

0
x−H

q (1− xq)
2H−2 dxq < ∞.

This concludes the proof.

Lemma 7.4. Let 0≤ τ ≤ t. For each q≥ 2,

lim
k→∞

E [Xk(t)Xk(τ)] = σ
2
q τ;

and consequently limk→∞E [Xk(s)Xk(t)] = σ2
q (s∧ t) for all 0≤ s, t < ∞.
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Proof.

E [Xk(t)Xk(τ)] = E [(Xk(t)−Xk(τ)+Xk(τ))Xk(τ)]

=
1

logk
E [(Ykt −Ykτ )Ykτ ]+E

[
Xk(τ)

2] ,
where E

[
Xk(τ)

2]→ σ2
q τ by Lemma 7.3. Note that Ykt −Ykτ = δ q( f̃kt )−δ q( f̃kτ ), where, recalling

the notation of (7.8),

δ
q( f̃kt )−δ

q( f̃kτ ) =
∫
[1,kt ]2q

1

q!sqH
(q)

1A1(s, i) δBs−
∫
[1,kτ ]2q

1

q!sqH
(q)

1A1(s, i) δBs

=
∫ kt

1

∫ s(q)

1
· · ·
∫ s(2)

1

1

q!sqH
(q)

δB(1)
s(1) · · ·δB(q−1)

s(q−1) δB(q)
s(q)−

∫ kτ

1

∫ s(q)

1
· · ·
∫ s(2)

1

1

q!sqH
(q)

δB(1)
s(1) · · ·δB(q−1)

s(q−1) δB(q)
s(q)

=
∫ kt

kτ

∫ s(q)

1
· · ·
∫ s(2)

1

1

q!sqH
(q)

δB(1)
s(1) · · ·δB(q−1)

s(q−1) δB(q)
s(q).

Hence, we can write Ykt −Ykτ = δ q( f̃∆k), where

f̃∆k =
1

q!sqH
(q)

1A11{kτ≤s(q)≤kt} = f̃kt 1{kτ≤s(q)≤kt}. (7.12)

With this notation, it follows that

1
logk

E [(Ykt −Ykτ )Ykτ ] =
q!

logk

〈
f̃∆k, f̃kτ

〉
H⊗q

=
α

q
H

q! logk

q

∑
i1,...,iq=1

∫
[1,kt ]2q

(
r(q)s(q)

)−qH 1A1(r, i)1A1(s, i)1{1≤s(q)≤kτ≤r(q)≤kt}

q

∏
`=1
|r`−s`|2H−2ds dr.

As in Lemma 7.3, we decompose [1,kt ]2q into the union of the sets {Aσ ×Aσ ′}. Since 1A1(r, i)
is nonzero only if rσ(1) < · · · < rσ(q) and (iσ(1), . . . , iσ(q)) = (1, . . . ,q), and similar for 1A1(s, i), it
follows that we integrate only over the diagonal sets, that is, when σ = σ ′. Hence, we have q!
equal terms of the form

α
q
H

q! logk

∫ kt

kτ

∫ kτ

1

∫
[1,kt ]2q−2

(
rqsq

)−qH 1{r1<···<rq}1{s1<···<sq}

q

∏
`=1
|r`− s`|2H−2ds dr. (7.13)

By (R.1) and (R.2), for each r` ≤ rq, s` ≤ sq, we have the estimate

αH

∫ r(`)

1

∫ s(`)

1
|r(`−1)− s(`−1)|2H−2dr(`−1) ds(`−1)

≤ αH

∫ r(q)

0

∫ s(q)

0
|r− s|2H−2dr ds = R(r(q),s(q))≤ c1(rqsq)

H . (7.14)
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It follows that

1
logk

E [(Ykt −Ykτ )Ykτ ]≤ C
logk

∫ kt

kτ

∫ kτ

1
(rqsq)

−qHR(rq,sq)
q−1|rq− sq|2H−2drq dsq

≤ C
logk

∫ kt

kτ

∫ kτ

1
(rqsq)

−2HR(rq,sq)|rq− sq|2H−2drq dsq.

Using the change-of-variable sq = kτx, rq = kτy, this is bounded by

C
logk

∫ kt−τ

1

∫ 1

0
(xy)−2HR(x,y)(y− x)2H−2dx dy.

Using (R.3), we obtain the estimate,

C
logk

∫ kt−τ

1

∫ 1

0

(
y−2H(y− x)2H−2 + x1−2Hy−1(y− x)2H−2) dx dy,

where ∫ kt−τ

1

∫ 1

0
y−2H(y− x)2H−2dx dy≤

∫ 2

1
y−2H

∫ y

0
(y− x)2H−2dx dy+

∫ kt−τ

2
(y−1)−2dy

≤C
∫ 2

1
y−1dy+C

∫
∞

1
y−2dy < ∞,

and∫ kt−τ

1

∫ 1

0
y−1x1−2H(y− x)2H−2dx dy≤

∫ 2

1
y−1

∫ y

0
x1−2H(y− x)2H−2dx dy+

∫ kt−τ

2
(y−1)2H−3dy

≤C
∫ 2

1
y−1dy+

∫
∞

1
y2H−3dy < ∞.

Hence, this term vanishes and Lemma 7.4 is proved.

7.2.2 Conditions for weak convergence of {Xk(t)}
In the next two lemmas we verify additional properties of {Xk(t)}. In Lemma 7.5 we check condi-
tion (iv) of Theorem 2.6, and Lemma 7.6 is a tightness result.

Lemma 7.5. Fix q≥ 2 and t > 0. For each integer 1≤ p≤ q−1,

lim
k→∞

(logk)−2‖ f̃kt ⊗p f̃kt‖2
H⊗2(q−p) = 0.

Proof. Let 1≤ p≤ q−1. To compute the pth contraction of f̃kt , we use (3.11).

f̃kt ⊗p f̃kt =
α

p
H

(q!)2

q

∑
i1,...,iq=1

∫
[1,kt ]2p

(r(q)s(q))
−qH1A1(r, i)1A1(s, i)

p

∏
`=1
|r`− s`|2H−2dr1 ds1 . . .drp dsp.

(7.15)
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Using (7.15), we want to compute

‖ f̃kt ⊗p f̃kt‖2
H⊗2(q−p) =

〈
f̃kt ⊗p f̃kt , f̃kt ⊗p f̃kt

〉
H⊗2(p−q)

=
α

2q
H

(q!)4

q

∑
i1,...,iq=1

∫
[1,kt ]4q

(
r(q)s(q)r

′
(q)s
′
(q)

)−qH (
1A1(r, i) · · ·1A1(s

′, i)
) p

∏
j=1

(
|r j− s j||r′j− s′j|

)2H−2

×
q

∏
j=p+1

(
|r j− r′j||s j− s′j|

)2H−2 dr ds dr′ds′. (7.16)

As in the proof of Lemma 7.3, we view integration over the set [1,kt ]4q as a sum of integrals over
various cases corresponding to the orderings of the real variables r1, . . . ,rq (as in Lemma 7.3, the
variables s,r′,s′ must follow the same ordering). Up to permutation of indices, each integral term
has the form

α
2q
H

(q!)4

∫
G
(r(q)s(q)r

′
(q)s
′
(q))
−qH

p

∏
j=1

(
|r j− s j| |r′j− s′j|

)2H−2
q

∏
j=p+1

(
|r j− r′j| |s j− s′j|

)2H−2 dr ds dr′ ds′,

(7.17)
where G =

{
1≤ r(1) < · · ·< r(q) ≤ kt ; . . . ;1≤ s′(1) < · · ·< s′(q) ≤ kt

}
. To evaluate (7.17), there

are two cases to consider. The first case is if r(q) ∈ {r1, . . . ,rp}, that is, (7.17) contains the terms
|r(q)− s(q)|, |r′(q)− s′(q)|. In this case, using (7.14) we can bound (7.17) by

α2
H

(q!)4

∫
[1,kt ]4

(r(q)s(q)r
′
(q)s
′
(q))
−qH

(
R(r(q),s(q))R(r

′
(q),s

′
(q))
)p−1(

R(r(q),r
′
(q))R(s(q),s

′
(q))
)q−p

×
(
|r(q)− s(q)| |r′(q)− s′(q)|

)2H−2
dr(q) ds(q) dr′(q) ds′(q)

≤C
∫
[1,kt ]4

(rsr′s′)−2HR(r,r′) R(s,s′)
(
|r− s| |r′− s′|

)2H−2 dr ds dr′ ds′, (7.18)

where we used (R.2) in the last estimate. The second case is the complement, that is, r(q) ∈
{rp+1, . . . ,rq}, so that (7.17) contains the terms |r(q)− r′(q)|, |s(q)− s′(q)|. If this is the case, then
(7.17) is bounded by

α2
H

(q!)4

∫
[1,kt ]4

(r(q)s(q)r
′
(q)s
′
(q))
−qH

(
R(r(q),s(q))R(r

′
(q),s

′
(q))
)p(

R(r(q),r
′
(q))R(s(q),s

′
(q))
)q−p−1

×
(
|r(q)− s(q)| |r′(q)− s′(q)|

)2H−2
dr(q) ds(q) dr′(q) ds′(q)

≤C
∫
[1,kt ]4

(rsr′s′)−2HR(r,s) R(r′,s′)
(
|r− r′| |s− s′|

)2H−2 dr ds dr′ ds′. (7.19)

The result then follows by a change of variable and applying Lemma 7.8 to (7.18) and (7.19).
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Lemma 7.6. There is a constant 0 < C < ∞ such that for each k ≥ 2 and any 0 ≤ τ < t < ∞ we
have

E
[
|Xk(t)−Xk(τ)|4

]
≤C(t− τ)2.

Proof. Based on the hypercontractivity property (2.8), it is enough to show

E
[
|Xk(t)−Xk(τ)|2

]
≤C(t− τ).

Using the notation of (7.12), we can write

E
[
|Xk(t)−Xk(τ)|2

]
=

1
logk

E
[
|Ykt −Ykτ |2

]
=

q!
logk

〈
f̃∆k, f̃∆k

〉
H⊗q

=
α

q
H

q! logk

q

∑
i1,...,iq=1

∫
[1,kt ]2q

(
r(q)s(q)

)−qH 1A1(r, i)1A1(s, i)1{kτ≤r(q),s(q)≤kt}

q

∏
`=1
|r`− s`|2H−2ds dr.

In the same manner as (7.13), this can be decomposed into a sum of q! equal terms of the form

α
q
H

q! logk

∫ kt

kτ

∫ kt

kτ

∫
[1,kt ]2q−2

(
rqsq

)−qH 1{r1≤···≤rq}1{s1≤···≤sq}

q

∏
`=1
|r`− s`|2H−2ds dr.

Similar to Lemma 7.5, we use (7.14) and a change-of-variable to obtain

1
logk

E
[
|Ykt −Ykτ |2

]
≤ C

logk

∫ kt

kτ

∫ kt

kτ

(rqsq)
−qHR(rq,sq)

q−1|rq− sq|2H−2drq dsq

≤ C
logk

∫ 1

kτ−t

∫ 1

kτ−t
(xy)−2HR(x,y)|x− y|2H−2dx dy.

Without loss of generality, assume x < y. By (R.3), we have the estimate

C
logk

∫ 1

kτ−t

∫ 1

kτ−t
(xy)−2HR(x,y)|x− y|2H−2dx dy =

C
logk

∫ 1

kτ−t

∫ y

kτ−t
(xy)−2HR(x,y)|x− y|2H−2dx dy

≤ C
logk

∫ 1

kτ−t

∫ y

0

(
y−2H(y− x)2H−2 + x1−2Hy−1(y− x)2H−2)dx dy

≤ C
logk

∫ 1

kτ−t

(
y−2Hy2H−1 + y−1) dy≤C(t− τ).

This concludes the proof.

7.2.3 Proof of Theorem 7.2
Fix integers q ≥ 2 and d ≥ 1, and choose a set of times 0 ≤ t1 < · · · < td . Lemmas 7.3 and 7.4
show that the random vector sequence {(Xk(t1), . . . ,Xk(td)) ,k ≥ 1} meets the covariance condi-
tions of Theorem 2.6. Moreover, Lemma 7.5 verifies condition (iv) of Theorem 2.6. Therefore, we
conclude that as k→ ∞,

(Xk(t1), . . . ,Xk(td))
L−→ (X(t1), . . . ,X(td)) , (7.20)
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where each X(ti) has distribution N (0,σ2
q ti), and E [X(ti)X(tk)] =σ2

q (ti∧tk) for all 1≤ i,k≤ d. By
Lemma 7.6, the sequence {Xk(t)} is tight, hence it follows from (7.20) that the sequence converges
in the sense of finite-dimensional distributions (see, for example, Theorem 13.5 of [6]). Thus, we
conclude that the family {Xk(t), t ≥ 0} converges in distribution to the process {X(t), t ≥ 0} L

=
{σqWt , t ≥ 0}, where Wt is a standard Brownian motion. This concludes the proof of Theorem 7.2.

7.2.4 Rate of convergence
Let t > 0 be fixed. By Theorem 7.2, it follows that the sequence {Xk(t),k ≥ 1} converges in
distribution to a random variable N(t), where N(t) ∼N (0,σ2

q t). Recent work by Nourdin and
Peccati [24] has produced a stronger form of the Fourth Moment Theorem for the 1-dimensional
case, that is, that the conditions of the Fourth Moment Theorem also imply convergence in the
sense of total variation (as well as other metrics - see Theorem 5.2.6). The result below follows
from Corollary 5.2.10 of [24].

Proposition 7.7. Let t ≥ 0. Then for sufficiently large k, there is a constant 0 <C < ∞ such that

dTV (Xk(t),N(t))≤ C√
logk

,

where dTV (·, ·) is total variation distance. Hence Xk(t) converges as k→ ∞ to Gaussian in the
sense of total variation.

Proof. The result follows from an estimate in [24] (Cor. 5.2.10):

dTV (Xk(t),N(t))≤ 2

√√√√E [Xk(t)4]−3E [Xk(t)2]
2

3E [Xk(t)2]
2 +

2
∣∣E[Xk(t)2]−σ2

q t
∣∣

E [Xk(t)2]∨σ2
q t

. (7.21)

To simplify notation, we will assume t = 1. To help interpret this estimate, the following identity
is computed in [24] (see Lemma 5.2.4):

E
[
Xk(1)4]−3E

[
Xk(1)2]2 = 3

q(logk)2

q−1

∑
p=1

p(p!)2
(

q
p

)4

(2q−2p)!‖ f̃k
∼
⊗p f̃k‖2

H⊗2(q−p). (7.22)

From Lemma 7.5, we know (logk)−2‖ f̃k
∼
⊗p f̃k‖2

H⊗2(q−p) → 0 at a rate C/ logk, hence it follows

the first term of (7.21) is of order C(logk)−
1
2 . The second term depends on the covergence rate

of (7.10). In the proof of Lemma 7.3, convergence follows from a limit of the form E
[
Y 2

k

]
/logk.

By L’Hôpital’s rule, it follows the rate of convergence has the form C/ logk, hence the first term
controls.
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7.3 A technical lemma
Lemma 7.8. Fix T > 0. Let 1/2<H < 1, and for nonnegative x,y, let R(x,y)= 1

2

(
x2H + y2H−|x− y|2H).

Then there is a constant 0 < K < ∞ such that∫
[ 1

T ,1]
4
(xyuv)−2HR(x,y) R(u,v)|x−u|2H−2|y− v|2H−2dx dy du dv≤ K logT.

Proof. In the following computations, we will obtain estimates based on the order of integration.
Due to the symmetries of the integral, it is enough to consider four distinct cases. We will make
frequent use of (R.3), and for a second estimate, note that for x < y < u we can write (u−x)2H−2 ≤
(u− y)−α(y− x)−β , where α,β > 0 satisfy α +β = 2−2H.

Case 1: x≤ y≤ u≤ v We can write∫ 1

1
T

∫ v

1
T

(uv)−2HR(u,v)
∫ u

1
T

y−2H(v− y)2H−2
∫ y

1
T

x−2HR(x,y)(u− x)2H−2 dx dy du dv

≤C
∫ 1

1
T

∫ v

1
T

(uv)−2HR(u,v)
∫ u

1
T

y−2H(v− y)2H−2(u− y)−α

∫ y

1
T

(y− x)−β + x1−2Hy2H−1(y− x)−β dx . . .dv

≤C
∫ 1

1
T

∫ v

1
T

(uv)−2HR(u,v)(v−u)−α

∫ u

1
T

y1−2H−β (u− y)−β−α dy du dv

≤C
∫ 1

1
T

∫ v

1
T

(uv)−2HR(u,v)(v−u)−αu−β du dv

≤C
∫ 1

1
T

v−2H
∫ v

1
T

u−2H(v−u)−α
(
u2H +uv2H−1) du dv

≤C
∫ 1

1
T

v−1dv≤ K logT.

Case 2: x < y < v < u For this case, we use constants α,β > 0 such that α +β = 2H−2, and
γ,δ > 0 such that γ +δ = α .∫ 1

1
T

∫ u

1
T

(uv)−2HR(u,v)
∫ u

1
T

y−2H(v− y)2H−2
∫ y

1
T

x−2HR(x,y)(u− x)2H−2 dx dy dv du

≤C
∫ 1

1
T

∫ u

1
T

(uv)−2HR(u,v)
∫ u

1
T

y1−2H−β (v− y)2H−2(u− y)−α dy dv du

≤C
∫ 1

1
T

∫ u

1
T

(uv)−2HR(u,v)(u− v)−γ

∫ u

1
T

y1−2H−β (v− y)2H−2−δ dy dv du

≤C
∫ 1

1
T

u−2H
∫ u

1
T

v−2H−β−δ
(
v2H + vu2H−1)(u− v)−γ dv du

≤C
∫ 1

1
T

u−1 ≤ K logT.
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Case 3: x < u < y < v∫ 1

1
T

∫ v

1
T

(yv)−2H(v− y)2H−2
∫ y

1
T

u−2HR(u,v)
∫ u

1
T

x−2HR(x,y)(u− x)2H−2 dx du dy dv

≤C
∫ 1

1
T

∫ v

1
T

(yv)−2H(v− y)2H−2
∫ y

1
T

u−2H (u2H +uv2H−1)(u2H−1 + y2H−1) du dy dv

≤C
∫ 1

1
T

∫ v

1
T

(yv)−2H(v− y)2H−2
∫ y

1
T

(
u2H−1 + y2H−1 + v2H−1 +u1−2H(vy)2H−1) du dy dv

≤C
∫ 1

1
T

∫ v

1
T

(yv)−2H(v− y)2H−2 (y2H + yv2H−1) dy dv

≤C
∫ 1

1
T

v−1 dv≤ K logT.

Case 4: x < v < u < y∫ 1

1
T

∫ y

1
T

(uy)−2H
∫ u

1
T

v−2HR(u,v)(y− v)2H−2
∫ v

1
T

x−2HR(x,y)(u− x)2H−2 dx dv du dy

≤C
∫ 1

1
T

∫ y

1
T

(uy)−2H
∫ u

1
T

v−2HR(u,v)(y− v)2H−2(u− v)−α

∫ v

1
T

x−2H (x2H + xy2H−1)(v− x)−β dx dv du dy

≤C
∫ 1

1
T

∫ y

1
T

(uy)−2H(y−u)−α

∫ u

1
T

v−2H (v2H + vu2H−1)(u− v)−α−β

(
v1−β + v2−2H−β y2H−1

)
dv du dy

≤C
∫ 1

1
T

∫ y

1
T

(uy)−2H(y−u)−α

(
u2H−β + y2H−1u1−β

)
du dy

≤C
∫ 1

1
T

y−2H
(

y1−α−β + y2H−1
)

dt

≤C
∫ 1

1
T

y−1 dy≤ K logT.
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