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Abstract

Dynamics of Poisson-Nernst-Planck systems and its applications to ion channels are

studied in this dissertation.

The Poisson-Nernst-Planck systems serve as basic electro-diffusion equations mod-

eling, for example, ion flow through membrane channels and transport of holes and elec-

trons in semiconductors. The model can be derived from the more fundamental models

of the Langevin-Poisson system and the Maxwell-Boltzmann equations, and from the

energy variational analysis EnVarA. A brief description of the model is given in Chapter

2 including the physical meaning of each equation involved.

Ion channels are cylindrical, hollow proteins that regulate the movement of ions (

mainly Na+, K+, Ca++ and Cl−) through nearly all the membrane channels. When

an initial potential is applied at one end of the channel, it will drive the ions through

the channel, and the movement of these ions will produce the current which can be

measured. Different initial potentials will result in different currents, and the collection

of all those data will provide a relation, the so-called I-V (current-voltage) relation, which

is an important characterization of two most relevant properties of a channel: permeation

and selectivity.

In Chapter 3, a classical Poisson-Nernst-Planck system is studied both analytically

and numerically to investigate the cubic-like feature of the I-V relation. For the case of

zero permanent charge, under electroneutrality boundary conditions at both ends of the

channel, our result concerning the I-V relation for two oppositely charged ion species
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is that the third order correction is cubic in the potential V , and furthermore, up to

the third order, the cubic I-V relation has three distinct real roots (except for a very

degenerate case) which corresponds to the bi-stable structure in the FitzHugh-Nagumo

simplification of the Hodgkin-Huxley model. Numerical simulations are performed and

and they are consistent with our analytical results.

In Chapter 4, we consider a one-dimensional steady-state Poisson-Nernst-Planck type

model for ionic flow through membrane channels including ionic interaction modeled by

a nonlocal hard-sphere potential from the Density Functional Theory. The resulting prob-

lem is a singularly perturbed boundary value problem of an integro-differential system.

Ion size effect on the I-V relations is investigated numerically. Two numerical tasks are

conducted. The first one is a numerical approach of solving the boundary value prob-

lem and obtaining I-V curves. This is accomplished through a numerical implement of

the analytical strategy introduced in [46]. The second task is to numerically detect two

critical potential values Vc and V c. Our numerical detections are based on the defining

properties of Vc and V c and are designed to use the numerical I-V curves directly. For

the setting in the above mentioned reference, our numerical results agree well with the

analytical predictions.

In Chapter 5, a one-dimensional steady-state Poisson-Nernst-Planck type model for

ionic flow through a membrane channel is analyzed, which includes a local hard-sphere

potential that depends pointwise on ion concentrations to account for ion size effects on

the ionic flow. The model problem is treated as a boundary value problem of a singu-

larly perturbed differential system. Based on the geometric singular perturbation theory,

especially, on specific structures of this concrete model, the existence of solutions to

the boundary value problem for small ion sizes is established and, treating the ion sizes

as small parameters, we also derive an approximation of the I-V relation and identify

two critical potentials or voltages for ion size effects. Under electroneutrality (zero net
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charge) boundary conditions, each of these two critical potentials separates the potential

into two regions over which the ion size effects are qualitatively opposite to each other.

On the other hand, without electroneutrality boundary conditions, the qualitative effects

of ion sizes will depend not only on the critical potentials but also on boundary con-

centrations. Important scaling laws of I-V relations and critical potentials in boundary

concentrations are obtained. Similar results about ion size effects on the flow of matter

are also discussed. Under electroneutrality boundary conditions, the results on the first

order approximation in ion diameters of solutions, I-V relations and critical potentials

agree with those with a nonlocal hard-sphere potential examined in [46].
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Chapter 1

Introduction

In this dissertation, we study the dynamics of Poisson-Nernst-Planck (PNP) systems and

its applications to ionic channels. It is a collection of my work and some joint works with

Dr. Guojian Lin (from Renmin University of China), Dr. Xuemin Tu ( from University

of Kansas), Dr. Yingfei Yi (from Georgia Institute of Technology), and my advisor Dr.

Weishi Liu.

1.1 Ion channels and Poisson-Nernst-Planck systems

Ion channels are cylindrical and hollow proteins, as stated in [30], which regulate the

movement of ions (mainly Na+, K+, Ca++, and Cl−) across nearly all biological mem-

branes. A major way for ions to cross the membrane is through the pore that runs down

the long axis of a channel due to the impermeability of the membranes to charged par-

ticles. This property has been exploited by evolution to produce many varied and com-

plicated phenomena necessary for life: channels are responsible for the initiation and

continuation of the electric signals in the nervous system; in the kidneys, lungs, and in-

testines, channels coordinate changes in ionic concentration gradients that result in the

absorption or release of water; in muscle cells, a group of channels is responsible for the
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timely delivery of the Ca++ ions that initiate a contraction. Furthermore, a large number

of drugs (including valium and PCP) act directly or indirectly on channels.

To produce such phenomena, channels act in group, opening and closing at the same

time and letting only specific ion species get through the membrane ( for example, some

channels prefer Na+ over K+ while some ones prefer K+ over Na+). In spite of the

complicated results, the individual channels only do the following two things: they open

and close (the so-called gating phenomenon), when open, they conduct ions. A single

channel could be possibly removed from the biological system and studied as an isolated

physical system. To do this, one can place the single channel into a phospholipid mem-

brane which separates two baths with known ionic concentration. Far away from the

channel, applying a voltage to the system by electrodes in the baths, one can measure the

amount of current that passed through the channel, and this is the so-called I-V relation,

which is an important characterization of two most relevant properties of a channel: per-

meation and selectivity (for more detailed description, see [30]). One of our interest in

this dissertation is to study the I-V relations, in particular, to study the ion size effect on

the I-V relations.

The PNP systems serve as basic electro-diffusion equations modeling, for example,

ion flow through membrane channels, transport of holes and electrons in semiconductors

(see, for example [4, 5, 6, 24, 65, 81]). In the context of ion flow through a membrane

channel, the flow of ions is driven by their concentration gradients and by the electric

field modeled together by the Nernst-Planck continuity equations, and the electric field

is in turn determined by the concentrations through the Poisson equation.

Each equation has its physical meaning just as stated in [30]. The Poisson equation is

the differential form of the Maxwell’s First Law which states that the flux of the electric

field across any closed surface is equal to the total amount of charge inside the surface.

The Nernst-Planck equations state that the flux of a specific species has two components:
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simple diffusion and drift along the electric field. The continuity equations state that, for

the flux of each species, there are no sinks or sources.

Under various reasonable conditions, it can be derived from the more fundamental

models of the Langevin-Poisson system (see, for example, [2, 8, 9, 13, 31, 43, 64, 67, 77,

78, 85, 90]) and the Maxwell-Boltzmann equations (see, for example, [4, 42, 43, 77, 90]),

and from the energy variational analysis EnVarA ([23, 38, 39, 40, 41, 55, 56]).

1.2 Outline of thesis

In Chapter 2, a brief description of PNP systems and some basic elements of dynam-

ical system theory of differential equations are provided. In particular, the method of

asymptotic expansions and a modern dynamical theory, the so-called geometric singu-

lar perturbation theory that are the main tools for the research in this dissertation, are

introduced.

In Chapter 3, a classical PNP model which treats ions as point-charges and ignores

the ion-to-ion interaction is studied. Our main interest is the I-V relation of the ion

channels, in particular, the cubic-like feature of the I-V relation. Numerical simulations

are performed and the numerical results are consistent with our analytical ones.

In chapter 4, we focus on the ion size effect on the I-V relation by considering a one-

dimensional steady-state PNP type model for ionic flow through membrane channels

including ionic interaction modeled by nonlocal hard-sphere potentials from the Density

Functional Theory. The ion size effect on I-V relations is investigated numerically, fo-

cusing on the case where only the hard-sphere components are included. Two numerical

tasks are conducted. The first one is a numerical approach of solving the boundary value

problem and obtaining I-V curves. The second task is to numerically detect two critical

potential values Vc and V c first obtained in [46].
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In Chapter 5, we analyze a one-dimensional steady-state PNP model including a local

hard-sphere potential that depends pointwise on ion concentrations to account for ion size

effects on the ionic flow. Under the framework of geometric singular perturbation theory

and the specific structures of this concrete model, we are able to establish the existence

of solutions to the problem for small ion sizes. An approximation of the I-V relation is

derived and two critical potentials for ion size effects are identified. Important scaling

laws of I-V relations and critical potentials in boundary concentrations are obtained.

Similar results about ion size effects on the flow of matter are also discussed.

In Chapter 6, a brief summary of our previous work is given and our future plan is

discussed.
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Chapter 2

Preliminaries

We give a brief description of PNP system and review some basic elements of dynamical

system theory of differential equations, for which we refer to [1, 19, 20, 21, 23, 24, 28,

30, 37, 39, 41, 46, 47, 49, 57, 58, 59, 61, 62, 65, 70, 85, 87, 93, 94], etc. for further

details.

2.1 Possion-Nernst-Planck system

2.1.1 A one-dimensional steady-state Poisson-Nernst-Planck system

We start with a brief description of a three-dimensional PNP type model for ion flows.

As an approximation, we consider an ion channel Ω, whose longitudinal length has been

normalized to one,

Ω = {X = (x,y,z) : 0 < x < 1, y2 + z2 < g2(x)},

where g is a smooth function. The boundary ∂Ω of Ω consists of three portions:

L = {X ∈Ω : x = 0}, R = {X ∈Ω : x = 1},
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M = {X ∈Ω : y2 + z2 = g2(x)}.

Here, L and R are viewed as the two ends (inside and outside of the cell) and M the

wall of the channel.

The basic electrodiffusion model of PNP type systems for ion flow through the chan-

nel is (see, for example, [31, 33])

−∇ · (εr(X)ε0∇Φ) =e
( n

∑
j=1

z jc j +Q(X)
)
,

−Ji =
1

kT
Di(X)ci∇µi,

∂ci

∂ t
+∇ ·Ji =0, i = 1,2, · · · ,n,

(2.1)

where e is the elementary charge, k is the Boltzmann constant, T is the absolute temper-

ature; Φ is the electric potential, Q(X) is the permanent charge of the channel, εr(X) is

the relative dielectric coefficient, ε0 is the vacuum permittivity; for the ith ion species,

ci is the concentration, zi is the valence (the number of charges per particle), µi is the

electrochemical potential, Ji is the flux density, and Di(X) is the diffusion coefficient.

Depending on specific biological settings of ion channel problems, one may impose

different boundary conditions. We will consider the situation that the concentration of

charges and electrical potentials on L ∪R are constants. An argument is that the inside

and the outside of cells are macroscopic regions in which the concentration of charges

and electrical potentials remain nearly constants. The wall of the channel will be assumed

to be perfectly insulated. We thus assume the following boundary conditions

Φ|L =V, ci|L = Li, Φ|R = 0, ci|R = Ri,
∂Φ

∂n
|M =

∂ci

∂n
|M = 0, (2.2)

where V , Li > 0 and Ri > 0 are constants, and n is a unit normal vector to M .
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We assume the channel is narrow so that it can be effectively viewed as a one-

dimensional channel and normalize it as the interval [0,1] that connects the interior and

the exterior of the channel. A natural one-dimensional steady-state PNP type model for

ion flows of n ion species is (see [62, 65])

1
h(x)

∂

∂x

(
εr(x)ε0h(x)

∂Φ

∂x

)
=−e

(
n

∑
j=1

z jc j +Q(x)

)
,

∂Ji

∂x
= 0, −Ji =

1
kT

Di(x)h(x)ci
∂ µi

∂x
, i = 1,2, · · · ,n.

(2.3)

The boundary conditions are, for i = 1,2, · · · ,n,

Φ(0) =V, ci(0) = Li > 0; Φ(1) = 0, ci(1) = Ri > 0, (2.4)

where h(x) = πg2(x) is the cross-section area of the channel over the longitudinal lo-

cation x. The above one-dimensional version PNP system was suggested in [65] and it

differs from the traditional one-dimensional PNP system in that the cross-section area

function h(x) is contained, which captures the main geometric property of a non-uniform

channel.

Remark 2.1. For the one-dimensional case, the permanent charge Q(x) will be modeled

by a piecewise constant function; that is, we assume, for a partition x0 = 0 < x1 < · · ·<

xm−1 < xm = 1 of [0,1] into m sub-intervals, Q(x) = Q j for x ∈ (x j−1,x j) where Q j’s

are constants with Q1 = Qm = 0 (the intervals [x0,x1] and [xm−1,xm] are viewed as the

reservoirs where there is no permanent charge).

The simplest PNP system is the classical Poisson-Nernst-Planck (cPNP) system. It

has been simulated ([10, 11, 12, 14, 16, 31, 34, 36, 37, 43, 44, 45, 51, 65, 82, 95, 96])

and analyzed ([1, 5, 6, 24, 30, 57, 58, 63, 69, 80, 81, 86, 87, 88, 89, 94]) to a great

extent. However, a major weak point of the cPNP is that ions are treated as point-charges,
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which is reasonable only in near infinite dilute situation. Many extremely important

properties of ion channels, such as selectivity, rely on ion sizes critically. For example,

Na+ (sodium) and K+ (potassium), having the same valence, are mainly different by

their ionic sizes. It is the difference in their ionic sizes that allows certain channels to

prefer Na+ over K+ and some channels to prefer K+ over Na+.

2.1.2 Hard-sphere potential

To study the ion size effects on ionic flows, one has to consider the ion specific com-

ponents of the electrochemical potential in the PNP models. A first step toward a better

modeling is to include hard-sphere potentials of the excess electrochemical potential,

which is also necessary to account for ion size effects in the physiology of ion flows. For

hard-sphere potentials, there are two types of models, local and nonlocal. Local mod-

els for hard-sphere potentials depend pointwise on ion concentrations, while nonlocal

models are proposed as functionals of ion concentrations.

The electrochemical potential µi for the ith ion species consists of the ideal compo-

nent µ id
i (x), the excess component µex

i (x) and the concentration-independent component

µ0
i (x) (e.g. a hard-well potential):

µi(x) = µ
0
i (x)+µ

id
i (x)+µ

ex
i (x).

where

µ
id
i (x) = zieφ(x)+ kT ln

ci(x)
c0

(2.5)

with some characteristic number density c0 which will be normalized to one in the sequel.

The excess electrochemical potential µex
i (x) accounting for the finite size effect of

charges is the most intriguing component which consists of two components: the hard-

sphere component µHS
i and the electrostatic component µES

i for screening effects, etc. of

8



finite sizes of charges ([3, 25, 26, 29, 74, 75, 91, 92], etc.); that is,

µ
ex
i = µ

HS
i +µ

ES
i .

As mentioned above, as a first step, we will only include the hard-sphere component µHS
i .

The hard-sphere component µHS
i (x) is naturally defined as a functional of the probability

distributions, { f j(x,v)}, where f j(x,v)dxdv is the number of jth ions at the location in

(x,x+dx) with the velocity in (v,v+dv). There are different proposals for the specifics of

µHS
i (x). The most successful one comes from the celebrated Density Functional Theory

(DFT) ([25, 26], etc.) which states that µHS
i (x) is actually a functional of the concentra-

tions, {c j(x)}, where the concentration c j and the probability distribution are related by

c j(x) =
∫

f j(x,v)dv.

However, a practical difficulty is that an exact formula for the functional dependence

of µHS
i (x) on {c j(x)} cannot be expected. A major breakthrough was made by Rosen-

feld ([74, 75]). He treated ions as charged spheres and introduced novel ideas for an

approximation of µHS
i (x) based on the geometry of spheres. An outcome of Rosenfeld’s

theory is an explicit approximation of µHS
i (x) depending non-locally on the concentra-

tions {c j}. (See also the recent review article [76] on hard-sphere mixtures and the

references therein.) Accuracy of Rosenfeld’s model and its further refinements has been

demonstrated by a number of applications ([32, 84, 91, 92], etc.); in particular, applica-

tions to ion channel problems have been conducted numerically in [9, 31, 33], etc. and

they have shown a great improvement.

On the other hand, local- or pointwise-dependent models for hard sphere potentials

µHS
i (x) had been proposed and tested for a long time. One of earliest local models for

hard-sphere potentials was proposed by Bikerman ([7]), which contains ion size effect of

mixtures but is not ion specific (i.e., the hard-sphere potential is assumed to be the same
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for different ion species). Local models have evolved through several stages and become

very reliable; for example, the Boublı́k-Mansoori-Carnahan-Starling-Leland local model

is ion specific and has been shown to be accurate ([75, 76], etc.).

To end this section, we review a well-known non-local hard-sphere model used in

[46], and derive a local model based on it which is studied in Chapter 5.

Recall that, for one-dimensional space case, one has ([29, 71, 72, 73, 74, 75]) the

following formula for the hard-sphere (hard-rod) potential

µ
HS
i =

δΩ({c j})
δci

, (2.6)

where

Ω({c j}) =−
∫

n0(x;{c j})ln[1−n1(x;{c j})]dx,

nl(x,{c j}) =
n

∑
j=1

∫
c j(x′)ω

j
l (x− x′)dx′, (l = 0,1),

ω
j

0(x) =
δ (x− r j)+δ (x+ r j)

2
, ω

j
l (x) = Θ(r j−|x|),

(2.7)

where δ is the Dirac function, Θ is the Heaviside function, and r j = d j/2 is the radius of

jth ion species.

The nonlocal hard-sphere model derived from (2.6) and (2.7) in [46] is

µ
HS
i (x) =− kT

2
ln
((

1−∑
j

∫ x−ri+r j

x−ri−r j

c j(x′)dx′
)(

1−∑
j

∫ x+ri+r j

x+ri−r j

c j(x′)dx′
))

+
kT
2

∫ x+ri

x−ri

∑ j(c j(x′− r j)+ c j(x′+ r j))

1−∑ j
∫ x′+r j

x′−r j
c j(x′′)dx′′

dx′. (2.8)

Now we derive the local model

1
kT

µ
LHS
i (x) =− ln

(
1−

n

∑
j=1

d jc j(x)

)
+

di ∑
n
j=1 c j(x)

1−∑
n
j=1 d jc j(x)

, (2.9)
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where d j is the diameter of the jth ion species. This local model is studied in Chapter 5.

For the first term in (2.8),

ln
((

1−∑
j

∫ x−ri+r j

x−ri−r j

c j(x′)dx′
)(

1−∑
j

∫ x+ri+r j

x+ri−r j

c j(x′)dx′
))

,

we expand c j(x′) at x′ = x

c j(x′) = c j(x)+ c′j(x)(x
′− x)+O((x′− x)2).

This gives

∑
j

∫ x−ri+r j

x−ri−r j

c j(x′)dx′ =∑
j

∫ x−ri+r j

x−ri−r j

(
c j(x)+ c′j(x)(x

′− x)+O((x′− x)2)
)

dx′

=∑
j

(
2r jc j(x)−2rir jc′j(x)+O

(
2r jr2

i +
2
3

r3
j

))
=∑

j
2r jc j(x)+O(r2),

where r = min{r1,r2}. Similarly, one has

∑
j

∫ x+ri+r j

x+ri−r j

c j(x′)dx′ =∑
j

2r jc j(x)+O(r2).

Therefore, the first term in µHS
i (x) becomes

− kT
2

ln
((

1−∑
j

∫ x−ri+r j

x−ri−r j

c j(x′)dx′
)(

1−∑
j

∫ x+ri+r j

x+ri−r j

c j(x′)dx′
))

=− kT
2

ln
((

1−∑
j

2r jc j(x)+O(r2)
)(

1−∑
j

2r jc j(x)+O(r2)
))

=− kT ln
(

1−∑
j

2r jc j(x)+O(r2)
)
.

(2.10)
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For the second term in (2.8)

kT
2

∫ x+ri

x−ri

∑ j(c j(x′− r j)+ c j(x′+ r j))

1−∑ j
∫ x′+r j

x′−r j
c j(x′′)dx′′

dx′,

we first expand the numerator of the integrand at x to get

∑
j
(c j(x′− r j)+ c j(x′+ r j)) = 2∑

j
(c j(x)+ c′j(x)(x

′− x)+O((x− x′)2)).

Expanding the summation term in the denominator first at x′ and then at x, we have

∑
j

∫ x′+r j

x′−r j

c j(x′′)dx′′ =∑
j

∫ x′+r j

x′−r j

(
c j(x′)+ c′j(x

′)(x′′− x′)+O((x′′− x′)2)
)

dx′′,

=∑
j

(
2r jc j(x′)+O(r3)

)
=∑

j
2r j
(
c j(x)+ c′j(x)(x

′− x)+O((x′− x)2)+O(r3)
)
.

Hence,

kT
2

∫ x+ri

x−ri

∑ j(c j(x′− r j)+ c j(x′+ r j))

1−∑ j
∫ x′+r j

x′−r j
c j(x′′)dx′′

dx′ = kT
2ri ∑ j c j(x)

1−∑ j 2r jc j(x)
+O(r2). (2.11)

Ignoring the higher order terms, the nonlocal hard sphere model µHS
i (x) in (2.8) with

(2.10) and (2.11) gives the local hard sphere model µLHS
i (x).

2.2 Dynamical system theory of differential equations

In this section, some basic concepts, definitions and terminologies which are closely

related to the work that has been done in this dissertation are listed ( for morel details,

see [70]). Tow main methods, matched asymptotic expansions, a classical method, and
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geometric singular perturbation theory, a modern dynamical theory, used to study the

singularly perturbed boundary value problem (2.3) and (2.4) for my research are briefly

described.

2.2.1 Basic concepts

Consider the following nonlinear autonomous systems of differential equations

ẋ = f (x), (2.12)

where f : E → Rn and E is an open set subset of Rn. Together with an initial condition

x(0) = x0 (2.12) is called an initial value problem (IVP).

The following definitions and theorems used many times in the thesis are all from

[70].

Definition 2.2. For x0 ∈ E, let φ(t,x0) be the solution of the initial valuable problem

(2.12) defined on its maximal interval of existence I(x0). Then for t ∈ I(x0), the set of

mappings φt defined by

φt(x0) = φ(t,x0)

is called the flow of differential equation (2.12); φt is also referred to as the flow of the

vector field f (x).

Definition 2.3. A point x0 ∈ Rn is called an equilibrium point or critical point of (2.12)

if f (x0) = 0. An equilibrium is called a hyperbolic equilibrium point of (2.12) if none of

the eigenvalues of the matrix A = D f (x0) has zero real part. The linear system

ẋ = Ax (2.13)

with the matrix A = D f (x0) is called the linearization of (2.12) at x0.

13



Definition 2.4. A point p ∈ E is an ω−limit point of the trajectory φ(·,x), a map from R

to E of system (2.12) if there is a sequence tn→ ∞ such that

lim
n→∞

φ(tn,x) = p.

Similarly, if there is a sequence tn→−∞ such that

lim
n→∞

φ(tn,x) = q,

and the point q ∈ E, then the point q is an α−limt point of system (2.12). The set of all

ω−limt points of a trajectory Γ (defined through the map φ(·,x)) is called the ω−limit

set of Γ and it is denoted by ω(Γ). The set of all α−limit points of a trajectory Γ is called

the α−limit set of Γ and it is denoted by α(Γ).

2.2.2 Method of matched asymptotic expansions

Matched asymptotic expansion is a classical method to study singularly perturbed prob-

lems. In particular, it is best suited for layer-type problems. To illustrate the idea, for

simplicity, we consider the following singularly perturbed initial value problem

ε ẋ = f (x;ε), t > 0,(ε > 0, but small) (2.14)

with the initial condition

x(0) = x0.

For system (2.14), we assume that there is a layer occurring at the boundary t = 0

where rapid change is expected, in other words, in the limit ε → 0, the layer is expected
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to become discontinuity. For convenience, we formulate the concept of rapid change by

introducing scaled variables ξ = t/ε at t = 0. In this context, we call ξ the inner variable

and t the outer variable. Correspondingly, the system deals with the boundary layers is

called inner system while the one deals with (2.14) for t > 0 is called outer system.

To solve the singularly perturbed problem (2.14) and obtain an approximation solu-

tion, the following three steps are taken.

• Step1: Study the outer systems for each order in ε, that is, we look for outer

expansions of the form

x(t;ε) = x0(t)+ εx1(t)+ ε
2x2(t)+ · · · . (2.15)

Substitute (2.15) into (2.14), and expand f (x,ε) in the form of

f (x;ε) = f0(x)+ ε f1(x)+ ε
2 f2(x)+ · · · ,

we obtain the outer systems for each order, j = 1,2, . . .

0 = f0, ε
jẋ j−1 = f j. (2.16)

• Step2: Consider the inner systems for each order at t = 0. At t = 0, in terms of

the inner variable ξ = t/ε, let X(ξ ;ε) = x(εξ ;ε) and F(ξ ;ε) = f (εξ ;ε), system

(2.14) becomes

dX
dξ

= F(ξ ;ε). (2.17)
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We then look for inner expansions of the form

X(ξ ;ε) = X0(ξ )+ εX1(ξ )+ ε
2X2(ξ )+ · · · . (2.18)

Substitute (2.18) into (2.17) and expand F(ξ ;ε) as

F(ξ ;ε) = F0(ξ )+ εF1(ξ )+ ε
2F2(ξ )+ · · · ,

one has the inner systems for each order, j = 0,1, . . . ,

dX j

dξ
= Fj(ξ ). (2.19)

• Step3: After solving the resulting outer and inner systems for each order obtained

from step 1 and step 2, we do the matching. The piecing of the inner solution

and outer solution is achieved by matching principles. There are two mainstreams

in matching. One is the intermediate matching of Kaplun-Lagerstrom and the

other is the asymptotic matching of Van Dyke (see [17, 18, 53]). We will use the

asymptotic matching principle for our matching purpose. For the above problem,

the k-th order outer and inner expansions are denoted by, respectively,

Ek
x (x(t;ε)) =

k

∑
j=0

ε
jx j(t), Ek

ξ
(X(ξ ;ε)) =

k

∑
j=0

ε
jX j(ξ ).

The kth order matching principle to be applied is Ek
t Ek

ξ
(X) = Ek

ξ
Ek

t (x) in terms of

either the outer variable t or the inner variable ξ .
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2.2.3 Geometric singular perturbation theory

Another basic nonlinear dynamical framework for my research on Poisson-Nernst-Planck

systems is the geometric singular perturbation theory. We give a brief description of the

general procedure.

Consider a singularly perturbed problem

ε ẋ = f (x,y,ε),

ẏ =g(x,y,ε),
(2.20)

where overdot denotes the derivative with respect to the variable t, x ∈ Rn, y ∈ Rl,

the functions f and g are both assumed to be C∞ on a set U × [0,ε0) where U ⊂ RN is

open, with N = n+ l, and ε is a real parameter. System (2.20) is called slow system.

For ε > 0, the rescaling t = εξ of the independent variable t gives rise an equivalent

system, the fast system

x′ = f (x,y,ε),

y′ =εg(x,y,ε),
(2.21)

where prime denotes the derivative with respect to the variable ξ .

For ε > 0, system (2.20) and (2.21) have exactly the same phase portrait. But their

limits at ε = 0 are different and, very often, the two limiting systems provide comple-

mentary information on state variables. Therefore, the main task of singularly perturbed

problems is to patch the limiting information together to form an solution for the entire

ε > 0 system.

To solve the singularly perturbed problem, we take the following key steps
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• Step1: Study the limiting fast system (the limit of system (2.21) at ε = 0), that is,

x′ = f (x,y;0),

y′ =0
(2.22)

which allows us to completely understand boundary or internal layers and charac-

terize landing points of boundary layers on the so-called slow manifold Z0 which

is obtained by setting ε = 0 in (2.20);

• Step 2: Construct a solution of the limiting slow system (the limit of system (2.20)

at ε = 0), that is,

0 = f (x,y;0),

ẏ = g(x,y;0)
(2.23)

on the slow manifold which connects the landing points obtained from step 1;

• Step 3: Based on the study in step 1 and step 2, one can construct a singular orbit

which is a union of the solutions of limiting fast and slow systems. Then, one

can apply the geometric singular perturbation theory, such as Exchange Lemma,

to show that, for ε > 0 small, there is a unique solution that is close to the singular

orbit.

To end this section, we review two theorems that are crucial for our research.

Suppose y = H(x) solves f (x,y;0) = 0, in other words,

Z0 = {(x,y) : y = H(x),x ∈ R}.
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Observe that Z0 is a set of equilibria of (2.22). The linearization of (2.22) at points in

Z0 is  Dx f (x,y;0)m×m Dy f (x,y;0)m×n

0n×m 0n×n

 .

Definition 2.5. Z0 is normally hyperbolic if no eigenvalues of Dx f (x,y;0) has zero real

part for all (x,y) ∈Z0.

For convenience, we assume that For Dx f (x,y;0), there are k eigenvalues β j with

positive real parts, and l eigenvalues α j with negative real parts, where k+ l = m.

The first theorem is (see [27, 35])

Theorem 2.6. Suppose Z0 is normally hyperbolic, then for ε > 0 small

• There is an invariant manifold Zε , which is C1 o(ε)−close to Z0; that is, there

exists a function y = H(x;ε) with H(x;ε) C1 o(ε)−close to y = H(x) such that

Zε = {(x,y) : y = H(x;ε)}.

• There are stable and unstable manifolds W s
ε (Zε) and W u

ε (Zε) of Zε such that

– W s,u
ε (Zε) = ∪zε∈Zε

W s,u
ε (zε), and W s,u

ε (zε) is C1 o(ε)−close to W s,u
ε=0(zε=0).

– ∀zε , φ t
ε(W

s
ε (zε)) =W s

ε (φ
t
ε(zε)), φ t

ε(W
u
ε (zε)) =W u

ε (φ
t
ε(zε)).

– ∀z1,z2 ∈W s
ε (zε),

|φ t
ε(z2)−φ

t
ε(z1)| ≤ Ke−αt |z2− z1|,
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where α > 0 is determined by α > min j |ℜα j| for t > 0.

Similarly, ∀z1,z2 ∈W u
ε (zε),

|φ t
ε(z2)−φ

t
ε(z1)| ≤ Keβ t |z2− z1|,

where β > 0 is determined by β < min j |ℜβ j| for t < 0.

Let Mε be a (k+σ)−dimensional invariant manifold with 1 ≤ σ ≤ m. Let B be a

neighborhood of Z0 with boundary ∂B. We assume that

(A1) M0 intersect W s(Z0) transversally.

(A2) The ω limit set ω(N0)⊂Z0 is of dimension σ −1, where N0 is the intersection of

M0 and W s(Z0).

(A3) On Z0, the reduced vector field is not tangent to ω(N0).

With the above assumption, let us state the so-called Exchange Lemma (see [47, 59]).

Theorem 2.7. For any τ0 > 0 and 0 < ρ < τ0, for ε > 0 small, a portion of Mε ∩B

is C1 o(ε)−close to W u(ω(N0) · (τ0 − ρ,τ0 + ρ)) ∩B. That is, for each point p ∈

W u(ω(N0) · (τ0−ρ,τ0+ρ))∩B, a portion of Mε is close to p, and the tangent space of

Mε is close to that of W u(ω(N0) · (τ0−ρ,τ0 +ρ)).

2.3 Boundary value problem solvers

We use “bvp4c” in Matlab ([52]) as the solver for our boundary value problem (BVP)

(2.3) and (2.4). It solves first order systems of ordinary differential equations with two-
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point boundary conditions of this form:

 y′ = f (x,y), a < x < b,

g(y(a),y(b)) = 0.
(2.24)

Given a mesh partition a = x0 < x1 < · · · < xN = b, the numerical solution of (2.24) is

approximated by a piecewise cubic polynomial function S(x). The approximated solution

S(x) satisfies the boundary conditions and it is a cubic Hermite interpolation polynomial

for each subinterval [xi,xi+1].

For i = 0,1,2, · · · ,N− 1, let yi = S(xi) and let hi = xi+1− xi. The yi’s are evaluated

by solving the algebraic equations

Φ(X ,Y ) = (φ0(X ,Y ),φ1(X ,Y ), · · · ,φN(X ,Y )) = 0, (2.25)

where

X = [x0,x1, · · · ,xN ]
T ,

Y = [y0,y1, · · · ,yN ]
T ,

φ0(X ,Y ) = g(y0,yN),

φi(X ,Y ) = yi− yi−1− 1
6hi−1( fi−1 +4 f ∗i + fi), i = 1,2, · · · ,N,

and
fi = f (xi,yi),

f ∗i = f
(1

2(xi−1 + xi),
1
2(yi−1 + yi)− 1

8hi−1( fi− fi−1)
)
.

The algebraic system (2.25) is solved by simplified Newton’s method with a weak line

search. The global Jacobian ∂Φ

∂Y (using finite difference approximation by default) is re-

quired and the structure of the Jacobian is important for the linear solver in each Newton’s

iteration. The residual of S(x) is calculated by r(x) = S(x)− f (x,S(x)) and the residual
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in the boundary conditions is g(S(a),S(b)). The adaptive mesh strategy has been used to

control the residual in “bvp4c”, for details, see [52].

2.4 Problem setups

To end this section, we set up our problems with the following assumptions:

(A1). We consider two ion species (n = 2) with z1 > 0 and z2 < 0.

(A2). For the electrochemical potential µi, in addition to the ideal component µ id
i , we

also include the hard-sphere potential µHS
i , where it is either local or non-local .

(A3). The relative dielectric coefficient and the diffusion coefficient are constants, that

is, εr(x) = εr and Di(x) = Di.

Under the assumptions (A1)–(A3), the steady-state system of (2.3) is

1
h(x)

d
dx

(
εrε0h(x)

dΦ

dx

)
=−e(z1c1 + z2c2 +Q(x)) ,

dJi

dx
= 0, −Ji =

1
kT

Dih(x)ci
dµi

dx
, i = 1,2.

(2.26)

We now make the dimensionless re-scaling in (2.26),

φ =
e

kT
Φ, V̄ =

e
kT

V, ε
2 =

εrε0kT
e2 , Ji =

Ji

Di
.

Using the expression (2.5) for the ideal component µ id
i (x), we have, for i = 1,2,

−Ji =−
Ji

Di
=

1
kT

h(x)ci
dµ id

i
dx

+
1

kT
h(x)ci

dµHS
i

dx

=
e

kT
zih(x)ci

dΦ

dx
+h(x)

dci

dx
+

h(x)ci

kT
dµHS

i
dx

=zih(x)ci
dφ

dx
+h(x)

dci

dx
+

h(x)ci

kT
dµHS

i
dx

.
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Note also that,

εrε0
dΦ

dx
= ε

2 e2

kT
dΦ

dx
= ε

2 e2

kT
kT
e

dφ

dx
= ε

2e
dφ

dx
.

Therefore, the boundary value problem (2.26) and (2.4) becomes

ε2

h(x)
d
dx

(
h(x)

d
dx

φ

)
=−z1c1− z2c2−Q(x),

dJ1

dx
=

dJ2

dx
= 0,

h(x)
dc1

dx
+h(x)z1c1

dφ

dx
+

h(x)c1

kT
d
dx

µ
HS
1 (x) =−J1,

h(x)
dc2

dx
+h(x)z2c2

dφ

dx
+

h(x)c2

kT
d
dx

µ
HS
2 (x) =−J2,

(2.27)

with the boundary conditions, for i = 1,2,

φ(0) = V̄ , ci(0) = Li > 0; φ(1) = 0, ci(1) = Ri > 0. (2.28)

For ion channels, an important characteristic is the so-called I-V relation. For a solu-

tion of the steady-state boundary value problem of (2.27) and (2.28), the rate of flow of

charge through a cross-section or current I is

I = z1J1 + z2J2. (2.29)

For fixed boundary concentrations Li’s and Ri’s, J j’s depend on V only and formula

(2.29) provides a relation of the current I on the voltage V . This relation is the I-V

relation. We will also examine ion size effects on the flow rate of matter through a

cross-section, T , given by

T = J1 +J2. (2.30)
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Chapter 3

Asymptotic expansions and numerical simulations on I-V

relations via a steady-state Poisson-Nernst-Planck system

In this chapter, system (2.27) with the boundary condition (2.28) is studied both analyti-

cally and numerically with particular attention on I-V relations of ion channels including

only the ideal component of the electrochemical potential. Assuming ε is small, the PNP

system can be viewed as a singularly perturbed system. Due to the special structures

of the zeroth order inner and outer systems, one is able to derive more explicit expres-

sions of higher order terms in asymptotic expansions. For the case of zero permanent

charge, under the assumption of electro-neutrality at both ends of the channel, our re-

sult concerning the I-V relation for two oppositely charged ion species is that the third

order correction is cubic in V , and furthermore (Theorem 4.1), up to the third order,

the cubic I-V relation has three distinct real roots (except for a very degenerate case)

which corresponds to the bi-stable structure in the FitzHugh-Nagumo simplification of

the Hodgkin-Huxley model. Three numerical experiments are conducted to check the

cubic-like feature of the I-V curve, study the boundary value effect on the I-V relation,

and investigate the permanent charge effect on the I-V curve respectively.
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3.1 Introduction

Ion channels are cylindrical, hollow proteins that regulate the movement of ions across

almost all biological membranes (see [30]). The most relevant properties of a channel

are the permeation and selectivity, and an important characterization is the I-V rela-

tion. The I-V relation adopted in the FitzHugh-Nagumo simplification of the famous

Hodgkin-Huxley systems which describe the propagation of action potential of an en-

semble of channels in a biological membrane is cubic-like. A natural question arising

here is whether this cubic-like feature can be obtained from a single channel ?

With the assumption that the channel is narrow, it can be effectively viewed as a one-

dimensional channel and normalized as the interval [0,1]. The natural one-dimensional

steady-state PNP type model (2.27) for ion flows of 2 ion species with the boundary

condition (2.28) is studied. Note that, in this chapter, we study the classical PNP system,

therefore, in system (2.27), d
dx µHS

i = 0 for i = 1,2.

In this work, we mainly focus on the I-V relation (2.29), more precisely, our main

interest in the I-V relation is to derive the asymptotic expansion

I = I0 + εI1 + ε
2I2 + ε

3I3 + · · · . (3.1)

For consistence, we also write

T = T0 + εT1 + ε
2T2 + ε

3T3 + · · · . (3.2)

It is known that, in general, the I-V relation is not unique (see [24, 63, 80, 81, 88,

89] for Q 6= 0 and see [58] even for Q = 0 when more ion species are involved). In

Section 3.3, we will consider a special case where the I-V relation is indeed unique. For

simplicity, in this work, we assume that Q(x) = 0 over the whole interval [0,1].
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With the assumption that ε is small, viewing it as the singular parameter, system

(2.27) together with the boundary condition (2.28) will be treated as a singular bound-

ary value problem. The general framework of the classical singular perturbation theory

and the newly developed geometrical singular perturbation theory suggest one to study

asymptotic expansion of the I-V relation.

In [1], a one-dimensional steady-state PNP system has been studied using asymptotic

expansion approach with particular attention to the I-V relations. The result shows that

• The first order correction to the zeroth order linear I-V relation is generally quadratic

in V ;

• When the electro-neutrality condition is enforced at both ends of the channel, there

is NO first order correction;

• The second order correction is cubic in V. Moreover, under electro-neutrality con-

dition, up to the second order (in ε), the I-V relation is a cubic function with three

distinct real roots.

A natural question arising here is whether the higher order corrections follow this pat-

tern? More precisely, is the third order correction quartic in V ? What about the fourth

order correction?

Our goal in this chapter is to further examine higher order asymptotic expansions

of the I-V relation following the idea in [1] and to provide answers to these interesting

questions. For the special case mentioned above, the third order correction turns out to

be cubic with the electro-neutrality condition (see formula (3.18)) even though a quartic

function is expected, which gives us the first surprise. Immediately, we get another

interesting question: are the other higher order corrections also keeping this feature?

This leads to the study of the fourth order correction. However, to our surprise, the fourth

order correction is quintic (see formula (3.30)) instead of being cubic. Furthermore, for
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the third order correction, the coefficient of the cubic term is always negative except for a

highly degenerate case (see Theorem 3.7, Lemma 3.9 and Lemma 3.10). An importance

of this negative sign is that, up to the third order, the cubic I-V function has three distinct

real roots – this agrees qualitatively with I-V relation adopted in the FitzHugh-Nagumo

simplification of the Hodgkin-Huxley systems. The existence of three distinct real roots

of the I-V relation is responsible for the bi-stable structure in the FitzHugh-Nagumo

system.

Numerical simulations are performed for both the cases with zero permanent charge

and nonzero one respectively. For the case with zero permanent charge, it allows us

to make a comparison between the analytical results and our numerical results. And

meanwhile, one can investigate the effect of the boundary conditions on the I-V relations.

For the one with nonzero permanent charge defined by

Q(x) =


0, for 0 < x≤ a,

Q, for a < x < b,

0, for b≤ x≤ 1,

where Q is a nonzero constant, we mainly focus on the cubic-like feature of the I-V

relation and the effect of the permanent charge.

A thorough study of higher order asymptotic expansion of φ and ci’s is necessary

to obtain higher order asymptotic expansions of the I-V relation. Both the geometric

singular perturbation method and the classical matched asymptotic expansion method

work well for the zeroth order term (see [1, 6, 30, 46, 54, 61]) at least for the special case

mentioned above (see [24, 58] for a treatment of general situations). For higher order

terms, the classical matched asymptotic expansion approach are applied since it seems

that a direct application of the geometric singular perturbation theory does not work – a

research direction worthwhile to explore. It’s well-known that higher order terms satisfy
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linear but non-autonomous and non-homogeneous systems. The homogeneous parts of

the linear systems are the same and are nothing but the linearizations of the zeroth order

nonlinear system along the zeroth order (inner and outer) solutions. While in general, it is

impossible to get explicit solutions of a linear non-autonomous system, a special feature

of the problem at hand that the zeroth order nonlinear system possesses a complete set

of integrals and each integral provides an integral for the linearization (see Propositions

3.2 and 3.3) allows us to carry out a detailed asymptotic analysis.

This chapter is organized as follows. In Section 3.2, we briefly restate the outer and

inner systems for each order in the asymptotic expansions from [1], and the matching

principle. Starting in Section 3.3, we restrict ourselves to the special case and examine

the outer, inner expansions and matching. Previous results for lower order systems from

[1] are briefly restated for completeness, and the third order expansions and matching

are detailed under the electro-neutrality condition. In section 3.4, under the electro-

neutrality condition, we focus on the I-V relation up to the third order in ε, and obtain

our main result. In section 3.5, numerical simulations are performed to system (2.27)

with boundary condition (2.28) for both Q(x) = 0 and Q(x) 6= 0, and corresponding I-V

relation curves are obtained. Interesting phenomena are investigated.

3.2 Systems for asymptotic expansions

In this section, we apply the method of asymptotic expansions for both outer and inner

systems to study the I-V relations of the PNP model discussed above. In current con-

text, the outer systems “determine” the dynamics of ion flows within the channel, and

the inner systems “govern” the potential boundary layers that represents the effects of

boundary conditions from the bath conditions. The matching principle then provides the

intersection between the internal dynamics and the boundary conditions.
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3.2.1 Outer systems for each order

We assume Q is constant and look for outer expansion of the form, for i = 1,2,

φ(x;ε) =φ0(x)+ εφ1(x)+ ε
2
φ2(x)+ · · · ,

ci(x;ε) =ci0(x)+ εci1(x)+ ε
2ci2(x)+ · · · ,

Ji =Ji0 + εJi1 + ε
2Ji2 + · · · .

(3.3)

Substituting (3.3) into (2.27) and denoting the derivatives with respect to x by overdots,

with the convention that φ−1 = φ−2 = 0,δ0 = 1,and δ j = 0 for j 6= 0, upon introducing

u j = φ̇ j, the j−th order system in ε is, for i = 1,2,

φ̇ j−2 =u j−2, u̇ j−2 =−(αc1 j−βc2 j +δ jQ),

ċi j =− ∑
p+q= j

(αc1p−βc2p)uq− Ji j.
(3.4)

Remark 3.1. An observation is that the homogeneous part for ci j’s is

 c′1 j

c′2 j

=−u0(x)

 α 0

0 −β


 c1 j

c2 j

 .

Once u0(x) is found, this system can be simply integrated. And hence, system (3.4) can

be solved.
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3.2.2 Inner systems for each order

Inner systems at the left boundary x = 0

At the boundary x = 0, in terms of the inner variable ξ = x/ε , let Φ(ξ ;ε) = φ(εξ ;ε),

Ci(ξ ;ε) = ci(εξ ;ε). System (2.27) becomes, for i = 1,2,

d2

dξ 2 Φ =−(αC1−βC2 +Q),
dJ1

dx
=

dJ2

dx
= 0,

dC1

dξ
+αC1

dΦ

dξ
=−εJ1,

dC2

dξ
−βC2

dΦ

dξ
=−εJ2.

(3.5)

We look for the inner expansion of the form:

Φ(ξ ;ε) =Φ0(ξ )+ εΦ1(ξ )+ ε
2
Φ2(ξ )+ · · · ,

Ci(ξ ;ε) =Ci0(ξ )+ εCi1(ξ )+ ε
2Ci2(ξ )+ · · · ,

Ji =Ji0 + εJi1 + ε
2Ji2 + · · · .

(3.6)

We have, by introducing U j = Φ′j,

Φ
′
j =U j, U ′j =−(αC1 j−βC2 j)−δ jQ,

C′1 j =− ∑
p+q= j

αC1pUq− J1( j−1),

C′2 j = ∑
p+q= j

βC2pUq− J2( j−1).

(3.7)

For j = 0, the system is

Φ
′
0 =U0, U ′0 =−(αC10−βC20)−Q,

C′10 =−αC10U0, C′20 = βC20U0.

(3.8)
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and, for all j ≥ 1, the homogeneous part of (3.7) is the same and it is the linearization of

the zeroth order system (3.8).

There is a specific structure of system (3.8) that together with an abstract result allows

one to get a closed form for solutions of (3.7). The specific structure is

Proposition 3.2. The zeroth order inner system (3.8) has a complete set of (3) first inte-

grals given by,

H1 =C10eαΦ0, H2 =C20e−βΦ0, H3 =
1
2

U2
0 −C10−C20 +QΦ0.

Proof. This can be verified directly (see also [58]).

A crucial result whose proof is provided in [1] is given below.

Proposition 3.3. Consider an autonomous system

z′ = f (z), z ∈ Rm. (3.9)

For a solution z0(t) of (3.9), consider the linearzation along z0(t):

Z′ = D f (z0(t))Z, Z ∈ Rm. (3.10)

If a C2 function H : Rm→R is an integral of system (3.9) (that is, H(z(t)) is independent

of t for any solution z(t) of (3.9)), then G(Z, t) = 〈∇H(z0(t)),Z〉 is an integral of the

linear system (3.10) (that is, G(Z(t), t) is independent of t for any solution Z(t) of (3.10)).

Noticing that the homogeneous part of (3.7) for j≥ 1 is the linearization of the zeroth

order system (3.8), a complete set of integrals for the homogeneous part of (3.7) can be

derived from Propositions 3.2 and 3.3. An application of variation of parameters allows

one to get a closed form for the solutions of (3.7).
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Inner systems at the right boundary x = 1

In the similar way, at the right boundary x = 1 in terms of the inner variable ξ = (−1+

x)/ε and let Ψ(ξ ;ε) = φ(1+ εξ ;ε), Dk(ξ ;ε) = ck(1+ εξ ;ε), by introducing Vj = Ψ′j,

we get

Ψ
′
j =Vj, V ′j =−(αD1 j−βD2 j)−δ jQ,

D′1 j =− ∑
p+q= j

αD1pVq− J1( j−1),

D′2 j =− ∑
p+q= j

βD2pVq− J2( j−1).

(3.11)

Same observation for inner systems at x = 0 applies here.

Remark 3.4. For a more general derivation of the outer and inner systems, one can read

[1].

Then, following the third step in section 2.2.2, one can apply the matching principle

to (φ(x;ε),ck(x;ε)) and (Φ(ξ ;ε),Ck(ξ ;ε)) at the left boundary x = 0 and, at the right

boundary x = 1, to (φ(x;ε),ck(x;ε)) and (Ψ(ξ ;ε),Dk(ξ ;ε)).

3.3 Third order matching under electroneutrality condi-

tions

With α = β = 1, under the electroneutrality assumption L1 = L2 = L and R1 = R2 = R,

we will derive the matched asymptotic expansions for the third order over the interval

[0,1], and through matching, we establish the third order correction.

For completeness, we summarize the results for lower order asymptotic expansions

from [1] as follows:
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Theorem 3.5. If L 6= R, under the electroneutrality condition, with Ik = J1k− J2k and

Tk = J1k + J2k, k = 0,1,2, for the outer system, we have,

• For the zeroth order outer system, one has

φ0(x) = b0 +
I0

T0
ln |a0−T0x|, c10(x) = c20(x) =

a0−T0x
2

.

• For the first order outer system, one has

φ1(x) = c11(x) = c21(x) = 0.

• For the second order outer system, one has

c12(x) =
a2−T2x

2
+

I2
0 +2I0T0

4(a0−T0x)2 , c22(x) =
a2−T2x

2
+

I2
0 −2I0T0

4(a0−T0x)2 ,

φ2(x) =b2 +
I2T0− I0T2

T 2
0

ln |a0−T0x|+ I0(a2T0−a0T2)

T 2
0 (a0−T0x)

+
I0(I2

0 −4T 2
0 )

6T0(a0−T0x)3 .

For the inner system, we have,

• At the boundary x = 0 with x = εξ ,

– For the zeroth order inner system, we have

Φ0(ξ ) = V̄ U0(ξ ) = 0, C10(ξ ) =C20(ξ ) = L.

– For the first order inner system, we have:

Φ1(ξ ) =−
I0

2L
ξ , C11(ξ ) =C21(ξ ) =−

T0

2
ξ .
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– For the second order inner system, we have

C12(ξ ) =
I0T0

8L2

(
1− e−

√
2Lξ

)
, C22(ξ ) =

I0T0

8L2

(
e−
√

2Lξ −1
)
,

Φ2(ξ ) =
I0T0

8L3

(
e−
√

2Lξ −1
)
− I0T0

8L2 ξ
2.

• At the boundary x = 1 with x−1 = εξ ,

– For the zeroth order inner system, one has

Ψ0(ξ ) = 0 V0(ξ ) = 0 D10(ξ ) = D20(ξ ) = R.

– For the first order inner system, one has

Ψ1(ξ ) =−
I0

2R
ξ , D11(ξ ) = D21(ξ ) =−

T0

2
ξ .

– For the second order inner system, one has

D12(ξ ) =−
I0T0

8R2

(
e
√

2Rξ −1
)
, D22(ξ ) =

I0T0

8R2

(
e
√

2Rξ −1
)
,

Ψ2(ξ ) =
I0T0

8R3

(
e
√

2Rξ −1
)
− I0T0

8R2 ξ
2.

Here,

a0 =2L, T0 = 2(L−R), I0 =
2(L−R)

lnL− lnR
V̄ , b0 = V̄ − I0

T0
ln2L;

a1 =I1 = T1 = b1 = 0; a2 =−
I2
0

8L2 , T2 =
(L−R)3(L+R)

2L2R2(lnL− lnR)2 V̄ 2,

I2 =
(L−R)3(L3−R3)V̄
3L3R3(lnL− lnR)2 +

(L−R)3

L2R2(lnL− lnR)3

(
L+R

2
− L3−R3

3LR(lnL− lnR)

)
V̄ 3,

b2 =
I0(4T 2

0 − I2
0 )

6a3
0T0

− I0(a2T0−a0T2)

a0T 2
0

− I2T0− I0T2

T 2
0

ln |a0|−
I0T0

8L3 .
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Now we carry out the analysis for the third order asymptotic expansions and match-

ings in detail.

3.3.1 Third order outer expansion

The third order outer system, from (3.4), is

φ̈1 =− c13 + c23,

ċ13 =− (c13φ̇0 + c12φ̇1 + c11φ̇2 + c10φ̇3)− J13,

ċ23 =(c23φ̇0 + c22φ̇1 + c21φ̇2 + c20φ̇3)− J23.

(3.12)

Solving (3.12), together with Theorem 3.5, we have

c13(x) =c23(x) =
a3−T3x

2
,

φ3(x) =b3 +

(
a3I0

T0
− a0I0T3

T 2
0

)
1

a0−T0x
+

(
I3

T0
− I0T3

T 2
0

)
ln |a0−T0x| ,

(3.13)

for some constants a3 and b3 to be determined through matching. Here I3 = J13−J23 and

T3 = J13 + J23.

3.3.2 Third order inner expansion

At the boundary x = 0, from (3.7), the third order inner system is

Φ
′
3 =U3, U ′3 =−(C13−C23),

C′13 =− (C10U3 +C11U2 +C12U1 +C13U0)− J12,

C′23 =(C20U3 +C21U2 +C22U1 +C23U0)− J22.

(3.14)

As an application of Proposition 2.1 for zeroth, first and second order cases (see Propo-

sition 3.1, 3.2 and 3.3 in [1]) and Proposition 2.2, we have the next result.

35



Proposition 3.6. System (3.14) has the following integrals:

G1 =C13eΦ0 +C10eΦ0Φ3 + J12F1 +F131 +F132,

G2 =C23e−Φ0−C20e−Φ0Φ3 + J22F2−F231−F232,

G3 =U0U3 +U1U2−C13−C23−T2ξ ,

where

F1(ξ ) =
∫

ξ

0
eΦ0(s)ds, F2(ξ ) =

∫
ξ

0
e−Φ0(s)ds,

F131(ξ ) =
∫

ξ

0
C11(s)U2(s)eΦ0(s)ds, F132(ξ ) =

∫
ξ

0
C12(s)U1(s)eΦ0(s)ds,

F231(ξ ) =
∫

ξ

0
C21(s)U2(s)e−Φ0(s)ds, F232(ξ ) =

∫
ξ

0
C22(s)U1(s)e−Φ0(s)ds.

Proof. This can be verified directly.

Applying the integrals in Proposition 3.6, we can solve (3.14) with Φ3(0) =C13(0) =

C23(0) = 0 to get

Φ3(ξ ) =

[
I0T 2

0

2(2L)
7
2

(
1
2

ξ
2 +

3
2
√

2L
ξ +

1
L

)
− γ1

]
e−
√

2Lξ + γ1e
√

2Lξ −
I0T 2

0

(2L)
9
2

−
(

I2

2L
+

2I0T 2
0

(2L)4

)
ξ −

I0T 2
0

3(2L)3 ξ
3.

The matching will force γ1 = 0. For convenience, we define the following functions.

k1(x) =
I0T 2

0

2(2x)
7
2

(
1
2

ξ
2 +

3
2
√

2x
ξ +

1
x

)
,

k2(x) =
I0T0

4(2x)
5
2

(
I0

x
− T0

2
√

2x
ξ − T0

2
ξ

2
)
,

k3(x) =
I0T0

4(2x)
5
2

(
I0

x
+

T0

2
√

2x
ξ +

T0

2
ξ

2
)
.
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Then, for ξ ≥ 0,

Φ3(ξ ) =k1(L)e−
√

2Lξ −
I0T 2

0

(2L)
9
2
−
(

I2

2L
+

2I0T 2
0

(2L)4

)
ξ −

I0T 2
0

3(2L)3 ξ
3,

C13(ξ ) =k2(L)e−
√

2Lξ +

(
I0T0(I0 +2T0)

16L3 − T2

2

)
ξ −

I2
0 T0

2(2L)
7
2
,

C23(ξ ) =k3(L)e−
√

2Lξ +

(
I0T0(I0−2T0)

16L3 − T2

2

)
ξ −

I2
0 T0

2(2L)
7
2
.

(3.15)

Similarly, at x = 1, the third order inner solution is, for ξ ≤ 0,

Ψ3(ξ ) =− k1(R)e
√

2Rξ +
I0T 2

0

(2R)
9
2
−
(

I2

2R
+

2I0T 2
0

(2R)4

)
ξ −

I0T 2
0

3(2R)3 ξ
3,

D13(ξ ) =− k2(R)e
√

2Rξ +

(
I0T0(I0 +2T0)

16R3 − T2

2

)
ξ +

I2
0 T0

2(2R)
7
2
,

D23(ξ ) =− k3(R)e
√

2Rξ +

(
I0T0(I0−2T0)

16R3 − T2

2

)
ξ +

I2
0 T0

2(2R)
7
2
.

(3.16)

3.3.3 Third order matching

For convenience, we define

ρ1(x) =b2−
I0T0

2(a0− x)2 ξ
2 +

I2T0− I0T2

T 2
0

ln |a0− x|+ I0(a2T0−a0T2)

T 2
0 (a0− x)

−
I0(4T 2

0 − I2
0 )

6T0(a0− x)3 ,

ρ2(x) =b3 +

(
I0(I2

0 −4T 2
0 )

2(a0− x)4 +
(a2−T2)I0

(a0− x)2 −
I2

a0− x

)
ξ −

I0T 2
0

3(a0− x)3 ξ
3

+
a3I0T0−a0I0T3

T 2
0 (a0− x)

+
I3T0− I0T3

T 2
0

ln |a0− x|,

ρ3(x,y) =
a3− y

2
+

(
I2
0 T0

2(a0− x)3 +
I0T 2

0
(a0− x)3 −

T2

2

)
ξ ,

ρ4(x,y) =
a3− y

2
+

(
I2
0 T0

2(a0− x)3 −
I0T 2

0
(a0− x)3 −

T2

2

)
ξ .

(3.17)
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From (3.13) and (3.17), in terms of ξ = x/ε, the outer expansion at x = 0 is

E3
ξ

E3
x (φ) =b0 +

I0

T0
lna0− ε

I0

a0
ξ + ε

2
ρ1(0)+ ε

3
ρ2(0),

E3
ξ

E3
x (c1) =

a0

2
− ε

T0

2
ξ + ε

2
(

a2

2
+

I2
0 +2I0T0

4a0

)
+ ε

3
ρ3(0,0),

E3
ξ

E3
x (c2) =

a0

2
− ε

T0

2
ξ + ε

2
(

a2

2
+

I2
0 −2I0T0

4a0

)
+ ε

3
ρ4(0,0),

and in terms of ξ = (x−1)/ε, the outer expansion at x = 1 is

E3
ξ

E3
x (φ) =b0 +

I0

T0
ln |a0−T0|− ε

I0

a0−T0
ξ + ε

2
ρ1(T0)+ ε

3
ρ2(T0),

E3
ξ

E3
x (c1) =

a0−T0

2
− ε

T0

2
ξ + ε

2
(

a2−T2

2
+

I2
0 +2I0T0

4(a0−T0)2

)
+ ε

3
ρ3(T0,T3),

E3
ξ

E3
x (c2) =

a0−T0

2
− ε

T0

2
ξ + ε

2
(

a2−T2

2
+

I2
0 −2I0T0

4(a0−T0)2

)
+ ε

3
ρ4(T0,T3).

From (3.15) and (3.16), the inner expansion at x = 0 is

E3
x E3

ξ
(Φ) =V̄ − ε

I0

2L
ξ − ε

2
(

I0T0

8L3 +
I0T0

8L2 ξ
2
)
− ε

3

(
I0T 2

0

(2L)
9
2
+

(
I2

2L
+

2I0T 2
0

(2L)4

)
ξ

+
I0T 2

0
3(2L)3 ξ

3
)
,

E3
x E3

ξ
(C1) =L− ε

T0

2
ξ + ε

2 I0T0

8L2 − ε
3

(
I2
0 T0

2(2L)
7
2
−
(

I0T 2
0

8L3 +
I2
0 T0

16L3 −
T2

2

)
ξ

)
,

E3
x E3

ξ
(C2) =L− ε

T0

2
ξ − ε

2 I0T0

8L2 − ε
3

(
I2
0 T0

2(2L)
7
2
−
(

I2
0 T0

16L3 −
I0T 2

0
8L3 −

T2

2

)
ξ

)
,

and the inner expansion at x = 1 is

E3
x E3

ξ
(Ψ) =V̄ − ε

I0

2R
ξ − ε

2
(

I0T0

8R3 +
I0T0

8R2 ξ
2
)
− ε

3

(
−

I0T 2
0

(2R)
9
2
+

(
I2

2R
+

2I0T 2
0

(2R)4

)
ξ

+
I0T 2

0
3(2R)3 ξ

3
)
,
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E3
x E3

ξ
(D1) =R− ε

T0

2
ξ + ε

2 I0T0

8R2 + ε
3

(
I2
0 T0

2(2R)
7
2
+

(
I2
0 T0

16R3 +
I0T 2

0
8R3 −

T2

2

)
ξ

)
,

E3
x E3

ξ
(D2) =R− ε

T0

2
ξ − ε

2 I0T0

8R2 + ε
3

(
I2
0 T0

2(2R)
7
2
+

(
I2
0 T0

16R3 −
I0T 2

0
8R3 −

T2

2

)
ξ

)
.

Together with Theorem 3.5, the matchings E3
ξ

E3
x (φ)=E3

x E3
ξ
(Φ),E3

ξ
E3

x (ci)=E3
x E3

ξ
(Ci),

at x = 0 and E3
ξ

E3
x (φ) = E3

x E3
ξ
(Ψ),E3

ξ
E3

x (ci) = E3
x E3

ξ
(Di) at x = 1 for i = 1,2, then give

a3 =−
I2
0 T0

(2L)
7
2
, T3 =−

(L−R)3
√

2(lnL− lnR)2

(
1

R
7
2
+

1

L
7
2

)
V̄ 2,

I3 =−
(L−R)4

√
2(lnL− lnR)2

(
1

R
9
2
+

1

L
9
2

)
V̄

− (L−R)3
√

2(lnL− lnR)3

[
1

R
7
2
+

1

L
7
2
− L−R

RL(lnL− lnR)

(
L

R
7
2
+

R

L
7
2

)]
V̄ 3,

b3 =
I0T3− I3T0

T 2
0

ln |a0|−
I0(a3T0−a0T3)

a0T 2
0

−
I0T 2

0

(2L)
9
2
.

(3.18)

3.4 I-V relations under electroneutrality conditions

Recall from (3.1) that, our main interest is to derive the asymptotic expansion of the I-V

relation in the following form

I = I0 + εI1 + ε
2I2 + ε

3I3 + · · · .

3.4.1 Main results

In this section, we will study the I-V relation under the electroneutrality condition up to

third order in ε in detail, and state our main result.
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From Theorem 3.5, and (3.18), under the assumption of electro-neutrality, up to the

third order in ε, we have

I =I0 + εI1 + ε
2I2 + ε

3I3

= f (L,R,ε)V̄ − ε
2g(L,R,ε)V̄ 3

=
e

kT

(
f (L,R,ε)V − ε

2
( e

kT

)2
g(L,R,ε)V 3

)
,

(3.19)

where

f (L,R,ε) =
2(L−R)

lnL− lnR
+ ε

2 (L−R)4

3(lnL− lnR)2

(
L2 +R2 +LR

L3R3 − 3ε√
2

(
1

L
9
2
+

1

R
9
2

))
,

g(L,R,ε) =
(L−R)3(L3−R3)

3L3R3(lnL− lnR)4 −
(L−R)2(L2−R2)

2L2R2(lnL− lnR)3

+ ε
(L−R)3

√
2(lnL− lnR)3

[
1

R
7
2
+

1

L
7
2
− L−R

RL(lnL− lnR)

(
L

R
7
2
+

R

L
7
2

)]
.

Theorem 3.7. If L 6= R, for ε > 0 small, then, up to the order of ε3, the I-V relation

I = I (V ) is a cubic function with three distinct real roots.

Proof. From (3.19), it suffices to show that both f (L,R,ε) and g(L,R,ε) are positive.

Note that (L−R)/(lnL− lnR) > 0, for L 6= R, our proof follows directly from the next

three lemmas.

Lemma 3.8. For L 6= R, and ε > 0 small,

h1(L,R,ε) =
L2 +R2 +LR

L3R3 − 3ε√
2

(
1

L
9
2
+

1

R
9
2

)
> 0.

Proof. Treat h1(ε) = h1(L,R,ε), for fixed L 6= R, one has

h1(ε
∗) = 0, and h′1(ε) =−

3√
2

(
1

R
9
2
+

1

L
9
2

)
< 0, for all ε > 0,
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where

ε
∗ =

√
2L

3
2 R

3
2 (L2 +LR+R2)

3
(

L
3
2 +R

3
2

)(
L3 +R

3
2 L

3
2 +R3

) .
It is clear that h1(ε) > 0 for 0 < ε < ε∗. Note that ε � 1, and ε∗ = O(1), we have

h1(L,R,ε)> 0 for ε > 0 small.

Lemma 3.9. For L 6= R,

h2(L,R) =
(L−R)3(L3−R3)

3L3R3(lnL− lnR)4 −
(L−R)2(L2−R2)

2L2R2(lnL− lnR)3 > 0.

Proof. Notice that h2(L,R) = h2(R,L), it suffices to show that h2(L,R) > 0 for L > R.

Rewrite h2(L,R) as

h2(L,R) =
(L−R)3

L2R2(lnL− lnR)3 h̃2(L,R),

where

h̃2(L,R) =
L3−R3

3LR(lnL− lnR)
− L+R

2
.

Then,

h2(L,R)> 0⇐⇒ h̃2(L,R)> 0, for L > R.

Fixing R, we treat h̃2(L)= h̃2(L,R) as a function of L. A direct calculation shows h̃2(R)=

h̃′2(R) = 0, but h̃′′2(L)> 0 for all L. Therefore, we have h̃2(L,R)> 0 for all L > R.

Lemma 3.10. For L 6= R,

h3(L,R,ε) =
1

R
7
2
+

1

L
7
2
− L−R

RL(lnL− lnR)

(
L

R
7
2
+

R

L
7
2

)
> 0.

41



Proof. Rewrite h3(L,R) as h3(L,R) = p(L,R)/(LR)
9
2 (lnL− lnR), where

p(L,R) = LR(lnL− lnR)
(

L
7
2 +R

7
2

)
− (L−R)

(
L

9
2 +R

9
2

)
.

Note that h3(L,R) = h3(R,L). It suffices to show h3(L,R)> 0 for L > R, which is equiv-

alent to showing that p(L,R)> 0 for L > R. To do so, we fix R, and treat p(L) = p(L,R)

as a function of L. Then, a direct computation gives p(R) = p′(R) = p′′(R) = 0, but

p′′′(L)> 0 for L > R. Therefore, p(L)> 0 for L > R.

3.4.2 Remarks

For the third order terms, we only treated the electro-neutrality case mainly because this

is a natural biological assumption. Under this assumption, up to the order of ε3, even

though a quartic function is expected, the I-V relation I (V ) is still a cubic function with

three distinct real roots, which is potentially related to the cubic-like feature of the av-

erage I-V relation of a population of channels in the Fitzhugh-Nagumo simplification of

the Hodgkin-Huxley model. The existence of three distinct real roots of the I-V relation

is responsible for the bi-stable structure in the FitzHugh-Nagumo system.

Recall from [1], that the first order correction to the zeroth order linear I-V relation

is quadratic without electro-neutrality condition, and we believe that the analysis for

the first order terms in [1] can be applied to third order terms in this work without the

electro-neutrality assumption.

For the fourth order correction to zeroth order I-V relation under electro-neutrality

condition, we have
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Theorem 3.11. Under electroneutrality condition, we have

T4 =
3(L−R)4 (L5−R5)
4L5R5(lnL− lnR)

V +
(L−R)4

2L5R5(lnL− lnR)2

((
L2−R2)(L3−R3)

3(lnL− lnR)

+
7
(
L5−R5)

2

)
V 2−

(L−R)4 (L5−R5)
4L5R5(lnL− lnR)3V 3 +

(L−R)5(L+R)
2L4R4(lnL− lnR)4

×
(
(L+R)

2
− L3−R3

3LR(lnL− lnR)

)
V 4,

I4 =
(L−R)4

L4R4(lnL− lnR)2

(
(L−R)

(
L3−R3)Q1(L,R)

6L2R2 V +
3Q3(L,R)

4LR
V 2

+
Q2(L,R)

lnL− lnR
V 3− Q3(L,R)

4LR(lnL− lnR)2V 4 +
(L−R)Q4(L,R)
2(lnL− lnR)3 V 5

)
,

(3.20)

where

Q1(L,R) =
L3−R3

3(lnL− lnR)
+

97
(
L3 +R3)

2
,

Q2(L,R) =
(L−R)

(
L5−R5)

2L2R2(lnL− lnR)
+

(L−R)2 (L3−R3)(L2 +LR+R2)
9L2R2(lnL− lnR)2

+
13(L−R)

(
L5−R5)

12L2R2(lnL− lnR)
+

7
(
L5−R5)
4LR

− (L−R)2(L+R)
2(lnL− lnR)

+
(L−R)(L+R)

(
L3−R3)

4LR(lnL− lnR)
− 17(L−R)2

12(lnL− lnR)
,

Q3(L,R) =
(L−R)

(
L5−R5)

lnL− lnR
− (L−R)2

lnL− lnR
+L5−R5,

Q4(L,R) =
(L+R)

(
L3−R3)

2LR(lnL− lnR)
−

(
L3−R3)2

3L2R2(lnL− lnR)2 +
3(L+R)2

4
.

The derivation of the expressions in (3.20) is provided in the Appendix Section 3.6.

Remark 3.12. Under the electroneutrality condition, up to the fourth order in ε, the I-

V relation function I (V ) is quintic instead of being cubic. However, for ε > 0 small,
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I = I0+εI1+ε2I2+ε3I3 is good enough to approximate the I-V relation, which can be

seen from last section.

To end this section, we have the following interesting result about the I-V relations,

which can be checked directly from systems (2.27) and (2.28).

Proposition 3.13. For all ε > 0, I (L,R,V̄ ;ε) =−I (R,L,−V̄ ;ε). A direct observation

shows that, for j = 0,1,2,3,4,

I j(L,R,V ;0) =−I j(R,L,−V ;0), Tj(L,R,V ;0) =−Tj(R,L,−V ;0).

3.5 Numerical simulations

In this section, numerical simulations are performed to system system (2.27) with the

boundary condition (2.28) to check the cubic-like feature of the I-V curve and investigate

the effects of the boundary conditions, the permanent charge on the I-V relations.

To apply the BVP solver mentioned in section 2.3, we first rewrite (2.27) into a

system of first order equations as

ε
d
dx

φ = u,
ε

h(x)
d
dx

(h(x)u) =−(αc1−βc2 +Q(x)),

εh(x)
dc1

dx
+αh(x)c1u =−εJ1,

εh(x)
dc2

dx
−βh(x)c2u =−εJ2,

dJi

dx
= 0,

(3.21)

with the same boundary condition (2.28).

For a general iteration step, we take the initial guess from the approximate solution

of the previous fixed point iteration. At the first iteration, for the case where Q = 0, we

take advantage of the analysis from [1] and choose the initial guess
(
φ 0,u0,c0

1,c
0
2,J

0
1 ,J

0
2
)

as follows.
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We take the zeroth order outer solution from [1] as our initial guess for both Q(x) = 0

and Q(x) 6= 0

φ
0
0 (x) =

ln |L− (L−R)x|− lnR
lnL− lnR

ν0, u0
0(x) =

(L−R)ν0

(lnL− lnR)((L−R)x−L)
,

c0
10(x) =c0

20(x) = L− (L−R)x, J0
10 = (L−R)

(
1+

ν0

lnL− lnR

)
,

J0
20 =(L−R)

(
1− ν0

lnL− lnR

)
.

(3.22)

We take a uniform mesh partition as initial mesh and evaluate the functions (φ 0
0 ,u

0
0,c

0
10,

c0
20,J

0
10,J

0
20) at these mesh points as initial guess for “bvp4c” at our first fixed point it-

eration. We use the mesh and solution from previous fixed point iteration as our initial

mesh and initial guess for late iteration.

3.5.1 Numerical experiments

In this section, three numerical experiments are conducted to system (3.21) with bound-

ary conditions (2.28) respectively, which are stated as follows:

• Experiment 1: for Q(x) = 0, fixing L and R, letting ε vary, we check the cubic-like

feature of the I-V relation, and meanwhile, compare the I-V curves from numerical

simulation with the ones obtained from asymptotic expansions;

• Experiment 2: for Q(x) = 0, fixing R and ε, letting L vary, we investigate the effect

of the concentration boundary condition on the I-V curve;
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• Experiment 3: for Q =


0 0≤ x < a,

Q0 a≤ x≤ b,

0 b < x≤ 1,

fixing L,R and ε, letting Q0 vary, we

investigate the effect of the permanent charge on the I-V relation curve and check

the cubic-like feature of the I-V curve.

For experiment 1, the following properties are predicted from the analytical results

and can be observed from the numerical simulations: For the first part, we have (see

Figure 1)

(i) all I-V curves pass through the point (0,0), and for V close to 0, the value of ε has

less effect on the I-V curve;

(ii) for V > 0, the I-V curve is decreasing in ε, and for V < 0, the I-V curve is increas-

ing in ε;

(iii) the I-V curve is more cubic-like for larger ε > 0, and for ε small enough, the

I-V relation curve I (V ) is close to the zeroth order approximation I0 = 2(L−

R)V/(lnL− lnR) under the electroneutrality condition.

For the second part, one has (see Figure 2)

(i) the smaller ε is, the better approximation It (the third order approximation to the

I-V curve) will be;

(ii) the approximation is sensitive to V , for V close to 0, the value of ε has less effect

on the approximation.

For experiment 2, the following properties can be observed from the numerical sim-

ulations (see Figure 3):
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Figure 3.1: Numerical simulation of the I-V relation I (V ) with Q = 0. I1(solid curve,
ε = 0.1), I2(dotted curve, ε = 0.08), I3(dashed curve, ε = 0.04), and I4(stars, ε =
0.008)

(i) all curves pass the point (0,0), for V > 0, the I-V curves are increasing in L, and

for V < 0, they are decreasing in L;

(ii) for fixed ε and R, the I-V curve is more cubic-like for larger difference L−R.

For experiment 3, we investigate

(i) all curves pass through the point (0,0), and the I-V curves still keep the cubic-like

feature;

(ii) the I-V curves are decreasing in the permanent charge Q0(see Figure 4).
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Figure 3.2: Plots of I (V ) for Q = 0. It− third order approximation, and Ins− numer-
ical simulation.

3.6 Appendix: Fourth order matching under electroneu-

trality conditions

In this section, we study the fourth order asymptotic expansions in ε and the matching

under electroneutrality conditions at the two ends of the ion channel.
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Figure 3.3: Numerical simulation of the I-V relation I (V ) with Q = 0. I1(stars, L =
10), I2(dotted curve, L = 25), I3(solid curve, L = 40), and I4(diamonds, L = 55).

3.6.1 Fourth order outer expansion

The fourth order outer system is

φ̈2 =− c14 + c24,

ċ14 =−
(
c10φ̇4 + c11φ̇3 + c12φ̇2 + c13φ̇1 + c14φ̇0

)
− J14,

ċ24 =c20φ̇4 + c21φ̇3 + c22φ̇2 + c23φ̇1 + c24φ̇0− J24.

(3.23)

Under electroneutrality condition, that is, L1 = L2 = L and R1 = R2 = R, adding the last

two equations in (3.23), we get

c14 + c24 =a4−T4x+
I2
0 (4T 2

0 − I2
0 )

2(a0−T0x)5 −
I2
0 (a2−T2x)
(a0−T0x)3 +

I0I2

(a0−T0x)2 ,
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Figure 3.4: Plots of I(V ). The left graph in the first row is the simulation over the interval
[−80,80], for the other three graphs, we focus on different subintervals. I0(solid curve,
Q=0), I1(dashed curve, Q=0.05), I2(dotted curve, Q=0.1) and I3(dash point, Q=0.2)

where a4 is some constant that will be determined through matching. Subtracting the last

two equations in (3.23) results in

φ̇4 =−
I4

a0−T0x
+

1
a0−T0x

...
φ 2−

(
a2−T2x
a0−T0x

+
I2
0

2(a0−T0x)3

)
φ̇2

−

(
a4−T4x
a0−T0x

+
I2
0
(
4T 2

0 − I2
0
)

2(a0−T0x)6 −
I2
0 (a2−T2x)
(a0−T0x)4 +

I0I2

(a0−T0x)3

)
φ̇0.
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Recall that

φ̇0 =−
I0

a0−T0x
, φ̇2 =

I0(I2
0 −4T 2

0 )

2(a0−T0x)4 +
I0(a2−T2x)
(a0−T0x)2 −

I2

a0−T0x
,

φ̈2 =
2I0T0

(
I2
0 −4T 2

0
)

(a0−T0x)5 +
2I0T0(a2−T2x)
(a0−T0x)3 − I0T2 + I2T0

(a0−T0x)2 ,

...
φ 2 =

10I0T 2
0 (I

2
0 −4T 2

0 )

(a0−T0x)6 +
6I0T 2

0 (a2−T2x)
(a0−T0x)4 − 2T0(2I0T2 + I2T0)

(a0−T0x)3 .

(3.24)

Therefore, we have

φ̇4 =
I0(I2

0 −4T 2
0 )(40T 2

0 −3I2
0 )

4(a0−T0x)7 +
2a2I0(4T 2

0 − I2
0 )

(a0−T0x)5 +
3I2

0 I2−8I0T0T2−4T 2
0 I2

2(a0−T0x)4

−
a2

2I0

(a0−T0x)3 +
I2a2 +a4I0

(a0−T0x)2 −
I4

a0−T0x
−

2I0T2(4T 2
0 − I2

0 )x
(a0−T0x)5

− (I2T2 + I0T4)x
(a0−T0x)2 +

2a2I0T2x
(a0−T0x)3 −

I0T 2
2 x2

(a0−T0x)3 .

By careful computations, we have, with b4 a constant to be determined through matching,

φ4(x) =b4 +
I0(I2

0 −4T 2
0 )(40T 2

0 −3I2
0 )

24T0(a0−T0x)6 +
I0(a2T0−a0T2)(4T 2

0 − I2
0 )

2T 2
0 (a0−T0x)4

+
I0(I2

0 −4T 2
0 )(T0−4T2)+2I0T0(I0I2−4T0T2)

6T 2
0 (a0−T0x)3 − I0(a2T0−a0T2)

2

2T 3
0 (a0−T0x)2

+
T 2

0 (I2a2 +a4I0)−a0T0(I2T2− I0T4)+2I0T2(a0T2−a2T0)

T 3
0 (a0−T0x)

+
T0(I4T0− I0T4)+T2(I0T2−T0I2)

T 3
0

ln |a0−T0x|.

(3.25)
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Together with the first equation in (3.23) and the theird equation in (3.24), we obtain the

solution to the fourth order outer system (3.23)

c14(x) =
a4−T4x

2
+

I0
(
4T 2

0 − I2
0
)
(I0 +4T0)

4(a0−T0x)5 − I0(I0 +2T0)(a2−T2x)
2(a0−T0x)3

+
I0(I2 +T2)+ I2T0

2(a0−T0x)2 ,

c24(x) =
a4−T4x

2
+

I0(I2
0 −4T 2

0 )(4T0− I0)

4(a0−T0x)5 +
I0(2T0− I0)(a2−T2x)

2(a0−T0x)3

+
I0(I2−T2)− I2T0

2(a0−T0x)2 ,

φ4(x) =b4 +
I0(I2

0 −4T 2
0 )(40T 2

0 −3I2
0 )

24T0(a0−T0x)6 +
I0(a2T0−a0T2)(4T 2

0 − I2
0 )

2T 2
0 (a0−T0x)4

+
I0(I2

0 −4T 2
0 )(T0−4T2)+2I0T0(I0I2−4T0T2)

6T 2
0 (a0−T0x)3 − I0(a2T0−a0T2)

2

2T 3
0 (a0−T0x)2

+
T 2

0 (I2a2 +a4I0)−a0T0(I2T2− I0T4)+2I0T2(a0T2−a2T0)

T 3
0 (a0−T0x)

+
T0(I4T0− I0T4)+T2(I0T2−T0I2)

T 3
0

ln |a0−T0x|.

(3.26)

3.6.2 Fourth order inner expansion

The fourth order inner system at x = 0 is

Φ
′
4 =U4, U ′4 =−(C14−C24),

C′14 =− (C10U4 +C11U3 +C12U2 +C13U1 +C14U0)− J13,

C′24 =(C20U4 +C21U3 +C22U2 +C23U1 +C24U0)− J23.

(3.27)

Proposition 3.14. System (3.27) has the following integrals:

G1 =C14eΦ0 +C10eΦ0Φ4 + J13F1 +F141 +F142 +F143,

G2 =C24e−Φ0−C20e−Φ0Φ4 + J23F2−F241−F242−F243,
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G3 =U0U4 +U1U3 +U2
2 −C14−C24−T3ξ ,

where F1 and F2 are given in Proposition 3.3, and

F141(ξ ) =
∫

ξ

0
C11(s)U3(s)eΦ0(s)ds, F142(ξ ) =

∫
ξ

0
C12(s)U2(s)eΦ0(s)ds,

F143(ξ ) =
∫

ξ

0
C13(s)U1(s)eΦ0(s)ds, F241(ξ ) =

∫
ξ

0
C21(s)U3(s)e−Φ0(s)ds,

F242(ξ ) =
∫

ξ

0
C22(s)U2(s)e−Φ0(s)ds, F243(ξ ) =

∫
ξ

0
C23(s)U1(s)e−Φ0(s)ds.

Proof. The proof is straightforward.

Under electroneutrality conditions, by careful computations, one has

F141(ξ ) =
T0

2

[
I0T 2

0
4(2L)3 ξ

4 +
1

2L

(
I2

2
+

I0T 2
0

(2L)3

)
ξ

2 +
9I0T 2

0
4(2L)5 −

I0T 2
0

4(2L)3

(
1√
2L

ξ
3 +

2
L

ξ
2

+
9

(2L)
3
2

ξ +
9

(2L)2

)
e−
√

2Lξ

]
eV̄ ,

F142(ξ ) =
I2
0 T 2

0
2(2L)4

[
−1

2
ξ

2 +
1

4L
− 1√

2L
e−
√

2Lξ

(
ξ +

1
2
√

2L
e−
√

2Lξ

)]
eV̄ ,

F143(ξ ) =−
I0

2L

[(
I0T0(I0 +2T0)

4(2L)3 − T2

4

)
ξ

2−
I2
0 T0

2(2L)
7
2

ξ +
I0T0(I0−T0)

4(2L)4 +
I0T0

4(2L)
5
2

×

(
T0

2(2L)
1
2

ξ
2 +

I0 +T0

2L
ξ +

T0− I0

(2L)
3
2

)
e−
√

2Lξ

]
eV̄ ,

F241(ξ ) =
T0

2

[
I0T 2

0
4(2L)3 ξ

4 +
1

2L

(
I2

2
+

I0T 2
0

(2L)3

)
ξ

2 +
9I0T 2

0
4(2L)5 −

I0T 2
0

4(2L)3

(
1√
2L

ξ
3 +

2
L

ξ
2

+
9

(2L)
3
2

ξ +
9

(2L)2

)
e−
√

2Lξ

]
e−V̄ ,

F242(ξ ) =
I2
0 T 2

0
2(2L)4

[
1
2

ξ
2− 1

4L
+

1√
2L

e−
√

2Lξ

(
ξ +

1
2
√

2L
e−
√

2Lξ

)]
e−V̄ ,

F243(ξ ) =−
I0

2L

[(
I0T0(I0−2T0)

4(2L)3 − T2

4

)
ξ

2−
I2
0 T0

2(2L)
7
2

ξ +
I0T0(I0 +T0)

(2L)4 +
I0T0

4(2L)
5
2
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×

(
− T0

2(2L)
1
2

ξ
2− T0

L
ξ − 2(I0 +T0)

(2L)
3
2

)
e−
√

2Lξ

]
e−V̄ .

To solve for (Φ4,C14,C24) with Φ4(0) =C14(0) =C24(0) = 0, we note that, from the

integrals in Proposition 3.14

C14(ξ ) =
I0T0

2(2L)4

[√
2LT 2

0
4

ξ
3 +

T0(4T0 + I0)

4
ξ

2 +
T0(6I0 +11T0)

4
√

2L
ξ +

9T 2
0 +2I0T0−2I2

0
8L

+
I0T0

4L
e−
√

2Lξ

]
e−
√

2Lξ +
1

8L

(
I0T0(I2

0 +3I0T0−2T 2
0 )

(2L)3 − I2T0− I0T2

)
ξ

2

−
I3
0 T0

2(2L)
9
2

ξ −
I0T 3

0
8(2L)3 ξ

4 +
I0T0(2I2

0 −4I0T0−9T 2
0 )

8(2L)5 − J13ξ −LΦ4,

C24(ξ ) =
I0T0

2(2L)4

[
−
√

2LT 2
0

4
ξ

3 +
T0(I0−4T0)

4
ξ

2 +
T0(8I0−9T0)

4
√

2L
ξ +

4I2
0 +4I0T0−9T 2

0
8L

+
I0T0

4L
e−
√

2L
]

e−
√

2Lξ +
1

8L

(
I0T0(3I0T0 +2T 2

0 − I2
0 )

(2L)3 + I2T0 + I0T2

)
ξ

2

+
I3
0 T0

2(2L)
9
2

ξ +
I0T 3

0
8(2L)3 ξ

4 +
I0T0(2I2

0 −4I0T0−9T 2
0 )

8(2L)5 − J23ξ +LΦ4.

Therefore,

Φ
′′
4 =

I0T0

2(2L)4

[
2I2

0 −6T 2
0

2L
−

6T 2
0√

2L
ξ −

7T 2
0

2
ξ

2−
√

2LT 2
0

2
ξ

3

]
e−
√

2Lξ +
I0T 3

0
4(2L)3 ξ

4

+

(
I0T0

2(2L)4 (2T 2
0 − I2

0 )+
I0T2 + I2T0

4L

)
ξ

2 +
I3
0 T0

(2L)
9
2

ξ + I3ξ +
I0T0

(
3T 2

0 − I2
0
)

(2L)5

+2LΦ4.

The solution with Φ4(0) = 0 is

Φ4 =
I0T0

4(2L)
9
2

[√
2LT 2

0
8

ξ
4 +

17T 2
0

12
ξ

3 +
41T 2

0

8
√

2L
ξ

2 +
89T 2

0 −16I2
0

16L
ξ +

38T 2
0 −6I2

0

(2L)
3
2

+4
(

T2

T0
+

I2

I0

)
(2L)

3
2 − γ1

]
e−
√

2Lξ −
(

I0T0

(2L)5

(
4T 2

0 −
I2
0
2

)
+

I0T2 + I2T0

2(2L)2

)
ξ

2
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−
I0T 3

0
4(2L)4 ξ

4−

(
I3
0 T0

(2L)
11
2
+

I3

2L

)
ξ −

I0T0(19T 2
0 −3I2

0 )

2(2L)6 − I0T2 + I2T0

(2L)3 + γ1e
√

2Lξ .

The matching will force γ1 = 0. Thus, the third order inner solution is, for ξ ≥ 0,

Φ4(ξ ) =
I0T0

4(2L)
9
2

[√
2LT 2

0
8

ξ
4 +

17T 2
0

12
ξ

3 +
41T 2

0

8
√

2L
ξ

2 +
89T 2

0 −16I2
0

16L
ξ

+
38T 2

0 −6I2
0

(2L)
3
2

+4
(

T2

T0
+

I2

I0

)
(2L)

3
2

]
e−
√

2Lξ −
I0T 3

0
4(2L)4 ξ

4

−
(

I0T0

(2L)5

(
4T 2

0 −
I2
0
2

)
+

I0T2 + I2T0

2(2L)2

)
ξ

2−

(
I3
0 T0

(2L)
11
2
+

I3

2L

)
ξ

−
I0T0(19T 2

0 −3I2
0 )

2(2L)6 − I0T2 + I2T0

(2L)3 ,

C14(ξ ) =

[
−

I0T 3
0

64(2L)3 ξ
4−

5I0T 3
0

96(2L)
7
2

ξ
3 +

I0T 2
0 (15T0 +8I0)

64(2L)4 ξ
2

+
I0T0(7T 2

0 +64I0T0 +16I2
0 )

64(2L)
9
2

ξ +
I0T0

2(2L)5

(
I2
0
2
+ I0T0−

13T 2
0

2

)
−I0T2 + I2T0

2(2L)2 +
I2
0 T 2

0
4(2L)5 e−

√
2Lξ

]
e−
√

2Lξ +
3I0T 2

0 (I0 +2T0)

4(2L)4 ξ
2

− T3

2
ξ +

I0T0(13T 2
0 − I2

0 −3I0T0)

4(2L)5 +
I0T2 + I2T0

8L2 ,

C24(ξ ) =

[
I0T 3

0
64(2L)3 ξ

4 +
5I0T 3

0

96(2L)
7
2

ξ
3 +

I0T 2
0 (8I0−15T0)

64(2L)4 ξ
2

+
I0T0(64I0T0−7T 2

0 −16I2
0 )

64(2L)
9
2

ξ +
I0T0

2(2L)5

(
I0T0−

I2
0
2
+

13T 2
0

2

)
+

I0T2 + I2T0

2(2L)2 +
I2
0 T 2

0
4(2L)5 e−

√
2Lξ

]
e−
√

2Lξ +
3I0T 2

0 (I0−2T0)

4(2L)4 ξ
2

− T3

2
ξ +

I0T0(I2
0 −3I0T0−13T 2

0 )

4(2L)5 − I0T2 + I2T0

8L2 .

(3.28)
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Similarly, at x = 1, the fourth order inner solution is, for ξ ≤ 0,

Ψ4(ξ ) =
I0T0

4(2R)
9
2

[√
2RT 2

0
8

ξ
4 +

17T 2
0

12
ξ

3 +
41T 2

0

8
√

2R
ξ

2 +
89T 2

0 −16I2
0

16R
ξ

+
38T 2

0 −6I2
0

(2R)
3
2

+4
(

T2

T0
+

I2

I0

)
(2R)

3
2

]
e−
√

2Rξ −
I0T 3

0
4(2R)4 ξ

4

−
(

I0T0

(2R)5

(
4T 2

0 −
I2
0
2

)
+

I0T2 + I2T0

2(2R)2

)
ξ

2−

(
I3
0 T0

(2R)
11
2
+

I3

2R

)
ξ

−
I0T0(19T 2

0 −3I2
0 )

2(2R)6 − I0T2 + I2T0

(2R)3 ,

D14(ξ ) =

[
−

I0T 3
0

64(2R)3 ξ
4−

5I0T 3
0

96(2R)
7
2

ξ
3 +

I0T 2
0 (15T0 +8I0)

64(2R)4 ξ
2

+
I0T0(7T 2

0 +64I0T0 +16I2
0 )

64(2R)
9
2

ξ +
I0T0

2(2R)5

(
I2
0
2
+ I0T0−

13T 2
0

2

)
−I0T2 + I2T0

2(2R)2 +
I2
0 T 2

0
4(2R)5 e−

√
2Rξ

]
e−
√

2Rξ +
3I0T 2

0 (I0 +2T0)

4(2R)4 ξ
2

− T3

2
ξ +

I0T0(13T 2
0 − I2

0 −3I0T0)

4(2R)5 +
I0T2 + I2T0

8R2 ,

D24(ξ ) =

[
I0T 3

0
64(2R)3 ξ

4 +
5I0T 3

0

96(2R)
7
2

ξ
3 +

I0T 2
0 (8I0−15T0)

64(2R)4 ξ
2

+
I0T0(64I0T0−7T 2

0 −16I2
0 )

64(2R)
9
2

ξ +
I0T0

2(2R)5

(
I0T0−

I2
0
2
+

13T 2
0

2

)
+

I0T2 + I2T0

2(2R)2 +
I2
0 T 2

0
4(2R)5 e−

√
2Rξ

]
e−
√

2Rξ +
3I0T 2

0 (I0−2T0)

4(2R)4 ξ
2

− T3

2
ξ +

I0T0(I2
0 −3I0T0−13T 2

0 )

4(2R)5 − I0T2 + I2T0

8R2 .

(3.29)

3.6.3 Fourth order matching

At x = 0, for the outer expansion, we have, in terns of the variable ξ , the outer expansion

at x = 0 is

E4
ξ

E4
x (φ) =b0 +

I0

T0
lna0− ε

I0

a0
ξ + ε

2
(

b2−
I0(4T 2

0 − I2
0 )

6T0a3
0

+
I0(a2T0−a0T2)

T 2
0 a0
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+
T0I2− I0T2

T 2
0

lna0−
I0T0

2a2
0

ξ
2
)
+ ε

3
(

I0(a3T0−a0T3)

a0T 2
0

+
I3T0− I0T3

T 2
0

lna0

+b3 +

(
I0(I2

0 −4T 2
0 )

2a4
0

+
a2I0−a0I2

a2
0

)
ξ −

I0T 2
0

3a3
0

ξ
3
)

+ ε
4

(
a3I0−a0I3

a2
0

ξ +

(
a2I0T0

a3
0
− I0T2 + I2T0

2a2
0

+
I0T0

(
I2
0 −4T 2

0
)

a5
0

)
ξ

2

−
I0T 3

0

4a4
0

ξ
4 +φ4(0)

)
,

E4
ξ

E4
x (c1) =

a0

2
− ε

T0

2
ξ + ε

2
(

a2

2
+

I2
0 +2I0T0

4a0

)
+ ε

3
(

a3

2
+

(
I0T0(I0 +2T0)

2a3
0

− T2

2

)
ξ

)
+ ε

4

(
a4

2
+

I0
(
4T 2

0 − I2
0
)
(I0 +4T0)

4a5
0

− a2I0(I0 +2T0)

2a3
0

+
I0(I2 +T2)+ I2T0

2a2
0

−T3

2
ξ +

3I0T 2
0 (I0 +2T0)

2a4
0

ξ
2
)
,

E4
ξ

E4
x (c2) =

a0

2
− ε

T0

2
ξ + ε

2
(

a2

2
+

I2
0 −2I0T0

4a0

)
+ ε

3
(

a3

2
+

(
I0T0(I0−2T0)

2a3
0

− T2

2

)
ξ

)
+ ε

4

(
a4

2
+

I0(I2
0 −4T 2

0 )(4T0− I0)

4a5
0

+
a2I0(2T0− I0)

2a3
0

+
I0(I2−T2)− I2T0

2a2
0

−T3

2
ξ +

3I0T 2
0 (I0−2T0)

2a4
0

ξ
2
)
,

where

φ4(0) =b4 +
T0 (I4T0− I2T2− I0T4)+ I0T 2

2

T 3
0

lna0 +
I0
(
52I2

0 T 2
0 +160T 4

0 −3I4
0
)

24a6
0T0

+
I0 (a2T0−a0T2)

(
4T 2

0 − I2
0
)

2T 2
0 a4

0
+

I2
0 (3I2T0−4I0T2)

6T 2
0 a3

0
+

2(2I0T2− I2T0)

3a3
0

+
a2I2 +a4I0

a0T0
− T2 (a0I2 +a2I0)

a0T 2
0

+
I0 (a2T2 +a0T4)

a0T 2
0

− I0 (a0T2−a2T0)
2

2T 3
0 a2

0

+
2I0T 2

2

T 3
0

.
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Similarly, in terms of ξ = (x−1)/ε, the outer expansion at x = 1 is

E4
ξ

E4
x (φ) =b0 +

I0

T0
ln |a0−T0|+

I0(2a0−3T0)

2(a0−T0)2 +
I0T 2

0
3(a0−T0)3 − ε

(
a0I0

(a0−T0)2

−
I0T 2

0
(a0−T0)3

)
ξ

+ ε
2
(

b2−
I0(4T 2

0 − I2
0 )

6T0(a0−T0)3 +
I0(a2T0−a0T2)

T 2
0 (a0−T0)

+
I2T0− I0T2

T 2
0

ln |a0−T0|

+
I0T0(3T0−a0)

2(a0−T0)3 ξ
2
)

+ ε
3
(

b3 +
I3T0− I0T3

T 2
0

ln |a0−T0|+
a0I3−a3I0 + I0T3− I3T0

(a0−T0)2

+
I0(a3T0−a0T3)

T 2
0 (a0−T0)

+

(
I0(I2

0 −4T 2
0 )

2(a0−T0)4 +
(a2−T2)I0− (a0−T0)I2

(a0−T0)2

)
ξ

−
I0T 2

0
3(a0−T0)3 ξ

3
)

+ ε
4

((
I0(a3−T3)

(a0−T0)2 −
I3

a0−T0

)
ξ +

(
I0T0

(
I2
0 −4T 2

0
)

(a0−T0)5 +
a2I0T0

(a0−T0)3

− I0T2 + I2T0

2(a0−T0)2

)
ξ

2−
I0T 3

0
4(a0−T0)4 ξ

4 +φ4(1)
)
,

E4
ξ

E4
x (c1) =

a0−T0

2
− ε

T0

2
ξ + ε

2
(

a2−T2

2
+

I2
0 +2I0T0

4(a0−T0)2

)
+ ε

3
(

a3−T3

2
+

(
I0T0(I0 +2T0)

2(a0−T0)3 −
T2

2

)
ξ

)
+ ε

4

(
a4−T4

2
+

I0
(
4T 2

0 − I2
0
)
(I0 +4T0)

4(a0−T0)5 − I0(I0 +2T0)(a2−T2)

2(a0−T0)3

+
I0(I2 +T2)

2(a0−T0)2 +
I2T0

2(a0−T0)2 −
T3

2
ξ +

3I0T 2
0 (I0 +2T0)

2(a0−T0)4 ξ
2
)
,

E4
ξ

E4
x (c2) =

a0−T0

2
− ε

T0

2
ξ + ε

2
(

a2−T2

2
+

I2
0 −2I0T0

4(a0−T0)2

)
+ ε

3
(

a3−T3

2
+

(
I0T0(I0−2T0)

2(a0−T0)3 −
T2

2

)
ξ

)
+ ε

4
(

a4−T4

2
+

I0(I2
0 −4T 2

0 )(4T0− I0)

4(a0−T0)5 +
I0(2T0− I0)(a2−T2)

2(a0−T0)3

+
I0(I2−T2)

2(a0−T0)2 −
I2T0

2(a0−T0)2 −
T3

2
ξ +

3I0T 2
0 (I0−2T0)

2(a0−T0)4 ξ
2
)
,
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where

φ4(1) =b4 +
T0 (I4T0− I2T2− I0T4)+ I0T 2

2

T 3
0

ln |a0−T0|+
I0
(
52I2

0 T 2
0 +160T 4

0 −3I4
0
)

24T0 (a0−T0)
6

+
I0 (a2T0−a0T2)

(
4T 2

0 − I2
0
)

2T 2
0 (a0−T0)

4 +
I2
0 (3I2T0−4I0T2)

6T 2
0 (a0−T0)

3 +
2(2I0T2− I2T0)

3(a0−T0)
3

− I0 (a0T2−a2T0)
2

2T 3
0 (a0−T0)

2 +
a2I2 +a4I0

T0(a0−T0)
− T2 (a0I2 +a2I0)

T 2
0 (a0−T0)

+
I0 (a2T2 +a0T4)

T 2
0 (a0−T0)

+
2a0I0T 2

2

T 3
0 (a0−T0)

.

From (3.28) and (3.29), the inner expansion at x = 0 is

E3
x E3

ξ
(Φ) =V̄ − ε

I0

2L
ξ − ε

2
(

I0T0

8L3 +
I0T0

8L2 ξ
2
)
− ε

3

(
I0T 2

0

(2L)
9
2
+

(
I2

2L
+

2I0T 2
0

(2L)4

)
ξ

+
I0T 2

0
3(2L)3 ξ

3
)

− ε
4

((
I3
0 T0

(2L)
11
2
+

I3

2L

)
ξ +

(
I0T0

(2L)5

(
4T 2

0 −
I2
0
2

)
+

I0T2 + I2T0

2(2L)2

)
ξ

2

+
I0T 3

0
4(2L)4 ξ

4 +
I0T0(19T 2

0 −3I2
0 )

2(2L)6 +
I0T2 + I2T0

(2L)3

)
,

E3
x E3

ξ
(C1) =L− ε

T0

2
ξ + ε

2 I0T0

8L2 − ε
3

(
I2
0 T0

2(2L)
7
2
−
(

I0T 2
0

8L3 +
I2
0 T0

16L3 −
T2

2

)
ξ

)

+ ε
4
(

3I0T 2
0 (I0 +2T0)

4(2L)4 ξ
2− T3

2
ξ +

I0T0(13T 2
0 − I2

0 −3I0T0)

4(2L)5

+
I0T2 + I2T0

8L2

)
,

E3
x E3

ξ
(C2) =L− ε

T0

2
ξ − ε

2 I0T0

8L2 − ε
3

(
I2
0 T0

2(2L)
7
2
−
(

I2
0 T0

16L3 −
I0T 2

0
8L3 −

T2

2

)
ξ

)

+ ε
4
(

3I0T 2
0 (I0−2T0)

4(2L)4 ξ
2− T3

2
ξ +

I0T0(I2
0 −3I0T0−13T 2

0 )

4(2L)5

−I0T2 + I2T0

8L2

)
,
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and the inner expansion at x = 1 is

E3
x E3

ξ
(Ψ) =V̄ − ε

I0

2R
ξ − ε

2
(

I0T0

8R3 +
I0T0

8R2 ξ
2
)
− ε

3

(
I0T 2

0

(2R)
9
2
+

(
I2

2R
+

2I0T 2
0

(2R)4

)
ξ

+
I0T 2

0
3(2R)3 ξ

3
)

− ε
4

((
I3
0 T0

(2R)
11
2
+

I3

2R

)
ξ +

(
I0T0

(2R)5

(
4T 2

0 −
I2
0
2

)
+

I0T2 + I2T0

2(2R)2

)
ξ

2

+
I0T 3

0
4(2R)4 ξ

4 +
I0T0(19T 2

0 −3I2
0 )

2(2R)6 +
I0T2 + I2T0

(2R)3

)
,

E3
x E3

ξ
(D1) =R− ε

T0

2
ξ + ε

2 I0T0

8R2 − ε
3

(
I2
0 T0

2(2R)
7
2
−
(

I0T 2
0

8R3 +
I2
0 T0

16R3 −
T2

2

)
ξ

)

+ ε
4
(

3I0T 2
0 (I0 +2T0)

4(2R)4 ξ
2− T3

2
ξ +

I0T0(13T 2
0 − I2

0 −3I0T0)

4(2R)5

+
I0T2 + I2T0

8R2

)
,

E3
x E3

ξ
(D2) =R− ε

T0

2
ξ − ε

2 I0T0

8R2 − ε
3

(
I2
0 T0

2(2R)
7
2
−
(

I2
0 T0

16R3 −
I0T 2

0
8R3 −

T2

2

)
ξ

)

+ ε
4
(

3I0T 2
0 (I0−2T0)

4(2R)4 ξ
2− T3

2
ξ +

I0T0(I2
0 −3I0T0−13T 2

0 )

4(2R)5

−I0T2 + I2T0

8R2

)
.

The matchings at x = 0 and x = 1, together with

a0 = 2L, T0 = 2(L−R), I0 =
2(L−R)

lnL− lnR
V̄ , a2 =−

I2
0

8L2 , T2 =
I2
0 (L

2−R2)

8L2R2 ,

I2 =
I0T2

T0
+

I0
(
2T 2

0 + I2
0
)(

L3−R3)
48L3R3(lnL− lnR)

+
I0(a2T0−a0T2)

4LR(lnL− lnR)
,

give

a4 =
I0
[
I2
0 (I0 +3T0)−T 2

0 (3T0 +7I0)
]

64L5 +
a2I0(I0 +2T0)

8L3 − I0I2

4L2 ,
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T4 =
I0T0

(
I2
0 −3T 2

0 −7T0I0
)

64

(
1
L5 −

1
R5

)
− I0I2

4

(
1
L2 −

1
R2

)
,

I4T0 =
I0T0

(
3I4

0 −16I2
0 T 2

0 −388T 4
0
)

1536(lnL− lnR)

(
1
L6 −

1
R6

)
−

I0(a2T0−a0T2)
(
4T 2

0 − I2
0
)

32(lnL− lnR)

×
(

1
L4 −

1
R4

)
−

I2T0
(
2T 2

0 +3I2
0
)
+2I0T2

(
7T 2

0 −2I2
0
)

48(lnL− lnR)

(
1
L3 −

1
R3

)
+

I0(a0T2−a2T0)
2

8T0(lnL− lnR)

(
1
L2 −

1
R2

)
+

a0(I2T2− I0T4)−T0(a2I2 +a4I0)

2(lnL− lnR)

×
(

1
L
− 1

R

)
+

I0T 2
2

R(lnL− lnR)
−

I0T 2
2

T0
+ I2T2 + I0T4.

We conclude that

T4 =
3(L−R)4 (L5−R5)
4L5R5(lnL− lnR)

V̄ +
(L−R)4

2L5R5(lnL− lnR)2

((
L2−R2)(L3−R3)

3(lnL− lnR)

+
7
(
L5−R5)

2

)
V 2−

(L−R)4 (L5−R5)
4L5R5(lnL− lnR)3 V̄ 3 +

(L−R)5(L+R)
2L4R4(lnL− lnR)4

×
(
(L+R)

2
− L3−R3

3LR(lnL− lnR)

)
V̄ 4,

I4 =
(L−R)4

L4R4(lnL− lnR)2

(
(L−R)

(
L3−R3)Q1(L,R)

6L2R2 V̄ +
3Q3(L,R)

4LR
V̄ 2

+
Q2(L,R)

lnL− lnR
V̄ 3− Q3(L,R)

4LR(lnL− lnR)2 V̄ 4 +
(L−R)Q4(L,R)
2(lnL− lnR)3 V̄ 5

)
,

(3.30)

where

Q1(L,R) =
L3−R3

3(lnL− lnR)
+

97
(
L3 +R3)

2
,

Q2(L,R) =
(L−R)

(
L5−R5)

2L2R2(lnL− lnR)
+

(L−R)2 (L3−R3)(L2 +LR+R2)
9L2R2(lnL− lnR)2

+
13(L−R)

(
L5−R5)

12L2R2(lnL− lnR)
+

7
(
L5−R5)
4LR

− (L−R)2(L+R)
2(lnL− lnR)

+
(L−R)(L+R)

(
L3−R3)

4LR(lnL− lnR)
− 17(L−R)2

12(lnL− lnR)
,

Q3(L,R) =
(L−R)

(
L5−R5)

lnL− lnR
− (L−R)2

lnL− lnR
+L5−R5,

61



Q4(L,R) =
(L+R)

(
L3−R3)

2LR(lnL− lnR)
−

(
L3−R3)2

3L2R2(lnL− lnR)2 +
3(L+R)2

4
.

In particular, the fourth order correction I4(V̄ ) to the zeroth order I-V relation I0(V̄ ) is

quintic in V̄ . As L→ R, one finds that T4→ 0 and I4→ 3
2RV̄ 5.
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Chapter 4

A numerical study for ionic flows with hard sphere ion

species: I-V relations and critical potentials

We consider a one-dimensional steady-state PNP type model for ionic flow through

membrane channels. Improving the cPNP models where ion species are treated as point

charges, this model includes ionic interaction due to finite sizes of ion species modeled

by hard sphere potential from the Density Functional Theory. The resulting problem is

a singularly perturbed boundary value problem of an integro-differential system. We ex-

amine the problem and investigate the ion size effect on the I-V relations numerically,

focusing on the case where two oppositely charged ion species are involved and only the

hard sphere components of the excess chemical potentials are included. Two numerical

tasks are conducted. The first one is a numerical approach of solving the boundary value

problem and obtaining I-V curves. This is accomplished through a numerical implement

of the analytical strategy introduced by Ji and Liu in [46]. The second task is to numer-

ically detect two critical potential values Vc and V c. The existence of these two critical

values is first realized for a relatively simple setting and analytical approximations of

Vc and V c are obtained in the above mentioned reference. Our numerical detections are

based on the defining properties of Vc and V c and are designed to use the numerical I-V
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curves directly. For the setting in the above mentioned reference, our numerical results

agree well with the analytical predictions.

4.1 Introduction

We numerically examine singularly perturbed boundary value problems of an integro-

differential system – a one-dimensional steady-state PNP type model for ionic flow

through membrane channels (see [4, 5, 24, 30, 31, 32, 33, 43, 44, 46, 58]).

As mentioned in section 2.1.1, the simplest PNP system is the cPNP system, which

treats ions as point-charges, and ignore the ion-to-ion interaction. To take into consider-

ations of ion sizes, one needs to include the excess (beyond the ideal) chemical potential

in the model. The PNP system combined with Density Functional Theory (DFT) for

hard sphere potentials of ion species serves the purpose for this consideration and has

been investigated computationally with great improvements ([9, 31, 32, 33], etc.). All

these computations, however, lack sufficiently analytical supports. In a recent work [46],

the authors analyzed a one-dimensional version of PNP-DFT system in a simple setting;

they considered the case where two oppositely charged ions are involved, the permanent

charge can be ignored and only the hard sphere component of the excess chemical poten-

tial is included beyond the ideal potential. The model, viewed as a singularly perturbed

boundary value problem of an integro-differential system, was analyzed by a combina-

tion of geometric singular perturbation theory and functional analysis. They established

the existence result for small ion sizes and, treating the sizes as small parameters, derived

an approximation of the I-V relation. The approximation result allowed them to make

the following finding: there is a critical potential value Vc so that, if V >Vc, then the ion

size enhances the flow; if V <Vc, it reduces the current; There is another critical potential

value V c so that, if V >V c, the current is increasing with respect to λ = r2/r1 where r1
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and r2 are, respectively, the radii of the positively and negatively charged ions; if V <V c,

the current is decreasing in λ .

In this chapter, we perform numerical study of the one-dimensional version of PNP-

DFT system in a more general setting than that in [46] to include non-trivial permanent

charges. Two numerical tasks are conducted. The first one is a numerical approach for

solving the boundary value problem and obtaining I-V curves. This is accomplished

through a numerical implement of the analytical strategy introduced in [46]. The sec-

ond task is to numerically detect two critical potential values Vc and V c that are defined

slightly general than these in [46]. Lacking of analytical formulas for general situations,

our numerical detections of Vc and V c are based on their defining properties and are de-

signed to use the numerical I-V curves directly. For the relative simple setting in [46],

our numerical results agree well with the analytical predictions.

The rest of the chapter is organized as follows. In Section 4.2, we briefly set up

the one-dimensional PNP-DFT model for ionic flows and recall the analytic results from

[46]. In Section 4.3, we discuss our numerical strategy for solving the model problem

in detail. In Section 4.4, we introduce two critical potentials generalizing that defined in

[46] and provide a design for detecting the critical potentials. In Section 4.5, we present

a number of case studies to demonstrate the usage of the numerical activities in Sections

4.3 and 4.4.

4.2 Models and two critical potentials

In this section, we study system (2.27) with the boundary conditions (2.28) including the

nonlocal hard-sphere component ( see [29, 71, 72, 73, 74, 75]) by

µ
HS
i =

δΩ({c j})
δci

, (4.1)
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where

Ω({c j}) =−
∫

n0(x;c1,c2) ln(1−n1(x;c1,c2))dx,

nl(x;c1,c2) =
2

∑
j=1

∫
c j(x′)ω

j
l (x− x′)dx′, (l = 0,1),

ω
j

0(x) =
δ (x− r j)+δ (x+ r j)

2
, ω

j
1(x) = Θ(r j−|x|),

(4.2)

where δ is the Dirac delta function, Θ is the Heaviside function, and r j is the radius of

the jth ion species.

Through out the chapter, we will also assume the electroneutrality conditions at the

boundaries

n

∑
j=1

z jL j =
n

∑
j=1

z jR j = 0. (4.3)

In [46], the authors considered only the hard-sphere component µHS
i of µex

i with

two ion species (n = 2) of opposite charges (z1 > 0 and z2 < 0) and Q = 0. Based on

a combination of geometric singular perturbation analysis and functional analysis, in

addition to the existence and uniqueness result for the boundary value problem (BVP)

(2.27)–(2.28), an approximation of I-V relation in r = r1 is also obtained:

I(V ;ε,r) := z1J1 + z2J2 = I0(V ;ε)+ I1(V ;ε)r+o(r),

where

I0(V ;0) =(D1−D2)(L−R)+
e(z1D1− z2D2)

kT
f0(L,R)V,

I1(V ;0) =
2(L−R)
z1z2kT

[(λ −1)(z1D1− z2D2) f0(L,R)− (z1λ − z2)(D1−D2)(L+R)]

− 2e(z1λ − z2)(z1D1− z2D2)

z1z2k2T 2 f1(L,R)V,
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with λ = r2/r1, L = z1L1 =−z2L2 > 0, R = z1R1 =−z2R2 > 0,

f0(L,R) =
L−R

lnL− lnR
, f1(L,R) =

(L2−R2)(lnL− lnR)−2(L−R)2

(lnL− lnR)2 .

This explicit approximation allows the authors of [46] to realize the existence of two

critical potential values Vc and V c defined, respectively, by

I1(Vc;0) = 0,
d

dλ
I1(V c;0) = 0. (4.4)

They are given, in this setting, by

Vc =
kT
e

(
(λ −1)

(L−R) f0(L,R)
(z1λ − z2) f1(L,R)

− (D1−D2)(L2−R2)

(z1D1− z2D2) f1(L,R)

)
,

V c =
kT
e

(
(L−R) f0(L,R)

z1 f1(L,R)
− (D1−D2)(L2−R2)

(z1D1− z2D2) f1(L,R)

)
.

(4.5)

The importance of Vc and V c is evident and we summarize it here ([46]).

Theorem 4.1. Let Vc and V c be defined by (4.4).

(i) If V > Vc, then for ε > 0 small and r > 0 small, the ion sizes enhance the current

I; that is, I(V ;ε,r)> I(V ;ε,0);

If V <Vc, then for ε > 0 small and r > 0 small, the ion sizes reduce the current I;

that is, I(V ;ε,r)< I(V ;ε,0);

(ii) If V >V c, then for ε > 0 small and r > 0 small, the larger the negatively charged

ion the larger the current I; that is, the current I is increasing in λ ;

If V <V c, then for ε > 0 small and r > 0 small, the smaller the negatively charged

ion the larger the current I; that is, the current I is decreasing in λ .
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4.3 Numerical solution of the BVP (2.27)–(2.28)

Motivated by the work in [46] and with a longterm goal of understanding effects of

various variables (such as ion sizes, permanent charges, boundary conditions, etc.) on I-

V relations of membrane channels, we examine the effect of ion sizes on the I-V relation

based on numerical solutions of the BVP (2.27)–(2.28). We will conduct two numerical

tasks.

Task 1. We will develop a numerical approach to the BVP (2.27)–(2.28) and, as a result,

obtain numerical I-V curves.

Task 2. Based on numerical I-V curves and the defining properties of Vc and V c (NOT

the analytical formulas (4.5)), we will design a procedure for detecting them numerically

for two cases:

(a) for Q = 0 that allows us to make a comparison between the analytical predications

in [46] and our numerical results;

(b) for a piece-wise constant Q 6= 0.

In this section, we will carry out the first task. Task 2 is a critical component for the

relevance of our mathematical studies of the PNP type models to ion channel properties

and will be carried out in Section 4.4.

To this end, we study system (2.27) with the boundary conditions (2.28) including

the nonlocal hard-sphere potential given by , for x ∈ [0,1],

dµHS
1

dx
(x) =

c1(x+2r)+ c2(x+(λ +1)r)
1−K1(x)

− c1(x−2r)+ c2(x− (λ +1)r)
1−K2(x)

,

dµHS
2

dx
(x) =

c1(x+(λ +1)r)+ c2(x+2λ r)
1−K3(x)

− c1(x− (λ +1)r)+ c2(x−2λ r)
1−K4(x)

,

(4.6)
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where

K1(x) =
∫ x+2r

x
c1(s)ds+

∫ x+(λ+1)r

x−(λ−1)r
c2(s)ds,

K2(x) =
∫ x

x−2r
c1(s)ds+

∫ x+(λ−1)r

x−(λ+1)r
c2(s)ds,

(4.7)

K3(x) =
∫ x+(λ+1)r

x+(λ−1)r
c1(s)ds+

∫ x+2λ r

x
c2(s)ds,

K4(x) =
∫ x−(λ−1)r

x−(λ+1)r
c1(s)ds+

∫ x

x−2λ r
c2(s)ds.

This technical result is from Lemma 4.2 in [46].

Remark 4.2. The definition of µHS
i (x) for x ∈ [0,1] requires (c1,c2) to be defined for

x ∈ [−ρ,1+ ρ] where ρ = max{r1 + r2,2r1,2r2}, where r1 and r2 are the radii of the

positively and negatively charged ions respectively. As remarked in [46], the effect of

a specific extension is of order O(ρ2). In the sequel, we will fix an extension for our

numerical simulations.

4.3.1 Numerical strategy for solving problem (2.27)–(2.28) with µHS
i

defined by (4.6)

In this part, we present our numerical strategy for Task 1. Note that, with µHS
i defined

by (4.6), system (2.27) is an integro-differential system. Our numerical approach is to

implement the analytical strategy in [46] that is one of the natural approaches to integro-

differential systems.

We begin with a brief summary of the analytical strategy in [46]. For any (G1(x),G2(x))∈

C 0([0,1],R2), introduce the auxiliary problem, for convenience, setting α = z1 > 0 and
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β =−z2 > 0,

ε2

h(x)
d
dx

(
h(x)

d
dx

φ

)
=−(αc1−βc2 +Q(x)),

dJi

dx
= 0,

h(x)
dc1

dx
+αh(x)c1

dφ

dx
+G1(x) =−J1,

h(x)
dc2

dx
−βh(x)c2

dφ

dx
+G2(x) =−J2

(4.8)

with the same boundary conditions in (2.28)

φ(0) = V̄ , ci(0) = Li; φ(1) = 0, ci(1) = Ri. (4.9)

Let (φ(x;ε),ci(x;ε)) be the solution of (4.8) and (4.9) and define a mapping

F : C 0([0,1],R2)→ C 1([0,1],R2) by F (G1,G2)(x) = (c1(x;ε),c2(x;ε)) .

Define the second mapping

G : C 1([0,1],R2)→ C 0([0,1],R2)

by

G (c1,c2)(x) =
(

h(x)c1(x)
kT

d
dx

µ
HS
1 (x),

h(x)c2(x)
kT

d
dx

µ
HS
2 (x)

)
,

where µHS
i are given by the model (4.1) for the given (c1,c2).

The BVP (2.27) and (2.28) becomes a fixed point problem

(G1,G2) = H (G1,G2) for (G1,G2) ∈ C 0([0,1],R2) (4.10)
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where H = (G ◦F ). It has been proved in [46, Theorem 5.1] that, for ε > 0 small and

as r→ 0, the Fréchet derivative DH of H is of order O(r). Hence, for ε > 0 small and

r→ 0 small, the fixed point exists.

Our numerical approach, in a simple word, is to solve the above fixed point problem

by numerical iterations. Since the mapping H is not explicit, a numerical approximation

HN of H cannot be directly constructed. Instead, we will numerically implement the

above analytical strategy, that is, we proceed to construct numerical approximations of

F and G with two subroutines. We now describe the iteration procedure.

Subroutine 1. Given fixed functions G(0)
1 (x) and G(0)

2 (x), we numerically solve the

BVP (4.8) and (4.9) with Gi(x) = G(0)
i (x). This auxiliary problem is a BVP of ordinary

differential equations (ODEs). We could use standard BVP solvers for ODEs to obtain

the numerical solutions
(
φ (0),u(0),c(0)1 ,c(0)2 ,J(0)1 ,J(0)2

)
for x ∈ [0,1].

Subroutine 2. After an extension of (c(0)1 ,c(0)2 ) to x ∈ [−ρ,ρ + 1], we numerically

determine
(
G(1)

1 (x),G(1)
2 (x)

)
from

G(1)
i (x) =

h(x)c(0)i (x)
kT

d
dx

µ
HS
i (x)

using (4.6) with ci(x) = c(0)i (x). This completes one numerical iteration:

(
G(1)

1 ,G(1)
2

)
= HN

(
G(0)

1 ,G(0)
2

)
. (4.11)

The mapping HN can be viewed as a numerical realization of H = G ◦F . Our

numerical fixed point iteration method can be formulated as

(
G(n+1)

1 ,G(n+1)
2

)
= HN

(
G(n)

1 ,G(n)
2

)
. (4.12)
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Subroutine 2 is straightforward because of the explicit formula (4.6). The conver-

gence of this numerical fixed point iteration depends more on BVP solvers for (4.8)–(4.9)

involved in Subroutine 1. Our numerical experiments show that, with the BVP solvers

and the initial guess we used, the iterations (4.12) converge quite fast (usually need 5-7

iterations to reduce the L2-error to 10−6). We will thus discuss our BVP solvers and the

initial guess in more detail below.

4.3.2 BVP solvers for (4.8)–(4.9) and the initial guess

We use “bvp4c” in Matlab ([52]) as the solver for our auxiliary BVP (4.8) and (4.9). The

basic ideas has been illustrated in section 2.3.

Due to the piecewise cubic approximate solution S(x) given by “bvp4c”, we could

obtain the Ki’s in (4.7) analytically and evaluate G(n)
1 (x) and G(n)

2 (x) accurately in each

fixed point iteration. Moreover, we could extend the solution to [−ρ,1+ ρ] easily for

polynomials. In our numerical experiments, we use a constant extension.

To apply “bvp4c”, we first rewrite (4.8) into a system of 1st-order equations as

ε
d
dx

φ = u,

ε

h(x)
d
dx

(h(x)u) =−(αc1−βc2 +Q(x)),
dJi

dx
= 0,

εh(x)
dc1

dx
+αh(x)c1u+ εG1(x) =−εJ1,

εh(x)
dc2

dx
−βh(x)c2u+ εG2(x) =−εJ2

(4.13)

with the same boundary conditions in (4.8).

For a general iteration step, we take the initial guess from the approximate solution of

the previous fixed point iteration. At the first iteration, for the case where Q = 0, we take

advantage of the analysis from [46] and choose the initial guess
(
φ (0,0),u(0,0),c(0,0)1 ,c(0,0)2 ,

J(0,0)1 ,J(0,0)2
)

as follows.
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The leading term for the analytical solution (G1,G2) is provided in [46, Theorem

6.1]. We take it as our initial guess

G(0)
1 (x) = n1(L− (L−R)x), G(0)

2 (x) = n2(L− (L−R)x), (4.14)

where

n1 =−
2(α(λ +1)+2β )(L−R)r

α2βkT
, n2 =−

2(2αλ +β (λ +1))(L−R)r
αβ 2kT

.

The leading terms for c1 and c2 are also provided in [46, Proposition 3.4] as

c(0,0)1 (x) =
L− (L−R)x+mx(1− x)

α
, c(0,0)2 (x) =

L− (L−R)x+mx(1− x)
β

,

where

m =
2(αλ +β )(L−R)2

αβkT
r.

Using the expressions for J̄(0,0)1 , J̄(0,0)2 and φ̄ (0,0) in [46], we obtain

J(0,0)1 =L1−R1−
αβ (n1 +n2)(L1 +R1)

2(α +β )

+
−αmV̄ + α(βn2−αn1)

α+β

(
(L1−R1)s1−L1

s2−s1
ln
∣∣∣1−s1

s1

∣∣∣+ (R1−L1)s2+L1
s2−s1

ln
∣∣∣1−s2

s2

∣∣∣)(
1

s1−s2
ln
∣∣∣1−s1

s1

∣∣∣+ 1
s2−s1

ln
∣∣∣1−s2

s2

∣∣∣) ,

J(0,0)2 =L2−R2−
α2(n1 +n2)(L1 +R1)

2(α +β )

+
−αmV̄ + α(βn2−αn1)

α+β

(
(L1−R1)s1−L1

s2−s1
ln
∣∣∣1−s1

s1

∣∣∣+ (R1−L1)s2+L1
s2−s1

ln
∣∣∣1−s2

s2

∣∣∣)(
1

s1−s2
ln
∣∣∣1−s1

s1

∣∣∣+ 1
s2−s1

ln
∣∣∣1−s2

s2

∣∣∣) ,
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and

φ
(0,0)(x) =V̄ − βJ2−αJ1

m(α +β )

(
1

s1− s2
ln
∣∣∣∣x− s1

s1

∣∣∣∣+ 1
s2− s1

ln
∣∣∣∣x− s2

s2

∣∣∣∣)

−
α(βn2−αn1)

(
α((L1−R1)s1−L1) ln

∣∣∣ x−s1
s1

∣∣∣
s2−s1

+
α((R1−L1)s2+L1) ln

∣∣∣ x−s2
s2

∣∣∣
s2−s1

)
m(α +β )

.

Here

s1 =
m−α(L1−R1)+

√
(m−α(L1−R1))2 +4mL1

2m

and

s2 =
m−α(L1−R1)−

√
(m−α(L1−R1))2 +4mL1

2m

are two roots of the equation α(L1− (L1−R1)s)+ms(1− s) = 0.

At our first fixed point iteration, we take a uniform mesh partition as initial mesh

and evaluate the functions (φ (0,0),u(0,0),c(0,0)1 ,c(0,0)2 ,J(0,0)1 ,J(0,0)2 ) at these mesh points

as initial guess for “bvp4c”. We use the mesh and solution from previous fixed point

iteration as our initial mesh and initial guess for late iteration.

4.4 Design for numerical detections of Vc and V c

In this section, we will describe our numerical methods for conducting Task 2. For the

relative simple settings in [46], explicit approximation formulas for two critical voltages

Vc and V c are obtained analytically. For general situations, no relevant analytical result

is available at this moment. To be able to take the advantage of numerical I-V curves

obtained in Task 1, one needs to design numerical methods to detect these two critical

voltages. Our design relies on analytical characterizations of two critical potentials Vc

and V c based on their defining properties.
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Since we focus on the ion size effect on I-V relations, we will treat the radii r = r1

and r2 (hence λ = r2/r1) as variable parameters, and view L j’s, R j’s, ε > 0 small and

a piece-wise constant Q(x) as fixed parameters. Thus, we denote the I-V relation by

I = I(V ;λ ,r). For I-V relation corresponding to the classical PNP (ignoring the size

effects), we denote it by I = I0(V ).

Definition 4.3. A solution Vc of

I(V ;λ ,r) = I0(V ), (4.15)

will be called a size balance potential. A solution V c of

Iλ (V ;λ ,r) :=
∂ I
∂λ

(V ;λ ,r) = 0. (4.16)

will be called a relative size effect potential.

For fixed (λ ,r), the potential Vc will depend on the boundary concentrations Li’s, Ri’s

and the permanent charge Q. It is the balance potential under which ion sizes do not have

effects on the current. The potential V c is meant to distinguish the magnitudes of effects

among different relative ion sizes λ .

Corollary 4.4. For fixed (λ̄ , r̄), let V̄c be a size balance potential defined by (4.15).

(i) If IV (V̄c; λ̄ , r̄) > I0V (Vc), then I(V ;λ ,r) > I0(V ) for V > V̄c but close (that is, the

ion sizes enhance the current) and I(V ;λ ,r)< I0(V ) for V < V̄c but close (that is,

the ion sizes reduce the current).

(ii) If IV (V̄c; λ̄ , r̄) < I0V (Vc), then I(V ;λ ,r) > I0(V ) for V < V̄c but close (that is, the

ion sizes enhance the current) and I(V ;λ ,r)< I0(V ) for V > V̄c but close (that is,

the ion sizes reduce the current).
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Proof. The proof is simple and we omit it here.

Remark 4.5. For the setting considered in ([46]), it was shown ([46, Lemma 6.2]) that

IV (V ;λ ,r)> I0V (V ) in (i) holds for all (V,λ ) if r > 0 is small enough.

Corollary 4.6. For fixed (λ∗,r∗), let V c
∗ be a potential defined in (4.16). Suppose IλV (V c

∗ ;λ∗,r∗) 6=

0. One has, for (V,λ ) in a neighborhood of (V c
∗ ,λ∗),

(i) if IλV (V c
∗ ;λ∗,r∗) > 0, then, for V > V c

∗ , I(V ;λ ,r∗) is increasing in λ and, for

V <V c
∗ , I(V ;λ ,r∗) is decreasing in λ ;

(ii) if IλV (V c
∗ ;λ∗,r∗) < 0, then, for V > V c

∗ , I(V ;λ ,r∗) is increasing in λ and, for

V <V c
∗ , I(V ;λ ,r∗) is decreasing in λ .

Proof. We write, for some function p(V,λ ),

I(V ;λ ,r∗)− I(V ;λ∗,r∗) = p(V,λ )(λ −λ∗).

Differentiate with respect to λ and V , and set λ = λ∗ to get

Iλ (V ;λ∗,r∗) = p(V,λ∗), IλV (V ;λ∗,r∗) = pV (V,λ∗).

In particular, p(V c
∗ ,λ∗) = 0 and pV (V c

∗ ,λ∗) 6= 0. It follows from the Implicit Function

Theory that there is a function Γ(λ ) for λ near λ∗ such that V c
∗ =Γ(λ∗) and p(Γ(λ ),λ ) =

0. Therefore, p(V,λ ) = q(V,λ )(V −Γ(λ )) for some function q(V,λ ), and

q(V c
∗ ,λ∗) = pV (V c

∗ ,λ∗) = IλV (V
c
∗ ;λ∗,r∗).

We conclude

Iλ (V ;λ∗,r∗) = p(V,λ∗) = q(V ;λ∗)(V −V c
∗ ).
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In particular, Iλ (V ;λ ,r∗) and IλV (V c
∗ ;λ∗,r∗)(V −V c

∗ ) have the same sign for (V,λ ) in a

neighborhood of (V c
∗ ,λ∗). Both (i) and (ii) then follow immediately.

Remark 4.7. For the setting considered in ([46]), it was shown ([46, Lemma 6.2]) that

the condition IλV (V ;λ ,r)> 0 in (i) holds for all (V,λ ) if r > 0 is small enough.

Given (λ ,r), to numerically detect the corresponding critical value(s) Vc, one can

simply plot the difference I(V ;λ ,r)− I0(V ) and search for the roots.

Our numerical design for a direct detecting of the critical value(s) V c is a numerical

interpretation of the following analytical result. For fixed (λ∗,r∗), define

H(V,λ ) = I(V ;λ ,r∗)− I(V ;λ∗,r∗). (4.17)

Proposition 4.8. For fixed (λ ,r) = (λ∗,r∗), V c
∗ is the value defined in (4.16) if and only

if the point (V c
∗ ,λ∗) is a saddle point of H(V,λ ) under the condition that HλV (V c

∗ ,λ∗) =

IλV (V c
∗ ;λ∗,r∗) 6= 0.

Proof. Note that H(V,λ∗) = 0 for all V . Thus, HV (V,λ∗) = HVV (V,λ∗) = 0. From the

definition of V c
∗ , one has Hλ (V c

∗ ,λ∗) = Iλ (V c
∗ ;λ∗,r∗) = 0. Therefore, (V c

∗ ,λ∗) is a critical

point of H(V,λ ). It then follows from

(
HVV Hλλ −H2

λV
)
(V c
∗ ,λ∗) =−H2

λV (V
c
∗ ,λ∗)< 0

that (V c
∗ ,λ∗) is a saddle point of H(V,λ ).

Numerically, for fixed (λ∗,r∗), we can computer I(V ;λ ,r∗) and hence H(V,λ ) for

any λ near λ∗ and apply Proposition 4.8 to estimate V c
∗ from the saddle point of H(V,λ ).

Another approach for detecting V c is to numerically compute the solution(s) V of Iλ (V ;λ ,r)=
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0. This will involve a numerical evaluation of the partial derivative and a numerical root

finding.

We remark that, for real biological situations, one is interested in only discrete values

of (λ ,r). For the critical potential Vc, one can take an experimental I-V relation as

I(V ;λ ,r) and numerically (or analytically) compute I0(V ) for ideal case that allows one

to get an estimate of Vc. On the other hand, it is not clear to us how to design a procedure

of using experimental data to detect the value V c.

4.5 Numerical experiments: case studies

In this section, we perform numerical simulations for different values of α, β , and λ for

Q = 0 and Q 6= 0. For simplicity, we make the following assumptions for the parameters

involved in the PNP-DFT model:

• The elementary charge e = 1, the Boltzmann constant k = 1 and the absolute tem-

perature T = 1.

• We take ε = 0.002, h(x) = 1, and the diffusion coefficient Di(x) = 1, i = 1,2.

• The radius of the positively charged ion r1 = r = 0.0001.

4.5.1 Numerical values vs analytical predications for Q = 0

For Q = 0, we compare the numerical values Vc and V c with those analytical approxi-

mations obtained in [46]. We remark that the analytical values of Vc and V c in [46] are

zeroth order in ε and first order in r approximations. For ε > 0 small and r > 0 small, the

numerical values Vc and V c should be close to the ones obtained from the zeroth order

approximation given by (4.5).

78



In our first set of experiments, we compute Vc for the following 6 different choices of

parameter values:

• Case 1: α = β = 1, λ = 1.885, L = αL1 = βL2 = 4, and R = αR1 = βR2 = 20;

• Case 2: α = β = 1, λ = 1.382, L = αL1 = βL2 = 4, and R = αR1 = βR2 = 20;

• Case 3: α = 2β = 2, λ = 1.885, L = αL1 = βL2 = 4, and R = αR1 = βR2 = 20;

• Case 4: α = β = 1, λ = 1.885, L = αL1 = βL2 = 20, and R = αR1 = βR2 = 4;

• Case 5: α = β = 1, λ = 1.382, L = αL1 = βL2 = 20, and R = αR1 = βR2 = 4;

• Case 6: α = 2β = 2, λ = 1.885, L = αL1 = βL2 = 20, and R = αR1 = βR2 = 4.

The choice of λ = 1.885 in Cases 1, 3, 4, and 6 is motivated by the corresponding λ

values for Na+Cl− and Ca2+Cl−2 , and λ = 1.382 in Cases 2 and 5 for K+Cl−.

For each case, we plot I(V ;λ ,r)− I0(V ) as a function of V and the critical potential

Vc is the root of the difference. The results are reported in Figure 4.1. The analytical

values of Vc from (4.5) are −1.1921, −0.6232, and −0.7210 for Cases 1–3, respectively.

The numerical values of Vc are −1.2020, −0.6274, and −0.7310, which agree well with

the analytical predictions. From the numerical simulations, we observe that Vc’s for

L = 4 < R = 20 (Cases 1–3) and L = 20 > R = 4 (Cases 4–6) differ by a sign and the

analytical formulas (4.5) for D1 = D2 verify the observation.

In our second set of experiments, we compute V c for above 6 cases in the first set

of experiments. For each case, we fix λ∗ = λ/2 and plot H(V,λ ), defined in (4.17),

as a function of V with 4 different λ values (3/4λ , λ , 5/4λ , and 6/4λ ). The results

are in Figure 4.2. The analytical results for zeroth order in ε and first order in r tell us

that the graphs for these 4 different λ values should have a common intersection point

with V = Vc. Also, the analytical values of V c are −3.8861, −3.8861, and −1.9430 for
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Cases 1–3, respectively. From Figure 4.2, one sees that these graphs almost go through

the same point and the numerical values of V c are −3.92, −3.92, and −1.96, which are

close to the analytical approximations. Similarly, V c’s for L < R and L > R differ by a

sign and the analytical formulas (4.5) for D1 = D2 verify the observation.

4.5.2 Numerical values of Vc and V c for piecewise constant Q(x) 6= 0

In this section, we consider the problem (2.27)–(2.28) with Q(x) = Q0 = 1 on (1/3,2/3)

and Q(x) = 0 otherwise on [0,1]. Due to the jumps of Q, the singularly perturbed aux-

iliary BVP (4.8)–(4.9) is much near singular for small ε . Since we are focusing on the

numerical examinations of the critical potentials Vc and V c, we thus take ε = 0.02 for

this study rather than ε = 0.002 as in previous part. Other parameters are the same as the

previous section and we will only consider the setting of Case 1.

Applying the strategy described in Section 4.3.1, we first solve the BVP (2.27)–(2.28)

for V = −0.5960. The profiles of φ̄ and ū are shown in Figure 4.3, and those of c1

and c2 in Figure 4.4. We observe that ū have corners around x = 1/3 and x = 2/3;

c2− c1 ≈ Q0 = 1 on the interval (1/3,2/3), where Q 6= 0. The presence of the corners

of ū reflects the fact that each transition layer (one at x = 1/3 and the other at x = 2/3)

consists of two portions (see [24, 58]).

The critical potential Vc is determined as we did for Q= 0 case and the result is shown

in Figure 4.5.

For the critical potential V c, based on Proposition 4.8, we look for saddle points of

H(V,λ ), whose graph is plotted in Figure 4.6. One clearly sees a saddle point of the

surface. The saddle point of this surface will give us the numerical value of V c.
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Figure 4.1: Plots of I(V ;λ ,r)− I0(V ) and Vc for Q = 0.
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Figure 4.4: Profiles of c1 and c2 for Q 6= 0.

82



−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

V

I(
V

;λ
,r

)−
I 0

(V
)

V
c

Figure 4.5: Plot of I(V ;λ ,r)− I0(V ) and Vc for Q 6= 0.

−6

−5

−4

−3

−2

−1

1.4
1.6

1.8
2

2.2
2.4

2.6
2.8

3

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

λ
V

H
(V

,λ
)

Figure 4.6: Plot of H(V,λ ) whose saddle points give V c.

83



Chapter 5

Poisson-Nernst-Planck systems for ion flow with a local

hard-sphere potential for ion size effects

In this chapter, we analyze system (2.27), a one-dimensional steady-state PNP type

model for ionic flow through a membrane channel with fixed boundary ion concentra-

tions (charges) and electric potentials (2.28). A local hard-sphere potential that depends

pointwise on ion concentrations is included in the model to account for ion size effects

on the ionic flow. The model problem is treated as a boundary value problem of a sin-

gularly perturbed differential system. Our analysis is based on the geometric singular

perturbation theory but, most importantly, on specific structures of this concrete model.

The existence of solutions to the boundary value problem for small ion sizes is estab-

lished and, treating the ion sizes as small parameters, we also derive an approximation

of the I-V relation and identify two critical potentials or voltages for ion size effects.

Under electroneutrality (zero net charge) boundary conditions, each of these two criti-

cal potentials separates the potential into two regions over which the ion size effects are

qualitatively opposite to each other. On the other hand, without electroneutrality bound-

ary conditions, the qualitative effects of ion sizes will depend not only on the critical

potentials but also on boundary concentrations. Important scaling laws of I-V relations

and critical potentials in boundary concentrations are obtained. Similar results about ion
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size effects on the flow of matter are also discussed. Under electroneutrality boundary

conditions, the results on the first order approximation in ion diameters of solutions, I-V

relations and critical potentials agree with those with a nonlocal hard-sphere potential

examined in [46].

5.1 Introduction

In this chapter, we study the dynamics of ionic flow, the electrodiffusion of charges,

through ion channels via system (2.27), a one-dimensional steady-state PNP type system

including an additional component, a local hard-sphere (HS) potential, to account for ion

size effects. We are particularly interested in ion size effects on the I-V relation.

In ([46]), the authors provided an analytical treatment of system (2.27) with elec-

troneutrality (zero net charge) boundary conditions and including a nonlocal hard-sphere

potential of the excess component in addition to the ideal component. They treated

the model as a singularly perturbed system and rigorously established the existence and

uniqueness results of the boundary value problem for small ion sizes. Treating ion sizes

as small parameters, they derived an approximation of the I-V relation. Most importantly,

the approximate I-V relation allows them to establish the following results.

(i) There is a critical potential or voltage Vc so that, if the boundary potential V satis-

fies V > Vc, then ion sizes enhance the current I in the sense that the contribution

of ion sizes to the current I is positive; if V <Vc, then ion sizes reduce the current

I.

(ii) There is another critical potential V c so that, if V >V c, then the current I increases

in λ = d2/d1 where d1 and d2 are, respectively, the diameters of the positively and

negatively charged ions; if V <V c, then the current I decreases in λ .
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In [61], among other things, the authors designed an algorithm for numerically detect-

ing these critical potentials without using any analytical formulas for I-V relations. They

demonstrated the effectiveness of this algorithm by conducting two numerical tasks. In

the first one, the authors took the model problem with the same setting as in [46] for

which analytical formulas for Vc and V c are available. The authors numerically com-

puted I-V relations and, applying the algorithm, computed the critical potentials Vc and

V c. They found that the computed values Vc and V c agree well with the values obtained

from the analytical formulas. For the second numerical task, the authors examined a PNP

type model that includes also a nonzero permanent charge Q. For this case, no analyt-

ical formulas for the I-V relations and for the critical potentials are currently available.

But the authors were able to numerically identify the critical potentials by applying their

algorithm.

In this chapter, we study a one-dimensional steady-state PNP system with a local

model for the hard-sphere (HS) potential. The problem has basically the same setting as

that in [46] except that we take a local model for the hard-sphere potential and allow non-

electroneutrality boundary conditions. It is clear that local models have the advantage of

simplicity relative to nonlocal ones. In this chapter, we take a local hard-sphere model

derived from the nonlocal model used in [46] for two reasons: to provide a mathematical

framework for the study of the problem with local hard-sphere models; to compare the

results for the local hard-sphere model with those for the nonlocal hard-sphere model in

[46].

Under electroneutrality boundary conditions, we will show that the local hard-sphere

model yields exactly the same results on the first order approximation (in the diameters

of the ion species) I-V relation and the critical potentials Vc and V c as those of the non-

local hard-sphere model in [46]. This is perhaps well expected. To the contrary, in the

absence of electroneutrality, it is rather surprising that the roles of critical potentials Vc
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and V c on ion size effects are significantly different: the opposite effects of ion sizes

separated by Vc and V c described in (i) and (ii) above now depend on other quantities in

terms of boundary concentrations (Theorems 5.14 and 5.15 and Proposition 5.17). Many

important biological properties of ion channels are controlled through the boundary con-

ditions. Our results provide a concrete situation for which the important I-V relations of

ion channels can depend on boundary conditions sensitively. An observation based on

the I-V relation also reveals the following scaling laws (Theorem 5.28):

(a) the contribution I0 to the I-V relation from the ideal component scales linearly in

boundary concentrations (that is, if one scales the boundary concentrations by a

factor s, then I0 is scaled by s);

(b) the contribution (up to the leading order) to the I-V relation from the hard-sphere

component scales quadratically in boundary concentrations;

(c) both Vc and V c scale invariantly in boundary concentrations.

Results on ion size effects to the flow of matter in Section 5.4.2 again indicate the richness

of ion size effects on the electrodiffusion process.

The general framework for the analysis is the geometric singular perturbation theory–

essentially the same as that for the nonlocal hard-sphere potential in [46]. A major dif-

ference is that the nonlocal hard-sphere potentials disappear in the limiting fast system

but the local ones survive in this limit, and hence, more is involved in the treatment of

the limiting fast dynamics for the local hard-sphere potential case. On the other hand, for

the local hard-sphere potential case, we need not introduce an auxiliary problem as that

for nonlocal case in [46]. A crucial ingredient for the success of our analysis is again

the revealing of a set of integrals that allows us to handle the limiting fast dynamics with

details as for the classical PNP cases.
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The rest of this chapter is organized as follows. In Section 5.2, we describe the one-

dimensional PNP-HS model for ion flows, a local model for hard-sphere potentials, and

the setup of the boundary value problem of the singularly perturbed PNP-HS system. In

Section 5.3, the existence and (local) uniqueness result for the boundary value problem is

established in the framework of the geometric singular perturbation theory. Section 5.4

contains two parts. In Section 5.4.1, we derive an approximation of the I-V relation based

on the analysis in Section 5.3, identify three critical potentials, and examine significant

roles of two of the critical potentials for ion size effects on ionic flows. Important scaling

laws of I-V relations and critical potentials in boundary concentrations are obtained. In

Section 5.4.2, we discuss ion size effects on the flow of matter. This is presented briefly

due to a simple relation between the flow rate of charge and the flow rate of matter.

5.2 Problem Setup

We assume the channel is narrow so that it can be effectively viewed as a one-dimensional

channel and normalize it as the interval [0,1] that connects the interior and the exterior

of the channel. The one-dimensional steady-state Poisson-Nernst-Planck system (2.27)

with the boundary condition (2.28) is studied. An important feature for system (2.27) in

this chapter is that for the electrochemical potential, besides the ideal component, a local

hard-sphere component is included, which is modeled by

1
kT

µ
LHS
i (x) =− ln

(
1−

n

∑
j=1

d jc j(x)

)
+

di ∑
n
j=1 c j(x)

1−∑
n
j=1 d jc j(x)

, (5.1)

where d j is the diameter of the jth ion species.
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As mentioned in the introduction, this local model is an approximation of the well-

known nonlocal model for hard-sphere (hard-rod) used in [46]. Its derivation is provided

in Chapter 2.

The main goal of this paper is to examine the qualitative effect of ion sizes via the

steady-state boundary value problem of (2.27) and (2.28) with the local hard-sphere

(LHS) model (5.1) for the excess potential. We will examine the steady-state bound-

ary value problem in Section 5.3. In Section 5.4, we will obtain approximations for

(2.29) and (2.30) to study ion size effects on the I-V relation and on the flow rate T .

For definiteness, we will take essentially the same setting as that in [46] but without

assuming electroneutrality boundary conditions: z1L1 + z2L2 = z1R1 + z2R2 = 0. Using

the expression (2.5) for the ideal component µ id
i (x), together with

1
kT

d
dx

µ
LHS
1 =

d1(2+d1(c2− c1)−2d2c2)

(1−d1c1−d2c2)2
dc1

dx
+

d1 +d2−d2
1c1−d2

2c2

(1−d1c1−d2c2)2
dc2

dx
,

1
kT

d
dx

µ
LHS
2 =

d1 +d2−d2
1c1−d2

2c2

(1−d1c1−d2c2)2
dc1

dx
+

d2(2+d2(c1− c2)−2d1c1)

(1−d1c1−d2c2)2
dc2

dx
,

(5.2)

system (2.27) becomes

ε2

h(x)
d
dx

(
h(x)

d
dx

φ

)
=−z1c1− z2c2,

dJ1

dx
=

dJ2

dx
= 0,

dc1

dx
=− f1(c1,c2;d1,d2)

dφ

dx
− 1

h(x)
g1(c1,c2,J1,J2;d1,d2),

dc2

dx
= f2(c1,c2;d1,d2)

dφ

dx
− 1

h(x)
g2(c1,c2,J1,J2;d1,d2)

(5.3)
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where

f1(c1,c2;d1,d2) =z1c1− (d1 +d2−d2
1c1−d2

2c2)(z1c1 + z2c2)c1

− z1(d1−d2)c2
1,

f2(c1,c2;d1,d2) =− z2c2 +(d1 +d2−d2
1c1−d2

2c2)(z1c1 + z2c2)c2

+ z2(d2−d1)c2
2,

g1(c1,c2,J1,J2;d1,d2) =
(
(1−d1c1)

2 +d2
2c1c2

)
J1

− c1(d1 +d2−d2
1c1−d2

2c2)J2,

g2(c1,c2,J1,J2;d1,d2) =
(
(1−d2c2)

2 +d2
1c1c2

)
J2

− c2(d1 +d2−d2
1c1−d2

2c2)J1.

(5.4)

Recall the boundary conditions are

φ(0) = V̄ , ci(0) = Li > 0; φ(1) = 0, ci(1) = Ri > 0. (5.5)

5.3 Geometric singular perturbation theory for (5.3)–(5.5)

We will rewrite system (5.3) into a standard form for singularly perturbed systems and

convert the boundary value problem (5.3) and (5.5) to a connecting problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇ and τ = x.

System (5.3) becomes

εφ̇ =u, ε u̇ =−z1c1− z2c2− ε
hτ(τ)

h(τ)
u,

ε ċ1 =− f1(c1,c2;d1,d2)u−
ε

h(τ)
g1(c1,c2,J1,J2;d1,d2),

ε ċ2 = f2(c1,c2;d1,d2)u−
ε

h(τ)
g2(c1,c2,J1,J2;d1,d2)

J̇1 =J̇2 = 0, τ̇ = 1.

(5.1)
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System (5.1) will be treated as a singularly perturbed system with ε as the singular

parameter. Its phase space is R7 with state variables (φ ,u,c1,c2,J1,J2,τ). We have

included constants J1 and J2 in the phase space. A reason for this is explained in the

paragraph below that of display (5.3).

For ε > 0, the rescaling x = εξ of the independent variable x gives rise to

φ
′ =u, u′ =−z1c1− z2c2− ε

hτ(τ)

h(τ)
u,

c′1 =− f1(c1,c2;d1,d2)u−
ε

h(τ)
g1(c1,c2,J1,J2;d1,d2),

c′2 = f2(c1,c2;d1,d2)u−
ε

h(τ)
g2(c1,c2,J1,J2;d1,d2),

J′1 =J′2 = 0, τ
′ = ε,

(5.2)

where prime denotes the derivative with respect to the variable ξ .

For ε > 0, systems (5.1) and (5.2) have exactly the same phase portrait. But their

limiting systems at ε = 0 are different. The limiting system of (5.1) is called the limiting

slow system, whose orbits are called slow orbits or regular layers. The limiting system of

(5.2) is the limiting fast system, whose orbits are called fast orbits or singular (boundary

and/or internal) layers. By a singular orbit of system (5.1) or (5.2), we mean a continuous

and piecewise smooth curve in R7 that is a union of finitely many slow and fast orbits.

Very often, limiting slow and fast systems provide complementary information on state

variables. Therefore, the main task of singularly perturbed problems is to patch the

limiting information together to form a solution for the entire ε > 0 system.

Let BL and BR be the subsets of the phase space R7 defined by

BL ={(V̄ ,u,L1,L2,J1,J2,0) ∈ R7 : arbitrary u,J1,J2},

BR ={(0,u,R1,R2,J1,J2,1) ∈ R7 : arbitrary u,J1,J2},
(5.3)
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where V̄ , L1, L2, R1 and R2 are given in (5.5). Then the original boundary value problem

is equivalent to a connecting problem, namely, finding a solution of (5.1) or (5.2) from

BL to BR (see, for example, [47]).

For ε > 0 small, let ML(ε) be the collection of forward orbits from BL under the flow

and let MR(ε) be that of backward orbits from BR. Since the flow is not tangent to BL

and BR and dimBL = dimBR = 3, we have dimML(ε) = dimMR(ε) = 4. We will show

that ML(ε) and MR(ε) intersect transversally in the phase space R7. Transversality of the

intersection implies dim(ML(ε)∩MR(ε)) = dimML(ε)+ dimMR(ε)− dimR7. It then

follows that dim(ML(ε)∩MR(ε)) = 1 which would allow us to conclude the existence

and (local) uniqueness of a solution for the connecting problem. This is the reason that

we include J1 and J2 in the phase space. Alternatively, one can treat J1 and J2 as param-

eters and work in the phase space R5. Then the corresponding BL and BR would each

be of dimension one, and hence, ML(ε) and MR(ε) would each be of dimension two.

Should ML(ε) and MR(ε) intersect, the intersection cannot be transversal due to the di-

mension counting. To establish the existence and uniqueness result with this alternative

approach, one would have to apply perturbation argument with J1 and J2 as perturbation

parameters.

In what follows, we will consider the equivalent connecting problem for system (5.1)

or (5.2) and construct its solution from BL to BR. The construction process involves two

main steps: the first step is to construct a singular orbit to the connecting problem, and

the second step is to apply geometric singular perturbation theory to show that there is a

unique solution near the singular orbit for small ε > 0.
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5.3.1 Geometric construction of singular orbits

Following the idea in [24, 57, 58], we will first construct a singular orbit on [0,1] that

connects BL to BR. Such an orbit will generally consist of two boundary layers and a

regular layer.

Limiting fast dynamics and boundary layers

By setting ε = 0 in (5.1), we obtain the so-called slow manifold

Z = {u = 0, z1c1 + z2c2 = 0}. (5.4)

By setting ε = 0 in (5.2), we get the limiting fast system

φ
′ =u, u′ =−z1c1− z2c2,

c′1 =− f1(c1,c2;d1,d2)u,

c′2 = f2(c1,c2;d1,d2)u,

J′1 =J′2 = 0, τ
′ = 0.

(5.5)

Note that the slow manifold Z is the set of equilibria of (5.5).

Lemma 5.1. For system (5.5), the slow manifold Z is normally hyperbolic.

Proof. The slow manifold Z is precisely the set of equilibria of (5.5). The lineariza-

tion of (5.5) at each point of (φ ,0,c1,c2,J1,J2,τ) ∈Z has five zero eigenvalues whose

generalized eigenspace is the tangent space of the five-dimensional slow manifold Z of

equilibria, and the other two eigenvalues are ±
√

z1 f1− z2 f2. On the slow manifold Z

where z1c1 + z2c2 = 0, one has, from (5.4),

z1 f1(c1,c2;d1,d2)− z2 f2(c1,c2;d1,d2) = z2
1c1 + z2

2c2.
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Note that f1(c1,c2;d1,d2) has a factor c1 and f2(c1,c2;d1,d2) has a factor c2. It follows

from (c1,c2)-subsystem of (5.5) that {c1 > 0} and {c2 > 0} are invariant under (5.5).

Since c1 and c2 have positive boundary values, c1 and c2 are positive for all x ∈ [0,1].

Therefore, z1 f1(c1,c2;d1,d2)− z2 f2(c1,c2;d1,d2) > 0. Thus Z is normally hyperbolic.

We denote the stable (resp. unstable) manifold of Z by W s(Z ) (resp. W u(Z )). Let

ML be the collection of orbits from BL in forward time under the flow of system (5.5) and

MR be the collection of orbits from BR in backward time under the flow of system (5.5).

Then, for a singular orbit connecting BL to BR, the boundary layer at τ = x = 0 must lie

in NL = ML∩W s(Z ) and the boundary layer at τ = x = 1 must lie in NR = MR∩W u(Z ).

In this subsection, we will determine the boundary layers NL and NR, and their landing

points ω(NL) and α(NR) on the slow manifold Z . The regular layer, determined by the

limiting slow system in §5.3.1, will lie in Z and connect the landing points ω(NL) at

τ = 0 and α(NR) at τ = 1. A singular orbit Γ0∪Λ∪Γ1 is illustrated in Figure 5.1 where

Γ0 ⊂ NL is a boundary layer at τ = 0 and Γ1 ⊂ NR is a boundary layer at τ = 1, and Λ is

a regular layer connecting the landing points of Γ0 and Γ1 on the slow manifold Z to be

constructed in Section 5.3.1. We remark that the boundary layers Γ0 ⊂ NL and Γ1 ⊂ NR

cannot be uniquely determined untill the construction of Λ.

Recall that d1 and d2 are the diameters of the two ion species. For small d1 > 0 and

d2 > 0, we treat (5.5) as a regular perturbation of that with d1 = d2 = 0. While d1 and d2

are small, their ratio is of order O(1). We thus set

d1 = d and d2 = λd (5.6)
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Figure 5.1: A singular orbit Γ0∪Λ∪Γ1 on [0,1]: a boundary layer Γ0 at τ = 0, a regular
layer Λ on Z from τ = 0 to τ = 1, and a boundary layer Γ1 at τ = 1.

and look for solutions

Γ(ξ ;d) = (φ(ξ ;d),u(ξ ;d),c1(ξ ;d),c2(ξ ;d),J1(d),J2(d),τ)

of system (5.5) of the form

φ(ξ ;d) = φ0(ξ )+φ1(ξ )d +o(d), u(ξ ;d) = u0(ξ )+u1(ξ )d +o(d),

c1(ξ ;d) = c10(ξ )+ c11(ξ )d +o(d), c2(ξ ) = c20(ξ )+ c21(ξ )d +o(d),

J1(d) = J10 + J11d +o(d), J2(d) = J20 + J21d +o(d).

(5.7)
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Substituting (5.7) into system (5.5), we obtain, for the zeroth order in d,

φ
′
0 =u0, u′0 =−z1c10− z2c20,

c′10 =− z1c10u0, c′20 =−z2c20u0,

J′10 =J′20 = 0, τ
′ = 0,

(5.8)

and, for the first order in d,

φ
′
1 =u1, u′1 =−z1c11− z2c21,

c′11 =− z1u0c11− z1c10u1 +u0
(
(λ +1)z2c10c20 +2z1c2

10
)
,

c′21 =− z2u0c21− z2c20u1 +u0
(
(λ +1)z1c10c20 +2λ z2c2

20
)
,

J′11 =J′21 = 0, τ
′ = 0.

(5.9)

Recall that we are interested in the solutions Γ0(ξ ;d)⊂NL =ML∩W s(Z ) with Γ0(0;d)∈

BL and Γ1(ξ ;d)⊂ NR = MR∩W u(Z ) with Γ1(0;d) ∈ BR.

Proposition 5.2. Assume that d ≥ 0 is small.

(i) The stable manifold W s(Z ) intersects BL transversally at points

(
V̄ ,ul

0 +ul
1d +o(d),L1,L2,J1(d),J2(d),0

)
,

and the ω-limit set of NL = ML
⋂

W s(Z ) is

ω(NL) =
{
(φ L

0 +φ
L
1 d +o(d),0,cL

10 + cL
11d +o(d),cL

20 + cL
21d +o(d),J1(d),J2(d),0)

}
,

where Ji(d) = Ji0 + Ji1d +o(d), i = 1,2, can be arbitrary and

φ
L
0 =V̄ − 1

z1− z2
ln
−z2L2

z1L1
, z1cL

10 =−z2cL
20 = (z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2 ,
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ul
0 =sgn(z1L1 + z2L2)

√
2
(

L1 +L2 +
z1− z2

z1z2
(z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2

)
;

φ
L
1 =

1−λ

z1− z2
(L1 +L2− cL

10− cL
20),

z1cL
11 =− z2cL

21 = z1cL
10

(
L1 +λL2 +

λ z1− z2

z1− z2
(L1 +L2)+

2(λ z1− z2)

z2
cL

10

)
,

ul
1 =

(L1 +L2)(L1 +λL2)− (cL
10 + cL

20)(c
L
10 +λcL

20)− cL
11− cL

21

ul
0

.

(ii) The unstable manifold W u(Z ) intersects BR transversally at points

(0,ur
0 +ur

1d +o(d),R1,R2,J1(d),J2(d),1) ,

and the α-limit set of NR is

α(NR) =
{
(φ R

0 +φ
R
1 d +o(d),0,cR

10 + cR
11d +o(d),cR

20 + cR
21d +o(d),J1(d),J2(d),1)

}
,

where Ji(d) = Ji0 + Ji1d +o(d), i = 1,2, can be arbitrary and

φ
R
0 =− 1

z1− z2
ln
−z2R2

z1R1
, z1cR

10 =−z2cR
20 = (z1R1)

−z2
z1−z2 (−z2R2)

z1
z1−z2 ,

ur
0 =− sgn(z1R1 + z2R2)

√
2
(

R1 +R2 +
z1− z2

z1z2
(z1R1)

−z2
z1−z2 (−z2R2)

z1
z1−z2

)
;

φ
R
1 =

1−λ

z1− z2
(R1 +R2− cR

10− cR
20),

z1cR
11 =− z2cR

21 = z1cR
10

(
R1 +λR2 +

λ z1− z2

z1− z2
(R1 +R2)+

2(λ z1− z2)

z2
cR

10

)
,

ur
1 =

(R1 +R2)(R1 +λR2)− (cR
10 + cR

20)(c
R
10 +λcR

20)− cR
11− cR

21
ur

0
.

Remark 5.3. When z1L1 + z2L2 = 0, ul
0 = 0. In this case, ul

1 is defined as the limit

of its expression as z1L1 + z2L2 → 0 and it is zero. Similar remark applies to ur
1 when

z1R1 + z2R2 = 0.
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Proof. The stated result for system (5.8) has been obtained in [24, 57, 58]. For system

(5.9), one can check that it has three nontrivial first integrals:

F1 =z1φ1 +
c11

c10
+2c10 +(λ +1)c20,

F2 =z2φ1 +
c21

c20
+2λc20 +(λ +1)c10,

F3 =u0u1− c11− c21− (λ +1)c10c20− c2
10−λc2

20.

We now establish the results for φ L
1 ,c

L
11,c

L
21 and ul

1 for system (5.9). Those for

φ R
1 ,c

R
11,c

R
21 and ur

1 can be established in the similar way.

We note that φ1(0) = c11(0) = c21(0) = 0. Using the integrals F1 and F2, we have

z1φ1 +
c11

c10
+2c10 +(λ +1)c20 = 2L1 +(λ +1)L2,

z2φ1 +
c21

c20
+2λc10 +(λ +1)c10 = 2λL2 +(λ +1)L1.

Therefore

c11 =c10 (2L1 +(λ +1)L2−2c10− (λ +1)c20− z1φ1) ,

c21 =c20 (2λL2 +(λ +1)L1−2λc20− (λ +1)c10− z2φ1) .

Taking the limit as ξ → ∞, we have

φ
L
1 =

1−λ

z1− z2
(L1 +L2− cL

10− cL
20),

cL
11 =cL

10
(
2L1 +(λ +1)L2−2cL

10− (λ +1)cL
20− z1φ

L
1
)
,

cL
21 =cL

20
(
2λL2 +(λ +1)L1−2λcL

20− (λ +1)cL
10− z2φ

L
1
)
.
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In view of the relations z1cL
10 + z2cL

20 = z1cL
11 + z2cL

21 = 0, one can get the formulas for

cL
11,c

L
21 and φ L

1 . We now derive the formula for ul
1 = u1(0).

In view of F3(0) = F3(∞), we have

ul
0ul

1− (λ +1)L1L2−L2
1−λL2

2 =−cL
11− cL

21− (λ +1)cL
10cL

20− (cL
10)

2−λ (cL
20)

2.

The formula for ul
1 follows directly.

For later use, let Γ0 denote the potential boundary layer at x = 0 for system (5.5) and

Let Γ1 denote the potential boundary layer at x = 1 for system (5.5).

Corollary 5.4. Under electroneutrality boundary conditions, that is, z1L1 =−z2L2 = L

and z1R1 =−z2R2 = R,

φ
L
0 = V̄ , z1cL

10 =−z2cL
20 = L; φ

R
0 = 0, z1cR

10 =−z2cR
20 = R,

φ
L
1 = cL

11 = cL
21 = φ

R
1 = cR

11 = cR
21 = 0.

In particular, up to O(d), there is no boundary layer at x = 0 and x = 1.

Limiting slow dynamics and regular layer

Next we construct the regular layer on Z that connects ω(NL) and α(NR). Note that, for

ε = 0, system (5.1) loses most information. To remedy this degeneracy, we follow the

idea in [24, 57, 58] and make a rescaling u = ε p and −z2c2 = z1c1 + εq in system (5.1).

In term of the new variables, system (5.1) becomes

φ̇ =p, ε ṗ = q− ε
hτ(τ)

h(τ)
p, ε q̇ = (z1 f1− z2 f2) p+

z1g1 + z2g2

h(τ)
,

ċ1 =− f1 p− g1

h(τ)
, J̇1 = J̇2 = 0, τ̇ = 1

(5.10)
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where, for i = 1,2,

fi = fi

(
c1,−

z1c1 + εq
z2

;d,λd
)

and gi = gi

(
c1,−

z1c1 + εq
z2

,J1,J2;d,λd
)
.

It is again a singular perturbation problem and its limiting slow system is

q =0, p =− 1
z1(z1− z2)h(τ)c1

2

∑
i=1

zigi
(
c1,−

z1

z2
c1,J1,J2;d,λd

)
,

φ̇ =p,

ċ1 =− f1
(
c1,−

z1

z2
c1;d,λd

)
p− 1

h(τ)
g1
(
c1,−

z1

z2
c1,J1,J2;d,λd

)
,

J̇1 =J̇2 = 0, τ̇ = 1.

(5.11)

In the above, for the expression for p, we have used (5.4) to find

z1 f1

(
c1,−

z1c1

z2
;d,λd

)
− z2 f2

(
c1,−

z1c1

z2
;d,λd

)
= z1(z1− z2)c1.

From system (5.11), the slow manifold is

S =

{
q = 0, p =−

z1g1
(
c1,− z1

z2
c1,J1,J2;d,λd

)
+ z2g2

(
c1,− z1

z2
c1,J1,J2;d,λd

)
z1(z1− z2)h(τ)c1

}
.

Therefore, the limiting slow system on S is

φ̇ =p,

ċ1 =− f1
(
c1,−

z1

z2
c1;d,λd

)
p− 1

h(τ)
g1
(
c1,−

z1

z2
c1,J1,J2;d,λd

)
,

J̇1 =J̇2 = 0, τ̇ = 1,

(5.12)
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where

p =−
z1g1

(
c1,− z1

z2
c1,J1,J2;d,λd

)
+ z2g2

(
c1,− z1

z2
c1,J1,J2;d,λd

)
z1(z1− z2)h(τ)c1

.

As for the layer problem, we look for solutions of (5.12) of the form

φ(x) = φ0(x)+φ1(x)d +o(d),

c1(x) = c10(x)+ c11(x)d +o(d),

J1 = J10 + J11d +o(d), J2 = J20 + J21d +o(d)

(5.13)

to connect ω(NL) and α(NR) given in Proposition 5.2; in particular, for j = 0,1,

(
φ j(0),c1 j(0)

)
=
(
φ

L
j ,c

L
1 j
)
,
(
φ j(1),c1 j(1)

)
=
(
φ

R
j ,c

R
1 j
)
.

From system (5.12) and the definitions of f j’s and g j’s in (5.4), we have

φ̇0 =−
z1J10 + z2J20

z1(z1− z2)h(τ)c10
, ċ10 =

z2 (J10 + J20)

(z1− z2)h(τ)
,

J̇10 =J̇20 = 0, τ̇ = 1,
(5.14)

and

φ̇1 =
(z1J10 + z2J20)c11

z1(z1− z2)h(τ)c2
10

+
z1(1−λ )(J10 + J20)c10− (z1J11 + z2J21)

z1(z1− z2)h(τ)c10
,

ċ11 =
2(λ z1− z2)(J10 + J20)c10 + z2(J11 + J21)

(z1− z2)h(τ)
,

J̇11 =J̇21 = 0, τ̇ = 1.

(5.15)

For convenience, we denote

H(x) =
∫ x

0
h−1(s)ds. (5.16)
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Lemma 5.5. There is a unique solution (φ0(x),c10(x),J10,J20,τ(x)) of (5.14) such that

(φ0(0),c10(0),τ(0)) = (φ L
0 ,c

L
10,0) and (φ0(1),c10(1),τ(1)) = (φ R

0 ,c
R
10,1), (5.17)

where φ L
0 , φ R

0 , cL
10, and cR

10 are given in Proposition 5.2. It is given by

φ0(x) =φ
L
0 +

φ R
0 −φ L

0
lncR

10− lncL
10

ln
(

1− H(x)
H(1)

+
H(x)
H(1)

cR
10

cL
10

)
,

c10(x) =
(

1− H(x)
H(1)

)
cL

10 +
H(x)
H(1)

cR
10,

J10 =
cL

10− cR
10

H(1)

(
1+

z1
(
φ L

0 −φ R
0
)

lncL
10− lncR

10

)
,

J20 =−
z1(cL

10− cR
10)

z2H(1)

(
1+

z2
(
φ L

0 −φ R
0
)

lncL
10− lncR

10

)
,

τ(x) =x.

Proof. The solution of system (5.14) with the initial condition (φ L
0 ,c

L
10,J10,J20,0) that

corresponds to the point (φ L
0 ,0,c

L
10,c

L
20,J10,J20,0) is

φ0(x) = φ
L
0 −

z1J10 + z2J20

z1(z1− z2)

∫ x

0
h−1(s)c−1

10 (s)ds,

c10(x) = cL
10 +

z2 (J10 + J20)

z1− z2
H(x), τ(x) = x.

(5.18)

It follows from the c10-equation and c10(1) = cR
10 that

J10 + J20 =−
(z1− z2)(cL

10− cR
10)

z2H(1)
. (5.19)

Note that, from (5.14),

∫ x

0
h−1(s)c−1

10 (s)ds =
z1− z2

z2(J10 + J20)

∫ x

0

ċ10(s)
c10(s)

ds = H(1)
lncL

10− lnc10(x)
cL

10− cR
10

.
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Thus,

φ0(x) = φ
L
0 −H(1)

z1J10 + z2J20

z1(z1− z2)

lncL
10− lnc10(x)
cL

10− cR
10

.

Applying the boundary condition c10(1) = cR
10 and φ0(1) = φ R

0 , we have

J10 + J20 =−
(z1− z2)(cL

10− cR
10)

z2H(1)
,

z1J10 + z2J20 =
z1(z1− z2)(cL

10− cR
10)(φ

L
0 −φ R

0 )

H(1)(lncL
10− lncR

10)
.

(5.20)

The expressions for J10 and J20, and hence, for φ0(x) and c10(x) follow directly.

For convenience, we define three functions

M = M(L1,L2,R1,R2;λ ), N = N(L1,L2,R1,R2;λ ), P(x) = P(x;L1,L2,R1,R2;λ )

as

M =z1cL
10w(L1,L2)− z1cR

10w(R1,R2)+
z1(λ z1− z2)

z2

(
(cL

10)
2− (cR

10)
2) ,

N =
z1(cL

10− cR
10)

lncL
10− lncR

10
(φ L

1 −φ
R
1 )−

(1−λ )z1

z2

(cL
10− cR

10)
2

lncL
10− lncR

10
+

φ L
0 −φ R

0
lncL

10− lncR
10

M

−
z1(cL

10− cR
10)(w(L1,L2)−w(R1,R2))

(lncL
10− lncR

10)
2 (φ L

0 −φ
R
0 ),

P(x) =
λ z1− z2

z2

(cL
10− cR

10)H(x)
(lncL

10− lncR
10)H(1)

+
cL

10− c10(x)
lncL

10− lncR
10

(
w(L1,L2)

c10(x)
+

λ z1− z2

z2

cL
10

c10(x)

)
− H(x)

z1(lncL
10− lncR

10)c10(x)H(1)
M+

lncL
10− lnc10(x)

z1(lncL
10− lncR

10)(c
L
10− cR

10)
M

(5.21)

where

w(α,β ) = α +λβ +
λ z1− z2

z1− z2
(α +β ).
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Lemma 5.6. There is a unique solution (φ1(x),c11(x),J11,J21,τ(x)) of (5.15) such that

(φ1(0),c11(0),τ(0)) = (φ L
1 ,c

L
11,0) and (φ1(1),c11(1),τ(1)) = (φ R

1 ,c
R
11,1), (5.22)

where φ L
1 , φ R

1 , cL
11, and cR

11 are given in Proposition 5.2. It is given by

φ1(x) =φ
L
1 −

(1−λ )(cL
10− cR

10)H(x)
z2H(1)

+(φ L
0 −φ

R
0 )P(x)−

lnc10(x)− lncL
10

z1(z1− z2)(cR
10− cL

10)
N,

c11(x) =cL
11 +

λ z1− z2

z2

(
c2

10(x)− (cL
10)

2)− H(x)
z1H(1)

M,

J11 =
M

z1H(1)
+

N
H(1)

, J21 =−
M

z2H(1)
− N

H(1)
,

where M, N, and P are defined in (5.21).

Proof. It follows from (5.15) that

c11(x) =cL
11 +

λ z1− z2

z2

(
c2

10(x)− (cL
10)

2)+ z2(J11 + J21)

z1− z2
H(x).

Thus, from Proposition 5.2,

z2(J11 + J21)

z2− z1
H(1) =cL

11− cR
11 +

λ z1− z2

z2

(
(cR

10)
2− (cL

10)
2)

=cL
10w(L1,L2)− cR

10w(R1,R2)+
λ z1− z2

z2

(
(cL

10)
2− (cR

10)
2) ,

or, by the definition of M in (5.21),

J11 + J21 =
z2− z1

z1z2H(1)
M. (5.23)
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Hence,

c11(x) = cL
11 +

λ z1− z2

z2

(
c2

10(x)− (cL
10)

2)− H(x)
z1H(1)

M. (5.24)

Again, from (5.15)

φ1(x) =φ
L
1 +

z1J10 + z2J20

z1(z1− z2)

∫ x

0

c11(s)
h(s)c2

10(s)
ds+

(1−λ )(J10 + J20)

z1− z2
H(x)

− z1J11 + z2J21

z1(z1− z2)

∫ x

0

1
h(s)c10(s)

ds.

Note that, from (5.14) and (5.19),

∫ x

0

c10(s)
h(s)

ds =
z1− z2

z2(J10 + J20)

∫ x

0
c10(s)ċ10(s)ds =

H(1)
2

(cL
10)

2− c2
10(x)

cL
10− cR

10
,

∫ x

0

1
h(s)c2

10(s)
ds =

z1− z2

z2(J10 + J20)

∫ x

0

ċ10(s)
c2

10(s)
ds = H(1)

cL
10− c10(x)

(cL
10− cR

10)c
L
10c10(x)

,

∫ x

0

∫ s
0 h−1(σ)dσ

h(s)c2
10(s)

ds =− z1− z2

z2(J10 + J20)

∫ x

0

∫ s

0
h−1(σ)dσ

d
ds

c−1
10 (s)ds

=
H(1)

cL
10− cR

10

(
H(x)
c10(x)

−
∫ x

0
h−1(s)c−1

10 (s)ds
)

=
H(1)H(x)

(cL
10− cR

10)c10(x)
−H2(1)

lncL
10− lnc10(x)
(cL

10− cR
10)

2 .

These, together with (5.24) and (5.20), yield

∫ x

0

c11(s)
h(s)c2

10(s)
ds =

(
w(L1,L2)+

λ z1− z2

z2
cL

10

)
H(1)(cL

10− c10(x))
(cL

10− cR
10)c10(x)

+
λ z1− z2

z2
H(x)− M

z1(cL
10− cR

10)

(
H(x)
c10(x)

−
lncL

10− lnc10(x)
cL

10− cR
10

H(1)
)
.

A careful calculation then gives

φ1(x) =φ
L
1 −

(1−λ )(cL
10− cR

10)H(x)
z2H(1)

+(φ L
0 −φ

R
0 )P(x)
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− z1J11 + z2J21

z1(z1− z2)

lncL
10− lnc10(x)
cL

10− cR
10

H(1).

Hence,

φ
R
1 =φ

L
1 −

1−λ

z2
(cL

10− cR
10)+(φ L

0 −φ
R
0 )P(1)

− z1J11 + z2J21

z1(z1− z2)

lncL
10− lncR

10
cL

10− cR
10

H(1)

=φ
L
1 −

1−λ

z2
(cL

10− cR
10)−

w(L1,L2)−w(R1,R2)

lncL
10− lncR

10
(φ L

0 −φ
R
0 )

+
M(φ L

0 −φ R
0 )

z1(cL
10− cR

10)
−

(z1J11 + z2J21)(lncL
10− lncR

10)

z1(z1− z2)(cL
10− cR

10)
H(1).

Thus,

H(1)
z1J11 + z2J21

z1− z2
= z1

cL
10− cR

10
lncL

10− lncR
10
(φ L

1 −φ
R
1 )−

(1−λ )z1

z2

(cL
10− cR

10)
2

lncL
10− lncR

10

+
M(φ L

0 −φ R
0 )

lncL
10− lncR

10
− z1

(cL
10− cR

10)(w(L1,L2)−w(R1,R2))

(lncL
10− lncR

10)
2 (φ L

0 −φ
R
0 ) = N.

Formulas for J11, J21, and φ1 follow directly.

Corollary 5.7. Under the electroneutrality conditions at the boundaries, that is, z1L1 =

−z2L2 = L and z1R1 =−z2R2 = R, we have,

J10 =
L−R

z1H(1)

(
1+

z1V̄
lnL− lnR

)
, J20 =

L−R
z2H(1)

(
1+

z2V̄
lnL− lnR

)
;

J11 =
λ z1− z2

z1z2H(1)
R−L

lnR− lnL

(
2(R−L)

lnR− lnL
− (R+L)

)
V̄

+
1−λ

z1z2H(1)
(R−L)2

lnR− lnL
+

λ z1− z2

z2
1z2H(1)

(
R2−L2) ,

J21 =−
λ z1− z2

z1z2H(1)
R−L

lnR− lnL

(
2(R−L)

lnR− lnL
− (R+L)

)
V̄

− 1−λ

z1z2H(1)
(R−L)2

lnR− lnL
− λ z1− z2

z1z2
2H(1)

(
R2−L2) .
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Proof. This follows directly from Lemmas 5.5 and 5.6 and Proposition 5.2.

The slow orbit, up to O(d),

Λ(x;d) = (φ0(x)+φ1(x)d,c10(x)+ c11(x)d,J10 + J11d,J20 + J21d,τ(x)) (5.25)

given in Lemmas 5.5 and 5.6 connects ω(NL) and α(NR). Let M̄L (resp., M̄R) be the

forward (resp., backward) image of ω(NL) (resp., α(NR)) under the slow flow (5.12) on

the five-dimensional slow manifold S . Following the idea in [57], we have

Proposition 5.8. There exists d0 > 0 small depending on boundary conditions so that,

if 0 ≤ d ≤ d0, then, on the five-dimensional slow manifold S , M̄L and M̄R intersects

transversally along the unique orbit Λ(x;d) given in (5.25).

Proof. To see the transversality of the intersection, it suffices to show that ω(NL) · 1

(the image of ω(NL) under the time-one map of the flow of system (5.12)) is transversal

to α(NR) on S
⋂
{τ = 1}. We will show first that, for d = 0, ω(NL) · 1 and α(NR)

intersect transversally on S
⋂
{τ = 1}. We will use (φ ,c1,J1,J2) as a coordinate system

on S
⋂
{τ = 1}. It follows from (5.18) that, for d = 0, ω(NL) ·1 is given by

ω(NL) ·1 = {(φ(J1,J2),c1(J1,J2),J1,J2) : arbitrary J1, J2}

with

φ(J1,J2) =φ
L
0 −

z1J1 + z2J2

z1z2(J1 + J2)
ln

c1(J1,J2)

cL
10

,

c1(J1,J2) =cL
10 +

z2H(1)(J1 + J2)

z1− z2
.
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Thus, the tangent space to ω(NL) ·1 restricted on S
⋂
{τ = 1} is spanned by the vectors

(φJ1 ,(c1)J1 ,1,0) =
(

φJ1,
z2

z1− z2
H(1),1,0

)

and

(φJ2 ,(c1)J2,0,1) =
(

φJ2,
z2

z1− z2
H(1),0,1

)
.

In view of the display in Proposition 5.2, the set α(NR) is parameterized by J1 and J2,

and hence, the tangent space to α(NR) restricted on S
⋂
{τ = 1} is spanned by (0,0,1,0)

and (0,0,0,1). Note that S
⋂
{τ = 1} is four dimensional. Thus, it suffices to show that

the above four vectors are linearly independent or, equivalently, φJ1 6= φJ2 at (J1,J2) =

(J10,J20). The latter can be verified by a direct computation as follows:

φJ1−φJ2 =−
z1− z2

z1z2(J1 + J2)
ln
[

1+
z2(J1 + J2)

(z1− z2)cL
10

H(1)
]
6= 0,

even as J1 +J2→ 0. This establishes the transversal intersection of ω(NL) ·1 and α(NR)

on S
⋂
{τ = 1}. From the smooth dependence of solutions on parameter d, we conclude

that there exists d0 > 0 small, so that, if 0 ≤ d ≤ d0, then ω(NL) ·1 and α(NR) intersect

transversally on S
⋂
{τ = 1}. This completes the proof.

5.3.2 Existence of solutions near the singular orbit

We have constructed a unique singular orbit on [0,1] that connects BL to BR. It consists

of two boundary layer orbits Γ0 from the point

(V̄ ,ul
0 +ul

1d +o(d),L1,L2,J10 + J11d +o(d),J20 + J21d +o(d),0) ∈ BL
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to the point

(φ L,0,cL
1 ,c

L
2 ,J1,J2,0) ∈ ω(NL)⊂Z

and Γ1 from the point

(φ R,0,cR
1 ,c

R
2 ,J1,J2,1) ∈ z1(NR)⊂Z

to the point

(0,ur
0 +ur

1 +o(d),R1,R2,J1,J2,1) ∈ BR,

and a regular layer Λ on Z that connects the two landing points

(φ L,0,cL
1 ,c

L
2 ,J1,J2,0) ∈ ω(NL)

and

(φ R,0,cR
1 ,c

R
2 ,J1,J2,1) ∈ α(NR)

of the two boundary layers.

We now establish the existence of a solution of (5.3) and (5.5) near the singular

orbit constructed above which is a union of two boundary layers and one regular layer

Γ0⋃Λ
⋃

Γ1. The proof follows the same line as that in [24, 57, 58] and the main tool

used is the Exchange Lemma (see, for example [47, 48, 49, 93]) of the geometric singular

perturbation theory.

Theorem 5.9. Let Γ0⋃Λ
⋃

Γ1 be the singular orbit of the connecting problem system

(5.1) associated to BL and BR in system (5.3). Let d0 > 0 be as in Proposition 5.8.

Then, there exists ε0 > 0 small (depending on the boundary conditions and d0) so that, if

0≤ d ≤ d0 and 0 < ε ≤ ε0, then the boundary value problem (5.3) and (5.5) has a unique

smooth solution near the singular orbit Γ0⋃Λ
⋃

Γ1.
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Proof. Let d0 > 0 be as in Proposition 5.8. For 0≤ d ≤ d0, denote ul = ul
0+ul

1d, J1(d) =

J10 + J11d and J2(d) = J20 + J21d. Fix δ > 0 small to be determined. Let

BL(δ ) = {(V̄ ,u,L1,L2,J1,J2,0) ∈ R7 : |u−ul|< δ , |Ji− Ji(d)|< δ}.

For ε > 0, let ML(ε,δ ) be the forward trace of BL(δ ) under the flow of system (5.1) or

equivalently of system (5.2) and let MR(ε) be the backward trace of BR. To prove the

existence and uniqueness statement, it suffices to show that ML(ε,δ ) intersects MR(ε)

transversally in a neighborhood of the singular orbit Γ0⋃Λ
⋃

Γ1. The latter will be

established by an application of Exchange Lemmas.

Note that dimBL(δ )=3. It is clear that the vector field of the fast system (5.2) is

not tangent to BL(δ ) for ε ≥ 0, and hence, dimML(ε,δ )=4. We next apply Exchange

Lemma to track ML(ε,δ ) in the vicinity of Γ0⋃Λ
⋃

Γ1. First of all, the transversality of

the intersection BL(δ )
⋂

W s(Z ) along Γ0 in Proposition 5.2 implies the transversality of

intersection ML(0,δ )
⋂

W s(Z ). Secondly, we have also established that dimω(NL) =

dimNL−1 = 2 in Proposition 5.2 and that the limiting slow flow is not tangent to ω(NL)

in Section 5.3.1. With these conditions, Exchange Lemma ([47, 48, 49, 93]) states that

there exist ρ > 0 and ε1 > 0 so that, if 0 < ε ≤ ε1, then ML(ε,δ ) will first follow Γ0

toward ω(NL) ⊂ Z , then follow the trace of ω(NL) in the vicinity of Λ toward {τ =

1}, leave the vicinity of Z , and, upon exit, a portion of ML(ε,δ ) is C1 O(ε)-close to

W u(ω(NL)× (1− ρ,1+ ρ)) in the vicinity of Γ1 (see Figure 5.2 for an illustration).

Note that dimW u(ω(NL)× (1−ρ,1+ρ)) = dimML(ε,δ ) = 4.

It remains to show that W u(ω(NL)× (1− ρ,1+ ρ)) intersects MR(ε) transversally

since ML(ε,δ ) is C1 O(ε)-close to W u(ω(NL)× (1−ρ,1+ρ)). Recall that, for ε = 0,

MR intersects W u(Z ) transversally along NR (Proposition 5.2); in particular, at γ1 :=
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Figure 5.2: Illustration of the evolution of ML(ε,δ ) from the vicinity of τ = 0 to that of
τ = 1: On the left, ML(ε,δ ) intersects W s(Z ) transversally and approaches ω(NL) in
the vicinity of Γ0; It then follows the trace of ω(NL) in the vicinity of Λ on Z toward the
vicinity of ω(NL) · (1−ρ,1+ρ); A portion of it will leave the vicinity of Z , and, upon
exit from Z , ML(ε,δ ) is C1 O(ε)-close to W u(ω(NL)× (1−ρ,1+ρ)) in the vicinity of
Γ1. In the figure, W u(ω(NL)× (1−ρ,1+ρ)) is denoted by W u.

α(Γ1) ∈ α(NR)⊂Z , we have

Tγ1MR = Tγ1α(NR)+Tγ1W
u(γ1)+ span{Vs}

where, Tγ1W
u(γ1) is the tangent space of the one-dimensional unstable fiber W u(γ1) at γ1

and the vector Vs 6∈ Tγ1W
u(Z ) (the latter follows from the transversality of the intersec-

tion of MR and W u(Z )). Also,

Tγ1W
u(ω(NL)× (1−ρ,1+ρ)) = Tγ1(ω(NL) ·1)+ span{Vτ}+Tγ1W

u(γ1)

where the vector Vτ is the tangent vector to the τ-axis as the result of the interval factor

(1−ρ,1+ρ). Recall from Proposition 5.8 that ω(NL) ·1 and α(NR) are transversal on
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Z ∩{τ = 1}. Therefore, at γ1, the tangent spaces Tγ1MR and Tγ1W
u(ω(NL)× (1−ρ,1+

ρ)) contain seven linearly independent vectors: Vs, Vτ , Tγ1W
u(γ1) and the other four

from Tγ1(ω(NL) ·1) and Tγ1α(NR); that is, MR and W u(ω(NL)× (1−ρ,1+ρ)) intersect

transversally. We thus conclude that, there exists 0 < ε0 ≤ ε1 so that, if 0 < ε ≤ ε0, then

ML(ε,δ ) intersects MR(ε) transversally.

For uniqueness, note that the transversality of the intersection ML(ε,δ )
⋂

MR(ε) im-

plies dim(ML(ε,δ )
⋂

MR(ε)) = dimML(ε,δ )+ dimMR(ε)− 7 = 1. Thus, there exists

δ0 > 0 such that, if 0 < δ ≤ δ0, the intersection ML(ε,δ )
⋂

MR(ε) consists of precisely

one solution near the singular orbit Γ0⋃Λ
⋃

Γ1.

5.4 Ion size effects on the flows of charge and matter

The analysis in the previous sections not only establishes the existence of solutions for

the boundary value problem (5.3) and (5.5) but also provides quantitative information on

the solution that allows us to extract explicit approximations to the current I and the

flow rate of matter, T , for small ε and d. From the explicit approximations, we are able

to identify some critical values for potential V that characterize ion size effects on the

ionic flow. A number of scaling laws will be also obtained. Their consequences of ion

size effects are discussed.

5.4.1 I-V relation, critical potentials, and scaling laws

I-V relation and its approximation

For fixed boundary concentrations L1, L2, R1 and R2 in (??), we express the I-V relation

in (5.1) as

I (V ;λ ,ε,d) = I0(V ;ε)+ I1(V ;λ ,ε)d +o(d), (5.1)
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where I0(V ;ε) is the I-V relation without counting the ion size effect and I1(V ;λ ,ε)d is

the leading term containing ion size effect on I-V relation.

Recall that we denote H(1) =
∫ 1

0 h−1(s)ds in (5.16).

Theorem 5.10. In formula (5.1), one has

I0(V ;0) =ρ00(L1,L2,R1,R2)+ρ01(L1,L2,R1,R2)
e

kT
V,

I1(V ;λ ,0) =ρ10(L1,L2,R1,R2,λ )+ρ11(L1,L2,R1,R2;λ )
e

kT
V,

where

ρ00 =
z1(D1−D2)(cL

10− cR
10)

H(1)
+

z1(z1D1− z2D2)(cL
10− cR

10)

H(1)(lncL
10− lncR

10)
ln

L1R2

L2R1
,

ρ01 =
z1(z1D1− z2D2)(cL

10− cR
10)

H(1)(lncL
10− lncR

10)
,

ρ10 =
z1(D1−D2)

H(1)

[
cL

10w(L1,L2)− cR
10w(R1,R2)+

λ z1− z2

z2

(
(cL

10)
2− (cR

10)
2)]

− z1(z1D1− z2D2)

H(1)

[
1−λ

z2

(cL
10− cR

10)
2

lncL
10− lncR

10
−

cL
10− cR

10
lncL

10− lncR
10
(φ L

1 −φ
R
1 )

]
+

z1(z1D1− z2D2)

(z1− z2)H(1)
cL

10w(L1,L2)− cR
10w(R1,R2)

lncL
10− lncR

10
ln

L1R2

L2R1

+
z1(λ z1− z2)(z1D1− z2D2)

(z1− z2)z2H(1)
(cL

10)
2− (cR

10)
2

lncL
10− lncR

10
ln

L1R2

L2R1

− z1(z1D1− z2D2)

(z1− z2)H(1)
(cL

10− cR
10)(w(L1,L2)−w(R1,R2))

(lncL
10− lncR

10)
2 ln

L1R2

L2R1
,

ρ11 =
z1(z1D1− z2D2)

H(1)
cL

10w(L1,L2)− cR
10w(R1,R2)

lncL
10− lncR

10

+
z1(λ z1− z2)(z1D1− z2D2)

z2H(1)
(cL

10)
2− (cR

10)
2

lncL
10− lncR

10
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− z1(z1D1− z2D2)

H(1)
(cL

10− cR
10)(w(L1,L2)−w(R1,R2))

(lncL
10− lncR

10)
2 ,

where cL
10, cR

10, φ L
1 and φ R

1 are given in Proposition 5.2 and

w(α,β ) = α +λβ +
λ z1− z2

z1− z2
(α +β ).

Proof. For the zeroth order in ε , it follows from

I (V ;λ ,0,d) =z1J1 + z2J2 = z1D1J1 + z2D2J2

=(z1D1J10 + z2D2J20)+(z1D1J11 + z2D2J21)d +o(d)
(5.2)

that

I0(V ;0) = z1D1J10 + z2D2J20 and I1(V ;λ ,0) = z1D1J11 + z2D2J21.

The formulas for I0(V ;0) and I1(V ;0) follow directly from Lemmas 5.5 and 5.6.

Corollary 5.11. Under the electroneutrality conditions z1L1 = −z2L2 = L and z1R1 =

−z2R2 = R, one has

I0(V ;0) =
(D1−D2)(L−R)

H(1)
+

(z1D1− z2D2)(L−R)
H(1)(lnL− lnR)

e
kT

V,

I1(V ;λ ,0) =
(λ z1− z2)(D2−D1)(L2−R2)

z1z2H(1)
− (1−λ )(z1D1− z2D2)(L−R)2

z1z2H(1)(lnL− lnR)

− (λ z1− z2)(z1D1− z2D2)(L−R)2

z1z2H(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
−2
)

e
kT

V.

In particular, for fixed R > 0, one has

lim
L→R

I0(V ;0) =
(z1D1− z2D2)R

H(1)
e

kT
V and lim

L→R
I1(V ;λ ,0) = 0.
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Proof. Assume z1L1 = −z2L2 = L and z1R1 = −z2R2 = R. It can be checked directly

that

ρ00 =
(D1−D2)(L−R)

H(1)
, ρ01 =

(z1D1− z2D2)(L−R)
H(1)(lnL− lnR)

,

ρ10 =
(λ z1− z2)(D2−D1)(L2−R2)

z1z2H(1)
− (1−λ )(z1D1− z2D2)(L−R)2

z1z2H(1)(lnL− lnR)
,

ρ11 =−
(λ z1− z2)(z1D1− z2D2)(L−R)2

z1z2H(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
−2
)
.

(5.3)

The formulas for I0(V ;0) and I1(V ;0) then follow easily. The two limits can be shown

easily too.

Remark 5.12. The above formulas for I0(V ;0) and I1(V ;λ ,0) agree with those in [46]

except for a factor 2H(1). The factor H(1) does not appear in [46] since it is assumed

there that h(x) = 1, and hence, H(1) = 1. The factor 2 in front of H(1) is due to the fact

that we are expending the I-V relation in the diameter d here instead of the radius r in

[46]. As we mentioned in the introduction that there is a major difference between the

analysis for the local hard sphere in this paper and that for the nonlocal model in [46].

Nevertheless, the agreement on I0(V ;0) and I1(V ;λ ,0) is not a surprise since we are

using the local hard sphere potential which is obtained as the expansion in the variable

d from the nonlocal one used in [46].

Critical potentials and ion size effects on I-V relations

Based on the approximation of I-V relations in Theorem 5.10, we will identify three crit-

ical potentials and discuss their roles in characterizing ion size effects on I-V relations.

Definition 5.13. We define three potentials V0, Vc and V c by

I0(V0;0) = 0, I1(Vc;λ ,0) = 0,
d

dλ
I1(V c;λ ,0) = 0.
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For ion channels, the reversal potential is defined to be the potential V such that

I (V ;λ ,ε) = 0. Thus, the potential V0 is simply the zeroth order approximation in ε and

d of the reversal potential. The critical potentials Vc and V c are examined for the first

time in [46] for a nonlocal hard-sphere model. The significance of the two critical values

Vc and V c is apparent from their definitions. The value Vc is the potential that balances

ion size effect on I-V relations and the value V c is the potential that separates the relative

size effect on I-V relations. We provide precise statements below. First of all, note that

I1(V ;λ ,0) is affine in V and in λ . Thus, quantities ∂V I1(V ;λ ,0) and Vc depend on the

boundary conditions L1, L2, R1, R2 and the ratio λ of ion sizes only; ∂ 2
V λ

I1(V ;λ ,0) and

V c depend on the boundary conditions L1, L2, R1, R2 but not on λ .

Theorem 5.14. Suppose ∂V I1(V ;λ ,0)> 0 (resp. ∂V I1(V ;λ ,0)< 0).

If V > Vc (resp. V < Vc), then, for small ε > 0 and d > 0, the ion sizes enhance the

current I ; that is, I (V ;ε,d)> I (V ;ε,0);

If V < Vc (resp. V > Vc), then, for small ε > 0 and d > 0, the ion sizes reduce the

current I ; that is, I (V ;ε,d)< I (V ;ε,0).

Theorem 5.15. Suppose ∂ 2
V λ

I1(V ;λ ,0)> 0 (resp. ∂ 2
V λ

I1(V ;λ ,0)< 0).

If V > V c (resp. V < V c), then, for small ε > 0 and d > 0, the larger the negatively

charged ion the larger the current; that is, the current I is increasing in λ ;

If V <V c (resp. V >V c), then, for small ε > 0 and d > 0, the smaller the negatively

charged ion the larger the current; that is, the current I is decreasing in λ .

The following result in [46] can be checked easily.

Proposition 5.16. Assume electroneutrality conditions z1L1 = −z2L2 = L and z1R1 =

−z2R2 = R, and L 6= R. Then,

∂V I1(V ;λ ,0)> 0 and ∂
2
V λ

I1(V ;λ ,0)> 0.
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As R→ L, ∂V I1(V ;λ ,0)→ 0 and ∂ 2
V λ

I1(V ;λ ,0) = O((L−R)2).

While both ∂V I1(V ;λ ,0) and ∂ 2
V λ

I1(V ;λ ,0) are non-negative under electroneutrality

conditions, in general, they can be negative. We do not have a complete result for the

general case but the following partial result.

Proposition 5.17. For any L > 0, R∗1 > 0 and R∗2 > 0 with R∗1R∗2 = L2, as (R1,R2)→

(R∗1,R
∗
2),

∂V I1(V ;λ ,0) =
e

kT
ρ11(L,L,R1,R2;λ )

→ e(D1 +D2)L
4kT H(1)R∗1

(R∗1−L)((3+λ )R∗1− (1+3λ )L) .

The latter is negative if

either L < R∗1 <
1+3λ

3+λ
L for λ > 1 or

1+3λ

3+λ
L < R∗1 < L for λ < 1.

As (R1,R2)→ (R∗1,R
∗
2),

∂V λ I1(V ;λ ,0) =
e

kT
∂λ ρ11(L,L,R1,R2;λ )→ e(D1 +D2)L

4kT H(1)R∗1
(R∗1−L)(R∗1−3L) .

The latter is negative if L < R∗1 < 3L.

Proof. For z1 =−z2 = 1, we have

∂V I1(V ;λ ,0) =
e

kT
ρ11(L1,L2,R1,R2;λ ),

=
2e(D1 +D2)

kT H(1)
R1/2

1 R1/2
2 w(R1,R2)−L1/2

1 L1/2
2 w(L1,L2)

ln(R1R2)− ln(L1L2)

− 2e(1+λ )(D1 +D2)

kT H(1)
R1R2−L1L2

ln(R1R2)− ln(L1L2)

− 4e(D1 +D2)

kT H(1)
R1/2

1 R1/2
2 −L1/2

1 L1/2
2

ln(R1R2)− ln(L1L2)

w(R1,R2)−w(L1,L2)

ln(R1R2)− ln(L1L2)
.
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Recall from Theorem 5.10 that, for z1 =−z2 = 1,

w(α,β ) = α +λβ +
1+λ

2
(α +β ).

For fixed a > 0 and b > 0, we set

ρ(x,y;a,b) =
H(1)

D1 +D2
ρ11(a2,b2;x2,y2;λ ).

Then, a direct calculation yields

ρ(x,y;a,b) =
xy−ab

ln(xy)− ln(ab)
w1(x2,y2)− (1+λ )

x2y2−a2b2

ln(xy)− ln(ab)

− xy−ab−ab(ln(xy)− ln(ab))
(ln(xy)− ln(ab))2 (w1(x2,y2)−w1(a2,b2)).

Note that, as z = xy→ ab,

z−ab
lnz− ln(ab)

→ ab,
z−ab−ab(lnz− ln(ab))

(lnz− ln(ab))2 → ab
2
,

z2−a2b2

lnz− ln(ab)
→ 2a2b2.

Thus, as x→ x0 and y→ y0 with x0y0 = ab,

ρ(x,y;a,b)→ abw1(x2
0,y

2
0)−

ab
2
(
w1(x2

0,y
2
0)−w1(a2,b2)

)
−2(1+λ )a2b2

=
ab
2
(
w1(x2

0,y
2
0)+w1(a2,b2)

)
−2(1+λ )a2b2

=
ab
2
(
w1(x2

0,y
2
0)+w1(a2,b2)−4(1+λ )ab

)
=

ab
2

(
3+λ

2
x2

0 +
1+3λ

2
y2

0 +
3+λ

2
a2 +

1+3λ

2
b2−4(1+λ )ab

)
=

ab
2x2

0

(
3+λ

2
x4

0 +

(
3+λ

2
a2 +

1+3λ

2
b2−4(1+λ )ab

)
x2

0 +
1+3λ

2
a2b2

)
.
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In particular, for a = b, as x→ x0 and y→ y0 with x0y0 = a2,

ρ(x,y;a,a)→ a2

2x2
0

(
3+λ

2
x4

0−2(1+λ )a2x2
0 +

1+3λ

2
a4
)

=
a2

2x2
0

(
x2

0−a2)(3+λ

2
x2

0−
1+3λ

2
a2
)
.

The latter is negative if

either a < x0 <

√
1+3λ

3+λ
a for λ > 1 or

√
1+3λ

3+λ
a < x0 < a for λ < 1.

It can be directly translated to the statements for ρ11 and ∂λ ρ11.

In the rest of this part, we discuss a number of properties of the critical potentials. It

follows from Definition 5.13 and Theorem 5.10 that

Proposition 5.18. The potentials V0, Vc and V c have the following expressions

V0 :=V0(L1,L2,R1,R2) =−
kT
e

ρ00(L1,L2,R1,R2)

ρ01(L1,L2,R1,R2)
,

Vc :=Vc(L1,L2,R1,R2;λ ) =− kT
e

ρ10(L1,L2,R1,R2;λ )

ρ11(L1,L2,R1,R2;λ )
,

V c :=V c(L1,L2,R1,R2;λ ) =− kT
e

ρ10,λ (L1,L2,R1,R2;λ )

ρ11,λ (L1,L2,R1,R2;λ )
.

Remark 5.19. The critical potentials V0, Vc and V c are independent of the cross-section

area h(x) of the channel.

When electroneutrality conditions z1L1 = −z2L2 = L and z1R1 = −z2R2 = R hold,

we write

V0(L,R) :=V0(L1,L2,R1,R2),

Vc(L,R;λ ) :=Vc(L1,L2,R1,R2;λ ),

119



V c(L,R;λ ) :=V c(L1,L2,R1,R2;λ ).

Corollary 5.20. Assume the electroneutrality boundary conditions z1L1 = −z2L2 = L

and z1R1 =−z2R2 = R. Then, we have

V0(L,R) =
kT
e

(D1−D2)

z1D1− z2D2
ln

R
L
,

Vc(L,R;λ ) =
kT
e

λ −1
λ z1− z2

f
(

L
R

)
− kT

e
D1−D2

z1D1− z2D2
g
(

L
R

)
, if L 6= R,

V c(L,R;λ ) =
kT
e

1
z1

f
(

L
R

)
− kT

e
D1−D2

z1D1− z2D2
g
(

L
R

)
, if L 6= R,

where, for x > 0,

f (x) =
(x−1) lnx

(1+ x) lnx−2(x−1)
, g(x) =

(1+ x)(lnx)2

(1+ x) lnx−2(x−1)
. (5.4)

Proof. The formulas follow directly from Proposition 5.18 and display (5.3).

Lemma 5.21. For the functions f and g defined in (5.4), one has

(i) f (x) =− f (1/x) and g(x) =−g(1/x);

(ii) lim
x→1+

f (x) lnx = 6, lim
x→∞

f (x) = 1, and f ′(x)< 0 for x > 1;

(iii) lim
x→1+

g(x) lnx = 12, lim
x→∞

g(x)
lnx

= 1, and g(x) has a unique positive minimum in

(1,∞).

Proof. The verifications of these properties are elementary.

As a direct consequence of Corollary 5.20 and Lemma 5.21, one has

Corollary 5.22. Assume the electroneutrality boundary conditions z1L1 = −z2L2 = L

and z1R1 =−z2R2 = R. Then,
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(i) V0(L,R) =−V0(R,L), Vc(L,R;λ ) =−Vc(R,L;λ ), V c(L,R;λ ) =−V c(R,L;λ );

(ii) for L≥R, V0(L,R) is decreasing (resp. increasing) in L if D1 >D2 (resp. D1 <D2),

and, for fixed R > 0, lim
L→R

V0(L,R) = 0;

(iii) for fixed R > 0,

lim
L→R

Vc(L,R;λ )(lnL− lnR) =
kT
e

(
6(λ −1)
λ z1− z2

− 12(D1−D2)

z1D1− z2D2

)
,

lim
L→R

V c(L,R;λ )(lnL− lnR) =
kT
e

6z1(D2−D1)+6(z1− z2)D2

z1(z1D1− z2D2)
,

lim
L→∞

Vc(L,R;λ )

lnL− lnR
= lim

L→∞

V c(L,R;λ )

lnL− lnR
=−kT

e
D1−D2

z1D1− z2D2
;

(5.5)

(iv) V c(L,R;λ )−Vc(L,R;λ ) =
kT
e

z1− z2

z1(λ z1− z2)
f
(

L
R

)
, and hence, for fixed R > 0,

lim
L→R

(V c(L,R;λ )−Vc(L,R;λ ))(lnL− lnR) =
kT
e

6(z1− z2)

z1(λ z1− z2)
,

lim
L→∞

(V c(L,R;λ )−Vc(L,R;λ )) = 1.

Scaling laws

Next result concerns the dependences of I0, I1, V0, Vc and V c on the boundary concentra-

tions. For this discussion, we include the boundary conditions in the arguments of I0, I1,

V0, Vc and V c; for example, we write I0 as I0(V ;L1,L2,R1,R2), etc..

Theorem 5.23. The following scaling laws hold,

(i) I0 scales linearly in boundary concentrations, that is, for any s > 0,

I0(V ;sL1,sL2,sR1,sR2) = sI0(V ;L1,L2,R1,R2);
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(ii) I1(V ;sL1,sL2,sR1,sR2) scales quadratically in boundary concentrations, that is,

for any s > 0,

I1(V ;sL1,sL2,sR1,sR2) = s2I1(V ;L1,L2,R1,R2);

(iii) V0, Vc and V c are invariant under scaling in boundary concentrations, that is, for

any s > 0,

V0(sL1,sL2,sR1,sR2) =V0(L1,L2,R1,R2),

Vc(sL1,sL2,sR1,sR2) =Vc(L1,L2,R1,R2),

V c(sL1,sL2,sR1,sR2) =V c(L1,L2,R1,R2).

Proof. A direct observation gives

ρ00(sL1,sL2,sR1,sR2) =sρ00(L1,L2,R1,R2),

ρ01(sL1,sL2,sR1,sR2) =sρ01(L1,L2,R1,R2),

ρ10(sL1,sL2,sR1,sR2,λ ) =s2
ρ10(L1,L2,R1,R2;λ ),

ρ11(sL1,sL2,sR1,sR2,λ ) =s2
ρ11(L1,L2,R1,R2;λ ).

The above scaling laws then follow from Theorem 5.10 and Proposition 5.18.

Remark 5.24. (i) Note that I0 and V0 are not linear in boundary concentrations, and I1,

Vc and V c are not quadratic in boundary concentrations.

(ii) Recall, from (5.1), that the zeroth order in ε and first order in d approximation

of the I-V relation I (V ;λ ,ε,d) is I0 + I1d. Since I0 and I1 scale differently in boundary

concentrations, the approximation I0 + I1d does not have a simple scaling law.
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(iii) It follows from the scaling laws for I0 and I1 that, at higher ion concentrations,

the ion size effect becomes more significant. This is well expected. On the other hand,

our scaling law results reveal a concrete way on how the ion size effect is manifested as

the concentrations increase.

5.4.2 The flow rate T of matter

In this part, we briefly discuss ion size effects on the rate T . Recall from (2.30) that The

flow rate T of matter is

T (V ;λ ,ε,d) = J1 +J2 = D1J1 +D2J2.

We have the following observation. Note that J1 and J2 are independent of D1 and D2.

We will indicate the dependence of T and I on D1 and D2 explicitly and omit their

dependences on other variables; that is, we denote the current I (V ;λ ,ε,d) in Section

5.4.1 by I (D1,D2), and T (V ;λ ,ε,d) by T (D1,D2). Then,

T (D1,D2) = D1J1 +D2J2 = z1
D1

z1
J1 + z2

D2

z2
J2 = I

(
D1

z1
,
D2

z2

)
. (5.6)

Therefore, all results in Section 5.4.1 on the current I can be translated to results on T

by replacing D1 and D2 in Section 5.4.1 with D1/z1 and D2/z2, respectively. We will

thus collect the results related to T only.

Similar to the expression for I in Section 5.4.1, we express T as

T (V ;λ ,ε,d) = T0(V ;ε)+T1(V ;λ ,ε)d +o(d). (5.7)
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Theorem 5.25. In the expression (5.7), one has

T0(V ;0) =D1J10 +D2J20 = σ00(L1,L2,R1,R2)+σ01(L1,L2,R1,R2)
e

kT
V,

T1(V ;λ ,0) =D1J11 +D2J21 = σ10(L1,L2,R1,R2;λ )+σ11(L1,L2,R1,R2;λ )
e

kT
V,

where

σ00 =
(z2D1− z1D2)(cL

10− cR
10)

z2H(1)
+

z1(D1−D2)(cL
10− cR

10)

H(1)(lncL
10− lncR

10)
(ln(L1R2)− ln(L2R1)),

σ01 =
z1(D1−D2)(cL

10− cR
10)

H(1)(lncL
10− lncR

10)
,

σ10 =
z2D1− z1D2

z2H(1)

[
cL

10w(L1,L2)− cR
10w(R1,R2)+

λ z1− z2

z2

(
(cL

10)
2− (cR

10)
2)]

− z1(D1−D2)

H(1)

[
1−λ

z2

(cL
10− cR

10)
2

lncL
10− lncR

10
−

cL
10− cR

10
lncL

10− lncR
10
(φ L

1 −φ
R
1 )

]
+

z1(D1−D2)

(z1− z2)H(1)
cL

10w(L1,L2)− cR
10w(R1,R2)

lncL
10− lncR

10
(ln(L1R2)− ln(L2R1))

+
z1(λ z1− z2)(D1−D2)

(z1− z2)z2H(1)
(cL

10)
2− (cR

10)
2

lncL
10− lncR

10
(ln(L1R2)− ln(L2R1))

− z1(D1−D2)

(z1− z2)H(1)
(cL

10− cR
10)(w(L1,L2)−w(R1,R2))

(lncL
10− lncR

10)
2 (ln(L1R2)− ln(L2R1)),

σ11 =
z1(D1−D2)

H(1)
cL

10w(L1,L2)− cR
10w(R1,R2)

lncL
10− lncR

10

+
z1(λ z1− z2)(D1−D2)

z2H(1)
(cL

10)
2− (cR

10)
2

lncL
10− lncR

10

− z1(D1−D2)

H(1)
(cL

10− cR
10)(w(L1,L2)−w(R1,R2))

(lncL
10− lncR

10)
2 .
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Definition 5.26. Define three potentials V̂0, V̂c and V̂ c by

T0(V̂0;0) = 0, T1(V̂c;λ ,0) = 0,
d

dλ
T1(V̂ c;λ ,0) = 0.

It follows from the definition that

Proposition 5.27. The potentials V̂0, V̂c and V̂ c have the following expressions

V̂0 =−
kT
e

σ00(L1,L2,R1,R2)

σ01(L1,L2,R1,R2)
,

V̂c =−
kT
e

σ10(L1,L2,R1,R2;λ )

σ11(L1,L2,R1,R2;λ )
,

V̂ c =− kT
e

σ10,λ (L1,L2,R1,R2;λ )

σ11,λ (L1,L2,R1,R2;λ )
.

We have the following scaling laws:

Theorem 5.28. For any s > 0,

σ00(sL1,sL2,sR1,sR2) =sσ00(L1,L2,R1,R2),

σ01(sL1,sL2,sR1,sR2) =sσ01(L1,L2,R1,R2),

σ10(sL1,sL2,sR1,sR2,λ ) =s2
σ10(L1,L2,R1,R2;λ ),

σ11(sL1,sL2,sR1,sR2,λ ) =s2
σ11(L1,L2,R1,R2;λ ).

As a consequence, T0(V ;0) scales linearly in boundary concentrations and T1(V ;λ ,0)

scales quadratically in boundary concentrations, and the values V̂0, V̂c and V̂ c are invari-

ant under scaling in boundary concentrations.

Theorem 5.29. Suppose ∂V T1(V ;λ ,0)> 0 (resp. ∂V T1(V ;λ ,0)< 0).

If V > V̂c (resp. V < V̂c), then, for small ε > 0 and d > 0, the ion sizes enhance T ;

that is, T (V ;ε,d)> T (V ;ε,0);
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If V < V̂c (resp. V > V̂c), then, for small ε > 0 and d > 0, the ion sizes reduce T ;

that is, T (V ;ε,d)< T (V ;ε,0).

Theorem 5.30. Suppose ∂ 2
V λ

T1(V ;λ ,0)> 0 (resp. ∂ 2
V λ

T1(V ;λ ,0)< 0).

If V > V̂ c (resp. V < V̂ c), then, for small ε > 0 and d > 0, the larger the negatively

charged ion the larger T ; that is, T increases λ ;

If V < V̂ c (resp. V > V̂ c), then, for small ε > 0 and d > 0, the smaller the negatively

charged ion the larger T ; that is, T decreases λ .

Corollary 5.31. Assume the electroneutrality conditions z1L1 =−z2L2 = L and z1R1 =

−z2R2 = R, and L 6= R. Then

T0(V ;0) =
(z2D1− z1D2)(L−R)

z1z2H(1)
+

(D1−D2)(L−R)
H(1)(lnL− lnR)

e
kT

V,

T1(V ;λ ,0) =
(λ z1− z2)(z2D2− z1D1)(L2−R2)

z2
1z2

2H(1)
− (1−λ )(D1−D2)(L−R)2

z1z2H(1)(lnL− lnR)

− (λ z1− z2)(D1−D2)(L−R)2

z1z2H(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
−2
)

e
kT

V.

and hence,

V̂0 =
kT
e
(z2D1− z1D2)(lnR− lnL)

z1z2(D1−D2)
,

V̂c =
kT
e

(λ −1)(lnL− lnR)(L−R)
(λ z1− z2)[(lnL− lnR)(L+R)−2(L−R)]

− kT
e

(z2D1− z1D2)(lnL− lnR)2(L+R)
z1z2(D1−D2)[(lnL− lnR)(L+R)−2(L−R)]

,

V̂ c =
kT
e

(lnL− lnR)(L−R)
z1[(lnL− lnR)(L+R)−2(L−R)]

− kT
e

(z2D1− z1D2)(lnL− lnR)2(L+R)
z1z2(D1−D2)[(lnL− lnR)(L+R)−2(L−R)]

.
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Note also that, under electroneutrality conditions,

∂V T1(V ;λ ,0) =− e(λ z1− z2)(D1−D2)(L−R)2

z1z2kT H(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
−2
)

∂V λ T1(V ;λ ,0) =− (D1−D2)(L−R)2

z2H(1)(lnL− lnR)2

(
(L+R)(lnL− lnR)

L−R
−2
)

e
kT

.

Proposition 5.32. Assume electroneutrality conditions z1L1 = −z2L2 = L and z1R1 =

−z2R2 = R, and L 6= R. If D1 > D2, then

∂V T1(V ;λ ,0)> 0 and ∂
2
V λ

T1(V ;λ ,0)> 0;

if D1 < D2, then

∂V T1(V ;λ ,0)< 0 and ∂
2
V λ

T1(V ;λ ,0)< 0.

In either case, as R→ L,

∂V T1(V ;λ ,0)→ 0 and ∂
2
V λ

T1(V ;λ ,0) = O((L−R)2).

Proof. It can be checked directly or follows from Theorem 5.16 and the relation (5.6)

between T1 and I1.

In general, ∂V T1(V ;λ ,0) and ∂ 2
V λ

T1(V ;λ ,0) can be negative (resp. positive) for D1 >

D2 (resp. D1 < D2). In particular, we have

Proposition 5.33. For z1 =−z2 = 1 and for any L > 0, R∗1 > 0 and R∗2 > 0 with R∗1R∗2 =

L2, as (R1,R2)→ (R∗1,R
∗
2),

∂V T1(V ;λ ,0)→ (D1−D2)L
4H(1)R∗1

(R∗1−L)((3+λ )R∗1− (1+3λ )L) . (5.8)
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For D1 > D2 (resp. D1 < D2), the limit is negative (resp. positive) if

either L < R∗1 <
1+3λ

3+λ
L for λ > 1 or

1+3λ

3+λ
L < R∗1 < L for λ < 1.

As (R1,R2)→ (R∗1,R
∗
2),

∂V λ T1(V ;λ ,0)→ (D1−D2)L
4H(1)R∗1

(R∗1−L)(R∗1−3L) .

For D1 > D2 (resp. D1 < D2), the limit is negative (resp. positive) if L < R∗1 < 3L.

Proof. It follows from Theorem 5.17 and the relation (5.6) between T1 and I1.
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Chapter 6

Summary

There are two parts in this chapter. In the first part we briefly summarize the results of the

last three chapters. In the second part, a brief discussion of our future work is provided.

6.1 Summary of results

As a basic electrodiffusion equations modeling, the Poisson-Nernst-Planck system has

been studied to a great extent both analytically and numerically. In particular, in [24, 46,

57, 58, 60, 61, 62], under the framework of geometric singular perturbation theory, some

interesting and new phenomenon have been investigated both numerically and analyti-

cally, in particular, the ion size effect on the I-V relations is studied and some important

critical potential values are investigated and numerically detected.

In this dissertation, first in Chapter 3, we analyzed a one dimensional steady-state

cPNP system by applying the method of Matched Asymptotic Expansion. Our main

interest is to study the I-V relation of a single channel, in particular, we focus on the

cubic-like feature of the I-V relation for a single channel. Our results turn out that, up to

the third order in ε, a singular parameter, the I-V relation is indeed a cubic function in the

potential V. Moreover, if the initial concentrations applied at the two ends of the channel

is not equal, the I-V relation has three distinct real roots, which corresponds to the bi-
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stable structure in the FitzHugh-Nagumo simplification of the Hodgkin-Huxley model.

However, for the fourth order system, the I-V relation is quintic instead of being cubic.

Numerical simulations are performed, and the numerical results are consistent with the

analytical ones.

In Chapter 4, we numerically studied a one-dimensional steady-state PNP model in-

cluding the ion size effect modeled by a non-local hard-sphere potential from density

functional theory. The work is motivated by [46], where, for the same setup, the PNP

system is studied analytically. The main purpose here is to detect two critical potentials

first observed in [46]. To achieve this goal, two numerical tasks are conducted respec-

tively. The first one is a numerical approach of solving the PNP system and obtaining I-V

curves, while the second task is to numerically detect two critical potential values V c and

Vc for two cases respectively, one is for the case with zero permanent charge, exactly the

same setup as in [46], the other case involves a nonzero piecewise constant permanent

charge function. Based on the defining properties of these two critical potentials and

by using the numerical I-V curves directly, for the setting in [46], our numerical results

agree well with the analytical predictions.

In Chapter 5, a one-dimensional steady-state PNP model including the ion size effect

modeled by a local hard-sphere potential that depends pointwise on ion concentrations is

analyzed with totally different mathematical treatment from the one used in [46]. Based

on the geometric singular perturbation theory, in particular, on specific structures of this

concrete model, the existence of solutions to the boundary value problem for small ion

sizes is established and, treating the ion sizes as small parameters, an approximation of

the I-V relation is derived and two critical potentials for ion size effects are identified.

Important scaling laws of I-V relations and critical potentials in boundary concentrations

are obtained. Under electroneutrality conditions, up to the first order in d, our results

are consistent with the ones in [46]. Moreover, without the electroneutrality conditions,
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partial results about the ion size effect are also obtained. As a byproduct, the ion size

effects on the flow of matter are also discussed.

6.2 Future work

Basically speaking, there are three directions for our future work. In one direction, we

will focus on the multiplicity and stability of the solutions to classical Poisson-Nernst-

planck (cPNP) systems, that is, we ignore the ion-to-ion interaction and treat them as

point charged. The existence of multiple solutions has already been investigated, even

for a oversimplified case with only two different ion species involved ( see [24]). In one

of our projects in process, for a very simple case involving two different ion species and

with nonzero permanent charges, an important characterization of ion channels, triple

solutions are numerically detected. Moreover, the numerical simulation shows that mul-

tiple stable solutions are possible for some cases. A systematic study of the stability

problem will be one of our near future projects and we believe it will be very interesting,

but definitely very challenging.

The other direction is to study the cPNP system involving more ion species ( at least

3). The reason is that some biological phenomena of importance do not appear until

three or more ion species are involved. For example, the crucial finding for voltage ac-

tivated Na channels (which make the action potential) is that a third ion (it must be Ca

in the case considered) cannot be ignored in addition to Na and Cl and biological con-

ditions, such as magnitudes of concentrations at both ends, have to be within a specific

range for the channel to work (for more information, see [58]). New phenomenon has

been investigated when three or more different ion species are involved. More precisely,

it is possible to have spatially oscillating solutions when three or more ion species are

involved, moreover, the spatially oscillating solutions and the spatially non-oscillating
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solutions can co-exist. An oversimplified example studied in [58] has shown this in-

teresting phenomenon. A systematic investigation for more general case is expected to

reveal more interesting behaviors. Also, the co-existence of spatially oscillating solu-

tions and spatially non-oscillating solutions give another form of multiple solutions. A

natural question arising here is which solution is more stable?

Finally, we consider the PNP systems including the hard-sphere potential component

( modeled either locally or nonlocally), that is, we study the ion size effects on the top-

ics that we are interested in, such as the I-V relations, critical potentials, multiplicity

and stability of solutions. This direction is much more challenging, but definitely more

interesting.
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