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Abstract

Dynamics of Poisson-Nernst-Planck systems and its applications to ion channels are
studied in this dissertation.

The Poisson-Nernst-Planck systems serve as basic electro-diffusion equations mod-
eling, for example, ion flow through membrane channels and transport of holes and elec-
trons in semiconductors. The model can be derived from the more fundamental models
of the Langevin-Poisson system and the Maxwell-Boltzmann equations, and from the
energy variational analysis EnVarA. A brief description of the model is given in Chapter
2 including the physical meaning of each equation involved.

Ion channels are cylindrical, hollow proteins that regulate the movement of ions (
mainly Na®, KT, Ca** and Cl17) through nearly all the membrane channels. When
an initial potential is applied at one end of the channel, it will drive the ions through
the channel, and the movement of these ions will produce the current which can be
measured. Different initial potentials will result in different currents, and the collection
of all those data will provide a relation, the so-called I-V (current-voltage) relation, which
is an important characterization of two most relevant properties of a channel: permeation
and selectivity.

In Chapter 3, a classical Poisson-Nernst-Planck system is studied both analytically
and numerically to investigate the cubic-like feature of the I-V relation. For the case of
zero permanent charge, under electroneutrality boundary conditions at both ends of the

channel, our result concerning the I-V relation for two oppositely charged ion species
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is that the third order correction is cubic in the potential V , and furthermore, up to
the third order, the cubic I-V relation has three distinct real roots (except for a very
degenerate case) which corresponds to the bi-stable structure in the FitzHugh-Nagumo
simplification of the Hodgkin-Huxley model. Numerical simulations are performed and
and they are consistent with our analytical results.

In Chapter 4, we consider a one-dimensional steady-state Poisson-Nernst-Planck type
model for ionic flow through membrane channels including ionic interaction modeled by
a nonlocal hard-sphere potential from the Density Functional Theory. The resulting prob-
lem is a singularly perturbed boundary value problem of an integro-differential system.
Ion size effect on the I-V relations is investigated numerically. Two numerical tasks are
conducted. The first one is a numerical approach of solving the boundary value prob-
lem and obtaining I-V curves. This is accomplished through a numerical implement of
the analytical strategy introduced in [46]. The second task is to numerically detect two
critical potential values V. and V¢. Our numerical detections are based on the defining
properties of V. and V¢ and are designed to use the numerical I-V curves directly. For
the setting in the above mentioned reference, our numerical results agree well with the
analytical predictions.

In Chapter 5, a one-dimensional steady-state Poisson-Nernst-Planck type model for
ionic flow through a membrane channel is analyzed, which includes a local hard-sphere
potential that depends pointwise on ion concentrations to account for ion size effects on
the ionic flow. The model problem is treated as a boundary value problem of a singu-
larly perturbed differential system. Based on the geometric singular perturbation theory,
especially, on specific structures of this concrete model, the existence of solutions to
the boundary value problem for small ion sizes is established and, treating the ion sizes
as small parameters, we also derive an approximation of the I-V relation and identify

two critical potentials or voltages for ion size effects. Under electroneutrality (zero net
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charge) boundary conditions, each of these two critical potentials separates the potential
into two regions over which the ion size effects are qualitatively opposite to each other.
On the other hand, without electroneutrality boundary conditions, the qualitative effects
of ion sizes will depend not only on the critical potentials but also on boundary con-
centrations. Important scaling laws of I-V relations and critical potentials in boundary
concentrations are obtained. Similar results about ion size effects on the flow of matter
are also discussed. Under electroneutrality boundary conditions, the results on the first
order approximation in ion diameters of solutions, I-V relations and critical potentials

agree with those with a nonlocal hard-sphere potential examined in [46].
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Chapter 1

Introduction

In this dissertation, we study the dynamics of Poisson-Nernst-Planck (PNP) systems and
its applications to ionic channels. It is a collection of my work and some joint works with
Dr. Guojian Lin (from Renmin University of China), Dr. Xuemin Tu ( from University
of Kansas), Dr. Yingfei Yi (from Georgia Institute of Technology), and my advisor Dr.

Weishi Liu.

1.1 Ion channels and Poisson-Nernst-Planck systems

Ion channels are cylindrical and hollow proteins, as stated in [30], which regulate the
movement of ions (mainly Na™, K™, Ca™™, and C1™) across nearly all biological mem-
branes. A major way for ions to cross the membrane is through the pore that runs down
the long axis of a channel due to the impermeability of the membranes to charged par-
ticles. This property has been exploited by evolution to produce many varied and com-
plicated phenomena necessary for life: channels are responsible for the initiation and
continuation of the electric signals in the nervous system; in the kidneys, lungs, and in-
testines, channels coordinate changes in ionic concentration gradients that result in the

absorption or release of water; in muscle cells, a group of channels is responsible for the



timely delivery of the Ca™™ ions that initiate a contraction. Furthermore, a large number
of drugs (including valium and PCP) act directly or indirectly on channels.

To produce such phenomena, channels act in group, opening and closing at the same
time and letting only specific ion species get through the membrane ( for example, some
channels prefer Na™ over K™ while some ones prefer K™ over Na™). In spite of the
complicated results, the individual channels only do the following two things: they open
and close (the so-called gating phenomenon), when open, they conduct ions. A single
channel could be possibly removed from the biological system and studied as an isolated
physical system. To do this, one can place the single channel into a phospholipid mem-
brane which separates two baths with known ionic concentration. Far away from the
channel, applying a voltage to the system by electrodes in the baths, one can measure the
amount of current that passed through the channel, and this is the so-called I-V relation,
which is an important characterization of two most relevant properties of a channel: per-
meation and selectivity (for more detailed description, see [30]). One of our interest in
this dissertation is to study the I-V relations, in particular, to study the ion size effect on
the I-V relations.

The PNP systems serve as basic electro-diffusion equations modeling, for example,
ion flow through membrane channels, transport of holes and electrons in semiconductors
(see, for example [4, 5, 6, 24, 65, 81]). In the context of ion flow through a membrane
channel, the flow of ions is driven by their concentration gradients and by the electric
field modeled together by the Nernst-Planck continuity equations, and the electric field
is in turn determined by the concentrations through the Poisson equation.

Each equation has its physical meaning just as stated in [30]. The Poisson equation is
the differential form of the Maxwell’s First Law which states that the flux of the electric
field across any closed surface is equal to the total amount of charge inside the surface.

The Nernst-Planck equations state that the flux of a specific species has two components:



simple diffusion and drift along the electric field. The continuity equations state that, for
the flux of each species, there are no sinks or sources.

Under various reasonable conditions, it can be derived from the more fundamental
models of the Langevin-Poisson system (see, for example, [2, 8, 9, 13, 31, 43, 64, 67, 77,
78, 85, 90]) and the Maxwell-Boltzmann equations (see, for example, [4, 42,43, 77, 90])),

and from the energy variational analysis EnVarA ([23, 38, 39, 40, 41, 55, 56]).

1.2 Outline of thesis

In Chapter 2, a brief description of PNP systems and some basic elements of dynam-
ical system theory of differential equations are provided. In particular, the method of
asymptotic expansions and a modern dynamical theory, the so-called geometric singu-
lar perturbation theory that are the main tools for the research in this dissertation, are
introduced.

In Chapter 3, a classical PNP model which treats ions as point-charges and ignores
the ion-to-ion interaction is studied. Our main interest is the I-V relation of the ion
channels, in particular, the cubic-like feature of the I-V relation. Numerical simulations
are performed and the numerical results are consistent with our analytical ones.

In chapter 4, we focus on the ion size effect on the I-V relation by considering a one-
dimensional steady-state PNP type model for ionic flow through membrane channels
including ionic interaction modeled by nonlocal hard-sphere potentials from the Density
Functional Theory. The ion size effect on I-V relations is investigated numerically, fo-
cusing on the case where only the hard-sphere components are included. Two numerical
tasks are conducted. The first one is a numerical approach of solving the boundary value
problem and obtaining I-V curves. The second task is to numerically detect two critical

potential values V. and V¢ first obtained in [46].



In Chapter 5, we analyze a one-dimensional steady-state PNP model including a local
hard-sphere potential that depends pointwise on ion concentrations to account for ion size
effects on the ionic flow. Under the framework of geometric singular perturbation theory
and the specific structures of this concrete model, we are able to establish the existence
of solutions to the problem for small ion sizes. An approximation of the I-V relation is
derived and two critical potentials for ion size effects are identified. Important scaling
laws of I-V relations and critical potentials in boundary concentrations are obtained.
Similar results about ion size effects on the flow of matter are also discussed.

In Chapter 6, a brief summary of our previous work is given and our future plan is

discussed.



Chapter 2

Preliminaries

We give a brief description of PNP system and review some basic elements of dynamical
system theory of differential equations, for which we refer to [1, 19, 20, 21, 23, 24, 28,
30, 37, 39, 41, 46, 47, 49, 57, 58, 59, 61, 62, 65, 70, 85, 87, 93, 94], etc. for further

details.

2.1 Possion-Nernst-Planck system

2.1.1 A one-dimensional steady-state Poisson-Nernst-Planck system

We start with a brief description of a three-dimensional PNP type model for ion flows.
As an approximation, we consider an ion channel €, whose longitudinal length has been

normalized to one,
Q={X=(x,52):0<x<1,y’+22<g*x)},
where g is a smooth function. The boundary dQ of Q consists of three portions:

L={XeQ:x=0},Z={XecQ:x=1},



M={XcQ:y+72=g"(x)}.

Here, .Z and % are viewed as the two ends (inside and outside of the cell) and .# the
wall of the channel.
The basic electrodiffusion model of PNP type systems for ion flow through the chan-

nel is (see, for example, [31, 33])

V- (&/(X)e Vo) —e<i" 2j¢j+0(X)),

1
_ - 2.1
/1 T 1( )Clv,u'l? (2.1)
dc;

S TV Ai=0 =12,

where e is the elementary charge, & is the Boltzmann constant, 7 is the absolute temper-
ature; @ is the electric potential, Q(X) is the permanent charge of the channel, &.(X) is
the relative dielectric coefficient, & is the vacuum permittivity; for the ith ion species,
c¢; 1s the concentration, z; is the valence (the number of charges per particle), u; is the
electrochemical potential, _¢; is the flux density, and D; (X) is the diffusion coefficient.
Depending on specific biological settings of ion channel problems, one may impose
different boundary conditions. We will consider the situation that the concentration of
charges and electrical potentials on .Z’ U % are constants. An argument is that the inside
and the outside of cells are macroscopic regions in which the concentration of charges
and electrical potentials remain nearly constants. The wall of the channel will be assumed

to be perfectly insulated. We thus assume the following boundary conditions

8 dc;

Dy =V, cily=L, Plz=0,ci|lez=Ri, !/// n v =0, (2.2)

where V, L; > 0 and R; > 0 are constants, and n is a unit normal vector to .Z .



We assume the channel is narrow so that it can be effectively viewed as a one-
dimensional channel and normalize it as the interval [0, 1] that connects the interior and
the exterior of the channel. A natural one-dimensional steady-state PNP type model for

ion flows of n ion species is (see [62, 65])

1 4 ( Jdd L
2 (i) e (£e)
h(x) dx dx J:Z:l 7 2.3)
I Ji _ _ 1y o
o= 0, — 2= kTD,(x)h(x)c, 0 1,2,---  n.
The boundary conditions are, fori =1,2,--- ,n,
D0)=V, ¢;(0)=L;>0; P(1)=0, ¢i(l)=R; >0, 2.4)

where h(x) = mg?(x) is the cross-section area of the channel over the longitudinal lo-
cation x. The above one-dimensional version PNP system was suggested in [65] and it
differs from the traditional one-dimensional PNP system in that the cross-section area
function A(x) is contained, which captures the main geometric property of a non-uniform

channel.

Remark 2.1. For the one-dimensional case, the permanent charge Q(x) will be modeled
by a piecewise constant function, that is, we assume, for a partition xo =0 < x; < --- <
Xm—1 < Xm = 1 of [0,1] into m sub-intervals, Q(x) = Q; for x € (xj_1,x;) where Q;’s
are constants with Q1 = Q, = 0 (the intervals |xy,x1] and [xy—_1,Xm| are viewed as the

reservoirs where there is no permanent charge).

The simplest PNP system is the classical Poisson-Nernst-Planck (cPNP) system. It
has been simulated ([10, 11, 12, 14, 16, 31, 34, 36, 37, 43, 44, 45, 51, 65, 82, 95, 96])
and analyzed ([1, 5, 6, 24, 30, 57, 58, 63, 69, 80, 81, 86, 87, 88, 89, 94]) to a great

extent. However, a major weak point of the cPNP is that ions are treated as point-charges,



which is reasonable only in near infinite dilute situation. Many extremely important
properties of ion channels, such as selectivity, rely on ion sizes critically. For example,
Na™ (sodium) and K* (potassium), having the same valence, are mainly different by
their ionic sizes. It is the difference in their ionic sizes that allows certain channels to

prefer Na™ over K™ and some channels to prefer Kt over Na™.

2.1.2 Hard-sphere potential

To study the ion size effects on ionic flows, one has to consider the ion specific com-
ponents of the electrochemical potential in the PNP models. A first step toward a better
modeling is to include hard-sphere potentials of the excess electrochemical potential,
which is also necessary to account for ion size effects in the physiology of ion flows. For
hard-sphere potentials, there are two types of models, local and nonlocal. Local mod-
els for hard-sphere potentials depend pointwise on ion concentrations, while nonlocal
models are proposed as functionals of ion concentrations.

The electrochemical potential ; for the ith ion species consists of the ideal compo-
nent 1/ (x), the excess component (& (x) and the concentration-independent component

1 (x) (e.g. a hard-well potential):

1i(x) = 1 (x) + 1 (x) + pf(x).

where

1 (x) = zie¢ (x) + kT In %C) (2.5)

with some characteristic number density c¢o which will be normalized to one in the sequel.
The excess electrochemical potential uf*(x) accounting for the finite size effect of
charges is the most intriguing component which consists of two components: the hard-

sphere component N,H 5 and the electrostatic component ,ulE S for screening effects, etc. of



finite sizes of charges ([3, 25, 26, 29, 74, 75, 91, 92], etc.); that is,

S S
= g

As mentioned above, as a first step, we will only include the hard-sphere component “zH §
The hard-sphere component ,uiH 5(x) is naturally defined as a functional of the probability
distributions, { f;(x,v)}, where f;(x,v)dxdv is the number of jth ions at the location in
(x,x+dx) with the velocity in (v,v+dv). There are different proposals for the specifics of
ult 5(x). The most successful one comes from the celebrated Density Functional Theory
(DFT) ([25, 26], etc.) which states that (5 (x) is actually a functional of the concentra-
tions, {c(x)}, where the concentration c; and the probability distribution are related by
/ fi(x,v)d

However, a practical difficulty is that an exact formula for the functional dependence
of uf5(x) on {c;(x)} cannot be expected. A major breakthrough was made by Rosen-
feld ([74, 75]). He treated ions as charged spheres and introduced novel ideas for an
approximation of ,LLIH 5(x) based on the geometry of spheres. An outcome of Rosenfeld’s
theory is an explicit approximation of /.LiHS (x) depending non-locally on the concentra-
tions {c;}. (See also the recent review article [76] on hard-sphere mixtures and the
references therein.) Accuracy of Rosenfeld’s model and its further refinements has been
demonstrated by a number of applications ([32, 84, 91, 92], etc.); in particular, applica-
tions to ion channel problems have been conducted numerically in [9, 31, 33], etc. and
they have shown a great improvement.

On the other hand, local- or pointwise-dependent models for hard sphere potentials
,ulHS (x) had been proposed and tested for a long time. One of earliest local models for
hard-sphere potentials was proposed by Bikerman ([7]), which contains ion size effect of

mixtures but is not ion specific (i.e., the hard-sphere potential is assumed to be the same



for different ion species). Local models have evolved through several stages and become
very reliable; for example, the Boublik-Mansoori-Carnahan-Starling-Leland local model
is ion specific and has been shown to be accurate ([75, 76], etc.).

To end this section, we review a well-known non-local hard-sphere model used in
[46], and derive a local model based on it which is studied in Chapter 5.

Recall that, for one-dimensional space case, one has ([29, 71, 72, 73, 74, 75]) the

following formula for the hard-sphere (hard-rod) potential

ufts = —mé{cj Y, (2.6)
Ci

where

Q({e}) == [ molx{e;Dinlt —m (x: e })ldx
L/

(x,{c;j}) = wl x—x)dx', (1=0,1), 2.7
o) = 27 ”2 (””f), 0](x) = O(r; ~ ),

where 6 is the Dirac function, ® is the Heaviside function, and r i =d; /2 is the radius of
jth ion species.

The nonlocal hard-sphere model derived from (2.6) and (2.7) in [46] is

ulS(x) =— k7T In ((1 - Zjl/x):f:] Cj(x/)dxl> <1 - Z/x::’j]ﬁ Cj(xl)dx/>>

j
kT x+r,~2~(cj(x' rj)+cj(x'+rj))dx,

+—= — (2.8)
2 Jx—r I—ijx+ Lej(x")dx"
Now we derive the local model
1 rhs $ di Z?:l cj(x)
=—In|1-— dic; 2.9
kT ul ( ) n < ];1 JCJ (X) + 1 . 27:1 dej(X)’ ( )

10



where d; is the diameter of the jth ion species. This local model is studied in Chapter 5.

For the first term in (2.8),

(L) (L[ ).
i—rj i—rj

J J

we expand c;(x’) atx’ = x

This gives

3 TS o A GO e R O
:;(mq( —2rrje ()+0(2r]rl ij))
=Y 2rj¢;(x) +0(),

J

where r = min{r,r,}. Similarly, one has

x+n+q
Z/ x')dx' _Z2chJ )+ 0(r).
X

+ri—
Therefore, the first term in /75 (x) becomes
X— n+q X+ritr;
——ln I—Z/ )(I—Z/ cj(x’)dx'))

A= j XA

:——1n<< Z2chJ (r2)> (1 —Z2rjcj(x)—|—0(r2))>
J
=—kTIn <1 — Z2rjcj(x) + O(rz)) .
J

11

(2.10)



For the second term in (2.8)

k_T x+ri2-(cj(x’—rj)—}-cj( /+rj))dxl
2 Jx—r, 1—ijx+rf i(x")dx"

)

we first expand the numerator of the integrand at x to get

Z(CJ(x'—rj)+c]( X +r)) —22 cjlx +c()(x’—x)—|—0((x—x’)2)).

J

Expanding the summation term in the denominator first at x’ and then at x, we have

X +rj X' +rj
Z/ / // N Z/ J /(x/)(x//_x/)+0((x//_x/)2)) dx”,
X X' —rj

~ Y (2rics) +0F)
:Zer (cj(x) + (0 (' —x)+O(( —x)%)+0(r)).

Hence,

]£ x+riz.(cj'(xl_rj)+cj(/—|—Vj))dx/:kT 2ri2jcj(x)

+0(A). (211
2 Jen g [ e 1=X,;2rjc;(x) )

Ignoring the higher order terms, the nonlocal hard sphere model ,ul-HS (x) in (2.8) with

(2.10) and (2.11) gives the local hard sphere model u 5 (x).

2.2 Dynamical system theory of differential equations

In this section, some basic concepts, definitions and terminologies which are closely
related to the work that has been done in this dissertation are listed ( for morel details,

see [70]). Tow main methods, matched asymptotic expansions, a classical method, and

12



geometric singular perturbation theory, a modern dynamical theory, used to study the
singularly perturbed boundary value problem (2.3) and (2.4) for my research are briefly

described.

2.2.1 Basic concepts

Consider the following nonlinear autonomous systems of differential equations

%= f(x), (2.12)

where f: E — R" and E is an open set subset of R”. Together with an initial condition
x(0) = xp (2.12) is called an initial value problem (IVP).
The following definitions and theorems used many times in the thesis are all from

[70].

Definition 2.2. For xo € E, let ¢(t,xq) be the solution of the initial valuable problem
(2.12) defined on its maximal interval of existence I(xq). Then for t € I(xg), the set of
mappings ¢; defined by

¢:(x0) = 9(7,x0)

is called the flow of differential equation (2.12); ¢ is also referred to as the flow of the

vector field f(x).

Definition 2.3. A point xo € R" is called an equilibrium point or critical point of (2.12)
if f(xo) = 0. An equilibrium is called a hyperbolic equilibrium point of (2.12) if none of

the eigenvalues of the matrix A = Df(xq) has zero real part. The linear system

X = Ax (2.13)

with the matrix A = Df (xq) is called the linearization of (2.12) at xy.

13



Definition 2.4. A point p € E is an @—limit point of the trajectory ¢(-,x), a map from R

to E of system (2.12) if there is a sequence t, — o such that

lim ¢<tn,x) =Pp

n—oo

Similarly, if there is a sequence t, — —oo such that
Tim 9 (1,) = g,

and the point q € E, then the point q is an o.—limt point of system (2.12). The set of all
w—limt points of a trajectory I (defined through the map ¢(-,x)) is called the w—limit
set of T and it is denoted by @ (I"). The set of all oo—limit points of a trajectory I is called

the a—limit set of T and it is denoted by o/(T).

2.2.2 Method of matched asymptotic expansions

Matched asymptotic expansion is a classical method to study singularly perturbed prob-
lems. In particular, it is best suited for layer-type problems. To illustrate the idea, for

simplicity, we consider the following singularly perturbed initial value problem
ex = f(x;€), t>0,(e>0, but small) (2.14)
with the initial condition
x(0) = xo.

For system (2.14), we assume that there is a layer occurring at the boundary t = 0

where rapid change is expected, in other words, in the limit € — 0, the layer is expected
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to become discontinuity. For convenience, we formulate the concept of rapid change by
introducing scaled variables & =/ att = 0. In this context, we call & the inner variable
and ¢ the outer variable. Correspondingly, the system deals with the boundary layers is
called inner system while the one deals with (2.14) for ¢ > 0 is called outer system.

To solve the singularly perturbed problem (2.14) and obtain an approximation solu-

tion, the following three steps are taken.

e Stepl: Study the outer systems for each order in g, that is, we look for outer

expansions of the form

x(t:€) = xo(t) +ex1 (1) + €2x2(t) + - - - . (2.15)

Substitute (2.15) into (2.14), and expand f(x, €) in the form of

f(x€) = fo(x) +efi(x) + € fH(x) +--,

we obtain the outer systems for each order, j =1,2,...

0=rfo, €xj_1=f (2.16)

e Step2: Consider the inner systems for each order at t = 0. At ¢ = 0, in terms of
the inner variable & =1t /¢, let X(&;€) = x(e&;¢€) and F(&;€) = f(e&;¢€), system
(2.14) becomes

— =F(&;e). (2.17)
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We then look for inner expansions of the form

X(E:e) =Xo(&)+eXi(E) +€°Xn(E) + - (2.18)
Substitute (2.18) into (2.17) and expand F(&;€) as

F(&:e)=Fo(§)+eF(§) + € FR(8)+--,

one has the inner systems for each order, j =0,1,...,

dX;
d_gj = F;(&). (2.19)

Step3: After solving the resulting outer and inner systems for each order obtained
from step 1 and step 2, we do the matching. The piecing of the inner solution
and outer solution is achieved by matching principles. There are two mainstreams
in matching. One is the intermediate matching of Kaplun-Lagerstrom and the
other is the asymptotic matching of Van Dyke (see [17, 18, 53]). We will use the
asymptotic matching principle for our matching purpose. For the above problem,

the k-th order outer and inner expansions are denoted by, respectively,

k

k
E{(x(1:€)) = Z,Oijj'(f)a Ef(X(§:€)) = ) €/X;(8).

j=0

The kth order matching principle to be applied is E,"Eg (X)=E ’gE,k (x) in terms of

either the outer variable ¢ or the inner variable &.
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2.2.3 Geometric singular perturbation theory

Another basic nonlinear dynamical framework for my research on Poisson-Nernst-Planck
systems is the geometric singular perturbation theory. We give a brief description of the
general procedure.

Consider a singularly perturbed problem

ex =f(x,y,€), 220

y =g(x,y,€),

where overdot denotes the derivative with respect to the variable r, x € R”, y € R/,
the functions f and g are both assumed to be C* on a set U x [0, &) where U C RY is
open, with N = n+1[, and € is a real parameter. System (2.20) is called slow system.

For € > 0, the rescaling t = €& of the independent variable ¢ gives rise an equivalent

system, the fast system

X =f(x,y.€), o)

Y =eg(x,y,€),

where prime denotes the derivative with respect to the variable .

For € > 0, system (2.20) and (2.21) have exactly the same phase portrait. But their
limits at € = O are different and, very often, the two limiting systems provide comple-
mentary information on state variables. Therefore, the main task of singularly perturbed
problems is to patch the limiting information together to form an solution for the entire
€ > 0 system.

To solve the singularly perturbed problem, we take the following key steps
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e Stepl: Study the limiting fast system (the limit of system (2.21) at € = 0), that is,

X =f(x,y:0),

Y =0

(2.22)

which allows us to completely understand boundary or internal layers and charac-
terize landing points of boundary layers on the so-called slow manifold 2, which

is obtained by setting € = 0 in (2.20);
e Step 2: Construct a solution of the limiting slow system (the limit of system (2.20)
at € = 0), that is,

0= f(x,:0), 023

y=8(x,,0)
on the slow manifold which connects the landing points obtained from step 1;

e Step 3: Based on the study in step 1 and step 2, one can construct a singular orbit
which is a union of the solutions of limiting fast and slow systems. Then, one
can apply the geometric singular perturbation theory, such as Exchange Lemma,
to show that, for € > 0 small, there is a unique solution that is close to the singular

orbit.

To end this section, we review two theorems that are crucial for our research.

Suppose y = H(x) solves f(x,y;0) = 0, in other words,

2o ={(x,y):y=H(x),x € R}.
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Observe that 2 is a set of equilibria of (2.22). The linearization of (2.22) at points in
20 is
Dxf(xa)’;())mxm Dyf(xa)’;())mxn

On><m OI’an

Definition 2.5. 2y is normally hyperbolic if no eigenvalues of Dyf (x,y;0) has zero real

part for all (x,y) € 2.

For convenience, we assume that For D, f(x,y;0), there are k eigenvalues 3; with
positive real parts, and / eigenvalues o¢; with negative real parts, where k + [ = m.

The first theorem is (see [27, 35])
Theorem 2.6. Suppose % is normally hyperbolic, then for € > 0 small

e There is an invariant manifold %¢, which is C 1 o(€)—close to Zy; that is, there

exists a function 'y = H (x; €) with H(x;€) C' o(€)—close to'y = H(x) such that

Ze={(x,y):y=H(x;€)}.

o There are stable and unstable manifolds Wg(2%) and W (2%) of 2% such that

—- W' 2%) = Upe W (z¢), and W™ (z¢) is C' o(€)—close to Wi (ze—o).

= Vze,  Qe(Welze)) = We(Pe(ze)),  Pe(We'(ze)) = We'(de(2e))-

- Vz1,20 € Wi(ze),

|06 (22) = 9e(21)] < Ke™*'[za =z,
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where o > 0 is determined by oo > min; |Re;| fort > 0.

Similarly, ¥z1,20 € W¥(z¢),
105(22) — 9%(21)] < KeP!|zo — 2],

where B > 0 is determined by B < min; |Rp;| fort <O0.

Let M® be a (k+ o)—dimensional invariant manifold with 1 < ¢ < m. Let & be a

neighborhood of % with boundary d. 2. We assume that
(A1) MY intersect W*(2p) transversally.

(A2) The @ limit set ®@(Ny) C 2 is of dimension ¢ — 1, where Ny is the intersection of

MO and W*(2).
(A3) On %, the reduced vector field is not tangent to @ (Np).
With the above assumption, let us state the so-called Exchange Lemma (see [47, 59]).

Theorem 2.7. For any 1) > 0 and 0 < p < 1y, for € > 0 small, a portion of M N A
is C! o(g)—close to W*(®(Np) - (to — p,To + p)) N B. That is, for each point p €
W (@(Ny) - (to—p,To+p)) N B, a portion of ME is close to p, and the tangent space of

ME is close to that of W*(@(Np) - (to— p, T+ P))-

2.3 Boundary value problem solvers

We use “bvp4c” in Matlab ([52]) as the solver for our boundary value problem (BVP)

(2.3) and (2.4). It solves first order systems of ordinary differential equations with two-
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point boundary conditions of this form:

Yy = f(x,y), a<x<b,

g(¥(a),y(b)) =0.

(2.24)

Given a mesh partition a = xo < x| < --- < xy = b, the numerical solution of (2.24) is
approximated by a piecewise cubic polynomial function S(x). The approximated solution
S(x) satisfies the boundary conditions and it is a cubic Hermite interpolation polynomial
for each subinterval [x;,x;11].

Fori=0,1,2,--- ,N—1, let y; = S(x;) and let h; = x;;-1 — x;. The y;’s are evaluated

by solving the algebraic equations

(I)(X,Y) = (¢0(X7Y)7¢1 (X>Y>7"' ;(PN(XaY)) = 0, (225)
where
X = [x07x17"'7xN]T7
Y = Doy, N7,
¢0(X7Y) = g(y07yN)7
0:i(X.Y) = yi—yii—ghia(fioi +4f7+ 1), i=1,2,---,N,
and

fi = fFlxii),

7= F(FGi+x), 5 ic1 + i) — ghioi (fi— fio1)) -
The algebraic system (2.25) is solved by simplified Newton’s method with a weak line
search. The global Jacobian % (using finite difference approximation by default) is re-
quired and the structure of the Jacobian is important for the linear solver in each Newton’s

iteration. The residual of S(x) is calculated by r(x) = S(x) — f(x,S(x)) and the residual
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in the boundary conditions is g(S(a),S(b)). The adaptive mesh strategy has been used to

control the residual in “bvp4c”, for details, see [52].

2.4 Problem setups
To end this section, we set up our problems with the following assumptions:
(A1). We consider two ion species (n = 2) with z; > 0 and zo < 0.

(A2). For the electrochemical potential y;, in addition to the ideal component /.Llfd, we

also include the hard-sphere potential ,ul.H S where it is either local or non-local .

(A3). The relative dielectric coefficient and the diffusion coefficient are constants, that

is, &(x) = & and D;(x) = D;.

Under the assumptions (A1)—(A3), the steady-state system of (2.3) is

LN (grgoh(x)@) = —e(z1c1 + 2202+ 0(%)),

h(x) dx dx (2.26)
d 7 1 du; .
i "0 TS Py =1,

We now make the dimensionless re-scaling in (2.26),

e 5 e 2 £-e0kT 7, i

Using the expression (2.5) for the ideal component /,Ll-id (x), we have, fori = 1,2,

Ji_ 1 duj’ 1 dufs
—Ji=—5- == i——+=h(x)ci
J D; i e A e
e d® de;  h(x)c; duf’s
—_ 7 — h - 1
e o T h00) ot =

d¢ dei | h(x)e;duf”

o P et e A

=z;ih(x)c;
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Note also that,

L 2e o _ ,e* kT d¢ (2,99
— = ———— =E&e—.
O T8 kT dx S kT e dx dx

Therefore, the boundary value problem (2.26) and (2.4) becomes

e d d dl, dJ
h(x) dx <h<x)—¢):‘Zlcl‘zzcz—Q(x),—1 =2 =0,

h(x) dx dx dx  dx
dcy dp h(x)er d yg 2.2
h(x) == + h(x)z1c1 — =_ (2.27)
(x)d+()61d+deu() h,
h(x) T + h(x)z2¢2 I —l— kT yp — "> (x) = —J,
with the boundary conditions, fori = 1,2,
9(0)=V,c;(0)=L; >0, ¢(1)=0,c;(1)=R; >0. (2.28)

For ion channels, an important characteristic is the so-called I-V relation. For a solu-
tion of the steady-state boundary value problem of (2.27) and (2.28), the rate of flow of

charge through a cross-section or current .% is

I =u 1+ 2. (2.29)

For fixed boundary concentrations L;’s and R;’s, _#;’s depend on V only and formula
(2.29) provides a relation of the current .# on the voltage V. This relation is the I-V
relation. We will also examine ion size effects on the flow rate of matter through a

cross-section, .7, given by

T = 4+ o (2.30)
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Chapter 3

Asymptotic expansions and numerical simulations on I-V

relations via a steady-state Poisson-Nernst-Planck system

In this chapter, system (2.27) with the boundary condition (2.28) is studied both analyti-
cally and numerically with particular attention on I-V relations of ion channels including
only the ideal component of the electrochemical potential. Assuming € is small, the PNP
system can be viewed as a singularly perturbed system. Due to the special structures
of the zeroth order inner and outer systems, one is able to derive more explicit expres-
sions of higher order terms in asymptotic expansions. For the case of zero permanent
charge, under the assumption of electro-neutrality at both ends of the channel, our re-
sult concerning the I-V relation for two oppositely charged ion species is that the third
order correction is cubic in V , and furthermore (Theorem 4.1), up to the third order,
the cubic I-V relation has three distinct real roots (except for a very degenerate case)
which corresponds to the bi-stable structure in the FitzHugh-Nagumo simplification of
the Hodgkin-Huxley model. Three numerical experiments are conducted to check the
cubic-like feature of the I-V curve, study the boundary value effect on the I-V relation,

and investigate the permanent charge effect on the I-V curve respectively.
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3.1 Introduction

Ion channels are cylindrical, hollow proteins that regulate the movement of ions across
almost all biological membranes (see [30]). The most relevant properties of a channel
are the permeation and selectivity, and an important characterization is the I-V rela-
tion. The I-V relation adopted in the FitzZHugh-Nagumo simplification of the famous
Hodgkin-Huxley systems which describe the propagation of action potential of an en-
semble of channels in a biological membrane is cubic-like. A natural question arising
here is whether this cubic-like feature can be obtained from a single channel ?

With the assumption that the channel is narrow, it can be effectively viewed as a one-
dimensional channel and normalized as the interval [0, 1]. The natural one-dimensional
steady-state PNP type model (2.27) for ion flows of 2 ion species with the boundary
condition (2.28) is studied. Note that, in this chapter, we study the classical PNP system,
therefore, in system (2.27), %MIHS =0fori=1,2.

In this work, we mainly focus on the I-V relation (2.29), more precisely, our main

interest in the I-V relation is to derive the asymptotic expansion

I =Iy+el +e’hL+e L+ (3.1)
For consistence, we also write

T =T+ €T+ T+ T3+ . (3.2)

It is known that, in general, the I-V relation is not unique (see [24, 63, 80, 81, 88,
89] for Q # 0 and see [58] even for Q = 0 when more ion species are involved). In
Section 3.3, we will consider a special case where the I-V relation is indeed unique. For

simplicity, in this work, we assume that Q(x) = 0 over the whole interval [0, 1].
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With the assumption that € is small, viewing it as the singular parameter, system
(2.27) together with the boundary condition (2.28) will be treated as a singular bound-
ary value problem. The general framework of the classical singular perturbation theory
and the newly developed geometrical singular perturbation theory suggest one to study
asymptotic expansion of the I-V relation.

In [1], a one-dimensional steady-state PNP system has been studied using asymptotic

expansion approach with particular attention to the I-V relations. The result shows that

e The first order correction to the zeroth order linear I-V relation is generally quadratic

inV;

e When the electro-neutrality condition is enforced at both ends of the channel, there

is NO first order correction;

e The second order correction is cubic in V. Moreover, under electro-neutrality con-
dition, up to the second order (in €), the I-V relation is a cubic function with three

distinct real roots.

A natural question arising here is whether the higher order corrections follow this pat-
tern? More precisely, is the third order correction quartic in V? What about the fourth
order correction?

Our goal in this chapter is to further examine higher order asymptotic expansions
of the I-V relation following the idea in [1] and to provide answers to these interesting
questions. For the special case mentioned above, the third order correction turns out to
be cubic with the electro-neutrality condition (see formula (3.18)) even though a quartic
function is expected, which gives us the first surprise. Immediately, we get another
interesting question: are the other higher order corrections also keeping this feature?
This leads to the study of the fourth order correction. However, to our surprise, the fourth

order correction is guintic (see formula (3.30)) instead of being cubic. Furthermore, for
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the third order correction, the coefficient of the cubic term is always negative except for a
highly degenerate case (see Theorem 3.7, Lemma 3.9 and Lemma 3.10). An importance
of this negative sign is that, up to the third order, the cubic I-V function has three distinct
real roots — this agrees qualitatively with I-V relation adopted in the FitzHugh-Nagumo
simplification of the Hodgkin-Huxley systems. The existence of three distinct real roots
of the I-V relation is responsible for the bi-stable structure in the FitzHugh-Nagumo
system.

Numerical simulations are performed for both the cases with zero permanent charge
and nonzero one respectively. For the case with zero permanent charge, it allows us
to make a comparison between the analytical results and our numerical results. And
meanwhile, one can investigate the effect of the boundary conditions on the I-V relations.

For the one with nonzero permanent charge defined by

0, forO0<x<a,
O(x)=4 0, fora<x<b,

0, forb<x<1,

where Q is a nonzero constant, we mainly focus on the cubic-like feature of the I-V
relation and the effect of the permanent charge.

A thorough study of higher order asymptotic expansion of ¢ and c¢;’s is necessary
to obtain higher order asymptotic expansions of the I-V relation. Both the geometric
singular perturbation method and the classical matched asymptotic expansion method
work well for the zeroth order term (see [1, 6, 30, 46, 54, 61]) at least for the special case
mentioned above (see [24, 58] for a treatment of general situations). For higher order
terms, the classical matched asymptotic expansion approach are applied since it seems
that a direct application of the geometric singular perturbation theory does not work — a

research direction worthwhile to explore. It’s well-known that higher order terms satisfy
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linear but non-autonomous and non-homogeneous systems. The homogeneous parts of
the linear systems are the same and are nothing but the linearizations of the zeroth order
nonlinear system along the zeroth order (inner and outer) solutions. While in general, it is
impossible to get explicit solutions of a linear non-autonomous system, a special feature
of the problem at hand that the zeroth order nonlinear system possesses a complete set
of integrals and each integral provides an integral for the linearization (see Propositions
3.2 and 3.3) allows us to carry out a detailed asymptotic analysis.

This chapter is organized as follows. In Section 3.2, we briefly restate the outer and
inner systems for each order in the asymptotic expansions from [1], and the matching
principle. Starting in Section 3.3, we restrict ourselves to the special case and examine
the outer, inner expansions and matching. Previous results for lower order systems from
[1] are briefly restated for completeness, and the third order expansions and matching
are detailed under the electro-neutrality condition. In section 3.4, under the electro-
neutrality condition, we focus on the I-V relation up to the third order in €, and obtain
our main result. In section 3.5, numerical simulations are performed to system (2.27)
with boundary condition (2.28) for both Q(x) = 0 and Q(x) # 0, and corresponding I-V

relation curves are obtained. Interesting phenomena are investigated.

3.2 Systems for asymptotic expansions

In this section, we apply the method of asymptotic expansions for both outer and inner
systems to study the I-V relations of the PNP model discussed above. In current con-
text, the outer systems “determine” the dynamics of ion flows within the channel, and
the inner systems “govern” the potential boundary layers that represents the effects of
boundary conditions from the bath conditions. The matching principle then provides the

intersection between the internal dynamics and the boundary conditions.
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3.2.1 Outer systems for each order

We assume Q is constant and look for outer expansion of the form, fori = 1,2,

0 (x:€) =¢o(x) + €1 (x) + € da(x) + -,
ci(x;€) =cio(x) + &ci1 (x) + €2 cpp(x) + -, (3.3)

Ji=Jio+ el + €+ .

Substituting (3.3) into (2.27) and denoting the derivatives with respect to x by overdots,
with the convention that ¢_; = ¢_» = 0,09 = 1,and J; = 0 for j # 0, upon introducing

uj= ¢j, the j—th order system in € is, fori =1, 2,

Ojo=uj o, iijo=—(acij—Pcrj+8;0),

cij=— 3, (aci,—PBerp)ug—Jij.
pHq=j

(3.4)

Remark 3.1. An observation is that the homogeneous part for c;;’s is

c) - a 0 Clj
/

Once uy(x) is found, this system can be simply integrated. And hence, system (3.4) can

be solved.
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3.2.2 Inner systems for each order
Inner systems at the left boundary x =0

At the boundary x = 0, in terms of the inner variable & = x/¢, let ®(&;€) = ¢ (€& ¢€),
Ci(&;€) =ci(e&;¢€). System (2.27) becomes, fori = 1,2,
d? dly _dh

dcy do
- C—
d& + o 1d2§

2
_—8] — = — _—_8] .
- 1y lé B 2 lé 2

We look for the inner expansion of the form:

D(£:8) =P(§) +£P1(§) + & P2(E) + -,
Ci(&:€) =Cio(§) +€Cit(§) +€Ca(§) + -+, (3.6)

Ji=Jip+¢&eJi + 82.],'2 +---

We have, by introducing U; = @',

¢);. _ Uj, Uj’. = —(OCCU —BCZj) - 5jQ’

p+q=j

Cyj= Y, BCopUs—Jai_1).
p+q=j

For j = 0, the system is

&) =Uy, Ul=—(aCio—BCy)— 0,
(3.8)

lo=—0aCioUy, Cyy=BCrUp.
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and, for all j > 1, the homogeneous part of (3.7) is the same and it is the linearization of
the zeroth order system (3.8).
There is a specific structure of system (3.8) that together with an abstract result allows

one to get a closed form for solutions of (3.7). The specific structure is

Proposition 3.2. The zeroth order inner system (3.8) has a complete set of (3) first inte-

grals given by,
1
Hy = Cpe®®, Hy=Cype P, H;= EUg —Cio — Cyo + 0Po.

Proof. This can be verified directly (see also [58]). []
A crucial result whose proof is provided in [1] is given below.

Proposition 3.3. Consider an autonomous system
7 =f(z), zeR™ (3.9)
For a solution z(t) of (3.9), consider the linearzation along zo(t):
Z'=Df(z0(t))Z, ZeR". (3.10)

If a C? function H : R™ — R is an integral of system (3.9) (that is, H(z(t)) is independent
of t for any solution z(t) of (3.9)), then G(Z,t) = (VH(z0(t)),Z) is an integral of the

linear system (3.10) (that is, G(Z(t),t) is independent of t for any solution Z(t) of (3.10)).

Noticing that the homogeneous part of (3.7) for j > 1 is the linearization of the zeroth
order system (3.8), a complete set of integrals for the homogeneous part of (3.7) can be
derived from Propositions 3.2 and 3.3. An application of variation of parameters allows

one to get a closed form for the solutions of (3.7).
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Inner systems at the right boundary x = 1

In the similar way, at the right boundary x = 1 in terms of the inner variable & = (—1+
x)/€ and let ¥(&;€) = 9(1+¢€&;¢€), Dp(E:€) = cr(1 + €& €), by introducing V; = W',

we get

‘P;:Vj V]{: —(OCDlj—ﬁDzj)—SjQ,

Dllj:_ Z aD1pVe—Ji(j-1) (3.11)
prq=j

Dhj=— Y. BD2yVy—Ja 1)
prq=j

Same observation for inner systems at x = O applies here.

Remark 3.4. For a more general derivation of the outer and inner systems, one can read

[1].

Then, following the third step in section 2.2.2, one can apply the matching principle
to (@(x;€),c(x;€)) and (P(&;€),Cr(&;€)) at the left boundary x = 0 and, at the right
boundary x = 1, to (¢ (x;€),ck(x;€)) and (P (&;€),D (& €)).

3.3 Third order matching under electroneutrality condi-
tions

With o = B = 1, under the electroneutrality assumption L; = L, = L and Ry = R, =R,
we will derive the matched asymptotic expansions for the third order over the interval
[0, 1], and through matching, we establish the third order correction.

For completeness, we summarize the results for lower order asymptotic expansions

from [1] as follows:
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Theorem 3.5. If L # R, under the electroneutrality condition, with I, = Jy; — Jo, and

T, = Jix +Jox, k=0,1,2, for the outer system, we have,
o [or the zeroth order outer system, one has

ag— Tox
5

Io
(])()(x) =by+ Foln |a0 - T0x|, cl()(x) = Cz()(x) =
o For the first order outer system, one has
(P] (x) =C11 (x) = (2] (x) =0.

e For the second order outer system, one has

_ax— Tx Ig + 21Ty

cra(x) = 5 + Hag— Tox)z, cn(x) =

ay—Tx I3 —2ITp
2 4(ag — Tox)?’
LTy — 1D

Io(axTy—aoz)  Ih(I3 —4T3)
—by + ———""Z1n|ag — Tox| + .
$2(x) =by 7 lap — Tox| T2(ay—Tox) | 6To(ao — Tox)?

For the inner system, we have,
e At the boundary x = 0 with x = €&,

— For the zeroth order inner system, we have
Dy(§) =V Up(§) =0, Cio(&)=Cr(E)=L.

— For the first order inner system, we have:

Ty

()= —30E, Cul6)=Cu(E) =&
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— For the second order inner system, we have

10T _ 1T _
C12(5)=% (1—6 mé); C22(§):%<e mé_l)

)

IyTy 1 _ 1T
o) A 1) A

&

e At the boundary x = 1 withx—1 = €&,

— For the zeroth order inner system, one has

Wo(8) =0 WVo(§)=0 Dio(§)=D2w(E)=R.

— For the first order inner system, one has

() =528, Dun(€)=Du(§) = 2&.

— For the second order inner system, one has

IpT, 1T,
Dia(§) == gog (¢ =1), Dn(&) = T3 (V™ —1),
IpT; IpT;
W8 =g (7 1) -t

Here,

2(L—R) - L
ap=2L, Ty=2(L—R), I gv, bo:V—F(;anL;

- InL—1InR
2 (L-R)*(L+R)
“h =T =b =0, ay=—-0, T= g

A=A =782 2T 212R2(InL— nR)?

/ _(L=R*(L>-R)V (L—R)? L+R L’ —R? .
> T 3DR¥(InL—InR)? ' L2R*(InL—IR)y\ 2  3LR(InL—InR))

WATE —13)  Io(axTy —aoTy) DbTy—ITh LT

b2 = 3 — 3 — 3 In |a0| —er3"
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Now we carry out the analysis for the third order asymptotic expansions and match-

ings in detail.

3.3.1 Third order outer expansion

The third order outer system, from (3.4), is

451 =—cC13+ 23,
¢13 =— (c1390 + c1201 +c1192 + c1093) — J13, (3.12)

¢23 =(c2300 + 2201 + 2102 + c2003) — Ja3.

Solving (3.12), together with Theorem 3.5, we have

a3z — T3x
cr3(x) =ea3(x) = ———,
0 ( ) bt azly aolyT; 1 VR (Y & 1n| T ’ (3.13)
X) = - = — — ap — Tox|,
3 "\ 1 )a-Tx \Ty T2 0

for some constants a3 and b3 to be determined through matching. Here I3 = J;3 —J»3 and

13 = Ji3+ Jo3.

3.3.2 Third order inner expansion

At the boundary x = 0, from (3.7), the third order inner system is

s =Us, U;s=—(C;3—Ca3),
13 =— (C1oUs + C11Uz + C1pUy +C13Up) — J12, (3.14)

Chs =(CaoUs + C21Us + CopUy + Co3Up) — Jna.

As an application of Proposition 2.1 for zeroth, first and second order cases (see Propo-

sition 3.1, 3.2 and 3.3 in [1]) and Proposition 2.2, we have the next result.
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Proposition 3.6. System (3.14) has the following integrals:

G =C13e®0 + C10e®0 D3 + T2 Fy + Fi31 + Fi32,
Gy =Crze™ P — Croe D3 + Joy 5 — Foz) — Fa3a,

G3 =UpUs + U U, — C13 — Co3 — &,

where

Fi (&) :/0 ed)o(S)ds’ FR(E) = /Oé e—d)u(s)ds,
¢ ¢
Fi31(8) 2/0 Ci1(5)Us(5)e®Wds,  Fi3(€) :/0 Ci2(s)Uy (s)e®ds,

F231(§)=/05C21(S)U2(s)e<I>o(s)ds, Fm(g):/f Con(5)Us (5)e~ D0 ds.

Proof. This can be verified directly.

Applying the integrals in Proposition 3.6, we can solve (3.14) with ©3(0) = C3(0) =

C23(0) =0 to get

T3

. 2
cI)3(&)_[2(2@%( o F 2\/_

L 2T, I T?
— <_ + _0) E——0 353

1 I, T?
) h e VA ?’16\/2?g — 20, 09
(2L)3

2L DY) 3L

The matching will force y; = 0. For convenience, we define the following functions.

N LTy ) 1
f )_2(2x)3( ot 2\/5aj )

fal) =0 (BT T2,

4(2x)3 2v/2x
oo Wl (b To 1o >
o) 4(2x)3 (x tavme et )

36



Then, for & > 0,

LT} (L 20T} 1072
¢3(5)=k1(L)e@5_&_(_2+ 00>€_ T g

2L): \2L (2L)* 3(2L)
_ IyTy (Io + 2T0) T 2 Ty
Ci3(E) =ky(L)e VS 4 (LOQDT 20 22 ) e 070 _
_ IhTy(Iy—2T)) T» Ty
C (L)~ V2LE o (fofollo—2lo) 12 o fof0
Similarly, at x = 1, the third order inner solution is, for & <0,
I T? b 210 T0 LhT§ .4
TE) =~ k(R 4 L0 (o 2U e e
(2R)? \2R (2R)* 3(2R)}
IpT; (I() +2To) T ? Ty
D — ko (R)eV2RE ‘ofot\foT™<f0) 12 0 .
IhTy(ly—2T)) T» Ty
D — — ka(R)eV2RE f0f0Vf0 — <f0) 12 _0°9
3.3.3 Third order matching
For convenience, we define
Ty ., hTy—IT Io(axTo — apT>)
x) =by — In|ag— x|+
pl( ) 2 2(a0_x)2€ T02 | ‘ TOZ(CIO—X)
(4T3 - 13)
6Tp(ap —x)3’
10 (Ig — 4T02) (az — TZ)IO 12 I()T02 3
—b _ __ 070
pa(x) =bs + ( 2(ap —x)* + (ap—x)%2  ap—x 3(ag —x)3 (3.17)
azloTy —aplyTs; LTy—IhT; I ’
Toz(ao_x) T02 nlao_x|?

2 2
p3(x,y) == +(2<a0_x)3+(a0_x)3 > )¢,

2 2
p4(x,y) - 2 + (Z(ao—x)3 (ao—x)3 3 6
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From (3.13) and (3.17), in terms of £ = x/¢€, the outer expansion at x = 0 is

I I
EZE}(9) =bo+ 7 Inap —e & +°py (0) + 72 (0),
T() ap

ap ap Ig + 21Ty

3p30.y 490 2 (@2 fgT2lolo 3
EéEx(cl)_2 £— §+8 (2+ dag )+8p3(0,0),

12— 21T,
E3E3(cy) =20 92 072070 4 £35,(0,0

and in terms of § = (x — 1) /g, the outer expansion at x = 1 is

I I
EZE}(9) =bo+ -2 Infag — Ty| — e——_& + &2py (To) + €3p2(To).
T ap — To

ag— Ty Ty y(ax—T I(%—I—QI()TO 3
E3E3(c)) = —e—E+e e3p3(Ty, T
gEx(cr) =— S+ ( 3 Hao—To2) T p3(To, T3),
a()—T() T() 2 az—Tz ]g—ZIoTO 3
ERE3 (¢y) = —e= To,T3).
E; (c2) 2 8254-8 ( 5 Hao—Tp)? +&°ps(To,T3)

From (3.15) and (3.16), the inner expansion at x = 0 is

Iy 1Ty IOTO I T? L 2IhT?
EXE}(®)=V —e—& —¢? 0 = 0
REg(®) 2L 8L3 8L2§ <2L)% ™ (2L)* :

10T02 3
3007 )

>, IoT; 12T, LT? I*Ty, T
33 040 3 010 04p 040 2
E{E;(C1) =L— e—§+ T (2(2L); - (8L3 +1e3 —3) é),

IOTO Ty Py, LT} T
E3E3 G =L — 8— . 83 0 o 0 . 0o =2
£ () ¢ 72 200)F \16L3 813 2 :

and the inner expansion at x = 1 is

I T IOTO I T? L 20T?
E3E3 (W) =V — e 0 g _ g2 &3 - 0% 2 0
VEL(Y) =V —enpl— € g t gt 2r)?  \2R " (2R) :

10T02 3
F30Rp° )
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8R? (2R) 16R?  8R3 2
BTy N Ty bly T :
(2R)? 16R? 8R3 2 '

TogetherwithTheorem3.5,thematchingsEEEf’(d)) E3E§(<I)),E§Ef(c,) E3Eg( i),

atx=0and E3E> E3E3 W), E3E3 (¢ E3E3 atx =1 fori= 1,2, then give
&x ¢ & ¢

ST, 12T, I*Ty I,T? T
EJE:(Di) =R~ 8—€+8 o7+ 3( o+ °°+°°——2>€>,

£
2 10T
E}E}(Dy) =R— e—g— e 83(

2
2

12T, L—R)3 1 1
a3:—0—0 T3 =— ( ) (—+ >V2

(2L)?’ V2(InL—InR)2 \R? L3

L (L—R)* <1+1)V
T V2(InL —InR)? R: L3

(L—R)? 11 L—R L  R\]:s
- sl=t=—"5 77 |l =TV
V2(InL—1nR)’ [Rz [z RL(InL—InR) \ g3
1Tz — BTy Io(asTo—aoTs)  ITy
Ty apT} (2L)?

b3 = 1n|a0| —

3.4 1-V relations under electroneutrality conditions

Recall from (3.1) that, our main interest is to derive the asymptotic expansion of the I-V

relation in the following form

I =ly+el +e’L+e L+

3.4.1 Main results

In this section, we will study the I-V relation under the electroneutrality condition up to

third order in € in detail, and state our main result.
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From Theorem 3.5, and (3.18), under the assumption of electro-neutrality, up to the

third order in €, we have

I =Iy+€l; + 8212 + 8313

=f(L,R,&)V — e%g(L,R,€)V? (3.19)
e

2
:ﬁ (f(L7R78)V —82 (kiT) g(LaR7£)V3> )

where

2(L—R L—R)* [>4+R>+LR 3¢ [ 1 1
f(L,R,€) = ( ) +€ ( ) 3 303 ——=\|—<*+t=)>
InL—1InR 3(InL—1nR) L3R V2\13 RS

(LR.E)— (L—R’(L’-R’) (L—R*(L*-R%)
S B R3(InL—nRY*  2L2R*(InL— InR)?

(L—R)? [ 11 L—R (L N R)]
V2(InL—nR)* [RF 13 RL(InL—R)\R3 [3/]
Theorem 3.7. If L # R, for € > 0 small, then, up to the order of €, the I-V relation

S = (V) is a cubic function with three distinct real roots.

Proof. From (3.19), it suffices to show that both f(L,R,€) and g(L,R,€) are positive.
Note that (L —R)/(InL —1InR) > 0, for L # R, our proof follows directly from the next

three lemmas.

Lemma 3.8. For L # R, and € > 0 small,

[?+R>+LR 1 1
hl(L,R,g):%—%(—g —9) >O
L2 R2

Proof. Treat hi(g) = hy(L,R,¢€), for fixed L # R, one has

3 1 1
hi(e*) =0, and K| () = 7 (E +E> <0, for all € >0,
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where
o V2L3RI (I*+ LR+ R?)
3 (L% +R%) (L3 YR +R3>

It is clear that h;(g) > 0 for 0 < € < €*. Note that € < 1, and €* = O(1), we have
]

hi(L,R,€) > 0 for € > 0 small.

Lemma 3.9. For L # R,
L—R}3(L*-R3 L—R)*(L*—R?
R = LWL =B (L-RHLP-R)
3L3R3(InL—1InR)*  2L?R%*(InL —1nR)3

Proof. Notice that hy(L,R) = hy(R,L), it suffices to show that 4,(L,R) > 0 for L > R.

(L-R? -
hy(L,R) = ha(L,R
2(L:R) [2R2(InL—InR)3 2(L:R).

Rewrite hy(L,R) as

where
- L’ R L+R
hy(L,R) = — :
2(L.R) 3LR(InL—InR) 2
Then,
ho(L,R) > 0 <= hy(L,R) >0, for L > R.

Fixing R, we treat /iy (L) = hy (L, R) as a function of L. A direct calculation shows /1, (R)

R, (R) = 0, but A3 (L) > 0 for all L. Therefore, we have h,(L,R) > 0 for all L > R.

Lemma 3.10. For L # R,
1 L—R L N R -0
5 RL(InL—InR) \R}: 13 '
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Proof. Rewrite hs(L,R) as hs(L,R) = p(L,R)/(LR)? (InL — InR), where
7 7 9 9
p(L,R) = LR(InL — InR) (Lz +R2> “(L—R) (Lz +R2> .

Note that h3(L,R) = h3(R,L). It suffices to show h3(L,R) > 0 for L > R, which is equiv-
alent to showing that p(L,R) > 0 for L > R. To do so, we fix R, and treat p(L) = p(L,R)
as a function of L. Then, a direct computation gives p(R) = p/(R) = p”(R) = 0, but

p" (L) > 0 for L > R. Therefore, p(L) > 0 for L > R. O

3.4.2 Remarks

For the third order terms, we only treated the electro-neutrality case mainly because this
is a natural biological assumption. Under this assumption, up to the order of €3, even
though a quartic function is expected, the I-V relation .# (V) is still a cubic function with
three distinct real roots, which is potentially related to the cubic-like feature of the av-
erage I-V relation of a population of channels in the Fitzhugh-Nagumo simplification of
the Hodgkin-Huxley model. The existence of three distinct real roots of the I-V relation
is responsible for the bi-stable structure in the FitzHugh-Nagumo system.

Recall from [1], that the first order correction to the zeroth order linear I-V relation
is quadratic without electro-neutrality condition, and we believe that the analysis for
the first order terms in [1] can be applied to third order terms in this work without the
electro-neutrality assumption.

For the fourth order correction to zeroth order I-V relation under electro-neutrality

condition, we have
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Theorem 3.11. Under electroneutrality condition, we have

_3(L-R)*(L°-PR°) (L—R)* (L*—R?) (L - R?)
4T AR (InL—InR) | 23R (InL—TnRZ \  3(InL—InR)

+_7(L5—R5>> » LR -F) 5  (L—RP(L+R)

2 " 4L5R5(InL—1InR)3 2L*R*(InL —InR)*

3 3
(LR PR i (3.20)
2 3LR(InL —InR) ’

(L—R)* ((L—R) (B~ R) QLK) 30:(L.R)

Iy v?

T [*R*(InL—InR)? G6L2R? ALR
O(LR) 5 QLR 4 (L—R)Q4(L,R)V5>,

TImL—imR  4LR(InL—InR) 2(InL—InR)3

where

L*-R 97 (L*+R?)
3(lnL—lnR)+ 2 ’
(L—R)(L°-R%) (L—R)?(L*—R®) (L*+LR+R?)
QZ(L’R):ZLzRZ(lnL—lnR) 9L2R?(InL— InR)?
13(L—R)(L’—R) 7(L°-R) (L-R>*(L+R)
12L2R2(InL — InR) 4LR~ 2(InL—InR)
(L—R)(L+R)(L>-R?)  17(L—R)?
4LR(InL —InR) 12(InL—1nR)’
(L—R)(L°—R>) (L—R)?
InL—1InR " InL—InR

) (P-R)"  3(L+R?
Q4(L,R) = 2LR(InL—InR) _3L2R2(lnL—1nR)2 4 .

01 (LaR) =

03(L,R) = +L°—R,

The derivation of the expressions in (3.20) is provided in the Appendix Section 3.6.

Remark 3.12. Under the electroneutrality condition, up to the fourth order in €, the I-

V relation function % (V) is quintic instead of being cubic. However, for € > 0 small,
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I = Iy+€l; + €21 + €313 is good enough to approximate the I-V relation, which can be

seen from last section.

To end this section, we have the following interesting result about the I-V relations,

which can be checked directly from systems (2.27) and (2.28).

Proposition 3.13. Foralle >0, #(L,R,V;¢) = —%(R,L,—V;€). A direct observation

shows that, for j =0,1,2,3,4,

Ii(L,R,V;0) = —I;(R,L,~V;0), T;(L,R,V;0) = —Tj(R,L,—V;0).

3.5 Numerical simulations

In this section, numerical simulations are performed to system system (2.27) with the
boundary condition (2.28) to check the cubic-like feature of the I-V curve and investigate
the effects of the boundary conditions, the permanent charge on the I-V relations.

To apply the BVP solver mentioned in section 2.3, we first rewrite (2.27) into a

system of first order equations as

d d
E0 =t e M) = (@~ Ber+ 0(x),
eh(x )dﬂwh(x)clu — (3.21)
d dJ;
eh(x) %2~ Bh(x)cou = ey d—i:o,

with the same boundary condition (2.28).

For a general iteration step, we take the initial guess from the approximate solution
of the previous fixed point iteration. At the first iteration, for the case where Q = 0, we
take advantage of the analysis from [1] and choose the initial guess (¢°,u°,c,c9,J7,J9)

as follows.
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We take the zeroth order outer solution from [1] as our initial guess for both Q(x) =0

and Q(x) #0

o, In|L—(L—R)x|—InR . (L—R)vo
WO =g " Y S ML CmR(L—Rx—D)
cRo(x) =c3(x) =L— (L—R)x, J)y=(L—R) (1 + lnLvﬁ) : (3.22)

0 Vo
Jo=(L-R) (1 N 1nL—1nR>'
0

We take a uniform mesh partition as initial mesh and evaluate the functions ((])8 , u8, Clo»
cgo,J?o,Jgo) at these mesh points as initial guess for “bvp4c” at our first fixed point it-
eration. We use the mesh and solution from previous fixed point iteration as our initial

mesh and initial guess for late iteration.

3.5.1 Numerical experiments

In this section, three numerical experiments are conducted to system (3.21) with bound-

ary conditions (2.28) respectively, which are stated as follows:

e Experiment 1: for Q(x) = 0, fixing L and R, letting € vary, we check the cubic-like
feature of the I-V relation, and meanwhile, compare the I-V curves from numerical

simulation with the ones obtained from asymptotic expansions;

e Experiment 2: for Q(x) = 0, fixing R and €, letting L vary, we investigate the effect

of the concentration boundary condition on the I-V curve;
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;

00<x<a,

e Experiment 3: for Q = ¢ 0y a<x<p, fixing L,R and g, letting Qp vary, we

0b<x<l,

\
investigate the effect of the permanent charge on the I-V relation curve and check

the cubic-like feature of the I-V curve.

For experiment 1, the following properties are predicted from the analytical results
and can be observed from the numerical simulations: For the first part, we have (see

Figure 1)

(i) all I-V curves pass through the point (0,0), and for V close to 0, the value of € has

less effect on the I-V curve;

(i1) forV >0, the I-V curve is decreasing in €, and for V < 0, the I-V curve is increas-

ingin €;

(iii) the I-V curve is more cubic-like for larger € > 0, and for € small enough, the
I-V relation curve .# (V) is close to the zeroth order approximation %) = 2(L —

R)V /(InL —InR) under the electroneutrality condition.
For the second part, one has (see Figure 2)

(i) the smaller ¢ is, the better approximation .# (the third order approximation to the

I-V curve) will be;

(i1) the approximation is sensitive to V, for V close to 0, the value of € has less effect

on the approximation.

For experiment 2, the following properties can be observed from the numerical sim-

ulations (see Figure 3):
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-V relation with L=40 and R=5
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Figure 3.1: Numerical simulation of the I-V relation .# (V) with Q = 0. .#|(solid curve,

€ =0.1), #(dotted curve, € = 0.08), .Z3(dashed curve, € = 0.04), and .Z4(stars, € =
0.008)

(i) all curves pass the point (0,0), for V > 0, the I-V curves are increasing in L, and

for V < 0, they are decreasing in L;
(i1) for fixed € and R, the I-V curve is more cubic-like for larger difference L — R.

For experiment 3, we investigate

(i) all curves pass through the point (0,0), and the I-V curves still keep the cubic-like

feature;

(i1) the I-V curves are decreasing in the permanent charge Qg (see Figure 4).
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-V relation with L=40, R=5 and €=0.1 |-V relation with L=40, R=5 and ¢=0.08
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Figure 3.2: Plots of .# (V) for Q = 0. . — third order approximation, and .#,;— numer-
ical simulation.

3.6 Appendix: Fourth order matching under electroneu-
trality conditions

In this section, we study the fourth order asymptotic expansions in € and the matching

under electroneutrality conditions at the two ends of the ion channel.
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|-V relation with R=5 and £=0.08
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Figure 3.3: Numerical simulation of the I-V relation .# (V) with Q = 0. .#|(stars, L =
10), % (dotted curve, L = 25), .#3(solid curve, L = 40), and .#4(diamonds, L = 55).

3.6.1 Fourth order outer expansion

The fourth order outer system is

¢ = — 14+ c24,
¢1a =—(c1094+ 1193+ crod +c1391 +ciado) — Jia, (3.23)

a4 =C20Q4 + 2103 + 2202 + 2391 + 2400 — Joa.

Under electroneutrality condition, that is, L; = L, = L and R; = Ry = R, adding the last

two equations in (3.23), we get

G415 —1I5)  I§(az — Dox) Il

Cl4+coq =aq — Tyx+ ;
2(610 — T())C)5 (ao — Tox)3 (a() — Tox)2
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|-V relation with L=40, R=5 and €=0.1
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Figure 3.4: Plots of I(V'). The left graph in the first row is the simulation over the interval
[—80,80], for the other three graphs, we focus on different subintervals. .#(solid curve,
Q=0), .#|(dashed curve, Q=0.05), .# (dotted curve, Q=0.1) and .#3(dash point, Q=0.2)

where a4 1s some constant that will be determined through matching. Subtracting the last

two equations in (3.23) results in

L Iy 1 ay —hx Ig .
¢4 n ag — Tox * ag — T()x 2 (a() — T()x 2(61() — T()x)3 ¢2
(aa—Tx I5 (4T3 —15)  I§(ax—Tox) Il o
ag— T()x 2(61() — T()x)6 (a() — T()x)4 (a() — T())C)3 0-
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Recall that

do = — lo 6y = Io(I —4T3) | Io(az — Trx) b
0 ap — Tox’ 2 2(610 - Tox)4 (ao - T())C)2 apg — TO)C7
.2 ZZIOTO (Ig — 4T02) 2]0T0(a2 — sz) B Iy + L1 (3.24)
(a() — T())C)5 (a() — T()X)3 (a() — Tox)2 ’
G, = 00Ty (I5 — 4T5) | 6loTy (ax —Tox)  2To(2hTr + hT)
? (a0 — Tox)® (ao — Tox)* (ao — Tox)?

Therefore, we have

Io(I3 —4T3) (40T —313)  2aply(AT¢ —13)  313L —8IhToTh — 4T3 1

bu=

4(ag — Tox)’ (ap — Tox)> 2(ap — Tox)*
a3l hay + asly I 20T (4T3 — I3 )x

(ao — T()X)3 (a() — T())C)2 ag — Tox (a() — Tox)5

(LT, +IoTy)x  2alyTrx I T7x?

(ao — T())C)2 (ao — T()x)3 (a() — T()x>3 '

By careful computations, we have, with b4 a constant to be determined through matching,

Io(I3 — 4T3 (40T2 —313)  Io(aaTy — aoTr) (4T¢ — I3)

=by +
04 (x) 4 24Ty (ao — T()x)6 2T02 (a() — Tox)4
N Io(I5 = 4T3) (To — 4D) + 2 To(Ioh = 4T ) Io(ax Ty — apT)?
6T02 (a() — Tox)3 2T03 (a() - T()x)2

(3.25)

n T02 (]2612 + a410) —apTp (Isz — ]()T4) + 211> (a()Tz - azTo)
15 (ag — Tox)
n To(I4T0 — 10T4) + T2(10T2 — T()Iz)
T3
0

ln|a0—T0x|.
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Together with the first equation in (3.23) and the theird equation in (3.24), we obtain the

solution to the fourth order outer system (3.23)

as—Tyx 1o (4TF —I3) (lo+4T0)  Io(Io +2Tp) (as — Tox)
c1a(x) = + -

2 4(ag — Tox)? 2(ap — Tox)?
I()(Iz —+ Tz) + LT
2(61() — T())C)2 ’
era) =4~ Tix (I3 —4T3)(4To—lo)  Io(2Ty — Iy)(az — Tax)
2 4(ag — Tox)? 2(ag — Tox)?
In(L —T,) — LTy
2(610 — T())C)2
() =bat (12 —AT2)(40T2 —313)  Io(ax Ty — aoT>) (AT2 — ) (3.26)
X)) =
+ 4 24Ty (ag — Tox)® 2TO2 (ag — Tox)*
n 10(15 — 4T02)(T0 — 4T2) + 210T0(10[2 — 4T()T2) B 10(a2T0 - a0T2)2
6T (ao — Tox)? 275 (ap — Tox)?
n T02 (12a2 + 614[0) —aplp (12T2 — I()T4) + 2]0T2 (a0T2 — azTo)
TO3 (ap — Tox)
To(I4To — IoTy) + T (InT> — Tl
L BTy~ 1Ta) : 2(hT> —To Z)In\ao—Tox\.
T;
3.6.2 Fourth order inner expansion
The fourth order inner system at x = 0 is
@) =Us, Uy=—(Cis—C),
Clq = — (C1oUs + C11U3 + C12Up + C13U; + Cralp) —J (3.27)
14 (C1oUs +C11U3 + C12Up + C13U1 + C14lp) — J13,

C§4 :(C20U4 + Co1Usz + CroUpy 4+ Cr3U, —|—C24U0) —Jo3.

Proposition 3.14. System (3.27) has the following integrals:

G1 =C14¢®0 4 C10e™ Dy + J13F) + Fia1 + Fiaa + Fias,

Gy =Cage™ P — Cape™ PDy + Jo3Fr — Fog1 — Fagy — Fasz,
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G3 =UpUs + U U3 + U3

where Fy and F, are given in Proposition 3.3, and

—Cl4—Cy — T8,

¢ ® ¢ ®
(@) = [ CiUs©enVds. Fa@) = [ Cob)tasenas
0
: @0(s) @0(5)
F143(§):/0 Ci3(s)Ui(s)e™Vds, Fa(§ / Co1(s)Us (s ds,
: ~0(s) @0(s)
F242(5)=/0 Coa(s)Ua(s)e™0Wds,  Faz(§ /C23 YU (s ds.
Proof. The proof is straightforward.
Under electroneutrality conditions, by careful computations, one has
T DTy .4, 1 L WI§ N ., OhT§  DTf 5.2,
F141(§)—2 {4(2L)3’(g 2L\ 2 ( L)3 & 4(2L)5  4(2L)3 \/ig +L§
9 9 _VILE| W
+ &+ e e’
(2L)3 (2102>
I§T02 1, 1 I e |77 1%
F142(§)_2(2L)4 _55 +E_\/2—Le €+2\/ie e,
Fis (6) _I_ <10T0(10+2T0) _2) 52_ IOTO 5 I()T()(I()—T()) IpTy
: 2L 4(2L)3 4 221)3 4L 40)
152 10+T0§+T0—130 e VUS|V
2(2L)> (2L)>
[ bT§ .4 1 b TEN ., 9T¢  DT§ 15 2,
Fa(8) =5 {4(2@3‘5 a2t ) s Y aens e \ v tIt
—V2LE| -V
e e
T >35 (L) ) ]
127b ) .7 1 e
(@) =g |3 ~ap+ v (€ 5y )
oy (£) = — Iy <IoT0(10—2T0) Tz)éz IToé I+ Ty) Ty
2L 4(2L) 2(2L)? (2L)* 4(2L)3
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X (_ Ty 52_@@ _M) e—@&] oV

2020): 7 L (2L)2

To solve for (®4,C14,Cr4) with 4(0) = C14(0) = C24(0) = 0, we note that, from the

integrals in Proposition 3.14

Cua(&) =20 | TO £ 4 T0(4T0+10)5z To(6lo+11T0) . | 975 +20Ty 213
2L’ 4v2L 8L
bTo - yore e VILE | IoTo (I3 + 31Ty — 2T¢) ,
4L —bTy—IT
Tae 8L (2L)3 2To—1Ta | &
LT LTy Ty (212 — AlpTy — 9T?
_ 0095_ 003§4+00( 0 050 0)—J13§—L<1>4,
2020)3° 8(2L) 3(2L)
Cos(E) = Ty | V2LT} £y To(lo 4T0) £y To (81 — 97Tp) 5+415+410T0_9T02
2L’ 4v/2L 8L
IoTo _.por| —vore 10T0(310T0+2T0 ) )
AL LTy +IoT:
+4Le e +8L L) +LTy+ 1) ) &
LTy LT3 ., IoTo(212 —4lgTy — 9TP)
S &'+ — I3E + Ly,
2020)2 ° 8(2L)? 8(2L)5
Therefore,

@)=

20L) - TRl

Ty |2I3—6Tf 6T0€_7TO e \/_Tog Vg LT
2L V2L

Ty o I +12T0> 2. I To LT, (374 — 13)
+ C(2T5 — )+ ———— +5E+
+2LDy.
The solution with ®4(0) = 0 is
o, DT _|V2 LT} iy 17T0 & 41T¢ 52 89T0 1612g 38T — 617
4 =
42L)7 | 8 8v2L (2L)?

V53 3 ~VALE IyTy 10 Iy + LTy )
+4(T0+10>(2L)2 Y] (<2L> (4T° 2 )" e )¢
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B LTy s I To . IhTo(19TF —313) WL+ LT eV
4(2L)% (2L) 2(2L)5 (2L)

The matching will force y; = 0. Thus, the third order inner solution is, for & > 0,

41T02 2 89T2 1612éj

Ty |V2L TO2 4 17T02 3
Dy(S) = 5 &'+ &7+
4(2L)>2 8v2
38772 — 613 T I LTy
0—3()+4<_2+ 2)(2[1)% —v2rg 10 454
(2L)2 To o 4(2L)
IoTo » B\  IhDh+hT) ., I LT |k
— === (47¢ -2 oY
(G (475 -3) + ") € ¥ )¢
 WL(19T7 —35)  Lhh+hT
2(2L)0 (2L)3
CualE) LTy ., SLI; 4 IOT02(15T0+810)§2
14 = |— -
64(2L)°°  96(2L)2 64(2L)*

10T0(7T02 +641yTo + 16[3)é 1Ty ([_g 4Ty — 13T02)
(3.28)

64(2L)? 2(2L)> \ 2 2
LT + LTy IgT()z —V2LE —\/ﬁé 310T0 (I —|—2T0)
- ¢ ¢ 4(2L) &

20202 T 4(2Ly
T3 10T0(13T02 - Ig — 31()T()) Iy, + L1

a7 4(2L)3 8L2
Cou(E) = IT3 g4y SIT3 £ LT (81 — 15To)§2
4 642L)%" " 96(21)} 64(2L)
IoTo(641To — TT¢ — 1613)§ 1Ty (1 T — 1_5 N 13T02)
64(2L)2 2(2L) 2 2
IyT, + L1y IgTOZ emé] ei\/ié N 3[0T0 (I 2T0)§2
4(2L)*

2(2L)2 4(2L)5
T, IoTo(I§ — 30Ty — 13T3) _Wh+hT

et 4(2L)3 8L2
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Similarly, at x = 1, the fourth order inner solution is, for & <0

LTy [\/ T054 17TO§3 A1T? e 89T0 16135

Hale) :4(2R) 8V2R
38T — 613 L b 3| —vare | DTG 4
e +4(TO+IO><2R>] LIS
IyTy I IyT, + LT 13Ty I
(e (475 §>+ o€ ((2(1)@ +2R>é
LWTo(19TF —313)  IoTh + LTy
~ 2(2R)® (2R3
B SLTy 10T (15T + 81)
Dy(8) = [— 64(2R)3§4 S602R)} £3 4+ 064(2R)4 g2

IoTo(TT? + 641 Ty + 161 Ty [1I? 1372
+00( 0 090 O)g 005(—0+IQT0— 0)
64(2R)2 2(2R)> \ 2 2 (3.29)
DAL KTy ] -vare | 3075 (o +2T0) £
2(2R)2 ' 4(2R)’ 4(2R)*
T3 IOT0(13T02 —Ig — 310T()) Iy + L1y

oo T 4(2R)3 8R2
LT3 - ST .4 10T02(810 —15Tp) ,,
D

IoTo(641yTy — TT? — 1612 1Ty IZ 13T,
+ ( > 0)5 = | loTo — .
64(2R)? 2(2R) 22
Lh+bLTy | T3 VIRE| VIR | 316T2 (I —2Tp) ., o
2(2R)2 " 4(2R)S 4(2R)*
T3 I()To( — 30Ty — 13T02) Iy + LTy
2 4(2R)3 8R2

3.6.3 Fourth order matching

At x = 0, for the outer expansion, we have, in terns of the variable &, the outer expansion

atx=01s

I Iy 5 (4T§ —13)  Io(arTy —aoTr)
E2EX () =bg+ —1Inag—e—E +€%(by—
eEx(9) =bo T, 0 a0§ 2 6Toay Tgao
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Tol, — IhT- I T, Ip(azTy—aoTs) LTy—IT
L L SO L 2)+83(0( %o —ap 3) BT RLEPHO
Io(I3 —4T3) azlo—aolz) IT¢ 3)
+b3+ + -
3 ( Zag a(z) : 3ag5
4 [ azly —apl3 aloTy LT + LTy IpTh (I§—4T02) ’
+e &+ T 55—+ < <
ag ag 2ag ay
10T03 4
——— &P+ 04(0) ),
4a0
Ty ay I2+2ITh a3 (IhTy(Iy+2T)) T»
EE? =D g0y (20T 200 e = —_—— =
eEx(c1) 2 2§+ > T 4ay + 2 " 2a} 2 5
s fas I (AT —IB) (lo+4T0)  axlo(lo+2Tp)  Io(h+ )+ 6T
TE E—f— 4a3 B 2a3 + 2a?
0 0 0
Ty, 3T¢(Iy+2T)
__§+ 0 4 52 )
2 2a,
ao T() 2 ar 13—210T0 3 as I()To(l()—zTo) Tz
EZE? =——€&—¢H+e& | —+—F |+ | = —_— =
ebile) =5 —e6+ <2+ e ) TEDT 2a3 > )6
s fas I3 —ATHAET D)  alo(2To—1y)  Io(lh—T) — LTy
tE ?—i_ 42 * 2a3 + 2a?
0 0 0
_55 N 31T (I — 2Tp) £
2 2a3 ’
where
To (IsTo — LTy — IyTy) + Iy T2 Io (521217 + 1607, — 313
04(0) =bs + 0 (4T 22304)+021na0+0( 0T ! o )
Io (a2Ty — aoTr) (4T3 — 1) N LTy —410T) 2246 —hLT)
2T02ag 6T02a(3) 3a(3)
wh+asly  Th(aoh+ady)  Io(axlr+aoTs) Io(aoT> —axTp)*
apTy ap T02 ap T02 2T03 a%
20T}
5
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Similarly, in terms of & = (x — 1) /€, the outer expansion at x = 1 is

ELEX(9)

gE4(Cl)

EZE}(c 2) =2

10(2610 3T0) I()T02 ( aol()
bo—f——hlao—To—{— —€&| ——
| | (a —To)2 3(a0—T())3 (ao—TQ)z
———0 )¢
(ao — To)
4T} - 1)  IaxTy—aoly) ©LTy—IT
+£2(b (4T 0)3 0(22 0—aoly)  hTo—ly 2 1nlao — To|
6To(ap — Tp) 1; (ap—Tp) TO
I()T()(3T()—a())€2
2(ap—Tp)?
LTy —IyT aplzs — azly + IpTz — I T;
+£3(b3+30 031|a0_T0’ olz —azlp 023 31
TO (a()—T())
Ip(asTy — apT3) ([0(13 —4T02) (ay —To)lo — (ap — T())Iz) £
Toz(ao —To) 2(ap — T())4 (ap — To)z
10T02 53
3(610—T0)3
Ip(as; — T I LT, (I? —4T; arlpTi
i <0(3 32)_ 3 )§+ 0To (1 )+ 2hoTy_
(a0 —To) ao—To (ap—Tp)? (ao—To)
T+ DTy _ 0% s
2(a0 — T())2 4(61() 4
o—To Tt ~T 54207
0 _ g0 g2 m—1 + 20T
2 2 2 ao—TQ)
az—T- IhTo(Io +2Tp)
L (BB ([l 0(lo +2Tp)
2 2(a0—T0
Lt (=T Do (475 — 1§) (o +4T0) Il +2T) (a2 — 1)
2 4(61() — To)S 2(a0 - T0)3
Io(L+T>) Ly T 30T (1o +2Tp) .,
2((10 — T0)2 2(a0 - T0)2 2 2(a0 — T0)4 ’
—TO T() 2 ar—1 Ig—ZIQTO
—e—E+e
2 2 é + ( 2 + 4(610—To)2

3 a3—T3 [0T0(10—2T0)_§
+8( 2 +(2(00—T0)3 2 )

4 84 (a4 — T4 I()(Ig — 4T02)(4T0 —I()) I()(2T() — Io)(az — Tz)

2 4(a0 — T())5 2(00 - TO)3
bih-T) LTy T3, 3T —20) £
2(a0—Tp)? 2(ag—Tp)* 2 2(ap—Tp)* ’
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where

To(LTo — LTy — I Ty) + 1T Inao — Io (525 T4 + 1607 — 313)

¢a(1) =ba+ = To| + 24T (a0 —To)°
N Iy(axTy—aoTr) (4T3 —13)  I2 (BLTy—41oTz) 2 (21T — bLTy)
21¢ (ap — Tp)* 6T¢ (ap — o)’ 3(ag—Tp)’
Iy(ah - @)’ | ab+ady  Ty(aoh+axy) | Io(aly+aoTy)
2713 (ag—Tp)*  Tolao—To)  Tg(ao—To) ¢ (ao — To)
2aply TS
T8 (ap—To)

From (3.28) and (3.29), the inner expansion at x = 0 is

Iy Ty IhT ., I T? L 2LT?
EXE3(®) =V —g—E —¢2 0 B 0
A TAR (8L3 5) <(2L)§+ 2 a0t )°
10T02 3
30Lp°
T, 1 (IT < 1) IT+IT>
4 0 0 3 010 0 odp 1240 \ 2
—€ &+ 4T3 +—=— )&
( ( L)% ) L3\ 2 2(2L)2
IOT iy LWTo(19TF —313)  IoT> + LTy
( L)* 2(2L)° L) )’

I, T, 12T, LT? I’Ty, T
EJE}(Cy) =L— e—8§+ 22 0—e3<20 07—(0 0 40 0——2>5>

8L2

(2L)? 8L3 16L3 2
4 (303 (Io+2Tp) e 5] L To(13T3 — 1§ — 316 Tp)
4(2L)* 2 4(2L)5
Iy, + LT
R

IOTO s BT BT DbIf T
EJEX(C)) =L—e2& — — — — =
N(e) € 5 ey € (2(2L); e s’ )%

30T (Io — 2Tp) T3, DTo(I3 — 31Ty — 13T%)
( 4(2L)* 2 4(2L)3
T + LT

A

& -
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and the inner expansion at x = 1 is

SE3p) =y — e 0 g _ g2 (foTo  foToeo LT} L 2017
EE;(Y) =V —e558 —¢ (8R3 8R2§) ((2R>2+ & T aR) £
I()T )
2R)?
h IoTo Iy\ | I+ b1y >
(( r >5+(<2R> (175-2) ")

IOT iy LWTo(19TF —313)  IoT> + LTy
a2 R)* 2(2R)® 2R)* )’
Ty 5[ BT LT? IPTy, T
EJE3 (D) =R— e— —€ o __ 00 - _ 2
vE¢(D1) e’ 8R2 (2(2R)§ sk e 2 ) °
4 (3013 (Io +2Tp) e 5] I To(13T3 — I§ — 316 Tp)
4(2R)* 2 4(2R)S
+I()T2 +12T0) 7

8R?

IOTO s BTy LTy LT T
E3E3(Dy) =R —e—& — _ _ _n2
vE: (D) € 5 & ops — € (2(2R)§ R sks 2 )¢

4 (31T Iy — 27Tp) e T, ooy —3T — 1317)
4(2R)* 2 4(2R)3
DT>+ by
8R2 '

The matchings at x = 0 and x = 1, together with

2(L—R) - A I5(L* —R?)
=2L, Ty=2(L—R), Ihy=———"2 0 o0 )
aw=2L To=2L=R). b=V @= g =g
_ b | I (275 +15) (P —R®)  Iy(axTo—aoT)
Ty 4813R3(InL —InR) 4LR(InL —InR)’

give

Io [I3(Io+3Ty) — T¢ (3To + 71)] | @lo(lo+2T) Tk

44 = 64L° 813 412
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7, _DoTo (L35 —Thb) (1 1\ bh(1 1
T 64 L5 ’) 4\ R)
g 1oTo (3 — 16Ty —388T5) (1 1\ ho(axlo—aoh) (4T3 — 1)
0= 1536(InL —InR) IS RS 32(InL—1InR)
(L1 _BDh (275 +305) +20D (715 —215) (1 1
L* R 43(InL —InR)

L} R

I(a—aTo)* (1 1Y\ | ao(hTy —ITa) — To(axl + asly)
8To(InL —InR) 2(InL—1nR)

L? R?

(1] N 1T} IOT22+IT+IT
L R)"R(nL—nR) T, ' 2T

We conclude that

3(L—R)*(L°—R) _ (L—R)* ((LQ—RZ) (L3 —R3)
4

" 4L5RS(InL—InR)  2L5RS(InL—InR)2\  3(InL—InR)

+7(L5—R5>> » (L=RMPP-F) oy (L-RP(L+R)

2  4L5R5(InL—1InR)3 2L4R*(InL —InR)*

3 3
(LR PR o4 (3.30)
2 3LR(InL —InR) ’

L (L—R)* (L—R) (L*—R?) QI(L,R)V+3Q3(L,R)V2
* T [AR*(InL—InR)? 6L2R? ALR
O>2(L,R) -3 O3(L,R) -4 (L—R)Q4(L,R) 5
V _
METYASTY: 4LR(1nL—1nR)2V * 2(InL—1nR)3 )
where
P-rR  97(L’+R)
L.R) =
O1(L.R) 3(nL—InR) 2
R _(L=R)(L’—R5) (L—R)*(L*-R®) (L*+LR+R?)
Oa(L, )_2L2R2(lnL—lnR) 9I2R%(InL — InR)?
13L—R)(L°—R°) T(L°—R°) (L-R’(L+R)
12L2R%(InL — InR) 4LR 2(InL—1nR)
(L—R)(L+R) (L’ —R*)  17(L—R)*
4LR(InL —InR) 12(InL —InR)’
(L-R)(L’—R°) (L-R?* 5 s
L.R) = - L’>—R
0s(L.R) InL —InR lnL—lnR+ ’

61



_(L+R) (P -R) (B-R)"  3(L+R?
Qu(L,R) = 2LR(InL —InR) _3L2R2(1nL—1nR)2+ 4

In particular, the fourth order correction I4(V) to the zeroth order I-V relation Ip(V) is

quintic in V. As L — R, one finds that 7y — 0 and I — %\75.
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Chapter 4

A numerical study for ionic flows with hard sphere ion

species: I-V relations and critical potentials

We consider a one-dimensional steady-state PNP type model for ionic flow through
membrane channels. Improving the cPNP models where ion species are treated as point
charges, this model includes ionic interaction due to finite sizes of ion species modeled
by hard sphere potential from the Density Functional Theory. The resulting problem is
a singularly perturbed boundary value problem of an integro-differential system. We ex-
amine the problem and investigate the ion size effect on the I-V relations numerically,
focusing on the case where two oppositely charged ion species are involved and only the
hard sphere components of the excess chemical potentials are included. Two numerical
tasks are conducted. The first one is a numerical approach of solving the boundary value
problem and obtaining I-V curves. This is accomplished through a numerical implement
of the analytical strategy introduced by Ji and Liu in [46]. The second task is to numer-
ically detect two critical potential values V. and V¢. The existence of these two critical
values is first realized for a relatively simple setting and analytical approximations of
V. and V¢ are obtained in the above mentioned reference. Our numerical detections are

based on the defining properties of V. and V¢ and are designed to use the numerical I-V
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curves directly. For the setting in the above mentioned reference, our numerical results

agree well with the analytical predictions.

4.1 Introduction

We numerically examine singularly perturbed boundary value problems of an integro-
differential system — a one-dimensional steady-state PNP type model for ionic flow
through membrane channels (see [4, 5, 24, 30, 31, 32, 33, 43, 44, 46, 58]).

As mentioned in section 2.1.1, the simplest PNP system is the cPNP system, which
treats ions as point-charges, and ignore the ion-to-ion interaction. To take into consider-
ations of ion sizes, one needs to include the excess (beyond the ideal) chemical potential
in the model. The PNP system combined with Density Functional Theory (DFT) for
hard sphere potentials of ion species serves the purpose for this consideration and has
been investigated computationally with great improvements ([9, 31, 32, 33], etc.). All
these computations, however, lack sufficiently analytical supports. In a recent work [46],
the authors analyzed a one-dimensional version of PNP-DFT system in a simple setting;
they considered the case where two oppositely charged ions are involved, the permanent
charge can be ignored and only the hard sphere component of the excess chemical poten-
tial is included beyond the ideal potential. The model, viewed as a singularly perturbed
boundary value problem of an integro-differential system, was analyzed by a combina-
tion of geometric singular perturbation theory and functional analysis. They established
the existence result for small ion sizes and, treating the sizes as small parameters, derived
an approximation of the I-V relation. The approximation result allowed them to make
the following finding: there is a critical potential value V. so that, if V > V, then the ion
size enhances the flow; if V < 'V,, it reduces the current; There is another critical potential

value V¢ so that, if V > V¢, the current is increasing with respect to A = r,/r; where r;
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and r, are, respectively, the radii of the positively and negatively charged ions; if V < V¢,
the current is decreasing in A.

In this chapter, we perform numerical study of the one-dimensional version of PNP-
DFT system in a more general setting than that in [46] to include non-trivial permanent
charges. Two numerical tasks are conducted. The first one is a numerical approach for
solving the boundary value problem and obtaining I-V curves. This is accomplished
through a numerical implement of the analytical strategy introduced in [46]. The sec-
ond task is to numerically detect two critical potential values V. and V¢ that are defined
slightly general than these in [46]. Lacking of analytical formulas for general situations,
our numerical detections of V. and V¢ are based on their defining properties and are de-
signed to use the numerical I-V curves directly. For the relative simple setting in [46],
our numerical results agree well with the analytical predictions.

The rest of the chapter is organized as follows. In Section 4.2, we briefly set up
the one-dimensional PNP-DFT model for ionic flows and recall the analytic results from
[46]. In Section 4.3, we discuss our numerical strategy for solving the model problem
in detail. In Section 4.4, we introduce two critical potentials generalizing that defined in
[46] and provide a design for detecting the critical potentials. In Section 4.5, we present
a number of case studies to demonstrate the usage of the numerical activities in Sections

4.3 and 4.4.

4.2 Models and two critical potentials

In this section, we study system (2.27) with the boundary conditions (2.28) including the

nonlocal hard-sphere component ( see [29, 71, 72, 73, 74, 75]) by

‘uHS _ 59({61'})

R 4.1)
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where

Q({c;}) =— /no(x;cl,cz)ln(l —ni(x;cq,¢2))dx,

nz(x;cl,cZ)=Z/c,~(x’)w{(x—x’)dx’, (1=0,1), (4.2)
j=1
o) =2 O iy — 0y — ),

where § is the Dirac delta function, © is the Heaviside function, and r ; 1s the radius of
the jth ion species.
Through out the chapter, we will also assume the electroneutrality conditions at the

boundaries

n n
Y ziLj=Y z;R;=0. (4.3)
j=1 j=1

In [46], the authors considered only the hard-sphere component uiHS of u* with
two ion species (n = 2) of opposite charges (z; > 0 and z» < 0) and Q = 0. Based on
a combination of geometric singular perturbation analysis and functional analysis, in
addition to the existence and uniqueness result for the boundary value problem (BVP)

(2.27)—(2.28), an approximation of I-V relation in r = ry is also obtained:
I(V;é‘, I’) =zJ1+20/h = I()(V;S) +1; (V;S)r—|— O(l’),

where

e(z1D1 —z2D»)

Ip(V;0) =(D1 —Ds)(L—R) +

kT
2;;;};) [(A = 1)(z1D1 — 22D2) fo(L, R) = (214 — 22) (D1 — D2) (L + R)]

_ 2e(ziA —22)(z1D1 —22D7)
Z1Z2k2T2

fO(L7R>V7

Il(V;O) =

fi(L,R)V,
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with A = 1’2/1’1, L=z71Li=—20,>0,R=71R; = —22R, >0,

L—R (L> ~R*>)(InL—1nR) —2(L—R)?

fo(L,R) "l —InR’ fi(LR) = (InL —1InR)?

This explicit approximation allows the authors of [46] to realize the existence of two

critical potential values V. and V¢ defined, respectively, by

d oo
1(Ve0) =0, —21i(V4:0)=0. (4.4)

They are given, in this setting, by

v :k—T()L—l (L—=R)fo(L,R)  (D1—D2)(L*—R?) )
‘e (214 —22) fi(L,R)  (z21D1 —22D2) fi(L,R) ]’ @.5)
ye kT ((L—R)fo(LR)_ (D1 — Dy)(L? — R?) ) |
e 21f1(L,R) (z1D1 —22D2) fi(L,R) )

The importance of V, and V¢ is evident and we summarize it here ([46]).
Theorem 4.1. Let V. and V¢ be defined by (4.4).

(i) If V. >V, then for € > 0 small and r > 0 small, the ion sizes enhance the current
I; that is, [(V;e,r) > 1(V;€,0);
IfV <V, then for € > 0 small and r > 0 small, the ion sizes reduce the current I;
thatis, [(V;e,r) < 1(V;€,0);

(ii) If V > V€, then for € > 0 small and r > 0 small, the larger the negatively charged

ion the larger the current I, that is, the current I is increasing in A;

IfV < V¢, then for € > 0 small and r > 0 small, the smaller the negatively charged

ion the larger the current I, that is, the current I is decreasing in A.
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4.3 Numerical solution of the BVP (2.27)-(2.28)

Motivated by the work in [46] and with a longterm goal of understanding effects of
various variables (such as ion sizes, permanent charges, boundary conditions, etc.) on I-
V relations of membrane channels, we examine the effect of ion sizes on the I-V relation
based on numerical solutions of the BVP (2.27)—(2.28). We will conduct two numerical

tasks.

Task 1. We will develop a numerical approach to the BVP (2.27)—(2.28) and, as a result,

obtain numerical I-V curves.

Task 2. Based on numerical I-V curves and the defining properties of V. and V¢ (NOT
the analytical formulas (4.5)), we will design a procedure for detecting them numerically

for two cases:

(a) for Q = 0 that allows us to make a comparison between the analytical predications

in [46] and our numerical results;

(b) for a piece-wise constant Q # 0.

In this section, we will carry out the first task. Task 2 is a critical component for the
relevance of our mathematical studies of the PNP type models to ion channel properties
and will be carried out in Section 4.4.

To this end, we study system (2.27) with the boundary conditions (2.28) including

the nonlocal hard-sphere potential given by , for x € [0, 1],

dﬂ_fm<x) :cl(x+2r)+cz(x+ A+Dr) ax=2r)+cx—A+1Dr)
dx 1 —K(x) 1 —K>(x) ’ 4.6)
d'u—gs(x) _al+@A+Dr)+ex+24r)  alx—(A+1Dr)+c(x—24r) .
dx 1 — K3(x) 1 — K4(x) ’
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where

x+-2r +(A+1)r
/ ds+/ ds,
l l r
/ ds+/ (s)ds,
(A+1)r
+(A+1)r X+2Ar
/ (s)ds+/ c(s)ds,

(A 1) X
K = d ds.
4(X) /().+1)r (S) s+ foArcz (S) >

4.7)

This technical result is from Lemma 4.2 in [46].

Remark 4.2. The definition of uf'5(x) for x € [0,1] requires (c1,¢2) to be defined for
x € [—p, 1+ p] where p = max{r| + rp,2r1,2r,}, where r| and ry are the radii of the
positively and negatively charged ions respectively. As remarked in [46], the effect of
a specific extension is of order O(pz). In the sequel, we will fix an extension for our

numerical simulations.

4.3.1 Numerical strategy for solving problem (2.27)—(2.28) with .U,H S
defined by (4.6)

In this part, we present our numerical strategy for Task 1. Note that, with uH 5 defined
by (4.6), system (2.27) is an integro-differential system. Our numerical approach is to
implement the analytical strategy in [46] that is one of the natural approaches to integro-
differential systems.

We begin with a brief summary of the analytical strategy in [46]. For any (G| (x), G2 (x)) €

%°(]0,1],R?), introduce the auxiliary problem, for convenience, setting & = z; > 0 and
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B=—-2>0,

e d d i

h(x) dx (h(@aq)) = (a1 =Bea+0(v), —-=0,

h(x)@ + ah(x)c a9 +G(x)=—J (4.8)
dx ldx 1 - 1
d d

h) 52— Bh(x)er Y+ Golw) =

with the same boundary conditions in (2.28)
#(0)=V, ci(0)=L;; ¢(1)=0, ¢;(1)=R.. (4.9)

Let (¢ (x;€),ci(x;€)) be the solution of (4.8) and (4.9) and define a mapping
F :6°([0,1],R*) = €' ([0, 1], R?) by F(G1,G2)(x) = (c1(x:€),2(x:€)).
Define the second mapping

7 :¢'([0,1],R?*) — €°(]0,1],R?)

Sl = (" Lt M2 L)),

where ,ulH 5 are given by the model (4.1) for the given (cy,c3).

The BVP (2.27) and (2.28) becomes a fixed point problem

(G1,Go) = #(G1,G») for (Gy,G,) € €°(]0,1],R?) (4.10)
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where 57 = (¢ o.%). It has been proved in [46, Theorem 5.1] that, for € > 0 small and
as r — 0, the Fréchet derivative D.7# of J¢ is of order O(r). Hence, for € > 0 small and
r — 0 small, the fixed point exists.

Our numerical approach, in a simple word, is to solve the above fixed point problem
by numerical iterations. Since the mapping .7 is not explicit, a numerical approximation
4 of A cannot be directly constructed. Instead, we will numerically implement the
above analytical strategy, that is, we proceed to construct numerical approximations of
# and ¢ with two subroutines. We now describe the iteration procedure.

Subroutine 1. Given fixed functions Ggo) (x) and Ggo) (x), we numerically solve the
BVP (4.8) and (4.9) with G;(x) = G\”)(x). This auxiliary problem is a BVP of ordinary
differential equations (ODEs). We could use standard BVP solvers for ODEs to obtain
the numerical solutions (q)(o),u(o),cgo),cgo), 1(0), 50)) for x € [0, 1].

(0)

Subroutine 2. After an extension of (c; ,cgo)) to x € [—p,p + 1], we numerically

determine (G(I]) (x), Ggl) (x)) from

X C(O) X
G0 (w) = " sy

using (4.6) with ¢;(x) = cgo) (x). This completes one numerical iteration:
(61".6") = (61", 6). (@.11)

The mapping .74y can be viewed as a numerical realization of /7 =% o.%. Our

numerical fixed point iteration method can be formulated as

(6.6 ) = (617,65, 4.12)
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Subroutine 2 is straightforward because of the explicit formula (4.6). The conver-
gence of this numerical fixed point iteration depends more on BVP solvers for (4.8)—(4.9)
involved in Subroutine 1. Our numerical experiments show that, with the BVP solvers
and the initial guess we used, the iterations (4.12) converge quite fast (usually need 5-7
iterations to reduce the Ly-error to 107%). We will thus discuss our BVP solvers and the

initial guess in more detail below.

4.3.2 BYVP solvers for (4.8)—(4.9) and the initial guess

We use “bvp4c” in Matlab ([52]) as the solver for our auxiliary BVP (4.8) and (4.9). The
basic ideas has been illustrated in section 2.3.

Due to the piecewise cubic approximate solution S(x) given by “bvpdc”, we could
obtain the K;’s in (4.7) analytically and evaluate ng) (x) and Gén) (x) accurately in each
fixed point iteration. Moreover, we could extend the solution to [—p, 1+ p] easily for

polynomials. In our numerical experiments, we use a constant extension.

To apply “bvp4c”, we first rewrite (4.8) into a system of 1st-order equations as

d
EZX(P = u,
e d i
ma (h(x)u) = —(ac1 — ez + O(x)), Ir 0, @)
eh(x)% + ah(x)erut €6y (x) = —ei,
dco

Sh(x)a — Bh(x)cou+€Gy(x) = —¢&r

with the same boundary conditions in (4.8).
For a general iteration step, we take the initial guess from the approximate solution of

the previous fixed point iteration. At the first iteration, for the case where Q = 0, we take

advantage of the analysis from [46] and choose the initial guess (q) 0,0) , u(0:0) , cgo’o) , cgo’o),

Jl(o,o) ,Jéo’o)) as follows.
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The leading term for the analytical solution (G1,G>) is provided in [46, Theorem

6.1]. We take it as our initial guess

G\Vx) =n(L— (L—R)x), GV (x)=m(L—(L—R)x), (4.14)
where
2@+ D) +2B)L—R)r  2QaA+BA+1)(L—R)r
me a?BkT ) 2= af2kT '

The leading terms for ¢ and c; are also provided in [46, Proposition 3.4] as

L—(L—R)x+mx(1—x)

(0,0) (x) = L—(L—R)x+mx(1—x) (00
ﬁ )

a y Co ()C) =

where
_ 2(aA+B)(L—R)?
m= BT 7.

Using the expressions for j§070) , J;Op) and ¢(* in [46], we obtain

JOO _p o @Blm tm)(LitRy)
! 2(a+p)
N —amV + a(ﬁgiﬁanl) <(L1*SI231);]1 ~Liy, 1;]S1 + (lessi)sslerLl In 1;232 )
1 1— 1 1— ’
(Sl—Sz In s151 +32_51 stz )
JOO _p R o*(n1 +n2) (L1 +Ry)
? 2(0+B)
N —amV + a(ﬁgzgﬁaﬂl) <(L1—SI§1_);11—L1 In I;SI 4 (Rl—s?_)sslﬁh In 1;;2 )
1 1— 1 1— ’
(s1*32 In SISI +S2*S1 stz )
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and

_ J—oaJ 1 — 1 -
¢(0’0)(X) :V—ﬁ 2 — OJ1 ( In X—951 4 In X—98 )
m(a+B) \ sy —s s1 §7 — 81 52
o((L1—Ry)s1—Ly)In x;xl o((R1—Ly)s2+L;)In x;SZ
a(fny —any) ( 5351 =+ $2—51 : )
- m(o+ )
Here
m—a(Li —Ri)++/(m—a(Li —Ry))>+4mL,
51= 2m
and
s m—o(Li —Ry) —+/(m—o(Li —Ry))> +4mL,
2 p—

2m

are two roots of the equation o(L; — (L; — R;)s) +ms(1 —s) = 0.
At our first fixed point iteration, we take a uniform mesh partition as initial mesh

0,0) (0,00 ,(0,0) (0,0))
72

0,0 (
0 TSI S

(0.0)

and evaluate the functions (gb( at these mesh points
as initial guess for “bvp4c”. We use the mesh and solution from previous fixed point

iteration as our initial mesh and initial guess for late iteration.

4.4 Design for numerical detections of V. and V¢

In this section, we will describe our numerical methods for conducting 7ask 2. For the
relative simple settings in [46], explicit approximation formulas for two critical voltages
V. and V¢ are obtained analytically. For general situations, no relevant analytical result
is available at this moment. 7o be able to take the advantage of numerical I-V curves
obtained in Task 1, one needs to design numerical methods to detect these two critical
voltages. Our design relies on analytical characterizations of two critical potentials V..

and V¢ based on their defining properties.
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Since we focus on the ion size effect on 1-V relations, we will treat the radii r = ry
and rp (hence A = ry/ry) as variable parameters, and view Lj’s, R;’s, € > 0 small and
a piece-wise constant Q(x) as fixed parameters. Thus, we denote the I-V relation by
I =1(V;A,r). For I-V relation corresponding to the classical PNP (ignoring the size

effects), we denote it by I = Ip(V).

Definition 4.3. A solution V, of
I(ViA,r)=1)(V), (4.15)
will be called a size balance potential. A solution V¢ of

L(ViA,r) = g—i(v;l,r) =0. (4.16)

will be called a relative size effect potential.

For fixed (A, r), the potential V, will depend on the boundary concentrations L;’s, R;’s
and the permanent charge Q. It is the balance potential under which ion sizes do not have
effects on the current. The potential V¢ is meant to distinguish the magnitudes of effects

among different relative ion sizes A.

Corollary 4.4. For fixed (Z, F), let V. be a size balance potential defined by (4.15).

(i) If Iy (Vs A, 7) > Ioy (Ve), then I(V;A,r) > Io(V) for V > V. but close (that is, the
ion sizes enhance the current) and [(V;A,r) < Iy(V) for V < V. but close (that is,

the ion sizes reduce the current).

(ii) If Iy (Vo A, F) < Ioy (V.), then I(V;A,r) > Io(V) for V < V. but close (that is, the
ion sizes enhance the current) and I(V;A,r) < Iy(V) for V >V, but close (that is,

the ion sizes reduce the current).
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Proof. The proof is simple and we omit it here. O

Remark 4.5. For the setting considered in ([46]), it was shown ([46, Lemma 6.2]) that

Iy (Vi A,r) > Ioy (V) in (i) holds for all (V,A) if r > 0 is small enough.
Corollary 4.6. For fixed (A, 1), let VE be a potential defined in (4.16). Suppose Ly (VE; A, ry) #
0. One has, for (V,A) in a neighborhood of (V£, Ay),

(i) if Ly (VE; A ri) > 0, then, for V.> VS, I(V;A,ry) is increasing in A and, for
V < VE I(V;A,ry) is decreasing in A;

(ii) if Ly (VE; A ry) < O, then, for V.> VE I(V;A,r,) is increasing in A and, for
V < VE I(V;A,ry) is decreasing in A.

Proof. We write, for some function p(V, A1),

1V, r) —1(Viders) = p(V,A) (A — Ay).

Differentiate with respect to A and V, and set A = A, to get

IA(V7A*ar*):p(V7A*)7 IAV(V’A‘*7r*):pV(V7)"*)

In particular, p(VE,Ay) = 0 and py (VE,Ay) # 0. It follows from the Implicit Function
Theory that there is a function I'(A1) for A near A, such that VS =T'(A4,) and p(I'(1),1) =
0. Therefore, p(V,A) = g(V,A)(V —T'(1)) for some function ¢(V, 1), and

CI(V*CvA'*) = pV(V*Ca)L*) = IAV(V*C;A'*J.*)'

We conclude

DVidire) = p(Vide) = q(Vi A) (V = V).
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In particular, 7; (V;A,ry) and Iy (VE; Ax, i) (V — VE) have the same sign for (V,A) in a

neighborhood of (V£, A,). Both (i) and (ii) then follow immediately. O

Remark 4.7. For the setting considered in ([46]), it was shown ([46, Lemma 6.2]) that

the condition Iy (V;A,r) > 0in (i) holds for all (V,A) if r > 0 is small enough.

Given (A,r), to numerically detect the corresponding critical value(s) V., one can
simply plot the difference I(V;A,r) —Ip(V) and search for the roots.
Our numerical design for a direct detecting of the critical value(s) V¢ is a numerical

interpretation of the following analytical result. For fixed (A, r.), define
HV,A) =1(ViAd,r) —I(Vi A, rs). (4.17)

Proposition 4.8. For fixed (A,r) = (Ay,rs), VE is the value defined in (4.16) if and only
if the point (VE, A,) is a saddle point of H(V, L) under the condition that Hyy (VS Ay) =

Ly (VA re) #0.

Proof. Note that H(V,A,) = 0 for all V. Thus, Hy(V,A.) = Hyy(V,A«) = 0. From the
definition of V£, one has H, (V£,Ay) = I (VE; Ay, ri) = 0. Therefore, (V, Ay) is a critical

point of H(V, ). It then follows from
(HVVHAA _H%V) (V*C,A*) = —H;ZLV(V*C,/‘L*) <0

that (V<, A,) is a saddle point of H(V,A). O

Numerically, for fixed (A,,r.), we can computer I(V;A,r,) and hence H(V,A) for
any A near A, and apply Proposition 4.8 to estimate V¢ from the saddle point of H(V,1).

Another approach for detecting V¢ is to numerically compute the solution(s) V of I (V;A,r) =
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0. This will involve a numerical evaluation of the partial derivative and a numerical root
finding.

We remark that, for real biological situations, one is interested in only discrete values
of (A,r). For the critical potential V., one can take an experimental I-V relation as
I(V;A,r) and numerically (or analytically) compute Ip(V) for ideal case that allows one
to get an estimate of V.. On the other hand, it is not clear to us how to design a procedure

of using experimental data to detect the value V¢.

4.5 Numerical experiments: case studies

In this section, we perform numerical simulations for different values of o, 8, and A for
Q =0 and Q # 0. For simplicity, we make the following assumptions for the parameters

involved in the PNP-DFT model:

e The elementary charge e = 1, the Boltzmann constant k = 1 and the absolute tem-

perature T = 1.
e We take € = 0.002, i(x) = 1, and the diffusion coefficient D;(x) =1, i = 1,2.

e The radius of the positively charged ion r; = r = 0.0001.

4.5.1 Numerical values vs analytical predications for Q =0

For Q = 0, we compare the numerical values V, and V¢ with those analytical approxi-
mations obtained in [46]. We remark that the analytical values of V. and V¢ in [46] are
zeroth order in € and first order in r approximations. For € > 0 small and r > 0 small, the
numerical values V. and V¢ should be close to the ones obtained from the zeroth order

approximation given by (4.5).
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In our first set of experiments, we compute V. for the following 6 different choices of

parameter values:

e Case l:a=B=1,A=1.885L=al; =PBL,=4,and R = aR; = BR, = 20;

Case2: a=B=1,A=1382,L=0al; =BL, =4,and R = aR| = BR; = 20;

Case3: a=2=2,A=1.885L=al; =PBL,=4,and R = aR; = BR, = 20;

Case4d: a=B=1,A=1.885L=oal; =BL, =20,and R = aR; = BR, = 4;

Case 5: (X:ﬁ = 1,)“ =1.382, L=al, :ﬁL2:20, and R = aR; :ﬁR2:4;

Case 6: a =2 =2,A=1.885,L=alL; = BL, =20,and R = aR| = BR, = 4.

The choice of A = 1.885 in Cases 1, 3, 4, and 6 is motivated by the corresponding A
values for Na™Cl~ and Ca”Cl; ,and A = 1.382 in Cases 2 and 5 for K™ Cl™.

For each case, we plot I(V;A,r) —Ip(V) as a function of V and the critical potential
V. is the root of the difference. The results are reported in Figure 4.1. The analytical
values of V.. from (4.5) are —1.1921, —0.6232, and —0.7210 for Cases 1-3, respectively.
The numerical values of V. are —1.2020, —0.6274, and —0.7310, which agree well with
the analytical predictions. From the numerical simulations, we observe that V,.’s for
L =4 <R =20 (Cases 1-3) and L = 20 > R = 4 (Cases 4-6) differ by a sign and the
analytical formulas (4.5) for D1 = D, verify the observation.

In our second set of experiments, we compute V¢ for above 6 cases in the first set
of experiments. For each case, we fix A, = A/2 and plot H(V, 1), defined in (4.17),
as a function of V with 4 different A values (3/4A, A, 5/4A, and 6/4A). The results
are in Figure 4.2. The analytical results for zeroth order in € and first order in r tell us
that the graphs for these 4 different A values should have a common intersection point

with V =V,. Also, the analytical values of V¢ are —3.8861, —3.8861, and —1.9430 for
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Cases 1-3, respectively. From Figure 4.2, one sees that these graphs almost go through
the same point and the numerical values of V¢ are —3.92, —3.92, and —1.96, which are
close to the analytical approximations. Similarly, V’s for L < R and L > R differ by a

sign and the analytical formulas (4.5) for D{ = D, verify the observation.

4.5.2 Numerical values of V, and V* for piecewise constant Q(x) # 0

In this section, we consider the problem (2.27)—(2.28) with Q(x) = Qo =1 on (1/3,2/3)
and Q(x) = 0 otherwise on [0, 1]. Due to the jumps of Q, the singularly perturbed aux-
iliary BVP (4.8)—(4.9) is much near singular for small €. Since we are focusing on the
numerical examinations of the critical potentials V. and V¢, we thus take € = 0.02 for
this study rather than € = 0.002 as in previous part. Other parameters are the same as the
previous section and we will only consider the setting of Case 1.

Applying the strategy described in Section 4.3.1, we first solve the BVP (2.27)—(2.28)
for V.= —0.5960. The profiles of ¢ and i are shown in Figure 4.3, and those of c¢;
and ¢, in Figure 4.4. We observe that i have corners around x = 1/3 and x = 2/3;
¢y —c1 ~ Qp =1 on the interval (1/3,2/3), where Q # 0. The presence of the corners
of i reflects the fact that each transition layer (one at x = 1/3 and the other at x = 2/3)
consists of two portions (see [24, 58]).

The critical potential V.. is determined as we did for Q = 0 case and the result is shown
in Figure 4.5.

For the critical potential V¢, based on Proposition 4.8, we look for saddle points of
H(V,1), whose graph is plotted in Figure 4.6. One clearly sees a saddle point of the

surface. The saddle point of this surface will give us the numerical value of V°.
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Figure 4.2: Plots of H(V,A) with four values of A and V¢ for Q = 0.

81



Figure 4.3: Profiles of ¢ (top) and i (bottom) for Q # 0.

[ 1(dotted curve), cz(solid curve)
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T

Figure 4.4: Profiles of ¢; and ¢, for Q # 0.
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Figure 4.6: Plot of H(V, A1) whose saddle points give V°.
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Chapter 5

Poisson-Nernst-Planck systems for ion flow with a local

hard-sphere potential for ion size effects

In this chapter, we analyze system (2.27), a one-dimensional steady-state PNP type
model for ionic flow through a membrane channel with fixed boundary ion concentra-
tions (charges) and electric potentials (2.28). A local hard-sphere potential that depends
pointwise on ion concentrations is included in the model to account for ion size effects
on the ionic flow. The model problem is treated as a boundary value problem of a sin-
gularly perturbed differential system. Our analysis is based on the geometric singular
perturbation theory but, most importantly, on specific structures of this concrete model.
The existence of solutions to the boundary value problem for small ion sizes is estab-
lished and, treating the ion sizes as small parameters, we also derive an approximation
of the I-V relation and identify two critical potentials or voltages for ion size effects.
Under electroneutrality (zero net charge) boundary conditions, each of these two criti-
cal potentials separates the potential into two regions over which the ion size effects are
qualitatively opposite to each other. On the other hand, without electroneutrality bound-
ary conditions, the qualitative effects of ion sizes will depend not only on the critical
potentials but also on boundary concentrations. Important scaling laws of I-V relations

and critical potentials in boundary concentrations are obtained. Similar results about ion
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size effects on the flow of matter are also discussed. Under electroneutrality boundary
conditions, the results on the first order approximation in ion diameters of solutions, I-V
relations and critical potentials agree with those with a nonlocal hard-sphere potential

examined in [46].

5.1 Introduction

In this chapter, we study the dynamics of ionic flow, the electrodiffusion of charges,
through ion channels via system (2.27), a one-dimensional steady-state PNP type system
including an additional component, a local hard-sphere (HS) potential, to account for ion
size effects. We are particularly interested in ion size effects on the I-V relation.

In ([46]), the authors provided an analytical treatment of system (2.27) with elec-
troneutrality (zero net charge) boundary conditions and including a nonlocal hard-sphere
potential of the excess component in addition to the ideal component. They treated
the model as a singularly perturbed system and rigorously established the existence and
uniqueness results of the boundary value problem for small ion sizes. Treating ion sizes
as small parameters, they derived an approximation of the I-V relation. Most importantly,

the approximate I-V relation allows them to establish the following results.

(1) There is a critical potential or voltage V. so that, if the boundary potential V satis-
fies V > V., then ion sizes enhance the current I in the sense that the contribution
of ion sizes to the current / is positive; if V <V, then ion sizes reduce the current

I.

(ii) There is another critical potential V¢ so that, if V > V¢, then the current / increases
in A = d, /d; where d; and d; are, respectively, the diameters of the positively and

negatively charged ions; if V < V¢, then the current I decreases in A.
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In [61], among other things, the authors designed an algorithm for numerically detect-
ing these critical potentials without using any analytical formulas for I-V relations. They
demonstrated the effectiveness of this algorithm by conducting two numerical tasks. In
the first one, the authors took the model problem with the same setting as in [46] for
which analytical formulas for V. and V¢ are available. The authors numerically com-
puted I-V relations and, applying the algorithm, computed the critical potentials V. and
V€. They found that the computed values V. and V¢ agree well with the values obtained
from the analytical formulas. For the second numerical task, the authors examined a PNP
type model that includes also a nonzero permanent charge Q. For this case, no analyt-
ical formulas for the I-V relations and for the critical potentials are currently available.
But the authors were able to numerically identify the critical potentials by applying their
algorithm.

In this chapter, we study a one-dimensional steady-state PNP system with a local
model for the hard-sphere (HS) potential. The problem has basically the same setting as
that in [46] except that we take a local model for the hard-sphere potential and allow non-
electroneutrality boundary conditions. It is clear that local models have the advantage of
simplicity relative to nonlocal ones. In this chapter, we take a local hard-sphere model
derived from the nonlocal model used in [46] for two reasons: to provide a mathematical
framework for the study of the problem with local hard-sphere models; to compare the
results for the local hard-sphere model with those for the nonlocal hard-sphere model in
[46].

Under electroneutrality boundary conditions, we will show that the local hard-sphere
model yields exactly the same results on the first order approximation (in the diameters
of the ion species) I-V relation and the critical potentials V. and V¢ as those of the non-
local hard-sphere model in [46]. This is perhaps well expected. To the contrary, in the

absence of electroneutrality, it is rather surprising that the roles of critical potentials V,
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and V¢ on ion size effects are significantly different: the opposite effects of ion sizes
separated by V, and V¢ described in (i) and (ii) above now depend on other quantities in
terms of boundary concentrations (Theorems 5.14 and 5.15 and Proposition 5.17). Many
important biological properties of ion channels are controlled through the boundary con-
ditions. Our results provide a concrete situation for which the important I-V relations of
ion channels can depend on boundary conditions sensitively. An observation based on

the I-V relation also reveals the following scaling laws (Theorem 5.28):

(a) the contribution Iy to the I-V relation from the ideal component scales linearly in
boundary concentrations (that is, if one scales the boundary concentrations by a

factor s, then Iy is scaled by s);

(b) the contribution (up to the leading order) to the I-V relation from the hard-sphere

component scales quadratically in boundary concentrations;

(c) both V. and V¢ scale invariantly in boundary concentrations.

Results on ion size effects to the flow of matter in Section 5.4.2 again indicate the richness
of ion size effects on the electrodiffusion process.

The general framework for the analysis is the geometric singular perturbation theory—
essentially the same as that for the nonlocal hard-sphere potential in [46]. A major dif-
ference is that the nonlocal hard-sphere potentials disappear in the limiting fast system
but the local ones survive in this limit, and hence, more is involved in the treatment of
the limiting fast dynamics for the local hard-sphere potential case. On the other hand, for
the local hard-sphere potential case, we need not introduce an auxiliary problem as that
for nonlocal case in [46]. A crucial ingredient for the success of our analysis is again
the revealing of a set of integrals that allows us to handle the limiting fast dynamics with

details as for the classical PNP cases.

87



The rest of this chapter is organized as follows. In Section 5.2, we describe the one-
dimensional PNP-HS model for ion flows, a local model for hard-sphere potentials, and
the setup of the boundary value problem of the singularly perturbed PNP-HS system. In
Section 5.3, the existence and (local) uniqueness result for the boundary value problem is
established in the framework of the geometric singular perturbation theory. Section 5.4
contains two parts. In Section 5.4.1, we derive an approximation of the I-V relation based
on the analysis in Section 5.3, identify three critical potentials, and examine significant
roles of two of the critical potentials for ion size effects on ionic flows. Important scaling
laws of I-V relations and critical potentials in boundary concentrations are obtained. In
Section 5.4.2, we discuss ion size effects on the flow of matter. This is presented briefly

due to a simple relation between the flow rate of charge and the flow rate of matter.

5.2 Problem Setup

We assume the channel is narrow so that it can be effectively viewed as a one-dimensional
channel and normalize it as the interval [0, 1] that connects the interior and the exterior
of the channel. The one-dimensional steady-state Poisson-Nernst-Planck system (2.27)
with the boundary condition (2.28) is studied. An important feature for system (2.27) in
this chapter is that for the electrochemical potential, besides the ideal component, a local
hard-sphere component is included, which is modeled by

di Z?:l cj(x)

n

U phs, _
e (x) = 111(1

j=1

where d; is the diameter of the jth ion species.
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As mentioned in the introduction, this local model is an approximation of the well-
known nonlocal model for hard-sphere (hard-rod) used in [46]. Its derivation is provided
in Chapter 2.

The main goal of this paper is to examine the qualitative effect of ion sizes via the
steady-state boundary value problem of (2.27) and (2.28) with the local hard-sphere
(LHS) model (5.1) for the excess potential. We will examine the steady-state bound-
ary value problem in Section 5.3. In Section 5.4, we will obtain approximations for
(2.29) and (2.30) to study ion size effects on the I-V relation and on the flow rate .7.

For definiteness, we will take essentially the same setting as that in [46] but without
assuming electroneutrality boundary conditions: ziL{ + 2Ly = 1R +22R2 = 0. Using

the expression (2.5) for the ideal component ,ul.id (x), together with

1 d ps_di(2+di(c2—c1) —2dpcr) dey di+dy —dier —djerdey

kT dx ! (1—d1C1—d2C2)2 dx (1—d16‘1—d26‘2)2 dx’ (52)
1 d s ditdi—dici—djerder | dy(2+da(cr — ) —2dicy) dey '
KT dx'? T (0 —dier —der)?  dx (—dici —drca)? dx’
system (2.27) becomes
2
e« d d dJ1 dJ2
h(x)dx( (x)dx¢) QTR T T A
dey do 1
——=— (dy,da) S~ gi(c1,ca,d1,d23ds, da), 5.3
T filer,c3dy 2)dx h(x>gl(cl c2,J1,J2:d1,d>) (5.3)
de do 1
i idy,dy)— — —— ,¢2,J1,J2;d1,d
T fa(er,e2:d 2)dx h<x)g2(61 c2,J1,J2:d1,d>)

89



where

filer,eaidy,da) =zicy — (dy +da — dicy —dicr) (zic1 + 22¢2)cy
—z1(dy —db)c?,
faler,c3dy,dy) =— 2000+ (dy +dp — dlzcl — d%cz)(mcl +2202)c2

+22(dr — dl)C%,

5.4
gi(cr,c2,d1,003d1,da) = (1 —dier)? +d3ciea) Iy
—C (d1 +dy — d%cl — d%CQ)Jz,
g2(c1,c2,J1,J2d1,d) = (1 — doco)* +dicica) J
—cy(di+dy — d%cl — d%CQ)Jl.
Recall the boundary conditions are
0(0)=V,ci(0)=L; >0; ¢(1) =0, ¢c;(1) =R; > 0. (5.5)

5.3 Geometric singular perturbation theory for (5.3)-(5.5)

We will rewrite system (5.3) into a standard form for singularly perturbed systems and
convert the boundary value problem (5.3) and (5.5) to a connecting problem.
Denote the derivative with respect to x by overdot and introduce u = €¢ and 7 = x.

System (5.3) becomes

. h
8¢ =u, E€u= —z1C1—2C)—E& hT((:)) u,
£
ec1 =— fi(er,caidi,dr)u— ——gi(c1,c2,J1,J23d1,d2),
h(7) 5.1)

S

Ji,J:dy,d
h(r)gz(ChCz, 1,J2;d1,d>)

ecy =fr(c1,c2:dy,do)u—
Ji=h=0 t=1.
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System (5.1) will be treated as a singularly perturbed system with € as the singular
parameter. Its phase space is R’ with state variables (¢,u,c1,c2,J1,J2,T). We have
included constants J; and J; in the phase space. A reason for this is explained in the
paragraph below that of display (5.3).

For € > 0, the rescaling x = €& of the independent variable x gives rise to

h
¢ =u, u=-—zic; —z20— 8%%
£
¢y =— filer,casdi,dy)u— ——gi(c1,¢2,J1,02;d1,da),
h(7) (5.2)
£
¢ =fr(c1,ca;d1,do)u— mgz(m,cz,h,fz;dhdz),

J=l=0, 7=¢

where prime denotes the derivative with respect to the variable &.

For € > 0, systems (5.1) and (5.2) have exactly the same phase portrait. But their
limiting systems at € = O are different. The limiting system of (5.1) is called the limiting
slow system, whose orbits are called slow orbits or regular layers. The limiting system of
(5.2) is the limiting fast system, whose orbits are called fast orbits or singular (boundary
and/or internal) layers. By a singular orbit of system (5.1) or (5.2), we mean a continuous
and piecewise smooth curve in R’ that is a union of finitely many slow and fast orbits.
Very often, limiting slow and fast systems provide complementary information on state
variables. Therefore, the main task of singularly perturbed problems is to patch the
limiting information together to form a solution for the entire € > 0 system.

Let By and By be the subsets of the phase space R’ defined by

By ={(V,u,Ly,Ly,J1,J»,0) € R” : arbitrary u,J;,J»},
(5.3)

Br ={(0,u,R,R2,J1,J2,1) € R : arbitrary u,Jy,J»},
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where V, Ly, Ly, Ry and R, are given in (5.5). Then the original boundary value problem
is equivalent to a connecting problem, namely, finding a solution of (5.1) or (5.2) from
B1 to Bg (see, for example, [47]).

For € > 0 small, let My, (&) be the collection of forward orbits from By, under the flow
and let Mg(€) be that of backward orbits from Bg. Since the flow is not tangent to By
and Bg and dimB;, = dimBg = 3, we have dimMj (&) = dimMg(g) = 4. We will show
that My (€) and Mg(&) intersect transversally in the phase space R”. Transversality of the
intersection implies dim(M (&) N Mg(€)) = dimM; (&) + dimMg(€) — dimR’. It then
follows that dim(My (&) N Mg(€)) = 1 which would allow us to conclude the existence
and (local) uniqueness of a solution for the connecting problem. This is the reason that
we include J; and J; in the phase space. Alternatively, one can treat J; and J, as param-
eters and work in the phase space R>. Then the corresponding B; and Bg would each
be of dimension one, and hence, My (€) and Mg(€) would each be of dimension two.
Should My (€) and Mg(¢€) intersect, the intersection cannot be transversal due to the di-
mension counting. To establish the existence and uniqueness result with this alternative
approach, one would have to apply perturbation argument with J; and J, as perturbation
parameters.

In what follows, we will consider the equivalent connecting problem for system (5.1)
or (5.2) and construct its solution from By to Br. The construction process involves two
main steps: the first step is to construct a singular orbit to the connecting problem, and
the second step is to apply geometric singular perturbation theory to show that there is a

unique solution near the singular orbit for small € > 0.
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5.3.1 Geometric construction of singular orbits

Following the idea in [24, 57, 58], we will first construct a singular orbit on [0, 1] that
connects By to Bg. Such an orbit will generally consist of two boundary layers and a
regular layer.

Limiting fast dynamics and boundary layers

By setting € = 0 in (5.1), we obtain the so-called slow manifold

Z ={u=0, z1c1 +22¢2 = 0}. (5.4)

By setting € = 0 in (5.2), we get the limiting fast system

q)/ =u, I/l/ = —Z1C1 —22C7,
¢y =~ filer,ca3d1,da)u,

(5.5
b =falcr,ca:dy, dy)u,

Ji=J,=0, v=0.
Note that the slow manifold % is the set of equilibria of (5.5).
Lemma 5.1. For system (5.5), the slow manifold % is normally hyperbolic.

Proof. The slow manifold 2 is precisely the set of equilibria of (5.5). The lineariza-
tion of (5.5) at each point of (¢,0,c1,¢2,J1,J2,7T) € Z has five zero eigenvalues whose
generalized eigenspace is the tangent space of the five-dimensional slow manifold 2 of
equilibria, and the other two eigenvalues are ++/z; f] — z2f>. On the slow manifold %

where z1c1 + z2¢2 = 0, one has, from (5.4),

2 2
zifi(er,caidi,do) — 20 fo(c1,025d1,d2) = zic1 +25¢2.
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Note that fi(cy,c2;d1,d) has a factor ¢y and f>(cy,c2;d1,d>) has a factor ¢;. It follows
from (cy,cz)-subsystem of (5.5) that {c; > 0} and {c, > 0} are invariant under (5.5).
Since ¢ and ¢, have positive boundary values, ¢ and ¢, are positive for all x € [0, 1].
Therefore, z1 f1(c1,c¢2:d1,d2) — zaf2(c1,¢2:dy,dz) > 0. Thus 2 is normally hyperbolic.

O

We denote the stable (resp. unstable) manifold of 2 by W*(Z) (resp. W*(Z)). Let
M7 be the collection of orbits from By, in forward time under the flow of system (5.5) and
Mp be the collection of orbits from Bg in backward time under the flow of system (5.5).
Then, for a singular orbit connecting By to Bg, the boundary layer at T = x = 0 must lie
in Np, = M NW9 (%) and the boundary layer at T = x = 1 must lie in Ng = MgNW*(Z).
In this subsection, we will determine the boundary layers Ny and Ng, and their landing
points ®(Nz,) and ¢&¢(Ng) on the slow manifold 2. The regular layer, determined by the
limiting slow system in §5.3.1, will lie in 2 and connect the landing points ®(Ny) at
7=0and a(Ng) at T = 1. A singular orbit T’ UAUT"! is illustrated in Figure 5.1 where
I ¢ Ny is a boundary layer at T =0 and I'' C Ny is a boundary layer at T = 1, and A is
a regular layer connecting the landing points of I’ and I"! on the slow manifold Z to be
constructed in Section 5.3.1. We remark that the boundary layers I’ € Ny and T'! C Ng
cannot be uniquely determined untill the construction of A.

Recall that d; and d, are the diameters of the two ion species. For small d; > 0 and
d, > 0, we treat (5.5) as a regular perturbation of that with d; = d, = 0. While d; and d;

are small, their ratio is of order O(1). We thus set

dy=d and d, = Ad (5.6)
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(q)’ €y CZ)

(ll, Jl, J2)

Figure 5.1: A singular orbit T°UAUT! on [0, 1): a boundary layer 0 at t=0, a regular
layer A on Z from ©=0to T = 1, and a boundary layer T at t = 1.

and look for solutions

['(8:d) = (¢(8:d),u(&:d),c1(8:d),c2(8:d),J1(d), J2(d), T)
of system (5.5) of the form

¢(&:d) = do(&) +¢1(E)d+o(d), u(&;d)=uo(§)+ui(&)d+o(d),
c1(&:d) =cr0(§) +en(§)d+o(d), (&) =cn(§)+cau(§)d+o(d), (7

Ji(d)=Jio+Jnd+o(d), J2(d)=Jr+J2d+o(d).
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Substituting (5.7) into system (5.5), we obtain, for the zeroth order in d,

/ /
0o =Uo, Uy = —21C10 — 22€20,
/ /
Clo = —21C10U0,  Chy = —Z2C20Up, (5.8)

Ji() :Jéo - 0, T/ - O,

and, for the first order in d,

/ /
¢ =u1, U} =-—z1c11 — 22021,
/ 2
€11 = —Z21UpC11 — Z1C10U1 + Up ((l + 1)z2c10c20 + 2Z1610) ) (5.9)
! 2
chy =—z2aupc21 — 2262011 + o ((A +1)zic10020 +2A2265)

‘]il :Jélz(), T/ZO.

Recall that we are interested in the solutions I'*(&;d) € Np = My N\W*(Z) withT?(0;d) €

By and T'(&;d) C Ng = MrNWH*(2Z) with T (0;d) € Bg.

Proposition 5.2. Assume that d > 0 is small.

(i) The stable manifold W*( %) intersects By transversally at points
(Vb + i d +0(d), L, Lo, (d),2(d),0)
and the ®-limit set of Np = M (\W*(Z) is
o(NL) = { (95 + ¢1d +o(d),0,cTo + cfyd + o(d) 5y + c5yd + o(d), J1(d), ]2 (d),0) }
where Ji(d) = Jio+Jind +o(d), i = 1,2, can be arbitrary and
1 —220» ) gl

L_g L L — 2
=V - In z1¢1) = —22¢50 = (z1L1) 172 (—22Lp ) 172
Po n L 10 20 = (z1L1)772( )i,
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L 21— 22 2 4
uy =sgn(ziLy +z22L0)4 |2 L1 + Lo + (21L1) T2 (—2Lp) 72 |

<112
1-4
¢1L :Zl—Zz (L1+L2—C%0—c§0),
Az1—z 2(Az1—z
Zlclfl:_ZZC%l:ZlCIfo (L1+AL2+ ! 2(L1+L2)+ (Az1 2)6%())’
1 — 22 22
il = (Ly + Lo) (L1 + ALy) — (kg + cBy) (chg + Acky) — by — &y
I .
u
0

(ii) The unstable manifold W"( %) intersects By transversally at points
(0,ug+utd+o(d),Ry,Ry,J1(d),J2(d),1),
and the o-limit set of N is
a(Ng) = { (85 +91'd +0(d),0,cly+ct1d +o(d), 5+ hyd +o(d), 11 (d), 1o(d), 1)},
where Ji(d) = Jio +Jnd +o(d), i = 1,2, can be arbitrary and
1 —22R> o) 3

) =— In . 21cly = —22c5 = (21R1) T2 (—22R) T2,
=22 uR

71 — % 2 |
u6:—sgn(z1R1+zzR2)\/2(R1+R2+ . 2(21R1)le2(—zzR2)11Z2);

2132
1-4
[ = (Ri + Ry — ¢y — ),
71 —22
Az1—22 2(Az1 — 20
Zlclfl :—22051 =Z1CIf0 (R1 +AR, + (R1 +Ry) + ( )C{eo :
(R1+R2) (R + ARy) — (B + B (B + Ack) — e — &, |

ro__
u = ul
0

Remark 5.3. When z1L1 + 200, = 0, uf) = 0. In this case, ul1 is defined as the limit
of its expression as z1L1 +z2Ly — 0 and it is zero. Similar remark applies to u] when

1R + 2R, = 0.
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Proof. The stated result for system (5.8) has been obtained in [24, 57, 58]. For system

(5.9), one can check that it has three nontrivial first integrals:

C
Fi =z101 + CA +2¢10+ (A +1)c20,
10
21
P =2¢+ o +2Aco0+ (A +1)co,
20

2 2
F3 =upui —cy1 —c21 — (). + 1)C10C2() — 1o _)'020-

We now establish the results for ¢F,ck 5 and u! for system (5.9). Those for
@R K X and u} can be established in the similar way.

We note that ¢;(0) = ¢11(0) = ¢21(0) = 0. Using the integrals F} and F>, we have

C
7101 + C—H +2c10+ (A +1)c0 =2L1 + (A + 1)Ly,
10

C
2201 + Cﬂ +2Ac1o+ (l + 1)61() =2AL, + (A + I)Ll.
20
Therefore

c11 =c10(2L1+ (A + 1)Ly —2c10— (A +1)co0 —z101) s

c21 =¢20 (2ALy + (A + 1)Ly —2Ac20 — (A + 1)c10 —2201) -

Taking the limit as & — oo, we have

1-A4
or i (L + Ly — cfy— k),

cﬁ :cfo (2L1 +(A+1)L, — 2ch —(A+ 1)c§0 —Zl(PlL) ,

cél :céo (27LL2 +(A+1)L;— 27Lc§0 —(A+ 1)ch - zg(PlL) )
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. . L L L L
In view of the relations zc}, +z2¢5) = z1¢]; +22¢5; = 0, one can get the formulas for
L L L . [ _
clp,¢5; and ¢1. We now derive the formula for u; = u;(0).

In view of F3(0) = F3(c0), we have

uput — (A + 1)L1Ly — LT — AL3 = —cfy — % — (A + D)efochy — (cfo)? — Alchy)™.

The formula for ull follows directly. ]

For later use, let I’ denote the potential boundary layer at x = 0 for system (5.5) and

Let I'! denote the potential boundary layer at x = 1 for system (5.5).
Corollary 5.4. Under electroneutrality boundary conditions, that is, 71Ly = —zpLy = L
and 1R = —z72R, = R,

L o . L L R R R _
0y =V, ziciyp = —22¢50 = L; ¢y =0, z1¢]y = —22¢50 = R,

L _ L L __.R_ R _ R _
Oy =cip=c3=¢; =cjp=c3=0.

In particular, up to O(d), there is no boundary layer at x =0 and x = 1.

Limiting slow dynamics and regular layer

Next we construct the regular layer on 2 that connects @(Nz) and o/(Ng). Note that, for
€ =0, system (5.1) loses most information. To remedy this degeneracy, we follow the
idea in [24, 57, 58] and make a rescaling u = €p and —zc> = z1¢1 + €¢ in system (5.1).

In term of the new variables, system (5.1) becomes

. ] he(T . 2181 +228
o=p, e€p=q-—¢ hf((r))p, £g=(z1h —zzfz)PﬂL%y
. (5.10)
. 1 . . .
= — _— = = :1
¢l fip n(7)’ Ji=h=0, 1T
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where, fori =1,2,

€ €
fi=Tfi (Ch—w;d,ld) and g; = g; (cl,—w,h,h;d,ld) .
22 22

It is again a singular perturbation problem and its limiting slow system is

1 2 71
:Oa - - Zi8i C],——C],J],Jz;d,ld ;
¢ =p, 1 (5.11)
) 21 71
- s T ’d7kd RN y T 7J 7J ’d7kd )
¢ fi(ar 5" )p h(f)gl(cl L )

Ji=hL=0, t=1.
In the above, for the expression for p, we have used (5.4) to find

21f1 (Cl,—zzi;d,ld) — 22/ (61,—2&;07,161) =z1(z1 —22)c1.
2 2

From system (5.11), the slow manifold is

zgi(cr, =21, Ji,Jasd, Ad) + 2282 (1, —2er, 1, Jasd, Ad) }

y = = 0, = —
{q P z1(z1 —22)h(T)cy

Therefore, the limiting slow system on .% is

¢ =p,
c1=—N1 (cl,—z—lcl;d,ld)p— Lgl (Cl,—z—lcl,fl,fz;d,ld), (5.12)
2 h(7) 22

Ji=h=0, t=1,
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where

zgi (e, —2er,J1,J23d,Ad) + 2282 (1, — 21, Ji,J23d, Ad)

z1(z1 —22)h(T)cy

pP==

As for the layer problem, we look for solutions of (5.12) of the form

¢ (x) = ¢o(x) + ¢1(x)d + 0(d),
cl(x) =C10(X)+C11(X)d—|—0(d), (5.13)

Ji =Jio+Jnd+o(d), Jy=Jy+J2d+o(d)

to connect ®(Nz) and o (Ng) given in Proposition 5.2; in particular, for j =0, 1,

(9;(0),¢15(0)) = (97.¢1;)»  (9;(1),e1;(1)) = (9, ;)

From system (5.12) and the definitions of f;’s and g;’s in (5.4), we have

2110+ 22020 P (J10+J20)
21(z1 —22)h(7)c1o” (z1 —22)h(17)’ (5.14)

Jio=ho=0, t=1,

do——

and

. (s +z20)enr | z(1—A4)(J10+J20)c10 — (2111 +22J21)
¢ = 5+
z1(z1 —22)h(T)cy, z1(z1 —22)h(7)c10
2(Az1 — 22)(J10 +J20)c10 + 22(J11 +J21) (5.15)
(21 —22)h(7) ’

j11 :j21 =0, 1=1.

Y

11 =

For convenience, we denote

H(x)= [ h™(s)ds. (5.16)
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Lemma 5.5. There is a unique solution (¢o(x),c10(x),J10,J20,T(x)) of (5.14) such that

(90(0),¢10(0),7(0)) = (95, ¢1,0) and (9o(1),c10(1),7(1)) = (95, ¢lo, 1), (5.17)

where gbOL, ¢§, cfo, and c’fo are given in Proposition 5.2. It is given by

VA e H(x)  H() R,
¢O(X) _(P() +mln (1 — H(l) +H(l)%) ,
H H
cio(x) = (1 - %) <o %c{eo
J10 :M (1+M)
) )
L P

L R
H(1 Incf, —Incy,
<1

Ty = — (cTo — cfo) <1+Z2(¢(§_¢§)>,

2H(1) Incly —Inck

Proof. The solution of system (5.14) with the initial condition (9%, ck,,J10,J20,0) that

corresponds to the point (¢f,0,ck, c5,J10,420,0) is

z1J10 + 2220
So(x) = 05— z1(z1 —z /h
I(Jl +’f‘] ) (5.18)
z
cro(x) = by + %H(x), 7(x) = x.

It follows from the cjg-equation and c19(1) = ¢k, that

(21— 22)(0%0 - C{eo)
ZzH(l) . (5.19)

Jio+J2o=—

Note that, from (5.14),

- X 6 Inck) —1
/ W (s)epg (s)ds = o / CIO(S)dS:H(l) - 1OL nCRlO(X)'
22(J10+J20) Jo c1o(s) C1o — €10
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Thus,

L 21J10 + 22920 lncfo —Incyp(x)
x)=0¢y —H(1 .
o) = af —ra(n 2Lt 20l

Applying the boundary condition c1o(1) = c&; and ¢o(1) = @&, we have

(z1 —22)(cfy — cfy)

Jio+Jo=— ,
10 T 20 2H(1) 520
z1J10+ 22020 :ZI(Z] _Zz)(c%o_clleo)(%L_Q)g) )
H(1)(Incky —Inck)) :
The expressions for Jio and J»g, and hence, for ¢ (x) and cjo(x) follow directly. 0

For convenience, we define three functions

M =M(Ly,Ly,Ry,Ry;A), N =N(Li,Ly,R,Ry;4), P(x) = P(x;L1,Ly,R1,R2; 4)

as
21(Az1 —z
M =z1cfw(Ly,Ly) — zicfyw (R, Ry) + 1(+22) ((cfo)* = (c19)?)
_2 (C%o — leo) (oL — o) — (1-A)z (C%o - leo)z ‘1’(% — ¢(1)€
In cfo —In c’fo ! ! 22 In c%o —1In c’fo In c%o —1In c’fo
2 (cfy— )WLy, L) —w(R,R2)) , | g
- L R \2 (¢O - ¢0 )7
(Incgy—Incyy)
5.21
_)LZI —2 (Cfo - leo)H(x) ( )
P(x) = T
22 (Incky—Inck)H(1)
cfo —cio(x) <w(L1,L2) N Azl — 22 cfo )
Incly—Incfy \ cro(x) 22 ciolx)
_ . H(;C) M lilcfo—lnclo(Lx) - M
zi(Incyy —Incfy)eio(x)H(1) zi(Inchy —Inc)) (chy — &)
where

w(a,B) = a+ AR+ "2 (g 4 ),
1 — 22
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Lemma 5.6. There is a unique solution (¢ (x),c11(x),J11,J21,7(x)) of (5.15) such that

(‘Pl(O)?CU(O)vT(O)) = ((P]L,lel,()) and (¢1(1)7C11(1)7T(1)) - (¢{Q>C11e17 1)v (5.22)

where ¢1L, ¢f, c%l, and clfl are given in Proposition 5.2. It is given by

(1 —l)(c’fo —c’fO)H(x) Incio(x) —lnclf0

91(x) =01 — + (05— 06)P(x)

N,

22H(1) e —22)(cfy—cfo)
c11(x) =cf; + Aa o (C%o(x) - (C1L0)2> - ng)(?) ’
=y = e
UaH() THA)Y P nH(1)  H(LY

where M, N, and P are defined in (5.21).

Proof. 1t follows from (5.15) that

211 +1)

cio(x) — (cfo)?) + p——

C11 (x) :C%l +

Au-z (2 H(x).

Thus, from Proposition 5.2,

211 +1)
-2

Az —22 2 2
H(1) =ch —cfy + =2 () - (ho)?)

Azi— 22
=cfow(Li1,Lz) — cfow(R1,R2) + 2 ((6%0)2_(6150)2)’

or, by the definition of M in (5.21),

22—1

i+ = L
11 +J21 2H(D

(5.23)
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Hence,

Azl —2 H(x
ci1(x) = cfy + — (C%o( ) (0%0)2) - ZlH((i)M' (5.24)
Again, from (5.15)
o (x) =k + z1J10 +_Z2]20 / (s) (1 — l)(ilo +J20)H(x)
z1(z1 — 22) h(s 21—22

21111+sz21/
21(z1 — 22) h(s)cio(s

Note that, from (5.14) and (5.19),

xClO(S)d - = )/xclo(S)c'lo(S)ds:H(l)(C%o)z—c%o(x)

S = 1)
0 h( ) 22(J10+J20 2 cto—cfy

__a—a2 [Taols) cfo —c10(x)
/ h( S)C (S) (10 +Jzo)/ cto(s )d _H(l)(c?o—cfo)C?oclo(X)’

/fh (%G d0 g u-2 //h dc—clo()ds

s)cto(s) 22(J10+J20) +Jzo
H
L W ( /h 5)ci (s )
clo—¢io \c1olx
_ H(1)H(x) _Hz(l)lncfo—lnclo(x)
(cfo = cfo)ero(x) (cfo—clo)?

These, together with (5.24) and (5.20), yield

/ e cri(s ds: <w(L1,L2)+ 111Z—ch%0> H(1)(cfy— c10(x))
2

Clo (C%o - leo)clo(x)
—|—AZI_Z2H(x)— M (H(x) _lncfo—lnclo(x)H(l)) '
22 4| (C1Lo - 010) c1o(x) C%o - Clleo

A careful calculation then gives

(1- l)(cfo _C]fo)H(x)

ol (D) + (95 = 60)P()

1 (x) =0f —
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i+ 22/ Incfy —Ineio(x)

H(1).
ST R
Hence,
R_L_ﬂL_R L_ »R\p(1
o =901 % (cto—c10) + (99— 99)P(1)
~zJu+ 220 lncio —hlclfoH(l)
a(z—2)  cfp—cf
1-A4 W(Ll Lz)—W(Rl Rz)
_ oL L RN __ ) ) L 4R
=0 (cTo — ¢10) Incl, —Inck (%0 —90)
M(¢5—95)  (z1Ju1 +22421)(Incfy — Incfh)
+ L R\ L R H(l)'
z21(ctp = ¢jp) z1(z1 —22)(cjp — €jp)
Thus,
H(l)z—1111+z2J21 — 21 cfo— ¢l (¢L_¢R)_(1_/1)Z1 (cfp — )’
11— Incl, —Inck, ! ! 2 Incfy—Inck,
M(¢§ — o§) (clo—cf) Wi, La) —wRI,R2)) , 1 gy
L kA el In K2 (99 —¢o) =N.
ncy, —Incy, (Incyy —1Incyy)
Formulas for J;1, J21, and ¢; follow directly. O

Corollary 5.7. Under the electroneutrality conditions at the boundaries, that is, 71 L =

—20Lr = L and 1Ry = —70R> = R, we have,

L—R aV L—R 2V
Jo=— (14— )| Jyg= 1+ —=2" ),
10 le(1)< +1nL—lnR)’ 20 ng(l)( +lnL—lnR>

Az1—22 R—-L 2(R—L) _
Jiu= —(R+L) |V
= H() InR—1InL \InR—InL (R+L)
1-2 (R —L)2 Az —2 (R2 B L2)
2122H(1)InR—InL ~ 227,H(1) ’
Az1—722 R—-L 2(R—1L) _
Jy = — —(R+L) |V
2! 2122H(1) InR—1InL \InR—1InL (R+L)
1-2 (R —L)2 Az —2 (R2 _ L2)

~ 2z2H(1)InR—InL  z,2H(1)
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Proof. This follows directly from Lemmas 5.5 and 5.6 and Proposition 5.2. [l

The slow orbit, up to O(d),
A(x; d) = ((Z)o(x) + ¢ (x)d, Clo(x) +c11 (x)d,.]lo +J1d,Jro + J21d, ’C(x)) (5.25)

given in Lemmas 5.5 and 5.6 connects ®@(N.) and a(Ng). Let My (resp., Mg) be the
forward (resp., backward) image of @(Ny) (resp., &t(Ng)) under the slow flow (5.12) on

the five-dimensional slow manifold .. Following the idea in [57], we have

Proposition 5.8. There exists dy > 0 small depending on boundary conditions so that,
if 0 <d <dy, then, on the five-dimensional slow manifold .7, M; and Mg intersects

transversally along the unique orbit A(x;d) given in (5.25).

Proof. To see the transversality of the intersection, it suffices to show that @(Ny) - 1
(the image of @(N.) under the time-one map of the flow of system (5.12)) is transversal
to ot(Ng) on . (N{t = 1}. We will show first that, for d = 0, w(N) -1 and a(Ng)
intersect transversally on . ({7 = 1}. We will use (¢,c,J1,J2) as a coordinate system

on . ({t = 1}. It follows from (5.18) that, ford = 0, @(Nr) - 1 is given by
Q)(NL) 1= {(¢(J1,J2),Cl(Jl,Jz),Jl,Jz) : arbitrary J1, Jz}

with

21J1+ 2205 thl(J],Jz)
Z]Zz(./] —I—Jz) leo ’
ZzH(l)(]] +J2)

c1(J1, /. =cb + .
1(J1,J2) =c1o p—

O(J1,02) =§ —
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Thus, the tangent space to @(Ny) - 1 restricted on . ({7 = 1} is spanned by the vectors

<¢Jl7(cl)l17 17()) = <¢J17Z1Z+H(1)7 170)

<2

and

(01,,(c1)5,,0,1) = (¢12,Z—2H(1),0,1) .

2122
In view of the display in Proposition 5.2, the set a(Ng) is parameterized by J; and J»,
and hence, the tangent space to a(Ng) restricted on .’({7 = 1} is spanned by (0,0,1,0)
and (0,0,0,1). Note that . ({7 = 1} is four dimensional. Thus, it suffices to show that
the above four vectors are linearly independent or, equivalently, ¢;, # ¢, at (J;,J2) =

(J10,J20)- The latter can be verified by a direct computation as follows:

1 —22 21 +5)
-y, =————In|1+-———""H(1 0,
oy, — 01, 22 +4) (71 _ZZ)CIfO (D #

even as J; +J, — 0. This establishes the transversal intersection of @(Ny) - 1 and a(Ng)
on . N{t = 1}. From the smooth dependence of solutions on parameter d, we conclude
that there exists dyp > 0 small, so that, if 0 < d < dy, then @(Ny) - 1 and a(Ng) intersect

transversally on .’ ({7 = 1}. This completes the proof. O

5.3.2 Existence of solutions near the singular orbit

We have constructed a unique singular orbit on [0,1] that connects By to Bg. It consists

of two boundary layer orbits I'? from the point

(V,ué—f—ulld—f—o(d),Ll,Lz,Jlo —f—]lld—l—o(d),fzo +J21d+0(d),0) € By,
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to the point

(¢L7O7c%ﬂcél7]17]270) S CO(NL) cCZ

and I'! from the point

(0%,0,cR K J1, 00, 1) €21 (Ng) € &

to the point

(0,uy+uj+o(d),Ry,Ry,J1,J2,1) € B,

and a regular layer A on Z that connects the two landing points

(¢L>O7C%76157J17J270) S (D(NL)

and

((pRvOaCIle?cIZe?Jl 7J27 1) € a(NR)

of the two boundary layers.

We now establish the existence of a solution of (5.3) and (5.5) near the singular
orbit constructed above which is a union of two boundary layers and one regular layer
I'PJAUT!. The proof follows the same line as that in [24, 57, 58] and the main tool
used is the Exchange Lemma (see, for example [47, 48, 49, 93]) of the geometric singular

perturbation theory.

Theorem 5.9. Let TP UAUT! be the singular orbit of the connecting problem system
(5.1) associated to By and Bg in system (5.3). Let dy > 0 be as in Proposition 5.8.
Then, there exists &y > 0 small (depending on the boundary conditions and dy) so that, if
0<d<dyand( < & < &), then the boundary value problem (5.3) and (5.5) has a unique

smooth solution near the singular orbit T’ JAUT.
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Proof. Let dy > 0 be as in Proposition 5.8. For 0 < d < d, denote u! = ué + ulld, Ji(d) =

Jio+J11d and J5(d) = Joo + J21d. Fix 8 > 0 small to be determined. Let

Br(8) = {(V,u,L1,Ly,J1,J2,0) € R : |u—u'| < 8,|J; — J;(d)| < 8}.

For € > 0, let My (€,0) be the forward trace of Bz (6) under the flow of system (5.1) or
equivalently of system (5.2) and let Mg(€) be the backward trace of Bg. To prove the
existence and uniqueness statement, it suffices to show that My (&, d) intersects Mg(€)
transversally in a neighborhood of the singular orbit I’ JAJT!. The latter will be
established by an application of Exchange Lemmas.

Note that dimBy(8)=3. It is clear that the vector field of the fast system (5.2) is
not tangent to Bz (8) for € > 0, and hence, dimMj (g,6)=4. We next apply Exchange
Lemma to track My (€, 8) in the vicinity of T°|JAJT. First of all, the transversality of
the intersection Bz (8) W*(Z) along I'? in Proposition 5.2 implies the transversality of
intersection M7(0,8)\W*(Z). Secondly, we have also established that dim @(Ny) =
dimN;, — 1 =2 in Proposition 5.2 and that the limiting slow flow is not tangent to ®(Ny)
in Section 5.3.1. With these conditions, Exchange Lemma ([47, 48, 49, 93]) states that
there exist p > 0 and & > 0 so that, if 0 < £ < g, then M (g, 8) will first follow I'¥
toward @(Np) C %, then follow the trace of ®(Nr) in the vicinity of A toward {7 =
1}, leave the vicinity of 2, and, upon exit, a portion of My (g,d) is C! 0(¢g)-close to
W“(@(N.) x (1 —p,1+p)) in the vicinity of I'! (see Figure 5.2 for an illustration).
Note that dimW"(@(N.) x (1—p,14p)) =dimM(e,6) =4.

It remains to show that W*(@(Np) x (1 — p,1+ p)) intersects Mg(€) transversally
since My (g,8) is C' O(g)-close to W*(@(NL) x (1 —p,1+p)). Recall that, for € = 0,

Mg intersects W¥(Z) transversally along Ng (Proposition 5.2); in particular, at y; :=
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o(Ny) -(1-p,1+p)

Figure 5.2: Illustration of the evolution of My (€,0) from the vicinity of T = 0 to that of
T =1: On the left, ML(€,8) intersects W5( %) transversally and approaches o (NL) in
the vicinity of TV} It then follows the trace of ®(Np) in the vicinity of A on 2 toward the
vicinity of @(N) - (1 — p, 1+ p); A portion of it will leave the vicinity of %, and, upon
exit from %, My (€,8) is C' O(g)-close to W*(@(Np) x (1 —p,1+p)) in the vicinity of
Tl In the figure, W*(&(NL) x (1 —p, 1+ p)) is denoted by W*.

a(Th) € a(Ng) C Z, we have

TY1MR = TY1 a(NR) + T}’lwu(%) + Span{Vs}

where, Ty, W*(71) is the tangent space of the one-dimensional unstable fiber W*(y;) at y;
and the vector Vs & Ty, W"(Z') (the latter follows from the transversality of the intersec-

tion of Mg and W*(%)). Also,

Ty WH(@(NL) x (1 =p,1+p)) =Ty (0(Nr) - 1) +span{Ve} + T, W¥(n)

where the vector V; is the tangent vector to the 7T-axis as the result of the interval factor

(I —p,1+p). Recall from Proposition 5.8 that @(Nz) - 1 and a(Ng) are transversal on
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Z N{t = 1}. Therefore, at y;, the tangent spaces Ty, Mg and T,, W*(@(Nr) x (1—p,1+
p)) contain seven linearly independent vectors: Vi, Vi, T,,W"(y1) and the other four
from Ty, (w(Nr) - 1) and T, t(NR); that is, Mg and W*(@(Nz) x (1 —p,1+p)) intersect
transversally. We thus conclude that, there exists 0 < & < &; so that, if 0 < € < g, then
M (g, ) intersects Mg(¢€) transversally.

For uniqueness, note that the transversality of the intersection My (g,6) (\Mg(€) im-
plies dim(M (e,8) \Mg(€)) = dimM; (€,8) +dimMg(€) —7 = 1. Thus, there exists
Op > 0 such that, if 0 < § < &, the intersection My (g,8)(\Mg(€) consists of precisely

one solution near the singular orbit T JAUT". [

5.4 Ion size effects on the flows of charge and matter

The analysis in the previous sections not only establishes the existence of solutions for
the boundary value problem (5.3) and (5.5) but also provides quantitative information on
the solution that allows us to extract explicit approximations to the current .# and the
flow rate of matter, .7, for small € and d. From the explicit approximations, we are able
to 1dentify some critical values for potential V that characterize ion size effects on the
ionic flow. A number of scaling laws will be also obtained. Their consequences of ion

size effects are discussed.

5.4.1 I-V relation, critical potentials, and scaling laws
I-V relation and its approximation

For fixed boundary concentrations L1, L, R and R, in (??), we express the I-V relation

in (5.1) as

I (ViA,e.d)=1L(V;e)+1(V;A,€e)d+o(d), (5.1)
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where Ip(V; €) is the I-V relation without counting the ion size effect and I;(V; A, €)d is
the leading term containing ion size effect on I-V relation.

Recall that we denote H(1) = fol h=1(s)ds in (5.16).

Theorem 5.10. In formula (5.1), one has

£
kT

e
L(V;4,0) =p1o(L1,L2,R1, Ry, A) +p11(L1,L2,R1,R2;7L)ﬁV7

Ip(V;0) =poo(L1,L2,R1,R2) + po1(L1,L2,R1,R2) =V,

where

oo = (D1 —Dy)(chy—cf)) | zi(ziD1 —22D2)(cfy—cfy) . LiR,
H(l) H(l)(lnc%o—lnclfo) LR’
D _2 (z1D1 — ZzDz)(C%O — clfo)
ol H(1)(Inck,—IncR)

D, —D Az —
P10 :% {C%OW(Ll,Lz) — le()W(Rth) + ZIZ2 =2 ((C%O)Z - (CfO)Z):|

_ z21(z1D1 —22D5) [1 — A (chp—cp)? _ cfo— o (¢F — ¢R):|
H(1) 2 Incly—Inc®,  Incky—Inck, ! !
21(z1D1 — 22D7) chyw(Ly, Ly) — cfyw(Ry, Ry) n LiR>
(z1 —z2)H(1) Incly —Inck, LR,
z21(A21 — 22)(21D1 — 22D2) (¢fp)* — ()’ (LR
(z1 — 22)z2H (1) Incly—Incf, " LR,
_a(ziD1 — D) (¢fp — cfo) w(Li,L2) =w(Ri,R2)) . LiRy

In ,

_|_

oy =2 (z1D1 — 22D3) cfgw(Li, La) — cXow(R1, Ry)
! H(1) Inefy —Incf,
21(Az1 —22)(1D1 — 22D2) (ckp)? — ()2
2H(1) Incl, —Inck,
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z1(z1D1 — 22D9) (¢fy — i) W(L1, L) — w(R1,R))
H(1) (Incky —Inck))? ’

where C%O, c’fo, q)lL and q)f are given in Proposition 5.2 and

Azi—2
1—2

w(a,B) =o+AB+ (a+B).

Proof. For the zeroth order in &€, it follows from

F(Vi4,0,d) =21 1 +22 2 = 21D1J1 +22D2)>

5.2
= (21D1J10 +22D2J20) + (21D1J11 +22D2J21) d +0(d) >
that
1o(V;0) = z21D1J10 +22D2J20 and 11(V;2,0) = z1D1J11 +22D2J21.
The formulas for Ip(V;0) and 1;(V;0) follow directly from Lemmas 5.5 and 5.6. O
Corollary 5.11. Under the electroneutrality conditions 7Ly = —zpLy = L and 1R =

—20R> = R, one has

(D] —Dz)(L—R) (Z]Dl —Z2D2)(L—R) e

V) == " HDWL-mR) T
‘ Az —2)(D2—Dy)(L*—R?)  (1—A)(z1D1 —22D5)(L—R)?
1(Vi2,0) == zlzzzH(ll) - lezflI(ll)(lni—ZlnR)

_ (Azi —22)(21D1 —22D2) (L= R)? ((L+R)(lnL— InR) 2) e
L kT

—V.
lezH(l)(lnL—lnR)z —R
In particular, for fixed R > 0, one has

. (z1D1 —z22D2)R e .
lim Ip(V;0) = — lim /;(V;4,0) = 0.
TR AL
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Proof. Assume z1L; = —zpLp = L and z1R| = —z3R, = R. It can be checked directly

that
_ (D1 —Dy)(L—R) _ (z21D1 —22D2)(L—R)
PO=""gm P"T THI)IL-1R)
_(Azi—2)(Dy=D\)(L*—R*)  (1—2)(z21D1 —22D2)(L—R)*
pio = : (5.3)

z122H(1) 2122H(1)(InL — InR)

_ (Azi—z)(z1D1 —22Dp) (L —R)? ((L+R)(1nL— InR) 2)
P = 2122H(1)(InL — InR)? L—R '

The formulas for Ip(V;0) and 1;(V;0) then follow easily. The two limits can be shown

easily too. [

Remark 5.12. The above formulas for Iy(V;0) and I (V;A,0) agree with those in [46]
except for a factor 2H(1). The factor H(1) does not appear in [46] since it is assumed
there that h(x) = 1, and hence, H(1) = 1. The factor 2 in front of H(1) is due to the fact
that we are expending the I-V relation in the diameter d here instead of the radius r in
[46]. As we mentioned in the introduction that there is a major difference between the
analysis for the local hard sphere in this paper and that for the nonlocal model in [46].
Nevertheless, the agreement on Iy(V;0) and I;(V;A,0) is not a surprise since we are
using the local hard sphere potential which is obtained as the expansion in the variable

d from the nonlocal one used in [46].

Critical potentials and ion size effects on I-V relations

Based on the approximation of I-V relations in Theorem 5.10, we will identify three crit-

ical potentials and discuss their roles in characterizing ion size effects on I-V relations.

Definition 5.13. We define three potentials Vi, V. and V¢ by

d

Io(Vo;0) =0, 1(Ve;2,0) =0, I

V<2,0) = 0.
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For ion channels, the reversal potential is defined to be the potential V such that
J(V;A,€) =0. Thus, the potential V} is simply the zeroth order approximation in € and
d of the reversal potential. The critical potentials V. and V¢ are examined for the first
time in [46] for a nonlocal hard-sphere model. The significance of the two critical values
V. and V¢ is apparent from their definitions. The value V. is the potential that balances
ion size effect on I-V relations and the value V¢ is the potential that separates the relative
size effect on I-V relations. We provide precise statements below. First of all, note that
I;(V;4,0) is affine in V and in A. Thus, quantities dy/;(V;4,0) and V, depend on the
boundary conditions L;, L, R, R, and the ratio A of ion sizes only; 8‘% 2 11(V;A,0) and

V¢ depend on the boundary conditions L;, L,, R, R, but not on A.

Theorem 5.14. Suppose oyl (V;A,0) > 0 (resp. dyl;(V;A,0) <O0).

IfV >V, (resp. V < V,), then, for small € > 0 and d > 0, the ion sizes enhance the
current I ; thatis, Z(V;€,d) > F(V;¢€,0);

IfV <V, (resp. V >V,), then, for small € > 0 and d > 0, the ion sizes reduce the

current I ; that is, % (V;e,d) < #(V;€,0).

Theorem 5.15. Suppose 9%, 1;(V:1,0) >0 (resp. 93,1, (V;1,0) <0).

IfV > V€ (resp. V < V), then, for small € > 0 and d > 0, the larger the negatively
charged ion the larger the current; that is, the current .7 is increasing in A;

IfV <V (resp. V > VC), then, for small € > 0 and d > 0, the smaller the negatively

charged ion the larger the current; that is, the current . is decreasing in A.
The following result in [46] can be checked easily.
Proposition 5.16. Assume electroneutrality conditions z71L) = —zpL, = L and 1R =
—z220R» =R, and L # R. Then,
oI (Vi1,0) >0 and 92,1 (V;A,0) > 0.
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AsR— L, ovI1(V;A,0) = 0 and 92,1 (V;4,0) = O((L—R)?). O

While both dy1;(V;4,0) and 92, 1;(V;A,0) are non-negative under electroneutrality
conditions, in general, they can be negative. We do not have a complete result for the

general case but the following partial result.

Proposition 5.17. For any L > 0, R} > 0 and R5 > 0 with R{R} = L2, as (R1,Ry) —
(R}, R3),

8V11 (V;A,O) :%pll(L,L,Rl,Rz;l)

%(m —L)(3+A)R] —(1+3A)L).

The latter is negative if

1431 1434
either L<RT<3_:_—ALf0r A>1 or ;_—)LL<RT<Lf0r A <L

As (Ry,R2) — (R}, R3),

€(D1 +D2)L

AKTH(1)R? (Ry — L) (Ry = 3L).

Iy 11 (V;14,0) = kiTaan(L,L,Rth;?L) —

The latter is negative if L < R} < 3L.

Proof. For z; = —zp = 1, we have

e
v (V;A,0) Zﬁpll(Ll,Lz,Rl,Rz;l),

1/2 51/2 1/2,1/2
_2(Dy+Dy) R R, w(R1,Ry) — L1 LY*w(Ly, Ly)

kTH(l) ln(Rle) —ln(Lle)
B 26(1+7L)(D1+D2) RiRy)—L{L,
kTH(l) ln(Rle) —h’l(Lle)
de(Dy +Dy) RYPRY? — LV2LY* w(Ry ,Ry) — w(Ly, Lo)
kTH(l) ln(Rle) — ln(Lle) ln(Rle) — 1Il(L1L2) )
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Recall from Theorem 5.10 that, for z; = —z0 =1,

w(@B)= ot AP+ - (ot B,

For fixed a > 0 and b > 0, we set

H(1)

2 ,2.2 2
a”, b x",y ).
D1+D2p“< yiA)

p(x,y;a,b) =

Then, a direct calculation yields

22 — a2p?
In(xy) — In(ab)

(w1(6*,y%) = wi(a®,6%)).

ln(x);))/ ilri?(ab)wl(xz’yz) —(1+4)

_ xy—ab—ab(In(xy) —In(ab))
(In(xy) — In(ab))?

p(x,y;a,b) =

Note that, as z = xy — ab,

z—ab z—ab—ab(Inz—In(ab)) ab 2 —a’h? 2.9
TP B T AN Y
Inz—In(ab) (Inz— In(ab))? 27 Inz—In(ab)

Thus, as x — xo and y — yg with xgyg = ab,

ab
p(x,y;a,b) — abwl(x%,y%) —5 (W1 (x%,y%) — wl(az,bz)) —2(1 +7L)a2b2

DB 1 (R,33) +wi (a2, 57)) —2(1 + A)a2b?

2
% (wl(xo,yo) +wi(a®,b%) —4(1 +7L)ab)
b

_a 3+A« 2 1+3A« 2 3‘1‘2« 2 1+32« 2
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In particular, for a = b, as x — xp and y — yo with xgyg = a?,

2
p(x,y;a,a) — a (ﬂxg—Z(lJr?L)azx%Jr 1+3/1a4)

223\ 2 2
2
_2—)%()60—(1)( ) X0 — ) a .

The latter is negative if

1+3A4 1+3A4
either a < xp < 3—:1af0rl>10r\/3t_la<x0<a for A < 1.

It can be directly translated to the statements for p;; and d; p1;. O]

In the rest of this part, we discuss a number of properties of the critical potentials. It

follows from Definition 5.13 and Theorem 5.10 that

Proposition 5.18. The potentials Vi, V. and V¢ have the following expressions

KT poo(L1,La,R1,Ry)

e poi(Li,L2,R1,R2)’
KT pio(L1,L2,R1,Rp;A)

e pii(Li,L2,R,R2;A)’
kT proa (L1, Lo, R, Ry A )
e pria(Li,La,Ri,Ry;A)

Vo :=Vo(L1,L2,Ry,Ry) = —

Ve :=Ve(Li,Lo,R1,R;A) =

Ve = VC(L]7L27R1 7R2,}L) =

Remark 5.19. The critical potentials Vy, V. and V¢ are independent of the cross-section

area h(x) of the channel. O
When electroneutrality conditions z;L; = —z2L, = L and z1R; = —z2R, = R hold,
we write

V()(L,R) I:VO(Ll,Lz,Rl,RQ),

VC(LaRaz’) ::VC(L17L27R17R2;A‘)7
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VE(L,R;A) :=V (Li,Ly,R1,Rp; ).

Corollary 5.20. Assume the electroneutrality boundary conditions z1Ly = —zpLy = L

and z1R1 = —z20R>» = R. Then, we have

Vo(L,R) :k_TMmI_e
’ e 21Dy —2Dy L’

kT A—1 _(L\ kT D;—Ds L
Vo(L,RJA) =— S 2 (2, ifFL£R,
(L, ) e 7LZ1—Z2f (R) e ZlDl—Zzng(R) rLs

VE(L,R; M) :k_Tlf (L> _Eﬂg <£>, if L+R,

e 217 \R e z21D1 —22D," \ R

where, for x > 0,

(x—1)Inx (1+x)(Inx)?
= = . 54
T =G gm—26=1) %= Grninx—20=1) >4
Proof. The formulas follow directly from Proposition 5.18 and display (5.3). [
Lemma 5.21. For the functions f and g defined in (5.4), one has
(i) f(x)=—f(1/x) and g(x) = —g(1/x);
(ii) lim f(x)Inx =6, lim f(x) =1, and f'(x) <0 forx > 1;
x—1t X—ro0
N B . glx) . . - .
(iii) lim g(x)Inx =12, lim === =1, and g(x) has a unique positive minimum in
x—1+ x—oo Inx
(1,00).
Proof. The verifications of these properties are elementary. [
As a direct consequence of Corollary 5.20 and Lemma 5.21, one has
Corollary 5.22. Assume the electroneutrality boundary conditions z1Ly = —zpLy = L

and Z1R1 = —Z2R2 =R. Then,
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(i) Vo(L,R) = —Vo(R,L), Vo(L,R;A) = —V.(R,L; 1), VS(L,R;A) = —V(R,L; A);

(ii) for L> R, Vo(L,R) is decreasing (resp. increasing) in L if D1 > D5 (resp. Dy < D),
and, for fixed R > 0, lim Vy(L,R) = 0;
L—R

(iii) for fixed R > 0,

. KT (6(A—1) 12(01_02))
lim V,(L,R;1)(InL —InR) = — — :
1Ok el J(InL—InR) e (AZI—ZQ 21D —22D;

KT 621(Dy — D) +6(z1 —22) D (5.5)

lim V(L,R;A)(InL —InR) =
L—R

e 21(z1D1 — 22D2) ’
Ve(LRA) _ . VLRA) kT Di—Dy
L>se InL—InR Lo InL—InR e 21Dy —22D>°

. kT — L
(iv) VS(L,R; L) — V. (L,R; 1) = —&f (—), and hence, for fixed R > 0,
e 21(Az1—22)" \R

' ) o . B kT 6(z1 —22)
ggr}g (V (L’R,A) VC(L7R,A)) (lnL IHR) = e 21 (AZ] _Zz)a

lim (V(L,R;A) —V.(L,R;A)) = 1.

L—o0

Scaling laws

Next result concerns the dependences of Iy, I, Vp, V. and V¢ on the boundary concentra-
tions. For this discussion, we include the boundary conditions in the arguments of I, I,

Vo, V. and V¢; for example, we write Iy as Ip(V;Li,Ly,R1,Ry), etc..
Theorem 5.23. The following scaling laws hold,

(i) Iy scales linearly in boundary concentrations, that is, for any s > 0,

Io(V;sLy,sLo,sRy,sRy) = sIy(V;L1,La,R1,Ry);
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(ii) I;(V;sLy,sLy,sRy,sR,) scales quadratically in boundary concentrations, that is,

forany s >0,

I (V’SLI 7SL27SR1 ,SRZ) = S2Il (V’Ll 7L27R1 7R2);

(iii) Vo, V. and V¢ are invariant under scaling in boundary concentrations, that is, for

any s > 0,

Vo(sLy,sLa,sRy,sRy) =Vo(L1,L2,R1,R2),
Ve(sLy,sLy,sRy,sR2) =V.(L1,L2,R1,R2),

VC(SLI,SLQ,SRI,SRz) ZVC(LI,LQ,RI,Rz).

Proof. A direct observation gives

Poo(sL1,sLa,sR1,sR2) =spoo(L1,L2,R1,R2),
Po1(sL1,sLy,sR1,sR2) =spo1(L1,L2,R1,R2),
p1o(sLi,sLy,sRy1,sR2, A) =s*p1o(L1,La, Ry, R A),

p11(sLy,sLa,sRy,sR2, 1) =s*p11(L1,Lo,R1,Ra; X).

The above scaling laws then follow from Theorem 5.10 and Proposition 5.18. [

Remark 5.24. (i) Note that Iy and V, are not linear in boundary concentrations, and I,
V. and V¢ are not quadratic in boundary concentrations.

(ii) Recall, from (5.1), that the zeroth order in € and first order in d approximation
of the I-V relation .7 (V;A,€,d) is Iy + I d. Since Iy and Iy scale differently in boundary

concentrations, the approximation Iy + I d does not have a simple scaling law.
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(iii) It follows from the scaling laws for Iy and I, that, at higher ion concentrations,
the ion size effect becomes more significant. This is well expected. On the other hand,
our scaling law results reveal a concrete way on how the ion size effect is manifested as

the concentrations increase.

5.4.2 The flow rate .7 of matter

In this part, we briefly discuss ion size effects on the rate .77. Recall from (2.30) that The

flow rate .7 of matter is
T(Vi;A,e,d) = /1 + %> =D1J1 +D1J>.

We have the following observation. Note that J; and J, are independent of D and D;.
We will indicate the dependence of .7 and .# on D; and D, explicitly and omit their
dependences on other variables; that is, we denote the current . (V;A,¢€,d) in Section

54.1by Z(D,D,),and Z (V;A,€,d) by 7 (D1,D;). Then,

D D D1 D
T(D1,D2) =D1Jy +Dado =21 =Ty + 1a—2dp = I (—1, —2) . (5.6)
21 22 1 22

Therefore, all results in Section 5.4.1 on the current .# can be translated to results on .7
by replacing Dy and D, in Section 5.4.1 with D;/z; and D, /z, respectively. We will
thus collect the results related to .7 only.

Similar to the expression for .# in Section 5.4.1, we express .7 as

TVir,e,d)=To(V;e)+T1(V;A,€)d+o(d). (5.7)
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Theorem 5.25. In the expression (5.7), one has

To(V;0) =D1J1o + DaJro = 0p0(L1, L2, R1,R2) + GOI(LI’LZ’RI’RZ)kTV

T1(V;A,0) =D1J11 + DaJay = 010(L1,Lo,R1,Ry; /'L)+611(L1,L2,R1,R2,/1)keTV,
where
D —z1D,)(ck, — R D, —D R
000:(Z21 21D2)(cfy—¢fy) | 21(D1 = Da)(efy — ClO)(ln(Lle)_ln(Lle))’

2H(1) H(1)(Inck, —Inck))
o 21 (D1 =Da)(cty =)
"TTH(D)(Inck, —IncR)

22D —z1D Az —z
1o :#(11)2 [leOW(LIaLZ) — R w(R1, Ra) + T2 ((chy)? — (C{eo)z)}
_aDi=Dy) [1=2 (chy—cfy)®  chy—cfy (6L — o)
H(1) 2 lncfo—lnclfo lncm lnc10 RS

21(D1 —Dy) cfow(Ly, La) — cfyw(R1,Ry)
(z1—22)H(1) lncL —lncﬁ)
21(A21 — 22) (D1 — Dy) (cky)? — (cf)?
(z1 —22)22H(1) lnclo —lncfo
z21(Dy — D) (cfy— o) w(Li,La) —w(R1,Ry))

(z1—22)H(1) (Incky —Inck))2 (In(L1Ry) — In(L,Ry)),

(ln(Lle) — ln(Lle))

(ln(Lle) — 1n(L2R1 ))

21(D1 — Dy) cfgw(Li, La) — cfow(R1, Ry)

O11 =

H(1) Incly —Incfy
z21(Az1 —22) (D1 — Dy) () — (¢f)?
2H(1) Incfy —Inck)
_ 21(D1 = D) (efp — cfp) w(Li,La) —w(Ri, R2))
H(1) (Inchy —Inck))? '
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Definition 5.26. Define three potentials Vo, V. and V¢ by

. N d N
To(Vo;0) =0, Ti(Ve;4,0) =0, ﬁTl(VC;/I,O) =0.

It follows from the definition that
Proposition 5.27. The potentials Vi, V. and V¢ have the following expressions

A _k_TG()Q(L],Lz,Rl,Rz)
e G()l(Ll,Lz,Rl,Rz)’
0 — KT ow(li,La, Ry, RoiA)
‘< e Gll(Ll,Lz,Rth;)L)’
Vc:_k_TGIOJL(Ll,LZaRl,RZ;)L)
e Gll’l(LhLz,R],Rz;l)'

We have the following scaling laws:

Theorem 5.28. For any s > 0,

600 (sL1,5Ly,sR1,sRy) =s000(L1,L2,R1,R2),
001 (sL1,5Ly,sR1,sRy) =s001(L1,L2,R1,R2),
o10(sL1,5Ly, sR1,5R2, A) =s>010(L1, Lo, Ry, R2; M),

11(sL1,sLa,sRy,sR2, ) =s*>011(L1, Ly, R1,Ra; ).

As a consequence, Ty(V;0) scales linearly in boundary concentrations and Ty(V;A,0)
scales quadratically in boundary concentrations, and the values Vy, V. and V¢ are invari-

ant under scaling in boundary concentrations. [

Theorem 5.29. Suppose dyT;(V;A,0) > 0 (resp. dyT1(V;A,0) <0).
IfV >V, (resp. V < V.), then, for small € > 0 and d > 0, the ion sizes enhance 7 ;
thatis, 7 (V;e,d) > 7 (V;¢,0);
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IfV < VC (resp. V > VC), then, for small € > 0 and d > 0, the ion sizes reduce 7 ;
thatis, 7 (V;€,d) < 7 (V;€,0).

Theorem 5.30. Suppose 02, Ti(V;2,0) > 0 (resp. 92, Ti(V;2,0) <0).

IfV > V€ (resp. V < V€), then, for small € >0 and d > 0, the larger the negatively
charged ion the larger 7 ; that is, 7 increases A;

IfV < V¢ (resp. V > V¢), then, for small € > 0 and d > 0, the smaller the negatively

charged ion the larger 7 ; that is, 7 decreases A.

Corollary 5.31. Assume the electroneutrality conditions 71L1 = —zpLr = L and 71R| =

—70Ry =R, and L # R. Then

(Zle —ZlDz)(L—R) (D1 —Dz)(L—R) e

Bo(V:0) = z122H(1) H(1)(InL—InR) k"
, ~(Az—2)(@Dy—uD)(L* —R*)  (1-A)(D1—Dy)(L—R)*
TI(V’A’O) N Z%z%H(l) 11Z2H<1>(1IIL—11’1R)
Az —2)(D1 = D) (L—R)? <<L+R><1nL—lnR> _2) y
z122H(1)(InL — InR)2 LR kT
and hence,

V kT (Z2D1 — lez)(lnR — lnL)
0

e z122(D1 — D7) ’
kT (A—1)(InL—InR)(L—R)

e (Az1—22)[(InL—1InR)(L+R) —2(L —R)]
kT (z2D1 —z1D2)(InL —InR)*(L+R)
e ZIZ2(D1 —Dz)[(lnL — lnR) (L—I—R) — 2(L—R)] ’

. kT (InL—1InR)(L—R)

" ¢ z1[(InL—InR)(L+R) —2(L—R)]
kT (z2D1 —z1D2)(InL —InR)*(L+R)

e z122(D1 —Dy)[(InL —InR)(L+R) —2(L—R)]’

A
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Note also that, under electroneutrality conditions,

WTL(V:A,0) = — e(Az1 —22)(D1 — Dy)(L—R)? ((L+R)(lnL— InR) 2)

7120kTH(1)(InL — InR)? L—R
(D1 —D»)(L—R)?* [(L+R)(InL—1nR) )\ ¢
ZzH(l)(lnL—lnR)Z( L—R N )ﬁ

daTi(ViA,0) = —

Proposition 5.32. Assume electroneutrality conditions z71L) = —z0lr = L and 71R| =

—20Ry =R, and L # R. If D| > D;, then
Ti(V;1,0) >0 and 9%, Ti(V;2,0) > 0;
if D1 < D», then
Iy Ti(Vi2,0) <0 and 37, Ti(V;A,0) <O0.
In either case, as R — L,
v Ti(V;1,0) = 0 and 9%, Ti(V;1,0) = O((L—R)?).
Proof. 1t can be checked directly or follows from Theorem 5.16 and the relation (5.6)

between 7T} and /. O

In general, dyT; (V;4,0) and 97, 71 (V; 1,0) can be negative (resp. positive) for Dy >

D, (resp. D1 < D»). In particular, we have

Proposition 5.33. For z1 = —zp = 1 and for any L > 0, Ry > 0 and R5 > 0 with R1R; =

12 as (R,Ry) — (R},R),

(D1 —D,)L

(Ri —L)(3+ )R — (14+34)L). (5.8)
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For Dy > D, (resp. D1 < D»), the limit is negative (resp. positive) if

1431 1431
either L<RT<3_:_—ALf0r7L>1 or 34%_—)»

L<Ry <L for A <1.

As (R1,R>) = (R},RS),

(D1 —Dy)L

8‘/)LT1(V;A«,O) — W

(Ry—L)(Ry—3L).

For D1 > D (resp. D1 < D), the limit is negative (resp. positive) if L < R} < 3L.

Proof. 1t follows from Theorem 5.17 and the relation (5.6) between 7} and /.
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Chapter 6

Summary

There are two parts in this chapter. In the first part we briefly summarize the results of the

last three chapters. In the second part, a brief discussion of our future work is provided.

6.1 Summary of results

As a basic electrodiffusion equations modeling, the Poisson-Nernst-Planck system has
been studied to a great extent both analytically and numerically. In particular, in [24, 46,
57,58, 60, 61, 62], under the framework of geometric singular perturbation theory, some
interesting and new phenomenon have been investigated both numerically and analyti-
cally, in particular, the ion size effect on the I-V relations is studied and some important
critical potential values are investigated and numerically detected.

In this dissertation, first in Chapter 3, we analyzed a one dimensional steady-state
cPNP system by applying the method of Matched Asymptotic Expansion. Our main
interest is to study the I-V relation of a single channel, in particular, we focus on the
cubic-like feature of the I-V relation for a single channel. Our results turn out that, up to
the third order in €, a singular parameter, the I-V relation is indeed a cubic function in the
potential V. Moreover, if the initial concentrations applied at the two ends of the channel

is not equal, the 1-V relation has three distinct real roots, which corresponds to the bi-
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stable structure in the FitzHugh-Nagumo simplification of the Hodgkin-Huxley model.
However, for the fourth order system, the I-V relation is guintic instead of being cubic.
Numerical simulations are performed, and the numerical results are consistent with the
analytical ones.

In Chapter 4, we numerically studied a one-dimensional steady-state PNP model in-
cluding the ion size effect modeled by a non-local hard-sphere potential from density
functional theory. The work is motivated by [46], where, for the same setup, the PNP
system is studied analytically. The main purpose here is to detect two critical potentials
first observed in [46]. To achieve this goal, two numerical tasks are conducted respec-
tively. The first one is a numerical approach of solving the PNP system and obtaining I-V
curves, while the second task is to numerically detect two critical potential values V¢ and
V. for two cases respectively, one is for the case with zero permanent charge, exactly the
same setup as in [46], the other case involves a nonzero piecewise constant permanent
charge function. Based on the defining properties of these two critical potentials and
by using the numerical I-V curves directly, for the setting in [46], our numerical results
agree well with the analytical predictions.

In Chapter 5, a one-dimensional steady-state PNP model including the ion size effect
modeled by a local hard-sphere potential that depends pointwise on ion concentrations is
analyzed with totally different mathematical treatment from the one used in [46]. Based
on the geometric singular perturbation theory, in particular, on specific structures of this
concrete model, the existence of solutions to the boundary value problem for small ion
sizes is established and, treating the ion sizes as small parameters, an approximation of
the I-V relation is derived and two critical potentials for ion size effects are identified.
Important scaling laws of I-V relations and critical potentials in boundary concentrations
are obtained. Under electroneutrality conditions, up to the first order in d, our results

are consistent with the ones in [46]. Moreover, without the electroneutrality conditions,
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partial results about the ion size effect are also obtained. As a byproduct, the ion size

effects on the flow of matter are also discussed.

6.2 Future work

Basically speaking, there are three directions for our future work. In one direction, we
will focus on the multiplicity and stability of the solutions to classical Poisson-Nernst-
planck (cPNP) systems, that is, we ignore the ion-to-ion interaction and treat them as
point charged. The existence of multiple solutions has already been investigated, even
for a oversimplified case with only two different ion species involved ( see [24]). In one
of our projects in process, for a very simple case involving two different ion species and
with nonzero permanent charges, an important characterization of ion channels, triple
solutions are numerically detected. Moreover, the numerical simulation shows that mul-
tiple stable solutions are possible for some cases. A systematic study of the stability
problem will be one of our near future projects and we believe it will be very interesting,
but definitely very challenging.

The other direction is to study the cPNP system involving more ion species ( at least
3). The reason is that some biological phenomena of importance do not appear until
three or more ion species are involved. For example, the crucial finding for voltage ac-
tivated Na channels (which make the action potential) is that a third ion (it must be Ca
in the case considered) cannot be ignored in addition to Na and CI and biological con-
ditions, such as magnitudes of concentrations at both ends, have to be within a specific
range for the channel to work (for more information, see [58]). New phenomenon has
been investigated when three or more different ion species are involved. More precisely,
it is possible to have spatially oscillating solutions when three or more ion species are

involved, moreover, the spatially oscillating solutions and the spatially non-oscillating
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solutions can co-exist. An oversimplified example studied in [58] has shown this in-
teresting phenomenon. A systematic investigation for more general case is expected to
reveal more interesting behaviors. Also, the co-existence of spatially oscillating solu-
tions and spatially non-oscillating solutions give another form of multiple solutions. A
natural question arising here is which solution is more stable?

Finally, we consider the PNP systems including the hard-sphere potential component
( modeled either locally or nonlocally), that is, we study the ion size effects on the top-
ics that we are interested in, such as the I-V relations, critical potentials, multiplicity
and stability of solutions. This direction is much more challenging, but definitely more

interesting.
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