Dynamics of Poisson-Nernst-Planck systems and applications to ionic channels

By

Mingji Zhang

Submitted to the graduate degree program in the Department of Mathematics and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Doctor of Philosophy

Dr Weishi Liu, Chairperson

Dr Milena Stanislavova

Committee members \qquad
Dr Xuemin Tu
\qquad
Dr Erik Van Vleck

Dr Jack Shi, Physics and Astronomy

Date Defended:
July 8, 2013

The Dissertation Committee for Mingji Zhang certifies that this is the approved version of the following dissertation:

Dynamics of Poisson-Nernst-Planck systems and applications to ionic channels

Dr Weishi Liu, Chairperson

Date approved:
July 8, 2013

Abstract

Dynamics of Poisson-Nernst-Planck systems and its applications to ion channels are studied in this dissertation.

The Poisson-Nernst-Planck systems serve as basic electro-diffusion equations modeling, for example, ion flow through membrane channels and transport of holes and electrons in semiconductors. The model can be derived from the more fundamental models of the Langevin-Poisson system and the Maxwell-Boltzmann equations, and from the energy variational analysis EnVarA. A brief description of the model is given in Chapter 2 including the physical meaning of each equation involved.

Ion channels are cylindrical, hollow proteins that regulate the movement of ions (mainly $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{++}$and Cl^{-}) through nearly all the membrane channels. When an initial potential is applied at one end of the channel, it will drive the ions through the channel, and the movement of these ions will produce the current which can be measured. Different initial potentials will result in different currents, and the collection of all those data will provide a relation, the so-called I-V (current-voltage) relation, which is an important characterization of two most relevant properties of a channel: permeation and selectivity.

In Chapter 3, a classical Poisson-Nernst-Planck system is studied both analytically and numerically to investigate the cubic-like feature of the I-V relation. For the case of zero permanent charge, under electroneutrality boundary conditions at both ends of the channel, our result concerning the I-V relation for two oppositely charged ion species

is that the third order correction is cubic in the potential V, and furthermore, up to the third order, the cubic I-V relation has three distinct real roots (except for a very degenerate case) which corresponds to the bi-stable structure in the FitzHugh-Nagumo simplification of the Hodgkin-Huxley model. Numerical simulations are performed and and they are consistent with our analytical results.

In Chapter 4, we consider a one-dimensional steady-state Poisson-Nernst-Planck type model for ionic flow through membrane channels including ionic interaction modeled by a nonlocal hard-sphere potential from the Density Functional Theory. The resulting problem is a singularly perturbed boundary value problem of an integro-differential system. Ion size effect on the I-V relations is investigated numerically. Two numerical tasks are conducted. The first one is a numerical approach of solving the boundary value problem and obtaining I-V curves. This is accomplished through a numerical implement of the analytical strategy introduced in [46]. The second task is to numerically detect two critical potential values V_{c} and V^{c}. Our numerical detections are based on the defining properties of V_{c} and V^{c} and are designed to use the numerical I-V curves directly. For the setting in the above mentioned reference, our numerical results agree well with the analytical predictions.

In Chapter 5, a one-dimensional steady-state Poisson-Nernst-Planck type model for ionic flow through a membrane channel is analyzed, which includes a local hard-sphere potential that depends pointwise on ion concentrations to account for ion size effects on the ionic flow. The model problem is treated as a boundary value problem of a singularly perturbed differential system. Based on the geometric singular perturbation theory, especially, on specific structures of this concrete model, the existence of solutions to the boundary value problem for small ion sizes is established and, treating the ion sizes as small parameters, we also derive an approximation of the I-V relation and identify two critical potentials or voltages for ion size effects. Under electroneutrality (zero net
charge) boundary conditions, each of these two critical potentials separates the potential into two regions over which the ion size effects are qualitatively opposite to each other. On the other hand, without electroneutrality boundary conditions, the qualitative effects of ion sizes will depend not only on the critical potentials but also on boundary concentrations. Important scaling laws of I-V relations and critical potentials in boundary concentrations are obtained. Similar results about ion size effects on the flow of matter are also discussed. Under electroneutrality boundary conditions, the results on the first order approximation in ion diameters of solutions, I-V relations and critical potentials agree with those with a nonlocal hard-sphere potential examined in [46].

Acknowledgements

I owe my gratitude to all those people who have made this dissertation possible and because of whom my graduate experience has been one that I will cherish for my whole life.

My deepest gratitude is to my academic advisor Dr Weishi Liu. He patiently teaches me how to do research and helps me develop a career plan. It is his guidance, encouragement and support that make my accomplishments possible.

I am grateful to Dr Milena Stanislavova, Dr Xuemin Tu and Dr Erik Van Vleck for their help and suggestions in the past years. I would like to thank Dr Jack Shi for serving on my committee.

I gratefully acknowledge Dr Ralph Bayers, Dr Robert Brown, Dr Yaozhong Hu, Dr Weizhang Huang, Dr Craig Huneke, Dr Jeffrey Lang, Dr Albert Sheu, Dr Milena Stanislavova, Dr Atanas Stefanov, Dr Xuemin Tu and Dr Hongguo Xu for their teaching and valuable advice. Many thanks are also due to Dr Margaret Bayer, Dr Mat Johnson and Dr Erik Van Vleck for their supervision on my teaching.

This dissertation can not be made easily without the efforts of many staffs in the department of mathematics. Especially, great thanks are given to Kerrie Brecheisen, Debbie Garcia, Gloria Prothe and Lori Springs for their help in many ways.

I would like to thank all my friends for their great help and encouragement. In particular, I would like to thank Nicole Abaid, Tim Dorn, Pedro Lei, Xi Li, Xianping Li, Fei

Lu, Jian Song and Xiaoming Song for numerous mathematical discussions and lectures on related topics that helped me improve my knowledge.

Great thanks to Min Hu and Jun Fu who take care of my wife Qingqing and me like parents, especially when my daughters were born.

Finally, I would like to thank my family, especially my wife Qingqing Cui and my two lovely daughters Sophia Zhang and Bonnie Zhang, for their love, encouragement and support.

Contents

Abstract iii
Acknowledgements vi
1 Introduction 1
1.1 Ion channels and Poisson-Nernst-Planck systems 1
1.2 Outline of thesis 3
2 Preliminaries 5
2.1 Possion-Nernst-Planck system 5
2.1.1 A one-dimensional steady-state Poisson-Nernst-Planck system 5
2.1.2 Hard-sphere potential 8
2.2 Dynamical system theory of differential equations 12
2.2.1 Basic concepts 13
2.2.2 Method of matched asymptotic expansions 14
2.2.3 Geometric singular perturbation theory 17
2.3 Boundary value problem solvers 20
2.4 Problem setups 22
3 Cubic-Like Feature of I-V Relations 24
3.1 Introduction 25
3.2 Systems for asymptotic expansions 28
3.2.1 Outer systems for each order 29
3.2.2 Inner systems for each order 30
3.3 Third order matching under electroneutrality conditions 32
3.3.1 Third order outer expansion 35
3.3.2 Third order inner expansion 35
3.3.3 Third order matching 37
3.4 I-V relations under electroneutrality conditions 39
3.4.1 Main results 39
3.4.2 Remarks 42
3.5 Numerical simulations 44
3.5.1 Numerical experiments 45
3.6 Appendix: Fourth order matching under electroneutrality conditions 48
3.6.1 Fourth order outer expansion 49
3.6.2 Fourth order inner expansion 52
3.6.3 Fourth order matching 56
4 I-V Relation and Critical Potentials with Non-Local Hard-Sphere Compo- nent: Numerical Approach 63
4.1 Introduction 64
4.2 Models and two critical potentials 65
4.3 Numerical solution of the BVP (2.27)-(2.28) 68
4.3.1 Numerical strategy for solving problem (2.27)-(2.28) with $\mu_{i}^{H S}$ defined by (4.6) 69
4.3.2 BVP solvers for (4.8)-(4.9) and the initial guess 72
4.4 Design for numerical detections of V_{c} and V^{c} 74
4.5 Numerical experiments: case studies 78
4.5.1 \quad Numerical values vs analytical predications for $Q=0$ 78
4.5.2 Numerical values of V_{c} and V^{c} for piecewise constant $Q(x) \neq 0$ 80
5 I-V Relation and Critical Potentials with Local Hard-Sphere Component 84
5.1 Introduction 85
5.2 Problem Setup 88
5.3 Geometric singular perturbation theory for (5.3)-(5.5) 90
5.3.1 Geometric construction of singular orbits 93
5.3.2 Existence of solutions near the singular orbit 108
5.4 Ion size effects on the flows of charge and matter 112
5.4.1 I-V relation, critical potentials, and scaling laws 112
5.4.2 The flow rate \mathscr{T} of matter 123
6 Summary 129
6.1 Summary of results 129
6.2 Future work 131
Bibliography 133

Chapter 1

Introduction

In this dissertation, we study the dynamics of Poisson-Nernst-Planck (PNP) systems and its applications to ionic channels. It is a collection of my work and some joint works with Dr. Guojian Lin (from Renmin University of China), Dr. Xuemin Tu (from University of Kansas), Dr. Yingfei Yi (from Georgia Institute of Technology), and my advisor Dr. Weishi Liu.

1.1 Ion channels and Poisson-Nernst-Planck systems

Ion channels are cylindrical and hollow proteins, as stated in [30], which regulate the movement of ions (mainly $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{++}$, and Cl^{-}) across nearly all biological membranes. A major way for ions to cross the membrane is through the pore that runs down the long axis of a channel due to the impermeability of the membranes to charged particles. This property has been exploited by evolution to produce many varied and complicated phenomena necessary for life: channels are responsible for the initiation and continuation of the electric signals in the nervous system; in the kidneys, lungs, and intestines, channels coordinate changes in ionic concentration gradients that result in the absorption or release of water; in muscle cells, a group of channels is responsible for the
timely delivery of the Ca^{++}ions that initiate a contraction. Furthermore, a large number of drugs (including valium and PCP) act directly or indirectly on channels.

To produce such phenomena, channels act in group, opening and closing at the same time and letting only specific ion species get through the membrane (for example, some channels prefer Na^{+}over K^{+}while some ones prefer K^{+}over Na^{+}). In spite of the complicated results, the individual channels only do the following two things: they open and close (the so-called gating phenomenon), when open, they conduct ions. A single channel could be possibly removed from the biological system and studied as an isolated physical system. To do this, one can place the single channel into a phospholipid membrane which separates two baths with known ionic concentration. Far away from the channel, applying a voltage to the system by electrodes in the baths, one can measure the amount of current that passed through the channel, and this is the so-called I-V relation, which is an important characterization of two most relevant properties of a channel: permeation and selectivity (for more detailed description, see [30]). One of our interest in this dissertation is to study the I-V relations, in particular, to study the ion size effect on the I-V relations.

The PNP systems serve as basic electro-diffusion equations modeling, for example, ion flow through membrane channels, transport of holes and electrons in semiconductors (see, for example $[4,5,6,24,65,81]$). In the context of ion flow through a membrane channel, the flow of ions is driven by their concentration gradients and by the electric field modeled together by the Nernst-Planck continuity equations, and the electric field is in turn determined by the concentrations through the Poisson equation.

Each equation has its physical meaning just as stated in [30]. The Poisson equation is the differential form of the Maxwell's First Law which states that the flux of the electric field across any closed surface is equal to the total amount of charge inside the surface. The Nernst-Planck equations state that the flux of a specific species has two components:
simple diffusion and drift along the electric field. The continuity equations state that, for the flux of each species, there are no sinks or sources.

Under various reasonable conditions, it can be derived from the more fundamental models of the Langevin-Poisson system (see, for example, $[2,8,9,13,31,43,64,67,77$, 78, 85, 90]) and the Maxwell-Boltzmann equations (see, for example, [4, 42, 43, 77, 90]), and from the energy variational analysis EnVarA ([23, 38, 39, 40, 41, 55, 56]).

1.2 Outline of thesis

In Chapter 2, a brief description of PNP systems and some basic elements of dynamical system theory of differential equations are provided. In particular, the method of asymptotic expansions and a modern dynamical theory, the so-called geometric singular perturbation theory that are the main tools for the research in this dissertation, are introduced.

In Chapter 3, a classical PNP model which treats ions as point-charges and ignores the ion-to-ion interaction is studied. Our main interest is the I-V relation of the ion channels, in particular, the cubic-like feature of the I-V relation. Numerical simulations are performed and the numerical results are consistent with our analytical ones.

In chapter 4, we focus on the ion size effect on the I-V relation by considering a onedimensional steady-state PNP type model for ionic flow through membrane channels including ionic interaction modeled by nonlocal hard-sphere potentials from the Density Functional Theory. The ion size effect on I-V relations is investigated numerically, focusing on the case where only the hard-sphere components are included. Two numerical tasks are conducted. The first one is a numerical approach of solving the boundary value problem and obtaining I-V curves. The second task is to numerically detect two critical potential values V_{c} and V^{c} first obtained in [46].

In Chapter 5, we analyze a one-dimensional steady-state PNP model including a local hard-sphere potential that depends pointwise on ion concentrations to account for ion size effects on the ionic flow. Under the framework of geometric singular perturbation theory and the specific structures of this concrete model, we are able to establish the existence of solutions to the problem for small ion sizes. An approximation of the I-V relation is derived and two critical potentials for ion size effects are identified. Important scaling laws of I-V relations and critical potentials in boundary concentrations are obtained. Similar results about ion size effects on the flow of matter are also discussed.

In Chapter 6, a brief summary of our previous work is given and our future plan is discussed.

Chapter 2

Preliminaries

We give a brief description of PNP system and review some basic elements of dynamical system theory of differential equations, for which we refer to $[1,19,20,21,23,24,28$, $30,37,39,41,46,47,49,57,58,59,61,62,65,70,85,87,93,94]$, etc. for further details.

2.1 Possion-Nernst-Planck system

2.1.1 A one-dimensional steady-state Poisson-Nernst-Planck system

We start with a brief description of a three-dimensional PNP type model for ion flows. As an approximation, we consider an ion channel Ω, whose longitudinal length has been normalized to one,

$$
\Omega=\left\{X=(x, y, z): 0<x<1, y^{2}+z^{2}<g^{2}(x)\right\}
$$

where g is a smooth function. The boundary $\partial \Omega$ of Ω consists of three portions:

$$
\mathscr{L}=\{X \in \Omega: x=0\}, \mathscr{R}=\{X \in \Omega: x=1\},
$$

$$
\mathscr{M}=\left\{X \in \Omega: y^{2}+z^{2}=g^{2}(x)\right\} .
$$

Here, \mathscr{L} and \mathscr{R} are viewed as the two ends (inside and outside of the cell) and \mathscr{M} the wall of the channel.

The basic electrodiffusion model of PNP type systems for ion flow through the channel is (see, for example, [31, 33])

$$
\begin{align*}
-\nabla \cdot\left(\varepsilon_{r}(X) \varepsilon_{0} \nabla \Phi\right) & =e\left(\sum_{j=1}^{n} z_{j} c_{j}+Q(X)\right) \\
-\mathscr{J}_{i} & =\frac{1}{k T} D_{i}(X) c_{i} \nabla \mu_{i} \tag{2.1}\\
\frac{\partial c_{i}}{\partial t}+\nabla \cdot \mathscr{J}_{i} & =0, \quad i=1,2, \cdots, n
\end{align*}
$$

where e is the elementary charge, k is the Boltzmann constant, T is the absolute temperature; Φ is the electric potential, $Q(X)$ is the permanent charge of the channel, $\varepsilon_{r}(X)$ is the relative dielectric coefficient, ε_{0} is the vacuum permittivity; for the i th ion species, c_{i} is the concentration, z_{i} is the valence (the number of charges per particle), μ_{i} is the electrochemical potential, \mathscr{J}_{i} is the flux density, and $D_{i}(X)$ is the diffusion coefficient.

Depending on specific biological settings of ion channel problems, one may impose different boundary conditions. We will consider the situation that the concentration of charges and electrical potentials on $\mathscr{L} \cup \mathscr{R}$ are constants. An argument is that the inside and the outside of cells are macroscopic regions in which the concentration of charges and electrical potentials remain nearly constants. The wall of the channel will be assumed to be perfectly insulated. We thus assume the following boundary conditions

$$
\begin{equation*}
\left.\Phi\right|_{\mathscr{L}}=V,\left.c_{i}\right|_{\mathscr{L}}=L_{i},\left.\quad \Phi\right|_{\mathscr{R}}=0,\left.c_{i}\right|_{\mathscr{R}}=R_{i},\left.\quad \frac{\partial \Phi}{\partial \mathbf{n}}\right|_{\mathscr{M}}=\left.\frac{\partial c_{i}}{\partial \mathbf{n}}\right|_{\mathscr{M}}=0 \tag{2.2}
\end{equation*}
$$

where $V, L_{i}>0$ and $R_{i}>0$ are constants, and \mathbf{n} is a unit normal vector to \mathscr{M}.

We assume the channel is narrow so that it can be effectively viewed as a onedimensional channel and normalize it as the interval $[0,1]$ that connects the interior and the exterior of the channel. A natural one-dimensional steady-state PNP type model for ion flows of n ion species is (see $[62,65]$)

$$
\begin{align*}
& \frac{1}{h(x)} \frac{\partial}{\partial x}\left(\varepsilon_{r}(x) \varepsilon_{0} h(x) \frac{\partial \Phi}{\partial x}\right)=-e\left(\sum_{j=1}^{n} z_{j} c_{j}+Q(x)\right), \tag{2.3}\\
& \frac{\partial \mathscr{J}_{i}}{\partial x}=0, \quad-\mathscr{J}_{i}=\frac{1}{k T} D_{i}(x) h(x) c_{i} \frac{\partial \mu_{i}}{\partial x}, \quad i=1,2, \cdots, n .
\end{align*}
$$

The boundary conditions are, for $i=1,2, \cdots, n$,

$$
\begin{equation*}
\Phi(0)=V, \quad c_{i}(0)=L_{i}>0 ; \quad \Phi(1)=0, \quad c_{i}(1)=R_{i}>0, \tag{2.4}
\end{equation*}
$$

where $h(x)=\pi g^{2}(x)$ is the cross-section area of the channel over the longitudinal location x. The above one-dimensional version PNP system was suggested in [65] and it differs from the traditional one-dimensional PNP system in that the cross-section area function $h(x)$ is contained, which captures the main geometric property of a non-uniform channel.

Remark 2.1. For the one-dimensional case, the permanent charge $Q(x)$ will be modeled by a piecewise constant function; that is, we assume, for a partition $x_{0}=0<x_{1}<\cdots<$ $x_{m-1}<x_{m}=1$ of $[0,1]$ into m sub-intervals, $Q(x)=Q_{j}$ for $x \in\left(x_{j-1}, x_{j}\right)$ where Q_{j} 's are constants with $Q_{1}=Q_{m}=0$ (the intervals $\left[x_{0}, x_{1}\right]$ and $\left[x_{m-1}, x_{m}\right]$ are viewed as the reservoirs where there is no permanent charge).

The simplest PNP system is the classical Poisson-Nernst-Planck (cPNP) system. It has been simulated ([10, 11, 12, 14, 16, 31, 34, 36, 37, 43, 44, 45, 51, 65, 82, 95, 96]) and analyzed $([1,5,6,24,30,57,58,63,69,80,81,86,87,88,89,94])$ to a great extent. However, a major weak point of the cPNP is that ions are treated as point-charges,
which is reasonable only in near infinite dilute situation. Many extremely important properties of ion channels, such as selectivity, rely on ion sizes critically. For example, Na^{+}(sodium) and K^{+}(potassium), having the same valence, are mainly different by their ionic sizes. It is the difference in their ionic sizes that allows certain channels to prefer Na^{+}over K^{+}and some channels to prefer K^{+}over Na^{+}.

2.1.2 Hard-sphere potential

To study the ion size effects on ionic flows, one has to consider the ion specific components of the electrochemical potential in the PNP models. A first step toward a better modeling is to include hard-sphere potentials of the excess electrochemical potential, which is also necessary to account for ion size effects in the physiology of ion flows. For hard-sphere potentials, there are two types of models, local and nonlocal. Local models for hard-sphere potentials depend pointwise on ion concentrations, while nonlocal models are proposed as functionals of ion concentrations.

The electrochemical potential μ_{i} for the i th ion species consists of the ideal component $\mu_{i}^{i d}(x)$, the excess component $\mu_{i}^{e x}(x)$ and the concentration-independent component $\mu_{i}^{0}(x)$ (e.g. a hard-well potential):

$$
\mu_{i}(x)=\mu_{i}^{0}(x)+\mu_{i}^{i d}(x)+\mu_{i}^{e x}(x) .
$$

where

$$
\begin{equation*}
\mu_{i}^{i d}(x)=z_{i} e \phi(x)+k T \ln \frac{c_{i}(x)}{c_{0}} \tag{2.5}
\end{equation*}
$$

with some characteristic number density c_{0} which will be normalized to one in the sequel.
The excess electrochemical potential $\mu_{i}^{e x}(x)$ accounting for the finite size effect of charges is the most intriguing component which consists of two components: the hardsphere component $\mu_{i}^{H S}$ and the electrostatic component $\mu_{i}^{E S}$ for screening effects, etc. of
finite sizes of charges ([3, 25, 26, 29, 74, 75, 91, 92], etc.); that is,

$$
\mu_{i}^{e x}=\mu_{i}^{H S}+\mu_{i}^{E S} .
$$

As mentioned above, as a first step, we will only include the hard-sphere component $\mu_{i}^{H S}$. The hard-sphere component $\mu_{i}^{H S}(x)$ is naturally defined as a functional of the probability distributions, $\left\{f_{j}(x, v)\right\}$, where $f_{j}(x, v) d x d v$ is the number of j th ions at the location in $(x, x+d x)$ with the velocity in $(v, v+d v)$. There are different proposals for the specifics of $\mu_{i}^{H S}(x)$. The most successful one comes from the celebrated Density Functional Theory (DFT) ($[25,26]$, etc.) which states that $\mu_{i}^{H S}(x)$ is actually a functional of the concentrations, $\left\{c_{j}(x)\right\}$, where the concentration c_{j} and the probability distribution are related by $c_{j}(x)=\int f_{j}(x, v) d v$.

However, a practical difficulty is that an exact formula for the functional dependence of $\mu_{i}^{H S}(x)$ on $\left\{c_{j}(x)\right\}$ cannot be expected. A major breakthrough was made by Rosenfeld ($[74,75])$. He treated ions as charged spheres and introduced novel ideas for an approximation of $\mu_{i}^{H S}(x)$ based on the geometry of spheres. An outcome of Rosenfeld's theory is an explicit approximation of $\mu_{i}^{H S}(x)$ depending non-locally on the concentrations $\left\{c_{j}\right\}$. (See also the recent review article [76] on hard-sphere mixtures and the references therein.) Accuracy of Rosenfeld's model and its further refinements has been demonstrated by a number of applications ([32, 84, 91, 92], etc.); in particular, applications to ion channel problems have been conducted numerically in [9, 31, 33], etc. and they have shown a great improvement.

On the other hand, local- or pointwise-dependent models for hard sphere potentials $\mu_{i}^{H S}(x)$ had been proposed and tested for a long time. One of earliest local models for hard-sphere potentials was proposed by Bikerman ([7]), which contains ion size effect of mixtures but is not ion specific (i.e., the hard-sphere potential is assumed to be the same
for different ion species). Local models have evolved through several stages and become very reliable; for example, the Boublík-Mansoori-Carnahan-Starling-Leland local model is ion specific and has been shown to be accurate ([75, 76], etc.).

To end this section, we review a well-known non-local hard-sphere model used in [46], and derive a local model based on it which is studied in Chapter 5.

Recall that, for one-dimensional space case, one has ([29, 71, 72, 73, 74, 75]) the following formula for the hard-sphere (hard-rod) potential

$$
\begin{equation*}
\mu_{i}^{H S}=\frac{\delta \Omega\left(\left\{c_{j}\right\}\right)}{\delta c_{i}} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \Omega\left(\left\{c_{j}\right\}\right)=-\int n_{0}\left(x ;\left\{c_{j}\right\}\right) \ln \left[1-n_{1}\left(x ;\left\{c_{j}\right\}\right)\right] d x, \\
& n_{l}\left(x,\left\{c_{j}\right\}\right)=\sum_{j=1}^{n} \int c_{j}\left(x^{\prime}\right) \omega_{l}^{j}\left(x-x^{\prime}\right) d x^{\prime}, \quad(l=0,1), \tag{2.7}\\
& \omega_{0}^{j}(x)=\frac{\delta\left(x-r_{j}\right)+\delta\left(x+r_{j}\right)}{2}, \omega_{l}^{j}(x)=\Theta\left(r_{j}-|x|\right),
\end{align*}
$$

where δ is the Dirac function, Θ is the Heaviside function, and $r_{j}=d_{j} / 2$ is the radius of j th ion species.

The nonlocal hard-sphere model derived from (2.6) and (2.7) in [46] is

$$
\begin{align*}
\mu_{i}^{H S}(x)= & -\frac{k T}{2} \ln \left(\left(1-\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\left(1-\sum_{j} \int_{x+r_{i}-r_{j}}^{x+r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\right) \\
& +\frac{k T}{2} \int_{x-r_{i}}^{x+r_{i}} \frac{\sum_{j}\left(c_{j}\left(x^{\prime}-r_{j}\right)+c_{j}\left(x^{\prime}+r_{j}\right)\right)}{1-\sum_{j} \int_{x^{\prime}-r_{j}}^{x^{\prime}+r_{j}} c_{j}\left(x^{\prime \prime}\right) d x^{\prime \prime}} d x^{\prime} . \tag{2.8}
\end{align*}
$$

Now we derive the local model

$$
\begin{equation*}
\frac{1}{k T} \mu_{i}^{L H S}(x)=-\ln \left(1-\sum_{j=1}^{n} d_{j} c_{j}(x)\right)+\frac{d_{i} \sum_{j=1}^{n} c_{j}(x)}{1-\sum_{j=1}^{n} d_{j} c_{j}(x)} \tag{2.9}
\end{equation*}
$$

where d_{j} is the diameter of the j th ion species. This local model is studied in Chapter 5.
For the first term in (2.8),

$$
\ln \left(\left(1-\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\left(1-\sum_{j} \int_{x+r_{i}-r_{j}}^{x+r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\right),
$$

we expand $c_{j}\left(x^{\prime}\right)$ at $x^{\prime}=x$

$$
c_{j}\left(x^{\prime}\right)=c_{j}(x)+c_{j}^{\prime}(x)\left(x^{\prime}-x\right)+O\left(\left(x^{\prime}-x\right)^{2}\right) .
$$

This gives

$$
\begin{aligned}
\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime} & =\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}}\left(c_{j}(x)+c_{j}^{\prime}(x)\left(x^{\prime}-x\right)+O\left(\left(x^{\prime}-x\right)^{2}\right)\right) d x^{\prime} \\
& =\sum_{j}\left(2 r_{j} c_{j}(x)-2 r_{i} r_{j} c_{j}^{\prime}(x)+O\left(2 r_{j} r_{i}^{2}+\frac{2}{3} r_{j}^{3}\right)\right) \\
& =\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right)
\end{aligned}
$$

where $r=\min \left\{r_{1}, r_{2}\right\}$. Similarly, one has

$$
\sum_{j} \int_{x+r_{i}-r_{j}}^{x+r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}=\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right) .
$$

Therefore, the first term in $\mu_{i}^{H S}(x)$ becomes

$$
\begin{align*}
& -\frac{k T}{2} \ln \left(\left(1-\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\left(1-\sum_{j} \int_{x+r_{i}-r_{j}}^{x+r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\right) \\
= & -\frac{k T}{2} \ln \left(\left(1-\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right)\right)\left(1-\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right)\right)\right) \tag{2.10}\\
= & -k T \ln \left(1-\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right)\right) .
\end{align*}
$$

For the second term in (2.8)

$$
\frac{k T}{2} \int_{x-r_{i}}^{x+r_{i}} \frac{\sum_{j}\left(c_{j}\left(x^{\prime}-r_{j}\right)+c_{j}\left(x^{\prime}+r_{j}\right)\right)}{1-\sum_{j} \int_{x^{\prime}-r_{j}^{\prime}+r_{j}} c_{j}\left(x^{\prime \prime}\right) d x^{\prime \prime}} d x^{\prime},
$$

we first expand the numerator of the integrand at x to get

$$
\sum_{j}\left(c_{j}\left(x^{\prime}-r_{j}\right)+c_{j}\left(x^{\prime}+r_{j}\right)\right)=2 \sum_{j}\left(c_{j}(x)+c_{j}^{\prime}(x)\left(x^{\prime}-x\right)+O\left(\left(x-x^{\prime}\right)^{2}\right)\right) .
$$

Expanding the summation term in the denominator first at x^{\prime} and then at x, we have

$$
\begin{aligned}
\sum_{j} \int_{x^{\prime}-r_{j}}^{x^{\prime}+r_{j}} c_{j}\left(x^{\prime \prime}\right) d x^{\prime \prime} & =\sum_{j} \int_{x^{\prime}-r_{j}}^{x^{\prime}+r_{j}}\left(c_{j}\left(x^{\prime}\right)+c_{j}^{\prime}\left(x^{\prime}\right)\left(x^{\prime \prime}-x^{\prime}\right)+O\left(\left(x^{\prime \prime}-x^{\prime}\right)^{2}\right)\right) d x^{\prime \prime} \\
& =\sum_{j}\left(2 r_{j} c_{j}\left(x^{\prime}\right)+O\left(r^{3}\right)\right) \\
& =\sum_{j} 2 r_{j}\left(c_{j}(x)+c_{j}^{\prime}(x)\left(x^{\prime}-x\right)+O\left(\left(x^{\prime}-x\right)^{2}\right)+O\left(r^{3}\right)\right)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\frac{k T}{2} \int_{x-r_{i}}^{x+r_{i}} \frac{\sum_{j}\left(c_{j}\left(x^{\prime}-r_{j}\right)+c_{j}\left(x^{\prime}+r_{j}\right)\right)}{1-\sum_{j} \int_{x^{\prime}-r_{j}}^{x^{\prime}+r_{j}} c_{j}\left(x^{\prime \prime}\right) d x^{\prime \prime}} d x^{\prime}=k T \frac{2 r_{i} \sum_{j} c_{j}(x)}{1-\sum_{j} 2 r_{j} c_{j}(x)}+O\left(r^{2}\right) \tag{2.11}
\end{equation*}
$$

Ignoring the higher order terms, the nonlocal hard sphere model $\mu_{i}^{H S}(x)$ in (2.8) with (2.10) and (2.11) gives the local hard sphere model $\mu_{i}^{L H S}(x)$.

2.2 Dynamical system theory of differential equations

In this section, some basic concepts, definitions and terminologies which are closely related to the work that has been done in this dissertation are listed (for morel details, see [70]). Tow main methods, matched asymptotic expansions, a classical method, and
geometric singular perturbation theory, a modern dynamical theory, used to study the singularly perturbed boundary value problem (2.3) and (2.4) for my research are briefly described.

2.2.1 Basic concepts

Consider the following nonlinear autonomous systems of differential equations

$$
\begin{equation*}
\dot{x}=f(x), \tag{2.12}
\end{equation*}
$$

where $f: E \rightarrow \mathbb{R}^{n}$ and E is an open set subset of \mathbb{R}^{n}. Together with an initial condition $x(0)=x_{0}$ (2.12) is called an initial value problem (IVP).

The following definitions and theorems used many times in the thesis are all from [70].

Definition 2.2. For $x_{0} \in E$, let $\phi\left(t, x_{0}\right)$ be the solution of the initial valuable problem (2.12) defined on its maximal interval of existence $I\left(x_{0}\right)$. Then for $t \in I\left(x_{0}\right)$, the set of mappings ϕ_{t} defined by

$$
\phi_{t}\left(x_{0}\right)=\phi\left(t, x_{0}\right)
$$

is called the flow of differential equation (2.12); ϕ_{t} is also referred to as the flow of the vector field $f(x)$.

Definition 2.3. A point $x_{0} \in \mathbb{R}^{n}$ is called an equilibrium point or critical point of (2.12) if $f\left(x_{0}\right)=0$. An equilibrium is called a hyperbolic equilibrium point of (2.12) if none of the eigenvalues of the matrix $A=D f\left(x_{0}\right)$ has zero real part. The linear system

$$
\begin{equation*}
\dot{x}=A x \tag{2.13}
\end{equation*}
$$

with the matrix $A=D f\left(x_{0}\right)$ is called the linearization of (2.12) at x_{0}.

Definition 2.4. A point $p \in E$ is an ω-limit point of the trajectory $\phi(\cdot, x)$, a map from \mathbb{R} to E of system (2.12) if there is a sequence $t_{n} \rightarrow \infty$ such that

$$
\lim _{n \rightarrow \infty} \phi\left(t_{n}, x\right)=p .
$$

Similarly, if there is a sequence $t_{n} \rightarrow-\infty$ such that

$$
\lim _{n \rightarrow \infty} \phi\left(t_{n}, x\right)=q,
$$

and the point $q \in E$, then the point q is an α-limt point of system (2.12). The set of all ω-limt points of a trajectory Γ (defined through the map $\phi(\cdot, x)$) is called the ω-limit set of Γ and it is denoted by $\omega(\Gamma)$. The set of all α-limit points of a trajectory Γ is called the α-limit set of Γ and it is denoted by $\alpha(\Gamma)$.

2.2.2 Method of matched asymptotic expansions

Matched asymptotic expansion is a classical method to study singularly perturbed problems. In particular, it is best suited for layer-type problems. To illustrate the idea, for simplicity, we consider the following singularly perturbed initial value problem

$$
\begin{equation*}
\varepsilon \dot{x}=f(x ; \varepsilon), \quad t>0,(\varepsilon>0, \text { but small }) \tag{2.14}
\end{equation*}
$$

with the initial condition

$$
x(0)=x_{0} .
$$

For system (2.14), we assume that there is a layer occurring at the boundary $t=0$ where rapid change is expected, in other words, in the limit $\varepsilon \rightarrow 0$, the layer is expected
to become discontinuity. For convenience, we formulate the concept of rapid change by introducing scaled variables $\xi=t / \varepsilon$ at $t=0$. In this context, we call ξ the inner variable and t the outer variable. Correspondingly, the system deals with the boundary layers is called inner system while the one deals with (2.14) for $t>0$ is called outer system.

To solve the singularly perturbed problem (2.14) and obtain an approximation solution, the following three steps are taken.

- Step1: Study the outer systems for each order in ε, that is, we look for outer expansions of the form

$$
\begin{equation*}
x(t ; \varepsilon)=x_{0}(t)+\varepsilon x_{1}(t)+\varepsilon^{2} x_{2}(t)+\cdots . \tag{2.15}
\end{equation*}
$$

Substitute (2.15) into (2.14), and expand $f(x, \varepsilon)$ in the form of

$$
f(x ; \varepsilon)=f_{0}(x)+\varepsilon f_{1}(x)+\varepsilon^{2} f_{2}(x)+\cdots,
$$

we obtain the outer systems for each order, $j=1,2, \ldots$

$$
\begin{equation*}
0=f_{0}, \quad \varepsilon^{j} \dot{x}_{j-1}=f_{j} \tag{2.16}
\end{equation*}
$$

- Step2: Consider the inner systems for each order at $t=0$. At $t=0$, in terms of the inner variable $\xi=t / \varepsilon$, let $X(\xi ; \varepsilon)=x(\varepsilon \xi ; \varepsilon)$ and $F(\xi ; \varepsilon)=f(\varepsilon \xi ; \varepsilon)$, system (2.14) becomes

$$
\begin{equation*}
\frac{d X}{d \xi}=F(\xi ; \varepsilon) \tag{2.17}
\end{equation*}
$$

We then look for inner expansions of the form

$$
\begin{equation*}
X(\xi ; \varepsilon)=X_{0}(\xi)+\varepsilon X_{1}(\xi)+\varepsilon^{2} X_{2}(\xi)+\cdots . \tag{2.18}
\end{equation*}
$$

Substitute (2.18) into (2.17) and expand $F(\xi ; \varepsilon)$ as

$$
F(\xi ; \varepsilon)=F_{0}(\xi)+\varepsilon F_{1}(\xi)+\varepsilon^{2} F_{2}(\xi)+\cdots,
$$

one has the inner systems for each order, $j=0,1, \ldots$,

$$
\begin{equation*}
\frac{d X_{j}}{d \xi}=F_{j}(\xi) \tag{2.19}
\end{equation*}
$$

- Step3: After solving the resulting outer and inner systems for each order obtained from step 1 and step 2, we do the matching. The piecing of the inner solution and outer solution is achieved by matching principles. There are two mainstreams in matching. One is the intermediate matching of Kaplun-Lagerstrom and the other is the asymptotic matching of Van Dyke (see [17, 18, 53]). We will use the asymptotic matching principle for our matching purpose. For the above problem, the k-th order outer and inner expansions are denoted by, respectively,

$$
E_{x}^{k}(x(t ; \varepsilon))=\sum_{j=0}^{k} \varepsilon^{j} x_{j}(t), \quad E_{\xi}^{k}(X(\xi ; \varepsilon))=\sum_{j=0}^{k} \varepsilon^{j} X_{j}(\xi) .
$$

The k th order matching principle to be applied is $E_{t}^{k} E_{\xi}^{k}(X)=E_{\xi}^{k} E_{t}^{k}(x)$ in terms of either the outer variable t or the inner variable ξ.

2.2.3 Geometric singular perturbation theory

Another basic nonlinear dynamical framework for my research on Poisson-Nernst-Planck systems is the geometric singular perturbation theory. We give a brief description of the general procedure.

Consider a singularly perturbed problem

$$
\begin{align*}
\varepsilon \dot{x} & =f(x, y, \varepsilon), \tag{2.20}\\
\dot{y} & =g(x, y, \varepsilon),
\end{align*}
$$

where overdot denotes the derivative with respect to the variable $t, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{l}$, the functions f and g are both assumed to be C^{∞} on a set $U \times\left[0, \varepsilon_{0}\right)$ where $U \subset \mathbb{R}^{N}$ is open, with $N=n+l$, and ε is a real parameter. System (2.20) is called slow system.

For $\varepsilon>0$, the rescaling $t=\varepsilon \xi$ of the independent variable t gives rise an equivalent system, the fast system

$$
\begin{align*}
x^{\prime} & =f(x, y, \varepsilon) \tag{2.21}\\
y^{\prime} & =\varepsilon g(x, y, \varepsilon)
\end{align*}
$$

where prime denotes the derivative with respect to the variable ξ.
For $\varepsilon>0$, system (2.20) and (2.21) have exactly the same phase portrait. But their limits at $\varepsilon=0$ are different and, very often, the two limiting systems provide complementary information on state variables. Therefore, the main task of singularly perturbed problems is to patch the limiting information together to form an solution for the entire $\varepsilon>0$ system.

To solve the singularly perturbed problem, we take the following key steps

- Step1: Study the limiting fast system (the limit of system (2.21) at $\varepsilon=0$), that is,

$$
\begin{align*}
& x^{\prime}=f(x, y ; 0), \tag{2.22}\\
& y^{\prime}=0
\end{align*}
$$

which allows us to completely understand boundary or internal layers and characterize landing points of boundary layers on the so-called slow manifold \mathscr{Z}_{0} which is obtained by setting $\varepsilon=0$ in (2.20);

- Step 2: Construct a solution of the limiting slow system (the limit of system (2.20) at $\varepsilon=0$), that is,

$$
\begin{gather*}
0=f(x, y ; 0), \tag{2.23}\\
\dot{y}=g(x, y ; 0)
\end{gather*}
$$

on the slow manifold which connects the landing points obtained from step 1 ;

- Step 3: Based on the study in step 1 and step 2, one can construct a singular orbit which is a union of the solutions of limiting fast and slow systems. Then, one can apply the geometric singular perturbation theory, such as Exchange Lemma, to show that, for $\varepsilon>0$ small, there is a unique solution that is close to the singular orbit.

To end this section, we review two theorems that are crucial for our research.
Suppose $y=H(x)$ solves $f(x, y ; 0)=0$, in other words,

$$
\mathscr{Z}_{0}=\{(x, y): y=H(x), x \in \mathbb{R}\} .
$$

Observe that \mathscr{Z}_{0} is a set of equilibria of (2.22). The linearization of (2.22) at points in \mathscr{Z}_{0} is

$$
\left(\begin{array}{cc}
D_{x} f(x, y ; 0)_{m \times m} & D_{y} f(x, y ; 0)_{m \times n} \\
0_{n \times m} & 0_{n \times n}
\end{array}\right) .
$$

Definition 2.5. \mathscr{Z}_{0} is normally hyperbolic if no eigenvalues of $D_{x} f(x, y ; 0)$ has zero real part for all $(x, y) \in \mathscr{Z}_{0}$.

For convenience, we assume that For $D_{x} f(x, y ; 0)$, there are k eigenvalues β_{j} with positive real parts, and l eigenvalues α_{j} with negative real parts, where $k+l=m$.

The first theorem is (see $[27,35]$)

Theorem 2.6. Suppose \mathscr{Z}_{0} is normally hyperbolic, then for $\varepsilon>0$ small

- There is an invariant manifold $\mathscr{Z}_{\varepsilon}$, which is $C^{1} o(\varepsilon)$-close to \mathscr{Z}_{0}; that is, there exists a function $y=H(x ; \varepsilon)$ with $H(x ; \varepsilon) C^{1} o(\varepsilon)-$ close to $y=H(x)$ such that

$$
\mathscr{Z}_{\varepsilon}=\{(x, y): y=H(x ; \boldsymbol{\varepsilon})\} .
$$

- There are stable and unstable manifolds $W_{\varepsilon}^{s}\left(\mathscr{Z}_{\varepsilon}\right)$ and $W_{\varepsilon}^{u}\left(\mathscr{Z}_{\varepsilon}\right)$ of $\mathscr{Z}_{\varepsilon}$ such that

$$
\begin{aligned}
& \text { - } W_{\varepsilon}^{s, u}\left(\mathscr{Z}_{\varepsilon}\right)=\cup_{z_{\varepsilon} \in \mathscr{Z}_{\varepsilon}} W_{\varepsilon}^{s, u}\left(z_{\varepsilon}\right), \text { and } W_{\varepsilon}^{s, u}\left(z_{\varepsilon}\right) \text { is } C^{1} o(\varepsilon)-\text { close to } W_{\varepsilon=0}^{s, u}\left(z_{\varepsilon=0}\right) \\
& \text { - } \forall z_{\varepsilon}, \quad \phi_{\varepsilon}^{t}\left(W_{\varepsilon}^{s}\left(z_{\varepsilon}\right)\right)=W_{\varepsilon}^{s}\left(\phi_{\varepsilon}^{t}\left(z_{\varepsilon}\right)\right), \quad \phi_{\varepsilon}^{t}\left(W_{\varepsilon}^{u}\left(z_{\varepsilon}\right)\right)=W_{\varepsilon}^{u}\left(\phi_{\varepsilon}^{t}\left(z_{\varepsilon}\right)\right) \\
& \text { - } \forall z_{1}, z_{2} \in W_{\varepsilon}^{s}\left(z_{\varepsilon}\right), \\
& \\
& \qquad \phi_{\varepsilon}^{t}\left(z_{2}\right)-\phi_{\varepsilon}^{t}\left(z_{1}\right)\left|\leq K e^{-\alpha t}\right| z_{2}-z_{1} \mid
\end{aligned}
$$

where $\alpha>0$ is determined by $\alpha>\min _{j}\left|\Re \alpha_{j}\right|$ for $t>0$.
Similarly, $\forall z_{1}, z_{2} \in W_{\varepsilon}^{u}\left(z_{\varepsilon}\right)$,

$$
\left|\phi_{\varepsilon}^{t}\left(z_{2}\right)-\phi_{\varepsilon}^{t}\left(z_{1}\right)\right| \leq K e^{\beta t}\left|z_{2}-z_{1}\right|
$$

where $\beta>0$ is determined by $\beta<\min _{j}\left|\Re \beta_{j}\right|$ for $t<0$.

Let M^{ε} be a $(k+\sigma)$-dimensional invariant manifold with $1 \leq \sigma \leq m$. Let \mathscr{B} be a neighborhood of \mathscr{Z}_{0} with boundary $\partial \mathscr{B}$. We assume that
(A1) M^{0} intersect $W^{s}\left(\mathscr{Z}_{0}\right)$ transversally.
(A2) The ω limit set $\omega\left(N_{0}\right) \subset \mathscr{Z}_{0}$ is of dimension $\sigma-1$, where N_{0} is the intersection of M^{0} and $W^{s}\left(\mathscr{Z}_{0}\right)$.
(A3) On \mathscr{Z}_{0}, the reduced vector field is not tangent to $\omega\left(N_{0}\right)$.

With the above assumption, let us state the so-called Exchange Lemma (see [47, 59]).

Theorem 2.7. For any $\tau_{0}>0$ and $0<\rho<\tau_{0}$, for $\varepsilon>0$ small, a portion of $M^{\varepsilon} \cap \mathscr{B}$ is $C^{1} o(\varepsilon)-$ close to $W^{u}\left(\omega\left(N_{0}\right) \cdot\left(\tau_{0}-\rho, \tau_{0}+\rho\right)\right) \cap \mathscr{B}$. That is, for each point $p \in$ $W^{u}\left(\omega\left(N_{0}\right) \cdot\left(\tau_{0}-\rho, \tau_{0}+\rho\right)\right) \cap \mathscr{B}$, a portion of M^{ε} is close to p, and the tangent space of M^{ε} is close to that of $W^{u}\left(\omega\left(N_{0}\right) \cdot\left(\tau_{0}-\rho, \tau_{0}+\rho\right)\right)$.

2.3 Boundary value problem solvers

We use "bvp4c" in Matlab ([52]) as the solver for our boundary value problem (BVP) (2.3) and (2.4). It solves first order systems of ordinary differential equations with two-
point boundary conditions of this form:

$$
\left\{\begin{array}{l}
y^{\prime}=f(x, y), \quad a<x<b \tag{2.24}\\
g(y(a), y(b))=0
\end{array}\right.
$$

Given a mesh partition $a=x_{0}<x_{1}<\cdots<x_{N}=b$, the numerical solution of (2.24) is approximated by a piecewise cubic polynomial function $S(x)$. The approximated solution $S(x)$ satisfies the boundary conditions and it is a cubic Hermite interpolation polynomial for each subinterval $\left[x_{i}, x_{i+1}\right]$.

For $i=0,1,2, \cdots, N-1$, let $y_{i}=S\left(x_{i}\right)$ and let $h_{i}=x_{i+1}-x_{i}$. The y_{i} 's are evaluated by solving the algebraic equations

$$
\begin{equation*}
\Phi(X, Y)=\left(\phi_{0}(X, Y), \phi_{1}(X, Y), \cdots, \phi_{N}(X, Y)\right)=0 \tag{2.25}
\end{equation*}
$$

where

$$
\begin{aligned}
X & =\left[x_{0}, x_{1}, \cdots, x_{N}\right]^{T}, \\
Y & =\left[y_{0}, y_{1}, \cdots, y_{N}\right]^{T}, \\
\phi_{0}(X, Y) & =g\left(y_{0}, y_{N}\right), \\
\phi_{i}(X, Y) & =y_{i}-y_{i-1}-\frac{1}{6} h_{i-1}\left(f_{i-1}+4 f_{i}^{*}+f_{i}\right), \quad i=1,2, \cdots, N,
\end{aligned}
$$

and

$$
\begin{aligned}
f_{i} & =f\left(x_{i}, y_{i}\right) \\
f_{i}^{*} & =f\left(\frac{1}{2}\left(x_{i-1}+x_{i}\right), \frac{1}{2}\left(y_{i-1}+y_{i}\right)-\frac{1}{8} h_{i-1}\left(f_{i}-f_{i-1}\right)\right)
\end{aligned}
$$

The algebraic system (2.25) is solved by simplified Newton's method with a weak line search. The global Jacobian $\frac{\partial \Phi}{\partial Y}$ (using finite difference approximation by default) is required and the structure of the Jacobian is important for the linear solver in each Newton's iteration. The residual of $S(x)$ is calculated by $r(x)=S(x)-f(x, S(x))$ and the residual
in the boundary conditions is $g(S(a), S(b))$. The adaptive mesh strategy has been used to control the residual in "bvp4c", for details, see [52].

2.4 Problem setups

To end this section, we set up our problems with the following assumptions:
(A1). We consider two ion species $(n=2)$ with $z_{1}>0$ and $z_{2}<0$.
(A2). For the electrochemical potential μ_{i}, in addition to the ideal component $\mu_{i}^{i d}$, we also include the hard-sphere potential $\mu_{i}^{H S}$, where it is either local or non-local.
(A3). The relative dielectric coefficient and the diffusion coefficient are constants, that is, $\varepsilon_{r}(x)=\varepsilon_{r}$ and $D_{i}(x)=D_{i}$.

Under the assumptions (A1)-(A3), the steady-state system of (2.3) is

$$
\begin{align*}
& \frac{1}{h(x)} \frac{d}{d x}\left(\varepsilon_{r} \varepsilon_{0} h(x) \frac{d \Phi}{d x}\right)=-e\left(z_{1} c_{1}+z_{2} c_{2}+Q(x)\right), \tag{2.26}\\
& \frac{d \mathscr{J}_{i}}{d x}=0, \quad-\mathscr{J}_{i}=\frac{1}{k T} D_{i} h(x) c_{i} \frac{d \mu_{i}}{d x}, \quad i=1,2 .
\end{align*}
$$

We now make the dimensionless re-scaling in (2.26),

$$
\phi=\frac{e}{k T} \Phi, \quad \bar{V}=\frac{e}{k T} V, \quad \varepsilon^{2}=\frac{\varepsilon_{r} \varepsilon_{0} k T}{e^{2}}, \quad J_{i}=\frac{\mathscr{J}_{i}}{D_{i}} .
$$

Using the expression (2.5) for the ideal component $\mu_{i}^{i d}(x)$, we have, for $i=1,2$,

$$
\begin{aligned}
-J_{i} & =-\frac{\mathscr{J}_{i}}{D_{i}}=\frac{1}{k T} h(x) c_{i} \frac{d \mu_{i}^{i d}}{d x}+\frac{1}{k T} h(x) c_{i} \frac{d \mu_{i}^{H S}}{d x} \\
& =\frac{e}{k T} z_{i} h(x) c_{i} \frac{d \Phi}{d x}+h(x) \frac{d c_{i}}{d x}+\frac{h(x) c_{i}}{k T} \frac{d \mu_{i}^{H S}}{d x} \\
& =z_{i} h(x) c_{i} \frac{d \phi}{d x}+h(x) \frac{d c_{i}}{d x}+\frac{h(x) c_{i}}{k T} \frac{d \mu_{i}^{H S}}{d x} .
\end{aligned}
$$

Note also that,

$$
\varepsilon_{r} \varepsilon_{0} \frac{d \Phi}{d x}=\varepsilon^{2} \frac{e^{2}}{k T} \frac{d \Phi}{d x}=\varepsilon^{2} \frac{e^{2}}{k T} \frac{k T}{e} \frac{d \phi}{d x}=\varepsilon^{2} e \frac{d \phi}{d x} .
$$

Therefore, the boundary value problem (2.26) and (2.4) becomes

$$
\begin{align*}
& \frac{\varepsilon^{2}}{h(x)} \frac{d}{d x}\left(h(x) \frac{d}{d x} \phi\right)=-z_{1} c_{1}-z_{2} c_{2}-Q(x), \frac{d J_{1}}{d x}=\frac{d J_{2}}{d x}=0, \\
& h(x) \frac{d c_{1}}{d x}+h(x) z_{1} c_{1} \frac{d \phi}{d x}+\frac{h(x) c_{1}}{k T} \frac{d}{d x} \mu_{1}^{H S}(x)=-J_{1} \tag{2.27}\\
& h(x) \frac{d c_{2}}{d x}+h(x) z_{2} c_{2} \frac{d \phi}{d x}+\frac{h(x) c_{2}}{k T} \frac{d}{d x} \mu_{2}^{H S}(x)=-J_{2}
\end{align*}
$$

with the boundary conditions, for $i=1,2$,

$$
\begin{equation*}
\phi(0)=\bar{V}, c_{i}(0)=L_{i}>0 ; \quad \phi(1)=0, c_{i}(1)=R_{i}>0 . \tag{2.28}
\end{equation*}
$$

For ion channels, an important characteristic is the so-called I-V relation. For a solution of the steady-state boundary value problem of (2.27) and (2.28), the rate of flow of charge through a cross-section or current \mathscr{I} is

$$
\begin{equation*}
\mathscr{I}=z_{1} \mathscr{J}_{1}+z_{2} \mathscr{J}_{2} . \tag{2.29}
\end{equation*}
$$

For fixed boundary concentrations L_{i} 's and R_{i} 's, \mathscr{J} 's depend on V only and formula (2.29) provides a relation of the current \mathscr{I} on the voltage V. This relation is the $I-V$ relation. We will also examine ion size effects on the flow rate of matter through a cross-section, \mathscr{T}, given by

$$
\begin{equation*}
\mathscr{T}=\mathscr{J}_{1}+\mathscr{J}_{2} . \tag{2.30}
\end{equation*}
$$

Chapter 3

Asymptotic expansions and numerical simulations on I-V relations via a steady-state Poisson-Nernst-Planck system

In this chapter, system (2.27) with the boundary condition (2.28) is studied both analytically and numerically with particular attention on I-V relations of ion channels including only the ideal component of the electrochemical potential. Assuming ε is small, the PNP system can be viewed as a singularly perturbed system. Due to the special structures of the zeroth order inner and outer systems, one is able to derive more explicit expressions of higher order terms in asymptotic expansions. For the case of zero permanent charge, under the assumption of electro-neutrality at both ends of the channel, our result concerning the I-V relation for two oppositely charged ion species is that the third order correction is cubic in V , and furthermore (Theorem 4.1), up to the third order, the cubic I-V relation has three distinct real roots (except for a very degenerate case) which corresponds to the bi-stable structure in the FitzHugh-Nagumo simplification of the Hodgkin-Huxley model. Three numerical experiments are conducted to check the cubic-like feature of the I-V curve, study the boundary value effect on the I-V relation, and investigate the permanent charge effect on the I-V curve respectively.

3.1 Introduction

Ion channels are cylindrical, hollow proteins that regulate the movement of ions across almost all biological membranes (see [30]). The most relevant properties of a channel are the permeation and selectivity, and an important characterization is the I-V relation. The I-V relation adopted in the FitzHugh-Nagumo simplification of the famous Hodgkin-Huxley systems which describe the propagation of action potential of an ensemble of channels in a biological membrane is cubic-like. A natural question arising here is whether this cubic-like feature can be obtained from a single channel ?

With the assumption that the channel is narrow, it can be effectively viewed as a onedimensional channel and normalized as the interval $[0,1]$. The natural one-dimensional steady-state PNP type model (2.27) for ion flows of 2 ion species with the boundary condition (2.28) is studied. Note that, in this chapter, we study the classical PNP system, therefore, in system (2.27), $\frac{d}{d x} \mu_{i}^{H S}=0$ for $i=1,2$.

In this work, we mainly focus on the I-V relation (2.29), more precisely, our main interest in the I-V relation is to derive the asymptotic expansion

$$
\begin{equation*}
\mathscr{I}=I_{0}+\varepsilon I_{1}+\varepsilon^{2} I_{2}+\varepsilon^{3} I_{3}+\cdots . \tag{3.1}
\end{equation*}
$$

For consistence, we also write

$$
\begin{equation*}
\mathscr{T}=T_{0}+\varepsilon T_{1}+\varepsilon^{2} T_{2}+\varepsilon^{3} T_{3}+\cdots . \tag{3.2}
\end{equation*}
$$

It is known that, in general, the I-V relation is not unique (see [24, 63, 80, 81, 88, 89] for $Q \neq 0$ and see [58] even for $Q=0$ when more ion species are involved). In Section 3.3, we will consider a special case where the I-V relation is indeed unique. For simplicity, in this work, we assume that $Q(x)=0$ over the whole interval $[0,1]$.

With the assumption that ε is small, viewing it as the singular parameter, system (2.27) together with the boundary condition (2.28) will be treated as a singular boundary value problem. The general framework of the classical singular perturbation theory and the newly developed geometrical singular perturbation theory suggest one to study asymptotic expansion of the I-V relation.

In [1], a one-dimensional steady-state PNP system has been studied using asymptotic expansion approach with particular attention to the I-V relations. The result shows that

- The first order correction to the zeroth order linear I-V relation is generally quadratic in V;
- When the electro-neutrality condition is enforced at both ends of the channel, there is NO first order correction;
- The second order correction is cubic in V. Moreover, under electro-neutrality condition, up to the second order (in ε), the I-V relation is a cubic function with three distinct real roots.

A natural question arising here is whether the higher order corrections follow this pattern? More precisely, is the third order correction quartic in V ? What about the fourth order correction?

Our goal in this chapter is to further examine higher order asymptotic expansions of the I-V relation following the idea in [1] and to provide answers to these interesting questions. For the special case mentioned above, the third order correction turns out to be cubic with the electro-neutrality condition (see formula (3.18)) even though a quartic function is expected, which gives us the first surprise. Immediately, we get another interesting question: are the other higher order corrections also keeping this feature? This leads to the study of the fourth order correction. However, to our surprise, the fourth order correction is quintic (see formula (3.30)) instead of being cubic. Furthermore, for
the third order correction, the coefficient of the cubic term is always negative except for a highly degenerate case (see Theorem 3.7, Lemma 3.9 and Lemma 3.10). An importance of this negative sign is that, up to the third order, the cubic I-V function has three distinct real roots - this agrees qualitatively with I-V relation adopted in the FitzHugh-Nagumo simplification of the Hodgkin-Huxley systems. The existence of three distinct real roots of the I-V relation is responsible for the bi-stable structure in the FitzHugh-Nagumo system.

Numerical simulations are performed for both the cases with zero permanent charge and nonzero one respectively. For the case with zero permanent charge, it allows us to make a comparison between the analytical results and our numerical results. And meanwhile, one can investigate the effect of the boundary conditions on the I-V relations. For the one with nonzero permanent charge defined by

$$
Q(x)=\left\{\begin{array}{l}
0, \text { for } 0<x \leq a \\
Q, \text { for } a<x<b \\
0, \text { for } b \leq x \leq 1
\end{array}\right.
$$

where Q is a nonzero constant, we mainly focus on the cubic-like feature of the I-V relation and the effect of the permanent charge.

A thorough study of higher order asymptotic expansion of ϕ and c_{i} 's is necessary to obtain higher order asymptotic expansions of the I-V relation. Both the geometric singular perturbation method and the classical matched asymptotic expansion method work well for the zeroth order term (see $[1,6,30,46,54,61]$) at least for the special case mentioned above (see [24,58] for a treatment of general situations). For higher order terms, the classical matched asymptotic expansion approach are applied since it seems that a direct application of the geometric singular perturbation theory does not work - a research direction worthwhile to explore. It's well-known that higher order terms satisfy
linear but non-autonomous and non-homogeneous systems. The homogeneous parts of the linear systems are the same and are nothing but the linearizations of the zeroth order nonlinear system along the zeroth order (inner and outer) solutions. While in general, it is impossible to get explicit solutions of a linear non-autonomous system, a special feature of the problem at hand that the zeroth order nonlinear system possesses a complete set of integrals and each integral provides an integral for the linearization (see Propositions 3.2 and 3.3) allows us to carry out a detailed asymptotic analysis.

This chapter is organized as follows. In Section 3.2, we briefly restate the outer and inner systems for each order in the asymptotic expansions from [1], and the matching principle. Starting in Section 3.3, we restrict ourselves to the special case and examine the outer, inner expansions and matching. Previous results for lower order systems from [1] are briefly restated for completeness, and the third order expansions and matching are detailed under the electro-neutrality condition. In section 3.4, under the electroneutrality condition, we focus on the I-V relation up to the third order in ε, and obtain our main result. In section 3.5, numerical simulations are performed to system (2.27) with boundary condition (2.28) for both $Q(x)=0$ and $Q(x) \neq 0$, and corresponding I-V relation curves are obtained. Interesting phenomena are investigated.

3.2 Systems for asymptotic expansions

In this section, we apply the method of asymptotic expansions for both outer and inner systems to study the I-V relations of the PNP model discussed above. In current context, the outer systems "determine" the dynamics of ion flows within the channel, and the inner systems "govern" the potential boundary layers that represents the effects of boundary conditions from the bath conditions. The matching principle then provides the intersection between the internal dynamics and the boundary conditions.

3.2.1 Outer systems for each order

We assume Q is constant and look for outer expansion of the form, for $i=1,2$,

$$
\begin{align*}
\phi(x ; \varepsilon) & =\phi_{0}(x)+\varepsilon \phi_{1}(x)+\varepsilon^{2} \phi_{2}(x)+\cdots, \\
c_{i}(x ; \varepsilon) & =c_{i 0}(x)+\varepsilon c_{i 1}(x)+\varepsilon^{2} c_{i 2}(x)+\cdots, \tag{3.3}\\
J_{i} & =J_{i 0}+\varepsilon J_{i 1}+\varepsilon^{2} J_{i 2}+\cdots
\end{align*}
$$

Substituting (3.3) into (2.27) and denoting the derivatives with respect to x by overdots, with the convention that $\phi_{-1}=\phi_{-2}=0, \delta_{0}=1$, and $\delta_{j}=0$ for $j \neq 0$, upon introducing $u_{j}=\dot{\phi}_{j}$, the $j-$ th order system in ε is, for $i=1,2$,

$$
\begin{align*}
\dot{\phi}_{j-2} & =u_{j-2}, \quad \dot{u}_{j-2}=-\left(\alpha c_{1 j}-\beta c_{2 j}+\delta_{j} Q\right), \\
\dot{c}_{i j} & =-\sum_{p+q=j}\left(\alpha c_{1 p}-\beta c_{2 p}\right) u_{q}-J_{i j} \tag{3.4}
\end{align*}
$$

Remark 3.1. An observation is that the homogeneous part for $c_{i j}$'s is

$$
\binom{c_{1 j}^{\prime}}{c_{2 j}^{\prime}}=-u_{0}(x)\left(\begin{array}{cc}
\alpha & 0 \\
0 & -\beta
\end{array}\right)\binom{c_{1 j}}{c_{2 j}}
$$

Once $u_{0}(x)$ is found, this system can be simply integrated. And hence, system (3.4) can be solved.

3.2.2 Inner systems for each order

Inner systems at the left boundary $x=0$

At the boundary $x=0$, in terms of the inner variable $\xi=x / \varepsilon$, let $\Phi(\xi ; \varepsilon)=\phi(\varepsilon \xi ; \varepsilon)$, $C_{i}(\xi ; \varepsilon)=c_{i}(\varepsilon \xi ; \varepsilon)$. System (2.27) becomes, for $i=1,2$,

$$
\begin{align*}
& \frac{d^{2}}{d \xi^{2}} \Phi=-\left(\alpha C_{1}-\beta C_{2}+Q\right), \quad \frac{d J_{1}}{d x}=\frac{d J_{2}}{d x}=0 \tag{3.5}\\
& \frac{d C_{1}}{d \xi}+\alpha C_{1} \frac{d \Phi}{d \xi}=-\varepsilon J_{1}, \quad \frac{d C_{2}}{d \xi}-\beta C_{2} \frac{d \Phi}{d \xi}=-\varepsilon J_{2}
\end{align*}
$$

We look for the inner expansion of the form:

$$
\begin{align*}
\Phi(\xi ; \varepsilon) & =\Phi_{0}(\xi)+\varepsilon \Phi_{1}(\xi)+\varepsilon^{2} \Phi_{2}(\xi)+\cdots \\
C_{i}(\xi ; \varepsilon) & =C_{i 0}(\xi)+\varepsilon C_{i 1}(\xi)+\varepsilon^{2} C_{i 2}(\xi)+\cdots \tag{3.6}\\
J_{i} & =J_{i 0}+\varepsilon J_{i 1}+\varepsilon^{2} J_{i 2}+\cdots
\end{align*}
$$

We have, by introducing $U_{j}=\Phi_{j}^{\prime}$,

$$
\begin{align*}
& \Phi_{j}^{\prime}=U_{j}, \quad U_{j}^{\prime}=-\left(\alpha C_{1 j}-\beta C_{2 j}\right)-\delta_{j} Q \\
& C_{1 j}^{\prime}=-\sum_{p+q=j} \alpha C_{1 p} U_{q}-J_{1(j-1)} \tag{3.7}\\
& C_{2 j}^{\prime}=\sum_{p+q=j} \beta C_{2 p} U_{q}-J_{2(j-1)} .
\end{align*}
$$

For $j=0$, the system is

$$
\begin{align*}
& \Phi_{0}^{\prime}=U_{0}, \quad U_{0}^{\prime}=-\left(\alpha C_{10}-\beta C_{20}\right)-Q, \tag{3.8}\\
& C_{10}^{\prime}=-\alpha C_{10} U_{0}, \quad C_{20}^{\prime}=\beta C_{20} U_{0} .
\end{align*}
$$

and, for all $j \geq 1$, the homogeneous part of (3.7) is the same and it is the linearization of the zeroth order system (3.8).

There is a specific structure of system (3.8) that together with an abstract result allows one to get a closed form for solutions of (3.7). The specific structure is

Proposition 3.2. The zeroth order inner system (3.8) has a complete set of (3) first integrals given by,

$$
H_{1}=C_{10} e^{\alpha \Phi_{0}}, \quad H_{2}=C_{20} e^{-\beta \Phi_{0}}, \quad H_{3}=\frac{1}{2} U_{0}^{2}-C_{10}-C_{20}+Q \Phi_{0}
$$

Proof. This can be verified directly (see also [58]).

A crucial result whose proof is provided in [1] is given below.

Proposition 3.3. Consider an autonomous system

$$
\begin{equation*}
z^{\prime}=f(z), \quad z \in \mathbb{R}^{m} \tag{3.9}
\end{equation*}
$$

For a solution $z_{0}(t)$ of (3.9), consider the linearzation along $z_{0}(t)$:

$$
\begin{equation*}
Z^{\prime}=D f\left(z_{0}(t)\right) Z, \quad Z \in \mathbb{R}^{m} \tag{3.10}
\end{equation*}
$$

If a C^{2} function $H: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is an integral of system (3.9) (that is, $H(z(t))$ is independent of t for any solution $z(t)$ of (3.9)), then $G(Z, t)=\left\langle\nabla H\left(z_{0}(t)\right), Z\right\rangle$ is an integral of the linear system (3.10) (that is, $G(Z(t), t)$ is independent of t for any solution $Z(t)$ of (3.10)).

Noticing that the homogeneous part of (3.7) for $j \geq 1$ is the linearization of the zeroth order system (3.8), a complete set of integrals for the homogeneous part of (3.7) can be derived from Propositions 3.2 and 3.3. An application of variation of parameters allows one to get a closed form for the solutions of (3.7).

Inner systems at the right boundary $x=1$

In the similar way, at the right boundary $x=1$ in terms of the inner variable $\xi=(-1+$ $x) / \varepsilon$ and let $\Psi(\xi ; \varepsilon)=\phi(1+\varepsilon \xi ; \varepsilon), D_{k}(\xi ; \varepsilon)=c_{k}(1+\varepsilon \xi ; \varepsilon)$, by introducing $V_{j}=\Psi_{j}^{\prime}$, we get

$$
\begin{align*}
\Psi_{j}^{\prime} & =V_{j}, \quad V_{j}^{\prime}=-\left(\alpha D_{1 j}-\beta D_{2 j}\right)-\delta_{j} Q \\
D_{1 j}^{\prime} & =-\sum_{p+q=j} \alpha D_{1 p} V_{q}-J_{1(j-1)} \tag{3.11}\\
D_{2 j}^{\prime} & =-\sum_{p+q=j} \beta D_{2 p} V_{q}-J_{2(j-1)}
\end{align*}
$$

Same observation for inner systems at $x=0$ applies here.

Remark 3.4. For a more general derivation of the outer and inner systems, one can read [1].

Then, following the third step in section 2.2.2, one can apply the matching principle to $\left(\phi(x ; \varepsilon), c_{k}(x ; \varepsilon)\right)$ and $\left(\Phi(\xi ; \varepsilon), C_{k}(\xi ; \varepsilon)\right)$ at the left boundary $x=0$ and, at the right boundary $x=1$, to $\left(\phi(x ; \varepsilon), c_{k}(x ; \varepsilon)\right)$ and $\left(\Psi(\xi ; \varepsilon), D_{k}(\xi ; \varepsilon)\right)$.

3.3 Third order matching under electroneutrality conditions

With $\alpha=\beta=1$, under the electroneutrality assumption $L_{1}=L_{2}=L$ and $R_{1}=R_{2}=R$, we will derive the matched asymptotic expansions for the third order over the interval $[0,1]$, and through matching, we establish the third order correction.

For completeness, we summarize the results for lower order asymptotic expansions from [1] as follows:

Theorem 3.5. If $L \neq R$, under the electroneutrality condition, with $I_{k}=J_{1 k}-J_{2 k}$ and $T_{k}=J_{1 k}+J_{2 k}, k=0,1,2$, for the outer system, we have,

- For the zeroth order outer system, one has

$$
\phi_{0}(x)=b_{0}+\frac{I_{0}}{T_{0}} \ln \left|a_{0}-T_{0} x\right|, \quad c_{10}(x)=c_{20}(x)=\frac{a_{0}-T_{0} x}{2} .
$$

- For the first order outer system, one has

$$
\phi_{1}(x)=c_{11}(x)=c_{21}(x)=0 .
$$

- For the second order outer system, one has

$$
\begin{aligned}
c_{12}(x) & =\frac{a_{2}-T_{2} x}{2}+\frac{I_{0}^{2}+2 I_{0} T_{0}}{4\left(a_{0}-T_{0} x\right)^{2}}, \quad c_{22}(x)=\frac{a_{2}-T_{2} x}{2}+\frac{I_{0}^{2}-2 I_{0} T_{0}}{4\left(a_{0}-T_{0} x\right)^{2}}, \\
\phi_{2}(x) & =b_{2}+\frac{I_{2} T_{0}-I_{0} T_{2}}{T_{0}^{2}} \ln \left|a_{0}-T_{0} x\right|+\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)}{T_{0}^{2}\left(a_{0}-T_{0} x\right)}+\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)}{6 T_{0}\left(a_{0}-T_{0} x\right)^{3}} .
\end{aligned}
$$

For the inner system, we have,

- At the boundary $x=0$ with $x=\varepsilon \xi$,
- For the zeroth order inner system, we have

$$
\Phi_{0}(\xi)=\bar{V} \quad U_{0}(\xi)=0, \quad C_{10}(\xi)=C_{20}(\xi)=L .
$$

- For the first order inner system, we have:

$$
\Phi_{1}(\xi)=-\frac{I_{0}}{2 L} \xi, \quad C_{11}(\xi)=C_{21}(\xi)=-\frac{T_{0}}{2} \xi
$$

- For the second order inner system, we have

$$
\begin{aligned}
C_{12}(\xi) & =\frac{I_{0} T_{0}}{8 L^{2}}\left(1-e^{-\sqrt{2 L} \xi}\right), \quad C_{22}(\xi)=\frac{I_{0} T_{0}}{8 L^{2}}\left(e^{-\sqrt{2 L} \xi}-1\right), \\
\Phi_{2}(\xi) & =\frac{I_{0} T_{0}}{8 L^{3}}\left(e^{-\sqrt{2 L} \xi}-1\right)-\frac{I_{0} T_{0}}{8 L^{2}} \xi^{2}
\end{aligned}
$$

- At the boundary $x=1$ with $x-1=\varepsilon \xi$,
- For the zeroth order inner system, one has

$$
\Psi_{0}(\xi)=0 \quad V_{0}(\xi)=0 \quad D_{10}(\xi)=D_{20}(\xi)=R
$$

- For the first order inner system, one has

$$
\Psi_{1}(\xi)=-\frac{I_{0}}{2 R} \xi, \quad D_{11}(\xi)=D_{21}(\xi)=-\frac{T_{0}}{2} \xi
$$

- For the second order inner system, one has

$$
\begin{aligned}
D_{12}(\xi) & =-\frac{I_{0} T_{0}}{8 R^{2}}\left(e^{\sqrt{2 R} \xi}-1\right), \quad D_{22}(\xi)=\frac{I_{0} T_{0}}{8 R^{2}}\left(e^{\sqrt{2 R} \xi}-1\right) \\
\Psi_{2}(\xi) & =\frac{I_{0} T_{0}}{8 R^{3}}\left(e^{\sqrt{2 R} \xi}-1\right)-\frac{I_{0} T_{0}}{8 R^{2}} \xi^{2}
\end{aligned}
$$

Here,

$$
\begin{aligned}
& a_{0}=2 L, \quad T_{0}=2(L-R), \quad I_{0}=\frac{2(L-R)}{\ln L-\ln R} \bar{V}, \quad b_{0}=\bar{V}-\frac{I_{0}}{T_{0}} \ln 2 L \\
& a_{1}=I_{1}=T_{1}=b_{1}=0 ; \quad a_{2}=-\frac{I_{0}^{2}}{8 L^{2}}, \quad T_{2}=\frac{(L-R)^{3}(L+R)}{2 L^{2} R^{2}(\ln L-\ln R)^{2}} \bar{V}^{2}, \\
& I_{2}=\frac{(L-R)^{3}\left(L^{3}-R^{3}\right) \bar{V}}{3 L^{3} R^{3}(\ln L-\ln R)^{2}}+\frac{(L-R)^{3}}{L^{2} R^{2}(\ln L-\ln R)^{3}}\left(\frac{L+R}{2}-\frac{L^{3}-R^{3}}{3 L R(\ln L-\ln R)}\right) \bar{V}^{3}, \\
& b_{2}=\frac{I_{0}\left(4 T_{0}^{2}-I_{0}^{2}\right)}{6 a_{0}^{3} T_{0}}-\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)}{a_{0} T_{0}^{2}}-\frac{I_{2} T_{0}-I_{0} T_{2}}{T_{0}^{2}} \ln \left|a_{0}\right|-\frac{I_{0} T_{0}}{8 L^{3}} .
\end{aligned}
$$

Now we carry out the analysis for the third order asymptotic expansions and matchings in detail.

3.3.1 Third order outer expansion

The third order outer system, from (3.4), is

$$
\begin{align*}
\ddot{\phi}_{1} & =-c_{13}+c_{23} \\
\dot{c}_{13} & =-\left(c_{13} \dot{\phi}_{0}+c_{12} \dot{\phi}_{1}+c_{11} \dot{\phi}_{2}+c_{10} \dot{\phi}_{3}\right)-J_{13} \tag{3.12}\\
\dot{c}_{23} & =\left(c_{23} \dot{\phi}_{0}+c_{22} \dot{\phi}_{1}+c_{21} \dot{\phi}_{2}+c_{20} \dot{\phi}_{3}\right)-J_{23}
\end{align*}
$$

Solving (3.12), together with Theorem 3.5, we have

$$
\begin{align*}
c_{13}(x) & =c_{23}(x)=\frac{a_{3}-T_{3} x}{2} \\
\phi_{3}(x) & =b_{3}+\left(\frac{a_{3} I_{0}}{T_{0}}-\frac{a_{0} I_{0} T_{3}}{T_{0}^{2}}\right) \frac{1}{a_{0}-T_{0} x}+\left(\frac{I_{3}}{T_{0}}-\frac{I_{0} T_{3}}{T_{0}^{2}}\right) \ln \left|a_{0}-T_{0} x\right|, \tag{3.13}
\end{align*}
$$

for some constants a_{3} and b_{3} to be determined through matching. Here $I_{3}=J_{13}-J_{23}$ and $T_{3}=J_{13}+J_{23}$.

3.3.2 Third order inner expansion

At the boundary $x=0$, from (3.7), the third order inner system is

$$
\begin{align*}
& \Phi_{3}^{\prime}=U_{3}, \quad U_{3}^{\prime}=-\left(C_{13}-C_{23}\right) \\
& C_{13}^{\prime}=-\left(C_{10} U_{3}+C_{11} U_{2}+C_{12} U_{1}+C_{13} U_{0}\right)-J_{12} \tag{3.14}\\
& C_{23}^{\prime}=\left(C_{20} U_{3}+C_{21} U_{2}+C_{22} U_{1}+C_{23} U_{0}\right)-J_{22}
\end{align*}
$$

As an application of Proposition 2.1 for zeroth, first and second order cases (see Proposition 3.1, 3.2 and 3.3 in [1]) and Proposition 2.2, we have the next result.

Proposition 3.6. System (3.14) has the following integrals:

$$
\begin{aligned}
& G_{1}=C_{13} e^{\Phi_{0}}+C_{10} e^{\Phi_{0}} \Phi_{3}+J_{12} F_{1}+F_{131}+F_{132}, \\
& G_{2}=C_{23} e^{-\Phi_{0}}-C_{20} e^{-\Phi_{0}} \Phi_{3}+J_{22} F_{2}-F_{231}-F_{232}, \\
& G_{3}=U_{0} U_{3}+U_{1} U_{2}-C_{13}-C_{23}-T_{2} \xi
\end{aligned}
$$

where

$$
\begin{aligned}
F_{1}(\xi) & =\int_{0}^{\xi} e^{\Phi_{0}(s)} d s, \quad F_{2}(\xi)=\int_{0}^{\xi} e^{-\Phi_{0}(s)} d s \\
F_{131}(\xi) & =\int_{0}^{\xi} C_{11}(s) U_{2}(s) e^{\Phi_{0}(s)} d s, \quad F_{132}(\xi)=\int_{0}^{\xi} C_{12}(s) U_{1}(s) e^{\Phi_{0}(s)} d s, \\
F_{231}(\xi) & =\int_{0}^{\xi} C_{21}(s) U_{2}(s) e^{-\Phi_{0}(s)} d s, \quad F_{232}(\xi)=\int_{0}^{\xi} C_{22}(s) U_{1}(s) e^{-\Phi_{0}(s)} d s .
\end{aligned}
$$

Proof. This can be verified directly.

Applying the integrals in Proposition 3.6, we can solve (3.14) with $\Phi_{3}(0)=C_{13}(0)=$ $C_{23}(0)=0$ to get

$$
\begin{aligned}
\Phi_{3}(\xi)= & {\left[\frac{I_{0} T_{0}^{2}}{2(2 L)^{\frac{7}{2}}}\left(\frac{1}{2} \xi^{2}+\frac{3}{2 \sqrt{2 L}} \xi+\frac{1}{L}\right)-\gamma_{1}\right] e^{-\sqrt{2 L} \xi}+\gamma_{1} e^{\sqrt{2 L} \xi}-\frac{I_{0} T_{0}^{2}}{(2 L)^{\frac{9}{2}}} } \\
& -\left(\frac{I_{2}}{2 L}+\frac{2 I_{0} T_{0}^{2}}{(2 L)^{4}}\right) \xi-\frac{I_{0} T_{0}^{2}}{3(2 L)^{3}} \xi^{3} .
\end{aligned}
$$

The matching will force $\gamma_{1}=0$. For convenience, we define the following functions.

$$
\begin{aligned}
& k_{1}(x)=\frac{I_{0} T_{0}^{2}}{2(2 x)^{\frac{7}{2}}}\left(\frac{1}{2} \xi^{2}+\frac{3}{2 \sqrt{2 x}} \xi+\frac{1}{x}\right), \\
& k_{2}(x)=\frac{I_{0} T_{0}}{4(2 x)^{\frac{5}{2}}}\left(\frac{I_{0}}{x}-\frac{T_{0}}{2 \sqrt{2 x}} \xi-\frac{T_{0}}{2} \xi^{2}\right), \\
& k_{3}(x)=\frac{I_{0} T_{0}}{4(2 x)^{\frac{5}{2}}}\left(\frac{I_{0}}{x}+\frac{T_{0}}{2 \sqrt{2 x}} \xi+\frac{T_{0}}{2} \xi^{2}\right) .
\end{aligned}
$$

Then, for $\xi \geq 0$,

$$
\begin{align*}
& \Phi_{3}(\xi)=k_{1}(L) e^{-\sqrt{2 L} \xi}-\frac{I_{0} T_{0}^{2}}{(2 L)^{\frac{9}{2}}}-\left(\frac{I_{2}}{2 L}+\frac{2 I_{0} T_{0}^{2}}{(2 L)^{4}}\right) \xi-\frac{I_{0} T_{0}^{2}}{3(2 L)^{3}} \xi^{3}, \\
& C_{13}(\xi)=k_{2}(L) e^{-\sqrt{2 L} \xi}+\left(\frac{I_{0} T_{0}\left(I_{0}+2 T_{0}\right)}{16 L^{3}}-\frac{T_{2}}{2}\right) \xi-\frac{I_{0}^{2} T_{0}}{2(2 L)^{\frac{7}{2}}} \tag{3.15}\\
& C_{23}(\xi)=k_{3}(L) e^{-\sqrt{2 L} \xi}+\left(\frac{I_{0} T_{0}\left(I_{0}-2 T_{0}\right)}{16 L^{3}}-\frac{T_{2}}{2}\right) \xi-\frac{I_{0}^{2} T_{0}}{2(2 L)^{\frac{7}{2}}} .
\end{align*}
$$

Similarly, at $x=1$, the third order inner solution is, for $\xi \leq 0$,

$$
\begin{align*}
& \Psi_{3}(\xi)=-k_{1}(R) e^{\sqrt{2 R} \xi}+\frac{I_{0} T_{0}^{2}}{(2 R)^{\frac{9}{2}}}-\left(\frac{I_{2}}{2 R}+\frac{2 I_{0} T_{0}^{2}}{(2 R)^{4}}\right) \xi-\frac{I_{0} T_{0}^{2}}{3(2 R)^{3}} \xi^{3}, \\
& D_{13}(\xi)=-k_{2}(R) e^{\sqrt{2 R} \xi}+\left(\frac{I_{0} T_{0}\left(I_{0}+2 T_{0}\right)}{16 R^{3}}-\frac{T_{2}}{2}\right) \xi+\frac{I_{0}^{2} T_{0}}{2(2 R)^{\frac{7}{2}}} \tag{3.16}\\
& D_{23}(\xi)=-k_{3}(R) e^{\sqrt{2 R} \xi}+\left(\frac{I_{0} T_{0}\left(I_{0}-2 T_{0}\right)}{16 R^{3}}-\frac{T_{2}}{2}\right) \xi+\frac{I_{0}^{2} T_{0}}{2(2 R)^{\frac{7}{2}}}
\end{align*}
$$

3.3.3 Third order matching

For convenience, we define

$$
\begin{align*}
\rho_{1}(x)= & b_{2}-\frac{I_{0} T_{0}}{2\left(a_{0}-x\right)^{2}} \xi^{2}+\frac{I_{2} T_{0}-I_{0} T_{2}}{T_{0}^{2}} \ln \left|a_{0}-x\right|+\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)}{T_{0}^{2}\left(a_{0}-x\right)} \\
& -\frac{I_{0}\left(4 T_{0}^{2}-I_{0}^{2}\right)}{6 T_{0}\left(a_{0}-x\right)^{3}}, \\
\rho_{2}(x)= & b_{3}+\left(\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)}{2\left(a_{0}-x\right)^{4}}+\frac{\left(a_{2}-T_{2}\right) I_{0}}{\left(a_{0}-x\right)^{2}}-\frac{I_{2}}{a_{0}-x}\right) \xi-\frac{I_{0} T_{0}^{2}}{3\left(a_{0}-x\right)^{3}} \xi^{3} \tag{3.17}\\
& +\frac{a_{3} I_{0} T_{0}-a_{0} I_{0} T_{3}}{T_{0}^{2}\left(a_{0}-x\right)}+\frac{I_{3} T_{0}-I_{0} T_{3}}{T_{0}^{2}} \ln \left|a_{0}-x\right|, \\
\rho_{3}(x, y)= & \frac{a_{3}-y}{2}+\left(\frac{I_{0}^{2} T_{0}}{2\left(a_{0}-x\right)^{3}}+\frac{I_{0} T_{0}^{2}}{\left(a_{0}-x\right)^{3}}-\frac{T_{2}}{2}\right) \xi, \\
\rho_{4}(x, y)= & \frac{a_{3}-y}{2}+\left(\frac{I_{0}^{2} T_{0}}{2\left(a_{0}-x\right)^{3}}-\frac{I_{0} T_{0}^{2}}{\left(a_{0}-x\right)^{3}}-\frac{T_{2}}{2}\right) \xi .
\end{align*}
$$

From (3.13) and (3.17), in terms of $\xi=x / \varepsilon$, the outer expansion at $x=0$ is

$$
\begin{aligned}
& E_{\xi}^{3} E_{x}^{3}(\phi)=b_{0}+\frac{I_{0}}{T_{0}} \ln a_{0}-\varepsilon \frac{I_{0}}{a_{0}} \xi+\varepsilon^{2} \rho_{1}(0)+\varepsilon^{3} \rho_{2}(0) \\
& E_{\xi}^{3} E_{x}^{3}\left(c_{1}\right)=\frac{a_{0}}{2}-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2}\left(\frac{a_{2}}{2}+\frac{I_{0}^{2}+2 I_{0} T_{0}}{4 a_{0}}\right)+\varepsilon^{3} \rho_{3}(0,0) \\
& E_{\xi}^{3} E_{x}^{3}\left(c_{2}\right)=\frac{a_{0}}{2}-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2}\left(\frac{a_{2}}{2}+\frac{I_{0}^{2}-2 I_{0} T_{0}}{4 a_{0}}\right)+\varepsilon^{3} \rho_{4}(0,0)
\end{aligned}
$$

and in terms of $\xi=(x-1) / \varepsilon$, the outer expansion at $x=1$ is

$$
\begin{aligned}
& E_{\xi}^{3} E_{x}^{3}(\phi)=b_{0}+\frac{I_{0}}{T_{0}} \ln \left|a_{0}-T_{0}\right|-\varepsilon \frac{I_{0}}{a_{0}-T_{0}} \xi+\varepsilon^{2} \rho_{1}\left(T_{0}\right)+\varepsilon^{3} \rho_{2}\left(T_{0}\right) \\
& E_{\xi}^{3} E_{x}^{3}\left(c_{1}\right)=\frac{a_{0}-T_{0}}{2}-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2}\left(\frac{a_{2}-T_{2}}{2}+\frac{I_{0}^{2}+2 I_{0} T_{0}}{4\left(a_{0}-T_{0}\right)^{2}}\right)+\varepsilon^{3} \rho_{3}\left(T_{0}, T_{3}\right), \\
& E_{\xi}^{3} E_{x}^{3}\left(c_{2}\right)=\frac{a_{0}-T_{0}}{2}-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2}\left(\frac{a_{2}-T_{2}}{2}+\frac{I_{0}^{2}-2 I_{0} T_{0}}{4\left(a_{0}-T_{0}\right)^{2}}\right)+\varepsilon^{3} \rho_{4}\left(T_{0}, T_{3}\right)
\end{aligned}
$$

From (3.15) and (3.16), the inner expansion at $x=0$ is

$$
\begin{aligned}
E_{x}^{3} E_{\xi}^{3}(\Phi)= & \bar{V}-\varepsilon \frac{I_{0}}{2 L} \xi-\varepsilon^{2}\left(\frac{I_{0} T_{0}}{8 L^{3}}+\frac{I_{0} T_{0}}{8 L^{2}} \xi^{2}\right)-\varepsilon^{3}\left(\frac{I_{0} T_{0}^{2}}{(2 L)^{\frac{9}{2}}}+\left(\frac{I_{2}}{2 L}+\frac{2 I_{0} T_{0}^{2}}{(2 L)^{4}}\right) \xi\right. \\
& \left.+\frac{I_{0} T_{0}^{2}}{3(2 L)^{3}} \xi^{3}\right), \\
E_{x}^{3} E_{\xi}^{3}\left(C_{1}\right)= & L-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2} \frac{I_{0} T_{0}}{8 L^{2}}-\varepsilon^{3}\left(\frac{I_{0}^{2} T_{0}}{2(2 L)^{\frac{7}{2}}}-\left(\frac{I_{0} T_{0}^{2}}{8 L^{3}}+\frac{I_{0}^{2} T_{0}}{16 L^{3}}-\frac{T_{2}}{2}\right) \xi\right), \\
E_{x}^{3} E_{\xi}^{3}\left(C_{2}\right)= & L-\varepsilon \frac{T_{0}}{2} \xi-\varepsilon^{2} \frac{I_{0} T_{0}}{8 L^{2}}-\varepsilon^{3}\left(\frac{I_{0}^{2} T_{0}}{2(2 L)^{\frac{7}{2}}}-\left(\frac{I_{0}^{2} T_{0}}{16 L^{3}}-\frac{I_{0} T_{0}^{2}}{8 L^{3}}-\frac{T_{2}}{2}\right) \xi\right),
\end{aligned}
$$

and the inner expansion at $x=1$ is

$$
\begin{aligned}
E_{x}^{3} E_{\xi}^{3}(\Psi)= & \bar{V}-\varepsilon \frac{I_{0}}{2 R} \xi-\varepsilon^{2}\left(\frac{I_{0} T_{0}}{8 R^{3}}+\frac{I_{0} T_{0}}{8 R^{2}} \xi^{2}\right)-\varepsilon^{3}\left(-\frac{I_{0} T_{0}^{2}}{(2 R)^{\frac{9}{2}}}+\left(\frac{I_{2}}{2 R}+\frac{2 I_{0} T_{0}^{2}}{(2 R)^{4}}\right) \xi\right. \\
& \left.+\frac{I_{0} T_{0}^{2}}{3(2 R)^{3}} \xi^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{x}^{3} E_{\xi}^{3}\left(D_{1}\right)=R-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2} \frac{I_{0} T_{0}}{8 R^{2}}+\varepsilon^{3}\left(\frac{I_{0}^{2} T_{0}}{2(2 R)^{\frac{7}{2}}}+\left(\frac{I_{0}^{2} T_{0}}{16 R^{3}}+\frac{I_{0} T_{0}^{2}}{8 R^{3}}-\frac{T_{2}}{2}\right) \xi\right) \\
& E_{x}^{3} E_{\xi}^{3}\left(D_{2}\right)=R-\varepsilon \frac{T_{0}}{2} \xi-\varepsilon^{2} \frac{I_{0} T_{0}}{8 R^{2}}+\varepsilon^{3}\left(\frac{I_{0}^{2} T_{0}}{2(2 R)^{\frac{7}{2}}}+\left(\frac{I_{0}^{2} T_{0}}{16 R^{3}}-\frac{I_{0} T_{0}^{2}}{8 R^{3}}-\frac{T_{2}}{2}\right) \xi\right)
\end{aligned}
$$

Together with Theorem 3.5, the matchings $E_{\xi}^{3} E_{x}^{3}(\phi)=E_{x}^{3} E_{\xi}^{3}(\Phi), E_{\xi}^{3} E_{x}^{3}\left(c_{i}\right)=E_{x}^{3} E_{\xi}^{3}\left(C_{i}\right)$, at $x=0$ and $E_{\xi}^{3} E_{x}^{3}(\phi)=E_{x}^{3} E_{\xi}^{3}(\Psi), E_{\xi}^{3} E_{x}^{3}\left(c_{i}\right)=E_{x}^{3} E_{\xi}^{3}\left(D_{i}\right)$ at $x=1$ for $i=1,2$, then give

$$
\begin{align*}
a_{3}= & -\frac{I_{0}^{2} T_{0}}{(2 L)^{\frac{7}{2}}}, \quad T_{3}=-\frac{(L-R)^{3}}{\sqrt{2}(\ln L-\ln R)^{2}}\left(\frac{1}{R^{\frac{7}{2}}}+\frac{1}{L^{\frac{7}{2}}}\right) \bar{V}^{2}, \\
I_{3}= & -\frac{(L-R)^{4}}{\sqrt{2}(\ln L-\ln R)^{2}}\left(\frac{1}{R^{\frac{9}{2}}}+\frac{1}{L^{\frac{9}{2}}}\right) \bar{V} \\
& -\frac{(L-R)^{3}}{\sqrt{2}(\ln L-\ln R)^{3}}\left[\frac{1}{R^{\frac{7}{2}}}+\frac{1}{L^{\frac{7}{2}}}-\frac{L-R}{R L(\ln L-\ln R)}\left(\frac{L}{R^{\frac{7}{2}}}+\frac{R}{L^{\frac{7}{2}}}\right)\right] \bar{V}^{3}, \tag{3.18}\\
b_{3}= & \frac{I_{0} T_{3}-I_{3} T_{0}}{T_{0}^{2}} \ln \left|a_{0}\right|-\frac{I_{0}\left(a_{3} T_{0}-a_{0} T_{3}\right)}{a_{0} T_{0}^{2}}-\frac{I_{0} T_{0}^{2}}{(2 L)^{\frac{9}{2}}} .
\end{align*}
$$

3.4 I-V relations under electroneutrality conditions

Recall from (3.1) that, our main interest is to derive the asymptotic expansion of the I-V relation in the following form

$$
\mathscr{I}=I_{0}+\varepsilon I_{1}+\varepsilon^{2} I_{2}+\varepsilon^{3} I_{3}+\cdots .
$$

3.4.1 Main results

In this section, we will study the I-V relation under the electroneutrality condition up to third order in ε in detail, and state our main result.

From Theorem 3.5, and (3.18), under the assumption of electro-neutrality, up to the third order in ε, we have

$$
\begin{align*}
\mathscr{I} & =I_{0}+\varepsilon I_{1}+\varepsilon^{2} I_{2}+\varepsilon^{3} I_{3} \\
& =f(L, R, \varepsilon) \bar{V}-\varepsilon^{2} g(L, R, \varepsilon) \bar{V}^{3} \tag{3.19}\\
& =\frac{e}{k T}\left(f(L, R, \varepsilon) V-\varepsilon^{2}\left(\frac{e}{k T}\right)^{2} g(L, R, \varepsilon) V^{3}\right),
\end{align*}
$$

where

$$
\begin{aligned}
f(L, R, \varepsilon)= & \frac{2(L-R)}{\ln L-\ln R}+\varepsilon^{2} \frac{(L-R)^{4}}{3(\ln L-\ln R)^{2}}\left(\frac{L^{2}+R^{2}+L R}{L^{3} R^{3}}-\frac{3 \varepsilon}{\sqrt{2}}\left(\frac{1}{L^{\frac{9}{2}}}+\frac{1}{R^{\frac{9}{2}}}\right)\right), \\
g(L, R, \varepsilon)= & \frac{(L-R)^{3}\left(L^{3}-R^{3}\right)}{3 L^{3} R^{3}(\ln L-\ln R)^{4}}-\frac{(L-R)^{2}\left(L^{2}-R^{2}\right)}{2 L^{2} R^{2}(\ln L-\ln R)^{3}} \\
& +\varepsilon \frac{(L-R)^{3}}{\sqrt{2}(\ln L-\ln R)^{3}}\left[\frac{1}{R^{\frac{7}{2}}}+\frac{1}{L^{\frac{7}{2}}}-\frac{L-R}{R L(\ln L-\ln R)}\left(\frac{L}{R^{\frac{7}{2}}}+\frac{R}{L^{\frac{7}{2}}}\right)\right] .
\end{aligned}
$$

Theorem 3.7. If $L \neq R$, for $\varepsilon>0$ small, then, up to the order of ε^{3}, the I - V relation $\mathscr{I}=\mathscr{I}(V)$ is a cubic function with three distinct real roots.

Proof. From (3.19), it suffices to show that both $f(L, R, \varepsilon)$ and $g(L, R, \varepsilon)$ are positive. Note that $(L-R) /(\ln L-\ln R)>0$, for $L \neq R$, our proof follows directly from the next three lemmas.

Lemma 3.8. For $L \neq R$, and $\varepsilon>0$ small,

$$
h_{1}(L, R, \varepsilon)=\frac{L^{2}+R^{2}+L R}{L^{3} R^{3}}-\frac{3 \varepsilon}{\sqrt{2}}\left(\frac{1}{L^{\frac{9}{2}}}+\frac{1}{R^{\frac{9}{2}}}\right)>0 .
$$

Proof. Treat $h_{1}(\varepsilon)=h_{1}(L, R, \varepsilon)$, for fixed $L \neq R$, one has

$$
h_{1}\left(\varepsilon^{*}\right)=0, \text { and } h_{1}^{\prime}(\varepsilon)=-\frac{3}{\sqrt{2}}\left(\frac{1}{R^{\frac{9}{2}}}+\frac{1}{L^{\frac{9}{2}}}\right)<0, \text { for all } \varepsilon>0,
$$

where

$$
\varepsilon^{*}=\frac{\sqrt{2} L^{\frac{3}{2}} R^{\frac{3}{2}}\left(L^{2}+L R+R^{2}\right)}{3\left(L^{\frac{3}{2}}+R^{\frac{3}{2}}\right)\left(L^{3}+R^{\frac{3}{2}} L^{\frac{3}{2}}+R^{3}\right)} .
$$

It is clear that $h_{1}(\varepsilon)>0$ for $0<\varepsilon<\varepsilon^{*}$. Note that $\varepsilon \ll 1$, and $\varepsilon^{*}=O(1)$, we have $h_{1}(L, R, \varepsilon)>0$ for $\varepsilon>0$ small.

Lemma 3.9. For $L \neq R$,

$$
h_{2}(L, R)=\frac{(L-R)^{3}\left(L^{3}-R^{3}\right)}{3 L^{3} R^{3}(\ln L-\ln R)^{4}}-\frac{(L-R)^{2}\left(L^{2}-R^{2}\right)}{2 L^{2} R^{2}(\ln L-\ln R)^{3}}>0 .
$$

Proof. Notice that $h_{2}(L, R)=h_{2}(R, L)$, it suffices to show that $h_{2}(L, R)>0$ for $L>R$.
Rewrite $h_{2}(L, R)$ as

$$
h_{2}(L, R)=\frac{(L-R)^{3}}{L^{2} R^{2}(\ln L-\ln R)^{3}} \tilde{h}_{2}(L, R) \text {, }
$$

where

$$
\tilde{h}_{2}(L, R)=\frac{L^{3}-R^{3}}{3 L R(\ln L-\ln R)}-\frac{L+R}{2} .
$$

Then,

$$
h_{2}(L, R)>0 \Longleftrightarrow \tilde{h}_{2}(L, R)>0, \text { for } L>R .
$$

Fixing R, we treat $\tilde{h}_{2}(L)=\tilde{h}_{2}(L, R)$ as a function of L. A direct calculation shows $\tilde{h}_{2}(R)=$ $\tilde{h}_{2}^{\prime}(R)=0$, but $\tilde{h}_{2}^{\prime \prime}(L)>0$ for all L. Therefore, we have $\tilde{h}_{2}(L, R)>0$ for all $L>R$.

Lemma 3.10. For $L \neq R$,

$$
h_{3}(L, R, \varepsilon)=\frac{1}{R^{\frac{7}{2}}}+\frac{1}{L^{\frac{7}{2}}}-\frac{L-R}{R L(\ln L-\ln R)}\left(\frac{L}{R^{\frac{7}{2}}}+\frac{R}{L^{\frac{7}{2}}}\right)>0 .
$$

Proof. Rewrite $h_{3}(L, R)$ as $h_{3}(L, R)=p(L, R) /(L R)^{\frac{9}{2}}(\ln L-\ln R)$, where

$$
p(L, R)=L R(\ln L-\ln R)\left(L^{\frac{7}{2}}+R^{\frac{7}{2}}\right)-(L-R)\left(L^{\frac{9}{2}}+R^{\frac{9}{2}}\right)
$$

Note that $h_{3}(L, R)=h_{3}(R, L)$. It suffices to show $h_{3}(L, R)>0$ for $L>R$, which is equivalent to showing that $p(L, R)>0$ for $L>R$. To do so, we fix R, and treat $p(L)=p(L, R)$ as a function of L. Then, a direct computation gives $p(R)=p^{\prime}(R)=p^{\prime \prime}(R)=0$, but $p^{\prime \prime \prime}(L)>0$ for $L>R$. Therefore, $p(L)>0$ for $L>R$.

3.4.2 Remarks

For the third order terms, we only treated the electro-neutrality case mainly because this is a natural biological assumption. Under this assumption, up to the order of ε^{3}, even though a quartic function is expected, the I-V relation $\mathscr{I}(V)$ is still a cubic function with three distinct real roots, which is potentially related to the cubic-like feature of the average I-V relation of a population of channels in the Fitzhugh-Nagumo simplification of the Hodgkin-Huxley model. The existence of three distinct real roots of the I-V relation is responsible for the bi-stable structure in the FitzHugh-Nagumo system.

Recall from [1], that the first order correction to the zeroth order linear I-V relation is quadratic without electro-neutrality condition, and we believe that the analysis for the first order terms in [1] can be applied to third order terms in this work without the electro-neutrality assumption.

For the fourth order correction to zeroth order I-V relation under electro-neutrality condition, we have

Theorem 3.11. Under electroneutrality condition, we have

$$
\begin{align*}
T_{4}= & \frac{3(L-R)^{4}\left(L^{5}-R^{5}\right)}{4 L^{5} R^{5}(\ln L-\ln R)} V+\frac{(L-R)^{4}}{2 L^{5} R^{5}(\ln L-\ln R)^{2}}\left(\frac{\left(L^{2}-R^{2}\right)\left(L^{3}-R^{3}\right)}{3(\ln L-\ln R)}\right. \\
& \left.+\frac{7\left(L^{5}-R^{5}\right)}{2}\right) V^{2}-\frac{(L-R)^{4}\left(L^{5}-R^{5}\right)}{4 L^{5} R^{5}(\ln L-\ln R)^{3}} V^{3}+\frac{(L-R)^{5}(L+R)}{2 L^{4} R^{4}(\ln L-\ln R)^{4}} \\
& \times\left(\frac{(L+R)}{2}-\frac{L^{3}-R^{3}}{3 L R(\ln L-\ln R)}\right) V^{4}, \tag{3.20}\\
I_{4}= & \frac{(L-R)^{4}}{L^{4} R^{4}(\ln L-\ln R)^{2}}\left(\frac{(L-R)\left(L^{3}-R^{3}\right) Q_{1}(L, R)}{6 L^{2} R^{2}} V+\frac{3 Q_{3}(L, R)}{4 L R} V^{2}\right. \\
& \left.+\frac{Q_{2}(L, R)}{\ln L-\ln R} V^{3}-\frac{Q_{3}(L, R)}{4 L R(\ln L-\ln R)^{2}} V^{4}+\frac{(L-R) Q_{4}(L, R)}{2(\ln L-\ln R)^{3}} V^{5}\right),
\end{align*}
$$

where

$$
\begin{aligned}
Q_{1}(L, R)= & \frac{L^{3}-R^{3}}{3(\ln L-\ln R)}+\frac{97\left(L^{3}+R^{3}\right)}{2}, \\
Q_{2}(L, R)= & \frac{(L-R)\left(L^{5}-R^{5}\right)}{2 L^{2} R^{2}(\ln L-\ln R)}+\frac{(L-R)^{2}\left(L^{3}-R^{3}\right)\left(L^{2}+L R+R^{2}\right)}{9 L^{2} R^{2}(\ln L-\ln R)^{2}} \\
& +\frac{13(L-R)\left(L^{5}-R^{5}\right)}{12 L^{2} R^{2}(\ln L-\ln R)}+\frac{7\left(L^{5}-R^{5}\right)}{4 L R}-\frac{(L-R)^{2}(L+R)}{2(\ln L-\ln R)} \\
& +\frac{(L-R)(L+R)\left(L^{3}-R^{3}\right)}{4 L R(\ln L-\ln R)}-\frac{17(L-R)^{2}}{12(\ln L-\ln R)}, \\
Q_{3}(L, R)= & \frac{(L-R)\left(L^{5}-R^{5}\right)}{\ln L-\ln R}-\frac{(L-R)^{2}}{\ln L-\ln R}+L^{5}-R^{5}, \\
Q_{4}(L, R)= & \frac{(L+R)\left(L^{3}-R^{3}\right)}{2 L R(\ln L-\ln R)}-\frac{\left(L^{3}-R^{3}\right)^{2}}{3 L^{2} R^{2}(\ln L-\ln R)^{2}}+\frac{3(L+R)^{2}}{4} .
\end{aligned}
$$

The derivation of the expressions in (3.20) is provided in the Appendix Section 3.6.
Remark 3.12. Under the electroneutrality condition, up to the fourth order in ε, the IV relation function $\mathscr{I}(V)$ is quintic instead of being cubic. However, for $\varepsilon>0$ small,
$\mathscr{I}=I_{0}+\varepsilon I_{1}+\varepsilon^{2} I_{2}+\varepsilon^{3} I_{3}$ is good enough to approximate the $I-V$ relation, which can be seen from last section.

To end this section, we have the following interesting result about the I-V relations, which can be checked directly from systems (2.27) and (2.28).

Proposition 3.13. For all $\varepsilon>0, \mathscr{I}(L, R, \bar{V} ; \varepsilon)=-\mathscr{I}(R, L,-\bar{V} ; \varepsilon)$. A direct observation shows that, for $j=0,1,2,3,4$,

$$
I_{j}(L, R, V ; 0)=-I_{j}(R, L,-V ; 0), \quad T_{j}(L, R, V ; 0)=-T_{j}(R, L,-V ; 0)
$$

3.5 Numerical simulations

In this section, numerical simulations are performed to system system (2.27) with the boundary condition (2.28) to check the cubic-like feature of the I-V curve and investigate the effects of the boundary conditions, the permanent charge on the I-V relations.

To apply the BVP solver mentioned in section 2.3, we first rewrite (2.27) into a system of first order equations as

$$
\begin{align*}
& \varepsilon \frac{d}{d x} \phi=u, \quad \frac{\varepsilon}{h(x)} \frac{d}{d x}(h(x) u)=-\left(\alpha c_{1}-\beta c_{2}+Q(x)\right), \\
& \varepsilon h(x) \frac{d c_{1}}{d x}+\alpha h(x) c_{1} u=-\varepsilon J_{1}, \tag{3.21}\\
& \varepsilon h(x) \frac{d c_{2}}{d x}-\beta h(x) c_{2} u=-\varepsilon J_{2}, \quad \frac{d J_{i}}{d x}=0
\end{align*}
$$

with the same boundary condition (2.28).
For a general iteration step, we take the initial guess from the approximate solution of the previous fixed point iteration. At the first iteration, for the case where $Q=0$, we take advantage of the analysis from [1] and choose the initial guess $\left(\phi^{0}, u^{0}, c_{1}^{0}, c_{2}^{0}, J_{1}^{0}, J_{2}^{0}\right)$ as follows.

We take the zeroth order outer solution from [1] as our initial guess for both $Q(x)=0$ and $Q(x) \neq 0$

$$
\begin{align*}
\phi_{0}^{0}(x) & =\frac{\ln |L-(L-R) x|-\ln R}{\ln L-\ln R} v_{0}, \quad u_{0}^{0}(x)=\frac{(L-R) v_{0}}{(\ln L-\ln R)((L-R) x-L)}, \\
c_{10}^{0}(x) & =c_{20}^{0}(x)=L-(L-R) x, \quad J_{10}^{0}=(L-R)\left(1+\frac{v_{0}}{\ln L-\ln R}\right), \tag{3.22}\\
J_{20}^{0} & =(L-R)\left(1-\frac{v_{0}}{\ln L-\ln R}\right) .
\end{align*}
$$

We take a uniform mesh partition as initial mesh and evaluate the functions $\left(\phi_{0}^{0}, u_{0}^{0}, c_{10}^{0}\right.$, $\left.c_{20}^{0}, J_{10}^{0}, J_{20}^{0}\right)$ at these mesh points as initial guess for "bvp4c" at our first fixed point iteration. We use the mesh and solution from previous fixed point iteration as our initial mesh and initial guess for late iteration.

3.5.1 Numerical experiments

In this section, three numerical experiments are conducted to system (3.21) with boundary conditions (2.28) respectively, which are stated as follows:

- Experiment 1: for $Q(x)=0$, fixing L and R, letting ε vary, we check the cubic-like feature of the I-V relation, and meanwhile, compare the I-V curves from numerical simulation with the ones obtained from asymptotic expansions;
- Experiment 2: for $Q(x)=0$, fixing R and ε, letting L vary, we investigate the effect of the concentration boundary condition on the I-V curve;
- Experiment 3: for $Q=\left\{\begin{array}{l}00 \leq x<a, \\ Q_{0} a \leq x \leq b, \\ 0 b<x \leq 1,\end{array} \quad\right.$ fixing L, R and ε, letting Q_{0} vary, we investigate the effect of the permanent charge on the I-V relation curve and check the cubic-like feature of the I-V curve.

For experiment 1 , the following properties are predicted from the analytical results and can be observed from the numerical simulations: For the first part, we have (see Figure 1)
(i) all I-V curves pass through the point $(0,0)$, and for V close to 0 , the value of ε has less effect on the I-V curve;
(ii) for $V>0$, the I-V curve is decreasing in ε, and for $V<0$, the I-V curve is increasing in ε;
(iii) the I-V curve is more cubic-like for larger $\varepsilon>0$, and for ε small enough, the I-V relation curve $\mathscr{I}(V)$ is close to the zeroth order approximation $\mathscr{I}_{0}=2(L-$ $R) V /(\ln L-\ln R)$ under the electroneutrality condition.

For the second part, one has (see Figure 2)
(i) the smaller ε is, the better approximation \mathscr{I}_{t} (the third order approximation to the I-V curve) will be;
(ii) the approximation is sensitive to V, for V close to 0 , the value of ε has less effect on the approximation.

For experiment 2, the following properties can be observed from the numerical simulations (see Figure 3):

Figure 3.1: Numerical simulation of the I-V relation $\mathscr{I}(V)$ with $Q=0 . \mathscr{I}_{1}$ (solid curve, $\varepsilon=0.1$), \mathscr{I}_{2} (dotted curve, $\varepsilon=0.08$), \mathscr{I}_{3} (dashed curve, $\varepsilon=0.04$), and $\mathscr{I}_{4}($ stars, $\varepsilon=$ 0.008)
(i) all curves pass the point $(0,0)$, for $V>0$, the I-V curves are increasing in L, and for $V<0$, they are decreasing in L;
(ii) for fixed ε and R, the I-V curve is more cubic-like for larger difference $L-R$.

For experiment 3, we investigate
(i) all curves pass through the point $(0,0)$, and the I-V curves still keep the cubic-like feature;
(ii) the I-V curves are decreasing in the permanent charge Q_{0} (see Figure 4).

Figure 3.2: Plots of $\mathscr{I}(V)$ for $Q=0 . \mathscr{I}_{t}-$ third order approximation, and $\mathscr{I}_{n s}-$ numerical simulation.

3.6 Appendix: Fourth order matching under electroneutrality conditions

In this section, we study the fourth order asymptotic expansions in ε and the matching under electroneutrality conditions at the two ends of the ion channel.

Figure 3.3: Numerical simulation of the I-V relation $\mathscr{I}(V)$ with $Q=0 . \mathscr{I}_{1}$ (stars, $L=$ 10), \mathscr{I}_{2} (dotted curve, $L=25$), \mathscr{I}_{3} (solid curve, $L=40$), and \mathscr{I}_{4} (diamonds, $L=55$).

3.6.1 Fourth order outer expansion

The fourth order outer system is

$$
\begin{align*}
\ddot{\phi}_{2} & =-c_{14}+c_{24} \\
\dot{c}_{14} & =-\left(c_{10} \dot{\phi}_{4}+c_{11} \dot{\phi}_{3}+c_{12} \dot{\phi}_{2}+c_{13} \dot{\phi}_{1}+c_{14} \dot{\phi}_{0}\right)-J_{14}, \tag{3.23}\\
\dot{c}_{24} & =c_{20} \dot{\phi}_{4}+c_{21} \dot{\phi}_{3}+c_{22} \dot{\phi}_{2}+c_{23} \dot{\phi}_{1}+c_{24} \dot{\phi}_{0}-J_{24} .
\end{align*}
$$

Under electroneutrality condition, that is, $L_{1}=L_{2}=L$ and $R_{1}=R_{2}=R$, adding the last two equations in (3.23), we get

$$
c_{14}+c_{24}=a_{4}-T_{4} x+\frac{I_{0}^{2}\left(4 T_{0}^{2}-I_{0}^{2}\right)}{2\left(a_{0}-T_{0} x\right)^{5}}-\frac{I_{0}^{2}\left(a_{2}-T_{2} x\right)}{\left(a_{0}-T_{0} x\right)^{3}}+\frac{I_{0} I_{2}}{\left(a_{0}-T_{0} x\right)^{2}},
$$

Figure 3.4: Plots of $I(V)$. The left graph in the first row is the simulation over the interval [$-80,80]$, for the other three graphs, we focus on different subintervals. \mathscr{I}_{0} (solid curve, $\mathrm{Q}=0), \mathscr{I}_{1}($ dashed curve, $\mathrm{Q}=0.05), \mathscr{I}_{2}($ dotted curve, $\mathrm{Q}=0.1)$ and $\mathscr{I}_{3}($ dash point, $\mathrm{Q}=0.2)$
where a_{4} is some constant that will be determined through matching. Subtracting the last two equations in (3.23) results in

$$
\begin{aligned}
\dot{\phi}_{4}= & -\frac{I_{4}}{a_{0}-T_{0} x}+\frac{1}{a_{0}-T_{0} x} \dddot{\phi}_{2}-\left(\frac{a_{2}-T_{2} x}{a_{0}-T_{0} x}+\frac{I_{0}^{2}}{2\left(a_{0}-T_{0} x\right)^{3}}\right) \dot{\phi}_{2} \\
& -\left(\frac{a_{4}-T_{4} x}{a_{0}-T_{0} x}+\frac{I_{0}^{2}\left(4 T_{0}^{2}-I_{0}^{2}\right)}{2\left(a_{0}-T_{0} x\right)^{6}}-\frac{I_{0}^{2}\left(a_{2}-T_{2} x\right)}{\left(a_{0}-T_{0} x\right)^{4}}+\frac{I_{0} I_{2}}{\left(a_{0}-T_{0} x\right)^{3}}\right) \dot{\phi}_{0} .
\end{aligned}
$$

Recall that

$$
\begin{align*}
& \dot{\phi}_{0}=-\frac{I_{0}}{a_{0}-T_{0} x}, \quad \dot{\phi}_{2}=\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)}{2\left(a_{0}-T_{0} x\right)^{4}}+\frac{I_{0}\left(a_{2}-T_{2} x\right)}{\left(a_{0}-T_{0} x\right)^{2}}-\frac{I_{2}}{a_{0}-T_{0} x}, \\
& \ddot{\phi}_{2}=\frac{2 I_{0} T_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)}{\left(a_{0}-T_{0} x\right)^{5}}+\frac{2 I_{0} T_{0}\left(a_{2}-T_{2} x\right)}{\left(a_{0}-T_{0} x\right)^{3}}-\frac{I_{0} T_{2}+I_{2} T_{0}}{\left(a_{0}-T_{0} x\right)^{2}}, \tag{3.24}\\
& \dddot{\phi}_{2}=\frac{10 I_{0} T_{0}^{2}\left(I_{0}^{2}-4 T_{0}^{2}\right)}{\left(a_{0}-T_{0} x\right)^{6}}+\frac{6 I_{0} T_{0}^{2}\left(a_{2}-T_{2} x\right)}{\left(a_{0}-T_{0} x\right)^{4}}-\frac{2 T_{0}\left(2 I_{0} T_{2}+I_{2} T_{0}\right)}{\left(a_{0}-T_{0} x\right)^{3}} .
\end{align*}
$$

Therefore, we have

$$
\begin{aligned}
\dot{\phi}_{4}= & \frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)\left(40 T_{0}^{2}-3 I_{0}^{2}\right)}{4\left(a_{0}-T_{0} x\right)^{7}}+\frac{2 a_{2} I_{0}\left(4 T_{0}^{2}-I_{0}^{2}\right)}{\left(a_{0}-T_{0} x\right)^{5}}+\frac{3 I_{0}^{2} I_{2}-8 I_{0} T_{0} T_{2}-4 T_{0}^{2} I_{2}}{2\left(a_{0}-T_{0} x\right)^{4}} \\
& -\frac{a_{2}^{2} I_{0}}{\left(a_{0}-T_{0} x\right)^{3}}+\frac{I_{2} a_{2}+a_{4} I_{0}}{\left(a_{0}-T_{0} x\right)^{2}}-\frac{I_{4}}{a_{0}-T_{0} x}-\frac{2 I_{0} T_{2}\left(4 T_{0}^{2}-I_{0}^{2}\right) x}{\left(a_{0}-T_{0} x\right)^{5}} \\
& -\frac{\left(I_{2} T_{2}+I_{0} T_{4}\right) x}{\left(a_{0}-T_{0} x\right)^{2}}+\frac{2 a_{2} I_{0} T_{2} x}{\left(a_{0}-T_{0} x\right)^{3}}-\frac{I_{0} T_{2}^{2} x^{2}}{\left(a_{0}-T_{0} x\right)^{3}} .
\end{aligned}
$$

By careful computations, we have, with b_{4} a constant to be determined through matching,

$$
\begin{align*}
\phi_{4}(x)= & b_{4}+\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)\left(40 T_{0}^{2}-3 I_{0}^{2}\right)}{24 T_{0}\left(a_{0}-T_{0} x\right)^{6}}+\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)\left(4 T_{0}^{2}-I_{0}^{2}\right)}{2 T_{0}^{2}\left(a_{0}-T_{0} x\right)^{4}} \\
& +\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)\left(T_{0}-4 T_{2}\right)+2 I_{0} T_{0}\left(I_{0} I_{2}-4 T_{0} T_{2}\right)}{6 T_{0}^{2}\left(a_{0}-T_{0} x\right)^{3}}-\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)^{2}}{2 T_{0}^{3}\left(a_{0}-T_{0} x\right)^{2}} \\
& +\frac{T_{0}^{2}\left(I_{2} a_{2}+a_{4} I_{0}\right)-a_{0} T_{0}\left(I_{2} T_{2}-I_{0} T_{4}\right)+2 I_{0} T_{2}\left(a_{0} T_{2}-a_{2} T_{0}\right)}{T_{0}^{3}\left(a_{0}-T_{0} x\right)} \tag{3.25}\\
& +\frac{T_{0}\left(I_{4} T_{0}-I_{0} T_{4}\right)+T_{2}\left(I_{0} T_{2}-T_{0} I_{2}\right)}{T_{0}^{3}} \ln \left|a_{0}-T_{0} x\right| .
\end{align*}
$$

Together with the first equation in (3.23) and the theird equation in (3.24), we obtain the solution to the fourth order outer system (3.23)

$$
\begin{align*}
c_{14}(x)= & \frac{a_{4}-T_{4} x}{2}+\frac{I_{0}\left(4 T_{0}^{2}-I_{0}^{2}\right)\left(I_{0}+4 T_{0}\right)}{4\left(a_{0}-T_{0} x\right)^{5}}-\frac{I_{0}\left(I_{0}+2 T_{0}\right)\left(a_{2}-T_{2} x\right)}{2\left(a_{0}-T_{0} x\right)^{3}} \\
& +\frac{I_{0}\left(I_{2}+T_{2}\right)+I_{2} T_{0}}{2\left(a_{0}-T_{0} x\right)^{2}}, \\
c_{24}(x)= & \frac{a_{4}-T_{4} x}{2}+\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)\left(4 T_{0}-I_{0}\right)}{4\left(a_{0}-T_{0} x\right)^{5}}+\frac{I_{0}\left(2 T_{0}-I_{0}\right)\left(a_{2}-T_{2} x\right)}{2\left(a_{0}-T_{0} x\right)^{3}} \\
& +\frac{I_{0}\left(I_{2}-T_{2}\right)-I_{2} T_{0}}{2\left(a_{0}-T_{0} x\right)^{2}}, \\
\phi_{4}(x)= & b_{4}+\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)\left(40 T_{0}^{2}-3 I_{0}^{2}\right)}{24 T_{0}\left(a_{0}-T_{0} x\right)^{6}}+\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)\left(4 T_{0}^{2}-I_{0}^{2}\right)}{2 T_{0}^{2}\left(a_{0}-T_{0} x\right)^{4}} \tag{3.26}\\
& +\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)\left(T_{0}-4 T_{2}\right)+2 I_{0} T_{0}\left(I_{0} I_{2}-4 T_{0} T_{2}\right)}{6 T_{0}^{2}\left(a_{0}-T_{0} x\right)^{3}}-\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)^{2}}{2 T_{0}^{3}\left(a_{0}-T_{0} x\right)^{2}} \\
& +\frac{T_{0}^{2}\left(I_{2} a_{2}+a_{4} I_{0}\right)-a_{0} T_{0}\left(I_{2} T_{2}-I_{0} T_{4}\right)+2 I_{0} T_{2}\left(a_{0} T_{2}-a_{2} T_{0}\right)}{T_{0}^{3}\left(a_{0}-T_{0} x\right)} \\
& +\frac{T_{0}\left(I_{4} T_{0}-I_{0} T_{4}\right)+T_{2}\left(I_{0} T_{2}-T_{0} I_{2}\right)}{T_{0}^{3}} \ln \left|a_{0} x\right| .
\end{align*}
$$

3.6.2 Fourth order inner expansion

The fourth order inner system at $x=0$ is

$$
\begin{align*}
& \Phi_{4}^{\prime}=U_{4}, \quad U_{4}^{\prime}=-\left(C_{14}-C_{24}\right), \\
& C_{14}^{\prime}=-\left(C_{10} U_{4}+C_{11} U_{3}+C_{12} U_{2}+C_{13} U_{1}+C_{14} U_{0}\right)-J_{13}, \tag{3.27}\\
& C_{24}^{\prime}=\left(C_{20} U_{4}+C_{21} U_{3}+C_{22} U_{2}+C_{23} U_{1}+C_{24} U_{0}\right)-J_{23} .
\end{align*}
$$

Proposition 3.14. System (3.27) has the following integrals:

$$
\begin{aligned}
& G_{1}=C_{14} e^{\Phi_{0}}+C_{10} e^{\Phi_{0}} \Phi_{4}+J_{13} F_{1}+F_{141}+F_{142}+F_{143} \\
& G_{2}=C_{24} e^{-\Phi_{0}}-C_{20} e^{-\Phi_{0}} \Phi_{4}+J_{23} F_{2}-F_{241}-F_{242}-F_{243}
\end{aligned}
$$

$$
G_{3}=U_{0} U_{4}+U_{1} U_{3}+U_{2}^{2}-C_{14}-C_{24}-T_{3} \xi
$$

where F_{1} and F_{2} are given in Proposition 3.3, and

$$
\begin{array}{ll}
F_{141}(\xi)=\int_{0}^{\xi} C_{11}(s) U_{3}(s) e^{\Phi_{0}(s)} d s, & F_{142}(\xi)=\int_{0}^{\xi} C_{12}(s) U_{2}(s) e^{\Phi_{0}(s)} d s \\
F_{143}(\xi)=\int_{0}^{\xi} C_{13}(s) U_{1}(s) e^{\Phi_{0}(s)} d s, & F_{241}(\xi)=\int_{0}^{\xi} C_{21}(s) U_{3}(s) e^{-\Phi_{0}(s)} d s \\
F_{242}(\xi)=\int_{0}^{\xi} C_{22}(s) U_{2}(s) e^{-\Phi_{0}(s)} d s, & F_{243}(\xi)=\int_{0}^{\xi} C_{23}(s) U_{1}(s) e^{-\Phi_{0}(s)} d s .
\end{array}
$$

Proof. The proof is straightforward.

Under electroneutrality conditions, by careful computations, one has

$$
\begin{aligned}
F_{141}(\xi)= & \frac{T_{0}}{2}\left[\frac{I_{0} T_{0}^{2}}{4(2 L)^{3}} \xi^{4}+\frac{1}{2 L}\left(\frac{I_{2}}{2}+\frac{I_{0} T_{0}^{2}}{(2 L)^{3}}\right) \xi^{2}+\frac{9 I_{0} T_{0}^{2}}{4(2 L)^{5}}-\frac{I_{0} T_{0}^{2}}{4(2 L)^{3}}\left(\frac{1}{\sqrt{2 L}} \xi^{3}+\frac{2}{L} \xi^{2}\right.\right. \\
& \left.\left.+\frac{9}{(2 L)^{\frac{3}{2}}} \xi+\frac{9}{(2 L)^{2}}\right) e^{-\sqrt{2 L} \xi}\right] e^{\bar{V}}, \\
F_{142}(\xi)= & \frac{I_{0}^{2} T_{0}^{2}}{2(2 L)^{4}}\left[-\frac{1}{2} \xi^{2}+\frac{1}{4 L}-\frac{1}{\sqrt{2 L}} e^{-\sqrt{2 L} \xi}\left(\xi+\frac{1}{2 \sqrt{2 L}} e^{-\sqrt{2 L} \xi}\right)\right] e^{\bar{V}}, \\
F_{143}(\xi)= & -\frac{I_{0}}{2 L}\left[\left(\frac{I_{0} T_{0}\left(I_{0}+2 T_{0}\right)}{4(2 L)^{3}}-\frac{T_{2}}{4}\right) \xi^{2}-\frac{I_{0}^{2} T_{0}}{2(2 L)^{\frac{7}{2}}} \xi+\frac{I_{0} T_{0}\left(I_{0}-T_{0}\right)}{4(2 L)^{4}}+\frac{I_{0} T_{0}}{4(2 L)^{\frac{5}{2}}}\right. \\
& \times\left(\frac{T_{0}}{\left.\left.2(2 L)^{\frac{1}{2}} \xi^{2}+\frac{I_{0}+T_{0}}{2 L} \xi+\frac{T_{0}-I_{0}}{(2 L)^{\frac{3}{2}}}\right) e^{-\sqrt{2 L} \xi}\right] e^{\bar{V}},}\right. \\
F_{241}(\xi)= & \frac{T_{0}}{2}\left[\frac{I_{0} T_{0}^{2}}{4(2 L)^{3}} \xi^{4}+\frac{1}{2 L}\left(\frac{I_{2}}{2}+\frac{I_{0} T_{0}^{2}}{(2 L)^{3}}\right) \xi^{2}+\frac{9 I_{0} T_{0}^{2}}{4(2 L)^{5}}-\frac{I_{0} T_{0}^{2}}{4(2 L)^{3}}\left(\frac{1}{\sqrt{2 L}} \xi^{3}+\frac{2}{L} \xi^{2}\right.\right. \\
& +\frac{9}{\left.\left.(2 L)^{\frac{3}{2}} \xi+\frac{9}{(2 L)^{2}}\right) e^{-\sqrt{2 L} \xi}\right] e^{-\bar{V}},} \\
F_{242}(\xi)= & \frac{I_{0}^{2} T_{0}^{2}}{2(2 L)^{4}}\left[\frac{1}{2} \xi^{2}-\frac{1}{4 L}+\frac{1}{\sqrt{2 L}} e^{-\sqrt{2 L} \xi}\left(\xi+\frac{1}{2 \sqrt{2 L}} e^{-\sqrt{2 L} \xi}\right)\right] e^{-\bar{V}}, \\
F_{243}(\xi)= & -\frac{I_{0}}{2 L}\left[\left(\frac{I_{0} T_{0}\left(I_{0}-2 T_{0}\right)}{4(2 L)^{3}}-\frac{T_{2}}{4}\right) \xi^{2}-\frac{I_{0}^{2} T_{0}}{2(2 L)^{\frac{7}{2}}} \xi+\frac{I_{0} T_{0}\left(I_{0}+T_{0}\right)}{(2 L)^{4}}+\frac{I_{0} T_{0}}{4(2 L)^{\frac{5}{2}}}\right.
\end{aligned}
$$

$$
\left.\times\left(-\frac{T_{0}}{2(2 L)^{\frac{1}{2}}} \xi^{2}-\frac{T_{0}}{L} \xi-\frac{2\left(I_{0}+T_{0}\right)}{(2 L)^{\frac{3}{2}}}\right) e^{-\sqrt{2 L} \xi}\right] e^{-\bar{V}}
$$

To solve for $\left(\Phi_{4}, C_{14}, C_{24}\right)$ with $\Phi_{4}(0)=C_{14}(0)=C_{24}(0)=0$, we note that, from the integrals in Proposition 3.14

$$
\begin{aligned}
C_{14}(\xi)= & \frac{I_{0} T_{0}}{2(2 L)^{4}}\left[\frac{\sqrt{2 L} T_{0}^{2}}{4} \xi^{3}+\frac{T_{0}\left(4 T_{0}+I_{0}\right)}{4} \xi^{2}+\frac{T_{0}\left(6 I_{0}+11 T_{0}\right)}{4 \sqrt{2 L}} \xi+\frac{9 T_{0}^{2}+2 I_{0} T_{0}-2 I_{0}^{2}}{8 L}\right. \\
& \left.+\frac{I_{0} T_{0}}{4 L} e^{-\sqrt{2 L} \xi}\right] e^{-\sqrt{2 L} \xi}+\frac{1}{8 L}\left(\frac{I_{0} T_{0}\left(I_{0}^{2}+3 I_{0} T_{0}-2 T_{0}^{2}\right)}{(2 L)^{3}}-I_{2} T_{0}-I_{0} T_{2}\right) \xi^{2} \\
& -\frac{I_{0}^{3} T_{0}}{2(2 L)^{\frac{9}{2}}} \xi-\frac{I_{0} T_{0}^{3}}{8(2 L)^{3}} \xi^{4}+\frac{I_{0} T_{0}\left(2 I_{0}^{2}-4 I_{0} T_{0}-9 T_{0}^{2}\right)}{8(2 L)^{5}}-J_{13} \xi-L \Phi_{4}, \\
C_{24}(\xi)= & \frac{I_{0} T_{0}}{2(2 L)^{4}}\left[-\frac{\sqrt{2 L} T_{0}^{2}}{4} \xi^{3}+\frac{T_{0}\left(I_{0}-4 T_{0}\right)}{4} \xi^{2}+\frac{T_{0}\left(8 I_{0}-9 T_{0}\right)}{4 \sqrt{2 L}} \xi+\frac{4 I_{0}^{2}+4 I_{0} T_{0}-9 T_{0}^{2}}{8 L}\right. \\
& \left.+\frac{I_{0} T_{0}}{4 L} e^{-\sqrt{2 L}}\right] e^{-\sqrt{2 L} \xi}+\frac{1}{8 L}\left(\frac{I_{0} T_{0}\left(3 I_{0} T_{0}+2 T_{0}^{2}-I_{0}^{2}\right)}{(2 L)^{3}}+I_{2} T_{0}+I_{0} T_{2}\right) \xi^{2} \\
& +\frac{I_{0}^{3} T_{0}}{2(2 L)^{\frac{9}{2}}} \xi+\frac{I_{0} T_{0}^{3}}{8(2 L)^{3}} \xi^{4}+\frac{I_{0} T_{0}\left(2 I_{0}^{2}-4 I_{0} T_{0}-9 T_{0}^{2}\right)}{8(2 L)^{5}}-J_{23} \xi+L \Phi_{4 .} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Phi_{4}^{\prime \prime}= & \frac{I_{0} T_{0}}{2(2 L)^{4}}\left[\frac{2 I_{0}^{2}-6 T_{0}^{2}}{2 L}-\frac{6 T_{0}^{2}}{\sqrt{2 L}} \xi-\frac{7 T_{0}^{2}}{2} \xi^{2}-\frac{\sqrt{2 L} T_{0}^{2}}{2} \xi^{3}\right] e^{-\sqrt{2 L} \xi}+\frac{I_{0} T_{0}^{3}}{4(2 L)^{3}} \xi^{4} \\
& +\left(\frac{I_{0} T_{0}}{2(2 L)^{4}}\left(2 T_{0}^{2}-I_{0}^{2}\right)+\frac{I_{0} T_{2}+I_{2} T_{0}}{4 L}\right) \xi^{2}+\frac{I_{0}^{3} T_{0}}{(2 L)^{\frac{9}{2}}} \xi+I_{3} \xi+\frac{I_{0} T_{0}\left(3 T_{0}^{2}-I_{0}^{2}\right)}{(2 L)^{5}} \\
& +2 L \Phi_{4} .
\end{aligned}
$$

The solution with $\Phi_{4}(0)=0$ is

$$
\begin{aligned}
\Phi_{4}= & \frac{I_{0} T_{0}}{4(2 L)^{\frac{9}{2}}}\left[\frac{\sqrt{2 L} T_{0}^{2}}{8} \xi^{4}+\frac{17 T_{0}^{2}}{12} \xi^{3}+\frac{41 T_{0}^{2}}{8 \sqrt{2 L}} \xi^{2}+\frac{89 T_{0}^{2}-16 I_{0}^{2}}{16 L} \xi+\frac{38 T_{0}^{2}-6 I_{0}^{2}}{(2 L)^{\frac{3}{2}}}\right. \\
& \left.+4\left(\frac{T_{2}}{T_{0}}+\frac{I_{2}}{I_{0}}\right)(2 L)^{\frac{3}{2}}-\gamma_{1}\right] e^{-\sqrt{2 L} \xi}-\left(\frac{I_{0} T_{0}}{(2 L)^{5}}\left(4 T_{0}^{2}-\frac{I_{0}^{2}}{2}\right)+\frac{I_{0} T_{2}+I_{2} T_{0}}{2(2 L)^{2}}\right) \xi^{2}
\end{aligned}
$$

$$
-\frac{I_{0} T_{0}^{3}}{4(2 L)^{4}} \xi^{4}-\left(\frac{I_{0}^{3} T_{0}}{(2 L)^{\frac{11}{2}}}+\frac{I_{3}}{2 L}\right) \xi-\frac{I_{0} T_{0}\left(19 T_{0}^{2}-3 I_{0}^{2}\right)}{2(2 L)^{6}}-\frac{I_{0} T_{2}+I_{2} T_{0}}{(2 L)^{3}}+\gamma_{1} e^{\sqrt{2 L} \xi}
$$

The matching will force $\gamma_{1}=0$. Thus, the third order inner solution is, for $\xi \geq 0$,

$$
\begin{align*}
& \Phi_{4}(\xi)=\frac{I_{0} T_{0}}{4(2 L)^{\frac{9}{2}}}\left[\frac{\sqrt{2 L} T_{0}^{2}}{8} \xi^{4}+\frac{17 T_{0}^{2}}{12} \xi^{3}+\frac{41 T_{0}^{2}}{8 \sqrt{2 L}} \xi^{2}+\frac{89 T_{0}^{2}-16 I_{0}^{2}}{16 L} \xi\right. \\
& \left.+\frac{38 T_{0}^{2}-6 I_{0}^{2}}{(2 L)^{\frac{3}{2}}}+4\left(\frac{T_{2}}{T_{0}}+\frac{I_{2}}{I_{0}}\right)(2 L)^{\frac{3}{2}}\right] e^{-\sqrt{2 L} \xi}-\frac{I_{0} T_{0}^{3}}{4(2 L)^{4}} \xi^{4} \\
& -\left(\frac{I_{0} T_{0}}{(2 L)^{5}}\left(4 T_{0}^{2}-\frac{I_{0}^{2}}{2}\right)+\frac{I_{0} T_{2}+I_{2} T_{0}}{2(2 L)^{2}}\right) \xi^{2}-\left(\frac{I_{0}^{3} T_{0}}{(2 L)^{\frac{11}{2}}}+\frac{I_{3}}{2 L}\right) \xi \\
& -\frac{I_{0} T_{0}\left(19 T_{0}^{2}-3 I_{0}^{2}\right)}{2(2 L)^{6}}-\frac{I_{0} T_{2}+I_{2} T_{0}}{(2 L)^{3}}, \\
& C_{14}(\xi)=\left[-\frac{I_{0} T_{0}^{3}}{64(2 L)^{3}} \xi^{4}-\frac{5 I_{0} T_{0}^{3}}{96(2 L)^{\frac{7}{2}}} \xi^{3}+\frac{I_{0} T_{0}^{2}\left(15 T_{0}+8 I_{0}\right)}{64(2 L)^{4}} \xi^{2}\right. \\
& +\frac{I_{0} T_{0}\left(7 T_{0}^{2}+64 I_{0} T_{0}+16 I_{0}^{2}\right)}{64(2 L)^{\frac{9}{2}}} \xi+\frac{I_{0} T_{0}}{2(2 L)^{5}}\left(\frac{I_{0}^{2}}{2}+I_{0} T_{0}-\frac{13 T_{0}^{2}}{2}\right) \tag{3.28}\\
& \left.-\frac{I_{0} T_{2}+I_{2} T_{0}}{2(2 L)^{2}}+\frac{I_{0}^{2} T_{0}^{2}}{4(2 L)^{5}} e^{-\sqrt{2 L} \xi}\right] e^{-\sqrt{2 L} \xi}+\frac{3 I_{0} T_{0}^{2}\left(I_{0}+2 T_{0}\right)}{4(2 L)^{4}} \xi^{2} \\
& -\frac{T_{3}}{2} \xi+\frac{I_{0} T_{0}\left(13 T_{0}^{2}-I_{0}^{2}-3 I_{0} T_{0}\right)}{4(2 L)^{5}}+\frac{I_{0} T_{2}+I_{2} T_{0}}{8 L^{2}}, \\
& C_{24}(\xi)=\left[\frac{I_{0} T_{0}^{3}}{64(2 L)^{3}} \xi^{4}+\frac{5 I_{0} T_{0}^{3}}{96(2 L)^{\frac{7}{2}}} \xi^{3}+\frac{I_{0} T_{0}^{2}\left(8 I_{0}-15 T_{0}\right)}{64(2 L)^{4}} \xi^{2}\right. \\
& +\frac{I_{0} T_{0}\left(64 I_{0} T_{0}-7 T_{0}^{2}-16 I_{0}^{2}\right)}{64(2 L)^{\frac{9}{2}}} \xi+\frac{I_{0} T_{0}}{2(2 L)^{5}}\left(I_{0} T_{0}-\frac{I_{0}^{2}}{2}+\frac{13 T_{0}^{2}}{2}\right) \\
& \left.+\frac{I_{0} T_{2}+I_{2} T_{0}}{2(2 L)^{2}}+\frac{I_{0}^{2} T_{0}^{2}}{4(2 L)^{5}} e^{-\sqrt{2 L} \xi}\right] e^{-\sqrt{2 L} \xi}+\frac{3 I_{0} T_{0}^{2}\left(I_{0}-2 T_{0}\right)}{4(2 L)^{4}} \xi^{2} \\
& -\frac{T_{3}}{2} \xi+\frac{I_{0} T_{0}\left(I_{0}^{2}-3 I_{0} T_{0}-13 T_{0}^{2}\right)}{4(2 L)^{5}}-\frac{I_{0} T_{2}+I_{2} T_{0}}{8 L^{2}} .
\end{align*}
$$

Similarly, at $x=1$, the fourth order inner solution is, for $\xi \leq 0$,

$$
\begin{align*}
\Psi_{4}(\xi)= & \frac{I_{0} T_{0}}{4(2 R)^{\frac{9}{2}}}\left[\frac{\sqrt{2 R} T_{0}^{2}}{8} \xi^{4}+\frac{17 T_{0}^{2}}{12} \xi^{3}+\frac{41 T_{0}^{2}}{8 \sqrt{2 R}} \xi^{2}+\frac{89 T_{0}^{2}-16 I_{0}^{2}}{16 R} \xi\right. \\
& \left.+\frac{38 T_{0}^{2}-6 I_{0}^{2}}{(2 R)^{\frac{3}{2}}}+4\left(\frac{T_{2}}{T_{0}}+\frac{I_{2}}{I_{0}}\right)(2 R)^{\frac{3}{2}}\right] e^{-\sqrt{2 R} \xi}-\frac{I_{0} T_{0}^{3}}{4(2 R)^{4}} \xi^{4} \\
& -\left(\frac{I_{0} T_{0}}{(2 R)^{5}}\left(4 T_{0}^{2}-\frac{I_{0}^{2}}{2}\right)+\frac{I_{0} T_{2}+I_{2} T_{0}}{2(2 R)^{2}}\right) \xi^{2}-\left(\frac{I_{0}^{3} T_{0}}{(2 R)^{\frac{11}{2}}}+\frac{I_{3}}{2 R}\right) \xi \\
& -\frac{I_{0} T_{0}\left(19 T_{0}^{2}-3 I_{0}^{2}\right)}{2(2 R)^{6}}-\frac{I_{0} T_{2}+I_{2} T_{0}}{(2 R)^{3}}, \\
D_{14}(\xi)= & {\left[-\frac{I_{0} T_{0}^{3}}{64(2 R)^{3}} \xi^{4}-\frac{5 I_{0} T_{0}^{3}}{96(2 R)^{\frac{7}{2}}} \xi^{3}+\frac{I_{0} T_{0}^{2}\left(15 T_{0}+8 I_{0}\right)}{64(2 R)^{4}} \xi^{2}\right.} \\
& +\frac{I_{0} T_{0}\left(7 T_{0}^{2}+64 I_{0} T_{0}+16 I_{0}^{2}\right)}{64(2 R)^{\frac{9}{2}}}+\frac{I_{0} T_{0}}{2(2 R)^{5}}\left(\frac{I_{0}^{2}}{2}+I_{0} T_{0}-\frac{13 T_{0}^{2}}{2}\right) \tag{3.29}\\
& \left.-\frac{I_{0} T_{2}+I_{2} T_{0}}{2(2 R)^{2}}+\frac{I_{0}^{2} T_{0}^{2}}{4(2 R)^{5}} e^{-\sqrt{2 R} \xi}\right] e^{-\sqrt{2 R} \xi}+\frac{3 I_{0} T_{0}^{2}\left(I_{0}+2 T_{0}\right)}{4(2 R)^{4}} \xi^{2} \\
D_{24}(\xi)= & {\left[\frac{I_{0} T_{0}\left(13 T_{0}^{2}-I_{0}^{2}-3 I_{0} T_{0}\right)}{4(2 R)^{5}}+\frac{I_{0} T_{2}+I_{2} T_{0}}{8 R^{2}},\right.} \\
64(2 R)^{3} & \xi^{4}+\frac{5 I_{0} T_{0}^{3}}{96(2 R)^{\frac{7}{2}}} \xi^{3}+\frac{I_{0} T_{0}^{2}\left(8 I_{0}-15 T_{0}\right)}{64(2 R)^{4}} \xi^{2} \\
& +\frac{I_{0} T_{0}\left(64 I_{0} T_{0}-7 T_{0}^{2}-16 I_{0}^{2}\right)}{64(2 R)^{\frac{9}{2}}} \xi+\frac{I_{0} T_{0}}{2(2 R)^{5}}\left(I_{0} T_{0}-\frac{I_{0}^{2}}{2}+\frac{13 T_{0}^{2}}{2}\right) \\
& \left.+\frac{I_{0} T_{2}+I_{2} T_{0}}{2(2 R)^{2}}+\frac{I_{0}^{2} T_{0}^{2}}{4(2 R)^{5}} e^{-\sqrt{2 R} \xi}\right] e^{-\sqrt{2 R} \xi}+\frac{3 I_{0} T_{0}^{2}\left(I_{0}-2 T_{0}\right)}{4(2 R)^{4}} \xi^{2} \\
& -\frac{T_{3}}{2} \xi+\frac{I_{0} T_{0}\left(I_{0}^{2}-3 I_{0} T_{0}-13 T_{0}^{2}\right)}{4(2 R)^{5}}-\frac{I_{0} T_{2}+I_{2} T_{0}}{8 R^{2}}
\end{align*}
$$

3.6.3 Fourth order matching

At $x=0$, for the outer expansion, we have, in terns of the variable ξ, the outer expansion at $x=0$ is

$$
E_{\xi}^{4} E_{x}^{4}(\phi)=b_{0}+\frac{I_{0}}{T_{0}} \ln a_{0}-\varepsilon \frac{I_{0}}{a_{0}} \xi+\varepsilon^{2}\left(b_{2}-\frac{I_{0}\left(4 T_{0}^{2}-I_{0}^{2}\right)}{6 T_{0} a_{0}^{3}}+\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)}{T_{0}^{2} a_{0}}\right.
$$

$$
\begin{aligned}
& \left.+\frac{T_{0} I_{2}-I_{0} T_{2}}{T_{0}^{2}} \ln a_{0}-\frac{I_{0} T_{0}}{2 a_{0}^{2}} \xi^{2}\right)+\varepsilon^{3}\left(\frac{I_{0}\left(a_{3} T_{0}-a_{0} T_{3}\right)}{a_{0} T_{0}^{2}}+\frac{I_{3} T_{0}-I_{0} T_{3}}{T_{0}^{2}} \ln a_{0}\right. \\
& \left.+b_{3}+\left(\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)}{2 a_{0}^{4}}+\frac{a_{2} I_{0}-a_{0} I_{2}}{a_{0}^{2}}\right) \xi-\frac{I_{0} T_{0}^{2}}{3 a_{0}^{3}} \xi^{3}\right) \\
& +\varepsilon^{4}\left(\frac{a_{3} I_{0}-a_{0} I_{3}}{a_{0}^{2}} \xi+\left(\frac{a_{2} I_{0} T_{0}}{a_{0}^{3}}-\frac{I_{0} T_{2}+I_{2} T_{0}}{2 a_{0}^{2}}+\frac{I_{0} T_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)}{a_{0}^{5}}\right) \xi^{2}\right. \\
& \left.-\frac{I_{0} T_{0}^{3}}{4 a_{0}^{4}} \xi^{4}+\phi_{4}(0)\right), \\
E_{\xi}^{4} E_{x}^{4}\left(c_{1}\right)= & \frac{a_{0}}{2}-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2}\left(\frac{a_{2}}{2}+\frac{I_{0}^{2}+2 I_{0} T_{0}}{4 a_{0}}\right)+\varepsilon^{3}\left(\frac{a_{3}}{2}+\left(\frac{I_{0} T_{0}\left(I_{0}+2 T_{0}\right)}{2 a_{0}^{3}}-\frac{T_{2}}{2}\right) \xi\right) \\
& +\varepsilon^{4}\left(\frac{a_{4}}{2}+\frac{I_{0}\left(4 T_{0}^{2}-I_{0}^{2}\right)\left(I_{0}+4 T_{0}\right)}{4 a_{0}^{5}}-\frac{a_{2} I_{0}\left(I_{0}+2 T_{0}\right)}{2 a_{0}^{3}}+\frac{I_{0}\left(I_{2}+T_{2}\right)+I_{2} T_{0}}{2 a_{0}^{2}}\right. \\
& \left.-\frac{T_{3}}{2} \xi+\frac{3 I_{0} T_{0}^{2}\left(I_{0}+2 T_{0}\right)}{2 a_{0}^{4}} \xi^{2}\right), \\
E_{\xi}^{4} E_{x}^{4}\left(c_{2}\right)= & \frac{a_{0}}{2}-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2}\left(\frac{a_{2}}{2}+\frac{I_{0}^{2}-2 I_{0} T_{0}}{4 a_{0}}\right)+\varepsilon^{3}\left(\frac{a_{3}}{2}+\left(\frac{I_{0} T_{0}\left(I_{0}-2 T_{0}\right)}{2 a_{0}^{3}}-\frac{T_{2}}{2}\right) \xi\right) \\
& +\varepsilon^{4}\left(\frac{a_{4}}{2}+\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)\left(4 T_{0}-I_{0}\right)}{4 a_{0}^{5}}+\frac{a_{2} I_{0}\left(2 T_{0}-I_{0}\right)}{2 a_{0}^{3}}+\frac{I_{0}\left(I_{2}-T_{2}\right)-I_{2} T_{0}}{2 a_{0}^{2}}\right. \\
& \left.-\frac{T_{3}}{2} \xi+\frac{3 I_{0} T_{0}^{2}\left(I_{0}-2 T_{0}\right)}{2 a_{0}^{4}} \xi^{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\phi_{4}(0)= & b_{4}+\frac{T_{0}\left(I_{4} T_{0}-I_{2} T_{2}-I_{0} T_{4}\right)+I_{0} T_{2}^{2}}{T_{0}^{3}} \ln a_{0}+\frac{I_{0}\left(52 I_{0}^{2} T_{0}^{2}+160 T_{0}^{4}-3 I_{0}^{4}\right)}{24 a_{0}^{6} T_{0}} \\
& +\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)\left(4 T_{0}^{2}-I_{0}^{2}\right)}{2 T_{0}^{2} a_{0}^{4}}+\frac{I_{0}^{2}\left(3 I_{2} T_{0}-4 I_{0} T_{2}\right)}{6 T_{0}^{2} a_{0}^{3}}+\frac{2\left(2 I_{0} T_{2}-I_{2} T_{0}\right)}{3 a_{0}^{3}} \\
& +\frac{a_{2} I_{2}+a_{4} I_{0}}{a_{0} T_{0}}-\frac{T_{2}\left(a_{0} I_{2}+a_{2} I_{0}\right)}{a_{0} T_{0}^{2}}+\frac{I_{0}\left(a_{2} T_{2}+a_{0} T_{4}\right)}{a_{0} T_{0}^{2}}-\frac{I_{0}\left(a_{0} T_{2}-a_{2} T_{0}\right)^{2}}{2 T_{0}^{3} a_{0}^{2}} \\
& +\frac{2 I_{0} T_{2}^{2}}{T_{0}^{3}} .
\end{aligned}
$$

Similarly, in terms of $\xi=(x-1) / \varepsilon$, the outer expansion at $x=1$ is

$$
\left.\begin{array}{rl}
E_{\xi}^{4} E_{x}^{4}(\phi)= & b_{0}+\frac{I_{0}}{T_{0}} \ln \left|a_{0}-T_{0}\right|+\frac{I_{0}\left(2 a_{0}-3 T_{0}\right)}{2\left(a_{0}-T_{0}\right)^{2}}+\frac{I_{0} T_{0}^{2}}{3\left(a_{0}-T_{0}\right)^{3}}-\varepsilon\left(\frac{a_{0} I_{0}}{\left(a_{0}-T_{0}\right)^{2}}\right. \\
& \left.-\frac{I_{0} T_{0}^{2}}{\left(a_{0}-T_{0}\right)^{3}}\right) \xi \\
& +\varepsilon^{2}\left(b_{2}-\frac{I_{0}\left(4 T_{0}^{2}-I_{0}^{2}\right)}{6 T_{0}\left(a_{0}-T_{0}\right)^{3}}+\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)}{T_{0}^{2}\left(a_{0}-T_{0}\right)}+\frac{I_{2} T_{0}-I_{0} T_{2}}{T_{0}^{2}} \ln \left|a_{0}-T_{0}\right|\right. \\
& \left.+\frac{I_{0} T_{0}\left(3 T_{0}-a_{0}\right)}{2\left(a_{0}-T_{0}\right)^{3}} \xi^{2}\right) \\
& +\varepsilon^{3}\left(b_{3}+\frac{I_{3} T_{0}-I_{0} T_{3}}{T_{0}^{2}} \ln \left|a_{0}-T_{0}\right|+\frac{a_{0} I_{3}-a_{3} I_{0}+I_{0} T_{3}-I_{3} T_{0}}{\left.a_{0}-T_{0}\right)^{2}}\right. \\
& +\frac{I_{0}\left(a_{3} T_{0}-a_{0} T_{3}\right)}{T_{0}^{2}\left(a_{0}-T_{0}\right)}+\left(\frac{I_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)}{2\left(a_{0}-T_{0}\right)^{4}}+\frac{\left(a_{2}-T_{2}\right) I_{0}-\left(a_{0}-T_{0}\right) I_{2}}{\left(a_{0}-T_{0}\right)^{2}}\right) \xi \\
& \left.-\frac{I_{0} T_{0}^{2}}{3\left(a_{0}-T_{0}\right)^{3}} \xi^{3}\right) \\
& +\varepsilon^{4}\left(\left(\frac{I_{0}\left(a_{3}-T_{3}\right)}{\left(a_{0}-T_{0}\right)^{2}}-\frac{I_{3}}{a_{0}-T_{0}}\right) \xi+\left(\frac{I_{0} T_{0}\left(I_{0}^{2}-4 T_{0}^{2}\right)}{\left(a_{0}-T_{0}\right)^{5}}+\frac{a_{2} I_{0} T_{0}}{\left(a_{0}-T_{0}\right)^{3}}\right.\right. \\
& \left.\left.-\frac{I_{0} T_{2}+I_{2} T_{0}}{2\left(a_{0}-T_{0}\right)^{2}}\right) \xi^{2}-\frac{I_{0} T_{0}^{3}}{4\left(a_{0}-T_{0}\right)^{4}} \xi^{4}+\phi_{4}(1)\right), \\
E_{\xi}^{4} E_{x}^{4}\left(c_{1}\right)= & \frac{a_{0}-T_{0}}{2}-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2}\left(\frac{a_{2}-T_{2}}{2}+\frac{I_{0}^{2}+2 I_{0} T_{0}}{4\left(a_{0}-T_{0}\right)^{2}}\right) \\
& +\varepsilon^{3}\left(\frac{a_{3}-T_{3}}{2}+\left(\frac{I_{0} T_{0}\left(I_{0}+2 T_{0}\right)}{2\left(a_{0}-T_{0}\right)^{3}}-\frac{T_{2}}{2}\right) \xi\right) \\
& +\varepsilon^{4}\left(\frac{a_{4}-T_{4}}{2}+\frac{I_{0}\left(I_{0}^{2}-T_{2}-T_{0}\right)^{2}}{2}-\frac{\left.I_{2} T_{0}^{2}\right)\left(4 T_{0}-I_{0}\right)}{2\left(a_{0}-T_{0}\right)^{2}}+\frac{T_{3}}{2} \xi+\frac{3 I_{0} T_{0}^{2}\left(2 T_{0}-I_{0}\right)\left(I_{0}-2 T_{0}\right)}{2\left(a_{0}\right)} \xi^{2}\right) \\
& +\varepsilon^{4}\left(\frac{a_{4}-T_{4}}{2}+\frac{I_{0}\left(4 T_{0}^{2}-I_{0}^{2}\right)\left(I_{0}+4 T_{0}\right)}{4\left(a_{0}-T_{0}\right)^{5}}-\frac{I_{0}\left(I_{0}+2 T_{0}\right)\left(a_{2}-T_{2}\right)}{2\left(a_{0}-T_{0}\right)^{3}}\right. \\
E_{\xi}^{4} E_{x}^{4}\left(c_{2}\right)= & \left.\frac{a_{0}-T_{0}}{2}-\varepsilon \frac{T_{0}}{2\left(a_{0}\right.} \xi+\varepsilon^{2}\left(\frac{a_{3}-T_{3}}{2}+\left(\frac{I_{0} T_{0}\left(I_{0}-2 T_{0}\right)}{2\left(T_{0}-T_{0}\right)^{3}}-\frac{T_{2}}{2}\right) \xi\right)+\frac{I_{0}^{2}-2 I_{0} T_{0}}{4\left(a_{0}-T_{0}\right)^{2}}\right) \\
\left.2\left(a_{0}-T_{0}\right)^{2}-\frac{T_{3}}{2} \xi+\frac{3 I_{0} T_{0}^{2}\left(I_{0}+2 T_{0}\right)}{2\left(a_{0}-T_{0}\right)^{4}} \xi^{2}\right) \\
& 2
\end{array}\right)
$$

where

$$
\begin{aligned}
\phi_{4}(1)= & b_{4}+\frac{T_{0}\left(I_{4} T_{0}-I_{2} T_{2}-I_{0} T_{4}\right)+I_{0} T_{2}^{2}}{T_{0}^{3}} \ln \left|a_{0}-T_{0}\right|+\frac{I_{0}\left(52 I_{0}^{2} T_{0}^{2}+160 T_{0}^{4}-3 I_{0}^{4}\right)}{24 T_{0}\left(a_{0}-T_{0}\right)^{6}} \\
& +\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)\left(4 T_{0}^{2}-I_{0}^{2}\right)}{2 T_{0}^{2}\left(a_{0}-T_{0}\right)^{4}}+\frac{I_{0}^{2}\left(3 I_{2} T_{0}-4 I_{0} T_{2}\right)}{6 T_{0}^{2}\left(a_{0}-T_{0}\right)^{3}}+\frac{2\left(2 I_{0} T_{2}-I_{2} T_{0}\right)}{3\left(a_{0}-T_{0}\right)^{3}} \\
& -\frac{I_{0}\left(a_{0} T_{2}-a_{2} T_{0}\right)^{2}}{2 T_{0}^{3}\left(a_{0}-T_{0}\right)^{2}}+\frac{a_{2} I_{2}+a_{4} I_{0}}{T_{0}\left(a_{0}-T_{0}\right)}-\frac{T_{2}\left(a_{0} I_{2}+a_{2} I_{0}\right)}{T_{0}^{2}\left(a_{0}-T_{0}\right)}+\frac{I_{0}\left(a_{2} T_{2}+a_{0} T_{4}\right)}{T_{0}^{2}\left(a_{0}-T_{0}\right)} \\
& +\frac{2 a_{0} I_{0} T_{2}^{2}}{T_{0}^{3}\left(a_{0}-T_{0}\right)} .
\end{aligned}
$$

From (3.28) and (3.29), the inner expansion at $x=0$ is

$$
\begin{aligned}
E_{x}^{3} E_{\xi}^{3}(\Phi)= & \bar{V}-\varepsilon \frac{I_{0}}{2 L} \xi-\varepsilon^{2}\left(\frac{I_{0} T_{0}}{8 L^{3}}+\frac{I_{0} T_{0}}{8 L^{2}} \xi^{2}\right)-\varepsilon^{3}\left(\frac{I_{0} T_{0}^{2}}{(2 L)^{\frac{9}{2}}}+\left(\frac{I_{2}}{2 L}+\frac{2 I_{0} T_{0}^{2}}{(2 L)^{4}}\right) \xi\right. \\
& \left.+\frac{I_{0} T_{0}^{2}}{3(2 L)^{3}} \xi^{3}\right) \\
& -\varepsilon^{4}\left(\left(\frac{I_{0}^{3} T_{0}}{(2 L)^{\frac{11}{2}}}+\frac{I_{3}}{2 L}\right) \xi+\left(\frac{I_{0} T_{0}}{(2 L)^{5}}\left(4 T_{0}^{2}-\frac{I_{0}^{2}}{2}\right)+\frac{I_{0} T_{2}+I_{2} T_{0}}{2(2 L)^{2}}\right) \xi^{2}\right. \\
& \left.+\frac{I_{0} T_{0}^{3}}{4(2 L)^{4}} \xi^{4}+\frac{I_{0} T_{0}\left(19 T_{0}^{2}-3 I_{0}^{2}\right)}{2(2 L)^{6}}+\frac{I_{0} T_{2}+I_{2} T_{0}}{(2 L)^{3}}\right), \\
E_{x}^{3} E_{\xi}^{3}\left(C_{1}\right)= & L-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2} \frac{I_{0} T_{0}}{8 L^{2}}-\varepsilon^{3}\left(\frac{I_{0}^{2} T_{0}}{2(2 L)^{\frac{7}{2}}}-\left(\frac{I_{0} T_{0}^{2}}{8 L^{3}}+\frac{I_{0}^{2} T_{0}}{16 L^{3}}-\frac{T_{2}}{2}\right) \xi\right) \\
& +\varepsilon^{4}\left(\frac{3 I_{0} T_{0}^{2}\left(I_{0}+2 T_{0}\right)}{4(2 L)^{4}} \xi^{2}-\frac{T_{3}}{2} \xi+\frac{I_{0} T_{0}\left(13 T_{0}^{2}-I_{0}^{2}-3 I_{0} T_{0}\right)}{4(2 L)^{5}}\right. \\
& \left.+\frac{I_{0} T_{2}+I_{2} T_{0}}{8 L^{2}}\right), \\
E_{x}^{3} E_{\xi}^{3}\left(C_{2}\right)= & L-\varepsilon \frac{T_{0}}{2} \xi-\varepsilon^{2} \frac{I_{0} T_{0}}{8 L^{2}}-\varepsilon^{3}\left(\frac{I_{0}^{2} T_{0}}{2(2 L)^{\frac{7}{2}}}-\left(\frac{I_{0}^{2} T_{0}}{16 L^{3}}-\frac{I_{0} T_{0}^{2}}{8 L^{3}}-\frac{T_{2}}{2}\right) \xi\right) \\
& +\varepsilon^{4}\left(\frac{3 I_{0} T_{0}^{2}\left(I_{0}-2 T_{0}\right)}{4(2 L)^{4}} \xi^{2}-\frac{T_{3}}{2} \xi+\frac{I_{0} T_{0}\left(I_{0}^{2}-3 I_{0} T_{0}-13 T_{0}^{2}\right)}{4(2 L)^{5}}\right. \\
& \left.-\frac{I_{0} T_{2}+I_{2} T_{0}}{8 L^{2}}\right),
\end{aligned}
$$

and the inner expansion at $x=1$ is

$$
\begin{aligned}
E_{x}^{3} E_{\xi}^{3}(\Psi)= & \bar{V}-\varepsilon \frac{I_{0}}{2 R} \xi-\varepsilon^{2}\left(\frac{I_{0} T_{0}}{8 R^{3}}+\frac{I_{0} T_{0}}{8 R^{2}} \xi^{2}\right)-\varepsilon^{3}\left(\frac{I_{0} T_{0}^{2}}{(2 R)^{\frac{9}{2}}}+\left(\frac{I_{2}}{2 R}+\frac{2 I_{0} T_{0}^{2}}{(2 R)^{4}}\right) \xi\right. \\
& \left.+\frac{I_{0} T_{0}^{2}}{3(2 R)^{3}} \xi^{3}\right) \\
& -\varepsilon^{4}\left(\left(\frac{I_{0}^{3} T_{0}}{(2 R)^{\frac{11}{2}}}+\frac{I_{3}}{2 R}\right) \xi+\left(\frac{I_{0} T_{0}}{(2 R)^{5}}\left(4 T_{0}^{2}-\frac{I_{0}^{2}}{2}\right)+\frac{I_{0} T_{2}+I_{2} T_{0}}{2(2 R)^{2}}\right) \xi^{2}\right. \\
& \left.+\frac{I_{0} T_{0}^{3}}{4(2 R)^{4}} \xi^{4}+\frac{I_{0} T_{0}\left(19 T_{0}^{2}-3 I_{0}^{2}\right)}{2(2 R)^{6}}+\frac{I_{0} T_{2}+I_{2} T_{0}}{(2 R)^{3}}\right), \\
E_{x}^{3} E_{\xi}^{3}\left(D_{1}\right)= & R-\varepsilon \frac{T_{0}}{2} \xi+\varepsilon^{2} \frac{I_{0} T_{0}}{8 R^{2}}-\varepsilon^{3}\left(\frac{I_{0}^{2} T_{0}}{2(2 R)^{\frac{7}{2}}}-\left(\frac{I_{0} T_{0}^{2}}{8 R^{3}}+\frac{I_{0}^{2} T_{0}}{16 R^{3}}-\frac{T_{2}}{2}\right) \xi\right) \\
& +\varepsilon^{4}\left(\frac{3 I_{0} T_{0}^{2}\left(I_{0}+2 T_{0}\right)}{4(2 R)^{4}} \xi^{2}-\frac{T_{3}}{2} \xi+\frac{I_{0} T_{0}\left(13 T_{0}^{2}-I_{0}^{2}-3 I_{0} T_{0}\right)}{4(2 R)^{5}}\right. \\
& \left.+\frac{I_{0} T_{2}+I_{2} T_{0}}{8 R^{2}}\right), \\
E_{x}^{3} E_{\xi}^{3}\left(D_{2}\right)= & R-\varepsilon \frac{T_{0}}{2} \xi-\varepsilon^{2} \frac{I_{0} T_{0}}{8 R^{2}}-\varepsilon^{3}\left(\frac{I_{0}^{2} T_{0}}{2(2 R)^{\frac{7}{2}}}-\left(\frac{I_{0}^{2} T_{0}}{16 R^{3}}-\frac{I_{0} T_{0}^{2}}{8 R^{3}}-\frac{T_{2}}{2}\right) \xi\right) \\
& +\varepsilon^{4}\left(\frac{3 I_{0} T_{0}^{2}\left(I_{0}-2 T_{0}\right)}{4(2 R)^{4}} \xi^{2}-\frac{T_{3}}{2} \xi+\frac{I_{0} T_{0}\left(I_{0}^{2}-3 I_{0} T_{0}-13 T_{0}^{2}\right)}{4(2 R)^{5}}\right. \\
& \left.-\frac{I_{0} T_{2}+I_{2} T_{0}}{8 R^{2}}\right) .
\end{aligned}
$$

The matchings at $x=0$ and $x=1$, together with

$$
\begin{gathered}
a_{0}=2 L, \quad T_{0}=2(L-R), \quad I_{0}=\frac{2(L-R)}{\ln L-\ln R} \bar{V}, \quad a_{2}=-\frac{I_{0}^{2}}{8 L^{2}}, \quad T_{2}=\frac{I_{0}^{2}\left(L^{2}-R^{2}\right)}{8 L^{2} R^{2}}, \\
I_{2}=\frac{I_{0} T_{2}}{T_{0}}+\frac{I_{0}\left(2 T_{0}^{2}+I_{0}^{2}\right)\left(L^{3}-R^{3}\right)}{48 L^{3} R^{3}(\ln L-\ln R)}+\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)}{4 L R(\ln L-\ln R)}
\end{gathered}
$$

give

$$
a_{4}=\frac{I_{0}\left[I_{0}^{2}\left(I_{0}+3 T_{0}\right)-T_{0}^{2}\left(3 T_{0}+7 I_{0}\right)\right]}{64 L^{5}}+\frac{a_{2} I_{0}\left(I_{0}+2 T_{0}\right)}{8 L^{3}}-\frac{I_{0} I_{2}}{4 L^{2}},
$$

$$
\begin{aligned}
T_{4}= & \frac{I_{0} T_{0}\left(I_{0}^{2}-3 T_{0}^{2}-7 T_{0} I_{0}\right)}{64}\left(\frac{1}{L^{5}}-\frac{1}{R^{5}}\right)-\frac{I_{0} I_{2}}{4}\left(\frac{1}{L^{2}}-\frac{1}{R^{2}}\right), \\
I_{4} T_{0}= & \frac{I_{0} T_{0}\left(3 I_{0}^{4}-16 I_{0}^{2} T_{0}^{2}-388 T_{0}^{4}\right)}{1536(\ln L-\ln R)}\left(\frac{1}{L^{6}}-\frac{1}{R^{6}}\right)-\frac{I_{0}\left(a_{2} T_{0}-a_{0} T_{2}\right)\left(4 T_{0}^{2}-I_{0}^{2}\right)}{32(\ln L-\ln R)} \\
& \times\left(\frac{1}{L^{4}}-\frac{1}{R^{4}}\right)-\frac{I_{2} T_{0}\left(2 T_{0}^{2}+3 I_{0}^{2}\right)+2 I_{0} T_{2}\left(7 T_{0}^{2}-2 I_{0}^{2}\right)}{48(\ln L-\ln R)}\left(\frac{1}{L^{3}}-\frac{1}{R^{3}}\right) \\
& +\frac{I_{0}\left(a_{0} T_{2}-a_{2} T_{0}\right)^{2}}{8 T_{0}(\ln L-\ln R)}\left(\frac{1}{L^{2}}-\frac{1}{R^{2}}\right)+\frac{a_{0}\left(I_{2} T_{2}-I_{0} T_{4}\right)-T_{0}\left(a_{2} I_{2}+a_{4} I_{0}\right)}{2(\ln L-\ln R)} \\
& \times\left(\frac{1}{L}-\frac{1}{R}\right)+\frac{I_{0} T_{2}^{2}}{R(\ln L-\ln R)}-\frac{I_{0} T_{2}^{2}}{T_{0}}+I_{2} T_{2}+I_{0} T_{4} .
\end{aligned}
$$

We conclude that

$$
\begin{align*}
T_{4}= & \frac{3(L-R)^{4}\left(L^{5}-R^{5}\right)}{4 L^{5} R^{5}(\ln L-\ln R)} \bar{V}+\frac{(L-R)^{4}}{2 L^{5} R^{5}(\ln L-\ln R)^{2}}\left(\frac{\left(L^{2}-R^{2}\right)\left(L^{3}-R^{3}\right)}{3(\ln L-\ln R)}\right. \\
& \left.+\frac{7\left(L^{5}-R^{5}\right)}{2}\right) V^{2}-\frac{(L-R)^{4}\left(L^{5}-R^{5}\right)}{4 L^{5} R^{5}(\ln L-\ln R)^{3}} \bar{V}^{3}+\frac{(L-R)^{5}(L+R)}{2 L^{4} R^{4}(\ln L-\ln R)^{4}} \\
& \times\left(\frac{(L+R)}{2}-\frac{L^{3}-R^{3}}{3 L R(\ln L-\ln R)}\right) \bar{V}^{4}, \tag{3.30}\\
I_{4}= & \frac{(L-R)^{4}}{L^{4} R^{4}(\ln L-\ln R)^{2}}\left(\frac{(L-R)\left(L^{3}-R^{3}\right) Q_{1}(L, R)}{6 L^{2} R^{2}} \bar{V}+\frac{3 Q_{3}(L, R)}{4 L R} \bar{V}^{2}\right. \\
& \left.+\frac{Q_{2}(L, R)}{\ln L-\ln R} \bar{V}^{3}-\frac{Q_{3}(L, R)}{4 L R(\ln L-\ln R)^{2}} \bar{V}^{4}+\frac{(L-R) Q_{4}(L, R)}{2(\ln L-\ln R)^{3}} \bar{V}^{5}\right),
\end{align*}
$$

where

$$
\begin{aligned}
Q_{1}(L, R)= & \frac{L^{3}-R^{3}}{3(\ln L-\ln R)}+\frac{97\left(L^{3}+R^{3}\right)}{2}, \\
Q_{2}(L, R)= & \frac{(L-R)\left(L^{5}-R^{5}\right)}{2 L^{2} R^{2}(\ln L-\ln R)}+\frac{(L-R)^{2}\left(L^{3}-R^{3}\right)\left(L^{2}+L R+R^{2}\right)}{9 L^{2} R^{2}(\ln L-\ln R)^{2}} \\
& +\frac{13(L-R)\left(L^{5}-R^{5}\right)}{12 L^{2} R^{2}(\ln L-\ln R)}+\frac{7\left(L^{5}-R^{5}\right)}{4 L R}-\frac{(L-R)^{2}(L+R)}{2(\ln L-\ln R)} \\
& +\frac{(L-R)(L+R)\left(L^{3}-R^{3}\right)}{4 L R(\ln L-\ln R)}-\frac{17(L-R)^{2}}{12(\ln L-\ln R)}, \\
Q_{3}(L, R)= & \frac{(L-R)\left(L^{5}-R^{5}\right)}{\ln L-\ln R}-\frac{(L-R)^{2}}{\ln L-\ln R}+L^{5}-R^{5},
\end{aligned}
$$

$$
Q_{4}(L, R)=\frac{(L+R)\left(L^{3}-R^{3}\right)}{2 L R(\ln L-\ln R)}-\frac{\left(L^{3}-R^{3}\right)^{2}}{3 L^{2} R^{2}(\ln L-\ln R)^{2}}+\frac{3(L+R)^{2}}{4} .
$$

In particular, the fourth order correction $I_{4}(\bar{V})$ to the zeroth order I-V relation $I_{0}(\bar{V})$ is quintic in \bar{V}. As $L \rightarrow R$, one finds that $T_{4} \rightarrow 0$ and $I_{4} \rightarrow \frac{3}{2 R} \bar{V}^{5}$.

Chapter 4

A numerical study for ionic flows with hard sphere ion species: I-V relations and critical potentials

We consider a one-dimensional steady-state PNP type model for ionic flow through membrane channels. Improving the cPNP models where ion species are treated as point charges, this model includes ionic interaction due to finite sizes of ion species modeled by hard sphere potential from the Density Functional Theory. The resulting problem is a singularly perturbed boundary value problem of an integro-differential system. We examine the problem and investigate the ion size effect on the I-V relations numerically, focusing on the case where two oppositely charged ion species are involved and only the hard sphere components of the excess chemical potentials are included. Two numerical tasks are conducted. The first one is a numerical approach of solving the boundary value problem and obtaining I-V curves. This is accomplished through a numerical implement of the analytical strategy introduced by Ji and Liu in [46]. The second task is to numerically detect two critical potential values V_{c} and V^{c}. The existence of these two critical values is first realized for a relatively simple setting and analytical approximations of V_{c} and V^{c} are obtained in the above mentioned reference. Our numerical detections are based on the defining properties of V_{c} and V^{c} and are designed to use the numerical I-V
curves directly. For the setting in the above mentioned reference, our numerical results agree well with the analytical predictions.

4.1 Introduction

We numerically examine singularly perturbed boundary value problems of an integrodifferential system - a one-dimensional steady-state PNP type model for ionic flow through membrane channels (see $[4,5,24,30,31,32,33,43,44,46,58]$).

As mentioned in section 2.1.1, the simplest PNP system is the cPNP system, which treats ions as point-charges, and ignore the ion-to-ion interaction. To take into considerations of ion sizes, one needs to include the excess (beyond the ideal) chemical potential in the model. The PNP system combined with Density Functional Theory (DFT) for hard sphere potentials of ion species serves the purpose for this consideration and has been investigated computationally with great improvements ([9, 31, 32, 33], etc.). All these computations, however, lack sufficiently analytical supports. In a recent work [46], the authors analyzed a one-dimensional version of PNP-DFT system in a simple setting; they considered the case where two oppositely charged ions are involved, the permanent charge can be ignored and only the hard sphere component of the excess chemical potential is included beyond the ideal potential. The model, viewed as a singularly perturbed boundary value problem of an integro-differential system, was analyzed by a combination of geometric singular perturbation theory and functional analysis. They established the existence result for small ion sizes and, treating the sizes as small parameters, derived an approximation of the I-V relation. The approximation result allowed them to make the following finding: there is a critical potential value V_{c} so that, if $V>V_{c}$, then the ion size enhances the flow; if $V<V_{c}$, it reduces the current; There is another critical potential value V^{c} so that, if $V>V^{c}$, the current is increasing with respect to $\lambda=r_{2} / r_{1}$ where r_{1}
and r_{2} are, respectively, the radii of the positively and negatively charged ions; if $V<V^{c}$, the current is decreasing in λ.

In this chapter, we perform numerical study of the one-dimensional version of PNPDFT system in a more general setting than that in [46] to include non-trivial permanent charges. Two numerical tasks are conducted. The first one is a numerical approach for solving the boundary value problem and obtaining I-V curves. This is accomplished through a numerical implement of the analytical strategy introduced in [46]. The second task is to numerically detect two critical potential values V_{c} and V^{c} that are defined slightly general than these in [46]. Lacking of analytical formulas for general situations, our numerical detections of V_{c} and V^{c} are based on their defining properties and are designed to use the numerical I-V curves directly. For the relative simple setting in [46], our numerical results agree well with the analytical predictions.

The rest of the chapter is organized as follows. In Section 4.2, we briefly set up the one-dimensional PNP-DFT model for ionic flows and recall the analytic results from [46]. In Section 4.3, we discuss our numerical strategy for solving the model problem in detail. In Section 4.4, we introduce two critical potentials generalizing that defined in [46] and provide a design for detecting the critical potentials. In Section 4.5, we present a number of case studies to demonstrate the usage of the numerical activities in Sections 4.3 and 4.4.

4.2 Models and two critical potentials

In this section, we study system (2.27) with the boundary conditions (2.28) including the nonlocal hard-sphere component (see [29, 71, 72, 73, 74, 75]) by

$$
\begin{equation*}
\mu_{i}^{H S}=\frac{\delta \Omega\left(\left\{c_{j}\right\}\right)}{\delta c_{i}} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{align*}
\Omega\left(\left\{c_{j}\right\}\right) & =-\int n_{0}\left(x ; c_{1}, c_{2}\right) \ln \left(1-n_{1}\left(x ; c_{1}, c_{2}\right)\right) d x, \\
n_{l}\left(x ; c_{1}, c_{2}\right) & =\sum_{j=1}^{2} \int c_{j}\left(x^{\prime}\right) \omega_{l}^{j}\left(x-x^{\prime}\right) d x^{\prime}, \quad(l=0,1), \tag{4.2}\\
\omega_{0}^{j}(x) & =\frac{\delta\left(x-r_{j}\right)+\delta\left(x+r_{j}\right)}{2}, \quad \omega_{1}^{j}(x)=\Theta\left(r_{j}-|x|\right),
\end{align*}
$$

where δ is the Dirac delta function, Θ is the Heaviside function, and r_{j} is the radius of the j th ion species.

Through out the chapter, we will also assume the electroneutrality conditions at the boundaries

$$
\begin{equation*}
\sum_{j=1}^{n} z_{j} L_{j}=\sum_{j=1}^{n} z_{j} R_{j}=0 \tag{4.3}
\end{equation*}
$$

In [46], the authors considered only the hard-sphere component $\mu_{i}^{H S}$ of $\mu_{i}^{e x}$ with two ion species $(n=2)$ of opposite charges $\left(z_{1}>0\right.$ and $\left.z_{2}<0\right)$ and $Q=0$. Based on a combination of geometric singular perturbation analysis and functional analysis, in addition to the existence and uniqueness result for the boundary value problem (BVP) (2.27)-(2.28), an approximation of I-V relation in $r=r_{1}$ is also obtained:

$$
I(V ; \varepsilon, r):=z_{1} J_{1}+z_{2} J_{2}=I_{0}(V ; \varepsilon)+I_{1}(V ; \varepsilon) r+o(r),
$$

where

$$
\begin{aligned}
I_{0}(V ; 0)= & \left(D_{1}-D_{2}\right)(L-R)+\frac{e\left(z_{1} D_{1}-z_{2} D_{2}\right)}{k T} f_{0}(L, R) V \\
I_{1}(V ; 0)= & \frac{2(L-R)}{z_{1} z_{2} k T}\left[(\lambda-1)\left(z_{1} D_{1}-z_{2} D_{2}\right) f_{0}(L, R)-\left(z_{1} \lambda-z_{2}\right)\left(D_{1}-D_{2}\right)(L+R)\right] \\
& -\frac{2 e\left(z_{1} \lambda-z_{2}\right)\left(z_{1} D_{1}-z_{2} D_{2}\right)}{z_{1} z_{2} k^{2} T^{2}} f_{1}(L, R) V
\end{aligned}
$$

with $\lambda=r_{2} / r_{1}, L=z_{1} L_{1}=-z_{2} L_{2}>0, R=z_{1} R_{1}=-z_{2} R_{2}>0$,

$$
f_{0}(L, R)=\frac{L-R}{\ln L-\ln R}, \quad f_{1}(L, R)=\frac{\left(L^{2}-R^{2}\right)(\ln L-\ln R)-2(L-R)^{2}}{(\ln L-\ln R)^{2}}
$$

This explicit approximation allows the authors of [46] to realize the existence of two critical potential values V_{c} and V^{c} defined, respectively, by

$$
\begin{equation*}
I_{1}\left(V_{c} ; 0\right)=0, \quad \frac{d}{d \lambda} I_{1}\left(V^{c} ; 0\right)=0 \tag{4.4}
\end{equation*}
$$

They are given, in this setting, by

$$
\begin{align*}
V_{c} & =\frac{k T}{e}\left((\lambda-1) \frac{(L-R) f_{0}(L, R)}{\left(z_{1} \lambda-z_{2}\right) f_{1}(L, R)}-\frac{\left(D_{1}-D_{2}\right)\left(L^{2}-R^{2}\right)}{\left(z_{1} D_{1}-z_{2} D_{2}\right) f_{1}(L, R)}\right) \\
V^{c} & =\frac{k T}{e}\left(\frac{(L-R) f_{0}(L, R)}{z_{1} f_{1}(L, R)}-\frac{\left(D_{1}-D_{2}\right)\left(L^{2}-R^{2}\right)}{\left(z_{1} D_{1}-z_{2} D_{2}\right) f_{1}(L, R)}\right) \tag{4.5}
\end{align*}
$$

The importance of V_{c} and V^{c} is evident and we summarize it here ([46]).

Theorem 4.1. Let V_{c} and V^{c} be defined by (4.4).
(i) If $V>V_{c}$, then for $\varepsilon>0$ small and $r>0$ small, the ion sizes enhance the current I; that is, $I(V ; \varepsilon, r)>I(V ; \varepsilon, 0)$;

If $V<V_{c}$, then for $\varepsilon>0$ small and $r>0$ small, the ion sizes reduce the current I; that is, $I(V ; \varepsilon, r)<I(V ; \varepsilon, 0)$;
(ii) If $V>V^{c}$, then for $\varepsilon>0$ small and $r>0$ small, the larger the negatively charged ion the larger the current I; that is, the current I is increasing in λ;

If $V<V^{c}$, then for $\varepsilon>0$ small and $r>0$ small, the smaller the negatively charged ion the larger the current I; that is, the current I is decreasing in λ.

4.3 Numerical solution of the BVP (2.27)-(2.28)

Motivated by the work in [46] and with a longterm goal of understanding effects of various variables (such as ion sizes, permanent charges, boundary conditions, etc.) on IV relations of membrane channels, we examine the effect of ion sizes on the I-V relation based on numerical solutions of the BVP (2.27)-(2.28). We will conduct two numerical tasks.

Task 1. We will develop a numerical approach to the BVP (2.27)-(2.28) and, as a result, obtain numerical I-V curves.

Task 2. Based on numerical I-V curves and the defining properties of V_{c} and V^{c} (NOT the analytical formulas (4.5)), we will design a procedure for detecting them numerically for two cases:
(a) for $Q=0$ that allows us to make a comparison between the analytical predications in [46] and our numerical results;
(b) for a piece-wise constant $Q \neq 0$.

In this section, we will carry out the first task. Task 2 is a critical component for the relevance of our mathematical studies of the PNP type models to ion channel properties and will be carried out in Section 4.4.

To this end, we study system (2.27) with the boundary conditions (2.28) including the nonlocal hard-sphere potential given by , for $x \in[0,1]$,

$$
\begin{align*}
& \frac{d \mu_{1}^{H S}}{d x}(x)=\frac{c_{1}(x+2 r)+c_{2}(x+(\lambda+1) r)}{1-K_{1}(x)}-\frac{c_{1}(x-2 r)+c_{2}(x-(\lambda+1) r)}{1-K_{2}(x)} \\
& \frac{d \mu_{2}^{H S}}{d x}(x)=\frac{c_{1}(x+(\lambda+1) r)+c_{2}(x+2 \lambda r)}{1-K_{3}(x)}-\frac{c_{1}(x-(\lambda+1) r)+c_{2}(x-2 \lambda r)}{1-K_{4}(x)} \tag{4.6}
\end{align*}
$$

where

$$
\begin{align*}
& K_{1}(x)=\int_{x}^{x+2 r} c_{1}(s) d s+\int_{x-(\lambda-1) r}^{x+(\lambda+1) r} c_{2}(s) d s \\
& K_{2}(x)=\int_{x-2 r}^{x} c_{1}(s) d s+\int_{x-(\lambda+1) r}^{x+(\lambda-1) r} c_{2}(s) d s \\
& K_{3}(x)=\int_{x+(\lambda-1) r}^{x+(\lambda+1) r} c_{1}(s) d s+\int_{x}^{x+2 \lambda r} c_{2}(s) d s, \tag{4.7}\\
& K_{4}(x)=\int_{x-(\lambda+1) r}^{x-(\lambda-1) r} c_{1}(s) d s+\int_{x-2 \lambda r}^{x} c_{2}(s) d s
\end{align*}
$$

This technical result is from Lemma 4.2 in [46].

Remark 4.2. The definition of $\mu_{i}^{H S}(x)$ for $x \in[0,1]$ requires $\left(c_{1}, c_{2}\right)$ to be defined for $x \in[-\rho, 1+\rho]$ where $\rho=\max \left\{r_{1}+r_{2}, 2 r_{1}, 2 r_{2}\right\}$, where r_{1} and r_{2} are the radii of the positively and negatively charged ions respectively. As remarked in [46], the effect of a specific extension is of order $O\left(\rho^{2}\right)$. In the sequel, we will fix an extension for our numerical simulations.

4.3.1 Numerical strategy for solving problem (2.27)-(2.28) with $\mu_{i}^{H S}$ defined by (4.6)

In this part, we present our numerical strategy for Task 1. Note that, with $\mu_{i}^{H S}$ defined by (4.6), system (2.27) is an integro-differential system. Our numerical approach is to implement the analytical strategy in [46] that is one of the natural approaches to integrodifferential systems.

We begin with a brief summary of the analytical strategy in [46]. For any $\left(G_{1}(x), G_{2}(x)\right) \in$ $\mathscr{C}^{0}\left([0,1], \mathbb{R}^{2}\right)$, introduce the auxiliary problem, for convenience, setting $\alpha=z_{1}>0$ and

$$
\beta=-z_{2}>0,
$$

$$
\begin{align*}
& \frac{\varepsilon^{2}}{h(x)} \frac{d}{d x}\left(h(x) \frac{d}{d x} \phi\right)=-\left(\alpha c_{1}-\beta c_{2}+Q(x)\right), \quad \frac{d J_{i}}{d x}=0 \\
& h(x) \frac{d c_{1}}{d x}+\alpha h(x) c_{1} \frac{d \phi}{d x}+G_{1}(x)=-J_{1} \tag{4.8}\\
& h(x) \frac{d c_{2}}{d x}-\beta h(x) c_{2} \frac{d \phi}{d x}+G_{2}(x)=-J_{2}
\end{align*}
$$

with the same boundary conditions in (2.28)

$$
\begin{equation*}
\phi(0)=\bar{V}, c_{i}(0)=L_{i} ; \quad \phi(1)=0, c_{i}(1)=R_{i} . \tag{4.9}
\end{equation*}
$$

Let $\left(\phi(x ; \varepsilon), c_{i}(x ; \varepsilon)\right)$ be the solution of (4.8) and (4.9) and define a mapping

$$
\mathscr{F}: \mathscr{C}^{0}\left([0,1], \mathbb{R}^{2}\right) \rightarrow \mathscr{C}^{1}\left([0,1], \mathbb{R}^{2}\right) \text { by } \mathscr{F}\left(G_{1}, G_{2}\right)(x)=\left(c_{1}(x ; \varepsilon), c_{2}(x ; \varepsilon)\right) .
$$

Define the second mapping

$$
\mathscr{G}: \mathscr{C}^{1}\left([0,1], \mathbb{R}^{2}\right) \rightarrow \mathscr{C}^{0}\left([0,1], \mathbb{R}^{2}\right)
$$

by

$$
\mathscr{G}\left(c_{1}, c_{2}\right)(x)=\left(\frac{h(x) c_{1}(x)}{k T} \frac{d}{d x} \mu_{1}^{H S}(x), \frac{h(x) c_{2}(x)}{k T} \frac{d}{d x} \mu_{2}^{H S}(x)\right)
$$

where $\mu_{i}^{H S}$ are given by the model (4.1) for the given $\left(c_{1}, c_{2}\right)$.
The BVP (2.27) and (2.28) becomes a fixed point problem

$$
\begin{equation*}
\left(G_{1}, G_{2}\right)=\mathscr{H}\left(G_{1}, G_{2}\right) \text { for }\left(G_{1}, G_{2}\right) \in \mathscr{C}^{0}\left([0,1], \mathbb{R}^{2}\right) \tag{4.10}
\end{equation*}
$$

where $\mathscr{H}=(\mathscr{G} \circ \mathscr{F})$. It has been proved in [46, Theorem 5.1] that, for $\varepsilon>0$ small and as $r \rightarrow 0$, the Fréchet derivative $D \mathscr{H}$ of \mathscr{H} is of order $O(r)$. Hence, for $\varepsilon>0$ small and $r \rightarrow 0$ small, the fixed point exists.

Our numerical approach, in a simple word, is to solve the above fixed point problem by numerical iterations. Since the mapping \mathscr{H} is not explicit, a numerical approximation \mathscr{H}_{N} of \mathscr{H} cannot be directly constructed. Instead, we will numerically implement the above analytical strategy, that is, we proceed to construct numerical approximations of \mathscr{F} and \mathscr{G} with two subroutines. We now describe the iteration procedure.

Subroutine 1. Given fixed functions $G_{1}^{(0)}(x)$ and $G_{2}^{(0)}(x)$, we numerically solve the BVP (4.8) and (4.9) with $G_{i}(x)=G_{i}^{(0)}(x)$. This auxiliary problem is a BVP of ordinary differential equations (ODEs). We could use standard BVP solvers for ODEs to obtain the numerical solutions $\left(\phi^{(0)}, u^{(0)}, c_{1}^{(0)}, c_{2}^{(0)}, J_{1}^{(0)}, J_{2}^{(0)}\right)$ for $x \in[0,1]$.

Subroutine 2. After an extension of $\left(c_{1}^{(0)}, c_{2}^{(0)}\right)$ to $x \in[-\rho, \rho+1]$, we numerically determine $\left(G_{1}^{(1)}(x), G_{2}^{(1)}(x)\right)$ from

$$
G_{i}^{(1)}(x)=\frac{h(x) c_{i}^{(0)}(x)}{k T} \frac{d}{d x} \mu_{i}^{H S}(x)
$$

using (4.6) with $c_{i}(x)=c_{i}^{(0)}(x)$. This completes one numerical iteration:

$$
\begin{equation*}
\left(G_{1}^{(1)}, G_{2}^{(1)}\right)=\mathscr{H}_{N}\left(G_{1}^{(0)}, G_{2}^{(0)}\right) \tag{4.11}
\end{equation*}
$$

The mapping \mathscr{H}_{N} can be viewed as a numerical realization of $\mathscr{H}=\mathscr{G} \circ \mathscr{F}$. Our numerical fixed point iteration method can be formulated as

$$
\begin{equation*}
\left(G_{1}^{(n+1)}, G_{2}^{(n+1)}\right)=\mathscr{H}_{N}\left(G_{1}^{(n)}, G_{2}^{(n)}\right) \tag{4.12}
\end{equation*}
$$

Subroutine 2 is straightforward because of the explicit formula (4.6). The convergence of this numerical fixed point iteration depends more on BVP solvers for (4.8)-(4.9) involved in Subroutine 1. Our numerical experiments show that, with the BVP solvers and the initial guess we used, the iterations (4.12) converge quite fast (usually need 5-7 iterations to reduce the L_{2}-error to 10^{-6}). We will thus discuss our BVP solvers and the initial guess in more detail below.

4.3.2 BVP solvers for (4.8)-(4.9) and the initial guess

We use "bvp4c" in Matlab ([52]) as the solver for our auxiliary BVP (4.8) and (4.9). The basic ideas has been illustrated in section 2.3.

Due to the piecewise cubic approximate solution $S(x)$ given by "bvp4c", we could obtain the K_{i} 's in (4.7) analytically and evaluate $G_{1}^{(n)}(x)$ and $G_{2}^{(n)}(x)$ accurately in each fixed point iteration. Moreover, we could extend the solution to $[-\rho, 1+\rho]$ easily for polynomials. In our numerical experiments, we use a constant extension.

To apply "bvp4c", we first rewrite (4.8) into a system of 1st-order equations as

$$
\begin{align*}
& \varepsilon \frac{d}{d x} \phi=u \\
& \frac{\varepsilon}{h(x)} \frac{d}{d x}(h(x) u)=-\left(\alpha c_{1}-\beta c_{2}+Q(x)\right), \quad \frac{d J_{i}}{d x}=0, \tag{4.13}\\
& \varepsilon h(x) \frac{d c_{1}}{d x}+\alpha h(x) c_{1} u+\varepsilon G_{1}(x)=-\varepsilon J_{1}, \\
& \varepsilon h(x) \frac{d c_{2}}{d x}-\beta h(x) c_{2} u+\varepsilon G_{2}(x)=-\varepsilon J_{2}
\end{align*}
$$

with the same boundary conditions in (4.8).
For a general iteration step, we take the initial guess from the approximate solution of the previous fixed point iteration. At the first iteration, for the case where $Q=0$, we take advantage of the analysis from [46] and choose the initial guess $\left(\phi^{(0,0)}, u^{(0,0)}, c_{1}^{(0,0)}, c_{2}^{(0,0)}\right.$, $\left.J_{1}^{(0,0)}, J_{2}^{(0,0)}\right)$ as follows.

The leading term for the analytical solution $\left(G_{1}, G_{2}\right)$ is provided in [46, Theorem 6.1]. We take it as our initial guess

$$
\begin{equation*}
G_{1}^{(0)}(x)=n_{1}(L-(L-R) x), \quad G_{2}^{(0)}(x)=n_{2}(L-(L-R) x) \tag{4.14}
\end{equation*}
$$

where

$$
n_{1}=-\frac{2(\alpha(\lambda+1)+2 \beta)(L-R) r}{\alpha^{2} \beta k T}, n_{2}=-\frac{2(2 \alpha \lambda+\beta(\lambda+1))(L-R) r}{\alpha \beta^{2} k T}
$$

The leading terms for c_{1} and c_{2} are also provided in [46, Proposition 3.4] as

$$
c_{1}^{(0,0)}(x)=\frac{L-(L-R) x+m x(1-x)}{\alpha}, c_{2}^{(0,0)}(x)=\frac{L-(L-R) x+m x(1-x)}{\beta},
$$

where

$$
m=\frac{2(\alpha \lambda+\beta)(L-R)^{2}}{\alpha \beta k T} r .
$$

Using the expressions for $\bar{J}_{1}^{(0,0)}, \bar{J}_{2}^{(0,0)}$ and $\bar{\phi}^{(0,0)}$ in [46], we obtain

$$
\begin{aligned}
J_{1}^{(0,0)}= & L_{1}-R_{1}-\frac{\alpha \beta\left(n_{1}+n_{2}\right)\left(L_{1}+R_{1}\right)}{2(\alpha+\beta)} \\
& +\frac{-\alpha m \bar{V}+\frac{\alpha\left(\beta n_{2}-\alpha n_{1}\right)}{\alpha+\beta}\left(\frac{\left(L_{1}-R_{1}\right) s_{1}-L_{1}}{s_{2}-s_{1}} \ln \left|\frac{1-s_{1}}{s_{1}}\right|+\frac{\left(R_{1}-L_{1}\right) s_{2}+L_{1}}{s_{2}-s_{1}} \ln \left|\frac{1-s_{2}}{s_{2}}\right|\right)}{\left(\frac{1}{s_{1}-s_{2}} \ln \left|\frac{1-s_{1}}{s_{1}}\right|+\frac{1}{s_{2}-s_{1}} \ln \left|\frac{1-s_{2}}{s_{2}}\right|\right)}, \\
J_{2}^{(0,0)}= & L_{2}-R_{2}-\frac{\alpha^{2}\left(n_{1}+n_{2}\right)\left(L_{1}+R_{1}\right)}{2(\alpha+\beta)} \\
& +\frac{-\alpha m \bar{V}+\frac{\alpha\left(\beta n_{2}-\alpha n_{1}\right)}{\alpha+\beta}\left(\frac{\left(L_{1}-R_{1}\right) s_{1}-L_{1}}{s_{2}-s_{1}} \ln \left|\frac{1-s_{1}}{s_{1}}\right|+\frac{\left(R_{1}-L_{1}\right) s_{2}+L_{1}}{s_{2}-s_{1}} \ln \left|\frac{1-s_{2}}{s_{2}}\right|\right)}{\left(\frac{1}{s_{1}-s_{2}} \ln \left|\frac{1-s_{1}}{s_{1}}\right|+\frac{1}{s_{2}-s_{1}} \ln \left|\frac{1-s_{2}}{s_{2}}\right|\right)},
\end{aligned}
$$

and

$$
\begin{aligned}
\phi^{(0,0)}(x)= & \bar{V}-\frac{\beta J_{2}-\alpha J_{1}}{m(\alpha+\beta)}\left(\frac{1}{s_{1}-s_{2}} \ln \left|\frac{x-s_{1}}{s_{1}}\right|+\frac{1}{s_{2}-s_{1}} \ln \left|\frac{x-s_{2}}{s_{2}}\right|\right) \\
& -\frac{\alpha\left(\beta n_{2}-\alpha n_{1}\right)\left(\frac{\alpha\left(\left(L_{1}-R_{1}\right) s_{1}-L_{1}\right) \ln \left|\frac{x-s_{1}}{s_{1}}\right|}{s_{2}-s_{1}}+\frac{\alpha\left(\left(R_{1}-L_{1}\right) s_{2}+L_{1}\right) \ln \left|\frac{x-s_{2}}{s_{2}}\right|}{s_{2}-s_{1}}\right)}{m(\alpha+\beta)} .
\end{aligned}
$$

Here

$$
s_{1}=\frac{m-\alpha\left(L_{1}-R_{1}\right)+\sqrt{\left(m-\alpha\left(L_{1}-R_{1}\right)\right)^{2}+4 m L_{1}}}{2 m}
$$

and

$$
s_{2}=\frac{m-\alpha\left(L_{1}-R_{1}\right)-\sqrt{\left(m-\alpha\left(L_{1}-R_{1}\right)\right)^{2}+4 m L_{1}}}{2 m}
$$

are two roots of the equation $\alpha\left(L_{1}-\left(L_{1}-R_{1}\right) s\right)+m s(1-s)=0$.
At our first fixed point iteration, we take a uniform mesh partition as initial mesh and evaluate the functions $\left(\phi^{(0,0)}, u^{(0,0)}, c_{1}^{(0,0)}, c_{2}^{(0,0)}, J_{1}^{(0,0)}, J_{2}^{(0,0)}\right.$) at these mesh points as initial guess for "bvp4c". We use the mesh and solution from previous fixed point iteration as our initial mesh and initial guess for late iteration.

4.4 Design for numerical detections of V_{c} and V^{c}

In this section, we will describe our numerical methods for conducting Task 2. For the relative simple settings in [46], explicit approximation formulas for two critical voltages V_{c} and V^{c} are obtained analytically. For general situations, no relevant analytical result is available at this moment. To be able to take the advantage of numerical I-V curves obtained in Task 1, one needs to design numerical methods to detect these two critical voltages. Our design relies on analytical characterizations of two critical potentials V_{c} and V^{c} based on their defining properties.

Since we focus on the ion size effect on I-V relations, we will treat the radii $r=r_{1}$ and r_{2} (hence $\lambda=r_{2} / r_{1}$) as variable parameters, and view L_{j} 's, R_{j} 's, $\varepsilon>0$ small and a piece-wise constant $Q(x)$ as fixed parameters. Thus, we denote the I-V relation by $I=I(V ; \lambda, r)$. For I-V relation corresponding to the classical PNP (ignoring the size effects), we denote it by $I=I_{0}(V)$.

Definition 4.3. A solution V_{c} of

$$
\begin{equation*}
I(V ; \lambda, r)=I_{0}(V), \tag{4.15}
\end{equation*}
$$

will be called a size balance potential. A solution V^{c} of

$$
\begin{equation*}
I_{\lambda}(V ; \lambda, r):=\frac{\partial I}{\partial \lambda}(V ; \lambda, r)=0 \tag{4.16}
\end{equation*}
$$

will be called a relative size effect potential.

For fixed (λ, r), the potential V_{c} will depend on the boundary concentrations L_{i} 's, R_{i} 's and the permanent charge Q. It is the balance potential under which ion sizes do not have effects on the current. The potential V^{c} is meant to distinguish the magnitudes of effects among different relative ion sizes λ.

Corollary 4.4. For fixed $(\bar{\lambda}, \bar{r})$, let \bar{V}_{c} be a size balance potential defined by (4.15).
(i) If $I_{V}\left(\bar{V}_{c} ; \bar{\lambda}, \bar{r}\right)>I_{0 V}\left(V_{c}\right)$, then $I(V ; \lambda, r)>I_{0}(V)$ for $V>\bar{V}_{c}$ but close (that is, the ion sizes enhance the current) and $I(V ; \lambda, r)<I_{0}(V)$ for $V<\bar{V}_{c}$ but close (that is, the ion sizes reduce the current).
(ii) If $I_{V}\left(\bar{V}_{c} ; \bar{\lambda}, \bar{r}\right)<I_{0 V}\left(V_{c}\right)$, then $I(V ; \lambda, r)>I_{0}(V)$ for $V<\bar{V}_{c}$ but close (that is, the ion sizes enhance the current) and $I(V ; \lambda, r)<I_{0}(V)$ for $V>\bar{V}_{c}$ but close (that is, the ion sizes reduce the current).

Proof. The proof is simple and we omit it here.

Remark 4.5. For the setting considered in ([46]), it was shown ([46, Lemma 6.2]) that $I_{V}(V ; \lambda, r)>I_{0 V}(V)$ in (i) holds for all (V, λ) if $r>0$ is small enough.

Corollary 4.6. For fixed $\left(\lambda_{*}, r_{*}\right)$, let V_{*}^{c} be a potential defined in (4.16). Suppose $I_{\lambda V}\left(V_{*}^{c} ; \lambda_{*}, r_{*}\right) \neq$ 0 . One has, for (V, λ) in a neighborhood of $\left(V_{*}^{c}, \lambda_{*}\right)$,
(i) if $I_{\lambda V}\left(V_{*}^{c} ; \lambda_{*}, r_{*}\right)>0$, then, for $V>V_{*}^{c}, I\left(V ; \lambda, r_{*}\right)$ is increasing in λ and, for $V<V_{*}^{c}, I\left(V ; \lambda, r_{*}\right)$ is decreasing in $\lambda ;$
(ii) if $I_{\lambda V}\left(V_{*}^{c} ; \lambda_{*}, r_{*}\right)<0$, then, for $V>V_{*}^{c}, I\left(V ; \lambda, r_{*}\right)$ is increasing in λ and, for $V<V_{*}^{c}, I\left(V ; \lambda, r_{*}\right)$ is decreasing in λ.

Proof. We write, for some function $p(V, \lambda)$,

$$
I\left(V ; \lambda, r_{*}\right)-I\left(V ; \lambda_{*}, r_{*}\right)=p(V, \lambda)\left(\lambda-\lambda_{*}\right)
$$

Differentiate with respect to λ and V, and set $\lambda=\lambda_{*}$ to get

$$
I_{\lambda}\left(V ; \lambda_{*}, r_{*}\right)=p\left(V, \lambda_{*}\right), \quad I_{\lambda V}\left(V ; \lambda_{*}, r_{*}\right)=p_{V}\left(V, \lambda_{*}\right)
$$

In particular, $p\left(V_{*}^{c}, \lambda_{*}\right)=0$ and $p_{V}\left(V_{*}^{c}, \lambda_{*}\right) \neq 0$. It follows from the Implicit Function Theory that there is a function $\Gamma(\lambda)$ for λ near λ_{*} such that $V_{*}^{c}=\Gamma\left(\lambda_{*}\right)$ and $p(\Gamma(\lambda), \lambda)=$ 0 . Therefore, $p(V, \lambda)=q(V, \lambda)(V-\Gamma(\lambda))$ for some function $q(V, \lambda)$, and

$$
q\left(V_{*}^{c}, \lambda_{*}\right)=p_{V}\left(V_{*}^{c}, \lambda_{*}\right)=I_{\lambda V}\left(V_{*}^{c} ; \boldsymbol{\lambda}_{*}, r_{*}\right) .
$$

We conclude

$$
I_{\lambda}\left(V ; \lambda_{*}, r_{*}\right)=p\left(V, \lambda_{*}\right)=q\left(V ; \lambda_{*}\right)\left(V-V_{*}^{c}\right)
$$

In particular, $I_{\lambda}\left(V ; \lambda, r_{*}\right)$ and $I_{\lambda V}\left(V_{*}^{c} ; \lambda_{*}, r_{*}\right)\left(V-V_{*}^{c}\right)$ have the same sign for (V, λ) in a neighborhood of $\left(V_{*}^{c}, \lambda_{*}\right)$. Both (i) and (ii) then follow immediately.

Remark 4.7. For the setting considered in ([46]), it was shown ([46, Lemma 6.2]) that the condition $I_{\lambda V}(V ; \lambda, r)>0$ in (i) holds for all (V, λ) if $r>0$ is small enough.

Given (λ, r), to numerically detect the corresponding critical value(s) V_{c}, one can simply plot the difference $I(V ; \lambda, r)-I_{0}(V)$ and search for the roots.

Our numerical design for a direct detecting of the critical value(s) V^{c} is a numerical interpretation of the following analytical result. For fixed $\left(\lambda_{*}, r_{*}\right)$, define

$$
\begin{equation*}
H(V, \lambda)=I\left(V ; \lambda, r_{*}\right)-I\left(V ; \lambda_{*}, r_{*}\right) \tag{4.17}
\end{equation*}
$$

Proposition 4.8. For fixed $(\lambda, r)=\left(\lambda_{*}, r_{*}\right), V_{*}^{c}$ is the value defined in (4.16) if and only if the point $\left(V_{*}^{c}, \lambda_{*}\right)$ is a saddle point of $H(V, \lambda)$ under the condition that $H_{\lambda V}\left(V_{*}^{c}, \lambda_{*}\right)=$ $I_{\lambda V}\left(V_{*}^{c} ; \lambda_{*}, r_{*}\right) \neq 0$.

Proof. Note that $H\left(V, \lambda_{*}\right)=0$ for all V. Thus, $H_{V}\left(V, \lambda_{*}\right)=H_{V V}\left(V, \lambda_{*}\right)=0$. From the definition of V_{*}^{c}, one has $H_{\lambda}\left(V_{*}^{c}, \lambda_{*}\right)=I_{\lambda}\left(V_{*}^{c} ; \lambda_{*}, r_{*}\right)=0$. Therefore, $\left(V_{*}^{c}, \lambda_{*}\right)$ is a critical point of $H(V, \boldsymbol{\lambda})$. It then follows from

$$
\left(H_{V V} H_{\lambda \lambda}-H_{\lambda V}^{2}\right)\left(V_{*}^{c}, \lambda_{*}\right)=-H_{\lambda V}^{2}\left(V_{*}^{c}, \lambda_{*}\right)<0
$$

that $\left(V_{*}^{c}, \boldsymbol{\lambda}_{*}\right)$ is a saddle point of $H(V, \boldsymbol{\lambda})$.

Numerically, for fixed $\left(\lambda_{*}, r_{*}\right)$, we can computer $I\left(V ; \lambda, r_{*}\right)$ and hence $H(V, \lambda)$ for any λ near λ_{*} and apply Proposition 4.8 to estimate V_{*}^{c} from the saddle point of $H(V, \lambda)$. Another approach for detecting V^{c} is to numerically compute the solution(s) V of $I_{\lambda}(V ; \lambda, r)=$

0 . This will involve a numerical evaluation of the partial derivative and a numerical root finding.

We remark that, for real biological situations, one is interested in only discrete values of (λ, r). For the critical potential V_{c}, one can take an experimental I-V relation as $I(V ; \lambda, r)$ and numerically (or analytically) compute $I_{0}(V)$ for ideal case that allows one to get an estimate of V_{c}. On the other hand, it is not clear to us how to design a procedure of using experimental data to detect the value V^{c}.

4.5 Numerical experiments: case studies

In this section, we perform numerical simulations for different values of α, β, and λ for $Q=0$ and $Q \neq 0$. For simplicity, we make the following assumptions for the parameters involved in the PNP-DFT model:

- The elementary charge $e=1$, the Boltzmann constant $k=1$ and the absolute temperature $T=1$.
- We take $\varepsilon=0.002, h(x)=1$, and the diffusion coefficient $D_{i}(x)=1, i=1,2$.
- The radius of the positively charged ion $r_{1}=r=0.0001$.

4.5.1 Numerical values vs analytical predications for $Q=0$

For $Q=0$, we compare the numerical values V_{c} and V^{c} with those analytical approximations obtained in [46]. We remark that the analytical values of V_{c} and V^{c} in [46] are zeroth order in ε and first order in r approximations. For $\varepsilon>0$ small and $r>0$ small, the numerical values V_{c} and V^{c} should be close to the ones obtained from the zeroth order approximation given by (4.5).

In our first set of experiments, we compute V_{c} for the following 6 different choices of parameter values:

- Case 1: $\alpha=\beta=1, \lambda=1.885, L=\alpha L_{1}=\beta L_{2}=4$, and $R=\alpha R_{1}=\beta R_{2}=20$;
- Case 2: $\alpha=\beta=1, \lambda=1.382, L=\alpha L_{1}=\beta L_{2}=4$, and $R=\alpha R_{1}=\beta R_{2}=20$;
- Case 3: $\alpha=2 \beta=2, \lambda=1.885, L=\alpha L_{1}=\beta L_{2}=4$, and $R=\alpha R_{1}=\beta R_{2}=20$;
- Case 4: $\alpha=\beta=1, \lambda=1.885, L=\alpha L_{1}=\beta L_{2}=20$, and $R=\alpha R_{1}=\beta R_{2}=4$;
- Case 5: $\alpha=\beta=1, \lambda=1.382, L=\alpha L_{1}=\beta L_{2}=20$, and $R=\alpha R_{1}=\beta R_{2}=4$;
- Case 6: $\alpha=2 \beta=2, \lambda=1.885, L=\alpha L_{1}=\beta L_{2}=20$, and $R=\alpha R_{1}=\beta R_{2}=4$.

The choice of $\lambda=1.885$ in Cases $1,3,4$, and 6 is motivated by the corresponding λ values for $\mathrm{Na}^{+} \mathrm{Cl}^{-}$and $\mathrm{Ca}^{2+} \mathrm{Cl}_{2}^{-}$, and $\lambda=1.382$ in Cases 2 and 5 for $\mathrm{K}^{+} \mathrm{Cl}^{-}$.

For each case, we plot $I(V ; \lambda, r)-I_{0}(V)$ as a function of V and the critical potential V_{c} is the root of the difference. The results are reported in Figure 4.1. The analytical values of V_{c} from (4.5) are $-1.1921,-0.6232$, and -0.7210 for Cases $1-3$, respectively. The numerical values of V_{c} are $-1.2020,-0.6274$, and -0.7310 , which agree well with the analytical predictions. From the numerical simulations, we observe that V_{c} 's for $L=4<R=20$ (Cases 1-3) and $L=20>R=4$ (Cases 4-6) differ by a sign and the analytical formulas (4.5) for $D_{1}=D_{2}$ verify the observation.

In our second set of experiments, we compute V^{c} for above 6 cases in the first set of experiments. For each case, we fix $\lambda_{*}=\lambda / 2$ and plot $H(V, \lambda)$, defined in (4.17), as a function of V with 4 different λ values ($3 / 4 \lambda, \lambda, 5 / 4 \lambda$, and $6 / 4 \lambda$). The results are in Figure 4.2. The analytical results for zeroth order in ε and first order in r tell us that the graphs for these 4 different λ values should have a common intersection point with $V=V_{c}$. Also, the analytical values of V^{c} are $-3.8861,-3.8861$, and -1.9430 for

Cases $1-3$, respectively. From Figure 4.2, one sees that these graphs almost go through the same point and the numerical values of V^{c} are $-3.92,-3.92$, and -1.96 , which are close to the analytical approximations. Similarly, V^{c} 's for $L<R$ and $L>R$ differ by a sign and the analytical formulas (4.5) for $D_{1}=D_{2}$ verify the observation.

4.5.2 Numerical values of V_{c} and V^{c} for piecewise constant $Q(x) \neq 0$

In this section, we consider the problem (2.27)-(2.28) with $Q(x)=Q_{0}=1$ on (1/3,2/3) and $Q(x)=0$ otherwise on $[0,1]$. Due to the jumps of Q, the singularly perturbed auxiliary BVP (4.8)-(4.9) is much near singular for small ε. Since we are focusing on the numerical examinations of the critical potentials V_{c} and V^{c}, we thus take $\varepsilon=0.02$ for this study rather than $\varepsilon=0.002$ as in previous part. Other parameters are the same as the previous section and we will only consider the setting of Case 1.

Applying the strategy described in Section 4.3.1, we first solve the BVP (2.27)-(2.28) for $V=-0.5960$. The profiles of $\bar{\phi}$ and \bar{u} are shown in Figure 4.3, and those of c_{1} and c_{2} in Figure 4.4. We observe that \bar{u} have corners around $x=1 / 3$ and $x=2 / 3$; $c_{2}-c_{1} \approx Q_{0}=1$ on the interval $(1 / 3,2 / 3)$, where $Q \neq 0$. The presence of the corners of \bar{u} reflects the fact that each transition layer (one at $x=1 / 3$ and the other at $x=2 / 3$) consists of two portions (see $[24,58]$).

The critical potential V_{c} is determined as we did for $Q=0$ case and the result is shown in Figure 4.5.

For the critical potential V^{c}, based on Proposition 4.8, we look for saddle points of $H(V, \lambda)$, whose graph is plotted in Figure 4.6. One clearly sees a saddle point of the surface. The saddle point of this surface will give us the numerical value of V^{c}.

Figure 4.1: Plots of $I(V ; \lambda, r)-I_{0}(V)$ and V_{c} for $Q=0$.

Figure 4.2: Plots of $H(V, \lambda)$ with four values of λ and V^{c} for $Q=0$.

Figure 4.3: Profiles of $\bar{\phi}$ (top) and \bar{u} (bottom) for $Q \neq 0$.

Figure 4.4: Profiles of c_{1} and c_{2} for $Q \neq 0$.

Figure 4.5: Plot of $I(V ; \lambda, r)-I_{0}(V)$ and V_{c} for $Q \neq 0$.

Figure 4.6: Plot of $H(V, \lambda)$ whose saddle points give V^{c}.

Chapter 5

Poisson-Nernst-Planck systems for ion flow with a local hard-sphere potential for ion size effects

In this chapter, we analyze system (2.27), a one-dimensional steady-state PNP type model for ionic flow through a membrane channel with fixed boundary ion concentrations (charges) and electric potentials (2.28). A local hard-sphere potential that depends pointwise on ion concentrations is included in the model to account for ion size effects on the ionic flow. The model problem is treated as a boundary value problem of a singularly perturbed differential system. Our analysis is based on the geometric singular perturbation theory but, most importantly, on specific structures of this concrete model. The existence of solutions to the boundary value problem for small ion sizes is established and, treating the ion sizes as small parameters, we also derive an approximation of the I-V relation and identify two critical potentials or voltages for ion size effects. Under electroneutrality (zero net charge) boundary conditions, each of these two critical potentials separates the potential into two regions over which the ion size effects are qualitatively opposite to each other. On the other hand, without electroneutrality boundary conditions, the qualitative effects of ion sizes will depend not only on the critical potentials but also on boundary concentrations. Important scaling laws of I-V relations and critical potentials in boundary concentrations are obtained. Similar results about ion
size effects on the flow of matter are also discussed. Under electroneutrality boundary conditions, the results on the first order approximation in ion diameters of solutions, I-V relations and critical potentials agree with those with a nonlocal hard-sphere potential examined in [46].

5.1 Introduction

In this chapter, we study the dynamics of ionic flow, the electrodiffusion of charges, through ion channels via system (2.27), a one-dimensional steady-state PNP type system including an additional component, a local hard-sphere (HS) potential, to account for ion size effects. We are particularly interested in ion size effects on the I-V relation.

In ([46]), the authors provided an analytical treatment of system (2.27) with electroneutrality (zero net charge) boundary conditions and including a nonlocal hard-sphere potential of the excess component in addition to the ideal component. They treated the model as a singularly perturbed system and rigorously established the existence and uniqueness results of the boundary value problem for small ion sizes. Treating ion sizes as small parameters, they derived an approximation of the I-V relation. Most importantly, the approximate I-V relation allows them to establish the following results.
(i) There is a critical potential or voltage V_{c} so that, if the boundary potential V satisfies $V>V_{c}$, then ion sizes enhance the current I in the sense that the contribution of ion sizes to the current I is positive; if $V<V_{c}$, then ion sizes reduce the current I.
(ii) There is another critical potential V^{c} so that, if $V>V^{c}$, then the current I increases in $\lambda=d_{2} / d_{1}$ where d_{1} and d_{2} are, respectively, the diameters of the positively and negatively charged ions; if $V<V^{c}$, then the current I decreases in λ.

In [61], among other things, the authors designed an algorithm for numerically detecting these critical potentials without using any analytical formulas for I-V relations. They demonstrated the effectiveness of this algorithm by conducting two numerical tasks. In the first one, the authors took the model problem with the same setting as in [46] for which analytical formulas for V_{c} and V^{c} are available. The authors numerically computed I-V relations and, applying the algorithm, computed the critical potentials V_{c} and V^{c}. They found that the computed values V_{c} and V^{c} agree well with the values obtained from the analytical formulas. For the second numerical task, the authors examined a PNP type model that includes also a nonzero permanent charge Q. For this case, no analytical formulas for the I-V relations and for the critical potentials are currently available. But the authors were able to numerically identify the critical potentials by applying their algorithm.

In this chapter, we study a one-dimensional steady-state PNP system with a local model for the hard-sphere (HS) potential. The problem has basically the same setting as that in [46] except that we take a local model for the hard-sphere potential and allow nonelectroneutrality boundary conditions. It is clear that local models have the advantage of simplicity relative to nonlocal ones. In this chapter, we take a local hard-sphere model derived from the nonlocal model used in [46] for two reasons: to provide a mathematical framework for the study of the problem with local hard-sphere models; to compare the results for the local hard-sphere model with those for the nonlocal hard-sphere model in [46].

Under electroneutrality boundary conditions, we will show that the local hard-sphere model yields exactly the same results on the first order approximation (in the diameters of the ion species) I-V relation and the critical potentials V_{c} and V^{c} as those of the nonlocal hard-sphere model in [46]. This is perhaps well expected. To the contrary, in the absence of electroneutrality, it is rather surprising that the roles of critical potentials V_{c}
and V^{c} on ion size effects are significantly different: the opposite effects of ion sizes separated by V_{c} and V^{c} described in (i) and (ii) above now depend on other quantities in terms of boundary concentrations (Theorems 5.14 and 5.15 and Proposition 5.17). Many important biological properties of ion channels are controlled through the boundary conditions. Our results provide a concrete situation for which the important I-V relations of ion channels can depend on boundary conditions sensitively. An observation based on the I-V relation also reveals the following scaling laws (Theorem 5.28):
(a) the contribution I_{0} to the I-V relation from the ideal component scales linearly in boundary concentrations (that is, if one scales the boundary concentrations by a factor s, then I_{0} is scaled by s);
(b) the contribution (up to the leading order) to the I-V relation from the hard-sphere component scales quadratically in boundary concentrations;
(c) both V_{c} and V^{c} scale invariantly in boundary concentrations.

Results on ion size effects to the flow of matter in Section 5.4.2 again indicate the richness of ion size effects on the electrodiffusion process.

The general framework for the analysis is the geometric singular perturbation theoryessentially the same as that for the nonlocal hard-sphere potential in [46]. A major difference is that the nonlocal hard-sphere potentials disappear in the limiting fast system but the local ones survive in this limit, and hence, more is involved in the treatment of the limiting fast dynamics for the local hard-sphere potential case. On the other hand, for the local hard-sphere potential case, we need not introduce an auxiliary problem as that for nonlocal case in [46]. A crucial ingredient for the success of our analysis is again the revealing of a set of integrals that allows us to handle the limiting fast dynamics with details as for the classical PNP cases.

The rest of this chapter is organized as follows. In Section 5.2, we describe the onedimensional PNP-HS model for ion flows, a local model for hard-sphere potentials, and the setup of the boundary value problem of the singularly perturbed PNP-HS system. In Section 5.3, the existence and (local) uniqueness result for the boundary value problem is established in the framework of the geometric singular perturbation theory. Section 5.4 contains two parts. In Section 5.4.1, we derive an approximation of the I-V relation based on the analysis in Section 5.3, identify three critical potentials, and examine significant roles of two of the critical potentials for ion size effects on ionic flows. Important scaling laws of I-V relations and critical potentials in boundary concentrations are obtained. In Section 5.4.2, we discuss ion size effects on the flow of matter. This is presented briefly due to a simple relation between the flow rate of charge and the flow rate of matter.

5.2 Problem Setup

We assume the channel is narrow so that it can be effectively viewed as a one-dimensional channel and normalize it as the interval $[0,1]$ that connects the interior and the exterior of the channel. The one-dimensional steady-state Poisson-Nernst-Planck system (2.27) with the boundary condition (2.28) is studied. An important feature for system (2.27) in this chapter is that for the electrochemical potential, besides the ideal component, a local hard-sphere component is included, which is modeled by

$$
\begin{equation*}
\frac{1}{k T} \mu_{i}^{L H S}(x)=-\ln \left(1-\sum_{j=1}^{n} d_{j} c_{j}(x)\right)+\frac{d_{i} \sum_{j=1}^{n} c_{j}(x)}{1-\sum_{j=1}^{n} d_{j} c_{j}(x)}, \tag{5.1}
\end{equation*}
$$

where d_{j} is the diameter of the j th ion species.

As mentioned in the introduction, this local model is an approximation of the wellknown nonlocal model for hard-sphere (hard-rod) used in [46]. Its derivation is provided in Chapter 2.

The main goal of this paper is to examine the qualitative effect of ion sizes via the steady-state boundary value problem of (2.27) and (2.28) with the local hard-sphere (LHS) model (5.1) for the excess potential. We will examine the steady-state boundary value problem in Section 5.3. In Section 5.4, we will obtain approximations for (2.29) and (2.30) to study ion size effects on the I-V relation and on the flow rate \mathscr{T}.

For definiteness, we will take essentially the same setting as that in [46] but without assuming electroneutrality boundary conditions: $z_{1} L_{1}+z_{2} L_{2}=z_{1} R_{1}+z_{2} R_{2}=0$. Using the expression (2.5) for the ideal component $\mu_{i}^{i d}(x)$, together with

$$
\begin{align*}
& \frac{1}{k T} \frac{d}{d x} \mu_{1}^{L H S}=\frac{d_{1}\left(2+d_{1}\left(c_{2}-c_{1}\right)-2 d_{2} c_{2}\right)}{\left(1-d_{1} c_{1}-d_{2} c_{2}\right)^{2}} \frac{d c_{1}}{d x}+\frac{d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}}{\left(1-d_{1} c_{1}-d_{2} c_{2}\right)^{2}} \frac{d c_{2}}{d x} \tag{5.2}\\
& \frac{1}{k T} \frac{d}{d x} \mu_{2}^{L H S}=\frac{d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}}{\left(1-d_{1} c_{1}-d_{2} c_{2}\right)^{2}} \frac{d c_{1}}{d x}+\frac{d_{2}\left(2+d_{2}\left(c_{1}-c_{2}\right)-2 d_{1} c_{1}\right)}{\left(1-d_{1} c_{1}-d_{2} c_{2}\right)^{2}} \frac{d c_{2}}{d x}
\end{align*}
$$

system (2.27) becomes

$$
\begin{gather*}
\frac{\varepsilon^{2}}{h(x)} \frac{d}{d x}\left(h(x) \frac{d}{d x} \phi\right)=-z_{1} c_{1}-z_{2} c_{2}, \quad \frac{d J_{1}}{d x}=\frac{d J_{2}}{d x}=0, \\
\frac{d c_{1}}{d x}=-f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) \frac{d \phi}{d x}-\frac{1}{h(x)} g_{1}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right), \tag{5.3}\\
\frac{d c_{2}}{d x}=f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) \frac{d \phi}{d x}-\frac{1}{h(x)} g_{2}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right)
\end{gather*}
$$

where

$$
\begin{gather*}
f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)=z_{1} c_{1}-\left(d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}\right)\left(z_{1} c_{1}+z_{2} c_{2}\right) c_{1} \\
\\
\quad-z_{1}\left(d_{1}-d_{2}\right) c_{1}^{2}, \\
f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)=- \tag{5.4}\\
z_{2} c_{2}+\left(d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}\right)\left(z_{1} c_{1}+z_{2} c_{2}\right) c_{2} \\
\\
\quad+z_{2}\left(d_{2}-d_{1}\right) c_{2}^{2} \\
g_{1}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right)=\left(\left(1-d_{1} c_{1}\right)^{2}+d_{2}^{2} c_{1} c_{2}\right) J_{1} \\
\\
-c_{1}\left(d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}\right) J_{2} \\
g_{2}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right)=\left(\left(1-d_{2} c_{2}\right)^{2}+d_{1}^{2} c_{1} c_{2}\right) J_{2} \\
\\
\quad-c_{2}\left(d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}\right) J_{1} .
\end{gather*}
$$

Recall the boundary conditions are

$$
\begin{equation*}
\phi(0)=\bar{V}, c_{i}(0)=L_{i}>0 ; \phi(1)=0, c_{i}(1)=R_{i}>0 . \tag{5.5}
\end{equation*}
$$

5.3 Geometric singular perturbation theory for (5.3)-(5.5)

We will rewrite system (5.3) into a standard form for singularly perturbed systems and convert the boundary value problem (5.3) and (5.5) to a connecting problem.

Denote the derivative with respect to x by overdot and introduce $u=\varepsilon \dot{\phi}$ and $\tau=x$. System (5.3) becomes

$$
\begin{align*}
\varepsilon \dot{\phi} & =u, \quad \varepsilon \dot{u}=-z_{1} c_{1}-z_{2} c_{2}-\varepsilon \frac{h_{\tau}(\tau)}{h(\tau)} u \\
\varepsilon \dot{c}_{1} & =-f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u-\frac{\varepsilon}{h(\tau)} g_{1}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right) \tag{5.1}\\
\varepsilon \dot{c}_{2} & =f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u-\frac{\varepsilon}{h(\tau)} g_{2}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right) \\
\dot{J}_{1} & =\dot{J}_{2}=0, \quad \dot{\tau}=1
\end{align*}
$$

System (5.1) will be treated as a singularly perturbed system with ε as the singular parameter. Its phase space is \mathbb{R}^{7} with state variables $\left(\phi, u, c_{1}, c_{2}, J_{1}, J_{2}, \tau\right)$. We have included constants J_{1} and J_{2} in the phase space. A reason for this is explained in the paragraph below that of display (5.3).

For $\varepsilon>0$, the rescaling $x=\varepsilon \xi$ of the independent variable x gives rise to

$$
\begin{align*}
& \phi^{\prime}=u, \quad u^{\prime}=-z_{1} c_{1}-z_{2} c_{2}-\varepsilon \frac{h_{\tau}(\tau)}{h(\tau)} u, \\
& c_{1}^{\prime}=-f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u-\frac{\varepsilon}{h(\tau)} g_{1}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right), \tag{5.2}\\
& c_{2}^{\prime}=f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u-\frac{\varepsilon}{h(\tau)} g_{2}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right), \\
& J_{1}^{\prime}=J_{2}^{\prime}=0, \quad \tau^{\prime}=\varepsilon,
\end{align*}
$$

where prime denotes the derivative with respect to the variable ξ.
For $\varepsilon>0$, systems (5.1) and (5.2) have exactly the same phase portrait. But their limiting systems at $\varepsilon=0$ are different. The limiting system of (5.1) is called the limiting slow system, whose orbits are called slow orbits or regular layers. The limiting system of (5.2) is the limiting fast system, whose orbits are called fast orbits or singular (boundary and/or internal) layers. By a singular orbit of system (5.1) or (5.2), we mean a continuous and piecewise smooth curve in \mathbb{R}^{7} that is a union of finitely many slow and fast orbits. Very often, limiting slow and fast systems provide complementary information on state variables. Therefore, the main task of singularly perturbed problems is to patch the limiting information together to form a solution for the entire $\varepsilon>0$ system.

Let B_{L} and B_{R} be the subsets of the phase space \mathbb{R}^{7} defined by

$$
\begin{align*}
& B_{L}=\left\{\left(\bar{V}, u, L_{1}, L_{2}, J_{1}, J_{2}, 0\right) \in \mathbb{R}^{7}: \text { arbitrary } u, J_{1}, J_{2}\right\}, \tag{5.3}\\
& B_{R}=\left\{\left(0, u, R_{1}, R_{2}, J_{1}, J_{2}, 1\right) \in \mathbb{R}^{7}: \text { arbitrary } u, J_{1}, J_{2}\right\},
\end{align*}
$$

where $\bar{V}, L_{1}, L_{2}, R_{1}$ and R_{2} are given in (5.5). Then the original boundary value problem is equivalent to a connecting problem, namely, finding a solution of (5.1) or (5.2) from B_{L} to B_{R} (see, for example, [47]).

For $\varepsilon>0$ small, let $M_{L}(\varepsilon)$ be the collection of forward orbits from B_{L} under the flow and let $M_{R}(\varepsilon)$ be that of backward orbits from B_{R}. Since the flow is not tangent to B_{L} and B_{R} and $\operatorname{dim} B_{L}=\operatorname{dim} B_{R}=3$, we have $\operatorname{dim} M_{L}(\varepsilon)=\operatorname{dim} M_{R}(\varepsilon)=4$. We will show that $M_{L}(\varepsilon)$ and $M_{R}(\varepsilon)$ intersect transversally in the phase space \mathbb{R}^{7}. Transversality of the intersection implies $\operatorname{dim}\left(M_{L}(\varepsilon) \cap M_{R}(\varepsilon)\right)=\operatorname{dim} M_{L}(\varepsilon)+\operatorname{dim} M_{R}(\varepsilon)-\operatorname{dim} \mathbb{R}^{7}$. It then follows that $\operatorname{dim}\left(M_{L}(\varepsilon) \cap M_{R}(\varepsilon)\right)=1$ which would allow us to conclude the existence and (local) uniqueness of a solution for the connecting problem. This is the reason that we include J_{1} and J_{2} in the phase space. Alternatively, one can treat J_{1} and J_{2} as parameters and work in the phase space \mathbb{R}^{5}. Then the corresponding B_{L} and B_{R} would each be of dimension one, and hence, $M_{L}(\varepsilon)$ and $M_{R}(\varepsilon)$ would each be of dimension two. Should $M_{L}(\varepsilon)$ and $M_{R}(\varepsilon)$ intersect, the intersection cannot be transversal due to the dimension counting. To establish the existence and uniqueness result with this alternative approach, one would have to apply perturbation argument with J_{1} and J_{2} as perturbation parameters.

In what follows, we will consider the equivalent connecting problem for system (5.1) or (5.2) and construct its solution from B_{L} to B_{R}. The construction process involves two main steps: the first step is to construct a singular orbit to the connecting problem, and the second step is to apply geometric singular perturbation theory to show that there is a unique solution near the singular orbit for small $\varepsilon>0$.

5.3.1 Geometric construction of singular orbits

Following the idea in $[24,57,58]$, we will first construct a singular orbit on $[0,1]$ that connects B_{L} to B_{R}. Such an orbit will generally consist of two boundary layers and a regular layer.

Limiting fast dynamics and boundary layers

By setting $\varepsilon=0$ in (5.1), we obtain the so-called slow manifold

$$
\begin{equation*}
\mathscr{Z}=\left\{u=0, z_{1} c_{1}+z_{2} c_{2}=0\right\} . \tag{5.4}
\end{equation*}
$$

By setting $\varepsilon=0$ in (5.2), we get the limiting fast system

$$
\begin{align*}
& \phi^{\prime}=u, \quad u^{\prime}=-z_{1} c_{1}-z_{2} c_{2}, \\
& c_{1}^{\prime}=-f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u \tag{5.5}\\
& c_{2}^{\prime}=f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u \\
& J_{1}^{\prime}=J_{2}^{\prime}=0, \quad \tau^{\prime}=0 .
\end{align*}
$$

Note that the slow manifold \mathscr{Z} is the set of equilibria of (5.5).

Lemma 5.1. For system (5.5), the slow manifold \mathscr{Z} is normally hyperbolic.
Proof. The slow manifold \mathscr{Z} is precisely the set of equilibria of (5.5). The linearization of (5.5) at each point of $\left(\phi, 0, c_{1}, c_{2}, J_{1}, J_{2}, \tau\right) \in \mathscr{Z}$ has five zero eigenvalues whose generalized eigenspace is the tangent space of the five-dimensional slow manifold \mathscr{Z} of equilibria, and the other two eigenvalues are $\pm \sqrt{z_{1} f_{1}-z_{2} f_{2}}$. On the slow manifold \mathscr{Z} where $z_{1} c_{1}+z_{2} c_{2}=0$, one has, from (5.4),

$$
z_{1} f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)-z_{2} f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)=z_{1}^{2} c_{1}+z_{2}^{2} c_{2} .
$$

Note that $f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)$ has a factor c_{1} and $f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)$ has a factor c_{2}. It follows from $\left(c_{1}, c_{2}\right)$-subsystem of (5.5) that $\left\{c_{1}>0\right\}$ and $\left\{c_{2}>0\right\}$ are invariant under (5.5). Since c_{1} and c_{2} have positive boundary values, c_{1} and c_{2} are positive for all $x \in[0,1]$. Therefore, $z_{1} f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)-z_{2} f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)>0$. Thus \mathscr{Z} is normally hyperbolic.

We denote the stable (resp. unstable) manifold of \mathscr{Z} by $W^{s}(\mathscr{Z})$ (resp. $W^{u}(\mathscr{Z})$). Let M_{L} be the collection of orbits from B_{L} in forward time under the flow of system (5.5) and M_{R} be the collection of orbits from B_{R} in backward time under the flow of system (5.5). Then, for a singular orbit connecting B_{L} to B_{R}, the boundary layer at $\tau=x=0$ must lie in $N_{L}=M_{L} \cap W^{s}(\mathscr{Z})$ and the boundary layer at $\tau=x=1$ must lie in $N_{R}=M_{R} \cap W^{u}(\mathscr{Z})$. In this subsection, we will determine the boundary layers N_{L} and N_{R}, and their landing points $\omega\left(N_{L}\right)$ and $\alpha\left(N_{R}\right)$ on the slow manifold \mathscr{Z}. The regular layer, determined by the limiting slow system in $\S 5.3 .1$, will lie in \mathscr{Z} and connect the landing points $\omega\left(N_{L}\right)$ at $\tau=0$ and $\alpha\left(N_{R}\right)$ at $\tau=1$. A singular orbit $\Gamma^{0} \cup \Lambda \cup \Gamma^{1}$ is illustrated in Figure 5.1 where $\Gamma^{0} \subset N_{L}$ is a boundary layer at $\tau=0$ and $\Gamma^{1} \subset N_{R}$ is a boundary layer at $\tau=1$, and Λ is a regular layer connecting the landing points of Γ^{0} and Γ^{1} on the slow manifold \mathscr{Z} to be constructed in Section 5.3.1. We remark that the boundary layers $\Gamma^{0} \subset N_{L}$ and $\Gamma^{1} \subset N_{R}$ cannot be uniquely determined untill the construction of Λ.

Recall that d_{1} and d_{2} are the diameters of the two ion species. For small $d_{1}>0$ and $d_{2}>0$, we treat (5.5) as a regular perturbation of that with $d_{1}=d_{2}=0$. While d_{1} and d_{2} are small, their ratio is of order $O(1)$. We thus set

$$
\begin{equation*}
d_{1}=d \text { and } d_{2}=\lambda d \tag{5.6}
\end{equation*}
$$

Figure 5.1: A singular orbit $\Gamma^{0} \cup \Lambda \cup \Gamma^{1}$ on $[0,1]$: a boundary layer Γ^{0} at $\tau=0$, a regular layer Λ on \mathscr{Z} from $\tau=0$ to $\tau=1$, and a boundary layer Γ^{1} at $\tau=1$.
and look for solutions

$$
\Gamma(\xi ; d)=\left(\phi(\xi ; d), u(\xi ; d), c_{1}(\xi ; d), c_{2}(\xi ; d), J_{1}(d), J_{2}(d), \tau\right)
$$

of system (5.5) of the form

$$
\begin{align*}
\phi(\xi ; d) & =\phi_{0}(\xi)+\phi_{1}(\xi) d+o(d), \quad u(\xi ; d)=u_{0}(\xi)+u_{1}(\xi) d+o(d) \\
c_{1}(\xi ; d) & =c_{10}(\xi)+c_{11}(\xi) d+o(d), \quad c_{2}(\xi)=c_{20}(\xi)+c_{21}(\xi) d+o(d) \tag{5.7}\\
J_{1}(d) & =J_{10}+J_{11} d+o(d), \quad J_{2}(d)=J_{20}+J_{21} d+o(d)
\end{align*}
$$

Substituting (5.7) into system (5.5), we obtain, for the zeroth order in d,

$$
\begin{align*}
& \phi_{0}^{\prime}=u_{0}, \quad u_{0}^{\prime}=-z_{1} c_{10}-z_{2} c_{20} \\
& c_{10}^{\prime}=-z_{1} c_{10} u_{0}, \quad c_{20}^{\prime}=-z_{2} c_{20} u_{0} \tag{5.8}\\
& J_{10}^{\prime}=J_{20}^{\prime}=0, \quad \tau^{\prime}=0
\end{align*}
$$

and, for the first order in d,

$$
\begin{align*}
& \phi_{1}^{\prime}=u_{1}, \quad u_{1}^{\prime}=-z_{1} c_{11}-z_{2} c_{21} \\
& c_{11}^{\prime}=-z_{1} u_{0} c_{11}-z_{1} c_{10} u_{1}+u_{0}\left((\lambda+1) z_{2} c_{10} c_{20}+2 z_{1} c_{10}^{2}\right), \\
& c_{21}^{\prime}=-z_{2} u_{0} c_{21}-z_{2} c_{20} u_{1}+u_{0}\left((\lambda+1) z_{1} c_{10} c_{20}+2 \lambda z_{2} c_{20}^{2}\right), \tag{5.9}\\
& J_{11}^{\prime}=J_{21}^{\prime}=0, \quad \tau^{\prime}=0 .
\end{align*}
$$

Recall that we are interested in the solutions $\Gamma^{0}(\xi ; d) \subset N_{L}=M_{L} \cap W^{s}(\mathscr{Z})$ with $\Gamma^{0}(0 ; d) \in$ B_{L} and $\Gamma^{1}(\xi ; d) \subset N_{R}=M_{R} \cap W^{u}(\mathscr{Z})$ with $\Gamma^{1}(0 ; d) \in B_{R}$.

Proposition 5.2. Assume that $d \geq 0$ is small.
(i) The stable manifold $W^{s}(\mathscr{Z})$ intersects B_{L} transversally at points

$$
\left(\bar{V}, u_{0}^{l}+u_{1}^{l} d+o(d), L_{1}, L_{2}, J_{1}(d), J_{2}(d), 0\right)
$$

and the ω-limit set of $N_{L}=M_{L} \cap W^{s}(\mathscr{Z})$ is

$$
\omega\left(N_{L}\right)=\left\{\left(\phi_{0}^{L}+\phi_{1}^{L} d+o(d), 0, c_{10}^{L}+c_{11}^{L} d+o(d), c_{20}^{L}+c_{21}^{L} d+o(d), J_{1}(d), J_{2}(d), 0\right)\right\},
$$

where $J_{i}(d)=J_{i 0}+J_{i 1} d+o(d), i=1,2$, can be arbitrary and

$$
\phi_{0}^{L}=\bar{V}-\frac{1}{z_{1}-z_{2}} \ln \frac{-z_{2} L_{2}}{z_{1} L_{1}}, \quad z_{1} c_{10}^{L}=-z_{2} c_{20}^{L}=\left(z_{1} L_{1}\right)^{\frac{-z_{2}}{z_{1}-z_{2}}}\left(-z_{2} L_{2}\right)^{\frac{z_{1}}{z_{1}-z_{2}}},
$$

$$
\begin{aligned}
u_{0}^{l} & =\operatorname{sgn}\left(z_{1} L_{1}+z_{2} L_{2}\right) \sqrt{2\left(L_{1}+L_{2}+\frac{z_{1}-z_{2}}{z_{1} z_{2}}\left(z_{1} L_{1}\right)^{\frac{-z_{2}}{z_{1}-z_{2}}}\left(-z_{2} L_{2}\right)^{\frac{z_{1}}{z_{1}-z_{2}}}\right)} \\
\phi_{1}^{L} & =\frac{1-\lambda}{z_{1}-z_{2}}\left(L_{1}+L_{2}-c_{10}^{L}-c_{20}^{L}\right), \\
z_{1} c_{11}^{L} & =-z_{2} c_{21}^{L}=z_{1} c_{10}^{L}\left(L_{1}+\lambda L_{2}+\frac{\lambda z_{1}-z_{2}}{z_{1}-z_{2}}\left(L_{1}+L_{2}\right)+\frac{2\left(\lambda z_{1}-z_{2}\right)}{z_{2}} c_{10}^{L}\right) \\
u_{1}^{l} & =\frac{\left(L_{1}+L_{2}\right)\left(L_{1}+\lambda L_{2}\right)-\left(c_{10}^{L}+c_{20}^{L}\right)\left(c_{10}^{L}+\lambda c_{20}^{L}\right)-c_{11}^{L}-c_{21}^{L}}{u_{0}^{l}}
\end{aligned}
$$

(ii) The unstable manifold $W^{u}(\mathscr{Z})$ intersects B_{R} transversally at points

$$
\left(0, u_{0}^{r}+u_{1}^{r} d+o(d), R_{1}, R_{2}, J_{1}(d), J_{2}(d), 1\right)
$$

and the α-limit set of N_{R} is

$$
\alpha\left(N_{R}\right)=\left\{\left(\phi_{0}^{R}+\phi_{1}^{R} d+o(d), 0, c_{10}^{R}+c_{11}^{R} d+o(d), c_{20}^{R}+c_{21}^{R} d+o(d), J_{1}(d), J_{2}(d), 1\right)\right\},
$$

where $J_{i}(d)=J_{i 0}+J_{i 1} d+o(d), i=1,2$, can be arbitrary and

$$
\begin{aligned}
\phi_{0}^{R} & =-\frac{1}{z_{1}-z_{2}} \ln \frac{-z_{2} R_{2}}{z_{1} R_{1}}, \quad z_{1} c_{10}^{R}=-z_{2} c_{20}^{R}=\left(z_{1} R_{1}\right)^{\frac{-z_{2}}{z_{1}-z_{2}}}\left(-z_{2} R_{2}\right)^{\frac{z_{1}}{z_{1}-z_{2}}} \\
u_{0}^{r} & \left.=-\operatorname{sgn}\left(z_{1} R_{1}+z_{2} R_{2}\right) \sqrt{2\left(R_{1}+R_{2}+\frac{z_{1}-z_{2}}{z_{1} z_{2}}\left(z_{1} R_{1}\right)^{\frac{-z_{2}}{z_{1}-z_{2}}}\left(-z_{2} R_{2}\right)^{\frac{z_{1}}{z_{1}-z_{2}}}\right.}\right) \\
\phi_{1}^{R} & =\frac{1-\lambda}{z_{1}-z_{2}}\left(R_{1}+R_{2}-c_{10}^{R}-c_{20}^{R}\right), \\
z_{1} c_{11}^{R} & =-z_{2} c_{21}^{R}=z_{1} c_{10}^{R}\left(R_{1}+\lambda R_{2}+\frac{\lambda z_{1}-z_{2}}{z_{1}-z_{2}}\left(R_{1}+R_{2}\right)+\frac{2\left(\lambda z_{1}-z_{2}\right)}{z_{2}} c_{10}^{R}\right), \\
u_{1}^{r} & =\frac{\left(R_{1}+R_{2}\right)\left(R_{1}+\lambda R_{2}\right)-\left(c_{10}^{R}+c_{20}^{R}\right)\left(c_{10}^{R}+\lambda c_{20}^{R}\right)-c_{11}^{R}-c_{21}^{R}}{u_{0}^{r}} .
\end{aligned}
$$

Remark 5.3. When $z_{1} L_{1}+z_{2} L_{2}=0$, $u_{0}^{l}=0$. In this case, u_{1}^{l} is defined as the limit of its expression as $z_{1} L_{1}+z_{2} L_{2} \rightarrow 0$ and it is zero. Similar remark applies to u_{1}^{r} when $z_{1} R_{1}+z_{2} R_{2}=0$.

Proof. The stated result for system (5.8) has been obtained in [24, 57, 58]. For system (5.9), one can check that it has three nontrivial first integrals:

$$
\begin{aligned}
& F_{1}=z_{1} \phi_{1}+\frac{c_{11}}{c_{10}}+2 c_{10}+(\lambda+1) c_{20} \\
& F_{2}=z_{2} \phi_{1}+\frac{c_{21}}{c_{20}}+2 \lambda c_{20}+(\lambda+1) c_{10} \\
& F_{3}=u_{0} u_{1}-c_{11}-c_{21}-(\lambda+1) c_{10} c_{20}-c_{10}^{2}-\lambda c_{20}^{2}
\end{aligned}
$$

We now establish the results for $\phi_{1}^{L}, c_{11}^{L}, c_{21}^{L}$ and u_{1}^{l} for system (5.9). Those for $\phi_{1}^{R}, c_{11}^{R}, c_{21}^{R}$ and u_{1}^{r} can be established in the similar way.

We note that $\phi_{1}(0)=c_{11}(0)=c_{21}(0)=0$. Using the integrals F_{1} and F_{2}, we have

$$
\begin{aligned}
& z_{1} \phi_{1}+\frac{c_{11}}{c_{10}}+2 c_{10}+(\lambda+1) c_{20}=2 L_{1}+(\lambda+1) L_{2}, \\
& z_{2} \phi_{1}+\frac{c_{21}}{c_{20}}+2 \lambda c_{10}+(\lambda+1) c_{10}=2 \lambda L_{2}+(\lambda+1) L_{1} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& c_{11}=c_{10}\left(2 L_{1}+(\lambda+1) L_{2}-2 c_{10}-(\lambda+1) c_{20}-z_{1} \phi_{1}\right), \\
& c_{21}=c_{20}\left(2 \lambda L_{2}+(\lambda+1) L_{1}-2 \lambda c_{20}-(\lambda+1) c_{10}-z_{2} \phi_{1}\right) .
\end{aligned}
$$

Taking the limit as $\xi \rightarrow \infty$, we have

$$
\begin{aligned}
\phi_{1}^{L} & =\frac{1-\lambda}{z_{1}-z_{2}}\left(L_{1}+L_{2}-c_{10}^{L}-c_{20}^{L}\right), \\
c_{11}^{L} & =c_{10}^{L}\left(2 L_{1}+(\lambda+1) L_{2}-2 c_{10}^{L}-(\lambda+1) c_{20}^{L}-z_{1} \phi_{1}^{L}\right), \\
c_{21}^{L} & =c_{20}^{L}\left(2 \lambda L_{2}+(\lambda+1) L_{1}-2 \lambda c_{20}^{L}-(\lambda+1) c_{10}^{L}-z_{2} \phi_{1}^{L}\right) .
\end{aligned}
$$

In view of the relations $z_{1} c_{10}^{L}+z_{2} c_{20}^{L}=z_{1} c_{11}^{L}+z_{2} c_{21}^{L}=0$, one can get the formulas for c_{11}^{L}, c_{21}^{L} and ϕ_{1}^{L}. We now derive the formula for $u_{1}^{l}=u_{1}(0)$.

In view of $F_{3}(0)=F_{3}(\infty)$, we have

$$
u_{0}^{l} u_{1}^{l}-(\lambda+1) L_{1} L_{2}-L_{1}^{2}-\lambda L_{2}^{2}=-c_{11}^{L}-c_{21}^{L}-(\lambda+1) c_{10}^{L} c_{20}^{L}-\left(c_{10}^{L}\right)^{2}-\lambda\left(c_{20}^{L}\right)^{2} .
$$

The formula for u_{1}^{l} follows directly.

For later use, let Γ^{0} denote the potential boundary layer at $x=0$ for system (5.5) and Let Γ^{1} denote the potential boundary layer at $x=1$ for system (5.5).

Corollary 5.4. Under electroneutrality boundary conditions, that is, $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$,

$$
\begin{gathered}
\phi_{0}^{L}=\bar{V}, z_{1} c_{10}^{L}=-z_{2} c_{20}^{L}=L ; \phi_{0}^{R}=0, z_{1} c_{10}^{R}=-z_{2} c_{20}^{R}=R, \\
\phi_{1}^{L}=c_{11}^{L}=c_{21}^{L}=\phi_{1}^{R}=c_{11}^{R}=c_{21}^{R}=0 .
\end{gathered}
$$

In particular, up to $O(d)$, there is no boundary layer at $x=0$ and $x=1$.

Limiting slow dynamics and regular layer

Next we construct the regular layer on \mathscr{Z} that connects $\omega\left(N_{L}\right)$ and $\alpha\left(N_{R}\right)$. Note that, for $\varepsilon=0$, system (5.1) loses most information. To remedy this degeneracy, we follow the idea in $[24,57,58]$ and make a rescaling $u=\varepsilon p$ and $-z_{2} c_{2}=z_{1} c_{1}+\varepsilon q$ in system (5.1). In term of the new variables, system (5.1) becomes

$$
\begin{align*}
& \dot{\phi}=p, \quad \varepsilon \dot{p}=q-\varepsilon \frac{h_{\tau}(\tau)}{h(\tau)} p, \quad \varepsilon \dot{q}=\left(z_{1} f_{1}-z_{2} f_{2}\right) p+\frac{z_{1} g_{1}+z_{2} g_{2}}{h(\tau)} \tag{5.10}\\
& \dot{c}_{1}=-f_{1} p-\frac{g_{1}}{h(\tau)}, \quad \dot{J}_{1}=\dot{J}_{2}=0, \quad \dot{\tau}=1
\end{align*}
$$

where, for $i=1,2$,

$$
f_{i}=f_{i}\left(c_{1},-\frac{z_{1} c_{1}+\varepsilon q}{z_{2}} ; d, \lambda d\right) \text { and } g_{i}=g_{i}\left(c_{1},-\frac{z_{1} c_{1}+\varepsilon q}{z_{2}}, J_{1}, J_{2} ; d, \lambda d\right)
$$

It is again a singular perturbation problem and its limiting slow system is

$$
\begin{align*}
q & =0, \quad p=-\frac{1}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{1}} \sum_{i=1}^{2} z_{i} g_{i}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right), \\
\dot{\phi} & =p \tag{5.11}\\
\dot{c}_{1} & =-f_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1} ; d, \lambda d\right) p-\frac{1}{h(\tau)} g_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right), \\
\dot{J}_{1} & =\dot{J}_{2}=0, \quad \dot{\tau}=1
\end{align*}
$$

In the above, for the expression for p, we have used (5.4) to find

$$
z_{1} f_{1}\left(c_{1},-\frac{z_{1} c_{1}}{z_{2}} ; d, \lambda d\right)-z_{2} f_{2}\left(c_{1},-\frac{z_{1} c_{1}}{z_{2}} ; d, \lambda d\right)=z_{1}\left(z_{1}-z_{2}\right) c_{1}
$$

From system (5.11), the slow manifold is

$$
\mathscr{S}=\left\{q=0, p=-\frac{z_{1} g_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right)+z_{2} g_{2}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right)}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{1}}\right\} .
$$

Therefore, the limiting slow system on \mathscr{S} is

$$
\begin{align*}
& \dot{\phi}=p \\
& \dot{c}_{1}=-f_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1} ; d, \lambda d\right) p-\frac{1}{h(\tau)} g_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right), \tag{5.12}\\
& \dot{J}_{1}=\dot{J}_{2}=0, \quad \dot{\tau}=1
\end{align*}
$$

where

$$
p=-\frac{z_{1} g_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right)+z_{2} g_{2}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right)}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{1}} .
$$

As for the layer problem, we look for solutions of (5.12) of the form

$$
\begin{align*}
\phi(x) & =\phi_{0}(x)+\phi_{1}(x) d+o(d), \\
c_{1}(x) & =c_{10}(x)+c_{11}(x) d+o(d), \tag{5.13}\\
J_{1} & =J_{10}+J_{11} d+o(d), \quad J_{2}=J_{20}+J_{21} d+o(d)
\end{align*}
$$

to connect $\omega\left(N_{L}\right)$ and $\alpha\left(N_{R}\right)$ given in Proposition 5.2; in particular, for $j=0,1$,

$$
\left(\phi_{j}(0), c_{1 j}(0)\right)=\left(\phi_{j}^{L}, c_{1 j}^{L}\right), \quad\left(\phi_{j}(1), c_{1 j}(1)\right)=\left(\phi_{j}^{R}, c_{1 j}^{R}\right) .
$$

From system (5.12) and the definitions of f_{j} 's and g_{j} 's in (5.4), we have

$$
\begin{align*}
& \dot{\phi}_{0}=-\frac{z_{1} J_{10}+z_{2} J_{20}}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{10}}, \quad \dot{c}_{10}=\frac{z_{2}\left(J_{10}+J_{20}\right)}{\left(z_{1}-z_{2}\right) h(\tau)}, \tag{5.14}\\
& \dot{J}_{10}=\dot{J}_{20}=0, \quad \dot{\tau}=1,
\end{align*}
$$

and

$$
\begin{align*}
& \dot{\phi}_{1}=\frac{\left(z_{1} J_{10}+z_{2} J_{20}\right) c_{11}}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{10}^{2}}+\frac{z_{1}(1-\lambda)\left(J_{10}+J_{20}\right) c_{10}-\left(z_{1} J_{11}+z_{2} J_{21}\right)}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{10}} \\
& \dot{c}_{11}=\frac{2\left(\lambda z_{1}-z_{2}\right)\left(J_{10}+J_{20}\right) c_{10}+z_{2}\left(J_{11}+J_{21}\right)}{\left(z_{1}-z_{2}\right) h(\tau)} \tag{5.15}\\
& \dot{J}_{11}=\dot{J}_{21}=0, \quad \dot{\tau}=1
\end{align*}
$$

For convenience, we denote

$$
\begin{equation*}
H(x)=\int_{0}^{x} h^{-1}(s) d s \tag{5.16}
\end{equation*}
$$

Lemma 5.5. There is a unique solution $\left(\phi_{0}(x), c_{10}(x), J_{10}, J_{20}, \tau(x)\right)$ of (5.14) such that

$$
\begin{equation*}
\left(\phi_{0}(0), c_{10}(0), \tau(0)\right)=\left(\phi_{0}^{L}, c_{10}^{L}, 0\right) \text { and }\left(\phi_{0}(1), c_{10}(1), \tau(1)\right)=\left(\phi_{0}^{R}, c_{10}^{R}, 1\right) \tag{5.17}
\end{equation*}
$$

where $\phi_{0}^{L}, \phi_{0}^{R}, c_{10}^{L}$, and c_{10}^{R} are given in Proposition 5.2. It is given by

$$
\begin{aligned}
\phi_{0}(x) & =\phi_{0}^{L}+\frac{\phi_{0}^{R}-\phi_{0}^{L}}{\ln c_{10}^{R}-\ln c_{10}^{L}} \ln \left(1-\frac{H(x)}{H(1)}+\frac{H(x)}{H(1)} \frac{c_{10}^{R}}{c_{10}^{L}}\right), \\
c_{10}(x) & =\left(1-\frac{H(x)}{H(1)}\right) c_{10}^{L}+\frac{H(x)}{H(1)} c_{10}^{R} \\
J_{10} & =\frac{c_{10}^{L}-c_{10}^{R}}{H(1)}\left(1+\frac{z_{1}\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\right), \\
J_{20} & =-\frac{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)}{z_{2} H(1)}\left(1+\frac{z_{2}\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\right), \\
\tau(x) & =x .
\end{aligned}
$$

Proof. The solution of system (5.14) with the initial condition $\left(\phi_{0}^{L}, c_{10}^{L}, J_{10}, J_{20}, 0\right)$ that corresponds to the point $\left(\phi_{0}^{L}, 0, c_{10}^{L}, c_{20}^{L}, J_{10}, J_{20}, 0\right)$ is

$$
\begin{align*}
& \phi_{0}(x)=\phi_{0}^{L}-\frac{z_{1} J_{10}+z_{2} J_{20}}{z_{1}\left(z_{1}-z_{2}\right)} \int_{0}^{x} h^{-1}(s) c_{10}^{-1}(s) d s, \tag{5.18}\\
& c_{10}(x)=c_{10}^{L}+\frac{z_{2}\left(J_{10}+J_{20}\right)}{z_{1}-z_{2}} H(x), \quad \tau(x)=x .
\end{align*}
$$

It follows from the c_{10}-equation and $c_{10}(1)=c_{10}^{R}$ that

$$
\begin{equation*}
J_{10}+J_{20}=-\frac{\left(z_{1}-z_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{z_{2} H(1)} \tag{5.19}
\end{equation*}
$$

Note that, from (5.14),

$$
\int_{0}^{x} h^{-1}(s) c_{10}^{-1}(s) d s=\frac{z_{1}-z_{2}}{z_{2}\left(J_{10}+J_{20}\right)} \int_{0}^{x} \frac{\dot{c}_{10}(s)}{c_{10}(s)} d s=H(1) \frac{\ln c_{10}^{L}-\ln c_{10}(x)}{c_{10}^{L}-c_{10}^{R}}
$$

Thus,

$$
\phi_{0}(x)=\phi_{0}^{L}-H(1) \frac{z_{1} J_{10}+z_{2} J_{20}}{z_{1}\left(z_{1}-z_{2}\right)} \frac{\ln c_{10}^{L}-\ln c_{10}(x)}{c_{10}^{L}-c_{10}^{R}} .
$$

Applying the boundary condition $c_{10}(1)=c_{10}^{R}$ and $\phi_{0}(1)=\phi_{0}^{R}$, we have

$$
\begin{align*}
J_{10}+J_{20} & =-\frac{\left(z_{1}-z_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{z_{2} H(1)}, \\
z_{1} J_{10}+z_{2} J_{20} & =\frac{z_{1}\left(z_{1}-z_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)} . \tag{5.20}
\end{align*}
$$

The expressions for J_{10} and J_{20}, and hence, for $\phi_{0}(x)$ and $c_{10}(x)$ follow directly.

For convenience, we define three functions

$$
M=M\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), N=N\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), P(x)=P\left(x ; L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)
$$

as

$$
\begin{align*}
M= & z_{1} c_{10}^{L} w\left(L_{1}, L_{2}\right)-z_{1} c_{10}^{R} w\left(R_{1}, R_{2}\right)+\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)}{z_{2}}\left(\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}\right), \\
N= & \frac{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{1}^{L}-\phi_{1}^{R}\right)-\frac{(1-\lambda) z_{1}}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}}+\frac{\phi_{0}^{L}-\phi_{0}^{R}}{\ln c_{10}^{L}-\ln c_{10}^{R}} M \\
& -\frac{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}}\left(\phi_{0}^{L}-\phi_{0}^{R}\right), \\
P(x)= & \frac{\lambda z_{1}-z_{2}}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right) H(x)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right) H(1)} \tag{5.21}\\
& +\frac{c_{10}^{L}-c_{10}(x)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\frac{w\left(L_{1}, L_{2}\right)}{c_{10}(x)}+\frac{\lambda z_{1}-z_{2}}{z_{2}} \frac{c_{10}^{L}}{c_{10}(x)}\right) \\
& -\frac{H(x)}{z_{1}\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right) c_{10}(x) H(1)} M+\frac{\ln c_{10}^{L}-\ln c_{10}(x)}{z_{1}\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)\left(c_{10}^{L}-c_{10}^{R}\right)} M
\end{align*}
$$

where

$$
w(\alpha, \beta)=\alpha+\lambda \beta+\frac{\lambda z_{1}-z_{2}}{z_{1}-z_{2}}(\alpha+\beta) .
$$

Lemma 5.6. There is a unique solution $\left(\phi_{1}(x), c_{11}(x), J_{11}, J_{21}, \tau(x)\right)$ of (5.15) such that

$$
\begin{equation*}
\left(\phi_{1}(0), c_{11}(0), \tau(0)\right)=\left(\phi_{1}^{L}, c_{11}^{L}, 0\right) \text { and }\left(\phi_{1}(1), c_{11}(1), \tau(1)\right)=\left(\phi_{1}^{R}, c_{11}^{R}, 1\right) \tag{5.22}
\end{equation*}
$$

where $\phi_{1}^{L}, \phi_{1}^{R}, c_{11}^{L}$, and c_{11}^{R} are given in Proposition 5.2. It is given by

$$
\begin{aligned}
\phi_{1}(x) & =\phi_{1}^{L}-\frac{(1-\lambda)\left(c_{10}^{L}-c_{10}^{R}\right) H(x)}{z_{2} H(1)}+\left(\phi_{0}^{L}-\phi_{0}^{R}\right) P(x)-\frac{\ln c_{10}(x)-\ln c_{10}^{L}}{z_{1}\left(z_{1}-z_{2}\right)\left(c_{10}^{R}-c_{10}^{L}\right)} N \\
c_{11}(x) & =c_{11}^{L}+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(c_{10}^{2}(x)-\left(c_{10}^{L}\right)^{2}\right)-\frac{H(x)}{z_{1} H(1)} M, \\
J_{11} & =\frac{M}{z_{1} H(1)}+\frac{N}{H(1)}, \quad J_{21}=-\frac{M}{z_{2} H(1)}-\frac{N}{H(1)},
\end{aligned}
$$

where M, N, and P are defined in (5.21).

Proof. It follows from (5.15) that

$$
c_{11}(x)=c_{11}^{L}+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(c_{10}^{2}(x)-\left(c_{10}^{L}\right)^{2}\right)+\frac{z_{2}\left(J_{11}+J_{21}\right)}{z_{1}-z_{2}} H(x)
$$

Thus, from Proposition 5.2,

$$
\begin{aligned}
\frac{z_{2}\left(J_{11}+J_{21}\right)}{z_{2}-z_{1}} H(1) & =c_{11}^{L}-c_{11}^{R}+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(\left(c_{10}^{R}\right)^{2}-\left(c_{10}^{L}\right)^{2}\right) \\
& =c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}\right),
\end{aligned}
$$

or, by the definition of M in (5.21),

$$
\begin{equation*}
J_{11}+J_{21}=\frac{z_{2}-z_{1}}{z_{1} z_{2} H(1)} M \tag{5.23}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
c_{11}(x)=c_{11}^{L}+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(c_{10}^{2}(x)-\left(c_{10}^{L}\right)^{2}\right)-\frac{H(x)}{z_{1} H(1)} M . \tag{5.24}
\end{equation*}
$$

Again, from (5.15)

$$
\begin{aligned}
\phi_{1}(x)= & \phi_{1}^{L}+\frac{z_{1} J_{10}+z_{2} J_{20}}{z_{1}\left(z_{1}-z_{2}\right)} \int_{0}^{x} \frac{c_{11}(s)}{h(s) c_{10}^{2}(s)} d s+\frac{(1-\lambda)\left(J_{10}+J_{20}\right)}{z_{1}-z_{2}} H(x) \\
& -\frac{z_{1} J_{11}+z_{2} J_{21}}{z_{1}\left(z_{1}-z_{2}\right)} \int_{0}^{x} \frac{1}{h(s) c_{10}(s)} d s .
\end{aligned}
$$

Note that, from (5.14) and (5.19),

$$
\begin{aligned}
\int_{0}^{x} \frac{c_{10}(s)}{h(s)} d s & =\frac{z_{1}-z_{2}}{z_{2}\left(J_{10}+J_{20}\right)} \int_{0}^{x} c_{10}(s) \dot{c}_{10}(s) d s=\frac{H(1)}{2} \frac{\left(c_{10}^{L}\right)^{2}-c_{10}^{2}(x)}{c_{10}^{L}-c_{10}^{R}} \\
\int_{0}^{x} \frac{1}{h(s) c_{10}^{2}(s)} d s & =\frac{z_{1}-z_{2}}{z_{2}\left(J_{10}+J_{20}\right)} \int_{0}^{x} \frac{\dot{c}_{10}(s)}{c_{10}^{2}(s)} d s=H(1) \frac{c_{10}^{L}-c_{10}(x)}{\left(c_{10}^{L}-c_{10}^{R}\right) c_{10}^{L} c_{10}(x)} \\
\int_{0}^{x} \frac{\int_{0}^{s} h^{-1}(\sigma) d \sigma}{h(s) c_{10}^{2}(s)} d s & =-\frac{z_{1}-z_{2}}{z_{2}\left(J_{10}+J_{20}\right)} \int_{0}^{x} \int_{0}^{s} h^{-1}(\sigma) d \sigma \frac{d}{d s} c_{10}^{-1}(s) d s \\
& =\frac{H(1)}{c_{10}^{L}-c_{10}^{R}}\left(\frac{H(x)}{c_{10}(x)}-\int_{0}^{x} h^{-1}(s) c_{10}^{-1}(s) d s\right) \\
& =\frac{H(1) H(x)}{\left(c_{10}^{L}-c_{10}^{R}\right) c_{10}(x)}-H^{2}(1) \frac{\ln c_{10}^{L}-\ln c_{10}(x)}{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}}
\end{aligned}
$$

These, together with (5.24) and (5.20), yield

$$
\begin{aligned}
& \int_{0}^{x} \frac{c_{11}(s)}{h(s) c_{10}^{2}(s)} d s=\left(w\left(L_{1}, L_{2}\right)+\frac{\lambda z_{1}-z_{2}}{z_{2}} c_{10}^{L}\right) \frac{H(1)\left(c_{10}^{L}-c_{10}(x)\right)}{\left(c_{10}^{L}-c_{10}^{R}\right) c_{10}(x)} \\
& \quad+\frac{\lambda z_{1}-z_{2}}{z_{2}} H(x)-\frac{M}{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)}\left(\frac{H(x)}{c_{10}(x)}-\frac{\ln c_{10}^{L}-\ln c_{10}(x)}{c_{10}^{L}-c_{10}^{R}} H(1)\right) .
\end{aligned}
$$

A careful calculation then gives

$$
\phi_{1}(x)=\phi_{1}^{L}-\frac{(1-\lambda)\left(c_{10}^{L}-c_{10}^{R}\right) H(x)}{z_{2} H(1)}+\left(\phi_{0}^{L}-\phi_{0}^{R}\right) P(x)
$$

$$
-\frac{z_{1} J_{11}+z_{2} J_{21}}{z_{1}\left(z_{1}-z_{2}\right)} \frac{\ln c_{10}^{L}-\ln c_{10}(x)}{c_{10}^{L}-c_{10}^{R}} H(1)
$$

Hence,

$$
\begin{aligned}
\phi_{1}^{R}= & \phi_{1}^{L}-\frac{1-\lambda}{z_{2}}\left(c_{10}^{L}-c_{10}^{R}\right)+\left(\phi_{0}^{L}-\phi_{0}^{R}\right) P(1) \\
& -\frac{z_{1} J_{11}+z_{2} J_{21}}{z_{1}\left(z_{1}-z_{2}\right)} \frac{\ln c_{10}^{L}-\ln c_{10}^{R}}{c_{10}^{L}-c_{10}^{R}} H(1) \\
= & \phi_{1}^{L}-\frac{1-\lambda}{z_{2}}\left(c_{10}^{L}-c_{10}^{R}\right)-\frac{w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{0}^{L}-\phi_{0}^{R}\right) \\
& +\frac{M\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)}-\frac{\left(z_{1} J_{11}+z_{2} J_{21}\right)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)}{z_{1}\left(z_{1}-z_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)} H(1) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
H(1) & \frac{z_{1} J_{11}+z_{2} J_{21}}{z_{1}-z_{2}}=z_{1} \frac{c_{10}^{L}-c_{10}^{R}}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{1}^{L}-\phi_{1}^{R}\right)-\frac{(1-\lambda) z_{1}}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}} \\
& +\frac{M\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}-z_{1} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}}\left(\phi_{0}^{L}-\phi_{0}^{R}\right)=N .
\end{aligned}
$$

Formulas for J_{11}, J_{21}, and ϕ_{1} follow directly.
Corollary 5.7. Under the electroneutrality conditions at the boundaries, that is, $z_{1} L_{1}=$ $-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$, we have,

$$
\begin{aligned}
J_{10}= & \frac{L-R}{z_{1} H(1)}\left(1+\frac{z_{1} \bar{V}}{\ln L-\ln R}\right), \quad J_{20}=\frac{L-R}{z_{2} H(1)}\left(1+\frac{z_{2} \bar{V}}{\ln L-\ln R}\right) ; \\
J_{11}= & \frac{\lambda z_{1}-z_{2}}{z_{1} z_{2} H(1)} \frac{R-L}{\ln R-\ln L}\left(\frac{2(R-L)}{\ln R-\ln L}-(R+L)\right) \bar{V} \\
& +\frac{1-\lambda}{z_{1} z_{2} H(1)} \frac{(R-L)^{2}}{\ln R-\ln L}+\frac{\lambda z_{1}-z_{2}}{z_{1}^{2} z_{2} H(1)}\left(R^{2}-L^{2}\right), \\
J_{21}= & -\frac{\lambda z_{1}-z_{2}}{z_{1} z_{2} H(1)} \frac{R-L}{\ln R-\ln L}\left(\frac{2(R-L)}{\ln R-\ln L}-(R+L)\right) \bar{V} \\
& -\frac{1-\lambda}{z_{1} z_{2} H(1)} \frac{(R-L)^{2}}{\ln R-\ln L}-\frac{\lambda z_{1}-z_{2}}{z_{1} z_{2}^{2} H(1)}\left(R^{2}-L^{2}\right) .
\end{aligned}
$$

Proof. This follows directly from Lemmas 5.5 and 5.6 and Proposition 5.2.

The slow orbit, up to $O(d)$,

$$
\begin{equation*}
\Lambda(x ; d)=\left(\phi_{0}(x)+\phi_{1}(x) d, c_{10}(x)+c_{11}(x) d, J_{10}+J_{11} d, J_{20}+J_{21} d, \tau(x)\right) \tag{5.25}
\end{equation*}
$$

given in Lemmas 5.5 and 5.6 connects $\omega\left(N_{L}\right)$ and $\alpha\left(N_{R}\right)$. Let \bar{M}_{L} (resp., \bar{M}_{R}) be the forward (resp., backward) image of $\omega\left(N_{L}\right)$ (resp., $\alpha\left(N_{R}\right)$) under the slow flow (5.12) on the five-dimensional slow manifold \mathscr{S}. Following the idea in [57], we have

Proposition 5.8. There exists $d_{0}>0$ small depending on boundary conditions so that, if $0 \leq d \leq d_{0}$, then, on the five-dimensional slow manifold \mathscr{S}, \bar{M}_{L} and \bar{M}_{R} intersects transversally along the unique orbit $\Lambda(x ; d)$ given in (5.25).

Proof. To see the transversality of the intersection, it suffices to show that $\omega\left(N_{L}\right) \cdot 1$ (the image of $\omega\left(N_{L}\right)$ under the time-one map of the flow of system (5.12)) is transversal to $\alpha\left(N_{R}\right)$ on $\mathscr{S} \bigcap\{\tau=1\}$. We will show first that, for $d=0, \omega\left(N_{L}\right) \cdot 1$ and $\alpha\left(N_{R}\right)$ intersect transversally on $\mathscr{S} \bigcap\{\tau=1\}$. We will use $\left(\phi, c_{1}, J_{1}, J_{2}\right)$ as a coordinate system on $\mathscr{S} \cap\{\tau=1\}$. It follows from (5.18) that, for $d=0, \omega\left(N_{L}\right) \cdot 1$ is given by

$$
\omega\left(N_{L}\right) \cdot 1=\left\{\left(\phi\left(J_{1}, J_{2}\right), c_{1}\left(J_{1}, J_{2}\right), J_{1}, J_{2}\right): \text { arbitrary } J_{1}, J_{2}\right\}
$$

with

$$
\begin{aligned}
& \phi\left(J_{1}, J_{2}\right)=\phi_{0}^{L}-\frac{z_{1} J_{1}+z_{2} J_{2}}{z_{1} z_{2}\left(J_{1}+J_{2}\right)} \ln \frac{c_{1}\left(J_{1}, J_{2}\right)}{c_{10}^{L}}, \\
& c_{1}\left(J_{1}, J_{2}\right)=c_{10}^{L}+\frac{z_{2} H(1)\left(J_{1}+J_{2}\right)}{z_{1}-z_{2}}
\end{aligned}
$$

Thus, the tangent space to $\omega\left(N_{L}\right) \cdot 1$ restricted on $\mathscr{S} \bigcap\{\tau=1\}$ is spanned by the vectors

$$
\left(\phi_{J_{1}},\left(c_{1}\right)_{J_{1}}, 1,0\right)=\left(\phi_{J_{1}}, \frac{z_{2}}{z_{1}-z_{2}} H(1), 1,0\right)
$$

and

$$
\left(\phi_{J_{2}},\left(c_{1}\right)_{J_{2}}, 0,1\right)=\left(\phi_{J_{2}}, \frac{z_{2}}{z_{1}-z_{2}} H(1), 0,1\right)
$$

In view of the display in Proposition 5.2, the set $\alpha\left(N_{R}\right)$ is parameterized by J_{1} and J_{2}, and hence, the tangent space to $\alpha\left(N_{R}\right)$ restricted on $\mathscr{S} \cap\{\tau=1\}$ is spanned by $(0,0,1,0)$ and $(0,0,0,1)$. Note that $\mathscr{S} \cap\{\tau=1\}$ is four dimensional. Thus, it suffices to show that the above four vectors are linearly independent or, equivalently, $\phi_{J_{1}} \neq \phi_{J_{2}}$ at $\left(J_{1}, J_{2}\right)=$ $\left(J_{10}, J_{20}\right)$. The latter can be verified by a direct computation as follows:

$$
\phi_{J_{1}}-\phi_{J_{2}}=-\frac{z_{1}-z_{2}}{z_{1} z_{2}\left(J_{1}+J_{2}\right)} \ln \left[1+\frac{z_{2}\left(J_{1}+J_{2}\right)}{\left(z_{1}-z_{2}\right) c_{10}^{L}} H(1)\right] \neq 0
$$

even as $J_{1}+J_{2} \rightarrow 0$. This establishes the transversal intersection of $\omega\left(N_{L}\right) \cdot 1$ and $\alpha\left(N_{R}\right)$ on $\mathscr{S} \cap\{\tau=1\}$. From the smooth dependence of solutions on parameter d, we conclude that there exists $d_{0}>0$ small, so that, if $0 \leq d \leq d_{0}$, then $\omega\left(N_{L}\right) \cdot 1$ and $\alpha\left(N_{R}\right)$ intersect transversally on $\mathscr{S} \cap\{\tau=1\}$. This completes the proof.

5.3.2 Existence of solutions near the singular orbit

We have constructed a unique singular orbit on $[0,1]$ that connects B_{L} to B_{R}. It consists of two boundary layer orbits Γ^{0} from the point

$$
\left(\bar{V}, u_{0}^{l}+u_{1}^{l} d+o(d), L_{1}, L_{2}, J_{10}+J_{11} d+o(d), J_{20}+J_{21} d+o(d), 0\right) \in B_{L}
$$

to the point

$$
\left(\phi^{L}, 0, c_{1}^{L}, c_{2}^{L}, J_{1}, J_{2}, 0\right) \in \omega\left(N_{L}\right) \subset \mathscr{Z}
$$

and Γ^{1} from the point

$$
\left(\phi^{R}, 0, c_{1}^{R}, c_{2}^{R}, J_{1}, J_{2}, 1\right) \in z_{1}\left(N_{R}\right) \subset \mathscr{Z}
$$

to the point

$$
\left(0, u_{0}^{r}+u_{1}^{r}+o(d), R_{1}, R_{2}, J_{1}, J_{2}, 1\right) \in B_{R},
$$

and a regular layer Λ on \mathscr{Z} that connects the two landing points

$$
\left(\phi^{L}, 0, c_{1}^{L}, c_{2}^{L}, J_{1}, J_{2}, 0\right) \in \omega\left(N_{L}\right)
$$

and

$$
\left(\phi^{R}, 0, c_{1}^{R}, c_{2}^{R}, J_{1}, J_{2}, 1\right) \in \alpha\left(N_{R}\right)
$$

of the two boundary layers.
We now establish the existence of a solution of (5.3) and (5.5) near the singular orbit constructed above which is a union of two boundary layers and one regular layer $\Gamma^{0} \cup \Lambda \cup \Gamma^{1}$. The proof follows the same line as that in $[24,57,58]$ and the main tool used is the Exchange Lemma (see, for example [47, 48, 49, 93]) of the geometric singular perturbation theory.

Theorem 5.9. Let $\Gamma^{0} \cup \Lambda \bigcup \Gamma^{1}$ be the singular orbit of the connecting problem system (5.1) associated to B_{L} and B_{R} in system (5.3). Let $d_{0}>0$ be as in Proposition 5.8. Then, there exists $\varepsilon_{0}>0$ small (depending on the boundary conditions and d_{0}) so that, if $0 \leq d \leq d_{0}$ and $0<\varepsilon \leq \varepsilon_{0}$, then the boundary value problem (5.3) and (5.5) has a unique smooth solution near the singular orbit $\Gamma^{0} \cup \Lambda \cup \Gamma^{1}$.

Proof. Let $d_{0}>0$ be as in Proposition 5.8. For $0 \leq d \leq d_{0}$, denote $u^{l}=u_{0}^{l}+u_{1}^{l} d, J_{1}(d)=$ $J_{10}+J_{11} d$ and $J_{2}(d)=J_{20}+J_{21} d$. Fix $\delta>0$ small to be determined. Let

$$
B_{L}(\boldsymbol{\delta})=\left\{\left(\bar{V}, u, L_{1}, L_{2}, J_{1}, J_{2}, 0\right) \in \mathbb{R}^{7}:\left|u-u^{l}\right|<\delta,\left|J_{i}-J_{i}(d)\right|<\delta\right\} .
$$

For $\varepsilon>0$, let $M_{L}(\varepsilon, \delta)$ be the forward trace of $B_{L}(\boldsymbol{\delta})$ under the flow of system (5.1) or equivalently of system (5.2) and let $M_{R}(\varepsilon)$ be the backward trace of B_{R}. To prove the existence and uniqueness statement, it suffices to show that $M_{L}(\varepsilon, \delta)$ intersects $M_{R}(\varepsilon)$ transversally in a neighborhood of the singular orbit $\Gamma^{0} \cup \Lambda \bigcup \Gamma^{1}$. The latter will be established by an application of Exchange Lemmas.

Note that $\operatorname{dim} B_{L}(\boldsymbol{\delta})=3$. It is clear that the vector field of the fast system (5.2) is not tangent to $B_{L}(\delta)$ for $\varepsilon \geq 0$, and hence, $\operatorname{dim} M_{L}(\varepsilon, \delta)=4$. We next apply Exchange Lemma to track $M_{L}(\varepsilon, \delta)$ in the vicinity of $\Gamma^{0} \cup \Lambda \cup \Gamma^{1}$. First of all, the transversality of the intersection $B_{L}(\delta) \bigcap W^{s}(\mathscr{Z})$ along Γ^{0} in Proposition 5.2 implies the transversality of intersection $M_{L}(0, \delta) \cap W^{s}(\mathscr{Z})$. Secondly, we have also established that $\operatorname{dim} \omega\left(N_{L}\right)=$ $\operatorname{dim} N_{L}-1=2$ in Proposition 5.2 and that the limiting slow flow is not tangent to $\omega\left(N_{L}\right)$ in Section 5.3.1. With these conditions, Exchange Lemma ([47, 48, 49, 93]) states that there exist $\rho>0$ and $\varepsilon_{1}>0$ so that, if $0<\varepsilon \leq \varepsilon_{1}$, then $M_{L}(\varepsilon, \delta)$ will first follow Γ^{0} toward $\omega\left(N_{L}\right) \subset \mathscr{Z}$, then follow the trace of $\omega\left(N_{L}\right)$ in the vicinity of Λ toward $\{\tau=$ $1\}$, leave the vicinity of \mathscr{Z}, and, upon exit, a portion of $M_{L}(\varepsilon, \delta)$ is $C^{1} O(\varepsilon)$-close to $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ in the vicinity of Γ^{1} (see Figure 5.2 for an illustration). Note that $\operatorname{dim} W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)=\operatorname{dim} M_{L}(\varepsilon, \delta)=4$.

It remains to show that $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ intersects $M_{R}(\varepsilon)$ transversally since $M_{L}(\varepsilon, \delta)$ is $C^{1} O(\varepsilon)$-close to $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$. Recall that, for $\varepsilon=0$, M_{R} intersects $W^{u}(\mathscr{Z})$ transversally along N_{R} (Proposition 5.2); in particular, at $\gamma_{1}:=$

Figure 5.2: Illustration of the evolution of $M_{L}(\varepsilon, \delta)$ from the vicinity of $\tau=0$ to that of $\tau=1$: On the left, $M_{L}(\varepsilon, \delta)$ intersects $W^{s}(\mathscr{Z})$ transversally and approaches $\omega\left(N_{L}\right)$ in the vicinity of Γ^{0}; It then follows the trace of $\omega\left(N_{L}\right)$ in the vicinity of Λ on \mathscr{Z} toward the vicinity of $\omega\left(N_{L}\right) \cdot(1-\rho, 1+\rho)$; A portion of it will leave the vicinity of \mathscr{Z}, and, upon exit from $\mathscr{Z}, M_{L}(\varepsilon, \delta)$ is $C^{1} O(\varepsilon)$-close to $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ in the vicinity of Γ^{1}. In the figure, $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ is denoted by W^{u}.
$\alpha\left(\Gamma^{1}\right) \in \alpha\left(N_{R}\right) \subset \mathscr{Z}$, we have

$$
T_{\gamma_{1}} M_{R}=T_{\gamma_{1}} \alpha\left(N_{R}\right)+T_{\gamma_{1}} W^{u}\left(\gamma_{1}\right)+\operatorname{span}\left\{V_{s}\right\}
$$

where, $T_{\gamma_{1}} W^{u}\left(\gamma_{1}\right)$ is the tangent space of the one-dimensional unstable fiber $W^{u}\left(\gamma_{1}\right)$ at γ_{1} and the vector $V_{s} \notin T_{\gamma_{1}} W^{u}(\mathscr{Z})$ (the latter follows from the transversality of the intersection of M_{R} and $W^{u}(\mathscr{Z})$). Also,

$$
T_{\gamma_{1}} W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)=T_{\gamma_{1}}\left(\omega\left(N_{L}\right) \cdot 1\right)+\operatorname{span}\left\{V_{\tau}\right\}+T_{\gamma_{1}} W^{u}\left(\gamma_{1}\right)
$$

where the vector V_{τ} is the tangent vector to the τ-axis as the result of the interval factor $(1-\rho, 1+\rho)$. Recall from Proposition 5.8 that $\omega\left(N_{L}\right) \cdot 1$ and $\alpha\left(N_{R}\right)$ are transversal on
$\mathscr{Z} \cap\{\tau=1\}$. Therefore, at γ_{1}, the tangent spaces $T_{\gamma_{1}} M_{R}$ and $T_{\gamma_{1}} W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\right.$ $\rho)$) contain seven linearly independent vectors: $V_{s}, V_{\tau}, T_{\gamma_{1}} W^{u}\left(\gamma_{1}\right)$ and the other four from $T_{\gamma_{1}}\left(\omega\left(N_{L}\right) \cdot 1\right)$ and $T_{\gamma_{1}} \alpha\left(N_{R}\right)$; that is, M_{R} and $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ intersect transversally. We thus conclude that, there exists $0<\varepsilon_{0} \leq \varepsilon_{1}$ so that, if $0<\varepsilon \leq \varepsilon_{0}$, then $M_{L}(\varepsilon, \delta)$ intersects $M_{R}(\varepsilon)$ transversally.

For uniqueness, note that the transversality of the intersection $M_{L}(\varepsilon, \delta) \bigcap M_{R}(\varepsilon)$ implies $\operatorname{dim}\left(M_{L}(\varepsilon, \delta) \bigcap M_{R}(\varepsilon)\right)=\operatorname{dim} M_{L}(\varepsilon, \delta)+\operatorname{dim} M_{R}(\varepsilon)-7=1$. Thus, there exists $\delta_{0}>0$ such that, if $0<\delta \leq \delta_{0}$, the intersection $M_{L}(\varepsilon, \delta) \cap M_{R}(\varepsilon)$ consists of precisely one solution near the singular orbit $\Gamma^{0} \cup \Lambda \bigcup \Gamma^{1}$.

5.4 Ion size effects on the flows of charge and matter

The analysis in the previous sections not only establishes the existence of solutions for the boundary value problem (5.3) and (5.5) but also provides quantitative information on the solution that allows us to extract explicit approximations to the current \mathscr{I} and the flow rate of matter, \mathscr{T}, for small ε and d. From the explicit approximations, we are able to identify some critical values for potential V that characterize ion size effects on the ionic flow. A number of scaling laws will be also obtained. Their consequences of ion size effects are discussed.

5.4.1 I-V relation, critical potentials, and scaling laws

I-V relation and its approximation

For fixed boundary concentrations L_{1}, L_{2}, R_{1} and R_{2} in (??), we express the I-V relation in (5.1) as

$$
\begin{equation*}
\mathscr{I}(V ; \lambda, \varepsilon, d)=I_{0}(V ; \varepsilon)+I_{1}(V ; \lambda, \varepsilon) d+o(d), \tag{5.1}
\end{equation*}
$$

where $I_{0}(V ; \varepsilon)$ is the I-V relation without counting the ion size effect and $I_{1}(V ; \lambda, \varepsilon) d$ is the leading term containing ion size effect on I-V relation.

Recall that we denote $H(1)=\int_{0}^{1} h^{-1}(s) d s$ in (5.16).

Theorem 5.10. In formula (5.1), one has

$$
\begin{aligned}
I_{0}(V ; 0) & =\rho_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)+\rho_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right) \frac{e}{k T} V \\
I_{1}(V ; \lambda, 0) & =\rho_{10}\left(L_{1}, L_{2}, R_{1}, R_{2}, \lambda\right)+\rho_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) \frac{e}{k T} V
\end{aligned}
$$

where

$$
\begin{aligned}
& \rho_{00}=\frac{z_{1}\left(D_{1}-D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)}+\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)} \ln \frac{L_{1} R_{2}}{L_{2} R_{1}}, \\
& \rho_{01}=\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)}, \\
& \rho_{10}=\frac{z_{1}\left(D_{1}-D_{2}\right)}{H(1)}\left[c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}\right)\right] \\
& -\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{H(1)}\left[\frac{1-\lambda}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}}-\frac{c_{10}^{L}-c_{10}^{R}}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{1}^{L}-\phi_{1}^{R}\right)\right] \\
& +\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{\left(z_{1}-z_{2}\right) H(1)} \frac{c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}} \ln \frac{L_{1} R_{2}}{L_{2} R_{1}} \\
& +\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)\left(z_{1} D_{1}-z_{2} D_{2}\right)}{\left(z_{1}-z_{2}\right) z_{2} H(1)} \frac{\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}} \ln \frac{L_{1} R_{2}}{L_{2} R_{1}} \\
& -\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{\left(z_{1}-z_{2}\right) H(1)} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}} \ln \frac{L_{1} R_{2}}{L_{2} R_{1}}, \\
& \rho_{11}=\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{H(1)} \frac{c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}} \\
& +\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)\left(z_{1} D_{1}-z_{2} D_{2}\right)}{z_{2} H(1)} \frac{\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}}
\end{aligned}
$$

$$
-\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{H(1)} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}}
$$

where $c_{10}^{L}, c_{10}^{R}, \phi_{1}^{L}$ and ϕ_{1}^{R} are given in Proposition 5.2 and

$$
w(\alpha, \beta)=\alpha+\lambda \beta+\frac{\lambda z_{1}-z_{2}}{z_{1}-z_{2}}(\alpha+\beta) .
$$

Proof. For the zeroth order in ε, it follows from

$$
\begin{align*}
\mathscr{I}(V ; \lambda, 0, d) & =z_{1} \mathscr{J}_{1}+z_{2} \mathscr{J}_{2}=z_{1} D_{1} J_{1}+z_{2} D_{2} J_{2} \tag{5.2}\\
& =\left(z_{1} D_{1} J_{10}+z_{2} D_{2} J_{20}\right)+\left(z_{1} D_{1} J_{11}+z_{2} D_{2} J_{21}\right) d+o(d)
\end{align*}
$$

that

$$
I_{0}(V ; 0)=z_{1} D_{1} J_{10}+z_{2} D_{2} J_{20} \text { and } I_{1}(V ; \lambda, 0)=z_{1} D_{1} J_{11}+z_{2} D_{2} J_{21}
$$

The formulas for $I_{0}(V ; 0)$ and $I_{1}(V ; 0)$ follow directly from Lemmas 5.5 and 5.6.

Corollary 5.11. Under the electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=$ $-z_{2} R_{2}=R$, one has

$$
\begin{aligned}
I_{0}(V ; 0)= & \frac{\left(D_{1}-D_{2}\right)(L-R)}{H(1)}+\frac{\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)}{H(1)(\ln L-\ln R)} \frac{e}{k T} V, \\
I_{1}(V ; \lambda, 0)= & \frac{\left(\lambda z_{1}-z_{2}\right)\left(D_{2}-D_{1}\right)\left(L^{2}-R^{2}\right)}{z_{1} z_{2} H(1)}-\frac{(1-\lambda)\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)} \\
& -\frac{\left(\lambda z_{1}-z_{2}\right)\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) \frac{e}{k T} V .
\end{aligned}
$$

In particular, for fixed $R>0$, one has

$$
\lim _{L \rightarrow R} I_{0}(V ; 0)=\frac{\left(z_{1} D_{1}-z_{2} D_{2}\right) R}{H(1)} \frac{e}{k T} V \text { and } \lim _{L \rightarrow R} I_{1}(V ; \lambda, 0)=0 .
$$

Proof. Assume $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$. It can be checked directly that

$$
\begin{align*}
& \rho_{00}=\frac{\left(D_{1}-D_{2}\right)(L-R)}{H(1)}, \quad \rho_{01}=\frac{\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)}{H(1)(\ln L-\ln R)} \\
& \rho_{10}=\frac{\left(\lambda z_{1}-z_{2}\right)\left(D_{2}-D_{1}\right)\left(L^{2}-R^{2}\right)}{z_{1} z_{2} H(1)}-\frac{(1-\lambda)\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)} \tag{5.3}\\
& \rho_{11}=-\frac{\left(\lambda z_{1}-z_{2}\right)\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) .
\end{align*}
$$

The formulas for $I_{0}(V ; 0)$ and $I_{1}(V ; 0)$ then follow easily. The two limits can be shown easily too.

Remark 5.12. The above formulas for $I_{0}(V ; 0)$ and $I_{1}(V ; \lambda, 0)$ agree with those in [46] except for a factor $2 H(1)$. The factor $H(1)$ does not appear in [46] since it is assumed there that $h(x)=1$, and hence, $H(1)=1$. The factor 2 in front of $H(1)$ is due to the fact that we are expending the I-V relation in the diameter d here instead of the radius r in [46]. As we mentioned in the introduction that there is a major difference between the analysis for the local hard sphere in this paper and that for the nonlocal model in [46]. Nevertheless, the agreement on $I_{0}(V ; 0)$ and $I_{1}(V ; \lambda, 0)$ is not a surprise since we are using the local hard sphere potential which is obtained as the expansion in the variable d from the nonlocal one used in [46].

Critical potentials and ion size effects on I-V relations

Based on the approximation of I-V relations in Theorem 5.10, we will identify three critical potentials and discuss their roles in characterizing ion size effects on I-V relations.

Definition 5.13. We define three potentials V_{0}, V_{c} and V^{c} by

$$
I_{0}\left(V_{0} ; 0\right)=0, \quad I_{1}\left(V_{c} ; \lambda, 0\right)=0, \quad \frac{d}{d \lambda} I_{1}\left(V^{c} ; \lambda, 0\right)=0
$$

For ion channels, the reversal potential is defined to be the potential V such that $\mathscr{I}(V ; \lambda, \varepsilon)=0$. Thus, the potential V_{0} is simply the zeroth order approximation in ε and d of the reversal potential. The critical potentials V_{c} and V^{c} are examined for the first time in [46] for a nonlocal hard-sphere model. The significance of the two critical values V_{c} and V^{c} is apparent from their definitions. The value V_{c} is the potential that balances ion size effect on I-V relations and the value V^{c} is the potential that separates the relative size effect on I-V relations. We provide precise statements below. First of all, note that $I_{1}(V ; \lambda, 0)$ is affine in V and in λ. Thus, quantities $\partial_{V} I_{1}(V ; \lambda, 0)$ and V_{c} depend on the boundary conditions $L_{1}, L_{2}, R_{1}, R_{2}$ and the ratio λ of ion sizes only; $\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)$ and V^{c} depend on the boundary conditions $L_{1}, L_{2}, R_{1}, R_{2}$ but not on λ.

Theorem 5.14. Suppose $\partial_{V} I_{1}(V ; \lambda, 0)>0\left(\right.$ resp. $\left.\partial_{V} I_{1}(V ; \lambda, 0)<0\right)$.
If $V>V_{c}$ (resp. $V<V_{c}$), then, for small $\varepsilon>0$ and $d>0$, the ion sizes enhance the current \mathscr{I}; that is, $\mathscr{I}(V ; \varepsilon, d)>\mathscr{I}(V ; \varepsilon, 0)$;

If $V<V_{c}$ (resp. $V>V_{c}$), then, for small $\varepsilon>0$ and $d>0$, the ion sizes reduce the current $\mathscr{I} ;$ that is, $\mathscr{I}(V ; \varepsilon, d)<\mathscr{I}(V ; \varepsilon, 0)$.

Theorem 5.15. Suppose $\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)>0\left(\right.$ resp. $\left.\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)<0\right)$.
If $V>V^{c}$ (resp. $V<V^{c}$), then, for small $\varepsilon>0$ and $d>0$, the larger the negatively charged ion the larger the current; that is, the current \mathscr{I} is increasing in λ;

If $V<V^{c}$ (resp. $V>V^{c}$), then, for small $\varepsilon>0$ and $d>0$, the smaller the negatively charged ion the larger the current; that is, the current \mathscr{I} is decreasing in λ.

The following result in [46] can be checked easily.

Proposition 5.16. Assume electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=$ $-z_{2} R_{2}=R$, and $L \neq R$. Then,

$$
\partial_{V} I_{1}(V ; \lambda, 0)>0 \text { and } \partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)>0
$$

As $R \rightarrow L, \partial_{V} I_{1}(V ; \lambda, 0) \rightarrow 0$ and $\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)=O\left((L-R)^{2}\right)$.
While both $\partial_{V} I_{1}(V ; \lambda, 0)$ and $\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)$ are non-negative under electroneutrality conditions, in general, they can be negative. We do not have a complete result for the general case but the following partial result.

Proposition 5.17. For any $L>0, R_{1}^{*}>0$ and $R_{2}^{*}>0$ with $R_{1}^{*} R_{2}^{*}=L^{2}$, as $\left(R_{1}, R_{2}\right) \rightarrow$ $\left(R_{1}^{*}, R_{2}^{*}\right)$,

$$
\begin{aligned}
\partial_{V} I_{1}(V ; \lambda, 0) & =\frac{e}{k T} \rho_{11}\left(L, L, R_{1}, R_{2} ; \lambda\right) \\
& \rightarrow \frac{e\left(D_{1}+D_{2}\right) L}{4 k T H(1) R_{1}^{*}}\left(R_{1}^{*}-L\right)\left((3+\lambda) R_{1}^{*}-(1+3 \lambda) L\right) .
\end{aligned}
$$

The latter is negative if

$$
\begin{aligned}
& \quad \text { either } L<R_{1}^{*}<\frac{1+3 \lambda}{3+\lambda} L \text { for } \lambda>1 \text { or } \frac{1+3 \lambda}{3+\lambda} L<R_{1}^{*}<L \text { for } \lambda<1 \text {. } \\
& \text { As }\left(R_{1}, R_{2}\right) \rightarrow\left(R_{1}^{*}, R_{2}^{*}\right) \\
& \partial_{V \lambda} I_{1}(V ; \lambda, 0)=\frac{e}{k T} \partial_{\lambda} \rho_{11}\left(L, L, R_{1}, R_{2} ; \lambda\right) \rightarrow \frac{e\left(D_{1}+D_{2}\right) L}{4 k T H(1) R_{1}^{*}}\left(R_{1}^{*}-L\right)\left(R_{1}^{*}-3 L\right) .
\end{aligned}
$$

The latter is negative if $L<R_{1}^{*}<3 L$.
Proof. For $z_{1}=-z_{2}=1$, we have

$$
\begin{aligned}
\partial_{V} I_{1}(V ; \lambda, 0)= & \frac{e}{k T} \rho_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) \\
= & \frac{2 e\left(D_{1}+D_{2}\right)}{k T H(1)} \frac{R_{1}^{1 / 2} R_{2}^{1 / 2} w\left(R_{1}, R_{2}\right)-L_{1}^{1 / 2} L_{2}^{1 / 2} w\left(L_{1}, L_{2}\right)}{\ln \left(R_{1} R_{2}\right)-\ln \left(L_{1} L_{2}\right)} \\
& -\frac{2 e(1+\lambda)\left(D_{1}+D_{2}\right)}{k T H(1)} \frac{R_{1} R_{2}-L_{1} L_{2}}{\ln \left(R_{1} R_{2}\right)-\ln \left(L_{1} L_{2}\right)} \\
& -\frac{4 e\left(D_{1}+D_{2}\right)}{k T H(1)} \frac{R_{1}^{1 / 2} R_{2}^{1 / 2}-L_{1}^{1 / 2} L_{2}^{1 / 2}}{\ln \left(R_{1} R_{2}\right)-\ln \left(L_{1} L_{2}\right)} \frac{w\left(R_{1}, R_{2}\right)-w\left(L_{1}, L_{2}\right)}{\ln \left(R_{1} R_{2}\right)-\ln \left(L_{1} L_{2}\right)} .
\end{aligned}
$$

Recall from Theorem 5.10 that, for $z_{1}=-z_{2}=1$,

$$
w(\alpha, \beta)=\alpha+\lambda \beta+\frac{1+\lambda}{2}(\alpha+\beta) .
$$

For fixed $a>0$ and $b>0$, we set

$$
\rho(x, y ; a, b)=\frac{H(1)}{D_{1}+D_{2}} \rho_{11}\left(a^{2}, b^{2} ; x^{2}, y^{2} ; \lambda\right) .
$$

Then, a direct calculation yields

$$
\begin{aligned}
\rho(x, y ; a, b)= & \frac{x y-a b}{\ln (x y)-\ln (a b)} w_{1}\left(x^{2}, y^{2}\right)-(1+\lambda) \frac{x^{2} y^{2}-a^{2} b^{2}}{\ln (x y)-\ln (a b)} \\
& -\frac{x y-a b-a b(\ln (x y)-\ln (a b))}{(\ln (x y)-\ln (a b))^{2}}\left(w_{1}\left(x^{2}, y^{2}\right)-w_{1}\left(a^{2}, b^{2}\right)\right) .
\end{aligned}
$$

Note that, as $z=x y \rightarrow a b$,

$$
\frac{z-a b}{\ln z-\ln (a b)} \rightarrow a b, \quad \frac{z-a b-a b(\ln z-\ln (a b))}{(\ln z-\ln (a b))^{2}} \rightarrow \frac{a b}{2}, \quad \frac{z^{2}-a^{2} b^{2}}{\ln z-\ln (a b)} \rightarrow 2 a^{2} b^{2}
$$

Thus, as $x \rightarrow x_{0}$ and $y \rightarrow y_{0}$ with $x_{0} y_{0}=a b$,

$$
\begin{aligned}
\rho(x, y ; a, b) & \rightarrow a b w_{1}\left(x_{0}^{2}, y_{0}^{2}\right)-\frac{a b}{2}\left(w_{1}\left(x_{0}^{2}, y_{0}^{2}\right)-w_{1}\left(a^{2}, b^{2}\right)\right)-2(1+\lambda) a^{2} b^{2} \\
& =\frac{a b}{2}\left(w_{1}\left(x_{0}^{2}, y_{0}^{2}\right)+w_{1}\left(a^{2}, b^{2}\right)\right)-2(1+\lambda) a^{2} b^{2} \\
& =\frac{a b}{2}\left(w_{1}\left(x_{0}^{2}, y_{0}^{2}\right)+w_{1}\left(a^{2}, b^{2}\right)-4(1+\lambda) a b\right) \\
& =\frac{a b}{2}\left(\frac{3+\lambda}{2} x_{0}^{2}+\frac{1+3 \lambda}{2} y_{0}^{2}+\frac{3+\lambda}{2} a^{2}+\frac{1+3 \lambda}{2} b^{2}-4(1+\lambda) a b\right) \\
& =\frac{a b}{2 x_{0}^{2}}\left(\frac{3+\lambda}{2} x_{0}^{4}+\left(\frac{3+\lambda}{2} a^{2}+\frac{1+3 \lambda}{2} b^{2}-4(1+\lambda) a b\right) x_{0}^{2}+\frac{1+3 \lambda}{2} a^{2} b^{2}\right) .
\end{aligned}
$$

In particular, for $a=b$, as $x \rightarrow x_{0}$ and $y \rightarrow y_{0}$ with $x_{0} y_{0}=a^{2}$,

$$
\begin{aligned}
\rho(x, y ; a, a) & \rightarrow \frac{a^{2}}{2 x_{0}^{2}}\left(\frac{3+\lambda}{2} x_{0}^{4}-2(1+\lambda) a^{2} x_{0}^{2}+\frac{1+3 \lambda}{2} a^{4}\right) \\
& =\frac{a^{2}}{2 x_{0}^{2}}\left(x_{0}^{2}-a^{2}\right)\left(\frac{3+\lambda}{2} x_{0}^{2}-\frac{1+3 \lambda}{2} a^{2}\right) .
\end{aligned}
$$

The latter is negative if

$$
\text { either } a<x_{0}<\sqrt{\frac{1+3 \lambda}{3+\lambda}} a \text { for } \lambda>1 \text { or } \sqrt{\frac{1+3 \lambda}{3+\lambda}} a<x_{0}<a \text { for } \lambda<1
$$

It can be directly translated to the statements for ρ_{11} and $\partial_{\lambda} \rho_{11}$.

In the rest of this part, we discuss a number of properties of the critical potentials. It follows from Definition 5.13 and Theorem 5.10 that

Proposition 5.18. The potentials V_{0}, V_{c} and V^{c} have the following expressions

$$
\begin{gathered}
V_{0}:=V_{0}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)=-\frac{k T}{e} \frac{\rho_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)}{\rho_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)}, \\
V_{c}:=V_{c}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)=-\frac{k T}{e} \frac{\rho_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}{\rho_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}, \\
V^{c}:=V^{c}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)=-\frac{k T}{e} \frac{\rho_{10, \lambda}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}{\rho_{11, \lambda}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)} .
\end{gathered}
$$

Remark 5.19. The critical potentials V_{0}, V_{c} and V^{c} are independent of the cross-section area $h(x)$ of the channel.

When electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$ hold, we write

$$
\begin{aligned}
V_{0}(L, R) & :=V_{0}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
V_{c}(L, R ; \lambda) & :=V_{c}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right),
\end{aligned}
$$

$$
V^{c}(L, R ; \lambda):=V^{c}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)
$$

Corollary 5.20. Assume the electroneutrality boundary conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$. Then, we have

$$
\begin{aligned}
V_{0}(L, R) & =\frac{k T}{e} \frac{\left(D_{1}-D_{2}\right)}{z_{1} D_{1}-z_{2} D_{2}} \ln \frac{R}{L}, \\
V_{c}(L, R ; \lambda) & =\frac{k T}{e} \frac{\lambda-1}{\lambda z_{1}-z_{2}} f\left(\frac{L}{R}\right)-\frac{k T}{e} \frac{D_{1}-D_{2}}{z_{1} D_{1}-z_{2} D_{2}} g\left(\frac{L}{R}\right), \text { if } L \neq R, \\
V^{c}(L, R ; \lambda) & =\frac{k T}{e} \frac{1}{z_{1}} f\left(\frac{L}{R}\right)-\frac{k T}{e} \frac{D_{1}-D_{2}}{z_{1} D_{1}-z_{2} D_{2}} g\left(\frac{L}{R}\right), \text { if } L \neq R,
\end{aligned}
$$

where, for $x>0$,

$$
\begin{equation*}
f(x)=\frac{(x-1) \ln x}{(1+x) \ln x-2(x-1)}, \quad g(x)=\frac{(1+x)(\ln x)^{2}}{(1+x) \ln x-2(x-1)} . \tag{5.4}
\end{equation*}
$$

Proof. The formulas follow directly from Proposition 5.18 and display (5.3).

Lemma 5.21. For the functions f and g defined in (5.4), one has
(i) $f(x)=-f(1 / x)$ and $g(x)=-g(1 / x)$;
(ii) $\lim _{x \rightarrow 1^{+}} f(x) \ln x=6, \lim _{x \rightarrow \infty} f(x)=1$, and $f^{\prime}(x)<0$ for $x>1$;
(iii) $\lim _{x \rightarrow 1^{+}} g(x) \ln x=12, \lim _{x \rightarrow \infty} \frac{g(x)}{\ln x}=1$, and $g(x)$ has a unique positive minimum in $(1, \infty)$.

Proof. The verifications of these properties are elementary.
As a direct consequence of Corollary 5.20 and Lemma 5.21, one has
Corollary 5.22. Assume the electroneutrality boundary conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$. Then,
(i) $V_{0}(L, R)=-V_{0}(R, L), V_{c}(L, R ; \lambda)=-V_{c}(R, L ; \lambda), V^{c}(L, R ; \lambda)=-V^{c}(R, L ; \lambda)$;
(ii) for $L \geq R, V_{0}(L, R)$ is decreasing (resp. increasing) in L if $D_{1}>D_{2}$ (resp. $D_{1}<D_{2}$), and, for fixed $R>0, \lim _{L \rightarrow R} V_{0}(L, R)=0$;
(iii) for fixed $R>0$,

$$
\begin{align*}
& \lim _{L \rightarrow R} V_{c}(L, R ; \lambda)(\ln L-\ln R)=\frac{k T}{e}\left(\frac{6(\lambda-1)}{\lambda z_{1}-z_{2}}-\frac{12\left(D_{1}-D_{2}\right)}{z_{1} D_{1}-z_{2} D_{2}}\right), \\
& \lim _{L \rightarrow R} V^{c}(L, R ; \lambda)(\ln L-\ln R)=\frac{k T}{e} \frac{6 z_{1}\left(D_{2}-D_{1}\right)+6\left(z_{1}-z_{2}\right) D_{2}}{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}, \tag{5.5}\\
& \lim _{L \rightarrow \infty} \frac{V_{c}(L, R ; \lambda)}{\ln L-\ln R}=\lim _{L \rightarrow \infty} \frac{V^{c}(L, R ; \lambda)}{\ln L-\ln R}=-\frac{k T}{e} \frac{D_{1}-D_{2}}{z_{1} D_{1}-z_{2} D_{2}}
\end{align*}
$$

(iv) $V^{c}(L, R ; \lambda)-V_{c}(L, R ; \lambda)=\frac{k T}{e} \frac{z_{1}-z_{2}}{z_{1}\left(\lambda z_{1}-z_{2}\right)} f\left(\frac{L}{R}\right)$, and hence, for fixed $R>0$,

$$
\begin{aligned}
& \lim _{L \rightarrow R}\left(V^{c}(L, R ; \lambda)-V_{c}(L, R ; \lambda)\right)(\ln L-\ln R)=\frac{k T}{e} \frac{6\left(z_{1}-z_{2}\right)}{z_{1}\left(\lambda z_{1}-z_{2}\right)}, \\
& \lim _{L \rightarrow \infty}\left(V^{c}(L, R ; \lambda)-V_{c}(L, R ; \lambda)\right)=1
\end{aligned}
$$

Scaling laws

Next result concerns the dependences of $I_{0}, I_{1}, V_{0}, V_{c}$ and V^{c} on the boundary concentrations. For this discussion, we include the boundary conditions in the arguments of I_{0}, I_{1}, V_{0}, V_{c} and V^{c}; for example, we write I_{0} as $I_{0}\left(V ; L_{1}, L_{2}, R_{1}, R_{2}\right)$, etc..

Theorem 5.23. The following scaling laws hold,
(i) I_{0} scales linearly in boundary concentrations, that is, for any $s>0$,

$$
I_{0}\left(V ; s L_{1}, s L_{2}, s R_{1}, s R_{2}\right)=s I_{0}\left(V ; L_{1}, L_{2}, R_{1}, R_{2}\right)
$$

(ii) $I_{1}\left(V ; s L_{1}, s L_{2}, s R_{1}, s R_{2}\right)$ scales quadratically in boundary concentrations, that is, for any $s>0$,

$$
I_{1}\left(V ; s L_{1}, s L_{2}, s R_{1}, s R_{2}\right)=s^{2} I_{1}\left(V ; L_{1}, L_{2}, R_{1}, R_{2}\right)
$$

(iii) V_{0}, V_{c} and V^{c} are invariant under scaling in boundary concentrations, that is, for any $s>0$,

$$
\begin{aligned}
& V_{0}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right)=V_{0}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
& V_{c}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right)=V_{c}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
& V^{c}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right)=V^{c}\left(L_{1}, L_{2}, R_{1}, R_{2}\right) .
\end{aligned}
$$

Proof. A direct observation gives

$$
\begin{aligned}
\rho_{00}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =s \rho_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
\rho_{01}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =s \rho_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
\rho_{10}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}, \lambda\right) & =s^{2} \rho_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), \\
\rho_{11}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}, \lambda\right) & =s^{2} \rho_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) .
\end{aligned}
$$

The above scaling laws then follow from Theorem 5.10 and Proposition 5.18.

Remark 5.24. (i) Note that I_{0} and V_{0} are not linear in boundary concentrations, and I_{1}, V_{c} and V^{c} are not quadratic in boundary concentrations.
(ii) Recall, from (5.1), that the zeroth order in ε and first order in d approximation of the I - V relation $\mathscr{I}(V ; \lambda, \varepsilon, d)$ is $I_{0}+I_{1} d$. Since I_{0} and I_{1} scale differently in boundary concentrations, the approximation $I_{0}+I_{1} d$ does not have a simple scaling law.
(iii) It follows from the scaling laws for I_{0} and I_{1} that, at higher ion concentrations, the ion size effect becomes more significant. This is well expected. On the other hand, our scaling law results reveal a concrete way on how the ion size effect is manifested as the concentrations increase.

5.4.2 The flow rate \mathscr{T} of matter

In this part, we briefly discuss ion size effects on the rate \mathscr{T}. Recall from (2.30) that The flow rate \mathscr{T} of matter is

$$
\mathscr{T}(V ; \lambda, \varepsilon, d)=\mathscr{J}_{1}+\mathscr{J}_{2}=D_{1} J_{1}+D_{2} J_{2} .
$$

We have the following observation. Note that J_{1} and J_{2} are independent of D_{1} and D_{2}. We will indicate the dependence of \mathscr{T} and \mathscr{I} on D_{1} and D_{2} explicitly and omit their dependences on other variables; that is, we denote the current $\mathscr{I}(V ; \lambda, \varepsilon, d)$ in Section 5.4.1 by $\mathscr{I}\left(D_{1}, D_{2}\right)$, and $\mathscr{T}(V ; \lambda, \varepsilon, d)$ by $\mathscr{T}\left(D_{1}, D_{2}\right)$. Then,

$$
\begin{equation*}
\mathscr{T}\left(D_{1}, D_{2}\right)=D_{1} J_{1}+D_{2} J_{2}=z_{1} \frac{D_{1}}{z_{1}} J_{1}+z_{2} \frac{D_{2}}{z_{2}} J_{2}=\mathscr{I}\left(\frac{D_{1}}{z_{1}}, \frac{D_{2}}{z_{2}}\right) . \tag{5.6}
\end{equation*}
$$

Therefore, all results in Section 5.4 .1 on the current \mathscr{I} can be translated to results on \mathscr{T} by replacing D_{1} and D_{2} in Section 5.4 .1 with D_{1} / z_{1} and D_{2} / z_{2}, respectively. We will thus collect the results related to \mathscr{T} only.

Similar to the expression for \mathscr{I} in Section 5.4.1, we express \mathscr{T} as

$$
\begin{equation*}
\mathscr{T}(V ; \lambda, \varepsilon, d)=T_{0}(V ; \varepsilon)+T_{1}(V ; \lambda, \varepsilon) d+o(d) . \tag{5.7}
\end{equation*}
$$

Theorem 5.25. In the expression (5.7), one has

$$
\begin{aligned}
& T_{0}(V ; 0)=D_{1} J_{10}+D_{2} J_{20}=\sigma_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)+\sigma_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right) \frac{e}{k T} V, \\
& T_{1}(V ; \lambda, 0)=D_{1} J_{11}+D_{2} J_{21}=\sigma_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)+\sigma_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) \frac{e}{k T} V,
\end{aligned}
$$

where

$$
\begin{aligned}
& \sigma_{00}=\frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{z_{2} H(1)}+\frac{z_{1}\left(D_{1}-D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)}\left(\ln \left(L_{1} R_{2}\right)-\ln \left(L_{2} R_{1}\right)\right) \\
& \sigma_{01}=\frac{z_{1}\left(D_{1}-D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{10}= & \frac{z_{2} D_{1}-z_{1} D_{2}}{z_{2} H(1)}\left[c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}\right)\right] \\
& -\frac{z_{1}\left(D_{1}-D_{2}\right)}{H(1)}\left[\frac{1-\lambda}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}}-\frac{c_{10}^{L}-c_{10}^{R}}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{1}^{L}-\phi_{1}^{R}\right)\right] \\
& +\frac{z_{1}\left(D_{1}-D_{2}\right)}{\left(z_{1}-z_{2}\right) H(1)} \frac{c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\ln \left(L_{1} R_{2}\right)-\ln \left(L_{2} R_{1}\right)\right) \\
& +\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)\left(D_{1}-D_{2}\right)}{\left(z_{1}-z_{2}\right) z_{2} H(1)} \frac{\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\ln \left(L_{1} R_{2}\right)-\ln \left(L_{2} R_{1}\right)\right) \\
& -\frac{z_{1}\left(D_{1}-D_{2}\right)}{\left(z_{1}-z_{2}\right) H(1)} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}}\left(\ln \left(L_{1} R_{2}\right)-\ln \left(L_{2} R_{1}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{11}= & \frac{z_{1}\left(D_{1}-D_{2}\right)}{H(1)} \frac{c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}} \\
& +\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)\left(D_{1}-D_{2}\right)}{z_{2} H(1)} \frac{\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}} \\
& -\frac{z_{1}\left(D_{1}-D_{2}\right)}{H(1)} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}} .
\end{aligned}
$$

Definition 5.26. Define three potentials \hat{V}_{0}, \hat{V}_{c} and \hat{V}^{c} by

$$
T_{0}\left(\hat{V}_{0} ; 0\right)=0, \quad T_{1}\left(\hat{V}_{c} ; \lambda, 0\right)=0, \quad \frac{d}{d \lambda} T_{1}\left(\hat{V}^{c} ; \lambda, 0\right)=0 .
$$

It follows from the definition that

Proposition 5.27. The potentials \hat{V}_{0}, \hat{V}_{c} and \hat{V}^{c} have the following expressions

$$
\begin{aligned}
\hat{V}_{0} & =-\frac{k T}{e} \frac{\sigma_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)}{\sigma_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)}, \\
\hat{V}_{c} & =-\frac{k T}{e} \frac{\sigma_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}{\sigma_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)} \\
\hat{V}^{c} & =-\frac{k T}{e} \frac{\sigma_{10, \lambda}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}{\sigma_{11, \lambda}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)} .
\end{aligned}
$$

We have the following scaling laws:

Theorem 5.28. For any $s>0$,

$$
\begin{aligned}
\sigma_{00}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =s \sigma_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
\sigma_{01}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =s \sigma_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
\sigma_{10}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}, \lambda\right) & =s^{2} \sigma_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), \\
\sigma_{11}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}, \lambda\right) & =s^{2} \sigma_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) .
\end{aligned}
$$

As a consequence, $T_{0}(V ; 0)$ scales linearly in boundary concentrations and $T_{1}(V ; \lambda, 0)$ scales quadratically in boundary concentrations, and the values \hat{V}_{0}, \hat{V}_{c} and \hat{V}^{c} are invariant under scaling in boundary concentrations.

Theorem 5.29. Suppose $\partial_{V} T_{1}(V ; \lambda, 0)>0\left(\right.$ resp. $\left.\partial_{V} T_{1}(V ; \lambda, 0)<0\right)$.
If $V>\hat{V}_{c}$ (resp. $V<\hat{V}_{c}$), then, for small $\varepsilon>0$ and $d>0$, the ion sizes enhance \mathscr{T}; that is, $\mathscr{T}(V ; \varepsilon, d)>\mathscr{T}(V ; \varepsilon, 0)$;

If $V<\hat{V}_{c}$ (resp. $V>\hat{V}_{c}$), then, for small $\varepsilon>0$ and $d>0$, the ion sizes reduce \mathscr{T}; that is, $\mathscr{T}(V ; \varepsilon, d)<\mathscr{T}(V ; \varepsilon, 0)$.

Theorem 5.30. Suppose $\partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)>0\left(\right.$ resp. $\left.\partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)<0\right)$.
If $V>\hat{V}^{c}$ (resp. $V<\hat{V}^{c}$), then, for small $\varepsilon>0$ and $d>0$, the larger the negatively charged ion the larger \mathscr{T}; that is, \mathscr{T} increases λ;

If $V<\hat{V}^{c}\left(\right.$ resp. $\left.V>\hat{V}^{c}\right)$, then, for small $\varepsilon>0$ and $d>0$, the smaller the negatively charged ion the larger \mathscr{T}; that is, \mathscr{T} decreases λ.

Corollary 5.31. Assume the electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=$ $-z_{2} R_{2}=R$, and $L \neq R$. Then

$$
\begin{aligned}
T_{0}(V ; 0)= & \frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)(L-R)}{z_{1} z_{2} H(1)}+\frac{\left(D_{1}-D_{2}\right)(L-R)}{H(1)(\ln L-\ln R)} \frac{e}{k T} V, \\
T_{1}(V ; \lambda, 0)= & \frac{\left(\lambda z_{1}-z_{2}\right)\left(z_{2} D_{2}-z_{1} D_{1}\right)\left(L^{2}-R^{2}\right)}{z_{1}^{2} z_{2}^{2} H(1)}-\frac{(1-\lambda)\left(D_{1}-D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)} \\
& -\frac{\left(\lambda z_{1}-z_{2}\right)\left(D_{1}-D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) \frac{e}{k T} V .
\end{aligned}
$$

and hence,

$$
\begin{aligned}
\hat{V}_{0}= & \frac{k T}{e} \frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)(\ln R-\ln L)}{z_{1} z_{2}\left(D_{1}-D_{2}\right)}, \\
\hat{V}_{c}= & \frac{k T}{e} \frac{(\lambda-1)(\ln L-\ln R)(L-R)}{\left(\lambda z_{1}-z_{2}\right)[(\ln L-\ln R)(L+R)-2(L-R)]} \\
& -\frac{k T}{e} \frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)(\ln L-\ln R)^{2}(L+R)}{z_{1} z_{2}\left(D_{1}-D_{2}\right)[(\ln L-\ln R)(L+R)-2(L-R)]}, \\
\hat{V}^{c}= & \frac{k T}{e} \frac{(\ln L-\ln R)(L-R)}{z_{1}[(\ln L-\ln R)(L+R)-2(L-R)]} \\
& -\frac{k T}{e} \frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)(\ln L-\ln R)^{2}(L+R)}{z_{1} z_{2}\left(D_{1}-D_{2}\right)[(\ln L-\ln R)(L+R)-2(L-R)]} .
\end{aligned}
$$

Note also that, under electroneutrality conditions,

$$
\begin{aligned}
\partial_{V} T_{1}(V ; \lambda, 0) & =-\frac{e\left(\lambda z_{1}-z_{2}\right)\left(D_{1}-D_{2}\right)(L-R)^{2}}{z_{1} z_{2} k T H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) \\
\partial_{V \lambda} T_{1}(V ; \lambda, 0) & =-\frac{\left(D_{1}-D_{2}\right)(L-R)^{2}}{z_{2} H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) \frac{e}{k T} .
\end{aligned}
$$

Proposition 5.32. Assume electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=$ $-z_{2} R_{2}=R$, and $L \neq R$. If $D_{1}>D_{2}$, then

$$
\partial_{V} T_{1}(V ; \lambda, 0)>0 \text { and } \partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)>0
$$

if $D_{1}<D_{2}$, then

$$
\partial_{V} T_{1}(V ; \lambda, 0)<0 \text { and } \partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)<0
$$

In either case, as $R \rightarrow L$,

$$
\partial_{V} T_{1}(V ; \lambda, 0) \rightarrow 0 \text { and } \partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)=O\left((L-R)^{2}\right)
$$

Proof. It can be checked directly or follows from Theorem 5.16 and the relation (5.6) between T_{1} and I_{1}.

In general, $\partial_{V} T_{1}(V ; \lambda, 0)$ and $\partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)$ can be negative (resp. positive) for $D_{1}>$ D_{2} (resp. $D_{1}<D_{2}$). In particular, we have

Proposition 5.33. For $z_{1}=-z_{2}=1$ and for any $L>0, R_{1}^{*}>0$ and $R_{2}^{*}>0$ with $R_{1}^{*} R_{2}^{*}=$ L^{2}, as $\left(R_{1}, R_{2}\right) \rightarrow\left(R_{1}^{*}, R_{2}^{*}\right)$,

$$
\begin{equation*}
\partial_{V} T_{1}(V ; \lambda, 0) \rightarrow \frac{\left(D_{1}-D_{2}\right) L}{4 H(1) R_{1}^{*}}\left(R_{1}^{*}-L\right)\left((3+\lambda) R_{1}^{*}-(1+3 \lambda) L\right) . \tag{5.8}
\end{equation*}
$$

For $D_{1}>D_{2}\left(\right.$ resp. $\left.D_{1}<D_{2}\right)$, the limit is negative (resp. positive) if

$$
\begin{aligned}
& \qquad \text { either } L<R_{1}^{*}<\frac{1+3 \lambda}{3+\lambda} L \text { for } \lambda>1 \text { or } \frac{1+3 \lambda}{3+\lambda} L<R_{1}^{*}<L \text { for } \lambda<1 \text {. } \\
& \text { As }\left(R_{1}, R_{2}\right) \rightarrow\left(R_{1}^{*}, R_{2}^{*}\right) \\
& \qquad \partial_{V \lambda} T_{1}(V ; \lambda, 0) \rightarrow \frac{\left(D_{1}-D_{2}\right) L}{4 H(1) R_{1}^{*}}\left(R_{1}^{*}-L\right)\left(R_{1}^{*}-3 L\right) .
\end{aligned}
$$

For $D_{1}>D_{2}\left(\right.$ resp. $D_{1}<D_{2}$), the limit is negative (resp. positive) if $L<R_{1}^{*}<3 L$.

Proof. It follows from Theorem 5.17 and the relation (5.6) between T_{1} and I_{1}.

Chapter 6

Summary

There are two parts in this chapter. In the first part we briefly summarize the results of the last three chapters. In the second part, a brief discussion of our future work is provided.

6.1 Summary of results

As a basic electrodiffusion equations modeling, the Poisson-Nernst-Planck system has been studied to a great extent both analytically and numerically. In particular, in [24, 46, $57,58,60,61,62$], under the framework of geometric singular perturbation theory, some interesting and new phenomenon have been investigated both numerically and analytically, in particular, the ion size effect on the I-V relations is studied and some important critical potential values are investigated and numerically detected.

In this dissertation, first in Chapter 3, we analyzed a one dimensional steady-state cPNP system by applying the method of Matched Asymptotic Expansion. Our main interest is to study the I-V relation of a single channel, in particular, we focus on the cubic-like feature of the I-V relation for a single channel. Our results turn out that, up to the third order in ε, a singular parameter, the I-V relation is indeed a cubic function in the potential V. Moreover, if the initial concentrations applied at the two ends of the channel is not equal, the I-V relation has three distinct real roots, which corresponds to the bi-
stable structure in the FitzHugh-Nagumo simplification of the Hodgkin-Huxley model. However, for the fourth order system, the I-V relation is quintic instead of being cubic. Numerical simulations are performed, and the numerical results are consistent with the analytical ones.

In Chapter 4, we numerically studied a one-dimensional steady-state PNP model including the ion size effect modeled by a non-local hard-sphere potential from density functional theory. The work is motivated by [46], where, for the same setup, the PNP system is studied analytically. The main purpose here is to detect two critical potentials first observed in [46]. To achieve this goal, two numerical tasks are conducted respectively. The first one is a numerical approach of solving the PNP system and obtaining I-V curves, while the second task is to numerically detect two critical potential values V^{c} and V_{c} for two cases respectively, one is for the case with zero permanent charge, exactly the same setup as in [46], the other case involves a nonzero piecewise constant permanent charge function. Based on the defining properties of these two critical potentials and by using the numerical I-V curves directly, for the setting in [46], our numerical results agree well with the analytical predictions.

In Chapter 5, a one-dimensional steady-state PNP model including the ion size effect modeled by a local hard-sphere potential that depends pointwise on ion concentrations is analyzed with totally different mathematical treatment from the one used in [46]. Based on the geometric singular perturbation theory, in particular, on specific structures of this concrete model, the existence of solutions to the boundary value problem for small ion sizes is established and, treating the ion sizes as small parameters, an approximation of the I-V relation is derived and two critical potentials for ion size effects are identified. Important scaling laws of I-V relations and critical potentials in boundary concentrations are obtained. Under electroneutrality conditions, up to the first order in d, our results are consistent with the ones in [46]. Moreover, without the electroneutrality conditions,
partial results about the ion size effect are also obtained. As a byproduct, the ion size effects on the flow of matter are also discussed.

6.2 Future work

Basically speaking, there are three directions for our future work. In one direction, we will focus on the multiplicity and stability of the solutions to classical Poisson-Nernstplanck (cPNP) systems, that is, we ignore the ion-to-ion interaction and treat them as point charged. The existence of multiple solutions has already been investigated, even for a oversimplified case with only two different ion species involved (see [24]). In one of our projects in process, for a very simple case involving two different ion species and with nonzero permanent charges, an important characterization of ion channels, triple solutions are numerically detected. Moreover, the numerical simulation shows that multiple stable solutions are possible for some cases. A systematic study of the stability problem will be one of our near future projects and we believe it will be very interesting, but definitely very challenging.

The other direction is to study the cPNP system involving more ion species (at least 3). The reason is that some biological phenomena of importance do not appear until three or more ion species are involved. For example, the crucial finding for voltage activated Na channels (which make the action potential) is that a third ion (it must be Ca in the case considered) cannot be ignored in addition to Na and Cl and biological conditions, such as magnitudes of concentrations at both ends, have to be within a specific range for the channel to work (for more information, see [58]). New phenomenon has been investigated when three or more different ion species are involved. More precisely, it is possible to have spatially oscillating solutions when three or more ion species are involved, moreover, the spatially oscillating solutions and the spatially non-oscillating
solutions can co-exist. An oversimplified example studied in [58] has shown this interesting phenomenon. A systematic investigation for more general case is expected to reveal more interesting behaviors. Also, the co-existence of spatially oscillating solutions and spatially non-oscillating solutions give another form of multiple solutions. A natural question arising here is which solution is more stable?

Finally, we consider the PNP systems including the hard-sphere potential component (modeled either locally or nonlocally), that is, we study the ion size effects on the topics that we are interested in, such as the I-V relations, critical potentials, multiplicity and stability of solutions. This direction is much more challenging, but definitely more interesting.

Bibliography

[1] N. Abaid, R. S. Eisenberg, and W. Liu, Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system. SIAM J. Appl. Dyn. Syst. 7 (2008), 1507-1526. Cited on 5, 7, 26, 27, 28, 31, 32, 35, 42, 44, 45
[2] S. Aboud, D. Marreiro, M. Saraniti, and R. S. Eisenberg, A Poisson P3M Force Field Scheme for Particle-Based Simulations of Ionic Liquids. J. Comput. Electronics 3 (2004), 117-133. Cited on 3
[3] M. Z. Bazant, M. S. Kilic, B. D. Storey, and A. Ajdari, Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152 (2009), 48-88. Cited on 9
[4] V. Barcilon, Ion flow through narrow membrane channels: Part I. SIAM J. Appl. Math. 52 (1992), 1391-1404. Cited on 2, 3, 64
[5] V. Barcilon, D.-P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 52 (1992), 1405-1425. Cited on 2, 7, 64
[6] V. Barcilon, D.-P. Chen, R. S. Eisenberg, and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 57 (1997), 631-648. Cited on 2, 7, 27
[7] J. J. Bikerman, Structure and capacity of the electrical double layer. Philos. Mag. 33 (1942), 384. Cited on 9
[8] D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg, Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E 69 (2004), 046702 (1-10). Cited on 3
[9] D. Boda, D. Busath, B. Eisenberg, D. Henderson, and W. Nonner, Monte Carlo simulations of ion selectivity in a biological $\mathrm{Na}+$ channel: charge-space competition. Phys. Chem. Chem. Phys. 4 (2002), 5154-5160. Cited on 3, 9, 64
[10] M. Burger, R. S. Eisenberg, and H. W. Engl, Inverse problems related to ion channel selectivity. SIAM J. Appl. Math. 67 (2007), 960-989. Cited on 7
[11] A. E. Cardenas, R. D. Coalson, and M. G. Kurnikova, Three-Dimensional Poisson-Nernst-Planck Theory Studies: Influence of Membrane Electrostatics on Gramicidin A Channel Conductance. Biophys. J. 79 (2000), 80-93. Cited on 7
[12] D. P. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 64 (1993), 1405-1421. Cited on 7
[13] S. Chung and S. Kuyucak, Predicting channel function from channel structure using Brownian dynamics simulations. Clin. Exp. Pharmacol Physiol. 28 (2001), 89-94. Cited on 3
[14] R. D. Coalson, Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans Nanobioscience 4 (2005), 81-93. Cited on 7
[15] R. D. Coalson, Discrete-state model of coupled ion permeation and fast gating in ClC chloride channels. J. Phys. A 41 (2009), 115001. Cited on
[16] R. Coalson and M. Kurnikova, Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Transaction on NanoBioscience 4 (2005), 81-93. Cited on 7
[17] Eckhaus, W. Asymptotic Analysis of Singular Perturbations. Studies in Mathematics and its Applications, 9. North-Holland Publishing Co., Amsterdam-New York, 1979. Cited on 16
[18] Eckhaus, W. Fundamental concepts of matching. SIAM Rev. 36 (1994), 431-439. Cited on 16
[19] B. Eisenberg, Ion Channels as Devices. J. Comp. Electro. 2 (2003), 245-249. Cited on 5
[20] B. Eisenberg, Proteins, Channels, and Crowded Ions. Biophys. Chem. 100 (2003), 507-517. Cited on 5
[21] R. S. Eisenberg, Channels as enzymes. J. Memb. Biol. 115 (1990), 1-12. Cited on 5
[22] R. S. Eisenberg, From Structure to Function in Open Ionic Channels. J. Memb. Biol. 171 (1999), 1-24. Cited on
[23] B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133 (2010), 104104 (1-23). Cited on 3, 5
[24] B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38 (2007), 1932-1966. Cited on 2, 5, 7, $25,27,64,80,93,98,99,109,129,131$
[25] R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28 (1979), 143-200. Cited on 9
[26] R. Evans, Density functionals in the theory of nonuniform fluids, in Fundamentals of of inhomogeneous fluids, ed. D. Henderson (New York: Dekker), 85-176, (1992). Cited on 9
[27] Fenichel, N. Persistence and Smoothness of Invariant Manifolds for Flows. Ind. Univ. Math. J. 21 (1971), pp. 193-225. Cited on 19
[28] Fenichel, N. Geometric singular perturbation theory for ordinary differential equations. J. Differential Equations. 31 (1979), pp.53-98. Cited on 5
[29] J. Fischer and U. Heinbuch, Relationship between free energy density functional, Born-Green-Yvon, and potential distribution approaches for inhomogeneous fluids. J. Chem. Phys. 88 (1988), 1909-1913. Cited on 9, 10, 65
[30] D. Gillespie, A singular perturbation analysis of the Poisson-Nernst-Planck system: Applications to Ionic Channels. Ph.D Dissertation, Rush University at Chicago, 1999. Cited on 1, 2, 5, 7, 25, 27, 64
[31] D. Gillespie, W. Nonner, and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys.: Condens. Matter 14 (2002), 12129-12145. Cited on 3, 6, 7, 9, 64
[32] D. Gillespie, W. Nonner, and R. S. Eisenberg, Density functional theory of charged, hard-sphere fluids. Phys. Rev. E 68 (2003), 0313503 (1-10). Cited on 9, 64
[33] D. Gillespie, W. Nonner, and R. S. Eisenberg, Crowded Charge in Biological Ion Channels. Nanotech. 3 (2003), 435-438. Cited on 6, 9, 64
[34] P. Graf, M. G. Kurnikova, R. D. Coalson, and A. Nitzan, Comparison of Dynamic Lattice Monte-Carlo Simulations and Dielectric Self Energy Poisson-NernstPlanck Continuum Theory for Model Ion Channels. J. Phys. Chem. B 108 (2004), 2006-2015. Cited on 7
[35] Morris W. Hirsch, Charles C. Pugh, and Michael Shub, Invariant manifolds. Springer Lecture Notes in Mathematics583 (1977). Cited on 19
[36] U. Hollerbach, D.-P. Chen, and R. S. Eisenberg, Two- and Three-Dimensional Poisson-Nernst-Planck Simulations of Current Flow through Gramicidin-A. J. Comp. Science 16 (2002), 373-409. Cited on 7
[37] U. Hollerbach, D. Chen, W. Nonner, and B. Eisenberg, Three-dimensional Poisson-Nernst-Planck Theory of Open Channels. Biophys. J. 76 (1999), p. A205. Cited on 5, 7
[38] Y. Hyon, B. Eisenberg, and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9 (2010), 459-475. Cited on 3
[39] Y. Hyon, J. Fonseca, B. Eisenberg, and C. Liu, A new Poisson-Nernst-Planck equation (PNP-FS-IF) for charge inversion near walls. Biophys. J. 100 (2011), 578a. Cited on 3, 5
[40] Y. Hyon, J. Fonseca, B. Eisenberg, and C. Liu, Energy variational approach to study charge inversion (layering) near charged walls. Discrete Contin. Dyn. Syst. Ser. B 17 (2012), 2725-2743. Cited on 3
[41] Y. Hyon, C. Liu, and B. Eisenberg, PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116 (2012), 11422-11441. Cited on 3, 5
[42] W. Im, D. Beglov, and B. Roux, Continuum solvation model: Electrostatic forces from numerical solutions to the Poisson-Bolztmann equation. Comp. Phys. Comm. 111 (1998), 59-75. Cited on 3
[43] W. Im and B. Roux, Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322 (2002), 851-869. Cited on 3, 7, 64
[44] J. W. Jerome, Mathematical Theory and Approximation of Semiconductor Models. Springer-Verlag, New York, 1995. Cited on 7, 64
[45] J. W. Jerome and T. Kerkhoven, A finite element approximation theory for the driftdiffusion semiconductor model. SIAM J. Numer. Anal. 28 (1991), 403-422. Cited on 7
[46] S. Ji and W. Liu, Poisson-Nernst-Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I-V relations and Critical Potentials. Part I: Analysis. J. Dyn. Diff. Equat. 24 (2012), 955-983. Cited on iv, v, 3, 5, 10, 27, 63, $64,65,66,67,68,69,71,72,73,74,76,77,78,85,86,87,89,115,116,129,130$
[47] C. Jones, Geometric singular perturbation theory. Dynamical systems (Montecatini Terme, 1994), pp. 44-118. Lect. Notes in Math. 1609, Springer, Berlin, 1995. Cited on $5,20,92,109,110$
[48] C. Jones, T. Kaper, and N. Kopell, Tracking invariant manifolds up tp exponentially small errors. SIAM J. Math. Anal. 27 (1996), 558-577. Cited on 109, 110
[49] C. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Differential Equations 108 (1994), 64-88. Cited on 5, 109, 110
[50] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75 (2007), 021503 (11 pages). Cited on
[51] M. G. Kurnikova, R. D. Coalson, P. Graf, and A. Nitzan, A Lattice Relaxation Algorithm for 3D Poisson-Nernst-Planck Theory with Application to Ion Transport Through the Gramicidin A Channel. Biophys. J. 76 (1999), 642-656. Cited on 7
[52] J. Kierzenka, and L. Shampine, A BVP Solver Based on Residual Control and the Matlab PSE. ACM Trans. Math. Software 27 (2001), pp. 299-316. Cited on 20, 22, 72
[53] Lagerstrom, P. A. Matched Asymptotic Expansions. Springer-Verlag, New York, 1988. Cited on 16
[54] Liu, W. Geometric singular perturbation approach to steady-state Poisson-NernstPlanck systems. SIAM J. Appl. Math. 65 (2005), 754-766. Cited on 27
[55] B. Li, Minimizations of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent. SIAM J. Math. Anal. 40 (2009), 2536-2566. Cited on 3
[56] B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes. Nonlinearity 22 (2009), 811-833. Cited on 3
[57] W. Liu, Geometric singular perturbation approach to steady-state Poisson-NernstPlanck systems. SIAM J. Appl. Math. 65 (2005), 754-766. Cited on 5, 7, 93, 98, 99, 107, 109, 129
[58] W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species. J. Differential Equations 246 (2009), 428-451. Cited on $5,7,25,27,31,64,80,93,98,99,109,129,131,132$
[59] Liu, W. Exchange lemmas for singular perturbations with certain turning points. J. Differential Equations 167 (2000), pp. 134-180. Cited on 5, 20
[60] G. Lin, W. Liu, Y.Yi, and M. Zhang, Poisson-Nernst-Plank systems for ion flow with density functional theory for local hard sphere potential. SIAM J. on Applied Dynamical Systems Accepted. Cited on 129
[61] W. Liu, X. Tu, and M. Zhang, Poisson-Nernst-Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I-V relations and Critical Potentials. Part II: Numerics. J. Dyn. Diff. Equat. 24 (2012), 985-1004. Cited on 5, 27, 86, 129
[62] W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels. J. Dyn. Diff. Equat. 22 (2010), 413-437. Cited on 5, 7, 129
[63] M. S. Mock, An example of nonuniqueness of stationary solutions in device models. COMPEL 1 (1982), 165-174. Cited on 7, 25
[64] B. Nadler, Z. Schuss, A. Singer, and B. Eisenberg, Diffusion through protein channels: from molecular description to continuum equations. Nanotech. 3 (2003), 439442. Cited on 3
[65] W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels. Biophys. J. 75 (1998), 1287-1305. Cited on 2, 5, 7
[66] S. Y. Noskov, S. Berneche, and B. Roux, Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431 (2004), 830-834. Cited on
[67] S. Y. Noskov, W. Im, and B. Roux, Ion Permeation through the z_{1}-Hemolysin Channel: Theoretical Studies Based on Brownian Dynamics and Poisson-Nernst-Planck Electrodiffusion Theory. Biophys. J. 87 (2004), 2299-2309. Cited on 3
[68] S. Y. Noskov and B. Roux, Ion selectivity in potassium channels. Biophys. Chem. 124 (2006), 279-291. Cited on
[69] J.-K. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-NernstPlanck systems: Mathematical study. SIAM J. Appl. Math. 57 (1997), 609-630. Cited on 7
[70] Lawrence Perko, Differential Equations and Dynamical Systems (Texts in Applied Mathematics), 3rd edition. Cited on 5, 12, 13
[71] J. K. Percus, Equilibrium state of a classical fluid of hard rods in an external field. J. Stat. Phys. 15 (1976), 505-511. Cited on 10, 65
[72] J. K. Percus, Model grand potential for a nonuniform classical fluid. J. Chem. Phys. 75 (1981), 1316-1319. Cited on 10, 65
[73] A. Robledo and C. Varea, On the relationship between the density functional formalism and the potential distribution theory for nonuniform fluids. J. Stat. Phys. 26 (1981), 513-525. Cited on 10, 65
[74] Y. Rosenfeld, Free-Energy Model for the Inhomogeneous Hard-Sphere Fluid Mixture and Density-Functional Theory of Freezing. Phys. Rev. Lett. 63 (1989), 980983. Cited on 9, 10, 65
[75] Y. Rosenfeld, Free energy model for the inhomogeneous fluid mixtures: Yukawacharged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98 (1993), 8126-8148. Cited on 9, 10, 65
[76] R. Roth, Fundamental measure theory for hard-sphere mixtures: a review. J. Phys.: Condens. Matter 22 (2010), 063102 (1-18). Cited on 9, 10
[77] B. Roux, T. W. Allen, S. Berneche, and W. Im, Theoretical and computational models of biological ion channels. Quat. Rev. Biophys. 37 (2004), 15-103. Cited on 3
[78] B. Roux, Theory of Transport in Ion Channels: From Molecular Dynamics Simulations to Experiments, in Comp. Simul. In Molecular Biology, J. Goodefellow ed., VCH Weinheim, Ch. 6, 133-169 (1995). Cited on 3
[79] B. Roux and S. Crouzy, Theoretical studies of activated processes in biological ion channels, in Classical and quantum dynamics in condensed phase simulations, B.J. Berne, G. Ciccotti and D.F. Coker Eds, World Scientific Ltd., 445-462 (1998). Cited on
[80] I. Rubinstein, Multiple steady states in one-dimensional electrodiffusion with local electroneutrality. SIAM J. Appl. Math. 47 (1987), 1076-1093. Cited on 7, 25
[81] I. Rubinstein, Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, 1990. Cited on 2, 7, 25
[82] M. Saraniti, S. Aboud, and R. Eisenberg, The Simulation of Ionic Charge Transport in Biological Ion Channels: an Introduction to Numerical Methods. Rev. Comp. Chem. 22 (2005), 229-294. Cited on 7
[83] M. Schmidt, H. Löwen, J. M. Brader, and R. Evans, Density Functional for a Model Colloid-Polymer Mixture. Phys. Rev. Lett. 85 (2000), 1934-1937. Cited on
[84] M. Schmidt, H. Löwen, J. M. Brader, and R. Evans, Density Functional Theory for a Model Colloid-Polymer Mixture: Bulk Fluid Phases. J. Phys.: Condens. Matter 14 (2002), 9353-9382. Cited on 9
[85] Z. Schuss, B. Nadler, and R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys. Rev. E 64 (2001), $1-14$. Cited on 3, 5
[86] A. Singer and J. Norbury, A Poisson-Nernst-Planck model for biological ion channels-an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70 (2009), 949-968. Cited on 7
[87] A. Singer, D. Gillespie, J. Norbury, and R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: applications to ion channels. European J. Appl. Math. 19 (2008), 541-560. Cited on 5, 7
[88] H. Steinrück, Asymptotic analysis of the current-voltage curve of a pnpn semiconductor device. IMA J. Appl. Math. 43 (1989), 243-259. Cited on 7, 25
[89] H. Steinrück, A bifurcation analysis of the one-dimensional steady-state semiconductor device equations. SIAM J. Appl. Math. 49 (1989), 1102-1121. Cited on 7, 25
[90] T. A. van der Straaten, G. Kathawala, R. S. Eisenberg, and U. Ravaioli, BioMOCA - a Boltzmann transport Monte Carlo model for ion channel simulation. Molecular Simulation 31 (2004), 151-171. Cited on 3
[91] P. Tarazona and Y. Rosenfeld, From zero-dimension cavities to free-energy functionals for hard disks and hard spheres. Phys. Rev. E 55 (1997), R4873-R4876. Cited on 9
[92] P. Tarazona and Y. Rosenfeld, Free energy density functional from 0D cavities; in New Approaches to Problems in Liquid State Theory, edited by C. Caccamo, J.P. Hansen, and G. Stell (Kluwer Academic, Doordrecht, 1999), 293-302. Cited on 9
[93] S.-K. Tin, N. Kopell, and C. Jones, Invariant manifolds and singularly perturbed boundary value problems. SIAM J. Numer. Anal. 31 (1994), 1558-1576. Cited on 5, 109, 110
[94] M. Zhang, Asymptotic expansions and numerical simulations of I-V relations via a steady-state Poisson-Nernst-Planck system. Submitted. Cited on 5, 7
[95] Q. Zheng, D. Chen, and W. Wei, Second-order Poisson-Nernst-Planck solver for ion transport. J. Comput. Phys. 230 (2011), 52395262. Cited on 7
[96] Q. Zheng and W. Wei, Poisson-Boltzmann-Nernst-Planck model. J. Chem. Phys. 134 (2011), 194101 (1-17). Cited on 7

