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Abstract  

Polypodium hydriforme and Myxozoa, represented in this study by Myxobolus cerebralis, 

are both enigmatic, intracellular parasites with very unusual life cycles and body plans, which 

has long made their phylogenetic placement unclear. It has been suggested that P. hydriforme 

and Myxozoa have an affinity with cnidarians because of the presence of nematocyst-like 

structures in both organisms. Recently phylogenomic studies have lent support to the hypothesis 

that Myxozoa is cnidarian. However, the placement of P. hydriforme and Myxozoa within 

cnidarian and in relation to each other remains unknown, and many questions about their 

evolution and transition to parasitism still remain. To address these questions, we have generated 

partial transcriptomes of M. cerebralis and P. hydriforme, and searched within them for 

important families of developmental regulatory genes and nematocyst-specific genes. The P. 

hydriforme transcriptome contained a much larger complement of both putative Hox/Parahox 

genes and Wnt-family genes, which may relate increased body plan complexity as compared 

with M. cerebralis. Both transcriptomes contained a number of minicollagen sequences, 

confirming their placement within Cnidaria.  
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Introduction 

The evolutionary transition to parasitism is often accompanied by drastic changes in body 

plan organization that can include degeneration or loss of prominent morphological features that 

are present in free-living relatives.  The evolution of parasitism can also involve an increase in 

life cycle complexity due to the requirement of host obtainment and utilization (Phillips et al. 

2012; Parker et al. 2003). Increased rates of DNA sequence and genomic evolution can 

accompany these dramatic changes in morphology and life cycles (Hafner et al. 1994; Hide and 

Isokpehi 2004; Peyretaillade 2011). The enigmatic, putative cnidarian parasites, Polypodium 

hydriforme and the phylum Myxozoa, are prime examples of extreme morphological and 

molecular divergences in association with the evolution of parasitism.  In this study, we 

characterize the transcriptomes of Polypodium hydriforme and the myxozoan Myxobolus 

cerebralis in order to provide insight into their origins and evolution. 

Life cycle of Polypodium hydriforme. Polypodium hydriforme has been described as a 

monotypic species from the phylum Polypodiozoa (Raikova 1994).  The larvae of P. hydriforme 

spends several years as a binucleate cell-within-a-cell stage within the oocytes of female 

acipenseriform fishes (paddlefish and sturgeon) (Fig. 1A).  Just prior to the host spawning, P. 

hydriforme develops inside the host’s oocyte as a planula-type larvae (Fig. 1B).  At this point, 

the germ layers of Polypodium hydriforme are reversed with respect to other metazoans, with the 

ectoderm developing interiorly and the gastroderm exteriorly. (Fig.1B). This larval form grows 

into an elongate stolon (Raikova 1994, 2008) (Fig. 1C).  
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FIGURE 1: The life cycle of Polypodium hydriforme.  A. Polypodium infects the host egg and has 

embryonic/postembryonic development in the fish oocyte. B. Planula larval form. C. Early stolon stage 

starting to develop tentacles. D. Stolon emerging from host egg upon spawning. E. Free-living stolon. F. 

Stolon fragmenting and dividing by fission. G. Completely developed and sexually reproductive 

Polypodium. Photograph labels correspond the labeled life cycle stage in illustrations. Illustration credit: 

Amanda Shaver.  

Upon spawning of the host, Polypodium hydriforme everts, and emerges from the oocyte 

while reversing its germ-layer orientation, revealing ectodermally-derived tentacles along the 

length of the stolon (Fig. 1D). Once freely living outside the host’s oocyte, the long stolon-like 

body of the Polypodium hydriforme begins to divide into many free-living fragments with six 

tentacles on each side (Raikova 2008), and eventually develops a mouth and begins to feed on 

small invertebrates (Fig. 1E-F). These twelve-tentacled individuals (Fig. 1F) divide asexually via 

longitudinal fission, beginning with the development of a new set of tentacles on the aboral side. 

Eventually, different individuals develop two distinct gonad types, although it appears that the 

‘female’ gonads are not actually involved in reproduction (Raikova 2008).  The free-living stage 

occurs entirely in fresh-water streams or lakes.  Adult Polypodium hydriforme infects juvenile 

female fish and the parasites lies dormant within the host’s ovaries in the binucleate cell-within-

a-cell stage for several years until the host reaches sexual maturity (Raikova 2008).   

 Myxozoan classification, diversity and life cycles.  Myxozoa is a parasitic phylum that 

has been purported to have cnidarian origins. Within the phylum Myxozoa, two main lineages 
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are recognized, the class Myxosporea and the class Malacosporea (Canning et al. 2000). The 

malacosporeans contain only four known species, and includes the enigmatic, worm-like 

Buddenbrockia plumatellae, which has been the focus of a number of morphological and 

developmental studies (i.e. Gruhl and Okamura 2012; Canning et al. 2008). Malacosporeans are 

known to parasitize freshwater bryozoans for at least part of their life cycle, but no complete life 

cycle has ever been reported (Tops et al. 2005). However, a recent study has shown the 

successful experimental transfer of a malacosporean to carp and minnows, indicating that a fish 

may have a role as a host within this life cycle (Grabner and El-Matbouli 2010).  

The myxosporeans are far more diverse, containing over 2,000 species (Lom and Dykova 

2006). Members of this clade were found to be the causative agents of a number of diseases 

affecting economically important salmonid fishes, including whirling disease and proliferative 

kidney disease (Kent et al. 2001).  Molecular phylogenetic studies within Myxozoa have 

confirmed the monophyly of the myxosporeans and have shown that freshwater and marine 

species largely fall into separate clades (Kent et al. 2001, Bartošová et al. 2009). 

 

 

Figure 2: The life cycle and 

development of the Myxozoa, 

based on the life cycle of 

Myxobolus cerebralis.  

Names of life cycle stages 

indicated here. Actinospore 

stage is about 350µm long and 

the myxospore stage is only 

about 10 µm long.   For most 

myxozoans the second host is 

unknown. 
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 The overall life cycle of Myxobolus cerebralis is typical of Myxosporea. M. cerebralis 

has two hosts within its life cycle, a polychaete worm and a salmonid fish. Individuals of the 

triactinomyxon spore stage (actinospore stage; Fig. 2) encounter their host through through 

dermal contact or consumption of the polychaete worm by the potential host fish (Markiw and 

Wolf 1983). After initial attachment to the fish, M. cerebralis burrows into the host tissue, and 

undergoes many rounds of replication within host muscular and nervous system tissues (El-

Matbouli et al. 1995).  This infection is what causes whirling disease in its host (Markiw and 

Wolf, 1983).  Ultimately, individuals are released from the host as myxospores (Fig. 2), which 

contain only six cells (El-Matbouli et al. 1995), and go on to infect T. tubifex. Within the host 

worm, the M. cerebralis propogates and matures into the actinospore stage (Fig. 2), which are 

released into the water. 

Phylogenetic placement of Polypodium and Myxozoa The phylogenetic placement of 

Polypodium and Myxozoa has been controversial, especially for the Myxozoa. From their first 

descriptions in the 1880s until relatively recently, species of myxozoans have been placed as 

protists, largely due to their reduced body plans and microscopic spores, which range in size 

from 10-350 micrometers, depending on life cycle stage (Markiw 1992). Unlike Myxozoa, the 

placement of Polypodium as a cnidarian has long been proposed based on morphology.  

Polypodium was reported to be a member of the derived hydrozoans, the Narcomedusae (Berrill, 

1950), or amongst the scyphozoans (Lipin, 1925).  

With the advent of molecular phylogenetics, it was confirmed that myxozoans were not 

protists but belonged to Metazoa (Smothers 1994).  Using 18S rDNA and morphological data, 

Siddall et al. (1995) placed the myxozoans within Cnidaria and sister to Polypodium and found 

that Myxozoa and Polypodium were sister taxa. This overall relationship was supported by Evans 
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and colleagues, along with the suggestion that this might be an artifact due to long-branch 

attraction (LBA) (Evans et al. 2008).  Jimenez-Guri et al. (2008), using a phylogenomic 

approach with a much larger sampling of genes, also found that the myxozoan Buddenbrockia 

fell within Cnidaria. In contrast to these findings, several studies placed Myxozoa as a group of 

early-diverging bilaterians (Schlegel et al. 1996; Anderson et al. 1998).  Evans et al. (2010) 

found that placement of Myxozoa was highly dependent on character and taxon selection.  

Most recently, Nesnidal et al. (2013) conducted a phylogenomic study using two 

myxozoan taxa; data from the partial genome of Myxobolus cerebralis and from the previously 

published data on Buddenbrockia. The authors concluded that this new, larger dataset 

unequivocally places Myxozoa among the cnidarians and supports the Evans et al. (2010) and 

Jimenez-Guri et al. (2008) conclusions that myxozoans are sister to the cnidarian clade 

Medusozoa. However, taxon sampling is limited, particularly among the myxozoa, and P. 

hydriforme is notably absent, making it difficult to draw any definitive conclusions about the 

relationship of these groups to each other and to the rest of cnidarians.  

 Nematocyst Structure and Function. In addition to the phylogenetic evidence discussed 

above, the assertion that P. hydriforme and Myxozoa belong within Cnidaria has been supported 

by the presence of nematocyst-like structures. Nematocysts are intra-cellular organelles unique to 

cnidarians, used for predation and defense. They are complex structures that are the product of a 

large post-Golgi vacuole, and consist of a capsule containing a long tubule that is tightly coiled 

until discharge. This tubule generally bears a number of spines (Reft and Daly 2012). The 

nematocysts are generally mechanosensitive, and evert their tubule at discharge, often to deliver 

venom to its target. There are a large variety of structural types among the nematocysts 

throughout cnidaria (David et al. 2008). These nematocysts types are most complex among the 
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Medusozoa. Medusozoans also possess some of the largest complements of different types of 

nematocysts (David et al. 2008).  

 The presence of structures similar to nematocysts have long been noted in both P. 

hydriforme and Myxozoa. Ibragimov and Raikova (2004) detected and described the presence of 

at least two distinct nematocyst types in P. hydriforme. Some features of the P. hydriforme 

nematocysts are distinct, however, from the nematocysts of any other cnidarian, most notably the 

possession double-helical symmetry as well as two helical rows of tiny spines in the discharged 

state and two helical folds in the undischarged state (Ibragimov and Raikova 2004). The 

functions of nematocysts in P. hydriforme include prey-capture during the free-living stages, 

tentacle adhesion during locomotion (Lipin 1911), and attachment to host fishes (Ibragimov 

2004).  

Myxozoans possess structures called polar capsules, which bear resemblance to cnidarian 

nematocysts and are used for attachment to and penetration of the host organism.  As reviewed in 

Cannon and Wagner (2003), many researchers have noted the similarities between polar capsules 

and cnidarian nematocysts. Polar capsules are simpler in arrangement than most cnidarian 

nematocysts. Myxozoan polar capsules possess a thick capsular wall, an eversible polar filament, 

and a “cap” or “stopper” (Lom and Dykova 1992). A study by Kallert et al. (2005) demonstrated 

that myxozoan polar capsules may need a combination of both mechanical and chemical stimuli 

in order to trigger discharge.  Reft and Daly (2012) noted that the apical structure was largely 

identical to the operculum which is restricted to Medusozoa, giving further support to the close 

relationship between Medusozoa and Myxozoa (Reft and Daly 2012).  

Nematocysts are comprised of a number of proteins specific to this organelle and to 

Cnidaria, including the minicollagen protein family. Minicollagens are very short collagen 
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molecules that make up a large part of the structure of the nematocyst wall and tubule (Kurz et 

al, 1991). As shown in the model system Hydra, different types of minicollagens may be 

localized to specific areas of the nematocyst (Adamczyk et al. 2008). The hydrozoans, which 

have the greatest number of nematocyst types, have also been shown to have the greatest number 

of minicollagen types, and it has been suggested that the expansion of this protein family has 

contributed to the complexity and diversity of the nematocysts throughout Cnidaria (David et al. 

2008).  

Although the molecular components of cnidarian nematocysts are well characterized, 

little is known about the molecular basis for the nematocysts of P. hydriforme and the polar 

capsules of Myxozoa. Holland et al. (2011) reported a single minicollagen gene from an 

expressed sequence library from the myxozoan Tetracapsuloides bryosalmonae.  Discovery and 

characterization of nematocyst specific genes in P. hydriforme and Myxozoa could provide 

important insight for the homology of P.hydriforme nematocysts and myxozoan polar capsules to 

cnidarian nematocysts, by assessing whether they are composed of the same types of 

nematocyst-specific proteins. In addition, the DNA sequences of these genes may prove 

informative for better informing us about the phylogenetic placement of these parasites within 

Cnidaria.  

 To further investigate questions regarding the origin and evolution of P. hydriforme and 

Myxozoa, we generated and characterized the transcriptomes of the myxosporean Myxobolus 

cerebralis and for Polypodium hydriforme. Transcriptomic data allows for the discovery of 

expressed genes, which could be important for understanding the evolution of developmental, 

functional and structural changes that occurred in the transition to a parasitic life cycle in these 

taxa.  In addition, transcriptome sequences can be used in a phylogenetic context to allow for the 
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characterization of aspects of the genome that may better inform the phylogenetic placement of 

these groups. We were particularly interested in characterizing nematocyst-specific genes, as 

these are unique to Cnidaria and appear to be undergoing ongoing evolution within the phylum 

(Steele et al. 2011).  

 In addition, we sought to characterize the Wnt and Hox/ParaHox-like developmental 

regulatory gene families because of their conserved nature and key roles in development. These 

developmental gene families were found to play major roles in the anterior-posterior body 

patterning of bilaterians (Gehrig and Hiromi 1986), and have been found to play a number of 

roles in directing development in cnidarians (Cartwright et al. 2006; Chiori et al. 2005; Duffy et 

al. 2010; Guder et al. 2006). Previous studies of cnidarian genomes have found a large 

complement of genes in each gene family in several model cnidarians such as Hydra and 

Nematostella (Kusserow et al. 2005; Chiori et al. 2005). Since diversification, loss and changes 

in expression of these genes has been shown to be involved in creating the diversity of body 

plans throughout metazoa in general (Schubert and Holland 2006; Finnerty and Martindale 

2001).  Uncovering the number and types of Wnt and Hox/Parahox genes possessed by P. 

hydriforme and the myxozoans smay provide insight into the evolution of their unique body 

plans and life cycles. 

This research represents a significant step towards a better understanding of the origin 

and evolution of these enigmatic parasitic organisms.  In addition, these transcriptomic resources 

should contribute significantly to the comparative framework needed for future studies on 

cnidarian evolution that includes myxozoans and Polypodium. 
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Methods 

RNA Extraction and Sequencing.  Oocytes infected with Polypodium hydriforme were 

collected from mature, female paddlefish (Polyodon spathula) at the Paddlefish Research and 

Processing center in Twin Bridges State Park, Miami, OK, in March and April of 2011.  In order 

to minimize possible contamination from the host, individual stolons of P. hydriforme were 

allowed to emerge from the host’s ooctye and raised in spring water for 24-48 hours to allow for 

paddlefish yolk to be digested. Specimens were frozen at the elongate stolon stage (Fig. 1E) in 

liquid nitrogen. Uninfected paddlefish oocytes were also taken immediately from the female 

paddlefish and frozen in liquid nitrogen.  Myxobolus cerebralis samples were flash frozen at the 

actinospore (Fig. 2) life cycle stage by Ron Hedrick at the University of California, Davis School 

of Veterinary Medicine, as they emerged from their invertebrate host.  

In each case, RNA was extracted from multiple individuals of the same developmental 

stage (actinospore for M. cerebralis and elongate stolon stage for P. hydriforme) using 

TriReagent (Life Technologies, Grand Island, NY) following standard protocols, followed by 

DNAse treatment using the TURBO DNase kit (Ambion). Myxobolus cerebralis and P. 

hydriforme samples were prepared for sequencing by Mariya Shcheglovitova (M.S.) using the 

TruSeq RNA Sample Preparation Kit v2 (Illumina Inc., San Diego, CA).  RNA was chemically 

fragmented, using reagents supplied in the TruSeq kit, resulting in libraries with a median insert 

size of 155 bp.  Both samples were given a single lane and sequenced at the University of 

Massachusetts Medical School Molecular Biology Core Facility on an Illumina HiSeq 2000 
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machine. The uninfected paddlefish eggs were prepared for sequencing by Clark Bloomer at the 

University of Kansas Medical School Sequencing Center, and sequenced at this center.  

Illumina sequence assembly. The number of 100-bp reads generated for each of the three 

libraries is shown in Table 1. Datasets were examined in FastQC v.0.8.0 by Babraham 

Bioinformatics (2010) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ ) for overall 

quality score distributions and to assess quality cutoffs. Reads were quality trimmed with a script 

created by M.S. (https://github.com/bastodian/shed/blob/master/Python/q-trim.py) using default 

values of Phred score cutoff of 21, 5bp of contiguous low quality sequence and at least 30bp left 

of a sequence in order for the read to be retained.   Trimmed reads were re-paired and separated 

into files for forwards and backwards reads using both.py 

(https://github.com/bastodian/shed/blob/master/Python/both.py), also written by M.S. The trimmed 

reads were assembled using Trinity (Grabherr et al., 2011) using the 2012-10-05 release for the 

M. cerebralis and P. hydriforme assemblies and the paddlefish egg assembly. Each run was 

implemented with the following settings:  (--SS_lib_type RF --CPU 10 --bflyJavaVM64bit --

bflyHeapSpace 20G --bflyMinHeapSpace 20G --bflyHeapNursery 20G --bflyJavaGCParallel --

bflyJavaGCThreads 16 --repeat 5 --bflyJavaCmdLifespan_min 5 --bflyJavaCmdLifespan_max 

1800 --bfly_opts "-V 10 --stderr") on the Bioinformatics Cluster at the Information and 

Telecommunications Cluster at the University of Kansas.  

Contamination Filtering. Since P. hydriforme is an obligate endoparasites, we were 

concerned about contamination by host sequences. The assembled P. hydriforme sequences were 

initially used as a BLAST (Altschul et al. 1997) query against databases of potential contaminant 

sequences. The first database was created from every expressed sequence tag (EST) and genomic 

sequence from acipenseriform fishes found in the database of the National Center for 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/bastodian/shed/blob/master/Python/q-trim.py
https://github.com/bastodian/shed/blob/master/Python/both.py
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Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov). Given that there are only 

7,669 acipenseriform sequences in NCBI databases, an additional database that included ESTs 

from the model fish Danio rerio was generated from these databases. A third BLAST database 

was created out of the newly generated Illumina sequences from assembled paddlefish oocyte 

RNA. The acipenseriform, acipenseriform plus D. rerio sequences, and our newly generated 

paddlefish oocyte transcriptome were made into nucleotide BLAST databases using the 

makeblastdb function. The P. hydriforme transcriptome sequences were queried against the 

databases from NCBI and a database created from our newly-assembled paddlefish oocyte 

sequences in order to identify P. hydriforme sequences that have significant BLAST hits to fish 

sequences at a variety of e-value levels and using both tblastx and tblastn algorithms.  

 Transcriptome Annotation. All assembled sequences for both P. hydriforme and M. 

cerebralis were initially annotated using the program BLAST2GO (Conesa et al. 2005).  A 

tblastx search against the non-redundant protein database (NR) at an e-value of 1e-3, mapping, 

and Gene Ontology (GO annotation) steps were implemented. Graphs of GO annotation were 

also created with BLAST2GO.  

  

Figure 3. 

Flowchart of 

assembly and 

annotation 

methods 
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To assign protein domains to the greatest possible number of sequences, the M. 

cerebralis and P. hydriforme assembled transcriptome sequences were run through HMMer 

(Finn et al. 2011) as implemented on the University of Indiana Integrated Server for Genomic 

Analysis (ISGA). HMMer uses profile Hidden Markov Models to query the assembled 

sequences against the PFam (Sonnhammer et al. 1997) and TIGRFAMs (Haft et al. 2001) protein 

domain databases.  

Both data sets of assembled sequences were also run through the gene orthology module 

on ISGA in order to perform both orthology and paralogy analysis. Through this pipeline, the 

sequences are first BLAST searched against the OrthoMCL database (Chen et al. 2006), as well 

as queried against themselves, and the OrthoMCL algorithm is used to form orthology and 

paralogy groups (Li et al. 2003). The data sets are also BLAST queried against the OrthoDB 

dataset to assign OrthoDB Group ID. Candidate Hox-like and Wnt pathway developmental 

regulatory genes and nematocyst-specific genes were identified from the transcriptomes using 

the above orthology queries, as well as targeted BLAST searches using cnidarian sequences from 

these gene families taken from NCBI.  

Phylogenetic Methods. Sequences from the transcriptomes were identified as belonging to the 

Hox/Parahox, Wnt, and minicollagen gene families by BLAST searching the entire 

transcriptomes against known cnidarian sequences for these gene families and against the entire 

NR database. Sequences identified through these searches were initially imported into Geneious 

Basic 5.6.3 (Drummond et al. 2012) to check for duplicates and translate into all six reading 

frames. Correct reading frames were chosen for further analysis by seeing translating sequences 

in all six reading frame and seeing which of the translations returned the appropriate conserved 

domain in a BLAST search against NR. For Hox/ParaHox genes, translated sequences were then 
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aligned  using the MAFFT E-ins-I algorithm along with many sequences from the data set of 

Chiori et al. (2009), which contains  Hox/ParaHox-extended genes from a variety of cnidarians 

and bilaterians, and trimmed down to the 60aa homeodomain region for further analysis using 

BioEdit v.7.1.10 (Hall 1999).  The Wnt and minicollagen genes were aligned with cnidarian 

sequences from NCBI from their respective gene families using the E-ins-I algorithm and 

trimmed in BioEdit. A single minicollagen sequence from another myxozoan was included in our 

analysis. In a 2010 study, Holland et al. isolated a minicollagen sequence from the myxozoan  

Tetracapsuloides bryosalmonae, which found on GenBank and added to our database of 

cnidarian minicollagen sequences.  Trimmed alignments were run through the default settings on 

the ProtTest 2.4 (Abascal et al. 2005) server to get an initial suggestion of model choice for the 

phylogenetic analysis of these sequences.  

Maximum likelihood inference was implemented in RaxML 2.7.2 (Statamakis 2006), 

starting with 30 maximum likelihood trees and 200 bootstrap replicates for each analysis. The 

PROTGAMMA+LG model was used the analysis of the Wnt-like sequences, the 

PROTGAMMA+BLOSUM62 model was used for the minicollagen sequences and 

PROTCAT+I+LG was used for final analysis of the Hox/ParaHox sequences.  Bayesian analysis 

for the Wnt-like and minicollagen data sets was implemented in MrBayes3.2.1 (Ronquist and 

Huelsenbeck 2003) on Cyberinfrastructure for Phylogenetics Research Portal (CIPRES) (Miller 

et. al, 2010) with a GAMMA model with a mixed substitution rates model (the 

aamodelpr=mixed setting). Two runs of 3 hot chains and 1 cold chain were run for 40 million 

generations with a 10 percent burn-in for each of these analyses, and trees were summarized 

using sumt in MrBayes3.2.1.  
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Results 

Sequencing and Assembly Results 

 Number of Illumina generated sequences and overall assembly statistics are shown in 

Table 1. Overall number of raw reads and number of assembled sequences are similar for both P. 

hydriforme and M. cerebralis, with P. hydriforme  having N50 and N75 values nearly twice as 

long as M. cerebralis. By contrast, the P. spathula oocyte assembly produced over three times as 

many sequences as the others. Looking at the sequence-size distribution of this assembly, over 

70,000 of these sequences are between relatively short (200-299bp, not shown).  The large 

number of short sequences may be due to the failure to assemble full transcripts due to 

degradation. 

Table 1. Statistics from the Trinity RNA-seq assemblies for P. hydriforme, M. cerebralis and 

P. spathula 

 P. hydriforme M. cerebralis P. spathula oocyte 

# of Raw Reads 467 million 312 million 128 million 

# of Assembled Sequences 76,434 83,398 235,055 

N25 2864 1660 2108 

N50 1660 822 1081 

N75 744 412 493 

Longest Contig 22,163 9634 16,480 

 

Contamination filtering results. Using nucleotide BLAST (blastn) against a database of 

only acipenseriform sequences identified a very low number of contaminant sequences. The 

translated query-translated query algorithm (tblastx) identified a larger number of potential 

contaminant sequences, although proved particularly poor at specifically identifying contaminant 



15 
 

sequences to the exclusion of potentially cnidarian sequences. Surprisingly, BLAST-searching 

the transcriptome of P. hydriforme against a database of sequences from the actual host tissue 

itself (the paddlefish egg transcriptome) did not appear to improve filtering specificity, with 

regards to whether potential cnidarian sequences were also identified as being contaminant.  

 

Table 2. Results of BLAST searches of the P. hydriforme transcriptome against databases of fish 

sequences 

Database Algorithm E-value 

Cutoff 

# of significant 

hits in P. 

hydriforme 

transcriptome 

Overlap with 

potential 

cnidarian 

sequences  

Acipenseriformes Blastn 1e-3 56 0 

Acipenseriformes Tblastx 1e-30 394 280 

AP+ Danio rerio Blastn 1e-3 323 210 

AP + Danio rerio Tblastx 1e-30 1023 1022 

Paddlefish egg 

transcriptome 

Tblastn 1e-3 295 218 

  

Annotation Results. Several different approaches were utilized to annotate and 

functionally categorize the assemble contigs from the transcriptomes. About 37% of assembled 

sequences from each of the M. cerebralis and P. hydriforme transcriptomes were given blastx hits 

at an e-value cutoff of 1e-03 (Table 3). Notably, in each of these cases, the top two BLAST top-

hit species were cnidarians, the model organisms Hydra vulgaris and Nematostella vectensis. Of 

the sequences with significant BLAST hits, 12,167 and 10, 418, respectively for the P. 

hydriforme and M. cerebralis transcriptomes were identified as ‘predicted proteins’ and could not 

be annotated further using the gene ontology (GO) pipeline. Sequences identified as cnidarian by 

their tblastx top-hit make up about 25% (of the 37% that had significant blast hits) of each of 

these transcriptomes (Fig. 4). GO annotation assigned categories to 18% and 19% of the P. 

hydriforme and M. cerebralis transcriptomes (Table 2) respectively. Of those GO annotations, the 

overall distribution of top molecular function, biological process and cellular component 
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categories were almost identical between the two transcriptomes (see figures 5, 6 and 7).  

 HMMer searching uses Hidden Markov models to identify short stretches of similarity 

from sequences to protein domains from the PFAM and TIGRFAM databases.  This search was 

able to assign protein family identifications, or both M. cerebralis and P. hydriforme, to a number 

of sequences that had no significant BLAST hits or ones that GO annotation assigned the 

identification ‘Predicted Protein’ or ‘Hypothetical Protein’ or other non-specific titles (Table 

2).This allowed for the identification of several more candidate genes (as noted in tables 3, 4 and 

5).  

Table 2. Annotation for P. hydriforme and M. cerebralis transcriptomes.  

Sequences in each category Polypodium hydriforme Myxobolus cerebralis 

Total Assembled Sequences 76,434 83,398 

With BLAST nr hits 28,343 30,846 

With GO category  14,006 16,020 

Total ‘predicted proteins’  12,167 10,418 

Assigned HMM families 22,153 22,918 

Assigned OrthoMCL ortholog groups 6503 7319 

# of paralog within OrthoMCL 

ortholog groups 

22,869 27,250 

Total # (or percent) of assembled 

sequences with a search term 

28,930 (37.8%) 33,981 (40.7%) 

 

 

  The OrthoMCL pipeline, which identifies sequences to paralog and ortholog groups, was 

informative for grouping and categorizing unidentified sequences. From the P. hydriforme and 

M. cerebralis assemblies, respectively, 6503 and 7319 sequences were assigned ortholog groups, 

and a very large number from each were assigned as paralog groups within the ortholog group 
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(Table 2).  Many of these “paralog” groups are likely incompletely assembled contigs and 

isotigs. 
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 Figure 4. Distribution of taxonomic categories of BLAST top hits for the top 20 species for 

each transcriptome. 
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Figure 5.  Distribution of Level 2 molecular function categories produced by GO annotation of the P. 

hydriforme  and M. cerebralis transcriptomes 



20 
 

 

 

Figure 6.  Distribution of Level 2 biological process categories produced by GO annotation of the P. 

hydriforme and M. cerebralis assemblies. 
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Figure 7.  Distribution of Level 2 cellular component categories produced by GO annotation of the M. 

cerebralis and P. hydriforme  assemblies. 
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Hox and ParaHox genes. Using BLAST searching, the P. hydriforme transcriptome 

yielded five unique homeodomain-containing sequences from the Hox/Parahox-extended gene 

family (Table 3).  An additional sequence was found through an HMMer search against the 

PFAM database. In the transcriptome of Myxobolus cerebralis only a single sequence from the 

Hox-extended family was retrieved through both tblastx against NR and through a protein-

domain search. This sequence was identified through BLAST as a putative Cdx sequence.  

Table 3. Homeodomain-containing candidate genes extracted from assembled transcripts of M. 

cerebralis and P. hydriforme. Sequences from P. hydriforme begin with Phy, and the single sequence 

beginning Mce is from M. cerebralis. Cnidarian species are in bold.  

Sequence 

ID 

Sequence 

Length 

BLAST top-

hit ID  

BLAST top-

hit species 

Top-hit e-

value 

Top-hit 

%sequence 

identity 

Phy9787 697 Cnox3 H. viridissima 1.00e-26 52.4 

Phy16739 947 Cnox4 E. dichotoma 4.00e-18 64.7 

Phy52035 323 Cnox2 A. millepora 8.00e-25 71.6 

Phy19578 879 MoxD N. vectensis 3.00e-29 59.4 

Phy11495 1130 Msx N. vectensis 8.00e-16 35.8 

Phy16555 1570 Pdx/Xlox T. dohrnii 1.00e-14 51.8 

Mce16424 632 Cdx P. excavatus   4.00e-6 55.3 

 

 

 Phylogenetic analyses revealed six P. hydriforme genes as orthologs of Hox/Parahox 

groups (Fig. 9). Placement of these sequences and overall topology of the tree were consistent 

among maximum likelihood (ML) analyses and was not dependent on whether or not a 

proportion of variant sites was included. In general, bootstrap support was low throughout the 
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tree (Fig. 9), particularly for the relationships deeper in the trees between the major Hox/Parahox 

groups. Two sequences, Phy7987 and Phy11495 were recovered as putative Msx genes (a 

homeobox-containing gene that is not classified as part of the Hox family). A single putative 

Mox gene, Phy19578, was also recovered. Following the naming scheme of Chiori et al. 2009, a 

single “anterior” Hox (HOX1/HOX2/GSX) gene sequence was identified, Phy52035, as well as a 

several “posterior” Hox sequence (Hox9-14/Cdx) sequence, Phy16739, Phy16555 and 

Mce16424 (Fig. 9).  

 Notably, the branch representing the M. cerebralis sequence Mce16424 is extremely long. 

The sequence from M. cerebralis possesses only 34% sequence identity to the gene it grouped 

most closely with in the phylogenetic analysis, which was the Hox9 gene of the lancelet, 

Branchiostoma floridae (Fig. 9). For comparison, B. floridae Hox9 and Hox10 genes have 79% 

shared sequence identity. Examining the alignment of the sequence from M. cerebralis with other 

“median” Hox genes confirms the divergent nature of the homeobox region of the sequence 

Mce16424 and at this point it should be considered a putative Hox gene (Fig. 8).  

 

Figure 8. Alignment diagram comparing Hox/ParaHox-like sequences to the Hydra vulgaris Cnox2 gene. 

Missing amino acids are marked with an asterisk.  

 

Wnt Sequences. A total of eight Wnt-like genes were isolated from the transcriptome of 

P. hydriforme via a tblastx search against NR and a targeted search of known cnidarian Wnt 
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sequences from GenBank against the transcriptome. These were included in gene tree analyses 

along with a comprehensive sampling of cnidarian sequences from GenBank. The eight Wnt-like 

sequences from P. hydriforme span some of the diversity of known Wnt gene subfamilies, as 

established in Kusserow et al. (2005). P. hydriforme sequences were placed, both in the ML and 

Bayesian analysis, within the Wnt7/8 (Phy18670, Phy10224, Phy7444, Phy 23685), Wnt5 (Phy 

16339), Wnt3 (Phy4183 and Phy5694) and Wnt 6 (Phy4979) orthology groups, although with 

low nodal support. Phy10871 has variable placement, grouping with Wnt9/10 in the ML analysis 

(Fig.10) and with Wnt5 in the Bayesian analysis (Fig. 11).  The presence of three unique Wnt7/8-

like sequences for P. hydriforme appears to represent a lineage-specific duplication, as only up to 

two Wnt8 sequences have been found in any other cnidarian species (see Hydra vulgaris 

sequences in Fig. 10 and 11). In contrast to P. hydriforme, a search of the M. cerebralis 

transcriptome did not recover any Wnt-like sequences using either BLAST and HMMer 

searches.  
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Table 4. Wnt-like candidate genes extracted from assembled transcriptome of P. hydriforme. 

Sequences from P. hydriforme begin Phy, and the sequence beginning Mce is from M. cerebralis.  Blast 

hits from cnidarians are in bold. Sequences found through HMMer searching are marked with an asterisk. 

Sequence ID  Sequence 

Length 

BLAST top-hit ID BLAST top-

hit species  

Top-hit 

e-value 

Top-hit 

percent 

sequence 

identity 

Phy4979* 1611 predicted protein  N. vectensis 1E-54 33 

Phy5183 1707 wingless-type 

member 3 

precursor  

S.  kowalevskii 1E-79 39.1 

Phy7444 1491 WNT8 protein 

variant 2  

D. pulex 1E-79 39.1 

Phy10224 1589 WNT16 D. pulex 2E-27 33.3 

Phy10871 1486 Wnt5a  H. vulgaris 0.00002 51.5 

Phy16339 1456 Wnt-5b-like  

 

N. vitripennis 3E-33 29.1 

Phy18982 906 WNT10  P. excavatus 3E-65 32.1 

Phy23685 448 Wnt7-like protein N. vectensis 4.00e-16 44.9 

 

 

Minicollagen sequences. Minicollagen sequences were recovered from both P. hydriforme and 

M. cerebralis. Notably, nine distinct minicollagens were recovered from the P. hydriforme 

transcriptome while only two unique sequences were found from M. cerebralis. Phylogenetic 

analyses of the new sequences with the rest of the cnidarian sequences recovered different 

topologies using Bayesian and maximum likelihood inferences (Fig. 12 and 13). Notably, in the 

ML analysis, Phy1038, Phy272, Phy394 and Phy268 form a clade with Mce21132 and the T. 

bryosalmonae gene from Holland (2010), referred to as Tbr1 during the analysis (Fig. 12). 
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Table 5. Minicollagen-like candidate genes extracted from assembled transcripts of M. cerebralis 

and P. hydriforme. Sequences from P. hydriforme begin Phy, and the sequence beginning Mce is from M. 

cerebralis. Cnidarian sequences are in bold. Sequences found through HMMer searching are marked with 

an asterisk. 

Sequence ID  Sequence 

Length 

BLAST top-

hit ID  

BLAST top-hit 

species 

Top-hit e-

value 

Top-hit 

percent 

sequence 

identity 

Phy1083 838 Nematocyte-

specific 

minicollagen 

Hydra 

magnipapillata 

1e-09 54.5 

Phy1422 1261 Minicollagen 

15 

Hydra 

magnipapillata 

5e-04 36.7 

Phy13939 788 Minicollagen 

1 

Clytia 

hemisphaerica 

1e-04 33.1 

Phy1507 1116 Minicollagen 

10 

Hydra 

magnipapillata 

0.001 61.4 

Phy1565 702 Minicollagen Acropora donei 8e-05 48.7 

Phy1567* 933 Predicted 

protein 

Nematostella 

vectensis 

.12 60.0 

Phy268 999 Nb001 Hydra 

magnipapillata 

7e-06 58.1 

Phy272 716 Minicollagen 

5 

Nematostella 

vectensis 

2e-12 59.2 

Phy3727 898 Minicollagen 

5 

Nematostella 

vectensis 

8e-05 38.6 

Phy394 838 Minicollagen 

5 

Hydra 

magnipapillata 

8e-07 65.5 

MCe17071 616 Minicollagen 

15 

Hydra 

magnipapillata 

3e-08 23.9 

MCe21132* 404 N/A     

 

  

The other genes from P. hydriforme are recovered in groups with cnidarian genes, with 

the exception of Phy13939, which falls outside of any clades of minicollagens. M. cerebralis 

sequence Mce17071 falls out in a clade of minicollagen-1 genes. In the Bayesian inference 

analysis, Mce21132 was not recovered as an ortholog of the sequence from the myxozoan T. 

bryosalmonae (TbrMC1), and Phy268 is recovered in the same group as this M. cerebralis gene 

(Fig. 13). In this tree, Phy272, Phy1038, Phy397, Phy 394 and Phy3727 form a clade, similar to 

the large grouping of P. hydriforme sequences in the maximum likelihood tree.  
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Figure 9. Phylogenetic relationships between cnidarian and bilaterian Hox/Parahox homeodomain 

sequences, including new sequences from P. hydriforme and M. cerebralis , inferred through ML 

analysis. Species names: Ami=Acropora millepora; Aqu=Amphimedon queenslandica; Avi =Alitta 

virens; Bfe=Branchiostoma floridae; Che=Clytia hemisphaerica; Cxa=Cassiopea xamachana; 

Dme=Drosophila melanogaster; Edi=Eleutheria dichotoma; Hma=Hydra magnipapillata; 

Hsy=Hydractinia symbiolongicarpus; Hvi=Hydra viridissima; Hvu=Hydra vulgaris; Mse=Metridium 

senile; Mce=Myxobolus cerebralis; Nve=Nematostella vectensis; Pca=Podocoryne carnea; 

Phy=Polypodium hydriforme. * = > 70bootstrap support, **=>90 bootstrap support. Sequences from P. 

hydriforme are marked with a red asterisk, and those from M. cerebralis are marked with a blue asterisk. 

 

 



28 
 

 

Figure 10. Phylogenetic relationships between cnidarian and bilaterian Wnt-like sequences, 

including new sequences from P. hydriforme and M. cerebralis, inferred by ML analysis. Taxonomic 

abbreviations: Che=Clytia hemisphaerica; Edi=Eleutheria dichotoma; Hec=Hydractinia echinata. 

Hma=Hydra magnipapillata; Hsy=Hydractinia symbiolongicarpus; Hvu=Hydra vulgaris; 

Mse,=Metridium senile; Mce=Myxobolus cerebralis; Nve=Nematostella vectensis; Pca=Podocoryne 

carnea; Phy=Polypodium hydriforme. * = > 70bootstrap support, **=>90 bootstrap support. Sequences 

from P. hydriforme are marked with a red asterisk. 
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Figure 11. Phylogenetic relationships between cnidarian and bilaterian Wnt-like sequences, 

including new sequences from P. hydriforme and M. cerebralis, inferred through Bayesian analysis. 

Che=Clytia hemisphaerica; Edi=Eleutheria dichotoma; Hec=Hydractinia echinata. Hma=Hydra 

magnipapillata; Hsy=Hydractinia symbiolongicarpus; Hvu=Hydra vulgaris; Mse,=Metridium senile; 

Mce=Myxobolus cerebralis; Nve=Nematostella vectensis; Pca=Podocoryne carnea; Phy=Polypodium 

hydriforme. * = > 95% posterior probability. Sequences from P. hydriforme are marked with a red 

asterisk. 
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Figure 12.  Phylogenetic relationships of minicollagen sequences including new sequences from P. 

hydriforme and M. cerebralis using maximum likelihood. Taxonomic abbreviations: Ami=Acropora 

millepora; Aqu,=Amphimedon queenslandica; Cba=Carukia barnesi; Che=Clytia hemisphaerica; 

Hec,=Hydractinia echinata; Hma=Hydra magnipapillata; Hsy=Hydractinia echinata; Mce=Myxobolus 

cerebralis; Mse=Metridium senile; Nve=Nematostella vectensis; Pc=Podocoryne carnea; 

Phy,=Polypodium hydriforme; Tbr=Tetracapsuloides bryosalmonae. * = > 70 bootstrap support, **=>90 

bootstrap support 
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Figure 13. Phylogenetic relationships of minicollagen sequences including new sequences from P. 

hydriforme and M. cerebralis inferred by Bayesian analysis. Taxonomic abbreviations: Taxonomic 

abbreviations: Ami=Acropora millepora; Aqu=Amphimedon queenslandica; Cba=Carukia barnesi; 

Che=Clytia hemisphaerica; Hec,=Hydractinia echinata; Hma=Hydra magnipapillata; Hsy=Hydractinia 

echinata; Mce=Myxobolus cerebralis; Mse=Metridium senile; Nve=Nematostella vectensis; 

Pc=Podocoryne carnea; Phy,=Polypodium hydriforme; Tbr=Tetracapsuloides bryosalmonae.  Posterior 

probabilities > 0.95 are indicated by *. 
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Discussion 

 Recent phylogenomic studies have made great progress towards solidifying the 

phylogenetic placement of P. hydriforme and Myxozoa (Jimenez-Guri et al. 2008; Evans et 

al.2010; Nesnidal et al. 2013), but there are still many unanswered questions about the origin and 

evolution of these organisms. According to Nesnidal et al. (2013), “More detailed analyses of 

myxozoan genomes in the future will enhance our understanding of metazoan evolution by 

revealing the genetic underpinnings that drive these profound changes during myxozoan 

evolution.”  Here, we characterize the transcriptomes of Polypodium hydriforme and the 

myxozoan, Myxobolus cerebralis, to generate data that may help inform us about their 

phylogenetic placement and evolutionary history.   

 Characterization of the transcriptomes allows us to uncover genes associated with major 

changes in morphology and life cycle which can be used for further developmental studies.  In 

addition, transcriptome sequences can be used in future phylogenetic studies, which, given the 

highly divergent nature of their DNA sequences, is difficult to obtain using traditional PCR 

approaches. In characterizing these transcriptomes, we had a few major goals in mind: identify 

genes that would inform the placement of these two enigmatic groups among cnidarians, and 

characterize genes that may help us understand their evolutionary origins and the evolution of 

their unusual life cycles and body plans. This study provides an overall description of these 

transcriptomes.  In addition, it provides valuable preliminary data for genes that appear 

promising for use in future studies with more taxon sampling, which might shed more light on 

where specifically in Cnidaria myxozoans and P. hydriforme should be placed. Lastly, our 

characterization of developmental regulatory genes should help in understanding the genetic 
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pathways that may be involved in the transition to a parasitic life style and morphological 

changes that accompanied this transition.  

 Particular methodological issues arise that are associated with working with such 

divergent, parasitic organisms. Perhaps the most pressing was identification of potential 

contaminating sequences from the host organism.  Due to the sensitivity of the sequencing 

technology, contamination is a serious and issue in next-generation sequencing (Hoy et al. 2013; 

Oyola et al. 2013), which may be particularly important for researchers who study parasites or 

endosymbiotic organisms. For example, Jiminez-Guri et al. (2010), found that putative Hox 

genes from the myxozoan Buddenbrockia plumatellae, which led Anderson et al. (1998) to 

conclude that this was evidence of a bilaterian origin of Myxozoa, were contaminant sequences 

from their bryozoan host.  

 Ultimately, for the P. hydriforme transcriptome, we found that strategies based on 

BLAST-searching, even using the actual transcriptome of the target host organism, could not 

specifically select contaminant sequences without also selecting potential cnidarian sequences. 

The set of sequences captured by BLAST against contaminant databases was very dependent on 

BLAST algorithm choice and stringency setting, and could not be considered a reliable estimate 

of the amount of contamination present in the transcriptome. Potentially, a strategy based on the 

elimination of contaminants from the P. hydriforme transcriptome at the raw read stage, rather 

than post-assembly, may prove more effective.  Additionally, further analysis will be carried out 

to test these methods on the M. cerebralis transcriptome in order to detect contamination.  

 In addition to the issue of contamination, functional annotation and gene orthology 

analyses are particularly difficult with non-model and highly divergent organisms. Because such 
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large percentages of P. hydriforme and M. cerebralis sequences with BLAST hits returned a 

generalized annotation of ‘predicted protein’, a comprehensive means of classifying and 

assigning functions to sequences produced by assemblies is needed. If the end goal of a study is 

to fully characterize a family of genes or completely understand the gene expression profile of a 

particular life-cycle stage, a way of identifying functional regions or general categories for these 

genes is important.  Other means of providing more detailed description of the genes, outside of 

the traditional BLAST and GO annotation pipeline, is necessary to more thoroughly describe 

their transcriptome.  Fortunately, a number of searching processes have been developed since the 

advent of next generation sequencing.  These search methods identify shorter, conserved 

sequences or group similar proteins into ortholog/paralog groups. The protein-domain based 

methods, such as HMMer which searches against protein-family databases, appear particularly 

promising.  

 Using HMMer, thousands of sequences from the P. hydriforme and M. cerebralis 

transcriptomes were assigned to protein domain families that failed with recover tblastx hits or 

only had tblastx hits with no functional information (i.e. ‘Predicted proteins’ or ‘Hypothetical 

Proteins’). Using this methodology, a new candidate Hox/ParaHox sequence and a new 

minicollagen sequence was discovered for use in further phylogenetic analysis. Overall, a multi-

faceted approach, which includes blast searches, protein domain searches, orthology predictions 

and GO annotation, shows promise for expanding our understanding of a given transcriptome, 

and is useful for characterizing transcriptomes in non-model systems which do not have full 

genomic resources available.  In particular, these techniques may prove important for organisms 

too diverged from their nearest model-organism for proper identification of homologous genes 



35 
 

using BLAST searching alone, or for genes that have conserved domains but a wide amount of 

variation in the rest of the sequence.  

 Characterization and of these transcriptomes provided important data that will allow us, 

in future studies, to answer long-standing questions about the evolution of Myxozoa and P. 

hydriforme.  An initial step towards understanding the complexities of these body plans and life 

cycle stages is to investigate known gene families of important developmental regulatory genes, 

such as the Hox/ParaHox family and the Wnt gene family. Diversification, loss and changes in 

the regulation of these genes has been shown to be involved in the diversity of body plans 

throughout Metazoa in general (Schubert and Holland 2000; Garcia-Fernandez 2005) and 

cnidarians in particular (Guder et al. 2006; Finnerty and Martindale 2001). Thus it is likely that 

these genes also played a key role in body plan modifications in these parasites.  

 Originally discovered in mice and Drosophila, homeobox-containing genes were found to 

play a major role in antero-posterior body patterning (Gehrig and Hiromi 1986). Hox genes, and 

their sister cluster, the ParaHox genes, are thought to be part of the ancestral developmental 

toolkit of bilaterians. Initial studies of complete cnidarian genomes, showed an initially 

surprising amount of diversity for these gene families, such as 8 genes in Hydra and 15 in 

Nematostella (Chiori et al. 2005). In a single life-cycle stage of P. hydriforme, we recovered a 

large number of homeodomain-containing genes, and six putatively from the Hox/Parahox 

extended gene family that are being expressed. From the transcriptome of M. cerebralis, only 

one highly divergent putative Hox/Parahox-extended sequence was recovered (Table 4), 

indicating that M. cerebralis may have a reduced complement of this gene family.  
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 Wnt genes in bilaterians largely play a role in body axis formation and the guidance of 

gastrulation (Sigfried and Perrimon 1994). In cnidarians, the Wnt gene family plays a diverse set 

of roles in development and regeneration (Guder et al. 2006). Analysis of Wnt gene families in 

Nematostella indicates that it has all of the Wnt gene groups found in bilaterians with the 

exception of Wnt9 (Kusserow et al. 2005).  In addition, there have been several cnidarian-

specific duplications within the Wnt7 and Wnt8 groups in Nematostella (Kusserow 2005). We 

found that P. hydriforme also has a diversity of Wnt-like sequences.  No Wnt- like sequences 

were recovered from M. cerebralis. The eight Wnt-like genes recovered from the P. hydriforme 

may be orthologs to the cnidarian Wnt7/8, Wnt5, Wnt3 and Wnt6 and include a lineage-specific 

additional duplication within the Wnt7/8 group (Figs. 10 and 11). 

 There are several possible explanations of our unexpected result that P. hydriforme 

possesses nearly the full complement of cnidarian genes whereas no Wnt genes and only a single 

putative Hox-/ParaHox-like sequence were found in the M. cerebralis assembly. A simple 

explanation is that that none of these genes are expressed in M. cerebralis during the life cycle 

stage from which the RNA was extracted (triactinomyxon). This is also a possible explanation 

for the lack of Wnt and Hox/ParaHox genes from certain families in the P. hydriforme assembly. 

Although a transcriptomic study aids the discovery of candidate functional genes by focusing on 

expressed genes, this may also be a weakness as the expression of genes may be is usually 

temporally or tissue-specific life-stage or tissue-specific.  

 Another potential explanation as to why we did not recover more of these gene families 

for M. cerebralis is that the sequences were present but too divergent to identify by methods that 

compare the sequences directly to full genes from other species (i.e. BLAST techniques). The 

extremely divergent sequences of the putative Hox/ParaHox-like gene from M. cerebralis as 



37 
 

compared to the rest of the sequences suggests that the degree of sequence divergence may 

indeed be high for this organism.  However the protein-domain searches we conducted, provide a 

way of only look for short conserved domains and thus these searches would be expected to 

identify these genes if they were present in the transcriptome.  HMMer protein-domain searching 

did not recover any Wnt and only the one divergent putative Hox/ParaHox-like sequences from 

the M. cerebralis assembly, making it unlikely that additional sequences were missed due to 

sequence divergence.  

The third, most intriguing hypothesis about the lack of developmental gene diversity in 

M. cerebralis, is that these genes were lost because of the extreme reductions in body plan or 

genome size due to the evolution of a parasitic life cycle. The actinospore stage, from which the 

RNA was extracted, only reaches sizes of about 150 micrometers, and contains three polar 

capsules and 64 germ cells contained in a sporoplasm (El-Matbouli 1996, Markiw 1992, El-

Matbouli et al. 2002).  This is in contrast with P. hydriforme, which appears to have retained a 

number of complex, cnidarian traits including the presence of tentacles, several nematocyst types 

and a free-living stage with epithelia, a mouth and gut (Raikova 2004).  These complex 

structures require developmental patterning mechanisms in P. hydriforme that are perhaps not 

needed to form the simple body plan of M. cerebralis.   

There have been a number of recent studies regarding the genome size and content of 

parasites, and the results appear mixed as to whether genome size reduction or gene loss is 

widespread throughout parasitic taxa. The genomes of the microsporidia, which are fungus-like 

obligate intracellular parasites, are a striking example of genome compaction and reduction 

(Peyretaillade et al. 2011). Human parasites Encephalitozoon cuniculi and Encephalitozoon 
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intestinalis have two of the smallest eukaryotic genomes known, 2.9 and 2.3 Mbp respectively 

(Peyretaillade et al. 2011). Part of this major reduction in genome size appears to be due to loss 

of major gene families, as well as compaction of introns and intergenic spacers. For example, the 

Tor pathway, which is used for nutrient-sensing and is essential to many processes in other 

eukaryotes, is completely absent in Microsporidia. (Peyretaillade et al. 2011). This is thought to 

be due to the microsporidian parasite’s complete reliance on its host. Myxobolus cerebralis may 

have undergone similar loss of the whole Wnt gene family, which was no longer used due to the 

relative simplicity of the myxozoan body plan.   

In contrast, a study on parasitic nematodes reveals that its genome is actually larger than 

closely related model nematode species, and it in fact contains more genes in certain categories 

related to metabolism (Dieterich 2008). Likewise, a recent study of parasitic nematodes by Liu et 

al. (2012) found a large number of genes encoding excretory-secretory proteins shown to be 

important in host/parasite interactions. However, a comparative study of prokaryotic obligate 

parasites of humans found that obligatory intracellular parasites had reduced genome size and 

found that reductive evolution was common (Sakharkar et al. 2004), although it is unclear 

whether these findings can be extrapolated to eukaryotic endocellular parasites. In a genome size 

study of hymenopterans, researchers found that parasitism alone might not be enough to explain 

genome size fluctuations among the group (Ardila-Garcia et al. 2010). These mixed results are 

consistent with our findings that M. cerebralis, although lacking expressed key developmental 

regulatory genes, did not have a reduction in total number of assembled transcripts produced as 

compared with P. hydriforme; 76,434 sequences for P. hydriforme and 83,398 for M. cerebralis. 

Adaptations to parasitism may come in the form of adjustments to the expression or 

existence of very particular gene families, rather than genome-scale losses. The above studies, 
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particularly those of Dieterich et al. (2008) and Ardila-Garcia et al. (2010), indicate that certain 

categories of genes may be overexpressed in parasitic members of particular group. However, it 

appears that more studies of gene expression in divergent parasitic taxa may be needed to further 

confirm this assumption. It is possible that M. cerebralis and P. hydriforme may represent 

different evolutionary approaches to the problems associated with parasitism, with Myxobolus 

being much more reduced in body structure complexity and body-plan related gene families.  

The transcriptomes characterized in this study were used to investigate the molecular 

components of the nematocysts, the complex intracellular stinging structures characteristic of 

Cnidaria.  Recent phylogenomic evidence for the placement of a myxozoan within cnidaria 

(Nesnidal 2013) suggests that myxozoan polar capsules are homologous to cnidarian polar 

capsules. Previously, one minicollagen gene was reported from a myxozoan (Holland et al. 

2008).  We recovered multiple minicollagen sequences from both M. cerebralis and P. 

hydriforme, confirming their position within Cnidaria, and providing important data for future 

studies on the evolution of the minicollagen gene family and nematocysts. Similar to the 

developmental regulatory genes, we have identified a greater number and variety of minicollagen 

sequences from P. hydriforme than M. cerebralis (Table 6). The number of minicollagen proteins 

varies between cnidarian taxa, and appears to correlate with the number and complexity of 

nematocyst types in a given group (David et al. 2008), with Anthozoa having fewer 

minicollagens and less diversity of nematocysts than Medusozoa. For comparison, the 

medusozoan (hydrozoan) Hydra vulgaris has 17 types of minicollagens, and the anthozoans 

Nematostella and Metridium have five and four minicollagens, respectively (David et al., 

2008).   The M. cerebralis complement of minicollagens is even less than that of Metridium 

senile, which has the smallest complement found so far, with four unique minicollagen 
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sequences (David et al. 2008). This reduction in gene family size may be due reduced body plan 

and genome complexity as an adaptation to parasitism, and may relate to the difference in life 

cycles between M. cerebralis and P. hydriforme.  

 Although there are no clear functional groupings within the minicollagen sequences, it 

appears that minicollagens sequences may have some phylogenetic signal and that a more 

comprehensive sampling from cnidarians may help resolve deep nodes in cnidarian phylogeny. 

Throughout the tree, there are multiple occurrences of minicollagens from the same species 

grouped together, although this signal is less consistent in the Bayesian inference (Fig. 13). It 

also appears that using minicollagens for phylogenetic analysis can separate sequences from 

Anthozoa and Medusozoa throughout the tree, particularly in ML analysis (Fig. 12). In both 

reconstructions, there is at least one instance of a M. cerebralis sequence grouping with P. 

hydriforme sequences, which may lend some support to the idea that Myxozoa and P. hydriforme 

are sister taxa. The presence and number of minicollagens found in these assemblies does 

provide further support for the hypothesis that P. hydriforme and the myxozoans are derived, 

parasitic cnidarians.  

Conclusions 

 We have generated and characterized transcriptomes for two enigmatic, cnidarian 

parasites, P. hydriforme and M. cerebralis. In this process we implement and integrated diverse 

methods for contamination filtering and annotation that should serve as a guide for future 

transcriptome characterizations of non-model organisms.  Our finding of the presence of multiple 

nematocyst-specific genes provide compelling support the placement of these taxa in the phylum 

Cnidaria, confirming recent phylogenomic studies supporting this placement (Jimenez-Guri 
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2008, Nesnidal 2013).  Preliminary data supports the sister-group relationship of these taxa, but 

more taxon sampling is needed. Confirming the placement of Polypodium and Myxozoa within 

Cnidaria and determining their exact phylogenetic position will enable us to better understand 

the origin of these groups and the evolutionary innovations necessary for their transition to 

parasitism.  There has been no published study to date that utilizes multiple markers for the 

placement of Polypodium.  Preliminary phylogenetic studies using 454 EST data did not prove 

informative (C. Dunn, unpublished data). Future studies using Illumina generated transcriptomes 

and whole genomes in a comprehensive sampling of cnidarians should prove informative in 

placing Polypodium and Myxozoa precisely within Cnidaria. The diverse complement of 

expressed developmental regulatory genes and minicollagens in P. hydriforme and the almost 

complete lack in M. cerebralis may mirror the greater complexity in morphology and life history 

in P. hydriforme compared to M. cerebralis. This work provides data for a comparative 

framework for future studies investigating the evolution of these enigmatic parasites from free-

living cnidarians.   
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