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Abstract 

 

 Nitric oxide (NO) plays a crucial role in numerous physiological pathways including the 

regulation of the endothelium that lines blood vessels throughout the body. Therefore, in order to 

maintain good endothelial health, there must be a careful homeostasis of NO. Under pathological 

conditions that impair the production of NO, endothelial function is disrupted which can result in 

various pathologies including cardiovascular diseases (CVDs) and respiratory disorders. A class 

of endogenous compounds that inhibit the enzyme responsible for NO synthesis in vivo are the 

methylated arginines (MAs). Given their propensity for attenuating NO production, it comes as 

no surprise that MAs have been implicated in several diseases. Increased blood concentrations of 

asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and 

monomethylarginine (MMA) have been reported in patients suffering from CVDs. However, 

despite evidence demonstrating the link between MAs and these diseases, no diagnostic 

concentrations have yet been established. The goal of this work was to develop an analytical 

method capable of rapidly determining the concentrations of MAs in blood samples so that 

threshold concentrations indicative of disease could be established. Further efforts were then 

made to fabricate a point-of-care device that could be used in a clinical setting to measure MAs 

as a means of preventative diagnostics.  

 Analyzing components in a serum sample is a very challenging endeavor because of the 

incredible complexity of the sample matrix. To alleviate matrix interferents, a method was 

developed to rapidly isolate MAs from serum using a newly developed heating procedure. The 

sample was immersed in a boiling water bath which caused it to solidify. Solvent was then added 

to the congealed serum and briefly homogenized to permit solid-liquid extraction to take place. 
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After a brief incubation period at room temperature, the sample was centrifuged to sediment the 

aggregated serum proteins, leaving the small molecules of interest in the supernatant. The 

supernatant was then derivatized with naphthalene-2,3-dicarboxaldehyde to label the MAs for 

analysis by capillary electrophoresis (CE) with fluorescence detection. A CE method was 

developed using sulfobutylether--cyclodextrin and dimethylsulfoxide as buffer modifiers to 

obtain good resolution between the MAs and the other components in serum-derived samples. 

Under optimized conditions, baseline resolution was achieved which allowed precise 

quantitation of the MAs. The separation method was then transferred to a microchip 

electrophoresis (MCE) device that made it possible to perform the same analysis more rapidly on 

a smaller, portable device. MAs were separated using this MCE platform as a first step towards 

the development of a point-of-care device to perform clinical analyses on-chip. 
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1.1 Research Objectives 

 Nitric oxide (NO) is a small, reactive molecule that is involved in cell signaling, immune 

response, and vasodilation. Without sufficient NO production, these processes are disrupted 

resulting in a number of disease states. One such example is with regards to diseases related to 

the endothelium. Since NO is central to regulating endothelial cells throughout the body, 

including in blood vessels and the lungs, improper concentrations of NO can impair endothelial 

function and cause pathologies including cardiovascular disease (CVD) and respiratory 

disorders.  

Maintaining proper NO homeostasis is dependent on the activity of the NO-producing 

enzyme nitric oxide synthase (NOS) and the concentrations of methylarginines (MAs). MAs are 

small molecule inhibitors of NOS that serve to regulate in vivo NO production. Under normal 

conditions, MAs are present in plasma in the mid-nanomolar range; however, under pathological 

conditions, the concentrations of these species can be elevated above 1 M. Since increased 

amounts of MAs lead to reduced endogenous NO production, these species could alter 

endothelial function and stimulate disease onset. Studies have shown that patients suffering from 

diseases involving endothelial dysfunction, such as CVDs and respiratory diseases, have higher 

systemic MA concentrations. Because MAs are directly involved in the NO pathway that is 

believed to be responsible for pathogenesis, serum concentrations of these compounds could 

potentially serve as biomarkers for disease diagnosis.  

The goal of this dissertation project was the development of analytical methods for the 

determination of MAs in serum samples. The following chapters will explain in detail the 

experiments that were undertaken to develop novel sample preparation and separations methods 

to enable extraction of MAs from complex sample matrices and their subsequent quantitation.  
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1.2 Chapter Summaries 

 

1.2.1 Chapter Two 

 This chapter provides a review of the relevant biological and analytical background 

information central to the goals of this dissertation. An account of the pathways involved in the 

in vivo production of NO is described along with information regarding the involvement of MAs 

in these processes. This information provides the rationale and significance of the project. A 

description of the analytical methods which were used to conduct the research in subsequent 

chapters is also given. This includes generic information on the theoretical basis behind the 

analytical methods as well as a review of other methods that have been previously utilized to 

measure MAs. 

 

1.2.2 Chapter Three 

 This chapter describes the optimization of a capillary electrophoresis method designed to 

separate the individual MA species. The systematic evaluation of the various run buffer 

modifiers is discussed to explain which additives were necessary to achieve a good separation. 

This discussion was also expanded to describe the process undertaken to select a suitable internal 

standard for the analysis, and the separation modifications necessary for its inclusion. Additional 

information describing optimal conditions for the derivatization procedure is also provided. 

 

1.2.3 Chapter Four 

 Sample preparation concerns are always great when analyzing complex samples such as 

serum. Therefore, this chapter presents details on the rationale and optimization of a novel heat-
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assisted extraction method. Emphasis was placed on minimizing cost while maximizing 

throughput to enable this method to be practical in a clinical setting. During development of this 

procedure, several different parameters were evaluated to determine the conditions that produced 

the most efficient extraction. Following optimization, the heat-assisted extraction was compared 

to a traditional solid-phase extraction method, and the results obtained from each were found to 

be in good agreement. However, the new method significantly expedited sample processing 

while also diminishing the cost associated with sample preparation.  

 

1.2.4 Chapter Five 

 The sample preparation and separation methods described in Chapters 3 and 4 were 

combined here and applied to the analysis of clinical samples. The results of two small-scale 

clinical studies are reported in this chapter which were designed to investigate the diagnostic 

potential of MAs for different disease states related to reduced NO bioavailability. In the first 

study, serum samples were analyzed from patients with and without coronary artery disease to 

determine whether a difference in MA concentrations existed between the two populations. The 

purpose of this experiment was to determine threshold concentrations indicative of disease that 

could be used in preventative diagnostics. A second study was also performed to determine 

whether respiratory distress in newborns was caused by poor vasodilation stemming from 

increased concentrations of MAs. To that end, a preliminary study was conducted to establish 

baseline MA concentrations in babies over the first six months of life. 
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1.2.5 Chapter Six 

 A long-term goal of this project was to develop a miniature analysis system that would 

enable rapid and inexpensive measurements of MAs. This chapter describes the progress made in 

the development of a point-of-care device capable of quickly measuring MAs in low-volume 

samples. Microchip electrophoresis (MCE) was coupled to both electrochemical (EC) and laser-

induced fluorescence (LIF) detection modes to determine which better allowed endogenous MA 

concentrations to be determined. The MCE-EC separation was found to have inadequate limits of 

detection (LODs) using the conditions from the previous chapters. Given this, an additional 

study was performed to improve the derivatization chemistry to better facilitate EC analysis. A 

novel nucleophile was identified for the derivatization reaction which imparted several 

advantages; however, even with the use of this reagent, the LODs of MCE-EC were still too high 

to enable quantitation of MAs from serum samples. Therefore, an investigation was made into 

the use of MCE-LIF to separate MAs. A preliminary separation of MAs was performed with 

promising results. It was found that this platform provided baseline resolution between standards 

and had a sufficient LOD to monitor endogenous MA concentrations. 

 

1.2.6 Chapter Seven 

 This chapter summarizes the research completed at the time of the dissertation defense. 

Additional experiments are also described to give future direction to the project. These entail 

both applications-based experiments and technology-driven improvements that address important 

advances that could still be made with regard to MA analysis. 
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Chapter Two 

 

Biological and Analytical Background: Setting the Stage 
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2.1 Nitric Oxide Synthase Physiology 

Nitric oxide (NO) is an interesting molecule whose role in numerous physiological 

pathways makes it essential to life [1]. It is a small, gaseous molecule that diffuses freely within 

cells and the extracellular space. Therefore, it can produce physiological responses distal to the 

site of production and serve as a signaling molecule and neurotransmitter in a variety of tissues 

[2]. NO also plays an important role in endothelial physiology [3]. Its potent, immediate action 

on platelets in the blood stream prevents aggregation [4]. Additionally, once NO is synthesized, 

it can bind to the heme center of guanylate cyclase, which induces the production of cyclic 

guanosine monophosphate [5]. This stimulates the relaxation of vascular smooth muscle which 

in turn increases vasodilation in blood vessels [6]. This helps to lower blood pressure and 

improve blood oxygenation [1]. It has also been shown that NO is involved in the formation of 

reactive nitrogen and oxygen species (RNOS) [7]. This can serve both beneficial and detrimental 

purposes in the body whereby these RNOS can either damage native cells or can attack foreign 

cells during an immune response [8]. Because of these factors, achieving proper NO homeostasis 

is crucial for healthy survival.  

The production of NO in vivo is carried out by a family of enzymes termed nitric oxide 

synthases (NOSs). NOS catalyzes the oxidation of arginine in the presence of tetrahydrobiopterin 

(BH4), oxygen, and NADPH to form citrulline and NO [9]. There are three different isoforms of 

NOS: endothelial (eNOS), neuronal (nNOS), and inducible (iNOS). eNOS and nNOS, both 

constitutively expressed in cells throughout the body (not strictly in endothelial and neuronal 

cells [10]), are modulated by calcium/calmodulin (CAM) and dependent on their local 

concentrations [11]. iNOS is expressed throughout the body as well; however, it is calcium-

independent. The output of NO from iNOS is dependent on the surrounding environment and can 
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vary greatly. Under normal conditions, very little NO is produced. However, under pathological 

conditions, iNOS rapidly stimulates NO production and is capable of producing far higher 

concentrations than either eNOS or nNOS. These differences in NO production govern the 

physiological function of the different isoforms. eNOS and nNOS primarily serve to synthesize 

NO for vasodilation or signaling purposes while iNOS predominantly produces NO in immune 

response pathways [8]. 

Tetrahydrobiopterin is a cofactor that is critical for maintaining proper activity of all 

NOSs. Studies have shown that NOS uncouples without adequate concentrations of BH4 

resulting in a decrease in NO production and an increase in superoxide (O2
-

) [12, 13]. This shift 

in NOS production leads to vasoconstriction from the lack of NO as well as an increase in 

oxidative stress damage resulting from the formation of reactive oxygen species [11, 14]. 

However, it is not simply the BH4 concentration that dictates the progression of this 

physiologically harmful pathway. The oxidation state of BH4 in vivo is crucial to its biological 

activity. Reports in the literature have shown that BH4 is extremely susceptible to oxidation [15, 

16]. When present in its partially oxidized form, dihydrobiopterin (BH2), or its completely 

oxidized form, biopterin, the molecule is no longer capable of serving as a cofactor for NOS but 

rather causes enzyme uncoupling which leads to the production of O2
- 

[12]. It is the ratio of BH4 

to BH2 and biopterin, not merely the endogenous BH4 concentration, that determines biological 

function [17, 18]. Structures of these molecules are shown in Figure 2.1. 

The uncoupling of NOS not only decreases NO production but also stimulates the 

production of reactive molecules like O2
-

. Once formed, O2
-

can react with NO to form 

peroxynitrite (ONOO
-
) which has been shown to react with lipids and proteins and is capable of 

causing apoptosis [19, 20]. Once these destructive reactive species are produced, a feed-forward 
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Figure 2.1 Structures of the biopterins involved in the NOS pathway. 
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mechanism is initiated which propagates the cycle shown in Figure 2.2. This causes even more 

harmful species to be synthesized which in turn causes further cellular damage. Therefore, it is 

critical that NOS functions properly in vivo or serious health consequences could arise.  

 

2.2 Methylarginines and NO Production 

While NOS utilizes arginine as a substrate for the synthesis of NO, certain methylated 

arginines (MAs) regulate NO production through competitive inhibition. Specifically, 

asymmetric N
G
,N

G
-dimethylarginine (ADMA) and N

G
-monomethyl-L-arginine (MMA) have 

been shown to prevent NO generation and cause vasoconstriction and increased platelet adhesion 

in humans as well as in animal models [6, 21, 22]. The related molecule symmetric N
G
,N’

G
-

dimethylarginine (SDMA) does not competitively inhibit NOS. However, SDMA along with the 

other two MAs compete with arginine for cellular uptake via cationic amino acid transporters, 

and thus all impact the amount of NO that is produced [23]. As a result, research has been 

performed to elucidate the role of these compounds in various pathologies where NO 

bioavailability is believed to play a significant role. Structures of the different MA analogues 

along with their average human plasma concentrations are shown in Figure 2.3. 

MAs are found endogenously in most cell types as well as in plasma [24, 25]. They are 

not synthesized de novo but rather are formed through methylation of arginine residues in 

proteins [23, 26, 27]. Protein arginine methyltransferases (PRMTs) are a class of enzymes that 

covalently attach one or two methyl groups to the guanidine nitrogens of an arginine residue. 

Two types of PRMT have been reported in the literature. PRMT-I asymmetrically dimethylates 

arginine residues to form ADMA, while PRMT-II symmetrically dimethylates arginines to form 

SDMA. Both isoforms are capable of producing MMA [21, 23, 26]. During the course of normal 
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Figure 2.2 The eNOS pathway. Nitric oxide is synthesized when adequate concentrations of 

arginine and BH4 are present. NO production ceases under conditions of BH4 depletion or 

increased levels of MAs. FAD: flavin adenine dinucleotide; FMN: flavin mononucleotide; 

NFB: nuclear factor kappa B; GTPCH: guanosine triphosphate cyclohydrolase. 
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Figure 2.3 Structures of the methylarginines and their average plasma concentrations. 
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protein turnover, MAs are liberated and can then exit the cell via cationic amino acid transporters 

and enter systemic circulation [23].  

Serum arginine concentrations are 30-100 M while MA concentrations are typically 

100-800 nM. Despite the relatively low amounts of MAs compared arginine, these NOS 

inhibitors are quite potent and can affect vasodilation. Inhibition constants for ADMA and MMA 

range from 500 nM to 1.1 M depending on the cell type [28-30]. While normal physiological 

concentrations of these species are too low to significantly inhibit NO production because of the 

vast excess of arginine present, the intracellular amounts can be rapidly upregulated. Under 

pathological conditions, a significant increase of MAs has been reported inside the cell indicating 

that cells are capable of storing MAs. This influx of MAs is capable of having a substantial effect 

on NO production and has been shown to impair vascular relaxation [28].  

 Free MAs can have a profound effect on vasodilation by preventing the synthesis of NO 

and are therefore well-regulated in vivo. The exact mechanism of MA degradation is dependent 

upon the MA species. ADMA and MMA are predominantly metabolized by the enzyme 

dimethylarginine dimethylaminohydrolase (DDAH) where each species is broken down to form 

dimethylamine and methylamine, respectively, and citrulline. There are two isoforms of DDAH 

(DDAH-I and DDAH-II) but both enzymes perform the same function. The primary difference is 

the localization of the enzyme in certain tissues [31]. It should be noted that DDAH has no effect 

on the metabolism of SDMA. SDMA is cleared exclusively via renal excretion, while this 

pathway only plays a minor role in the elimination of ADMA and MMA. The two asymmetric 

MA analogues are primarily broken down by DDAH (~90%) with only small amounts cleared 

renally (~10%) [24]. The physiological pathways involving MAs are illustrated in Figure 2.4. 
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Figure 2.4 Biochemical pathways of MAs. Image from reference [23]. 
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2.3 Methylarginine Involvement in Disease States 

 

2.3.1 Cardiovascular Disease 

Cardiovascular disease (CVD) is a broad term encompassing diseases such as high blood 

pressure, coronary artery disease, and stroke.  It is estimated that 80 million people in the United 

States currently suffer from one or more forms of CVD.  Due to its high prevalence, 35.3% of all 

deaths in the US are CVD-related, making it the leading cause of mortality in the nation [32]. 

Although there are many factors that contribute to the onset of CVD, disruption of the 

endothelium and a reduced bioavailability of NO are believed to play central roles and could be 

responsible for disease onset [33].  

The physiological function of MAs is to ensure that proper vasodilation is maintained. If 

this careful homeostasis is disrupted, potentially severe health consequences can result. Recent 

literature has shown that increased amounts of MAs have been found in patients suffering from 

pathologies such as stroke [34, 35], various heart diseases [36-45], and renal failure [46, 47]. The 

biochemical mechanisms behind the progression of these diseases are not yet well understood, 

but all have been linked to disrupted endothelium function [48]. Given that MAs reduce the 

bioavailability of NO, it has been suggested that an abundance of MAs may be responsible for 

disease onset and progression.  

Miyazaki et al. first showed that the plasma concentration of ADMA can be correlated to 

intima-media thickness (IMT), where IMT values indicate the extent of a blockage in blood 

vessels. It was reported that patients with higher ADMA concentrations had larger IMTs. This 

was the first evidence that ADMA could be used as a clinical marker for predicting 

atherosclerosis in humans [49]. Similar results were obtained in a larger study that showed that 
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elevated concentrations of both ADMA and MMA were predictors of IMT after adjustments for 

cardiovascular risk factors and renal function were made [50]. Other studies have shown that 

patients who were in the quintile with the highest plasma concentrations of ADMA were 

significantly more likely to have a myocardial infarction or stroke than those in the bottom four 

quintiles [34]. It has also been shown that patients with significantly higher concentrations of 

ADMA and SDMA are more likely to die within a year from the beginning of the study than 

those who had lower levels. This study found that the threshold ADMA concentration that 

maximized sensitivity and specificity to predict all-cause mortality was 1.16 M [43].  

Despite the fact that all MAs affect the synthesis of NO, most research has focused 

strictly on ADMA. This is predominantly because ADMA is present at higher endogenous 

concentrations than MMA, and because SDMA does not competitively inhibit NOS. A recent 

study performed at the Cleveland Clinic, however, demonstrated that the most robust 

independent predictor of coronary artery disease was not the quantity of ADMA present but 

rather the arginine methylation index (ArgMI). The ArgMI is comprised of the sum of the 

dimethylated species concentrations divided by the concentration of the monomethylated form 

(ArgMI = (ADMA+SDMA)/MMA) [51]. This index accurately predicted the extent of disease 

progression even without adjusting for traditional risk factors giving rise to the need for 

analytical methods capable of detecting all the MA analogues. 

 The studies summarized above demonstrate the link between MA concentrations and the 

onset of CVDs. Although the exact mechanism is unclear, it is highly plausible that these 

elevated MA concentrations are responsible for reducing NO production leading to the 

development of CVDs. This brings about an interesting question as to whether MAs could 

therefore be utilized as diagnostic markers for CVD. Since conventional methods of diagnosing 
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heart disease are highly invasive and costly (e.g. angiography), an inexpensive alternative 

screening method to determine the extent of CVD would be quite valuable. This screen for MAs 

could be performed in conjunction with the measurement of more traditional markers, such as 

cholesterol and lipids, to provide a more comprehensive panel for disease diagnosis. If threshold 

concentrations of MAs could be established to diagnose patients with CVD before any symptoms 

are exhibited, this could be of tremendous benefit to society.  

 

2.3.2 Respiratory Disorders 

Respiratory disorders impact a large number of newborns in the United States each year, 

especially those born prematurely [52]. The development of diseases such as respiratory distress 

syndrome (RDS) and bronchopulmonary dysplasia (BPD) often results in increased morbidity or 

death [53]. Although it has been established that the lungs are amongst the last fetal organs to 

mature, the exact mechanism by which newborns develop these respiratory disorders is 

unknown. One hypothesis is that infants lack sufficient levels of NO [54]. Insufficient 

concentrations of NO cause vasoconstriction and poor blood oxygenation which can result in 

hypoxic respiratory failure and the onset of other respiratory diseases.  

One of the most important functions of NO in vivo is its ability to regulate the 

endothelium and induce vasodilation [55, 56]. These beneficial effects provided by NO have 

caused it to be exploited in therapeutic applications. Inhaled nitric oxide (iNO) therapy has been 

used to treat pulmonary disorders because it increases blood flow to the lungs and improves 

oxygenation in patients experiencing hypoxia, including infants suffering from hypoxic 

respiratory failure [57-61]. Newborns suffering from this affliction exhibit increased airway 

resistances that result in oxygen deficiency. The FDA has approved iNO for the treatment of full-
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term babies experiencing hypoxia although it has also been explored for preterm infants 

suffering from BPD [53, 62-64].  

It has been found that iNO therapy is not efficacious for all newborns experiencing 

respiratory distress. The use of iNO has been shown to be effective for 62% of full term infants 

[65] and 49% of preterm infants [62]. Another study reported that 64% of infants with hypoxic 

respiratory failure in the untreated control group either died or required ECMO in comparison to 

only 46% of those who underwent iNO treatment [66].  It has also been reported that very low 

birth-weight infants successfully treated with iNO were significantly less likely to use 

bronchodilators, steroids, diuretics or oxygen one year after NICU discharge [67]. Despite the 

relatively high rates of non-improvement and high cost of treatment, babies with hypoxic 

respiratory failure are frequently treated with iNO in order to aid in the sustainment of normal 

breathing [53, 68]. 

The results of the clinical studies described above indicate that the lack of NO is a central 

cause of the respiratory problems in a large percentage of newborns. Supplemental NO in the 

form of iNO helped improve health; however, the success rate of iNO therapy was limited to 

only about half the patients who underwent treatment. The reason for this is not well understood 

but one hypothesis is that iNO is most successful in infants who do not produce adequate 

amounts of NO due to an immature pulmonary endothelium.  Nitric oxide is produced by the 

NOS enzymes with eNOS being the primary form in the pulmonary system [10]. It is 

hypothesized that the lack of NO production in infants with hypoxic respiratory failure could be 

caused by several possible mechanisms including (1) eNOS not yet being fully expressed in vivo, 

(2) PRMT being up-regulated or DDAH down-regulated in these infants causing increased MAs 
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that inhibit eNOS, or (3) endogenous BH4 concentrations being diminished leading to an 

uncoupling of eNOS and the formation of O2
- 

instead of NO.  

Since the prominent physiological role of MAs is to regulate NO production, it is likely 

that these species are involved in the onset of NO-related respiratory pathologies. Given that iNO 

therapy only alleviates severe respiratory failure in approximately half of the patients who 

receive treatment, the development of an assay to screen for MAs could serve as a viable 

predictor of clinical improvement. Those infants who have elevated MA concentrations, and 

therefore low NO production, would benefit from the administration of supplemental NO. The 

development of an assay to screen for MAs could help physicians immediately administer an 

appropriate therapy on an individual case-by-case basis depending on the result of the screening. 

This would facilitate faster health improvements while obviating costly non-efficacious 

treatments. 

 

2.4 Analytical Methods to Monitor NOS Activity 

 Before any conclusions can be drawn regarding the involvement of MAs in the onset of 

various endothelium-derived pathologies, it would be beneficial to monitor in vivo NOS activity. 

Unfortunately, the only direct way to directly monitor NOS activity is with an enzymatic staining 

kit which requires the excision of tissue from an organism. Given that the goal of this 

dissertation is the development of non-invasive methods to screen for disease progression, tissue 

biopsy is not an option, which precludes staining. In order to determine whether MAs are 

impacting the ability of NOS to actively produce NO, analytical methods for the indirect 

measurement of NOS activity are required. 
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2.4.1 Nitric Oxide Analysis 

Given that the function of NOS is to produce NO, measuring NO should provide insight 

into its activity. NO is essential to numerous physiological processes, so quantitation of its 

endogenous concentrations can provide insight into its involvement in disease onset. However, 

the detection of NO is not trivial. It is a highly reactive molecule with a half-life of only a few 

seconds in vivo. Furthermore, it is gaseous so care must be taken to prevent the analyte from 

diffusing out of solution. Although direct detection of NO is possible, it is very difficult due to 

the reasons described above. Therefore, many common methods for NO measurement rely on 

indirect methods. 

Various approaches have been used to detect NO in biological samples. Historically, the 

most common indirect method for determining NO production in vivo has been by monitoring its 

oxidation products, nitrite and nitrate [69]. Ambient oxygen readily oxidizes NO into these more 

stable products that can then be directly detected by either UV absorbance or electrochemical 

methods [70] or indirectly via the Griess reaction [71]. An alternative method for the indirect 

measurement of NO production is to monitor the change in arginine and citrulline concentrations 

as an indicator of NOS activity in vivo [72, 73]. By observing the fluctuations in the amounts of 

these species, a correlation can be made to NOS activity and the amount of NO produced.  

Although difficult, NO can also be measured directly. One such method of utilizes 

recently developed NO-selective fluorescent probes. These tags can highlight intra-cellular 

localization of NO. However, these labels are expensive, and studies have shown that their 

selectivity can be a concern due to the cross-reactivity with other RNOS [74, 75]. A different 

approach is with the use of electrochemical sensors. Electrodes can be coated with a selective 
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polymeric membrane that allows NO to diffuse to the electrode surface while restricting access 

to other molecules in a sample [76].  

 

2.4.2 Methylarginine Analysis 

 This dissertation will focus primarily on monitoring MAs as an alternative method for the 

indirect determination of NOS function. Since these species regulate NO production, they can 

serve as indicators of endogenous NO concentrations and the extent of NOS inhibition. MAs are 

amino acids that are cationic at physiological pH. Numerous methods have been developed for 

the determination of MAs using a multitude of different techniques [77]. Since a diversity of 

methods exist that are capable of quantifying these compounds in biological samples, a brief 

overview will be given here. 

 

2.4.2.1 Antibody-Based Analyses 

 A standard workhorse method for the quantitation of biomolecules relies on antibody-

based methods. Enzyme-linked immunosorbent assays (ELISAs) have been very popular in 

clinical labs for decades due to the relative simplicity of the method and its high-throughput 

capability. Multiple varieties of ELISAs exist, but competitive ELISAs are used for MA analyses 

[78, 79]. This method entails adding sample and MA-specific antibodies to a well with MA 

derivatives (tracers) immobilized on the well surface. The MAs in the sample compete with the 

tracer MAs to bind to the anti-MA antibodies. Following a rinse step, only anti-MAs bound to 

the tracers remain. A secondary peroxidase-conjugated antibody specific to anti-MA is then 

added to the well. The addition of a peroxidase substrate then causes a colorimetric change that 

can be measured with absorbance detection. Since the absorbance signal is dependent upon the 
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number of antibodies bound to the immobilized tracer MAs (not the MAs in the sample), the 

analytical signal is inversely proportional to the amount of antigen originally present. Although 

this method involves several pipetting and incubation steps, the ability to perform analyses in 

parallel by the use of a multi-well plate makes this an efficient analysis technique. 

 ELISA kits for the three MAs of interest are commercially available from several 

vendors. Such assays would allow the concentrations of MAs to be determined; however, there 

are problems associated with analyses using this platform [80]. First, measuring MAs by ELISA 

is quite costly. Each kit costs ~$1000 and is only designed to quantify one MA. Therefore, three 

kits (one for each MA of interest) would be required to gather the desired information from each 

clinical sample. Additionally, there exists some degree of cross-reactivity between the intended 

MA and the other MA analogues. Although this should be minimal (all manufacturers claim 

< 2% cross-reactivity), it still may bias the results. Another potential problem is that the reported 

limits of detection (LODs) are 50 nM for each manufacturer’s ELISA kits [79]. While this 

should not be problematic for ADMA and SDMA since their expected endogenous 

concentrations are above that, MMA has been reported at levels comparable to the LOD. If the 

endogenous concentrations are too similar to the LOD for the method, this would preclude 

meaningful quantitative data from being gathered. Interestingly, the only manufacturers that 

produce kits for MMA do not list their LODs or any other product information. To overcome the 

limitations of the ELISA-based methods in the determination of MA concentrations, alternative 

methods should be explored. 
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2.4.2.2 Separations-Based Analyses 

 Samples derived from biological matrices are highly complex. Numerous components are 

present whose concentrations can span multiple orders of magnitude. This environment makes 

the detection of select compounds within a sample extremely difficult. Unless selectivity can be 

gained for the analytes of interest using an antibody or a highly specific dye, discrete 

components cannot be quantified in a static assay. To overcome this problem, however, a 

separation step can be employed to separate individual analytes in a sample mixture in space and 

time. Resolving each component from others in this manner allows each individual analyte to be 

quantified free from interference of other compounds.  

 

2.4.2.2.1 Liquid Chromatography 

 High-performance liquid chromatography (HPLC) is the most common technique for 

performing analytical separations in a variety of industries. HPLC experiments are performed by 

introducing a sample mixture into a column densely packed with a stationary phase (SP). As high 

pressure pumps force the sample through the column, individual analyte molecules either remain 

in the mobile phase (MP) or interact with the SP particles. The pseudo-equilibrium that analytes 

establish between the MP and SP determine how long each analyte dwells on-column. Analytes 

that have limited interaction with the SP elute relatively quickly, whereas analytes that have a 

high affinity for the SP have much longer retention times. The extent of interaction with the SP 

governs the separation and dictates when an analyte plug will elute.  

 The analysis of MAs by LC is challenging but methods have been previously reported 

[81]. A problem with achieving a good separation of the MAs is that they are small, amphoteric 

species, and therefore, do not retain well on many SPs. The majority of small molecule LC 
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separations in the literature are reversed-phase and employ a C18 column; however, MAs are 

very polar and consequently do not interact with the SP. This results in poor or no retention and 

very limited resolution between the analytes. To overcome this problem, methods have been 

reported using reversed-phase separations after first derivatizing the MAs with either an alkyl 

moiety [82] or a non-polar fluorescent tag [83-85]. This increased retention on-column because 

of the ability of the hydrophobic derivatization group to interact with the C18 SP. An alternative 

means of obtaining chromatographic resolution can be obtained by utilizing more polar SPs such 

as HILIC (hydrophilic interaction) silica columns [86-89]. However, despite the improved 

retention with these packing materials, some coelution was still observed.  

 

2.4.2.2.2 Capillary Electrophoresis 

Capillary electrophoresis (CE) is a separation technique that separates analytes based on 

their charges and hydrodynamic radii [90]. To conduct a capillary zone electrophoresis (CZE) 

experiment, a background electrolyte is introduced into a capillary followed by a small volume 

of sample (~1% of the total volume). A high voltage is then applied across the capillary. The 

application of an electric field causes the species in the sample plug to migrate based on both 

their innate electrophoretic mobilities and an electroosmotic flow (EOF) force. Electrophoretic 

mobilities are dependent on the charge and size of the molecules where species with the highest 

charge density migrate the fastest. In this setup, cations migrate towards the cathode, anions 

migrate towards the anode, and neutral molecules are unaffected.  

While the electrophoretic mobilities of analytes are important considerations in CE 

separations, this description is incomplete because it does not factor in the charge of the substrate 

surface. Since most electrophoretic separations are performed in glass, the charge on the surface 
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is typically highly anionic. This creates layers of counter-ions next to the surface to maintain 

electroneutrality, which gives rise to the EOF. The EOF is often the dominant factor affecting 

analyte migration. In normal polarity CE, a mobile layer of cations is positioned next to the 

channel surface. Upon application of an electric field, these ions are attracted to the cathode 

which draws the bulk solution towards the cathode as well. The rate of this fluid flow is often 

greater than the electrophoretic mobilities of the analytes in the sample so that all species, 

regardless of charge, migrate towards the cathode. This is often beneficial because it allows all 

analytes in a sample to be monitored with a single detector. Because the EOF is governed by the 

surface charge of the channel substrate, its rate is highly pH dependent. Under more acidic 

conditions, the channel walls become protonated and therefore diminish the rate of bulk fluid 

transport. The combination of electrophoretic mobility and EOF dictate the net migration of a 

given analyte. An illustration of this is depicted in Figure 2.5. 

Due to the limitations of CZE to resolve the components of more complex sample 

mixtures, micellar electrokinetic chromatography (MEKC) is frequently employed to enhance 

the separation. A MEKC experiment is set-up in an analogous manner to CZE. A capillary is 

filled with a background electrolyte solution, but for this experiment, surfactant is also added to 

the run buffer. At low surfactant concentrations, surfactant molecules line the surface of the 

capillary in an attempt to withdraw their hydrophobic tail groups from contact with the aqueous 

solution. At sufficiently high surfactant concentrations (above the critical micelle concentration), 

however, it is thermodynamically favorable for the surfactant to aggregate into micelles. The 

arrangement of surfactant molecules into micelles allows the polar headgroups to be in contact 

with the aqueous solution while allowing the hydrophobic tails to be in the interior. A picture of 

a micelle can be seen in Figure 2.6.  
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Figure 2.5 Schematic of the forces involved in electrophoretic separations and a theoretical 

electropherogram. 
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Figure 2.6 The configuration of a micelle. Image adapted from  

http://en.wikipedia.org/wiki/Micelle. 
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Micelles serve as a pseudo-stationary phase in electrophoretic separations which can aid 

the separation. The migration of analytes in MEKC is determined by not only the electrophoretic 

mobilities of the analytes and the EOF as in CZE, but is now also impacted by the affinity of 

each analyte for the micelle. Molecules are able to partition into and out of the micelles which 

influences their net migrations. In normal polarity CE separations, anionic surfactants are 

employed for MEKC to elongate analyte migration times. In such a system, the migration time of 

a neutral analyte will fall between that of the EOF and that of the micelle depending on the 

analyte’s affinity for the micelle. Molecules that have a strong electrostatic interaction with the 

surfactant headgroup or hydrophobic interactions with the core will have longer migration times. 

 Separating MAs with electrophoresis is very challenging due to the similar size and 

charge of the MA analogues. However, methods have been previously reported utilizing MEKC 

in the separation of MAs (see 3.1). These papers were able to obtain a reasonable separation 

between the MAs although comigration was observed in some instances. A drawback to these 

methods is that they utilized very high ionic strength buffers that can cause substantial Joule 

heating and hinder the analysis. These methods also required lengthy or complex derivatization 

steps to fluorescently label the analytes, which diminished throughput. Furthermore, the LODs of 

these methods were fairly high which could prevent endogenous MA concentrations from being 

detected. Given these drawbacks, there is still much room for improvement in the optimization of 

CE separations of MAs. 

An additional benefit of CE in the measurement of MAs is its ability to be readily 

miniaturized. Electrophoretic separations can be conducted in microfluidic devices only a 

fraction of the size of a conventional CE instrument. This enables a more rapid separation and 

utilizes smaller volumes of sample and other reagents. Of particular benefit is that despite being 
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a smaller platform with a reduced separation distance, the separation efficiency in such devices is 

not normally diminished. Higher field strengths can be employed with the shorter channels 

preserving good separations. The major benefit of the microchip electrophoresis platform is that 

it could be incorporated as part of a point-of-care (POC) analysis system for the determination of 

MAs. LC cannot be easily miniaturized making it impractical in POC analyses, so future 

discussions herein will only pertain to CE-based methods. 

 

2.4.2.3 Derivatization Chemistry 

 Unlabeled MAs can be measured by mass spectrometric (MS) detection or UV detection 

regardless of the choice of separation technique. However, CE-MS instruments are not 

extensively utilized because of their high cost. Furthermore, CE-MS suffers from limited 

separation capacity due to the incompatibility of MS with common surfactants required to 

achieve reasonable separations. Also, UV detection lacks the sensitivity of other detection 

methods. Given this, many CE analyses designed for amino acid measurements rely on 

derivatization of the analytes of interest with a fluorescent tag to enable laser-induced 

fluorescence (LIF) detection.  

 A large variety of fluorescent derivatization reagents are commercially available. These 

tags vary based on their spectral properties, size, and reactivity. These labels have been designed 

to attach to a number of different reactive sites on a molecule. Currently, dyes are available that 

react with a number of different functional groups including amines, thiols, carboxylic acids, and 

aldehydes. The ability of different dyes to label different functional groups on a molecule can 

impart some specificity into the analysis since not all analytes in a sample mixture contain the 
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same reactive sites. Choosing a derivatization reagent that only tags the class of compounds of 

interest will yield less complex separations and improve peak identification and quantitation. 

 The choice of labeling reagent is also affected by the method to be used for analysis. 

Although most analyses employ pre-column derivatization to provide optimal conditions for 

analyte labeling, forethought must be given to the analytical technique. Large hydrophobic dyes 

may not be soluble in aqueous run buffers and precipitate out of solution. Not only will this 

decrease the sensitivity of the analysis, it may completely halt it if large aggregates form and 

clog the capillary. Additionally, the kinetics of the reaction must be considered when selecting a 

derivatization reagent. Some labels react quickly under ambient conditions but others either 

require lengthy reaction times or an incubation step [91]. These requirements can drastically 

increase the sample preparation time which will diminish throughput. 

 The selection of a derivatization reagent is also frequently dictated by other practical 

concerns. For example, when utilizing LIF detection, the excitation wavelength of a dye must 

correspond to an available laser line. Given the relatively high cost of lasers, it is most practical 

to select a dye based on the laser equipment available. If fluorescence detection is to be achieved 

with a broadband source, cost must still be considered because of the necessity of the optic cubes 

required to allow the proper excitation and emission wavelengths through. Based on the 

excitation source available, a wide variety of derivatization reagents can be selected with 

excitation maxima throughout the near-UV and visible spectra. Other properties to note when 

reviewing the optical properties of the labels are their fluorescent efficiencies. The higher the 

quantum yield of a dye, the more fluorescent emission is produced. This is a beneficial trait in an 

analytical method because it increases the sensitivity of the analysis.  



31 

 

 Another concern regarding the choice of fluorescent dye is the impact it will have on the 

analysis. The size and charge of the tag can have a large impact on the maximum attainable peak 

resolution in electrophoretic separations. Larger fluorescent tags will make the relative sizes of 

the derivatized complexes more similar which may hinder the separation. This effect will be 

especially pronounced in the analysis of small molecules; larger peptides and proteins will be 

less affected. For the analysis of small molecules, such as MAs, it is most beneficial to use the 

smallest labels possible to attain the best separation. Smaller fluorescent tags tend to be blue-

shifted as compared to their larger counterparts due to the restricted range for electron 

delocalization. Therefore, lower wavelength excitation sources are required to utilize these 

labels. Another consideration is the charge on the molecule. Many derivatization reagents 

contain an anionic functional group. This ionizable moiety will alter the electrophoretic mobility 

of a labeled analyte and therefore impact the electrophoretic separation. This does not necessarily 

imply that the separation resolution will be worse, but it will be different. Additionally, once a 

label bonds to a functional group on a molecule, that functional group will be altered. For 

example, if a dye labels a carboxylic acid, following derivatization, it typically forms an ester 

group that is non-ionizable, thereby changing the charge of the molecule.  

A wide variety of dyes with different properties are available but most have the 

significant disadvantage of being fluorescent themselves. This can be problematic because 

excess dye must be introduced into the sample mixture to ensure that all of analytes become 

labeled. Unfortunately, this often leaves a large amount of unreacted dye in the sample, which 

complicates the analysis by producing reagent peaks much larger than those for the analytes of 

interest [91]. For this reason, it is beneficial to use fluorogenic derivatization reagents that are 

not fluorescent until they label an analyte molecule. 
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Naphthalene-2,3-dicarboxaldehyde (NDA) is the derivatization reagent that was used 

throughout this dissertation because of the many benefits it imparts onto an analysis. NDA is a 

fluorogenic dye that derivatizes primary amines in the presence of cyanide to form stable 1-

cyanobenz[f]isoindole (CBI) products under ambient conditions [92]. Because of its fast reaction 

kinetics (NDA labels compounds within minutes), the use of NDA is advantageous in methods 

employing precolumn derivatization [93]. The reaction of NDA with arginine is shown in Figure 

2.7. NDA is a relatively small tag which minimizes its contribution to the size of the derivatized 

complex. This allows NDA-labeled analytes to be separated more easily by CE compared to 

those labeled with larger dyes. There are two excitation maxima for NDA-derivatized species at 

420 nm and 445 nm, while the emission maximum is at 490 nm. LIF detection is typically 

employed when derivatizing analytes with NDA because it provides the best detection limits for 

the determination of CBI derivatives [94, 95]. 

 

2.5 Conclusions 

 This chapter has outlined the function of NOS and its significance to maintaining human 

health. It also addressed the role MAs play in NOS physiology. MAs can have both beneficial 

and detrimental impacts on the endothelium because of their abilities to modulate NO 

production. It is hypothesized that these species could serve as valuable markers to screen 

patients for the progression of diseases of the endothelium stemming from a reduced NO 

bioavailability. Background information was then given on various analytical methods that could 

be used to measure markers of NOS function, specifically NO and the MAs. It was concluded 

that CE-based separations would be the most beneficial for MA analyses long-term since they 

are capable of being miniaturized into a point-of-care screening system.  



33 

 

 

 

Figure 2.7 Derivatization scheme of arginine with NDA/CN
–
. 
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Optimization of a Capillary Electrophoresis Separation Method for the Determination of 

NDA-Derivatized Methylarginines 
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3.1 Introduction 

 Nitric oxide (NO) bioavailability impacts a large number of different physiological 

pathways such as cellular signaling, vasodilation, and immune response. Therefore, producing 

adequate amounts of NO is crucial to maintaining proper biological function. As described in 

Chapter 2, methylarginines (MAs) are competitive inhibitors of the enzyme that produces NO. 

As such, when MAs are present at elevated concentrations, severe health consequences can arise, 

including the development of cardiovascular, renal, and respiratory diseases. Since MAs have 

been reported to be elevated in patients suffering from diseases where NO is depleted, these 

compounds could potentially serve as valuable diagnostic markers of disease onset. Given this, 

an analytical method capable of quantifying each MA is necessary. This method must be rapid 

and relatively inexpensive so that it could be used in future large-scale clinical trials.   

Several previous reports have utilized liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) for measuring MA concentrations. By monitoring specific fragmentation losses 

using multiple reaction monitoring mode (MRM) in the MS, selective analysis of only the 

compounds of interest can be achieved, even without complete chromatographic resolution [1-3]. 

While this technique provides benefits versus fluorescence-based methods, it has the severe 

limitation of cost. The mass analyzer required for MRM analysis is very expensive and requires 

frequent maintenance, making it cost-prohibitive for general use in most hospitals. In addition to 

the high cost of the instrumentation, expensive isotopically-labeled internal standards need to be 

utilized for calibration as well as for quantitative analysis to compensate for variability in 

ionization efficiency. Despite good analytical performance, these financial issues prevent LC-

MS/MS from being the best choice of technique for large-scale routine analyses.  
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 Capillary electrophoresis (CE) is capable of achieving high efficiency separations in a 

platform of relatively low cost. These characteristics fit the criteria mentioned above as ideal for 

MA determination from clinical samples. However, separating MAs by electrophoresis is a 

challenging endeavor. As stated previously, the rates at which analytes migrate in an electric 

field are based on their charges and hydrated radii. The difficulty with separating MAs by CE is 

due to the fact that these parameters are very similar for each MA. These arginine-based 

molecules all contain a guanidinium group whose pKa is ~12.5. Although pKa values for MAs 

have not been published, the methyl groups on the guanidinium nitrogens add electron density to 

the side-chain which should stabilize the cation and, in turn, raise the pKa slightly. Regardless of 

the exact values, the pKa’s of the side-chains remain quite high. Selectively deprotonating the 

side-chains of the different MAs using the CE background electrolyte (BGE) would be difficult 

because most buffers do not have buffering capacity at such high pH. Additionally, to adjust the 

pH of a solution to such a high value may drastically increase the ionic strength of the solution, 

which can hinder electrophoretic separations by causing excessive Joule heating.  

There have been multiple reports in the literature describing the use of CE in the analysis 

of MAs, but all have shortcomings. Many of these methods suffer from the co-migration of the 

MA species [4-7]. Additional limitations of these other methods stem from their choices of 

detection modes. The use of UV detection [5] is not ideal because of its lack of selectivity at 

190 nm as well as its relatively high detection limits (compared to laser-induced fluorescence 

(LIF)). The studies that utilized fluorescence detection for the analysis of MAs used 

derivatization reagents that hindered sample throughput either by necessitating that the labeling 

reaction take place overnight [7] or by requiring the sample to be heated in order for 

derivatization to occur [6]. Neither of these approaches is ideal because of the lengthy sample 
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preparation times. In addition, the derivatization reagents used in previous reports are fluorescent 

themselves. This complicates the separation by requiring that the excess derivatization reagent in 

the reaction mixture be resolved from the labeled analytes of interest. The CE method in the 

literature that is most promising uses a tandem mass spectrometer as a detector. Despite having 

the best reported limits of detection for MAs [4], the cost of analysis is quite large due to the 

high price of a CE-MS/MS system and the need for expensive deuterated internal standards.  

The purpose of this study was to develop a fast, relatively inexpensive analytical method 

for the determination of MAs. Run conditions were then optimized using CE-LIF in order to 

determine the conditions necessary to achieve baseline resolution between the four analytes of 

interest. Additionally, an investigation was made to identify a compound that could serve as an 

internal standard to improve quantitation of the method. Following optimization of the run buffer 

to enable a good separation between the MAs, several separation parameters such as the number 

of theoretical plates and peak resolution were calculated. 

 

3.2 Materials and Methods 

 

3.2.1 Reagents 

Standards of arginine, methyllysine, arginine methyl ester, homoarginine, nitroarginine, 

agmatine, and canavanine were purchased from Sigma Aldrich (St. Louis, MO); asymmetric 

dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), monomethylarginine (MMA), 

propylarginine (PA), ethylarginine (EA), hydroxyarginine, and nitroarginine methyl ester (L-

NAME) were purchased from Enzo Life Sciences (Plymouth Meeting, PA); and 

hydroxynorarginine was purchased from Bachem (Torrance, CA). All standards were prepared at 
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10 mM concentrations in 18.2 Mcm deionized water (Millipore; Billerica, MA). Samples were 

serially diluted to the desired concentrations prior to CE analysis. HPLC-grade 

dimethylsulfoxide, acetonitrile, and methanol were acquired from Fisher Scientific (Pittsburgh, 

PA). A stock solution of 100 mM sodium tetraborate (Sigma Aldrich) was made, and aliquots 

were adjusted to the indicated pH values either by the addition of 1 N HCl or the addition of 1 N 

and/or 10 N NaOH (Fisher Scientific). A 100 mM aqueous solution of sulfobutylether--

cyclodextrin (SBEC) (Cydex Pharmaceuticals; Lenexa, KS) was also prepared. It should be 

noted that the SBEC formulation contains a range of SBE groups per cyclodextrin. The 

molecular weight used in the preparation of CE buffers assumed seven SBEs per molecule (this 

was the centroid of a relatively Gaussian distribution) even though the range varied from three to 

ten. To formulate the run buffers, stock solutions of borate, SBEC, and DMSO were combined 

and diluted to the appropriate concentrations with ultrapure water. NDA (Invitrogen; Carlsbad, 

CA) was dissolved in 1:1 acetonitrile: water to a final concentration of 5 mM. A 10 mM sodium 

cyanide (Sigma Aldrich) solution was prepared in water. Working solutions of NDA and CN
- 

were diluted in 1:1 acetonitrile: water and water, respectively.  

 

3.2.2 Capillary Electrophoresis 

A Beckman P/ACE MDQ capillary electrophoresis instrument (Brea, CA) equipped with 

a 65 cm (50 cm to window), 50 m i.d./ 360 m o.d. fused silica capillary (Polymicro 

Technologies; Phoenix, AZ) was used in the development of a method to separate the MA 

species. Samples were introduced into the capillary via pressure injection at 1.0 psi for 5.0 s. A 

445 nm diode laser (CrystaLaser; Reno, NV) was used for sample excitation, and fluorescent 

emission (>490 nm) was measured with an external fluorescence detector (Picometrics; 
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Ramonville, France). 32 Karat software (Beckman) was utilized to control both CE operation 

and LIF detection. 

 Samples analyzed by CE were first derivatized with NDA/CN
-
 to form fluorescent 

cyanobenz[f]isoindole (CBI) derivatives. The derivatization procedure entailed combining equal 

volumes (5-20 L) of sample, 50 mM sodium tetraborate, 1 mM NDA, and 5 mM NaCN and 

allowing the mixture to react for 10 min prior to injection. Peak areas from the MAs were 

normalized to the peak area of the internal standard PA for quantitation. All samples were 

measured in triplicate unless otherwise noted.  

 

3.3 Results and Discussion 

 

3.3.1 Run Buffer Modifiers 

 

 Given the high degree of structural similarities between the different MAs, achieving a 

reasonable separation between these analytes was quite challenging. The pKa values of the 

molecules are very similar which precludes a charge-based separation. Additionally, their sizes 

are comparable which increases the difficulty of achieving size-based separations. This problem 

is further accentuated after derivatization. The CBI moieties make the relative sizes of the 

molecules even more similar while also rendering the derivatives electrically neutral after 

labeling the N-terminus. Given these factors, it was not surprising that free zone electrophoresis 

was insufficient to separate the MAs. A sample electropherogram is shown in Figure 3.1 where 

complete co-migration of all the MA analogues was observed. 

In an attempt to gain better resolution between MA peaks, a MEKC method was 

evaluated. Previous reports have demonstrated improved separations of NDA-derivatized amino 
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Figure 3.1 An electropherogram showing the separation of a mixture of 1 M MAs in a 15 mM 

borate CE run buffer. Significant co-migration of the analytes was observed. 
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acids utilizing MEKC because of the different affinities of each analyte for the micelle. These 

papers observed unique mobilities for each sample component, and therefore, a separation of the 

analytes. Unfortunately, this was not the case in the analysis of MAs. Many combinations of run 

buffer modifiers (surfactants, organic solvents, etc.) at various concentrations were evaluated. 

While an improvement in resolution was observed with MEKC, significant comigration was still 

observed with this separations mode. The separation conditions that produced the best separation 

(highest peak resolution) are shown in Figure 3.2.  

While MEKC did not result in a complete separation of MAs, it did prove more 

beneficial than free zone electrophoresis. In an attempt to further improve the separation, an ion 

pairing reagent was added with the rationale being that methylated side-chains on the MA 

analogues would have differing electrostatic interactions with the reagent. To test this 

hypothesis, 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS) was added to the run buffer 

from Figure 3.2 to serve as an ion pairing reagent. The results from the experiment empirically 

validated the hypothesis as shown in Figure 3.3. With the optimized MEKC/ ion pair separation, 

Arg, MMA, and either SDMA or ADMA were separated; however, the two dimethylated 

analogues still co-migrated. This data confirmed that MAs have different hydrophobic 

interactions with the SDS micelles and different ion pairing capacities with the CAPS; however, 

additional buffer modification was required.  

Sulfobutylether--cyclodextrin (SBEC) was evaluated as a buffer modifier because it 

integrated the previously mentioned modes of interaction that were shown to help separate MAs. 

SBEC (shown in Figure 3.4) is a modified cyclodextrin containing ether-linked butylsulfonate 

groups. Therefore, this single modifier provided electrostatic and hydrophobic interactions, while 

also providing hydrogen bonding sites and size-based affinity for the cyclodextrin cavity. 
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Figure 3.2 Sample electropherogram of a MEKC separation of a mixture of 1 M MA standards. 

The run buffer consisted of 15 mM borate, 7 mM SDS, and 5% acetonitrile. 
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Figure 3.3 Sample electropherogram of a separation of 10 M MAs. The run buffer contained 

30 mM borate, 5 mM SDS, and 50 mM CAPS. 
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Figure 3.4 Structure of sulfobutylether--cyclodextrin. 
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Introducing this compound into a separation buffer has been shown in the past to effectively 

separate -phthaldehyde-labeled biogenic amines [8]; therefore, it was investigated here as a 

pseudo-stationary phase.
 
Upon addition of SBEC into a run buffer containing SDS and CAPS, a 

noticeable improvement in resolution was observed. After optimizing the concentrations of the 

various components, it was determined that the use of SBEC exclusively (without SDS or CAPS) 

provided the greatest resolution between MA peaks.  

It is believed that SBEC facilitated the separation of NDA-labeled MAs by two 

mechanisms [9]. First, the CBI ring partitioned into the hydrophobic core of the cyclodextrin. 

Since SBEC is anionic and has a negative electrophoretic mobility, the net migration of the 

derivatized species was retarded as the molecule interacted with the cyclodextrin ring. In 

addition to the interaction with the CBI ring, the second mode of interaction was with the 

individual MA side-chains. The cationic guanidinium groups on the arginine residues interacted 

with the negatively charged sulfonate groups on the surface of the SBEC to form an ion pair. The 

methyl groups on MMA, ADMA, and SDMA, however, attenuated the electrostatic attraction 

due to steric hindrance, thereby diminishing the retention of the analyte. The extent of 

methylation and the subsequent inhibition of electrostatic association with the cyclodextrin 

correctly predicts the migration order of SDMA > ADMA > MMA > Arg. MAs were not able to 

be separated using unsubstituted -cyclodextrin suggesting that the anionic nature of SBEC was 

crucial to achieving a good separation. 

 

3.3.2 Separation Optimization 

The concentrations of borate and SBEC as well as the run buffer pH and separation 

voltage were systematically varied to determine the optimal conditions for the separation of MA 
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standards. The concentration of SBEC was varied from 0 to 20 mM to evaluate its effect on the 

resolution between the analytes. It was determined that an increase in resolution was realized 

with increasing amounts of the anionic cyclodextrin. The MAs completely comigrated when no 

SBEC was included in the run buffer but complete baseline resolution was achieved at all of the 

other SBEC concentrations. A run buffer containing 1.5 mM SBEC was chosen for subsequent 

analyses because this produced the separation with the highest efficiency while also providing 

the shortest run times.  

Sodium tetraborate is a common BGE used in CE separations. It was selected as the BGE 

for this analysis because of its compatibility with NDA derivatization chemistry. The borate 

concentration in the run buffer was varied from 5 to 50 mM in order to determine the optimal 

conditions for separating the analytes of interest. Higher borate concentrations provided slightly 

better resolution between adjacent peaks at the cost of increased analysis times. Concentrations 

as low as 5 mM borate still resulted in baseline resolution of the analytes. It was determined that 

30 mM borate was optimal since this concentration provided the largest peak capacity in 

reasonably short analysis times. 

 The pH of the borate solution was also varied to ascertain the impact of pH on peak 

resolution. Run buffers consisting of 30 mM borate and 5 mM SBEC were prepared at pH 9.00, 

9.25, 9.50, 9.75, and 10.00. It was determined that run buffers at higher pH produced longer 

migration times. This increase in migration time can be attributed to the higher ionic strength in 

the buffer (from the addition of the NaOH used to adjust the solution pH) which slowed the EOF. 

The ionization states of the MAs were not affected in the range of pH values evaluated and 

therefore did not influence the separation. All the compounds were completely resolved 
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regardless of run buffer pH. For simplicity, a pH of 9.25 was selected for subsequent analyses as 

that is also the optimum pH at which to derivatize the analytes of interest.  

 An investigation was also made into the effect of the applied separation voltages on 

resolution and analysis time. As expected, higher voltages led to faster analyte migration and 

shorter analysis times. As one of the goals of developing this method was to increase throughput, 

the fastest possible separation was desired. Because all species of interest remained baseline 

resolved at the higher field strengths, a separation voltage of 28 kV (430 V/cm) was determined 

to be optimal.  

 The optimized separation parameters were determined after performing a systematic 

evaluation of the analysis conditions, as described above. The final run buffer was comprised of 

30 mM pH 9.25 borate and 1.5 mM SBEC, and the separation occurred at a voltage of 28 kV. 

Baseline resolution of all the analytes of interest was achieved with run times of less than seven 

minutes. An electropherogram of this separation is shown in Figure 3.5. 

 

3.3.3 Internal Standard Identification and Peak Capacity Improvement 

 The incorporation of SBEC into the run buffer was crucial for providing baseline 

resolution between the MAs. However, before serum samples could be analyzed, the 

identification of an internal standard (IS) was required in order to increase quantitative precision. 

In order to serve as a viable IS, the compound needed to migrate prior to arginine in the 

separation. This requirement stems from the fact that MAs are the smallest, most positively 

charged species in serum and therefore migrate earliest. In serum samples, the complexity of the 

electropherogram after arginine is tremendous because of the other amine-containing small 

molecules and peptides present. Given this, any analyte that migrated in that region would be 
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Figure 3.5 Sample electropherogram of a separation of 500 nM MAs. The run buffer contained 

30 mM borate and 1.5 mM SBEC. 

  



62 

 

extremely difficult to identify and even more difficult to quantify with good precision. Therefore, 

the IS peak must migrate early in the separation. Several structurally analogous molecules to 

arginine were evaluated, but none of them proved adequate. Many species that free zone 

electrophoresis principles would have predicted to migrate before the MAs migrated well after 

them (Table 3.2). This can be attributed to their affinities for the SBEC being stronger than that 

of the MAs. Unfortunately, predicting the affinity turned out to be an exercise in futility since no 

discernible pattern emerged. The only two exogenous species that migrated in the required 

separation window both comigrated with MMA despite attempts made to reoptimize 

concentrations of run buffer components. 

 

3.3.3.1 Dimethylsulfoxide Addition 

 To overcome the difficulty in selecting an IS and potentially allow either EA or PA to 

serve that purpose, additional peak capacity was sought. Typical run buffer modifications to 

achieve this goal include the addition of an organic solvent. Inclusion of an organic is quite 

common in the CE literature with acetonitrile or methanol typically being employed. However, 

neither of these compounds was found to significantly improve the separation (Table 3.1). 

Therefore, an exploration was made into non-traditional solvents. Acetone, 1-propanol, 2-

propanol, and ethanol were incorporated into the run buffer to determine their effect on the 

resolution and efficiency of the separation. It was determined that there were no improvements 

between buffer containing these organics versus the entirely aqueous buffer; and in many cases, 

the resolution actually worsened due to increased peak tailing. The addition of DMSO to the run 

buffer, however, produced a noticeable improvement in resolution. And despite longer migration 

times with DMSO, which normally leads to increased longitudinal diffusion and therefore band- 
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Table 3.1 Effect of run buffer organic solvent on (a) the number of theoretical plates (m
-1

) and 

(b) peak resolution in the separation of 500 nM MAs. The run buffer contained 30 mM borate, 

1.5 mM SBEC, and 10% (v/v) of the indicated organic solvent. 

 

a) 

 

Solvent SDMA ADMA MMA Arg 

None 9000 8400 8000 9800 

DMSO 16700 14800 14800 11700 

MeOH 9900 8800 9600 10500 

ACN 16900 6500 7900 8200 

 

 

 

b) 

 

Solvent SDMA-ADMA ADMA-MMA MMA-Arg 

None 0.90 1.11 0.69 

DMSO 0.91 1.47 1.23 

MeOH 1.03 1.47 1.36 

ACN 0.69 1.14 1.04 

  



64 

 

broadening, peak widths remained the same as in the unmodified buffer. Longer migration times 

and identical peak widths demonstrated the increased separation efficiency as evidenced by the 

larger number of theoretical plates. Separation parameters from run buffers containing different 

organics are shown in Table 3.1. 

The inclusion of DMSO into a CE run buffer has not been reported before in the literature 

to the best of our knowledge but was found to significantly improve the separation of MAs. 

Given this, studies were conducted to further characterize the effect of DMSO on the separation. 

The migration times of several analytes were monitored under both aqueous conditions and with 

5% DMSO in the run buffer. Migration times were then normalized relative to that of the 

arginine peak for improved precision and listed in Table 3.2. It was determined that every 

compound that migrated earlier than arginine migrated even earlier with DMSO in the run 

buffer, while every compound that migrated later than arginine migrated even later with DMSO 

in the run buffer (except hydroxynorarginine). Essentially, DMSO was found to effectively 

increase the window in which these species migrated. Following reoptimization of the run buffer 

composition with DMSO now included, EA and PA were able to be resolved from MMA which 

had comigrated under previous conditions. The newly optimized run buffer contained 15 mM 

borate, 10 mM SBEC, and 25% DMSO which provided unprecedented peak resolution (Figure 

3.6). This now enabled PA to serve as an internal standard in the analysis of clinical samples (EA 

was found to comigrate with an unknown endogenous peak). 

 A brief investigation was made to attempt to elucidate the reason for the separation 

enhancement when DMSO was incorporated into the run buffer. Given the relatively high 

viscosity of DMSO compared to water, one hypothesis for its beneficial effects was that a higher 

solution viscosity provided additional drag on the analytes passing through the capillary. This 
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Table 3.2 Migration times (relative to arginine) of various 500 nM analytes. The run buffer 

contained 30 mM borate, 1.5 mM SBEC, and 5% DMSO. 

 

Compound tm, Aqueous tm, DMSO 

SDMA -0.79 -0.88 

ADMA -0.57 -0.65 

MMA -0.27 -0.31 

EA -0.27 -0.33 

Hydroxynorarginine -0.23 0.00 

Methyllysine -0.15 -0.15 

PA -0.11 -0.13 

Arg methyl ester 0.00 0.00 

Hydroxyarginine 0.10 0.19 

Homoarginine 0.11 0.18 

Nitroarginine 0.12 0.21 

L-NAME 0.16 0.21 

Canavanine 0.22 0.35 
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Figure 3.6 Electropherogram illustrating the separation of 500 nM MAs/EA/PA. The run buffer 

contained 15 mM borate, 10 mM SBEC, and 25% DMSO. 
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increased drag force could help enhance resolution between analytes since separation efficiency 

is dependent upon solution viscosity. To determine if this hypothesis was true, the kinematic 

viscosity of the 25% DMSO run buffer was calculated using the Refutas equation where the 

viscosity blending number (VBN) was determined to be 4.23. A second run buffer was then 

made by matching the VBN by the addition of glycerol instead of DMSO and maintaining 

constant borate and SBEC concentrations. The results demonstrated that the enhanced separation 

resolution was not strictly due to viscosity (Figure 3.7). The run buffer containing glycerol 

demonstrated some increased resolution between MAs and later peak migration times, but not as 

large as with the buffer containing DMSO. These results suggest that DMSO does not strictly 

enhance the separation by viscosity alone. The incorporation of DMSO must affect the 

equilibrium between each MA species and the SBEC molecules in a manner to provide a unique 

migration time for each. 

 

3.3.4 CE-LIF Method Characterization 

 The separation method was characterized following the optimization of the run 

conditions. A sample electropherogram and the validation parameters are shown in Figure 3.6 

and Table 3.3, respectively. Calibration curves were constructed for each analyte of interest from 

aqueous MA standards. The lines of best fit and the equations are reported in Figure 3.8. The 

linearity of the method was determined by constructing a calibration curve over a clinically 

relevant concentration range (50-1200 nM) (Figure 3.8). This method provided good linearity 

(≥0.999) and low relative standard deviations for MA standards. The average peak area deviation 

for each analyte was <5% over the concentration range studied indicating a reasonable level of 

precision. The number of theoretical plates for each analyte was ~150,000 plates/m. The limits of 
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Figure 3.7 Effect of solution viscosity on separation efficiency of 500 nM MAs/EA/PA. Run 

buffer contained 15 mM borate, 10 mM SBEC, and the indicated additives. Run buffers modified 

with either DMSO or glycerol had identical kinematic viscosities. 
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Figure 3.8 Calibration curve for MAs over a clinically-relevant concentration range. 

  

Analyte Slope (M
-1

) Y-Intercept 

SDMA 0.00296 0.0221 

ADMA 0.00297 0.0520 

MMA 0.00284 0.0352 
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Table 3.3 Validation parameters from the optimized CE-LIF method.  

 

Compound Number of Plates (m
-1

) R
2 *

 %RSD ** 
LOD  (nM) 

(S/N = 3) 

SDMA 147000 0.9997 4.5 5 

ADMA 127000 0.9998 4.9 5 

MMA 146000 0.9998 2.6 6 

PA 149000 - - 8 
 

*
Over a concentration range between 50 and 1200 nM.  

**
Based on replicate peak area measurements (n=3) from each calibration standard (n=5 

concentrations). 
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detection (S/N=3) were determined experimentally for each analyte of interest and found to be 5-

8 nM which are all well below the expected endogenous concentrations.  

 The separation efficiency and detection limits of this method were good; however, the 

precision in analyte migration times was not (Table 3.4). Although the RSD for each analyte was 

only ~3%, this unfortunately corresponded to a fairly large shift in migration times. The standard 

deviations were ±30 s which meant that the window in which these peaks migrated was about 

one minute wide. In contrast to many LC methods with a retention time variability of <0.1%, the 

deviation of this method was quite poor. The deviation in migration times can be attributed to the 

dynamic conditions in which CE is operated. If adsorption of analytes onto the capillary wall 

occurs or if the ionic strength of the run buffer becomes depleted this will affect the migration of 

analytes through the capillary. However, despite the large variability in migration times of this 

CE-LIF method, the precision of the peak areas were high which still enabled reliable 

quantitation.  

 

3.3.5 NDA Derivatization 

Once a sufficient separation method was developed to resolve the different MAs (and IS) 

from the other components in the sample, an investigation was made into the derivatization 

chemistry. Although discussions on analyte labeling often times get omitted in the literature, it is 

a crucial aspect of the analytical method. The concentrations of derivatization reagents or 

reaction time can have a profound effect on the sensitivity of the method. To ensure the method 

under development was not being hindered by overlooking these concerns, efforts were made to 

optimize factors related to analyte labeling. 
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Table 3.4 Migration time reproducibility. Separation buffer contained 15 mM borate, 10 mM 

SBEC, and 25% DMSO (n=46 injections of 10-1000 nM MA standards). 

 

Compound Avg tm (min) Std Dev (min) %RSD 

SDMA 14.5 0.43 3.0 

ADMA 15.0 0.46 3.1 

EA 15.9 0.50 3.2 

MMA 16.1 0.51 3.2 

Arg 17.0 0.57 3.3 
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NDA is a very hydrophobic molecule that has limited solubility in aqueous solution. To 

aid its solubility, NDA is typically dissolved in a solution containing some percentage of organic 

solvent. Papers in the literature typically dissolved NDA in acetonitrile (ACN) or methanol or a 

mixture of those solvents with water. To determine which organic produced the most favorable 

results, a qualitative assessment was made to elucidate the impact of solvent composition on 

NDA solubility and the subsequent separation.  

Considering the large amount of DMSO in the separation buffer, dissolving NDA in 

DMSO seemed like a logical choice to solubilize the reagent while enhancing compatibility 

between the sample matrix and the run buffer. However, Table 3.5 illustrates that this was not 

the case. Comparing fluorescent signals from MAs as a function of NDA solvent composition, it 

was discovered that dissolving NDA in DMSO proved problematic. The peak area deviations 

between multiple injections of sample containing DMSO was significantly higher than those in 

which NDA was dissolved in an ACN solution. Additionally, the signal from the MAs was 

substantially smaller with DMSO in the sample mixture than ACN. This large discrepancy in 

both reproducibility and fluorescent response can be attributed to the increased viscosity of 

DMSO. Sample injection was achieved by hydrodynamic pressure where the volume of sample 

introduced into the capillary is inversely proportional to the viscosity of the solution. Given the 

high viscosity of DMSO (compared to ACN), a smaller volume of sample would have been 

injected which would manifest as a lower fluorescence response. Similarly, any discrepancies in 

injection time or pressure would be accentuated with a high viscosity sample since the relative 

volume difference would be greater and would therefore increase the %RSD over multiple 

injections. 
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Table 3.5 Effect of NDA solvent (1:1 water: solvent) on analyte peak area RSDs and relative 

fluorescence responses. 500 nM standards were derivatized with 1 mM NDA, 5 mM NaCN, and 

50 mM borate. 

 

Analyte %RSD ACN %RSD DMSO ACN/DMSO Response 

SDMA 3.3 19 2.0 

ADMA 1.6 17 2.0 

EA 4.6 18 2.0 

MMA 1.6 20 2.0 

Arg 2.9 18 1.9 
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Evaluation of more commonly utilized solvents showed that no significant differences 

existed between methanol and ACN when in 1:1 or 1:2 ratios with water. Each solvent mixture 

was sufficiently hydrophobic to solubilize NDA without impacting the separation. The use of an 

exclusively aqueous solvent produced no noticeable difference in the separation; however, a 

substantial effort was required to dissolve the solid NDA in water. Aqueous solubility of NDA 

was found to be ~2 mM. The most interesting observation was found when NDA was dissolved 

in 100% ACN. While the NDA rapidly dissolved into solution, this solvent composition 

produced a noticeable effect on the separation. Figure 3.9 demonstrates that when NDA was 

dissolved in pure ACN, each analyte peak began to split into two. Even though the final 

concentration of ACN in the derivatization mixture was 25% and the sample plug only 

constituted a small percentage of the total capillary volume, this volume of organic was 

sufficient to impact the separation. This suggests that a partitioning phenomenon occurred in the 

capillary between the run buffer and the ACN causing the analyte plug to spread out into two 

bands. Because this was quite detrimental to the separation and caused a significant loss of 

resolution, this solvent composition was not used further. It was ultimately determined that a 1:1 

ACN:H2O mixture yielded the most consistent separations and was selected as the solvent 

moving forward.  

 Once an appropriate solvent was identified for NDA dissolution, optimization of the 

amount of NDA and CN
-
 in the derivatization mixture was required. Although there are 

numerous reports utilizing NDA/CN
-
 in the literature to derivatize analytes, no discussion is 

made regarding the amounts introduced into the sample mixture. While the exact ratios vary 

from paper-to-paper, a seemingly arbitrary 1:2 ratio of NDA:CN
-
 appears to be most commonly 

employed. Therefore, the first factor evaluated was the ratio of NDA to CN
-
 used in sample 
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Figure 3.9 Effect of NDA solvent on the CE separation. Final NDA solvent concentration was 

25% v/v. 500 nM standards were derivatized with 1 mM NDA and 5 mM NaCN.  
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derivatization. Figure 3.10 illustrates that increasing the concentration of CN
-
 (while holding the 

NDA concentration constant) results in an increase in the fluorescence response of the analytes. 

However, this improved response tapers off once the ratio reaches a certain threshold (~1:5). 

Based on the absolute peak areas, a NDA:CN
-
 ratio of 1:5 was determined to be optimal to 

provide the most intense response while minimizing the chemical noise.  

 An evaluation was also made to optimize the time necessary to enable the derivatization 

reaction to go to completion and produce the highest fluorescent responses from the analytes of 

interest. All samples were prepared in an identical manner and allowed to sit until the indicated 

derivatization time, at which point sample was injected into the CE. It was determined from this 

study that more derivatized products were able to form as longer reaction times were reached 

(Figure 3.11a). However, a maximum was reached after which no additional increase in signal 

was observed. The plateau beginning at ~10 min indicates that all analytes in the sample were 

labeled by that time with no additional benefits observed by allowing the mixture to react for 

extra time (i.e. 15 and 20 min). Interestingly, though, normalized responses were unaffected by 

the derivation time (Figure 3.11b). This finding suggests that derivatization rates are the same for 

each MA and that the relative response between MAs is constant. This is a beneficial property 

because any experimental imprecision in the amount of time the mixture is allowed to react is 

mitigated since normalized responses are the same regardless of derivatization time. It was 

ultimately determined that 10 min was the optimum reaction time. This time provided the highest 

sensitivity while still enabling the greatest sample throughput.  
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Figure 3.10 Effect of NDA:CN
-
 ratio on peak height. 500 nM standards were derivatized with 

1 mM NDA and the corresponding amount of CN
-
. Peak identities were as follows: (1) SDMA, 

(2) ADMA, (3) MMA, (4) methyllysine, (5) arginine, (6) homoarginine, and (7) canavanine. 
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Figure 3.11 Fluorescence responses of 500 nM MA standards derivatized with 1 mM NDA, 

5 mM NaCN, and 50 mM borate as a function of derivatization time. Raw peak areas (a) and 

areas normalized to arginine (b) are shown. Separation buffer contained 30 mM borate and 

1.5 mM SBEC.  
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3.3.6 Other Separation Considerations 

 While analyzing serum-based samples, it was observed that noise in the 

electropherograms increased as the number of runs increased (Figure 3.12a). To diminish the 

harmful impact of this noise on the precision of peak integration in the later runs, additional rinse 

cycles were included in between runs. Although more time spent rinsing the capillary reduced 

the number of samples that could be run per day, the gain in precision would be worth the time 

delays. However, the inclusion of the rinses between runs did not influence the baseline noise, as 

it continued to increase with each additional run (Figure 3.12b). The factor that was found to 

have the most profound effect on preventing the noise from increasing was the replacement of 

the run buffer. When run buffer vials were changed between runs, the noise increase never onset 

(Figure 3.12c). This trend was found to continue for several runs even without rinsing the 

capillary in between.  

 An often overlooked factor that was found to have a substantial impact on the quality of 

the separation was the geometry of the capillary inlet. This problem is difficult to diagnose even 

when one is looking for it because the difference between a perfectly flat capillary end and one at 

a slight angle is hardly noticeable with the eye. Figure 3.13 illustrates how identical samples 

being separated in the same capillary before and after squaring off the capillary end can produce 

distinctly different looking electropherograms. With a flat inlet, the sample plug was able to 

migrate in a condensed band which produced a nice symmetric peak shape. However, the 

presence of either a chip in the capillary inlet or an end cut at a slight angle resulted in a distorted 

plug shape and a peak that had a substantial tail to it. By being attentive to the physical capillary 

and exercising diligence when setting up the system, the separation resolution can be 

significantly improved without manipulating a single chemical variable. 
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Figure 3.12 Impact of run buffer usage on baseline noise in the analysis of serum samples. (a) 

Single run buffer vial without rinsing in between runs; (b) Single run buffer vial with rinsing in 

between every run; (c) Multiple run buffer vials replaced every other run without rinsing in 

between. 
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Figure 3.13 The effect of the capillary inlet geometry on the quality of the separation.  
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3.4 Conclusions 

 A capillary electrophoresis separation method was developed for the determination of 

MAs. A run buffer containing 15 mM pH 9.25 borate, 10 mM SBEC, and 25% DMSO, and a 

separation voltage of 28 kV (430 V/cm) were determined to be optimal run parameters. Baseline 

resolution was achieved between NDA-derivatized SDMA, ADMA, MMA, PA, and arginine in 

~15 min. Detection limits for those analytes were ~5 nM using this CE-LIF method. With a 

highly efficient separation developed, this method could now be applied to the analysis of more 

interesting biological samples since the peak capacity is high enough to resolve MA peaks from 

other sample components. 
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Chapter Four 

 

Development of a Heat-Assisted Extraction Sample Preparation Method for the 

Determination of Methylarginines in Serum 
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4.1 Introduction 

As stated in previous chapters, methylarginines (MAs) inhibit nitric oxide synthase and 

compete with the enzyme substrate arginine for cellular uptake. For these reasons, elevated 

concentrations of MAs in vivo diminish endogenous production of nitric oxide (NO). A reduced 

bioavailability of NO has been associated with various pathological conditions, including the 

development of cardiovascular diseases (CVDs) [1, 2]. Not surprisingly, elevated concentrations 

of MAs have been found in the blood of patients suffering from a number of CVDs including 

various forms of heart disease [3-9] and stroke [10, 11]. Because of the effect that MAs have on 

NO production and the onset of CVD, a rapid and inexpensive method to measure their 

concentrations in blood as a means of diagnosing CVD would be highly valuable.  

Biological matrices, such as blood serum, often prove to be major obstacles when 

developing analytical methods because of their extreme complexity. Matrix effects can 

substantially diminish a measured signal for a variety of reasons, including incompatible pH or 

solvent composition [12]. This reduction in sensitivity could make the detection of low 

abundance endogenous compounds, such as MAs, difficult. To circumvent these issues, sample 

preparation steps must be integrated into the analytical method to isolate the small molecules of 

interest in a solution that is compatible with the analysis technique [13]. Often, a necessary first 

step is to remove macromolecules (e.g. proteins) from the sample so they do not interfere with 

the analysis [14]. Conventional protein precipitation methods include the addition of an organic 

solvent to the sample or altering the pH of the sample. A subsequent centrifugation step then 

effectively isolates small molecules in the supernatant. Following this preparation, the analytes 

of interest are no longer in a macromolecule-rich environment; however, they are still in a 

potentially problematic matrix. The sample solution is now diluted and either contains an organic 
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solvent or is at an extreme pH. These factors may present a challenge for subsequent quantitative 

analysis. Additional sample preparation steps are often undertaken to evaporate the organic 

solvent or remove interferents using solid-phase extraction (SPE), but all these methods further 

complicate the analysis, increasing the total analysis time and introducing additional potential 

sources of error. 

Thermal coagulation of serum is an attractive alternative method for removing 

macromolecules from solution due to the simplicity of the method. Rapidly heating serum 

provides excess energy into the system which can break the non-covalent forces crucial for 

maintaining protein tertiary structure. As a gel forms during the heating process, small molecules 

become entrapped in the pores of the cross-linked protein framework [15]. These molecules can 

later be removed from the gel by performing a solid-liquid extraction. Heating methods to 

congeal serum have been reported in the distant past, albeit sparingly, to measure small 

molecules including urate [16], glucose [17], and creatinine [18]. Limitations to the reported 

procedures, however, were that the samples still experienced appreciable dilution and required 

additional heating steps, which increased the time required for preparation.  

Previous reports in the literature concerned with measuring MAs from blood samples 

employed either LC or CE coupled to spectroscopic or mass spectrometric detection [19, 20]. 

Regardless of analysis technique, SPE has still been the method of choice for sample preparation 

even though it is time-consuming and can therefore limit sample throughput [21]. The goal of 

this work was to create a rapid and inexpensive method to extract small molecules from serum 

into a simple matrix that could be analyzed directly to quantify endogenous MA concentrations 

by CE-LIF. A heat-assisted extraction method is described here that provides a means of rapidly 

isolating small molecules in a solvent compatible with the analysis method without requiring 
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further sample clean-up. This is especially beneficial for fluorescence detection schemes that 

require analyte derivatization prior to analysis because analytes can be extracted directly into a 

solution compatible with derivatization. Additionally, the lack of dilution afforded by this 

method obviates preconcentration and allows samples to be analyzed immediately.  

 

4.2 Materials and Methods 

 

4.2.1 Reagents 

Standards of monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), 

symmetric dimethylarginine (SDMA), and propylarginine (PA) were acquired from Enzo Life 

Sciences (Farmingdale, NY). Sodium tetraborate and sodium cyanide were purchased from 

Sigma Aldrich (St. Louis, MO). Naphthalene-2,3-dicarboxaldehyde (NDA) was purchased from 

Invitrogen (Carlsbad, CA). Sulfobutylether--cyclodextrin (SBEC) was acquired from Cydex 

Pharmaceuticals (Lenexa, KS). HPLC-grade dimethylsulfoxide, acetonitrile, methanol, and 

ammonium hydroxide were purchased from Fisher Scientific (Pittsburgh, PA). All solutions 

were made in 18.2 cm deionized water (Millipore; Billerica, MA) unless otherwise noted. 

Pooled serum samples from anonymous donors were obtained from Lawrence Memorial 

Hospital (Lawrence, KS).  

 

4.2.2 Capillary Electrophoresis  

The CE-LIF method employed to separate MAs was described in the previous chapter. A 

Beckman P/ACE MDQ capillary electrophoresis instrument (Brea, CA) with a 50 m i.d. 

capillary segment (Polymicro Technologies; Phoenix, AZ) 65 cm in length (50 cm to window) 
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was utilized in this study. Samples were injected hydrodynamically at 1.0 psi for 5.0 s, and 

separations were carried out at an applied field strength of 430 V/cm. Fluorescent emission 

(>490 nm) was measured with an external fluorescence detector (Picometrics; Ramonville, 

France) following excitation with a 445 nm diode laser (CrystaLaser; Reno, NV). Both CE 

operation and LIF detection were controlled with 32 Karat software (Beckman). The run buffer 

consisted of 15 mM sodium tetraborate, 10 mM SBEC, and 25% (v/v) DMSO.  

 Samples analyzed by CE were first derivatized with NDA/CN
-
. NDA was dissolved in 

1:1 acetonitrile:water; all other solutions were prepared in deionized water. The derivatization 

procedure entailed combining equal volumes of sample, 50 mM sodium tetraborate, NDA, and 

5 mM NaCN and allowing the mixture to react for 10 min prior to injection. The initial NDA 

concentration was 1 mM when derivatizing standards and 5 mM when derivatizing serum 

samples. These NDA concentrations provided the maximal signal while preserving the best 

signal-to-noise (see 4.3.1). Propylarginine was used as an internal standard for each analysis. 

Fluorescence signals from both standards and serum samples were normalized to the peak area of 

PA for quantitation. All standards/samples were measured in triplicate unless otherwise noted. 

  

4.2.3 Heat-Assisted Extraction Procedure 

To prepare the serum samples, 100 L aliquots of pooled serum were transferred into 

2 mL polypropylene microcentrifuge tubes (Fisher Scientific) to which 5 L of 10 M PA was 

added. The tubes were immersed in a beaker of boiling water (100 C) for 1.5 min. During the 

heating process, the liquid serum quickly congealed to form a solid gel. Once the serum gel was 

formed, 100 L of water was added to each vial and vortexed for ~20 s to dislodge the clot from 

the bottom of the vial and break it into smaller pieces; however, complete homogenization was 
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not achieved. Samples were then centrifuged to sediment the aggregated proteins, and the 

supernatants were decanted into separate tubes for subsequent analysis. The volume recovered 

following the extraction was slightly greater than the initial volume of water added to the vial. 

An illustration depicting the overall sample preparation scheme is shown in Figure 4.1a. 

 

4.2.4 Solid-Phase Extraction Procedure 

For the SPE procedure, 100 L aliquots of pooled serum and 5 L of 10 M PA were 

first transferred into microcentrifuge tubes. Proteins were then precipitated by adding 200 L 

methanol to each vial. Samples were centrifuged to pellet the precipitated proteins, and the 

supernatant was decanted. This sample was then subjected to SPE without further pretreatment. 

 HyperSep Retain CX strong cation exchange (SCX) SPE cartridges (Thermo Scientific; 

Waltham, MA) were utilized to isolate MAs present in the serum samples. SPE was performed 

based on a modified procedure from the manufacturer. Our procedure included an initial wash 

step to desorb an interfering compound that was found to leach out of the stationary phase. This 

was performed by first hydrating the SPE resin with 5% NH4OH in 1:1 methanol:water followed 

by equilibration with 1:1 methanol:water. After binding and rinsing the serum supernatant, 

analytes were eluted in 1 mL of 10% NH4OH in 1:1 methanol:water. Samples were evaporated to 

dryness using a Savant SpeedVac SC110 centrifugal evaporator (Thermo Scientific) and 

resuspended in 100 L of water. A schematic illustrating the steps required for SPE is shown in 

Figure 4.1b. 

 

4.3 Results and Discussion 
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Figure 4.1 Schematic of the (a) heat-assisted extraction and (b) solid phase extraction sample 

preparation methods used to extract MAs from serum. 
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4.3.1 NDA Derivatization 

An important factor to consider in the analysis of blood-derived samples is the amount of 

derivatization reagents used to label the analytes in the sample. If NDA/CN
-
 are limiting 

reagents, the sensitivity of the analysis will be diminished since not all analytes will have been 

tagged. To avoid this scenario and improve the sensitivity of the method, control experiments 

were performed to determine the amount of NDA and CN
-
 needed to completely label MAs and 

also whether limiting amounts of NDA/CN
-
 would affect quantitation.   

 Standards of 500 nM MAs were derivatized to determine the optimal amount of 

NDA/CN
-
 required to completely derivatize the analytes. The NDA:CN

-
 ratio was fixed at 1:5 

for the experiment based on the optimization results described in Chapter 3. It was found that the 

absolute fluorescence response was dependent upon the concentrations of reagents used for 

derivatization. The data in Figure 4.2 indicate that a maximum signal was obtained at 1 mM 

NDA and moving to higher NDA concentrations provided no additional benefit. However, 

following normalization to the PA peak, all responses were identical. This indicates that even if 

NDA was a limiting reagent, quantitation should not suffer since the relative responses for each 

analyte were the same. The same data is shown in Table 4.1. 

Although it was found that 1 mM and 5 mM NDA produced similar peak areas for the 

MAs, a discrepancy was observed between the two electropherograms. As can be seen in Figure 

4.3, the 1 mM trace had lower noise than the 5 mM trace. This observation is interesting because 

it demonstrates that a high excess of derivatization reagents in the sample mixture can produce 

deleterious effects on the separation. NDA and CN
-
 appear to react with each other at high 

concentrations to form a weakly fluorescent product as evidenced by a stair-step-like increase in 

the baseline. This step coincides with a substantial increase in baseline noise and persists 
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Figure 4.2 Effect of NDA concentration on the fluorescent response of 500 nM MAs/PA. The 

NDA:CN
-
 ratio was held constant at 1:5. Raw peak areas (left) and areas normalized to PA 

(right) are shown. Separation buffer contained 15 mM borate, 10 mM SBEC, and 25% DMSO.  
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Table 4.1. Tabular effect of NDA/CN
-
 concentration on fluorescence response. The NDA:CN

-
 

ratio was 1:5.  

 

Fold Excess 

NDA 

SDMA 

% Response 

ADMA 

% Response 

MMA 

% Response 

PA 

% Response 

Arg 

% Response 

20 4.5 4.2 4.3 4.3 4.3 

100 57 55 54 52 53 

400 101 102 100 96 101 

2000 100 100 100 100 100 
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Figure 4.3 Effect of derivatization reagent concentration on chemical noise in the separation. 

The NDA:CN
-
 ratio was preserved at 1:5. 
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throughout the remainder of the separation. While it is possible that a labeling of an impurity in 

the derivatization mixture could be the cause of this observed phenomenon, it is more likely that 

the gross excess amounts of NDA and CN
-
 are forming a side-product and migrating as a very 

broad, relatively short peak. It is unlikely that the step was from a void peak because that appears 

to migrate earlier in the separation (Figure 3.12a). Regardless of the source of this noise, it would 

be most prudent to prevent this noise entirely to enhance precision during peak integration. 

Therefore, a NDA concentration of 1 mM was selected for the analysis of standards because it 

provided the maximal response while preserving the best signal-to-noise  

In the analysis of serum-derived samples, a diminished response was observed in serum 

samples derivatized with 1 mM NDA. Increasing the NDA concentration to 5 mM provided 

more intense peaks without increasing noise. No additional improvements in signal were 

observed at higher NDA concentrations, so 5 mM was chosen for future experiments analyzing 

serum. Additionally, the 1:5 ratio of NDA:CN
-
 optimal for derivatizing standards was no longer 

ideal for the analysis of serum because of the presence of additional components in the sample. 

The electropherograms in Figure 4.4 illustrate how a rising baseline was observed at a high 

NDA:CN
-
 ratio. This presented a challenge for quantitation because of increased imprecision due 

to the unstable baseline. However, at lower NDA:CN
-
 ratios, this phenomenon was no longer 

observed. Therefore, a 1:1 ratio of NDA:CN
-
 was selected to minimize chemical noise and allow 

more precise quantitation.   

 

4.3.2 Capillary Electrophoresis Characterization 

Calibration curves were constructed for each analyte of interest from aqueous MA 

standards. The lines of best fit are shown in Figure 4.5 and the equations are reported in the table 
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Figure 4.4 Effect of NDA:CN
-
 ratio on the CE separation of serum samples. The NDA 

concentration for each run was 5 mM. 
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below. The separation parameters for each analyte of interest are shown in Table 4.2. The 

precision with regards to peak area was quite high with this method. Additionally, the calibration 

curve showed strong linearity demonstrating the good analytical merits of this method. 

 

4.3.3 Solid-Phase Extraction Characterization 

The SPE recoveries for the compounds of interest were determined prior to the analysis 

of serum samples. Aqueous standards were first combined with methanol and then underwent 

SPE (n = 3 cartridges for each concentration). The lines of best fit are displayed in Figure 4.6, 

while the line equations are shown in the adjoining table. The separation parameters from the 

SPE calibration curve for each analyte of interest are shown in Table 4.3 along with the SPE 

recoveries from the cartridges.  

Similar recoveries of ~90% were observed for standards of SDMA, ADMA, and MMA; 

however, PA exhibited a much lower recovery (52%) than did the MAs (Table 4.3). 

Additionally, the imprecision in recovery between cartridges was high and could prove quite 

detrimental to the analysis. To account for the discrepancies in recovery and inter-cartridge 

variability, calibration standards were subjected to the SPE procedure to generate a second 

calibration curve. This curve helped to ensure accurate quantitation for serum samples that 

underwent SPE. While the recoveries of the standards were reasonably high for the MAs, the 

linearity and precision of the method were poor. The predominant reason for this originated from 

high inter-cartridge variability, which increased the imprecision of the method. 

 Determining the SPE recoveries for each MA was not as trivial as expected. During 

initial experiments, the recoveries were found to be ~150% relative to the non-extracted 

standards. The results indicated that matter was somehow created during sample preparation 



100 

 

 

 

 

 

 

 

 

Figure 4.5 Calibration curve used for determining MA concentrations from the heated serum 

samples. 

  

Analyte Slope (M
-1

) Y-Intercept 

SDMA 0.00296 0.0221 

ADMA 0.00297 0.0520 

MMA 0.00284 0.0352 
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Table 4.2 Validation parameters from the optimized CE-LIF method.  

 

 

Compound R
2 *

 %RSD ** 

SDMA 0.9997 4.5 

ADMA 0.9988 4.9 

MMA 0.9998 2.6 

PA - - 
 

*
Over a concentration range between 50 and 1200 nM.  

**
Based on replicate peak area measurements (n=3) from each calibration standard (n=5 

concentrations). 
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Figure 4.6 Calibration curve used for determining MA concentrations from samples that 

underwent SPE. 

  

Analyte Slope (M
-1

) Y-Intercept 

SDMA 0.00643 -0.0241 

ADMA 0.00640 -0.0038 

MMA 0.00573 0.0036 
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Table 4.3 Analytical parameters of standards prepared by SPE (n=3 cartridges). Recoveries were 

determined by dividing the response from the SPE standards by the responses from non-

extracted standards of the same concentration.  

 

Compound Recovery (%) R
2
 %RSD 

SDMA 90 ± 36 0.9881 28 

ADMA 91 ± 40 0.9887 30 

MMA 89 ± 29 0.9905 27 

PA 52 ± 26 - - 
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which obviously does not make physical sense. Therefore, a series of controls were prepared to 

determine the source of this discrepancy. Aqueous standards were prepared without any further 

sample preparation (unextracted); following the standard SPE protocol (SPE); evaporating 

aqueous standards to dryness and resuspending in the original volume of water (heat control); 

and adding 1 mL elution solvent (10% NH4OH in 1:1 methanol:water) to the aqueous standards, 

evaporating those to dryness, and reconstituting them in the initial volume of the aqueous 

standards (elution control).  

Following preparation, the samples were analyzed by CE-LIF to determine the responses. 

The results demonstrated that the unextracted standards had substantially lower responses than 

not only samples that underwent SPE (which was consistent with previous observations) but also 

the other controls (Figure 4.7). Unexpectedly, simply evaporating the water from the standards 

and resuspending the dried analytes in the initial volume resulted in larger measured signals. It is 

unclear how removing and reconstituting the analytes would cause a change in peak area since 

the concentrations should have remained constant. Heat-induced sample degradation emanating 

from the evaporation step would have resulted in lower recoveries, not higher ones. This strange 

discrepancy was even further enhanced when standards were mixed with the elution solution. 

The elution control produced larger MA peaks than any other sample even though all 

resuspended analytes should have been present at the same concentrations. CE stacking effects 

from residual salts should not explain this phenomenon since increases were also observed from 

the salt-less heat control samples. The combination of heating off the solvent along with any 

residual ions left from the elution solvent somehow increased the observed response from the 

MAs. Therefore, to determine an accurate recovery for the MAs, the responses from the SPE’d 
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Figure 4.7 MA recoveries from different control samples relative to that of the elution control.  
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standards were normalized to those from the elution control. Those values were reported in Table 

4.3. 

 

4.3.4 Sample Preparation Considerations 

Solid-phase extraction is a sample preparation technique that has been widely used for 

decades. Despite its prevalence, however, SPE suffers from many drawbacks. In the case of 

common SCX SPE procedures used for MA determination, analytes are isolated in an eluent 

containing a high percentage of ammonia and methanol [22, 23]. This is problematic when 

utilizing amine-based derivatization chemistry because ammonia reacts with NDA/CN
-
 and 

methanol interferes with the derivatization reaction [24]. Both of these factors decreased the 

sensitivity of the analysis. Additionally, the SPE procedure required desorbing the analytes in an 

elution volume an order of magnitude higher than the volume of the initial sample to ensure that 

maximum recovery was obtained. This presents a challenge when analyzing MAs present 

endogenously at nanomolar concentrations because any appreciable dilution may reduce the 

concentrations below the detection limits of the method. To circumvent dilution and to remove 

the ammonia and methanol from the sample, an evaporation step needed to be performed prior to 

derivatization. This added significantly to the total time of the preparation method. 

Heat-induced coagulation of serum is a simple alternative sample preparation method for 

serum samples providing that the small molecules of interest are stable at high temperatures and 

can survive the initial heating process. Following heating, the intact molecules can be readily 

extracted from the gel into an external solvent. By putting forethought into the experimental set-

up, no dilution is necessary during the extraction step. Additionally, choosing an appropriate 

extraction solvent will allow the resulting sample matrix to be compatible with the subsequent 
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derivatization procedure. This will allow samples to be analyzed directly without requiring the 

solvent to first be evaporated. 

 

4.3.5 Heat-Assisted Extraction Optimization 

The application of extreme heat to a serum sample can cause protein denaturation and 

subsequent aggregation. When interested in measuring small molecules, maintaining the native 

conformations of the proteins in the sample is of little concern. However, the stability of the 

small molecules of interest is crucial for the implementation of this procedure. Therefore, 

compounds that are liable to heat-induced degradation or oxidation would be poor candidates for 

this sample preparation procedure. To ensure that MAs are thermally stable, 500 nM MA 

standards were placed in boiling water for 2 min, and then derivatized and analyzed via CE-LIF. 

It was determined that the heating procedure did not affect the integrity of the molecules since no 

loss was observed between the heated and non-heated samples (Figure 4.8). An insignificant 

increase in analyte recovery was observed in the heated standards, which was most likely caused 

by slight losses in solvent volume due to evaporation (Figure 4.8a). Normalization of the data 

demonstrated identical recoveries for heated and non-heated samples which confirmed that MAs 

were stable throughout the heating process (Figure 4.8b).  

 The heating time required to generate protein aggregation was also evaluated. It was 

determined that 30 s was insufficient to induce complete formation of a gel as evidenced by the 

serum still appearing slightly “runny” and a large broad peak spanning through the 

electropherogram (Figure 4.9). This peak was most likely comprised of proteins and peptides 

that were not given sufficient time to become entangled in the protein gel. As such, they were 

able to leach out into the extraction solvent and complicate the separation. Extending the heating 
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Figure 4.8 Stability of the MAs in extreme heat conditions. 500 nM standards heated for 2 min 

(n=3) were compared with non-heated standards. Quantitation was performed using CE-LIF. 

Raw recoveries of the heated and non-heated samples are shown in (a) while the normalized 

recoveries are compared in (b).  



109 

 

 

 

Figure 4.9 Electropherograms demonstrating the impact of heating times on the formation and 

stability of serum gel. Vials of serum were immersed in boiling water for either 0.5 min (bottom) 

or 1.5 min (top). Peaks are (1) SDMA, (2) ADMA, (3) MMA, (4) PA, and (5) Arg. 
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time to 1 min, however, alleviated this problem. There was no difference between samples 

heated between 1 and 4 min, so 1.5 min was chosen as a middle point for further experiments.  

 After the serum was heated and congealed, water was added over the gel and briefly 

vortexed to extricate the coagulum from the bottom of the container. The time the water was 

incubated with the serum gel (at room temperature) was optimized to maximize the amount of 

MAs extracted into solution. (Recovery was determined by first normalizing the peak areas of 

PA in serum samples to those in unextracted standards to determine the fraction recovered. The 

peak areas of the other MAs from each run were then normalized to the average MA peak areas 

and multiplied by the recovered fraction of PA to determine their recoveries.) Results from this 

experiment showed that there were no significant increases in MA recoveries for extractions over 

a 1 h period and that all MAs were extracted at similar rates (Figure 4.10). Since a steady-state 

recovery (within error) was reached within 5 min, this duration was used in further experiments 

to expedite the analysis. It should be noted that a 15 min centrifugation step was performed to 

sediment the proteins from solution after the incubation period. This step increased the time that 

the extraction solvent remained in contact with the solid, and was not accounted for in 

Figure 4.10.  

 The recovery of MAs from the serum gel ranged between 52 and 58% using the method 

described above. Because of this, the incorporation of an internal standard was crucial to 

obtaining accurate results. Since a suitable internal standard was identified (i.e. PA), this method 

was acceptable as is. However, to increase the extraction efficiency, a heated extraction could 

have been performed to help resolubilize the analytes of interest [17]. Previous methods have 

reported that complete recovery could be achieved by adding water to the coagulated serum and 

extracting the mixture at 37 C for 30–60 min or at room temperature overnight [25-27]. In the 
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Figure 4.10 Evaluation of extraction times on PA recovery. Congealed serum was incubated 

with water for the indicated time (n=3 for each point) and then analyzed via CE-LIF.  
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interest of minimizing the complexity of the analysis and the total analysis time, this was not 

performed in our method.  

 In an effort to improve the recovery of MAs from the serum gel without complicating the 

extraction procedure, an experiment was conducted to determine if an increase in the surface 

area-to-volume ratio would aid recovery. Serum aliquots of 100L, 50L, and 25 L from a 

single lot were dispensed into separate vials into which 5L, 2.5L, and 1.25 L of 10 M PA 

was added, respectively (each sample was prepared in triplicate), to hold the ratio of serum to 

water constant for each sample. Samples were heated for 1.5 min and then extracted into a 

volume of water identical to the original volume of serum for a no-net-dilution extraction. 

Following a 5 min incubation period with the extraction solvent and subsequent centrifugation, 

the supernatants were analyzed by CE-LIF in duplicate. It was determined from this experiment 

that the original serum volume impacted the recovery of MAs. Figure 4.11 illustrates that the 

average recovered concentration for each MA species was higher for the smaller volume 

samples. This can be attributed to larger solvent-accessible surface area. Thinner serum clots 

better allowed the extraction solvent to penetrate into the gel and resolubilize the analytes 

trapped within the protein framework. Smaller initial serum volumes (25 L) enabled recoveries 

of ~90% as opposed to the ~60% recovery observed with larger serum volumes (100 L). 

An investigation was also performed into whether the blood matrix impacted the heat-

prep method. All experiments to this point were performed with serum which is a less complex 

matrix compared to plasma which contains additional proteins. To determine if a difference in 

MA quantitation would be observed between the two matrices, whole blood drawn from a single 

individual was split into two fractions: one aliquot was spun down to plasma, while the other was 

converted to serum. Each sample underwent heat-assisted extraction followed by CE-LIF 
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Figure 4.11 Effects of initial serum volume on extraction recoveries of MAs from serum gel. 
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analysis (each matrix was prepared in triplicate). Table 4.4 lists the concentrations of MAs in 

each matrix. The results indicated that no significant difference existed between matrices. This 

finding was expected since the additional proteins from the plasma should have denatured and 

incorporated into the gel framework without impacting the extraction of small molecules from 

the gel. 

 

4.3.6 Sample Preparation Method Comparison 

Extracted serum samples derived from both the SPE and heating procedures were 

compared to determine the differences in their pH values and conductivities. The pH values 

(colorpHast strips, EM Reagents, Cherry Hill, NJ) showed that both samples were slightly basic 

regardless of the extraction procedure (Table 4.5). The pH from the heated sample matched well 

with a previously reported value acquired using a thermal coagulation method that attributed the 

basic pH to a release of CO2 during the heating process [26]. The conductivity of each sample 

was also measured. For comparison purposes, the conductivity values from the extracted serum 

samples were normalized to that of the 50 mM borate used in the NDA derivatization reaction. 

Table 4.5 shows that serum that underwent the heating method had a conductivity similar to that 

of borate while the SPE sample was over an order of magnitude less conductive. This result is 

not surprising because samples bound to the SPE stationary phase should have had all of the 

residual ions from the serum rinsed to waste before the analytes of interest were desorbed from 

the resin. In the heating procedure, however, the salts in the serum gel were able to readily 

redissolve into the extraction solvent. While the conductivities of the heat-prepared samples were 

substantially higher, they were on par with that of the borate used for derivatization and were not 

found to hinder the CE analysis. 
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Table 4.4 Comparison of the effect of blood sample matrix on MA quantitation. 

 

Analyte Serum (nM) Plasma (nM) 

SDMA 414 ± 41 393 ± 53 

ADMA 342 ± 28 354 ± 60 

MMA 64 ± 36 57 ± 19 
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Table 4.5 Comparison of the conductivity and pH of extracted serum samples as compared to the 

borate used for derivatization. 

 

Sample 
Normalized 

conductivity 
pH 

50 mM borate 1.0 9.2 

Heated serum 1.1 8.4 

SPE serum 0.07 7.6 
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The migration times of the analytes of interest are shown in Table 4.6. Although the more 

conductive serum-derived samples had slight increases in analyte migration times than those of 

the standards, the differences were insignificant. Additionally, no loss of resolution was observed 

between samples and standards. These findings indicate that the sample matrix did not have an 

appreciable effect on the CE separation. 

A substantial savings in both sample preparation time and the cost of analysis was also 

realized with the heating method compared to SPE. The heating procedure could be performed in 

~30 min with the majority of the time allotted for the centrifugation cycle and the time spent 

waiting for the water bath to come to a boil. This was in stark contrast to the SPE procedure 

where the time required to prepare the necessary solutions, perform SPE, and then evaporate the 

samples to dryness was ~4 h. The time difference was even further accentuated when one 

considers that in the SPE protocol, standards also had to undergo SPE to permit accurate 

quantitation of unknowns. Additionally, a significant financial savings was obtained by forgoing 

SPE entirely since the need for cartridges and solvents was obviated. The production of chemical 

solvent waste generated during SPE was also eliminated by implementing the heating procedure 

in its place.  

 

4.3.7 Determination of Serum MAs 

Following the optimization of the heating procedure, the method was applied to the 

determination of MAs in serum. A single lot of pooled serum was divided into two fractions to 

undergo either SPE or heat-assisted extraction. To maintain consistency between sample 

preparation methods, this study utilized 100 L of serum per sample since this higher volume 

was more amenable for SPE. Sample electropherograms from samples prepared by each method 
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Table 4.6 Migration times of the MAs following sample preparation. Migration times from 

serum samples were taken from the electropherograms used to produce Table 4.2 (n = 6 for each 

preparation method), while those from standards came from the non-extracted calibration curve 

(n = 15). 

 

Analyte Standards tm (min) SPE-prepped tm (min) Heat-prepped tm (min) 

SDMA 13.7 ± 0.2 14.0 ± 0.4 14.2 ± 0.3 

ADMA 14.1 ± 0.2 14.4 ± 0.5 14.6 ± 0.3 

MMA 15.1 ± 0.2 15.5 ± 0.5 15.7 ± 0.3 

PA 15.3 ± 0.2 15.6 ± 0.5 15.9 ± 0.3 
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are shown in Figure 4.12. Concentrations of SDMA, ADMA, and MMA from samples that 

underwent the heating procedure were quantified using the calibration curve from the non-

extracted standards (Figure 4.5). Similarly, the endogenous MA concentrations from samples 

that were prepared with SPE were determined from the calibration curve constructed from 

standards subjected to SPE themselves (Figure 4.6). The calculated values from the two methods 

are reported in Table 4.7. A comparison shows that the mean concentrations were similar in the 

two sample preparation methods even though the absolute peak areas were higher in SPE-

prepped samples than in heat-prepped samples. This discrepancy arose from the differences in 

recoveries between the two methods. The SPE recoveries for MAs were ~90% (Table 4.3) while 

the recoveries from heat-prepped samples were only ~55% (Figure 4.10). The calibration curves 

compensated for this, and following normalization of the peak areas, no significant differences in 

MA concentrations were determined between the two sample preparation methods. It should also 

be noted that the precision of the heat-assisted extraction method was better than that from the 

more conventionally accepted SPE method as evidenced by lower relative standard deviations 

for each analyte of interest. 

The MA concentrations determined in this experiment are within the range of those 

reported in the literature. Average endogenous concentrations compiled from a number of reports 

found that SDMA, ADMA, and MMA were present at 480 nM [3, 4, 6, 11, 23, 28-33],  605 nM 

[3-6, 8, 10, 11, 23, 28-36], and 142 nM [3, 8, 31], respectively, while the concentration ranges 

were 370–750 nM, 340–1030 nM, and 70–195 nM for each analyte, respectively. The large 

concentration ranges were most likely due to a combination of the different clinical populations 

used in each study and inherent patient-to-patient variability. The MA concentrations found in 
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Figure 4.12 Representative electropherograms of serum samples prepared by the (a) SPE or (b) 

heating procedures.  
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Table 4.7 Endogenous serum concentrations of MAs. MAs from a single lot of pooled serum 

were isolated by either the heating or SPE sample preparation methods (n = 3 samples for each 

method). Each sample was analyzed by CE-LIF in duplicate.  

 

Compound Heat (nM) SPE (nM) 

SDMA 436 ± 46 385 ± 64 

ADMA 374 ± 49 307 ± 42 

MMA 53 ± 16 71 ± 43 
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this study were all below the average inter-study values, but still fell mostly within the reported 

ranges.  

 

4.4 Conclusions 

Matrix effects can have a substantial impact on the quality of an analytical measurement. 

To diminish their influence, sample preparation steps must be undertaken, which can be major 

obstacles to sample throughput. As a result, this study was conducted to develop a rapid and low-

cost method to extract small molecules from serum samples by means of a heat-assisted 

extraction procedure. This procedure was found to effectively isolate small molecules in an 

aqueous solution compatible with the derivatization reaction with no-net-dilution. This allowed 

low abundance biomarkers of CVD to be extracted much more quickly and inexpensively than 

with a commonly employed SPE method. Serum concentrations of MAs determined by the two 

methods were in good agreement with each other and with previously reported values in the 

literature after analysis by CE-LIF. 
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Determination of Methylarginines in Clinical Samples 
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5.1 Introduction 

Adequate nitric oxide (NO) production is crucial to maintaining proper function of 

numerous physiological processes in the pulmonary, cardiovascular, neuronal, and immune 

systems. It is believed that the onset of various pathologies, especially those pertaining to the 

endothelium, is due at least in part to a reduction in NO bioavailability. Without sufficient NO, 

endothelial function is disrupted and could stimulate disease development. One potential cause 

of diminished NO production is the presence of high concentrations of methylarginines (MAs). 

MAs inhibit NO synthesis and have been shown to be present at elevated amounts in patients 

with various pathologies. Given this, systemic concentrations of MAs could serve as diagnostic 

markers for NO-related diseases of the endothelium. 

Two classes of disease that originate from impaired endothelial function are 

cardiovascular diseases (CVDs) and respiratory disorders. Although the symptoms of those 

disease states and the exact mechanisms of onset are quite different, a common origin of each of 

them is a diminished bioavailability of NO. Since MAs are key regulators of endogenous NO 

production, they may prove to be key biomarkers for preventive diagnostics for both disease 

classes. By determining how MA concentrations vary between healthy and diseased patients, 

potential diagnostic thresholds could be established.  

In order to determine the role MAs play in disease onset and potentially utilize these 

biomarkers as a means of monitoring disease progression, an assay capable of measuring these 

species first had to be developed. To that end, analytical methods were optimized to prepare 

serum samples and measure endogenous MA concentrations using capillary electrophoresis (CE) 

(Chapters 3 and 4).  These methods were then applied to the analysis of patient-generated 

samples. The preliminary results derived from those analyses are reported in this chapter. 
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Specifically, concentrations of MAs in clinical samples were determined and the arginine 

methylation index (ArgMI) calculated. These values were then compared to clinical outcomes in 

an effort to determine whether either value could serve as accurate diagnostic markers for 

patients with heart disease or infants suffering respiratory distress.  

 

5.2 Materials and Methods 

 

5.2.1 Reagents 

Standards of monomethylargine (MMA), asymmetric dimethylarginine (ADMA), 

symmetric dimethylarginine (SDMA), and propylarginine (PA) were purchased from Enzo Life 

Sciences (Farmingdale, NY). Sodium tetraborate and sodium cyanide were obtained from Sigma 

Aldrich (St. Louis, MO). Naphthalene-2,3-dicarboxaldehyde (NDA) was procured from 

Invitrogen (Carlsbad, CA). Sulfobutylether--cyclodextrin (SBEC) was acquired from Cydex 

Pharmaceuticals (Lenexa, KS). HPLC-grade dimethylsulfoxide, acetonitrile, and formic acid 

were purchased from Fisher Scientific (Pittsburgh, PA). All solutions were prepared with 18.2 

cm deionized water (Millipore, Billerica, MA). Serum samples from individual patients 

suspected of having heart disease were acquired from Lawrence Memorial Hospital (Lawrence, 

KS). Scavenged plasma samples from infants were acquired from Children’s Mercy Hospital 

(Kansas City, MO). 

 

5.2.2 Patient Populations 

 The cardiovascular disease population consisted of 17 patients who were recommended 

to undergo coronary angiography due to suspected heart disease. On the day of the angiograms, 
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patients underwent catheterization as part of the standard angiography procedure. Those who 

consented to participate in the study had a few milliliters of extra blood drawn from their 

catheters which was spun down to serum. Samples were stored at -80 °C until they were ready to 

be transferred to KU for analysis. Angiogram results were disclosed to KU following analysis of 

samples so that average concentrations from patients diagnosed with or without disease could be 

compiled. 

 The patients enrolled in the respiratory distress portion of the project were newborns in 

the neonatal intensive care unit (NICU). Plasma was collected from five infants of different ages. 

No infant identification criteria could be disclosed so it is unknown whether the patients in the 

study were experiencing respiratory distress. All that was given was the age of the infants and 

the fact that they were ill enough to be housed in the NICU. Plasma samples were stored at -80 

°C and then shipped to KU for analysis. 

 

5.2.3 Heat-Assisted Extraction Procedure 

To prepare the heart disease patient serum samples, 100 L aliquots of pooled serum 

were transferred into 2 mL polypropylene microcentrifuge tubes (Fisher Scientific) to which 

5 L of 10 M PA was added. For the infant samples, 25 L of plasma was mixed with 1.25 L 

of 10 M PA. All tubes were immersed in boiling water (100 C) for 1.5 min. During the heating 

process, the liquid serum quickly congealed to form a solid gel. Once the serum gel was formed, 

water was added to each vial at a volume identical to the initial serum volume (i.e. 100 L for 

heart disease samples and 25 L for infant samples) for extraction and then vortexed for ~20 s. 

Samples were then centrifuged to sediment the aggregated proteins, and the supernatants were 

decanted into separate tubes for subsequent analyses. The reason for the discrepancy in sample 
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volume between adults and infants was strictly due to chronological method development. The 

adult samples were analyzed first, during which time the procedure called for 100 L of serum. 

Subsequent sample preparation optimization determined that 25 L of serum was more ideal, so 

infant samples were prepared using this lower sample volume. All serum/ plasma samples were 

prepared in triplicate. 

 

5.2.4 Capillary Electrophoresis  

A Beckman P/ACE MDQ CE instrument (Brea, CA) with a 50 m i.d. capillary 

(Polymicro Technologies; Phoenix, AZ) 65 cm in length (50 cm to window) was utilized in this 

study. The run buffer consisted of 15 mM sodium tetraborate and 10 mM SBEC. Run buffer for 

the analysis of CVD samples also contained 25% (v/v) DMSO. The run buffer for the analysis of 

infant samples contained 28% (v/v) DMSO (see 5.3.1). Samples were injected hydrodynamically 

at 1.0 psi for 5.0 s, and separations were carried out at an applied field strength of 430 V/cm for 

CVD samples and 460 V/cm for infant samples. A 445 nm diode laser (CrystaLaser; Reno, NV) 

was used to stimulate fluorescent emission which was measured with an external laser-induced 

fluorescence (LIF) detector (Picometrics; Ramonville, France). 32 Karat software (Beckman) 

was used to operate both CE operation and LIF detection. 

 Samples analyzed by CE were first derivatized with NDA/CN
-
. NDA was dissolved in 

1:1 acetonitrile:water; all other solutions were prepared in deionized water. The derivatization 

procedure entailed combining equal volumes of sample, 50 mM sodium tetraborate, NDA, and 

5 mM NaCN and allowing the mixture to react for 10 min prior to injection. The initial NDA 

concentration was 1 mM when derivatizing standards and 5 mM when derivatizing blood 

samples. Peak areas from both standards and serum samples were normalized to the area of the 
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internal standard PA for quantitation. All standards were measured in triplicate. Serum samples 

from heart disease patients were analyzed by CE-LIF once each, while infant samples were 

analyzed in duplicate. 

 

5.2.5 Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) 

 A LC-MS/MS study was performed to identify unknown components in serum samples. 

Following heat-assisted extraction, samples were analyzed by liquid chromatography (Waters; 

Milford, MA) coupled to a LTQ linear ion trap mass spectrometer (Thermo Scientific; San Jose, 

CA). A sample volume of 5 L was injected onto a self-packed 500 m x 10 cm column 

containing 5 m C18 particles with 300 Å pores (Restek; Bellefonte, PA). Mobile phase A 

contained 99.9% water/ 0.1% formic acid, and mobile phase B was comprised of 99.9% 

acetonitrile/ 0.1% formic acid. A linear gradient was applied starting at 3% B and increasing to 

80% B over 20 min, followed by a 10 min re-equilibration period. The flow rate was 50 L/min. 

Serum samples were diluted with mobile phase A 1:99 prior to analysis. 

 After sample injection, a 2 min delay was implemented prior to MS data acquisition to 

allow salts in the sample to be diverted to waste. Following this diversion period, eluent from the 

LC column was introduced into the mass spectrometer by electrospray ionization (ESI). A spray 

voltage of 3.0 kV and 15 psi of nitrogen nebulizing gas were applied to achieve ESI while 

holding the capillary temperature at 250 °C. All analytes were detected in positive ion mode. 

Collision-induced dissociation was performed to acquire tandem MS data. All data acquisition 

and analysis was performed using Xcaliber 2.1 software (Thermo). 

 

  



134 

 

5.3 Results and Discussion 

 

5.3.1 CE Separation Optimization 

An efficient CE method was developed for the separation of MAs that provided baseline 

resolution between the analytes of interest (described in Chapter 3). This method was capable of 

quantifying unknown MA concentrations in serum; however, the reproducibility of the 

separation was somewhat variable. Although no problems were observed in most instances, in a 

few of the analyses, the resolution between peaks from MMA and an unknown endogenous 

analyte was diminished to the point where quantitation of MMA was precluded (Figure 5.1). 

This problem arose in the analysis of samples obtained from CVD patients. To prevent this issue 

from affecting the newborn respiratory study, additional buffer modifications were evaluated 

prior to analyzing those samples.  

While other additives, such as hydroxypropyl--cyclodextrin, were added to the run 

buffer in an attempt to improve resolution, it was ultimately determined that the best solution to 

the comigration problem discussed above was simply adjusting the DMSO content. Baseline 

resolution between MMA and the unknown compound was achieved by increasing the amount of 

DMSO in the run buffer from the previous optimum of 25% to 28%. While the resolution 

between MMA and PA was slightly worse under this set of conditions, it actually allowed for 

more precise peak integration. These conditions were found to split the unknown component in 

serum samples into two distinct peaks. Increasing the percentage of DMSO in the run buffer 

caused one of them to migrate earlier in the electropherogram, while the other now migrated out 

after PA (Figure 5.2). Under these new conditions, the MA peaks of interest were no longer 

obscured by the interfering compounds, allowing for more precise quantitation. Because 
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Figure 5.1 Sequential CE analyses of the same serum sample. The MMA peak is either well-

resolved from (Run 1) or obscured by (Run 2) unknown interfering species. 
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Figure 5.2 CE separation of standards (black) and serum samples (red) with 25% and 28% 

DMSO in the run buffer. Two unknown peaks resolve from the MMA peak when DMSO is 

increased to 28%. 
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migration times increased as a result of the additional DMSO, the separation voltage was 

increased to 460 V/cm. This was found to maintain similar analysis times without diminishing 

peak resolution. 

 

5.3.2 Analysis of Cardiovascular Disease Serum Samples 

 A small-scale clinical study was undertaken to determine the impact of MA 

concentrations on the extent of CVD progression. Previous literature has demonstrated a 

correlation between MA concentrations and the severity of heart disease. A similar study was 

designed herein to measure MAs using the faster and less expensive methods described in 

Chapters 3 and 4.  

 

5.3.2.1 Determination of Clinical Methylarginine Concentrations 

 Samples obtained from Lawrence Memorial Hospital were subjected to the optimized 

heat extraction and CE-LIF methods for blind analysis. Concentrations of the MA species in the 

serum samples were quantified. Following analysis, LMH provided yes/no responses as to 

whether each individual patient was diagnosed with coronary artery disease (CAD) following 

angiography. Patients were sorted into classes based on the diagnoses and the MA concentrations 

averaged within each class (Figure 5.3). It was determined that there was no difference in MA 

amounts between patients with and without heart disease. Although the average concentrations 

were higher among those patients with CAD, the differences were insignificant. 

 The conclusions drawn from this preliminary research were that there was no significant 

difference between patients with and without CAD. These findings are contrary to what has been 

previously published. However, a problem with the current study was in the number of patient 
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Figure 5.3 Average MA concentrations in patients diagnosed with and without coronary artery 

disease.  
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samples available for analysis. While other reports enrolled hundreds of patients, this data set 

was substantially smaller. Samples were collected from only 17 patients. This impacted the 

statistical analysis of the data and also led to higher deviations. This effect was especially 

pronounced in the samples from patients without CAD because that data set was comprised of a 

mere two people. Having such few data points in the average precludes any relevant statistical 

analyses from being performed. Additionally, if either/both of the people had atypical MA 

concentrations then the average would be significantly affected. As a result of the limited clinical 

population, all conclusions from this study must be taken as preliminary findings and not 

meaningful clinical observations. 

 

5.3.2.2 Arginine Methylation Index 

 Although the patient population in this study was inadequate, MA concentration data was 

still available (5.3.2.1) from which a preliminary determination could be made regarding the 

prognostic ability of the ArgMI. The concentrations of ADMA, SDMA, and MMA were 

manipulated to obtain index values from each patient (ArgMI=(SDMA+ADMA)/MMA) [1]. 

These values were then averaged by diagnostic class and plotted in Figure 5.4. The data 

demonstrated that no significant difference existed between classes, which suggests that the 

ArgMI does not serve as a beneficial index for preemptively diagnosing patients with CAD. 

These findings conflict with a previous report in the literature that found the ArgMI to be a good 

predictor of CAD [1]. Furthermore, the ArgMI values reported in that paper for patients with and 

without CAD were 28.6 and 22.5, respectively. Our results found those values to be 13.2 and 

11.9, respectively. It is unclear why the values for both the diseased and control populations in 

our study were so much lower. Again, a larger patient population would help to obtain more 
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Figure 5.4 Average arginine methylation index values between patients with and without 

coronary artery disease.  
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accurate clinical population averages with less associated error. However, given the restrictions 

of time and resources available for this project, these initial results are all that could be obtained 

and must be taken with a grain of salt. 

 

5.3.2.3 Interfering Species 

 During the analysis of a few of the patient samples, a rather broad, large peak was 

observed in the middle of the electropherogram. This peak was wide enough to comigrate with 

MMA to the point where it could not be quantified while also somewhat obscuring PA. This 

unfortunately prevented MMA concentrations from those patients from being included in the 

data set for the whole patient population. It also may have reduced the quantitative precision of 

the normalized peaks by interfering with PA. Although this peak was only present in a relatively 

small percentage of samples, an investigation was made to determine its source with the hope of 

eliminating it in samples collected in the future.  

 The interfering peak in question can be seen in Figure 5.5 between the ADMA and PA 

peaks. The large peak width suggests that the analyte is present at relatively high concentrations; 

however, it is interesting to note that the peak height is relatively small. This suggests that this 

compound was not effectively derivatized or else the peak height would have been substantially 

larger. Also, considering that the compound was present at a seemingly high concentration in a 

few patients but not present at all in other patients suggests that either these few patients were 

incredibly ill or the peak is an artifact of sampling. 

 To determine the identity of this peak, LC-MS/MS was implemented to determine the 

molecular weight of the analyte. Two samples were analyzed using this method that were found 

by CE to contain this peak along with two samples that were found not to have this peak. The 
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Figure 5.5 Sample electropherograms from patient samples with (top) and without (bottom) the 

presence of an unknown interfering species. 
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total ion chromatogram (TIC) between the samples showed a clear distinction between the two 

sets of samples. Samples that were initially found to contain this peak had two very large peaks 

in the TIC that were not present in the other samples. Deconvolution of the data found that the 

isotopic distributions from both peaks were identical with parent masses of 1549.7 Da. Figure 

5.6 shows the extracted ion chromatograms (XICs) for this isolated mass which illustrates the 

prominence of this analyte in the samples from patients that had this unidentified peak present.  

The presence of dual isobaric peaks suggests that they may be enantiomeric peptides with 

some degree of chromatographic resolution between them. To identify the composition of the 

peaks, the mass was inputted into a protein sequence database (UniProt) to determine the most 

probable peptide sequence capable of producing the specific parent mass. It was found that a 

peptide sequence from albumin matched the mass and isotopic distribution of the parent ion; 

however, the relative intensities of the isotopic peaks between the experimental and theoretical 

values were quite different. Figure 5.7 shows how the experimental data had a much less intense 

isotopic distribution profile than would be expected in a peptide of that size. This observation 

suggested that the molecule of interest may not be a peptide but rather an unusually 

monoisotopic small molecule.  

A search was then performed in a small molecule/ metabolite database (METLIN) where 

a high probability candidate was found. The drug iodixanol had not only had the desired mass, 

but its isotopic distribution matched very well as well (Figure 5.8). This compound contains six 

iodines per molecule which accounts for the abnormally small isotopic intensity of a molecule 

that size since iodine has only one stable naturally occurring isotope. Tandem MS studies were 

then performed on the patient-generated serum samples which further confirmed the identity of 

the interfering molecule as iodixanol based on its fragmentation pattern. 
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Figure 5.6 Extracted ion chromatograms (m/z 1550.7) from patients with (top and bottom) and 

without (middle) the interfering peak present in their CE electropherograms.  
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Figure 5.7 Comparison of the experimentally determined isotopic distribution of the unknown 

peak (black) and the theoretical distribution of a peptide from digested albumin (red). Poor 

overlap between the experimental and theoretical isotopic intensities was observed. 
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Figure 5.8 (a) Comparison of the experimentally determined isotopic distribution of the 

unknown peak (black) and the theoretical isotopic distribution of the drug iodixanol (red). Good 

overlap between the experimental and theoretical isotopic intensities is observed. (b) Tandem 

mass spectrometry was performed to confirm the identity of the iodixanol in a clinical sample. 
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The identity of the interfering species in some of the patient samples was determined by 

mass spectrometry to be iodixanol. Upon investigation into the applications of the drug, it was 

discovered that iodixanol is utilized as a contrast agent during coronary angiography. The drug is 

administered to a patient prior to the procedure at a concentration of ca. 0.61 g/mL iodixanol (the 

exact concentration and injection volume varies depending on the patient). Assuming a volume 

of distribution of 5 L, this equates to an approximate systemic concentration of drug of 7.9 mM. 

The very high concentration of iodixanol in the body confirms the suspicion that this is the 

interfering peak in the CE data. The drug does not contain a primary amine and therefore does 

not get derivatized by NDA/CN
-
. However, the high amount in the sample may be sufficient to 

produce a different background fluorescence and manifest as a broad peak in the 

electropherogram. The observation that only a few of the clinical samples contained this peak 

suggests that most patients had blood collected prior to initiation of the procedure while a few 

had it drawn after the contrast agent had already been administered. Therefore, for future sample 

collection, blood must be drawn before beginning the procedure to avoid corrupting CE results. 

 

5.3.3 Analysis of Respiratory Disease Plasma Samples 

Newborns housed in the NICU remain under close observation because of the severe 

health issues that they face. These infants suffer from various pathologies that can be quite 

serious since their immune systems and organs may not yet be fully mature. Ventilatory support 

is frequently administered to aid their breathing, and in the case of those with hypoxic respiratory 

failure, NO can also be given.  

Because of NO’s ability to dilate blood vessels and improve blood oxygenation, inhaled 

nitric oxide (iNO) therapy has been used to treat pulmonary disorders [2-6]; however, there have 
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only been a few clinical studies designed to evaluate the efficacy of iNO therapy in infants. One 

such trial monitored the total NO metabolites (NOx) and correlated those levels to preterm infant 

survival without the onset of bronchopulmonary dysplasia (BPD). It was shown that infants with 

the lowest initial concentrations of NOx experienced dramatically improved outcomes after 

receiving iNO. Infants with higher amounts of NOx prior to iNO administration demonstrated no 

significant benefit after receiving the treatment [7]. This supports the hypothesis that insufficient 

endogenous production of NO causes hypoxia or BPD.  Unfortunately, there is no way to 

directly measure nitric oxide synthase activity in the lung tissue of live patients to determine if 

they are good candidates for iNO therapy. Therefore, alternative analytical approaches must be 

established to predict the efficacy of iNO. 

 Since MAs regulate NO synthesis, they could potentially be used as markers to indicate 

the amount of NO present. Therefore, by monitoring these compounds, predictions could be 

made to determine which individual patients would respond favorably to iNO prior to initiation 

of the treatment. However, before determining the MA concentrations that could be used as 

diagnostic thresholds for patient screening, baseline levels first had to be established. An initial 

small-scale study was performed to measure the endogenous concentrations of MAs from ill 

infants in the NICU. Concentrations were determined at multiple ages to establish whether the 

levels fluctuated after birth. 

 

5.3.3.1 Clinical Methylarginine Concentrations 

An investigation was performed to determine the concentrations of MAs in the plasma of 

critically ill infants. Due to the small volumes that can be collected from these babies, there was 

insufficient volume to convert plasma to serum. However, since it was determined in Chapter 4 
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that plasma and serum contained the same MA concentrations, this should not have affected the 

outcome of this study. The results showed that newborns had very high amounts of MAs (Figure 

5.9a), particularly during the first month of life. These high concentrations were consistent with 

the few existing reports in the literature measuring MAs in newborns [8-10]. Significant 

differences were observed (based on a two-tailed t-test) between the different ages, especially 

with SDMA which first increased in concentration, and then diminished. ADMA and MMA 

maintained similar concentrations initially but then exhibited a significant concentration 

reduction as the infants aged. Initial ADMA and SDMA concentrations were >1 M for the first 

1+ month of life which was substantially higher than adults suffering from CVD (as determined 

in section 5.3.2.1) (Figure 5.9b). As the infants aged, however, the MA concentrations decreased 

significantly. Once infants reached 6 months of age, their MA concentrations were similar to the 

values observed in adults. 

There are several potential causes for the high MA concentrations observed in newborns. 

The hemoglobin in fetal blood has a higher affinity for oxygen than does the blood of its mother. 

This ensures that the developing child obtains sufficient oxygen in the womb. However, if the 

amount of oxygen is too high, it is possible that the body would try to increase vasoconstriction 

to prevent hyperoxia. One potential manner of accomplishing this in vivo would be to upregulate 

production of MAs. This hypothesis suggests that MAs would remain elevated after birth until 

the newborn’s hemoglobin matures and the partial pressure of oxygen reaches “normal” levels. 

Another potential cause of the elevated MA concentrations stems from improper 

expression of proteins and enzymes in the newborn. Homeostasis of the NO pathway is carefully 

regulated to ensure adequate vasodilation levels are achieved. However, if normal homeostasis 

cannot be established and the enzymes involved (e.g. dimethylarginine dimethylaminohydrolase 
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Figure 5.9 (a) Concentrations of MAs in the plasma of newborns. Scavenged plasma was pooled 

by age group. Samples were prepared in triplicate and analyzed by CE-LIF in duplicate. (b) 

Comparison of the concentrations of MAs between newborns and adults.  

*p < 0.05; **p < 0.001 
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(DDAH) or protein arginine methyltransferase (PRMT)) are mis-expressed then a rise in MA 

concentrations is plausible. Studies have been conducted investigating the expression DDAH in a 

porcine model as a means of understanding enzyme distribution and activity as it pertains to 

MAs. It was shown that DDAH expression and activity increases before birth and then declines 

thereafter [11]. This would suggest that ADMA and MMA concentrations begin high and then 

taper off within a few days after birth. While our data do show a decline in the amounts of MAs, 

a few months are required before they reach adult baseline levels, not a few days. This 

discrepancy could reflect a difference in NO pathways between pigs and humans or could be 

attributed to the health of the infants. The same study demonstrated that DDAH activity was 

severely reduced when piglets were made hypertensive, which would result in increased ADMA 

and MMA concentrations. 

The substantially higher SDMA concentration observed at “1 Week” (Figure 5.9a) versus 

any of the other analytes or time points is quite puzzling. The predominance of this peak could 

possibly be explained by the relative activities of the enzymes mentioned above. If PRMT-II was 

over-expressed in comparison to PRMT-I, this would explain why SDMA concentrations were 

so much larger than those of ADMA. Alternatively, this significant concentration difference 

could be explained by analyte clearance. DDAH metabolizes ADMA and MMA, but does not 

affect SDMA. SDMA is cleared exclusively by the kidney. Therefore, if the sample was 

collected from newborns suffering from renal disease or from those whose kidneys were not 

fully developed, then plasma accumulation of SDMA would be expected. Providing that those 

same newborns produced adequate DDAH, ADMA and MMA concentrations would have 

remained normal.  
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Other potential reasons for observing elevated MA concentrations in newborn plasma 

could stem from an artifact of sample collection. All newborn-derived samples had evidence of 

hemolysis as evidenced by the red color of the plasma (in contrast to the normal dull yellow 

color). Reports have shown that red blood cells (RBCs) contain a clinically relevant amount of 

MAs [12, 13]. If the RBCs in the samples lysed, they could have increased the observed MA 

concentrations and biased the results. This seems like a plausible explanation (at least in part) to 

the increased MA levels observed in newborns. Since the RBCs of infants tend to be more fragile 

than those from adults, they have a greater propensity to lyse. Therefore, the pressure drop 

between the patient and the vacutainer may have been great enough to cause cell lysis during 

sample collection, which could account for the seemingly abnormally high MA concentrations. 

 

5.3.3.2 Arginine Methylation Index 

The Arginine Methylation Index has been demonstrated to be an accurate predictor of 

mortality in adults suffering from CVD [1]. Given its good acumen to forecast health problems, 

an investigation was made into its ability to predict whether a newborn would show clinical 

improvement. The concentration data (5.3.3.1) was manipulated to calculate the ArgMI values 

for infants of various ages (Figure 5.10). The data show that the time point at which these infants 

were most at-risk was at one week of age. The ArgMI value was significantly higher for the 

“1 Week” sample than for any other time point. It is unclear at this point if this finding is 

relevant since the ArgMI has only been demonstrated to have meaning in CVD. If infants are 

most susceptible to NO-related pathologies at one week old, this finding might prove insightful. 

However, given that the index is higher at six months old than one or four months old, it seems 

like this index has no use prognostic value since the infants should have stabilized by that age. 
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Figure 5.10 Arginine methylation index of newborns by age group.  
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5.4 Conclusions 

Data from this chapter demonstrate the application of the optimized methods to the 

analysis of clinical samples. A small-scale study was performed to discover the utility of MAs to 

serve as diagnostic biomarkers of coronary artery disease. The outcome of these experiments 

showed that while MA concentrations were elevated in patients with CAD, the differences were 

not significant. Additionally, it was determined that the ArgMI did not prove useful in predicting 

CAD given the very similar values between patients with and without heart disease. 

 The MA assay was also applied to the analysis of samples collected from newborns in the 

NICU. The results from this study indicated that these infants had extremely high MA 

concentrations even when compared to adults with CAD. The elevated concentrations in the 

newborns indicate that they may suffer from NO-related pathologies, which may be the reason 

for their hospitalization. However, at six months of age, it was shown that the MA concentrations 

diminished to those found in adults. 
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Chapter Six 

 

Development of a Microchip Electrophoresis Point-of-Care Device  

for the Determination of Methylarginines 
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6.1 Introduction 

 There has been a push over the last 10-20 years towards the miniaturization of analytical 

systems [1]. Instruments that enable rapid measurements to be made using smaller sample 

volumes and that generate less reagent waste are quite attractive for numerous reasons. The high 

throughput achieved by these systems would enable many clinical samples to be analyzed 

rapidly to allow a fast turn-around of information to the presiding doctor [2]. This so-called 

bench-to-bedside system would allow patients to be diagnosed more quickly and therefore 

expedite the initiation of a therapeutic regimen. Substantial cost savings can be also be realized 

with this technology by utilizing fewer reagents and obviating the shipment of clinical samples to 

a central laboratory for analysis. Additionally many of these systems have been developed to be 

inexpensive and, in many cases, disposable [3]. The goal of such point-of-care (POC) devices is 

to have a relatively autonomous system that would enable samples to be directly analyzed on-

site.  

 As mentioned in previous chapters, MAs have the potential to be informative biomarkers 

of various pathologies including cardiovascular and respiratory diseases. However, in order to 

achieve widespread utility in clinical diagnosis, the analysis system would have to shift from a 

complex bench-top instrument to a simple stand-alone unit. This entails miniaturizing the 

system, reducing its total cost, and simplifying the procedure such that the analysis can be 

performed by people without advanced training. A first step to begin to meet these criteria is to 

reduce the size of the analytical set-up. A key benefit of capillary electrophoresis (CE) is that it 

miniaturizes nicely into a microfluidic platform without a loss in separation efficiency [4]. Given 

that, a method employing microchip electrophoresis (MCE) to separate and quantify MAs would 

be highly valuable towards the development of a POC detection system. The short analysis times 
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afforded by MCE provide higher sample throughput than other analytical techniques, which will 

be necessary for future clinical studies addressing MAs.  

Multiple detection modes can be coupled to a MCE separation. Both electrochemical 

detection (EC) and laser-induced fluorescence (LIF) detection schemes have been employed for 

MCE analyses [5, 6]. An ongoing project in the Lunte group is the development of a 

miniaturized MCE-EC system that incorporates a microchip, potentiostat, and high voltage 

power supply into a single integrated unit with the total size comparable to a small shoe box. 

Because significant effort has already been made advancing this technology, using that 

equipment for POC MA measurements seemed logical. However, initial progress in our lab has 

also been made towards the development of a miniature LIF system. LIF detection provides 

unparalleled sensitivity for CE and MCE analyses so this may be a more ideal detection method 

[3, 7]. The goal of this chapter was to determine whether MCE coupled to EC or LIF could 

provide a reasonable separation of the MAs as an initial step towards the development of a point-

of-care system.  

 

6.2 Methods and Materials 

 

6.2.1 Reagents 

Arginine, citrulline, sodium tetraborate, mercaptoethanesulfonic acid (MESA), 2-

mercaptoethanol (2-ME), mercaptosuccinic acid, chlorobenzenethiol, fluorothiophenol, sodium 

azide, N-acteylcysteine, and penicillamine were purchased from Sigma Aldrich (St. Louis, MO). 

Monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric 

dimethylarginine (SDMA) were procured from Enzo Life Sciences (Farmingdale, NY). 
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Naphthalene-2,3-dicarboxaldehyde (NDA) was purchased from Invitrogen (Carlsbad, CA). 

Sulfobutylether--cyclodextrin (SBEC) was acquired from Cydex Pharmaceuticals (Lenexa, 

KS). HPLC-grade acetonitrile and potassium cyanide were purchased from Fisher Scientific 

(Pittsburgh, PA). All solutions were prepared in 18.2 cm deionized water (Millipore; 

Billerica, MA).  

All analytes were derivatized with NDA for both EC and LIF analyses. A 5 mM solution 

of NDA was prepared in 1:1 acetonitrile:water. All nucleophiles were dissolved in water at 

10 mM concentrations. For EC experiments, the derivatization reaction was carried out by 

adding sample, NDA, and then finally a nucleophile into a reservoir filled with 20 mM borate. 

All reagents were mixed in equal volumes. The point when the final reagent in the derivatization 

mixture was added (i.e. the nucleophile) was considered time zero (t = 0) for the reaction. For 

MCE-LIF studies, CN
-
 was used exclusively as the nucleophile. All labeling reagents were 

combined into a single vial and allowed to react for ≥10 min prior to the first injection. 

 

6.2.2 Microchip Fabrication 

 

6.2.2.1 PDMS Microchips 

Microchip devices comprised of polydimethylsiloxane (PDMS) have been commonly 

implemented for electrophoretic separations for over a decade [8, 9]. The popularity of this 

material stems from its simple fabrication and low cost. These traits allow PDMS chips to be 

discarded after an experiment and readily replaced. Chip designs can also be varied relatively 

inexpensively which allows experimentation with slight channel modifications to determine an 

optimal configuration for a given experiment. While the advantages of PDMS revolve around the 
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mass production and low cost aspects of the material, significant drawbacks exist, especially 

with regards to electrophoretic separations. The surface of PDMS changes over time in an 

unpredictable manner and is also prone to analyte adsorption [10]. This causes an inconsistent 

EOF, which can have a substantial impact on the efficiency of the separation. Unlike glass 

surfaces which can be conditioned to regenerate the surface charge, PDMS does not revert back 

to its native state as easily. In general, once a PDMS device fails, it must be replaced. 

To fabricate PDMS microchips, standard soft lithographic procedures were followed. A 

master was first made containing the channel designs of interest. First, a clean silicon wafer 

(Silicon Inc.; Boise, ID) was coated with a 15 m thick layer of SU8-10 negative photoresist 

(MicroChem; Newton, MA). Once the photoresist was coated onto the wafer and briefly heated 

to help adhesion, it was transferred to a mask aligner (ABM; Scotts Valley, CA). During this 

process, a photomask (Infinite Graphics; Minneapolis, MN) containing the design of interest was 

placed over the wafer and brought into conformal hard contact. The UV flood source in the mask 

aligner was then activated, exposing the wafer/photomask for 16 s to crosslink the photoresist. 

Following exposure, the photomask was removed, and the silicon wafer submerged in SU8 

developer (MicroChem) to remove the uncrosslinked photoresist. The end result of this process 

was a wafer containing raised features from the photomask. A final bake step was then 

performed to ensure strong adhesion of the hardened photoresist to the wafer. 

After the silicon master was made, PDMS chips could easily be reproduced from the 

master mold. Sylgard 184 PDMS elastomer base and curing agent (Ellsworth Adhesives; 

Germantown, WI) were weighed out and mixed in a given ratio depending on the desired 

structural properties of the PDMS. A ratio of 7:1 produces a more rigid piece of PDMS while a 

20:1 ratio produces very tacky, flexible PDMS. The ratio used is dependent upon the application, 
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but in general, a 10:1 ratio is preferable and was used in most of the experiments described here. 

Once the base and curing agent were thoroughly mixed, they were placed in a vacuum desiccator 

to remove any air entrapped in the viscous fluid. Next, the degassed PDMS was poured onto the 

master where it was allowed to slowly cover the entirety of the wafer and then placed in an oven 

(~80 °C) for 1-2 hours. Once fully cured, the solid PDMS was carefully peeled off from the 

master, and reservoirs were created using a biopsy punch (Ted Pella Inc.; Redding, CA). The 

final dimensions of the fluidic channels used in this study were 15 m x 40 m. A schematic 

illustrating the fabrication of PDMS channels is shown in Figure 6.1. 

The substrate containing the electrode was fabricated following a similar procedure to the 

one described above using an appropriate photomask. However, after a PDMS channel was 

created, a carbon fiber (Avco Specialty Materials; Lowell, MA) 33 m in diameter was inserted 

into the channel. The end of the fiber was put into electrical contact with a copper wire using 

silver colloidal paste (Ted Pella Inc.). Upon fabricating this electrode substrate, the fluidic 

channel layer was aligned over the electrode and then reversibly sealed by pressing the two 

PDMS pieces into contact. An end-channel electrode alignment was employed where the 

electrode was placed 5-10 m from the exit of the separation channel [11]. Two forms of 

electrophoresis were conducted in the experiments described in this chapter: microchip 

electrophoresis and electrokinetic flow injection analysis (EFIA). The schematics for both 

designs are shown in Figure 6.2. 

 

6.2.2.2 Glass Microchips 

 From a separations standpoint, glass is an ideal material from which to fabricate 

microchips. The surface properties of glass are very similar to that of fused silica, which is the 
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Figure 6.1 Schematic for the fabrication of PDMS microchips. Figure courtesy of Pradyot 

Nandi. 
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Figure 6.2 Schematic of the fluidic channels and the electrode alignment used for (a) microchip 

electrophoresis and (b) electrokinetic flow injection analysis. The inset in (b) shows the electrode 

alignment which was identical between set-ups. The image in (c) depicts a microfluidic device 

next to a cell phone for size comparison. 
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material used in conventional CE separations. Glass chips provide a stable, renewable surface 

which helps maintain good run-to-run precision and provides devices with long life-times [12]. 

However, glass chips are also more difficult to fabricate and are considerably more costly than 

those made from PDMS. Glass microchips cannot be mass-produced by replica molding, unlike 

with PDMS. Each chip must be made individually which increases the total fabrication time per 

device. The difficulty of fabrication is a predominant reason why PDMS is still more commonly 

used in most applications; however, if a reliable separation is desired, glass is still the best 

material to use. 

 Fabrication of glass MCE devices was accomplished using photolithography and wet 

chemical etching [13, 14]. Borofloat glass substrates coated with chromium and AZ 1518 

positive photoresist were purchased from Telic (Valenica, CA). Photomasks were put into hard 

contact with the glass and exposed to UV radiation from the mask aligner for 4 s. The glass 

substrate was then put into 300 MIF developer (AZ; Somerville, NJ) where the exposed 

photoresist was developed away. Chromium etchant (Cyantek; Fremont, CA) was then used to 

remove the exposed chromium. Following this step, the design from the photomask was now 

exposed on the bare glass surface and the channels were ready to be etched. A wet-etching 

procedure was used here where the substrate was submerged into a 20:14:66 solution of 

hydrofluoric acid (Acros Organic; Pittsburgh, PA), nitric acid (Fisher Scientific), and water, 

respectively, to create recessed channels in the glass. The solution was agitated until the exposed 

surface was etched down to the desired depth (~15 m) as verified by a profilometer (Tencor; 

Milpitas, CA). The depth of this etch dictated the height of the microfluidic channels. Once the 

channels were etched into the glass, the remaining photoresist and chromium were removed, and 
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access holes were drilled to create fluid reservoirs using a diamond-tipped drill bit. A schematic 

of glass chip fabrication is shown in Figure 6.3. 

To complete fabrication of the MCE device, a coverplate of glass was thermally bonded 

to the channel substrate to create a sealed device. To accomplish this, a blank plate of glass and 

the etched plate were slowly sealed together under running deionized water while being careful 

not to introduce any air bubbles. Pressure was then applied to the plates using binder clips, and 

put into the vacuum desiccator to remove water from the channels and help seal the plates 

together. The device was inspected to ensure no air bubbles formed and then put into a low 

temperature oven (80 °C) for 1-2 hours. If after this time period no pockets of air formed, the 

temperature was increased to 110 °C and left overnight. The following morning, the binder clips 

were removed and the device was placed into a programmable furnace (Fisher Scientific) for a 

full thermal bonding cycle.  

For borofloat glass bonding, the temperature was initially ramped at 3 °C/min from room 

temperature to 540 °C where it was further increased to 630 °C at 4 °C/min. The oven 

temperature was held at 630 °C for 3 hours to complete the bonding. The temperature was then 

slowly ramped down to 540 °C at 3 °C/min and then to 510 °C at 1.5 °C/min to ensure the plates 

did not crack during the cooling process. After holding at 510 °C for 30 min, the chip was cooled 

from 510 °C to 460 °C at 0.5 °C/min. At this point, the glass was below the transition 

temperatures and could be cooled to room temperature at a faster rate of 5 °C/min. Following the 

thermal bonding, the pieces of glass were fused together and could be utilized as a MCE device.  

MCE devices typically employ separation channels in a simple T design (Figure 6.2a). 

This is due to the ease of fabrication and its general applicability for most analyses. While simple 

T microchips are useful, they may not provide sufficient separation efficiency for the analysis of 
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Figure 6.3 Schematic of the steps involved in the fabrication of glass MCE devices. A side view 

of the glass substrate is displayed. 
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MAs in blood samples. Serum is a complex matrix, so the separation will be complicated. As a 

result, additional peak capacity may be necessary to resolve all of the components present in the 

sample as well as to resolve the structurally similar MAs. Therefore, a MCE device containing a 

serpentine separation channel was fabricated to provide additional separation length (Figure 6.4). 

Serpentine channels afford superior resolution while preserving the small size of the MCE device 

[15]. The final channel dimensions were 15 x 45 m with a 14 cm separation channel (13 cm to 

detector). The sample reservoir side-arm was 1 cm in length, while the buffer and sample waste 

side-arms were 4 cm long.  

 

6.2.4 Microchip Operation 

 

6.2.4.1 PDMS Microchip Operation 

For EFIA, the fluidic channel and detection reservoir were filled with 20 mM pH 9.2 

borate, and the derivatization reagents were added to the sample reservoir as described in 6.2.1. 

A lead from a Spellman high voltage (HV) power supply (Hauppauge, NY) was placed in the 

sample reservoir while the detection reservoir was grounded (Fig 6.2b). Once all derivatization 

solutions had been mixed, HV was applied to the sample reservoir to drive fluid flow. A field 

strength of 300 V/cm was chosen for electrophoresis since it is comparable to those typically 

employed in MCE. A potentiostat (BAS; West Lafayette, IN) was connected to the copper lead 

and used to measure current at the working electrode at the onset of HV application. The carbon 

fiber was employed as the working electrode, a Ag/AgCl electrode (BAS) served as the reference 

electrode, and a platinum wire was used as a counter electrode. EC data was collected using 

ChromGraph software (BAS). 
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Figure 6.4 Design of the glass MCE-LIF device used for MA analysis. 
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 For MCE experiments, the system was set up in a similar manner. However, a gated 

injection scheme was used where two HV electrodes were required to drive fluid flow. A 

potential of 1200 V was applied to the sample reservoir and 1600 V was applied to the buffer 

reservoir to create the gate. Sample was injected into the separation channel by floating the HV 

to the buffer reservoir for 3 s. The detection setup was identical to the EFIA experiments. 

 

6.2.4.2 Glass Microchip Operation 

Once the conventional capillary electrophoresis separation method had been optimized 

(Chapter 3), similar separation parameters were evaluated using a MCE device. Because the 

glass channels of the microchip are analogous in composition to the walls of the silica capillary, 

the EOF for the two methods should be similar, and a comparable separation should be achieved. 

To perform a gated injection on a microchip, however, two high voltage electrodes were required 

to produce the two different flow streams as opposed to the linear electric field necessary for a 

conventional CE separation. To obtain the peak capacity that would likely be necessary for 

resolving MAs from components in serum, a serpentine separation channel was employed 

immediately instead of a simple T design. 

The operation of the glass microchip device was analogous to that of the PDMS chips. 

Channels were first filled with a 30 mM borate/ 1.5 mM SBEC run buffer and derivatized sample 

was loaded into the sample reservoir. An UltraVolt high voltage power supply (Ronkonkoma, 

NY) was used to apply 7.8 kV to the sample reservoir and 13.5 kV to the buffer reservoir while 

the other two reservoirs were held at ground to establish a robust gate. Injections were made into 

the separation channel by floating the HV in the buffer reservoir for 0.2 s. The HV was then 

reapplied to reestablish gating and also allow the components of the sample plug to separate as 
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they were electrokinetically driven down the separation channel. A custom program to control 

the high voltage application and data collection was written in-house using Labview software 

(National Instruments; Austin, TX). 

To collect the fluorescence signal from the microchip device, a 445 nm PhoxX diode 

laser (Market Tech; Scotts Valley, CA) was directed into an epifluorescence microscope (Nikon; 

Melville, NY) via a fiber optic cable [16]. This allowed laser light to reflect off of a dichroic 

mirror and be directed up toward the sample stage, as shown in Figure 6.5. The laser spot 

emanating from the microscope objective was focused onto the MCE device 1 cm upstream from 

the buffer waste reservoir. As NDA-labeled analytes flowed through the laser spot, their 

fluorescent emission passed back through the dichroic to a photomultiplier tube where the 

response was detected using the aforementioned Labview program. Careful selection of the 

dichroic excitation and emission wavelengths allowed for selective monitoring of only NDA-

labeled analytes, which led to excellent limits of detection (LODs). 

 

6.3 Results and Discussion 

 

6.3.1 Microchip Electrophoresis with Electrochemical Detection 

 Given that substantial effort has been invested by our group into the fabrication of a 

miniaturized EC detection system, an initial investigation was made into determining whether 

MCE-EC could be used in a POC system. All data presented in previous chapters utilized LIF as 

the detection scheme; however, switching to EC should be feasible. The derivatization reagent 

for all the previous studies was NDA. An additional benefit of NDA is that not only are its 

derivatized complexes fluorescent, they are also electroactive. This opens up the possibility of 
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Figure 6.5 Microscope set-up for collecting fluorescence emission from a MCE device. 
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measuring the derivatized analytes with EC detection while still preserving the good peak 

capacity and resolution afforded by the optimized CE-LIF separation. 

 

6.3.1.1 Electrochemical Response of NDA-Labeled Analytes 

 Prior to determining how reliably the separation transferred from CE to a MCE-EC 

platform, an initial investigation had to be made into how well the NDA-derivatized analytes 

responded at the surface of an electrode. Because NDA-labeled compounds are organic 

molecules, the use of carbon-based electrodes to oxidize them is more favorable than metal 

electrodes. Carbon electrodes can be integrated into PDMS much more readily than into glass, so 

for ease of fabrication, PDMS was selected as the substrate material for the analysis.  

After construction of the device, an initial MCE separation was performed. Rather than 

beginning with more expensive MA standards, lower cost compounds were initially analyzed. 

Specifically, a separation between the NOS reaction products arginine and citrulline was 

performed to validate the performance of the system. The resulting peak currents at the carbon 

fiber electrode were monitored. Sample electropherograms of the separation of NDA/CN
-
-

derivatized arginine and citrulline are shown in Figure 6.6.  

 The data shown in Figure 6.6 illustrates some potential drawbacks with using EC 

detection. First, much higher concentration standards needed to be introduced into the device to 

produce a reasonable signal. At these higher concentrations, peak shape was found to deviate 

from ideal. While this problem could be corrected with buffer modification, a more concerning 

problem was found in the form of the relatively high detection potential necessary to oxidize the 

labeled analytes. While the response at 700 mV vs. Ag/AgCl was strong, no response was 

observed at 400 mV. This high potential can reduce the selectivity of the analysis and may 
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Figure 6.6 Sample electropherograms of a separation of 40 M NDA-labeled Arg and Cit using 

MCE-EC in a 15 mM borate run buffer. The detection potentials were 700 mV (top) and 400 mV 

(bottom) vs. Ag/AgCl.  
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render quantitation difficult due to the presence of potentially interfering species. The largest 

drawback to this MCE-EC method, however, stemmed from the high detection limits of the 

method. The LOD for arginine at 800 mV was determined to be 600 nM which unfortunately is 

above the endogenous concentrations of MAs in serum samples. To overcome this severe 

limitation, a modification of the system was required if serum samples could ever be analyzed 

with this technique. 

 Other groups have reported that electrode modification can be performed to lower the 

detection limits of carbon electrodes. Depositing carbon nanotubes onto the carbon fiber [17] or 

employing a boron-doped diamond electrode [18] could help improve the limits of detection 

significantly; however, these methods require sophisticated equipment for fabrication. Also, the 

resulting electrodes are not as robust as standard carbon fibers which could result in variable 

response over time. So rather than attempt to modify the electrode to lower the LOD, an 

investigation into improving the derivatization chemistry was performed instead.  

 

6.3.1.2 Evaluation of Alternative Nucleophiles 

 Cyanide has been used as the standard nucleophile in the NDA reaction since it was first 

reported in 1986 [19]. However, NDA/CN
-
 derivatization requires relatively lengthy reaction 

times and high oxidation potentials. These traits complicate the analysis of complex sample 

mixtures. Longer reaction times diminish throughput and hinder near real-time analyses from 

being performed. The use of higher redox potentials results in increased background currents and 

also limits the selectivity by allowing more potentially interfering species to be detected. As a 

result of these problematic characteristics of NDA/CN
-
, a different nucleophile was sought out 

for the derivatization reaction. Compounds were selected based on their nucleophilicity, charge, 
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solubility, and size. Only small molecules with high aqueous solubility were evaluated. 

Furthermore, anionic thiols were preferentially selected due to the high reactivity of thiols with 

NDA, and their ability to preferentially derivatize cationic species due to electrostatic attraction. 

As mentioned in Chapter 2, NDA labels primary amines in the presence of a nucleophile 

to form a fluorescent/ electroactive product (Figure 6.7). Cyanide is the nucleophile that has most 

commonly been employed with NDA derivatization since the dye was first invented [20]. While 

CN
-
 may be satisfactory for LIF detection, it is not ideal for EC detection. Looking at the final 

derivatized species shows that the CN
-
 is covalently bonded to the isoindole ring that undergoes 

oxidation. The presence of this electron withdrawing group destabilizes the ring which makes 

oxidation more difficult. If a different nucleophile were used in place of CN
-
, possibly with 

electron donating effects, the ring system would be stabilized thereby decreasing the potential 

necessary for oxidation. Not only would this improve the selectivity of the analysis (by 

decreasing the likelihood that non-derivatized species generate a response at the electrode), but it 

may also improve the limits of detection. If the signal could be enhanced while reducing the 

background noise at the electrode by operating at a lower potential, then a better LOD could be 

achieved.  

 

6.3.1.2.1 Electrokinetic Flow Injection Analysis 

To evaluate the abilities of various nucleophiles to improve the NDA electrochemistry, 

an EFIA system was designed. This system allowed the effectiveness of various nucleophiles to 

catalyze the formation of an electrochemically active product to be characterized. EFIA was used 

in place of conventional flow injection analysis to better mimic MCE analyses. When an 

electrode is placed near an electric field, a bias may be established at the electrode. To 
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Figure 6.7 Mechanism of the NDA derivatization reaction. 

  



178 

 

compensate for the effect this field has on the electrode, derivatized sample was flowed down the 

channel electrokinetically using field strengths similar to those used in MCE. By constructing the 

experiment in this manner, any electric field-induced shift in oxidation potential would already 

be accounted for prior to switching to MCE analysis. 

EFIA was utilized to evaluate the efficacy of each nucleophile to derivatize a 100 M 

arginine sample. Following HV application, derivatized species passed over the electrode and the 

resulting current was monitored to determine which nucleophile was most promising for 

subsequent studies. Detection potentials of 700 mV and 250 mV were evaluated for each 

nucleophile. The primary parameter considered when evaluating nucleophile efficacy was the 

impartment of a lower oxidation potential on the derivatized species. Table 6.1 lists the 

nucleophiles that were used in this study and the average peak current produced from their 

derivatized complexes. Signals were normalized to the nucleophile that produced the largest 

response. Figure 6.8a depicts sample data from this study. 

The data demonstrated that CN
-
 gave the largest response at high detection potentials but 

another reagent was best at lower ones. Since CN
-
 is the most commonly used nucleophile in 

NDA derivatization, its strong performance at relatively high potentials was not surprising. 

However, at lower oxidation potentials, CN
-
 produced one of the weakest signals. This indicates 

the relatively high amount of energy required to oxidize NDA/CN
-
-labeled species. At low 

detection potentials, the nucleophile that generated the highest response was MESA. This sulfur-

containing molecule stabilized the derivatives and allowed more facile oxidation. 2-ME 

produced reasonably high responses at both potentials which demonstrated the reason it is 

typically the only other nucleophile used in NDA derivatization [21]. However, there were 

problems associated with 2-ME. Blank EFIA analyses were also performed with each 
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Table 6.1 Normalized peak currents of NDA-derivatized arginine with the indicated 

nucleophiles at 700 mV and 250 mV detection potentials. 

 

+700 mV 

Nucleophile Normalized Current 

Potassium Cyanide 1.000 

2-ME 0.930 

MESA 0.541 

Mercaptosuccinic Acid 0.195 

Chlorobenzenethiol 0.073 

Fluorothiophenol 0.045 

Sodium Azide 0.016 

 

 

+250 mV 

Nucleophile Normalized Current 

MESA 1.000 

2-ME 0.502 

N-Acetylcysteine 0.451 

Penicillamine 0.322 

Potassium Cyanide 0.013 
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a) 

 

b) 

 

 

Figure 6.8 (a) Responses of arginine labeled with NDA and either MESA or CN
-
 at a detection 

potential of 700 mV (top) or 250 mV (bottom). (b) NDA/2-ME-labeled arginine and a NDA/2-

ME blank detected at 250 mV. It can be seen the 2-ME produces a large amperometric response 

without labeling an analyte.  
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nucleophile, and the blank response produced by 2-ME was quite high. Figure 6.8b illustrates the 

high current produced by 2-ME, indicating that this molecule is electroactive itself. The use of 

this compound as a nucleophile in the labeling reaction is not ideal since its peak will have to be 

resolved from those of the derivatized components. MESA was found to not contribute 

significantly to the background current even with the high excess concentrations used for 

derivatization. Based on these studies, MESA was selected as the most promising nucleophile 

that warranted further investigation. 

 

6.3.1.2.2 Cyclic Voltammetry 

 Based on the high response of MESA at a low oxidation potential, further studies were 

conducted on the use of MESA in the NDA reaction. Cyclic voltammetry was used to further 

characterize the electrochemical properties of the labeled species. It was determined that arginine 

derivatized with NDA/MESA produced a complex that had an average peak potential (Ep) of 

300 mV. The Ep for arginine labeled with NDA/CN
-
 was 650 mV. Sample CVs are shown in 

Figure 6.9. Other amino acids were also analyzed by CV to determine their Ep values. These 

results are shown in Table 6.2. The data demonstrates that MESA oxidized all species at lower 

potentials compared to their CN
-
-derivatized counterparts. 

The utilization of MESA as the nucleophile helped decrease the potential required to 

oxidize the NDA complex. Benz[f]isoindole derivatives undergo irreversible one electron 

oxidations independent of pH. Therefore, oxidation is thought to occur through the removal of an 

electron from the lone pair on the isoindole nitrogen thus forming a radical cation [22]. The high 

electron density in the ring system helps stabilize the radical cation which makes electrochemical 

removal of the electron favorable; however, the radical species is still highly reactive and does 
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Figure 6.9 Cyclic voltammograms of arginine derivatized with NDA and either (a) MESA or (b) 

CN
-
 in 15 mM borate. A carbon fiber electrode (vs. Ag/AgCl) was used scanning at 100 mV/s. 
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Table 6.2 Peak potentials (vs. Ag/AgCl) for NDA-derivatized amino acids using either MESA or 

CN
-
 as the nucleophile. 

 

Analyte Nucleophile Avg Ep (mV) 

Arg MESA 200 ± 17 

 
KCN 654 ± 3 

Cit MESA 256 ± 41 

 
KCN 559 ± 11 

Glu MESA 276 ± 8 

 
KCN 624 ± 10 

Gly MESA 227 ± 16 

 
KCN 556 ± 19 

Lys MESA 264 ± 12 

 
KCN 617 ± 18 

Trp MESA 221 ± 16 

 
KCN 498 ± 36 
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not have sufficient lifetime for subsequent reduction in a CV [23]. This logic explains the benefit 

of utilizing MESA as a nucleophile over CN
-
. Cyanide is a strong electron-withdrawing group 

which depletes the ring system of electron density and destabilizes the radical cation generated at 

the electrode. This lack of stabilization forces more energy to be used to remove the electron 

from the NDA complex, requiring relatively high potentials to be used. MESA is an electron-

donating group because of the electron-rich sulfur atom that covalently binds to the NDA. The 

added electron density provides additional stability to the complex which allows it to be oxidized 

more easily at lower potentials. However, unlike 2-ME, MESA itself produces only a minimal 

EC response. 

 

6.3.1.2.3 Microchip Electrophoresis 

Upon completing nucleophile characterization using EFIA and CV, it was discovered that 

MESA produced the most favorable responses at low detection potentials. Further studies were 

then performed comparing CN
-
 and MESA using MCE. Hydrodynamic voltammograms were 

first generated to determine the optimal detection potential of derivatized arginine in MCE 

separations. Arginine labeled with NDA/CN
-
 showed that a relatively high detection potential of 

750 mV was required to obtain an optimal signal. When using MESA, however, the HDVs 

indicated a potential of only 400 mV was needed. Figure 6.10 shows the HDVs for NDA-labeled 

arginine with the different nucleophiles. 

 Differences exist in the reaction kinetics when derivatizing arginine with MESA versus 

CN
-
. It has been reported that the use of thiols in NDA derivatization produces fluorescent 

species more quickly than with CN
-
 but that the species decompose much more rapidly [24]. 

When using MESA as the nucleophile, our data agrees with these findings. Figure 6.11 illustrates 
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Figure 6.10 HDVs for NDA-derivatized arginine with either MESA or CN
-
 as the nucleophile. 
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that the rate of formation of NDA/MESA-derivatized analytes is quite rapid when compared to 

NDA/CN
-
 derivatives, which require longer times to reach maximum signal. However, the slope 

of the decay curve for MESA derivatives is steeper which indicates that the derivatized product 

is less stable. The rapid completion of the derivatization reaction is beneficial because it allows 

samples to be analyzed without significant delay. The short lifetimes of the derivatives are 

actually of little consequence because of the fast analysis times afforded by MCE. 

 After MESA had been identified as an effective nucleophile and its performance 

characterized, NDA/MESA-labeled MAs were prepared and subjected to a MCE-EC separation 

(Figure 6.12). The MAs exhibited derivatization kinetics similar to arginine and produced good 

responses at the carbon electrode. However, the analytes in a mixture were not well-resolved 

from one another under simple run buffer conditions. While the addition of buffer modifiers 

could have been explored, it was determined that a longer separation distance was probably 

necessary to attain good resolution between the components. 

 Given the lack of resolution between the MAs, an investigation was made into the use of 

a serpentine separation channel that would provide additional separation length. For this 

experiment, a PDMS chip containing the features illustrated in Figure 6.4 was fabricated. To 

ensure good adhesion between the channel and electrode layers, a ratio of 20:1 base:curing agent 

was employed to produce tackier PDMS. The electrode was aligned per usual, and an initial 

separation of the electroactive molecules dopamine and norepinephrine was attempted with good 

results (Figure 6.13a). Peaks for the two analytes were nicely separated, indicating the feasibility 

of this serpentine MCE-EC design.  

During the time when this chip design was being evaluated for the analysis of NDA-

derivatized analytes, a serious problem arose. The electricity in the lab building was becoming 
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Figure 6.11 Reaction kinetics profile of the reaction of arginine with NDA and either MESA 

(top) or CN
-
 (bottom). 
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Figure 6.12 Separation of NDA/MESA-derivatized analytes at 20 M concentrations. The 

separation buffer contained 20 mM borate.  
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Figure 6.13 Separation of (a) dopamine and norepinephrine and (b) NDA/MESA-derivatized 

arginine and citrulline on a serpentine MCE-EC device. Evidence of building electrical issues 

can be seen in the baseline of (b). 
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increasingly inconsistent. For example, electrical outlet grounds were measured to be >1 V on 

several occasions. As one may imagine, these electrical issues caused chaos in the EC detection 

systems. Figure 6.13b shows a separation of arginine and citrulline on the serpentine chip; 

however, the baseline was incredibly noisy. Vigorous bubbling was observed between the 

counter electrode and HV ground during these experiments which undoubtedly caused the 

instability of the baseline current. Unfortunately, these electrical problems precluded EC 

detection from being used as a detection mode in MCE.  

However, before the electrical problems in the building prevented EC experiments from 

being conducted, a severe limitation of MCE-EC was discovered in the analysis of NDA-

derivatized analytes. When detection limits were being characterized for the derivatized 

complexes, it was found that they depended on the identity of the nucleophile used and the 

detection potential. At 800 mV detection potentials, both nucleophiles provided good LODs. The 

LOD (S/N = 3) for arginine derivatized with NDA/CN
-
 was 600 nM while the LOD for 

NDA/MESA at that potential was 400 nM. At 400 mV oxidation potentials, however, the LODs 

were very far from similar. Detection limits for arginine derivatized with MESA and CN
-
 were 

200 nM and 80 M, respectively. This data highlights the drastic difference the choice of 

nucleophile makes in the oxidation potentials of the derivatized species. NDA/MESA-

derivatized analytes produced good responses at low detection potentials. This is highly 

beneficial since many interfering species will not be capable of producing a current at the 

electrode since the detection potential will be below their Ep values. This mitigates their impact 

on the separation and will provide less complex electropherograms. However, even though the 

LOD with NDA/MESA was significantly lower than with NDA/CN
-
, it was still too high to 

quantify endogenous concentrations of MAs. This derivatization chemistry would be beneficial 
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in the analysis of amino acids such as arginine since it is present at concentrations in the tens of 

micromolar. Unfortunately, since MA quantitation is central to the goal of this project, 

alternative analytical methods with lower LODs must be established. 

 

6.3.2 Microchip Electrophoresis with Fluorescence Detection 

 Upon discovering that MCE-EC lacked the requisite detection limits to monitor 

endogenous levels of MAs, a transition was made to MCE-LIF since fluorescence detection has 

been shown to provide superior LODs [3]. The devices used for the MCE-LIF study were 

fabricated from glass substrates because of their higher optical clarity and ability to aid the 

precision of the separation.  

Once the chip was fabricated and ready for use, an initial analysis using a simpler run 

buffer (from Figure 3.5) was first evaluated. Sample containing 1 M of each MA analogue was 

derivatized with NDA/CN
-
 and loaded into the sample reservoir for analysis. A sample 

electropherogram depicting the resulting separation is shown in Figure 6.14. It was found that 

under these conditions, baseline resolution was achieved for the MAs on a MCE device in 

approximately three minutes. The good resolution between peaks demonstrates the high 

separation efficiency achieved in chips even though the separation distance was almost four-fold 

less than that in the conventional CE system. The fast analysis times also demonstrate the 

viability of incorporating MCE-LIF into a POC analysis system for MA analysis. However, in 

order to be able to serve as a POC system, the LOD of the method must be sufficient to measure 

endogenous concentrations. A LOD study was then performed where it was found that the 

detection limits for each MA was 10 nM. This is well-below the expected serum concentrations 

which suggests that this system could be used in a clinical assay. 



192 

 

 

 

Figure 6.14 MCE-LIF separation of NDA/CN
-
-derivatized MAs. 
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While the system was found to be capable of measuring endogenous MA concentrations, 

improvements could still be made. The separation efficiency and analysis times could be 

improved by increasing the field strengths in the microchip. In this study, the separation current 

in the channels was limited to a 100 A maximum. This limit was set as an arbitrary threshold to 

prevent Joule heating from producing bubbles in the chip. As a result, gating voltages of 7.8 kV 

and 13.5 kV were chosen because they provided the highest field strengths while preventing the 

current from exceeding the maximum threshold. The 7.8/13.5 kV voltage scheme corresponded 

to field strengths of 700 V/cm. However, field strengths well over 1000 V/cm are theoretically 

possible before boiling the buffer [25]. Because no significant bubble formation occurred under 

our conditions and because higher electric fields have been reported, higher voltages could be 

applied to our chip to help increase the rate of analysis and improve separation efficiency. This 

would help increase peak capacity which may be necessary for the analysis of serum-derived 

samples. 

 

6.4 Conclusions 

 MCE is an attractive platform for achieving high efficiency separations with fast analysis 

times. Therefore, this technology was evaluated for the determination of MAs towards the 

development of a point-of-care screening system. Experiments were first conducted using MCE-

EC since the miniaturization of EC systems is more easily accomplished than with LIF systems. 

Unfortunately, it was found that utilizing EC detection required high detection potentials for 

NDA/CN
-
 labeled analytes which produced high LODs. This led to a study conducted to 

determine if an alternative nucleophile could be used in place of CN
-
. It was discovered that 

MESA imparted beneficial traits onto the analysis. NDA/MESA-labeled analytes required lower 
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detection potentials, labeled analytes more quickly, and produced better peak shapes during 

electrophoretic separations. However, even despite the benefits of NDA/MESA, the LOD with 

this EC method was still insufficient to detect endogenous concentrations of MAs. To overcome 

the limitations of EC detection, a MCE-LIF method was evaluated. This method provided 

promising results in the analysis of MAs. A good separation of MAs was achieved on-chip and 

the LODs were found to be at levels conducive to the determination of MAs in clinical samples.  
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7.1 Dissertation Summary 

 The purpose of this dissertation was to describe the efforts made towards the 

development of analytical methods for the determination of methylarginines (MAs) in serum. 

Initial studies were concerned with optimization of the electrophoretic separation of the different 

MAs of interest. It was discovered that an optimal separation was achieved when 

sulfobutylether--cyclodextrin and dimethylsulfoxide were employed as additives to the run 

buffer. Neither of these compounds are typically utilized in CE experiments but were found to be 

crucial for the separation method. Under these optimized conditions, excellent peak capacity was 

realized. This enabled near-baseline resolution to be obtained for the MAs and the internal 

standard from the other components in complex serum-derived samples. 

 A novel method was also developed to permit rapid preparation of serum samples. Serum 

samples were subjected to a thermal coagulation procedure to induce protein aggregation. Small 

molecules were able to be isolated from the gelatinous serum samples via solid-liquid extraction. 

This optimized procedure was compared to a commonly employed solid-phase extraction (SPE) 

procedure to ensure analytical suitability. The results from both methods were in agreement with 

one another; however, the novel heat-assisted extraction method was substantially faster, less 

expensive, and more precise than the SPE method.  

 Following the development and characterization of the sample preparation and separation 

methods, they were applied to the analysis of clinical samples. MAs were measured in samples 

from patients potentially suffering from either cardiovascular or respiratory diseases. Both types 

of diseases stem from underlying nitric oxide (NO) deficiency, and therefore, patients may 

exhibit clinically-relevant elevations in the concentrations of MAs in their systems. From these 

preliminary studies, it was determined that patients diagnosed with coronary artery disease 
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(CAD) did have higher average MA concentrations than those without CAD; however, the 

differences were not significant. Additionally, MAs were measured in critically ill infants and 

interesting variations were found based on their ages. The plasma MA concentrations were much 

higher over the first few months of life when compared to adults. These levels eventually 

dropped off as age increased, and once an infant was six months old, their MA concentrations 

were similar to those of adults. These findings illustrate but two of the interesting MA-related 

applications of the novel analytical methods. 

 Finally, the separation method was transferred to a microfluidic platform as a first step 

towards the development of a point-of-care diagnostic device. Microchip electrophoresis (MCE) 

coupled to either electrochemical (EC) or fluorescence (LIF) detection was evaluated to 

determine its ability to provide sufficient limits of detection (LODs) for the measurement of 

MAs in clinical samples. MCE-EC separations were found to produce poor peak shape and high 

LODs, so an investigation was initiated to improve both the separation and electrochemical 

characteristics of the derivatized analytes. This study identified a novel nucleophile that was 

superior in the derivatization scheme because it imparted beneficial properties onto the analytes. 

However, the detection limits were still insufficient for clinical analyses. Therefore, a MCE-LIF 

analysis was implemented to determine its ability to separate the analytes. With this system, 

good resolution between MAs was achieved, and the system was found to have adequate 

detection limits to permit quantitation of MAs in serum samples. 

 

  



201 

 

7.2 Future Directions 

 While the methods developed in this dissertation demonstrated significant advances in 

the quantitation of MAs in complex serum samples, additional studies are still warranted. Brief 

descriptions related to improvements and applications of MA analyses will be discussed here.  

 

7.2.1 Analytical Advances 

Efforts can be made towards the development of an autonomous point-of-care system by 

integrating the sample preparation and analysis components into a single microfluidic device. A 

method could be implemented to prepare serum gel off-line but then introduce the gel into a 

microfluidic device to carry out the extraction. Extracted analytes could then be directly 

derivatized on-chip by mixing the sample flow with streams of NDA and CN
-
. Our lab has 

already developed similar microchips that demonstrate the feasibility of achieving this goal [1]. 

Further investigations could also be made into creating a microchip device with multiple 

separation channels for multiplexed analysis [2, 3]. This would allow the simultaneous analysis 

of samples from several patients, which would further improve throughput. The miniaturization 

of the entire analytical system can also be undertaken such that sample analysis could be 

performed in clinical labs. The construction of a self-contained system incorporating a diode 

laser, optics cube, objective lens, and PMT detector would allow the entire setup to be readily 

transported to hospitals to analyze patient samples on-site. 

This analytical device could also be used in the analyses of other potential biomarkers of 

cardiovascular and respiratory diseases. The use of a separation technique would allow other 

biological amines to be quantified to determine whether a positive correlation could be made 

between the biomarker concentration and disease progression. Extraction and separation 
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conditions could be slightly modified as necessary to obtain optimal results, but the general 

analytical protocol would essentially remain the same. 

 

7.2.2 Biochemical Mechanism Elucidation Studies 

 The analytical methods described in Chapters 3 and 4 were successfully implemented in 

the analysis of clinical samples from two small-scale studies described in Chapter 5. The 

preliminary data derived from those studies provided interesting results for which to base 

subsequent studies. The results from these experiments would offer additional information 

regarding the development of cardiovascular and respiratory diseases.  

 

7.2.2.1 Cardiovascular Disease 

A larger scale study exploring the effects of heart medication on MA concentrations 

could be initiated in which patients are divided into groups based on their past coronary health. 

Those who have an established history of CAD and are currently receiving medication would be 

in one group while newly diagnosed patients who are not yet receiving treatment would be in a 

second group. Comparing the amounts of MAs between these two groups (along with a control 

group) would provide insight into the impact of the medication on systemic levels of MAs. This 

could aid in better understanding the biochemical pathways affected by commonly prescribed 

cardiac drugs whose mechanisms of action are not well known. Further studies can also be 

conducted to determine a threshold concentrations of MAs that indicate CVD. These values 

could be used as early screening diagnostic markers to predict CVD before a patient presents 

with a heart attack or stroke. This would allow the initiation of a medication regimen before a 

potentially life-threatening event occurs.  
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7.2.2.2 Respiratory Disease 

 Preliminary results obtained from critically ill newborns indicated that MA levels are 

quite high within the first few months of life. Therefore, conducting a study with a larger patient 

population would be prudent to determine if this trend holds true over a larger sample size and to 

determine whether healthy infants yield similar values. This study should also be designed to 

specifically enroll newborns with respiratory failure and not merely critically ill infants.  

If it is determined that MAs are present at significantly different concentrations between 

healthy infants and those with respiratory distress, further studies should be undertaken to 

investigate the nitric oxide synthase (NOS) pathway. A pulmonary endothelial cell culture model 

could be developed to monitor the enzymes responsible for the production and degradation of the 

MAs as well as the biopterins. Expression levels of these enzymes can be measured to determine 

if they differ between healthy and diseased cells. This model system would allow the enzymes to 

be interrogated in a controlled manner to elucidate the root cause of NOS dysfunction. Nitric 

oxide could also be added into the cell culture incubator to determine its effect on enzyme 

expression. Understanding how the presence of excess NO affects NOS activity will aid in 

determining the mechanism of action of inhaled nitric oxide (iNO) therapy.  

Additionally, if it is discovered that endogenous BH4 concentrations are diminished in 

infants with respiratory distress, an investigation can be made into the effects of iNO 

administration on oxidative stress damage in the lungs. Since it has been established that NOS 

produces superoxide if depleted of BH4, an influx of NO (from iNO therapy) could react with the 

superoxide to generate large amounts of peroxynitrite. Peroxynitrite can cause a number of 

problems in cells including lipid peroxidation, protein oxidation or nitration, and DNA 

degradation [4]. This irreversible damage to vital cellular components can lead to cellular 
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dysfunction or cell death [5]. Although previous studies have shown no significant increase in 

proinflammatory cytokines in tracheal aspirate fluid (TAF) [6] nor increased peroxynitrite 

biomarkers in plasma [7] in patients suffering from respiratory distress, the administration of 

iNO could increase peroxynitrite production. The resulting peroxynitrite-induced tissue damage 

may be responsible for the onset of asthma and other breathing disorders that these infants 

develop later in life [8].  

To determine whether lung damage occurs following iNO therapy, analytical methods 

can also be developed to monitor the biomarkers malondialdehyde (MDA) [9] and 3-

nitrotyrosine (3-NT) which have been shown to serve as indicators of oxidative stress damage. 

MDA is formed as a byproduct of reactive oxygen species-induced peroxidation of 

polyunsaturated lipids and is a common biomarker for oxidative stress damage. Increased 

concentrations of MDA have been shown to correlate to increased amounts of peroxynitrite-

induced oxidative stress damage in respiratory disorders and heart disease [10-12]. 3-NT is a 

more specific marker for peroxynitrite damage and has also been shown to be present at higher 

levels during conditions of oxidative stress [5, 8]. TAF can be collected from intubated infants 

suffering from respiratory distress before and after initiation of iNO to determine whether the 

concentrations of oxidative stress biomarkers change following treatment. Analysis of the 

biomarkers in TAF, rather than plasma, would provide a more accurate understanding of 

localized oxidative stress than would be gained by monitoring those compounds in systemic 

circulation. 
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