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Abstract

Distributed computations are a very important aspect of modern computing, especially given the 

rise of distributed systems used for applications such as web search, massively multiplayer 

online games, financial trading, and cloud computing. When running these computations across 

several physical machines it becomes much more difficult to determine exactly what is occurring 

on each system at a specific point in time. This is due to each server having an independent 

clock, thus making event timestamps inherently inaccurate across machine boundaries. Another 

difficulty with evaluating distributed experiments is the coordination required to launch  

daemons, executables, and logging across all machines, followed by the necessary gathering of 

all related output data. The goal of this research is to overcome these obstacles and construct a 

single, global timeline of events from all servers. 

We employ high-resolution clock synchronization to bring all servers within microseconds as 

measured by a modified version of the Network Time Protocol implementation. Kernel and user-

level events with wall-clock timestamps are then logged during basic network socket 

experiments. These data are then collected from each server and merged into a single dataset, 

sorted by timestamp, and plotted on a timeline. The entire experiment, from setup to teardown to 

data collection, is coordinated from a single server. The timeline visualizations provide a 

narrative of not only how packets flow between servers, but also how kernel interrupt handlers 

and other events shape an experiment's execution.
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1 Introduction

Distributed computing is an area of significant research focus, given its ubiquitous use in 

such popular applications as web search, massively multiplayer online games, financial trading, 

and cloud computing [1]. Each of these applications consist of computations that can be broken 

down and distributed to many individual servers, where each server completes a portion of the 

work. It is a proven model, as evidenced by the everyday, global importance of the above 

applications. 

Thorough evaluation is required in order to ensure that these distributed computations are 

performing efficiently and correctly. Monitoring packages are available that provide simple 

statistical measures such as run time, average server CPU load, memory and disk usage, and 

network utilization [2]. This information can be used to isolate underperforming systems and 

locate bottlenecks, but it does not provide sufficient detail to diagnose what operating system 

events may be causing processing delays, especially if these delays propagate throughout the 

system. What is needed is a method to generate an individual accounting of events that occur on 

each server during the computation. Constructing a single, global timeline of all events from 

each server would allow for a complete evaluation.

There are many difficulties with generating such a global timeline. Each event must be 

timestamped to allow for proper sorting from start to end. Most distributed systems are built with 

servers that contain commodity-off-the-shelf (COTS) hardware, and run a standard operating 

system such as Linux [3]. No two server processors are exactly the same and each will have its 

own unique tick rate. Thus each computer's clock will eventually deviate [1]. This deviation 

makes it impossible to properly sort events from different servers into one timeline. While the 
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Network Time Protocol (NTP) service within the Linux operating system can synchronize each 

server to a global clock, it is limited to within millisecond resolution and requires that frequency 

adjustments be made in small increments over time, taking several hours to become 

synchronized [4]. Finer resolution is required to accurately compare sequences of system events, 

especially those within the kernel. One-time frequency adjustments are preferable, especially in 

an experimental setting where system reboots or power-down sequences are common, requiring 

re-synchronization. Reducing this synchronization process to a matter of minutes rather than 

hours allows for more time to run distributed experiments. Knowing these limitations, our 

approach is to modify NTP and the Linux kernel to improve clock synchronization resolution to 

within microseconds and allow immediate frequency adjustments.

Logging execution trace data for the global timeline events is challenging, in that their 

frequency of occurrence, especially events within the kernel, can lead to excessive storage 

requirements and processing delays. It is highly desirable for the event-logging process to be 

lightweight and unobtrusive, so as not to take server cycles from the distributed computation and 

inadvertently skew the results. Echoing this trace information to the system console with printk 

and printf statements is a commonly used method, but is costly and can sometimes lead to 

message loss [5]. What is required is a facility to store data into memory as events occur, with 

the ability to process the data to persistent storage either under operating system scheduler 

control during the experiment or offline later. We use the Data Streams Kernel Interface (DSKI) 

and User Interface (DSUI) to instrument both the kernel and user code. These interfaces allow 

run-time enabling of desired trace events and log the data to memory buffers during the 

experiment. They also provide daemons that run during the experiment to process the data from 

memory to a system file.
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Another difficulty is coordinating the setup, execution, and cleanup of the distributed 

computation across all servers. First, the server clocks must be synchronized. Then all trace 

events must be enabled and collection daemons started. Third, the distributed executable must be 

launched. Finally, upon completion of the distributed experiment, all trace output files must be 

gathered and collection daemons shutdown. Performing each of these tasks manually via a 

network console such as ssh, even on as few as two servers, would be a timely and error-prone 

process. This is alleviated by the use of NetSpec, a utility that supports the description and 

execution control of arbitrary distributed computations. Each of the experiment phases described 

above can be specified in a NetSpec control file. Specialized NetSpec daemons are run on each 

server, which listen for messages coming from the NetSpec controller process running on a 

central machine. The controller coordinates the beginning and end of each phase across all 

machines, automatically executing the distributed computation.

The final challenge in constructing a global timeline is presenting the trace data in a 

visual format that can accurately convey the flow of information between servers. Once all data 

has been collected, it is a simple process to sort it into one dataset by event timestamp. We then 

use the GNUplot utility's X/Y plot in a novel fashion. Each event is plotted with time on the X 

axis increasing from left-to-right. Each server in the computation is assigned two adjacent Y-

values: one for its kernel events and another for its user events. Thus all events that occur on a 

server will be plotted on the same row. Additional tag information logged with the events allows 

for relational pairs to be formed between events on different servers, such as network send and 

receive calls. These event pairs have lines drawn between them. Thus the graph can be read left-

to-right, following the lines up and down between rows, illustrating information flow between 

the servers during the execution of the distributed computation.
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The rest of this paper is organized as follows. Chapter 2 details related work in the fields 

of clock synchronization, instrumentation, automation, and global timeline visualization. Chapter 

3 presents the implementation details for the proposed solution in each of the aforementioned 

fields. Chapter 4 presents the experimental testing process and results. Finally, chapter 5 

discusses any conclusions that can be drawn from the solution and possibilities for future work.
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2 Related Work

While timeline visualization of specialized distributed computations has been previously 

reported [16-17], visualization of a global timeline for arbitrary distributed computations is a 

unique concept. Other solutions to the component problems of clock synchronization [6-10], 

instrumentation [11-13], and automation [14-15] have been proposed as well. A complete 

discussion must mention these works, and is presented in the following sections.

2.1 Clock Synchronization

In addition to the Network Time Protocol, several other algorithms and protocols have 

been developed to address clock synchronization. Clock Sampling Mutual Network 

Synchronization (CS-MNS) is a non-hierarchical and mutual network synchronization algorithm 

for wireless and ad hoc networks [6]. It is shown to synchronize server nodes to within 100s of 

microseconds via the use of specialized wireless hardware and the TinyOS operating system [7]. 

This resolution is within the range required to instrument distributed computations, but the use of 

wireless is not ideal for servers in a data center.

The Precision Time Protocol (PTP) is based upon the IEEE 1588 standard that provides 

sub-microsecond clock resolution over a local area network [8]. It is specifically designed to 

provide accuracy beyond that achieved by NTP. It calculates time offsets by measuring send and 

receive timestamps between a master and all slave servers. These offsets are compensated for by 

speeding up or slowing down the system clock. This implementation is very much similar to our 

proposed solution, and as such is subject to the same limitations of processing delays that can be 

caused by the kernel [9]. Our approach addressed these delays by modifying the kernel network 
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stack directly. At the time our global timeline research was performed, implementations of the 

PTP standard on Linux were in the experimental stages, and did not modify the kernel network 

stack. This implementation has since matured and been merged into the mainline Linux kernel, 

addressing these sources of delay, and is a viable alternative to the modified version of NTP used 

in this research [10].

2.2 Instrumentation

The instrumentation of code, both kernel and user-level, is a diverse field with several 

solutions, especially for the Linux operating system. SystemTap is an industry-supported tool 

that provides a preset number of built-in events within the kernel [11]. These events can be 

enabled via scripts, with custom processing hooks that execute with each event occurrence. Data 

can be collected at both the kernel and user level, although there are limitations with extracting 

some data from user-space [12]. With the use of static probing markers within the kernel, 

instrumentation overhead is kept to a minimum.

The Linux Trace Toolkit next generation (LTTng) is a kernel and user-space tracer 

designed to have a low impact on performance [13]. It provides both markers for quick 

instrumentation during debugging and tracepoints for more permanent instrumentation. Events 

are stored in memory in ring buffers, and collected by a daemon during execution. Event 

processing overhead is at the sub-microsecond level.

Each of the aforementioned solutions provides the instrumentation facilities to evaluate 

distributed computations. We selected the DSKI and DSUI as our platform because of their 

existing integration with the NetSpec utility. With a NetSpec control file, we could specify which 

logging events to enable at run-time, control the start and stop of the collector daemons, as well 
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as manage the movement of all output files.

2.3 Automation

Automating the execution of distributed computations is specialized, mostly relevant to 

the task at hand. In our research, NetSpec, an end-to-end network testing tool, was found to be 

ideally suited for the task of constructing global timelines, as it was designed with 

instrumentation and data collection as part of the requirements [14]. The strongest parallel in the 

field can be found in the Message Passing Interface (MPI), a communications protocol for 

parallel computers whose implementations include utilities that allow for launching a distributed 

computation across many independent server nodes [15]. In most implementations, the mpirun 

command is essentially a wrapper around the rsh or ssh remote shell utilities, which will stage 

the computation executable to each server from a master. Each server enters a wait-state until a 

signal is sent from the master to proceed. This is very similar to NetSpec, in that it coordinates 

the experiment in phases, and servers wait for the next “phase start” message from the NetSpec 

controller before proceeding. The drawback with MPI and its implementations is that it is not 

general-purpose and provides no interfaces for coordinating other daemons outside of the 

distributed computation. Thus clock synchronization and code instrumentation would need to be 

handled manually by other scripts outside of MPI.

2.4 Visualization

Several packages are available to visualize the results of a distributed computation trace. 

LTTng includes the Linux Trace Toolkit Viewer (LTTV), which is a graphical interface for 

visualization of LTTng trace data [16]. The output from each process in the trace is rendered on a 

row in the graph, much like each server is rendered on a row in our GNUplot solution. The 
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LTTV also presents other detailed trace information such as process information and statistics for 

event types. It also allows for interactive zooming based on start and endpoint times.

For visualization of MPI application executions, the Jumpshot tool can generate a 

graphical representation of all MPI-related calls, plotting their occurrence on a timeline [17]. As 

with LTTV, each server trace is plotted on its own row in the graph. Lines can also be drawn 

between events on different rows, representing related MPI send and receive calls between 

servers. This view of the progression of the computation and how it “travels” across servers is 

much like that envisioned for our global timeline. The only limitation is that Jumpshot is 

restricted to MPI calls, and not any arbitrary instrumented event.

As these solutions are dependent upon their parent packages, the research presented in 

this paper elected to use a simpler, customized approach with the commonly-available GNUplot 

tool. As a widely-used graphing tool in research and academia, it provided the necessary features 

to produce a compelling global timeline rendering.
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3 Implementation

Our proposed solution for constructing global timelines is built upon work in four 

separate fields, each detailed in separate sections below. The first three sections, covering clock 

synchronization, instrumentation, and automation, are all components involved in the execution 

of the distributed computation. The majority of this work is an extension of research performed 

previously by students at the University of Kansas Information and Telecommunications 

Technology Center. The last section details new work developed to post-process and visualize 

the resulting instrumentation data to produce a global timeline.

3.1 Clock Synchronization

The NTP distribution is widely-used to synchronize servers to a central time server and 

can achieve accuracies of less than a millisecond on Local Area Networks (LANs) [18]. Its 

algorithm for computing time offsets and clock adjustments is well documented and shown to be 

accurate on stable networks [19]. On the Linux operating system, what prevents NTP from finer 

accuracy is in how the implementation runs almost entirely in user-space. The only kernel-level 

calls made by the NTP daemon are the system calls provided to get and set system time. The 

daemon performs calculations based upon data sent in network messages. The kernel must 

process these messages through the network stack, and at any time context can be switched away 

to handle another system interrupt. There is also no guarantee that the kernel scheduler will 

switch context to the NTP daemon immediately upon leaving kernel-mode. These are sources of 

delay that result in reduced accuracy when calculating time offsets. NTP can compensate for 

these delays, but only to a limited extent.
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Rather than reinvent the calculations that NTP performs, our solution is to attempt to  

eliminate these sources of delay and provide more accurate timestamps. Figure 1 illustrates the 

flow of synchronization packets between a client and server. Timestamps are taken on the client 

at times T0 and T3, and on the server at times T1 and T2. These values are used to calculate an 

offset. The accuracy of this offset is dependent upon the amount of processing time that elapses 

between physical packet arrival and the actual handling of the message by the NTP executables 

running in user-mode. These executables will not make the system calls to retrieve the current 

time until context has switched to them. This could be delayed by the kernel handling subsequent 

interrupts and/or the operating system scheduler selecting a different user process to run. The 

solution is to retrieve the current timestamp within the kernel as soon as possible after the packet 

arrives.

We build upon previous clock synchronization modifications made to the NTP subsystem 

and the Linux kernel network device drivers and network interrupt handler [20]. These 

introduced additional timestamp fields into the standard NTP packet structure, named start_ts, 

rx_ts, tx_ts, and end_ts, as shown in Program 1. An additional field, magic_num, is added to the 

structure as well. When synchronization packets are created by the NTP client and server 
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daemons, this magic_num field is populated with a unique ID. When a packet is received during 

packet processing by the kernel network interrupt handler, a check can be made against this field. 

If the ID matches that of the known “magic” number value, we are guaranteed that the current 

packet is a an NTP synchronization packet. An immediate timestamp is retrieved and inserted 

into the packet's rx_ts field, denoting the time at which the NTP packet was received. For the 

sending case, the same magic number can be checked for in the network device driver, just 

before the packet is queued in the send buffer. If found, the current timestamp will be inserted 

into the packet's tx_ts field. With these timestamps already recorded in the packet, the NTP user-

mode utilities no longer need to request delayed system timestamps in user-mode. They can 

proceed with the offset calculation using more accurate data.

struct pkt {
        u_char  li_vn_mode;     /* leap indicator, version and mode */
        u_char  stratum;        /* peer stratum */
        u_char  ppoll;          /* peer poll interval */
        s_char  precision;      /* peer clock precision */
        u_fp    rootdelay;      /* distance to primary clock */
        u_fp    rootdispersion; /* clock dispersion */
        u_int32 refid;          /* reference clock ID */
        l_fp    reftime;        /* time peer clock was last updated */
        l_fp    org;            /* originate time stamp */
        l_fp    rec;            /* receive time stamp */
        l_fp    xmt;            /* transmit time stamp */

#ifdef NEW_NTP_CHANGES
        u_int32 magic_num;
        unsigned long long start_ts;       /* start field added at KU */
        unsigned long long rx_ts;          /* rx field added at KU */
        unsigned long long tx_ts;          /* tx field added at KU */
        unsigned long long end_ts;         /* end field added at KU */

        long               xtime_tv_sec;
        long               xtime_tv_nsec;
        unsigned long long xtime_tsc;
        unsigned long tsc_khz;

        unsigned long saddr;
        unsigned long daddr;
        u_int32 pkt_id;         /* unique packet identifier added at KU */

Program 1: Modified NTP data structure

The previous implementation's Linux kernel was a version that routed all network 
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devices through the same interrupt handler when messages were received. This handler 

performed common network stack processing before handing control over to any device-specific 

routines. Unless interrupts were masked, it was a reliable assumption that the handler would be 

called soon after arrival of any packets, and that the timestamp would be retrieved and inserted 

into the NTP synchronization packet shortly afterwards. Since that original research was 

performed, computer architecture has improved and the Linux kernel has expanded to allow per-

device network interrupt handlers. With each device driver implementing its own handler, 

advanced features such as interrupt buffering/coalescing can be introduced. This feature allows 

the network device to postpone processing the receive queue until a preset number of interrupts 

have occurred. This reduces the amount of time the kernel spends locked in interrupt context 

while processing packets from the queue. 

This interrupt buffering can be beneficial for general purpose systems, especially those 

that receive many small, separate messages. Instead of each transmission having to be processed 

under interrupt context, the kernel will only need to lock once to process a larger batch. 

Unfortunately, this causes complications for NTP timestamp insertion. With interrupts being 
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buffered, an NTP packet may arrive with one of the earlier interrupts. Its processing could be 

delayed until the predetermined number of interrupts has been met. This phenomenon is 

illustrated in Figure 2, where the timestamp is not taken until time T1+X, with X being the time 

between the first and sixth interrupts, assuming the device driver was waiting for 6 interrupts to 

occur before processing the queue. This problem results in less accurate time offsets being 

measured by NTP, and increases the likelihood that the timer adjustments made will skew the 

clock further than intended.

The test systems for this research utilized Intel e1000 Gigabit Ethernet network 

interfaces. This device's Linux driver implemented interrupt buffering in a feature called “RX 

Polling (NAPI)”. As this feature could not be disabled, a workaround was implemented in the 

driver's interrupt handler code to bypass the NAPI-specific handling during periods of clock 

synchronization. Specifically, the clock synchronization daemon sets a kernel state variable 

signifying that the system is actively synchronizing. Later, when the e1000 interrupt handler is 

called in response to a packet arrival, the receive queue is immediately processed, allowing for 

immediate insertion of the NTP timestamp. When the clock synchronization daemon exits, 

usually at the end of the distributed experiment, the kernel state variable is unset. Thus the NAPI 

functionality is restored, allowing the driver to function as intended for general system use.

Chapter 4 provides detailed experimental results for clock synchronization both with 

interrupts buffered and with the buffering disabled.

3.2 Instrumentation

The Data Stream Kernel and User Interface (DSKI and DSUI) are subsystems that 

support gathering system behavioral data from instrumentation points [21]. These points are 
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macros inserted into the kernel and user-level source code. When a thread of execution crosses a 

point, a data structure is generated and stored into kernel memory, to be moved to persistent 

storage later by a separate logging process. The types of points supported are counters, 

histograms, and events, with each type saving a specific set of data. Counters simply increment a 

variable with each occurrence. Histograms take a value and update a set of metrics that describe 

a histogram (min, max, and the number of occurrences for each bucket). The event type, though, 

is of particular use for distributed computations. This type allows logging of extra user-specified 

data, whether a number or an entire data structure, along with the current system timestamp. 

After a distributed computation has executed, the accumulated set of events can sorted by these 

timestamps, and then used to construct a global timeline. The extra data included with the events 

can be used to provide additional detail in the timeline as well.

Choosing the right set of events to log during the experiment is especially important. The 

logical place to start are those sections of the code dealing with network transmission, as this is 

where the flow of the computation between servers can be observed. In the user executables, 

DSUI events can be logged just before a packet is sent and immediately after a packet is 

received. The kernel provides many more potential instrumentation points within the network 

stack. Several example locations include:

• Device driver interrupt handler

• Device driver send/receive methods

• Soft interrupt send/receive methods

• IP layer processing methods

• TCP layer processing methods
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   Enabling all of these DSKI events can produce a very detailed view of how a system 

steps through the network subsystem. In the early stages of global timeline construction, all of 

these events were enabled. What soon became evident was that their volume and repetitiveness  

was difficult to visualize effectively on a timeline without being too cluttered.

Other per-system kernel information, such as system scheduler context switch events and 

other system interrupt handler processing, could provide additional detail into the computation. 

What was found through experimentation, though, was that the volume of these events caused 

the dataset to become far too dense. This was especially evident when the scheduler context 

switch events were enabled, as they were logged for every process switch, not just for those 

processes involved in the distributed computation. The Linux scheduler can potentially run every 

4ms, which could generate hundreds of context switch events per second. Filtering through these 

events to locate network-related events, especially in a visual representation, was time-

consuming and counter-intuitive.

In the end, the most benefit was found by instrumenting all user-level send and receive 

calls, as well as the start and end of the kernel's net_rx_action() routine. Illustrated in Program 2, 

this routine is the common network receive soft interrupt. It signifies the point where the kernel 

processes network messages, sending them up the stack to user-space. The routine steps through 

each available network device that is ready to process its receive queue. Note how NAPI is 

mentioned. As discussed in section 3.1, our modifications to the e1000 device driver will force 

this processing to occur every time on this device, so as not to delay NTP synchronization packet 

timestamping.
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static void net_rx_action(struct softirq_action *h)
{
        ...

        while (!list_empty(list)) {
                struct napi_struct *n;
                int work, weight;

                ...

                n = list_entry(list->next, struct napi_struct, poll_list);

                have = netpoll_poll_lock(n);

                weight = n->weight;

#ifdef CONFIG_KUSP_DSKI_NET
                DSTRM_EVENT(NET_DEVICE_LAYER, NET_RX_ACTION_START, 0);
#endif

                /* This NAPI_STATE_SCHED test is for avoiding a race
                 * with netpoll's poll_napi().  Only the entity which
                 * obtains the lock and sees NAPI_STATE_SCHED set will
                 * actually make the ->poll() call.  Therefore we avoid
                 * accidently calling ->poll() when NAPI is not scheduled.
                 */
                work = 0;
                if (test_bit(NAPI_STATE_SCHED, &n->state)) {
                        work = n->poll(n, weight);
                        trace_napi_poll(n);
                }

#ifdef CONFIG_KUSP_DSKI_NET
                DSTRM_EVENT(NET_DEVICE_LAYER, NET_RX_ACTION_END, 0);
#endif

                ...
        }
}

Program 2: net_rx_action() with DSKI events

In order to logically connect events between servers in the global timeline visualization, 

such as a send/receive sequence, additional information must be added to establish a pair-wise 

relationship. This was accomplished by formatting a unique identifier string consisting of the 

user-level process' ID and the current count of messages sent. These strings would be stored in 

the extra data field of the DSUI send and receive events of the respective servers' user-level 

processes. For example, the 5th message sent from process '1' on server A would save the string 

“000010000000005” into the DSUI send event's extra data field. Server A would then include 

this string in the packet sent to Server B. Upon receipt, server B would strip this string from the 
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packet and save it in the extra data field of the DSUI receive event. This is illustrated in Figure 3. 

Using the message count as part of the identifier guarantees that each pair of events will have a 

unique identifier, and can be connected via a line in the visualization.

3.3 Automation

NetSpec is a network performance evaluation tool. It was originally designed to 

coordinate the execution of end-to-end network tests, with the ability to create hundreds of 

network flows across tens of nodes. The nodes could be passive, taking only measurements, or 

active, and generating traffic. It has been used in research projects to simulate and evaluate 

traffic patterns on a variety of network hardware. Distributed computations fit into this same 

category, as the network is an essential piece to the puzzle. Thus NetSpec was an ideal utility for 

the automation of global timeline experiments.

A NetSpec distributed computation involves a series of executables, hereafter referred to 
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as sub-daemons, running on an arbitrary set of network-connected machines, hereafter referred to 

as slaves. These sub-daemons can perform any form of work, whether it be confined to the local 

machine or over the network to the other slaves involved in the current computation. All sub-

daemons are launched at the beginning of the experiment by the primary NetSpec daemon, 

netspecd, an instance of which is running on each slave. The command to launch netspecd itself, 

as well as the subsequent sub-daemon launches, comes over the network from the ns_control 

program. This is the NetSpec master process, launched by the user from a machine on the same 

network as the slaves. It can run from an independent machine or one of the slaves itself.

Rather than launch the sub-daemons during the experiment just before they are meant to 

perform work, NetSpec enforces the policy that all sub-daemons must exist as a process on the 

slave and in a wait state before the experiment officially begins. This allows for phase-based 

execution, in that individual sub-daemons can divide their work into different phases. They 

awaken at phase-start and re-enter a wait state at phase-end, but do not terminate until the end of 

the experiment. This allows state information to be preserved across phases. The ns_control 

process sends the phase “start” messages to the sub-daemonss.

The timeline for this phase-based execution is specified by a scoreboard schedule 

consisting of tuples of sub-daemons and their associated phases. These tuples are grouped into 

blocks. At the start of the experiment (once all of the sub-daemons are confirmed to be in a wait 

state), each phase specified in the first block is started. When ns_control receives successful 

phase completion messages from every phase in the first block, it proceeds to the next block, 

starting the phases specified within. This process continues for all blocks in the scoreboard.
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An example of a generalized NetSpec experiment is shown in Figure 4. The numbered 

steps are described as follows:

1) A NetSpec experiment starts with ns_control being launched from a machine that has 

network connectivity to all slave machines that will be involved in the experiment.

2) For the first machine specified in example.nspec, ns_control will make a socket 

connection to that machine's xinetd/netspecd port.

3) On the slave machine, xinetd will spawn the netspecd Python daemon.

4) netspecd will spawn a forking socket server that will listen for connections on the 

default NetSpec port.

5) ns_control, upon a successful connectino to xinetd, will create a new socket and connect 

to the default NetSpec port on the slave machine and send a packet containing the 

executable name of the first sub-daemon to spawn (daemon1 in this example).
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6) The forking socket server, having created a new process to handle the connection from 

ns_control, will for a new child process, exec the daemon1 sub-daemon as a new 

process in said child, and hand context over to it.

7) The daemon1 sub-damon will then communicate bi-directionally with ns_control using 

the socket that initiated the connection to netspecd (the network links shown for steps 5 

and 7 are the same socket). From this point forward all phase start and completion 

messages are sent directly between ns_control and daemon1 via this socket, not through 

netspecd and its forking socket server, as it only handles new connections.

8) See step 5, except the packet will specify daemon2 as the sub-daemon executable.

9) See step 6, except daemon2 will be exec'ed and given context.

10) See step 7, except daemon2 will be communicating directly with ns_control.

11) See steps 5 and 8. The executable names for all remaining sub-daemons for this 

machine will be sent by ns_control using new socket connections to the default NetSpec 

port.

12) See steps 6 and 9. Each remaining sub-daemon will be exec'ed in a separate process.

13) See steps 7 and 10. Each remaining sub-daemon will communicate directly with 

ns_control.

The process described above for Server 1 is repeated for all remaining slave machines in 

the experiment (Server 2 through M in Figure 4). Once ns_control has received notification that 

all sub-daemons have been spawned and are waiting for phase messages, the experiment will 

officially begin. At this point ns_control sends phase start messages according to the scoreboard 

specified in the experiment control file.

A global timeline experiment requires coordinating the setup of data instrumentation and 
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execution of the distributed computation itself. Each of these can easily be specified as sub-

daemons in a NetSpec control file. The entry for the DSKI daemon in an example control file is 

shown in Program 3. The name of the sub-daemon is dski and the executable is dskictrl. It is to 

be launched on SERVER01, SERVER02, and SERVER03. It declares one phase, start, which 

initializes the DSKI output file and enables the NET_RX_ACTION_START and 

NET_RX_ACTION_END events. 

An example of a distributed computation sub-daemon entry is specified in Program 4. 

The name of the sub-daemon is pipe1-01 and the executable is netspec_sockets.py. It is to be 

launched on SERVER01. It declares one phase, setup, which initializes several parameters 

controlling how the computation is to run on this server (the netspec_sockets.py program is 

discussed in detail in Chapter 4).

    dski = {
        command = "dskictrl"
        host = [$(SERVER01), $(SERVER02), $(SERVER03)]
        workingdir = "$(WORKINGDIR)"
        phases = {
            start = {
                files = {}
                params = {
                    dski = {
                        output_base = "$(DSUIFILEPREFIX).dski"
                        duration = 0
                        verbose = false
                    }
                    datastreams = {
                        dski_pipe = {
                            channel = default
                            filters = []
                            enabled = {
                                NET_DEVICE_LAYER = [
                                    NET_RX_ACTION_START,
                                    NET_RX_ACTION_END
                                ]
                            }
                        }
                    }
                }
            }
        }
    }

Program 3: NetSpec DSKI sub-daemon control file entry
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    pipe1-01 = {
        command = "./netspec_sockets.py"
        workingdir = "$(WORKINGDIR)"
        host = [$(SERVER01)]
        phases = {
            setup = {
                params = {
                    role = "pipeline"
                    protocol = "tcp"
                    port = 50000
                    buffer_size = 1024
                    datafile = "/boot/vmlinuz"
                    messages = 4000
                    pipeline_length = $(PIPE1LENGTH)
                    pipeline_rank = 1
                    dsuifile = "$(DSUIFILEPREFIX).pipe1-01.bin"
                }
            }
        }
    }

Program 4: NetSpec distributed computation sub-daemon control file entry

An example of a scoreboard schedule is shown in Program 5. The NetSpec controller, 

ns_control, will coordinate the experiment's execution by following this schedule. The 

experiment begins by running the start phase of the dski sub-daemon. This instantiates the DSKI 

subsystem on all servers, enables the specified events, and spawns off a process to collect events. 

The next step is to run the setup phase of all of the distributed computation sub-daemons (pipe1-

01, pipe1-02, and pipe1-03). The sets up a series of socket pipelines between the servers over 

which random messages will be sent. Once setup is complete, the sendrecv phase is run, which 

starts sending messages over the pipelines. Note that this phase was not specified in the sub-

daemon entry above. It is declared within the sub-daemon executable, but has no parameters. 

Thus it requires no phase configuration entry. After all messages have been sent, all sub-daemons 

are instructed to run the cleanup phase, which closes all connections and output files. The 

ns_control process will then accumulate all output files from every sub-daemon into one 

location. At this point the experiment is complete, and post-processing can be done on the output 

files to generate a global timeline visualization.
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scoreboard = [
    {
        dski = "start"
    }
    {
        pipe1-01 = "setup"
        pipe1-02 = "setup"
        pipe1-03 = "setup"
    }
    {
        pipe1-01 = "sendrecv"
        pipe1-02 = "sendrecv"
        pipe1-03 = "sendrecv"
    }
    {
        pipe1-01 = "cleanup"
        pipe1-02 = "cleanup"
        pipe1-03 = "cleanup"
        dski = "cleanup"
    }
]

Program 5: NetSpec scoreboard schedule example

3.4 Post-Processing and Visualization

Before a global timeline visualization can be generated, all instrumentation events from 

the distributed experiment must be processed from their individual files into one large dataset. 

This process must perform several steps to ensure the final result is properly sorted. The first step 

is to sort events locally for each machine. For every machine, the DSKI and DSUI generate 

separate log files. Each of the events in these files include a system timestamp. As all of these 

timestamps are from the same server, it is guaranteed that a sort operation by time into one set 

will be correctly ordered.

Once a sorted dataset has been created for each server, the next step of sorting these into 

the complete global timeline dataset can proceed. Because the clock synchronization daemon 

was running on all servers during execution of the experiment, it is assumed that the event  

timestamps across all servers are accurate to within the offset reported by NTP. Thus the same 

sort-by-time operation is performed on all events. At this point all events have been sorted into a 
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single, global timeline dataset.

The final processing pass is to step through the dataset, converting each event into an 

X/Y plot point. The X-value of the point is the timestamp of the event. The Y-value is a constant 

depending upon which server the event was generated from. Each server in the computation is 

assigned two adjacent Y-values: one for its kernel events and another for its user events. Any 

events whose name match a set of predefined “event-pairs” will be saved. As the processing 

continues, if the matching pair event is found (by having the same unique ID stored in the extra 

data field, as discussed in Section 3.2), a vector is created between the plot points of both events. 

These plot points and vectors are output to a file in a format recognized by the GNUplot utility.

The DSUI includes a post-processing utility that can parse through the event log files and 

perform all of the steps discussed above. The behavior of this parsing is specified in a control 

file. The first section of the file, shown in Program 6, describes the per-server log file sort. This 

example is for an experiment with three servers. 

@define RAWDATA ./gt_2server
@define RANK01 kusp32
@define RANK02 kusp33

    pipe01 = [
        head.input(
            file = [
                "$(RAWDATA)/$(RANK01)_pipe1-01/gt_2server.pipe1-01.bin"
                "$(RAWDATA)/$(RANK01)_dski/cpu0.bin"
            ]
        )
        utility.sort(
            sort_key = tsc
        )
        utility.timestamp(
            consume = false
        )
        utility.crop(
            start_event = "START/RANK1"
            end_event = "END/RANK1"
        )
    ]

    pipe02 = [
        head.input(
            file = [
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                "$(RAWDATA)/$(RANK02)_pipe1-02/gt_2server.pipe1-02.bin",
                "$(RAWDATA)/$(RANK02)_dski/cpu0.bin"
            ]
        )
        utility.sort(
            sort_key = tsc
        )
        utility.timestamp(
            consume = false
        )
        utility.crop(
            start_event = "START/RANK2"
            end_event = "END/RANK2"
        )
    ]

Program 6: DSUI post-processing control file: per-server sort

The first block, denoted by pipe01_dsui, is a named dataset. This name will represent the 

finished dataset resulting from the operations in the control block, and can be referenced later in 

the control file. The first element in the block, head.input, denotes which files to use as input for 

processing. The files for this block are kusp32_pipe1-02/gt_2server.pipe1-01.bin and 

kusp32_dski/cpu0.bin, the DSUI and DSKI log files, respectively, from the kusp32 server. The 

remaining elements specify the following:

• utility.sort – sort events by timestamp

• utility.timestamp – preserve the timestamp in the event, do not consume it

• utility.crop – crop the event stream using the specified start and end events

The second block specifies the same sort procedure on the files from the kusp33 server. 

At this point there are two named datasets, pipe01 and pipe02, that can be referenced by name 

later in the control file. The next section in the file is shown in Program 7. This details the 

parameters to pass to the custom global timeline filter (the DSUI postprocessing utility provides 

a framework for creating custom filters). This performs the final sort and generates the GNUplot 

datafile.
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    global = [
        head.input(
            conn = [pipe01, pipe02]
        )
        gt_filter.gnuplot(
            debug_level = 1
            datafile_prefix = "gt_2server"
            plot_filename = "gt_2server.plot"
            event_pairs = [
                { start_event = "SEND_MSG_RANK1"
                  end_event = "RECV_MSG_RANK2" 
                  threshold = 0 },
                { start_event = "SEND_MSG_RANK2"
                  end_event = "RECV_MSG_RANK1" }
            ]
            pair_datafield = "extra"
            unknown_pairs = true
        )
    ]

Program 7: DSUI post-processing control file: global timeline filter

The head.input section instructs the utility to sort the two per-server datasets (pipe01 and 

pipe02). This will sort all events into one dataset by timestamp. The next block, gt_filter.gnuplot, 

will parse through this final dataset and generate GNUplot points and vectors. Most of the 

parameters to the filter are self-explanatory. The event_pairs, pair_datafield, and unknown_pairs 

parameters require discussion and are explained as follows:

• event_pairs – The list of event name pairs and associated floating point thresholds to use 

when drawing vectors between events. Each pair of events that share the same unique ID, 

whose event names match one of these entries in the correct order and whose time 

difference is less than the specified threshold will be drawn as a vector. Those that exceed 

the threshold will still be rendered as vectors, but will also print a warning message. If no 

threshold parameter is specified, it will default to 0, which is the same as an unlimited 

threshold.

• pair_datafield – The event data field to use when searching for pairwise unique identifiers. 
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• unknown_pairs – If set to true and any unknown pairs are found (i.e. their event names do 

not match the entries specified in event_pairs), print a warning message and render vectors 

for them. Ignore them if set to false (the default value).

GNUplot visualizations resulting from control files similar to the above example are 

presented and discussed in Chapter 4.
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4 Evaluation

A thorough evaluation of the proposed global timeline results is presented in two parts: 

clock synchronization and visualization. Clock synchronization must be discussed first, as it 

should be shown to be working to a reasonable extent. Otherwise the timestamps used to sort the 

instrumentation datasets will be erroneous and the resulting GNUplot visualizations will be 

invalid.

4.1 Clock Synchronization

To verify that our NTP modifications are synchronizing clocks to within microsecond 

resolution, there are two usable benchmarks: the offsets reported by the NTP client and a 

regression test that measures message transmit times between servers using timestamps from 

both endpoints. The first benchmark is implemented as a daemon that runs in the background 

during all global timeline experiments. The second can be run outside of experimentation periods 

as a sanity-check on the clock synchronization subsystem.

4.1.1 Clock Synchronization Daemon

Each server in a global timeline experiment must call a modified version of the NTP 

ntpdate utility, which will request time offset measurements from a server running a modified 

version of the NTP ntpd daemon. These modifications, as discussed previously, utilize finer-

grained timestamps taken from within the kernel to achieve better resolution. The ntpdate utility 

can be called in one-shot fashion, performing a one-time offset. This is not ideal for an 

experiment, especially lengthy ones, as clocks on COTS systems will always drift over time and 
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it is impossible to find a perfect synchronization offset. The standard NTP client daemon that 

runs on most Linux systems routinely performs offset measurements and clock adjustments. We 

created a similar daemon, called kusp_clksync, to call our modified NTP ntpdate repeatedly to 

fine-tune the clock. This daemon runs on all servers in the global timeline experiment. 

[dinkel@kusp33 ~]$ tail -f /var/log/kusp_clksync.log
Sync thread started
initial adjustment -29031.18
raw offset (us): 0.031   smoothed offset (us): 0.031
We seem to be in sync.
Now sleeping for 10 seconds.
raw offset (us): 0.795   smoothed offset (us): 0.795
Now sleeping for 15 seconds.

Program 8: Clock synchronization daemon output

Example output from the kusp_clksync log file is shown in Program 8. After the 

synchronization thread is started, the modified ntpdate is called to accumulate a set of time 

offsets. No adjustments are made during this initial period. Once a predetermined number of 

offsets have been measured, and average offset is calculated along with an accompanying clock 

adjustment. This is the first adjustment made to the system clock (reported as -29031.18 

microseconds in this example). After this adjustment, another ntpdate call is made to measure the 

resulting time offset, shown as 0.031 microseconds. As this is less than 10 microseconds (a 

default but configurable threshold for our modified ntpdate), synchronization is assumed.

At this point the daemon will sleep for per-determined periods of time, wakening to re-

run ntpdate to verify the offset. If the offset is still within the threshold, the sleep time will be 

extended. This example shows an initial sleep of 10 seconds, followed by an observed offset of 

0.795 microseconds, and then an extended sleep of 15 seconds. As long as offsets are within the 

threshold, no adjustments are made. This keeps adjustments to a minimum.

This same process is repeated in the background on all servers in the global timeline 

experiment. Each server communicates with the same time server running our modified ntpd 
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master daemon, ensuring that all clocks are synchronized to the same source.

4.1.2 Regression Test

To further verify the functionality of our clock synchronization subsystem, a regression 

test is run to compare clock timestamps between servers. This test is a simple user-mode 

application that measures the packet transmission time between two servers that have already 

been synchronized to the same NTP time server. Timestamps are taken immediately before send 

calls on one server and immediately after receive calls on the other server. Assuming clocks have 

been synchronized, a distribution of the difference of these timestamps (i.e. the transmission 

time) should be tightly packed and with an average transmission time on the order of 10s of 

microseconds [22].

As discussed in Section 3.1, the use of interrupt coalescing in the e1000 driver can 

introduce error into the clock synchronization measurements. Figures 5 and 6 illustrate this 

behavior, where the majority of the transmission times are not tightly packed and range into the 

low 100s of microseconds. This is due to there being no guarantee that the network message will  

be delivered up the stack to the user-level regression test immediately after its related device 

interrupt. The timestamp retrieval is at the mercy of the e1000 device driver's determination that 

enough interrupts have been received to warrant processing of the message queue.

With interrupt coalescing disabled, the transmission times fall more in line with 

expectations, as shown in Figures 7 and 8. Distribution of the times in both directions is tightly 

packed, with a spread of roughly 10 microseconds.
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Figure 5: Clock synchronization regression test - NAPI on (client to server)

Figure 6: Clock synchronization regression test - NAPI on (server to client)
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Figure 7: Clock synchronization regression test - NAPI off (client to server)

Figure 8: Clock synchronization regression test - NAPI off (server to client)



4.2 Post-Processing and Visualization

The example distributed computation chosen for evaluation of our global timeline 

approach is a simple socket pipeline between three servers, executed by a NetSpec sub-daemon 

called netspec_sockets.py. A file, broken into equal-length messages, is sent through the pipeline 

from the first server, passing through the second, and ending at the third, where it is reassembled 

into a copy of the file. Each server logs DSUI events when messages are sent and received. 

These same send and receive events are grouped into pairs during postprocessing, allowing for 

vectors to be drawn between them in the visualization. The DSKI NET_RX_ACTION_START and 

NET_RX_ACTION_END events, referenced in Section 3.3, are also generated on each machine. 

These cannot easily be “connected” across machine boundaries with extra pair-wise data, but 

their presence as events in the global timeline provide a useful illustration of the relationship 

between kernel and user-level activity.

The experiment is coordinated via NetSpec, using the control file presented in Section 

3.3. A graphical representation of the experimental flow is shown in Figure 9. Steps 1 through 7 

were explained previously in Section 3.3, under the NetSpec generalized example. Steps 8 

through 10 signify the network socket pairs between each server that make up the pipeline. Data 

will flow from kusp32 to kusp33 and finally to kusp34.

Upon completion of the NetSpec run, the server where ns_control was launched will have 

a set of Data Streams output files from every machine in the experiment. These are what will be 

processed into a global timeline. The post-processing control file is similar to that presented in 

Section 3.4, with the exception of the global timeline filter block specifying several more event 

pairs in the event_pairs entry (see Program 9). This will create vectors in the global timeline 

visualization from kusp32 to kusp33, as well as from kusp33 to kusp34.
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           event_pairs = [
                { start_event = "SEND_MSG_RANK1"
                  end_event = "RECV_MSG_RANK2" },
                { start_event = "SEND_MSG_RANK2"
                  end_event = "RECV_MSG_RANK1" }
                { start_event = "SEND_MSG_RANK2"
                  end_event = "RECV_MSG_RANK3" },
                { start_event = "SEND_MSG_RANK3"
                  end_event = "RECV_MSG_RANK2" }
            ]

Program 9: Event pairs - 3 server socket pipeline

Launching the post-processing utility on this control file results in the console output 

shown in Program 10. Note how all events are processed twice: once to sort via timestamp into a 

single dataset, and the second time to generate the corresponding GNUplot points and vectors.
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[dinkel@kusp32 tmp]$ postprocess -f kusp/share/gt_3server.pipes
Executing Pipeline Configuration `kusp/share/gt_3server.pipes'
Event pairs:  [{'threshold': 0.0, 'start_event': 'SEND_MSG_RANK1', 
'end_event': 'RECV_MSG_RANK2'}, {'threshold': 0.0, 'start_event': 
'SEND_MSG_RANK2', 'end_event': 'RECV_MSG_RANK1'}, {'threshold': 0.0, 
'start_event': 'SEND_MSG_RANK2', 'end_event': 'RECV_MSG_RANK3'}, 
{'threshold': 0.0, 'start_event': 'SEND_MSG_RANK3', 'end_event': 
'RECV_MSG_RANK2'}]
Processing global timeline events...
Processed 10000 events.
Processed 20000 events.
Processed 30000 events.
Processed 40000 events.
Processed 50000 events.
Processed 60000 events.
Processed 70000 events.
Writing gnuplot data files...
Processed 10000 events.
Processed 20000 events.
Processed 30000 events.
Processed 40000 events.
Processed 50000 events.
Processed 60000 events.
Processed 70000 events.
WARNING: Creating a data file for the unknown pair id 072770000003368 
( ['kusp32', 2149312.5, 'RECV_MSG_RANK1', 'user', 'RANK1'] to ['kusp33', 
2149325.75, 'SEND_MSG_RANK2', 'user', 'RANK2'] )

Gnuplot plot file gt_3server.plot has been generated.
Postprocessing complete.

Program 10: Global timeline post-processing console output

Running GNUplot on the generated script file produces the graph shown in Figure 10. As 

this is the entire experiment from start to end, all of the more than 70000 events are shown. This 

time scale is far to great to show any detail, with all events packed together into seamless blocks 

of color. The GNUplot utility provides interactive zooming, though, and after several progressive 

zoom operations into the section where DSUI events start occurring, a much more informational 

view appears.

Referencing Figure 11, several conclusions can be drawn from this global timeline 

visualization: 
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• The DSKI soft-interrupt start and end events occur just before a DSUI receive event in the 

pipeline computation is logged on the same server. Other unrelated soft-interrupt events 

appear as well, which are most likely associated with packet arrivals for unrelated system 

processes. See Chapter 5 for a discussion of how these could be filtered.

• All DSUI send and receive events are connected with vectors.

• All DSUI send events take place earlier than their corresponding receive events. This is 

further validation that the clock synchronization process is working, as the timestamps 

used to sort these events came from different servers.
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Of particular interest is the warning message printed in the post-processing output in 

Program 10. This indicates an out-of-order event sequence from RECV_MSG_RANK1 to 

SEND_MSG_RANK2 beginning at time 2149312.5. The receive event timestamp was found to be 

earlier that that of the send event. Zooming into this area of the global timeline plot produces the 

image in Figure 12, with the sequence in question highlighted by the red rectangle. The 

SEND_MSG_RANK2 event on kusp33 should occur before the NET_RX_ACTION DSKI event 

sequence on kusp32, but it was somehow delayed until after kusp32's RECV_MSG_RANK1 event 

was logged. A possible explanation for this is that the netspec_sockets.py process on kusp33 had 

context taken away from it immediately after sending its message but before it could log the 
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corresponding DSUI send event. Repeating the experiment with additional DSKI events enabled, 

such as the context switch events, could shed light on this scenario, provided similar out-of-order 

events occur in future runs.
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5 Conclusions and Future Work

With data centers expanding to accommodate more servers [23], it is evident that 

distributed computing is on the rise. To justify this expansion, evaluation of the computations 

running on these servers is required to ensure that these resources are fully utilized. We have 

proposed a global timeline visualization of a distributed computation as a method for performing 

this evaluation. This was built on COTS servers running the Linux operating system. 

Instrumentation events from both the kernel and user-level were gathered. The timestamps for 

these events were accurate to within microseconds by synchronizing all server clocks with a 

modified NTP time service. The resulting event stream data was converted to point and vector 

types readable by the GNUplot utility and rendered on a plot. The resulting plots were used to 

observe flow of the computation across servers, and were helpful in highlighting a potential 

execution anomaly warranting further evaluation.

This further evaluation could involve additional instrumentation points in the kernel, such 

as scheduler context switch events. The drawback is that the volume of these would quickly 

become unwieldy, requiring run-time filtering to report only the switch events for the user 

processes involved in the distributed computation. This “active filtering” is part of ongoing 

research in the DSKI and DSUI.

Our NTP subsystem modifications required that the network device driver and kernel 

network stack be modified as well. This is a less-than-ideal solution in that it introduces 

hardware dependency. In the time since this research was conducted, the Linux PTP 

implementation has become a viable alternative for high-resolution clock synchronization. 

Replacing our modified NTP subsystem with PTP would introduce support for many more 
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network interfaces and processor architectures and potentially eliminate kernel modifications. 

Investigation is required to measure the overhead of any PTP timestamp retrieval calls, as this is 

an important factor when logging instrumentation events, especially in the kernel. Both the DSKI 

and DSUI require lightweight timestamping routines in order to prevent the adverse effect of 

instrumentation introducing too much overhead into the computation.

Visualization could be expanded to draw vectors between related kernel network events, 

such as packet enqueue on the sending server and dequeue on the receiving side. A potential 

unique id to match these events could be found in the TCP sequence number. Initial attempts at 

this solution resulted in unmatched pairs, and further investigation is required.

Another visualization improvement would be to provide more interactive plot features, 

such as enabling/disabling the display of selected event types as well as scrolling the timeline 

horizontally. The GNUplot utility does not provide an API for custom interaction. Porting the 

global timeline post-processing filter to export data usable by other graphing packages, such as 

matplotlib, would allow for more customization.
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