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Abstract 

Terephthalic acid (TPA), with current annual world capacity of exceeding 50 million metric 

tons, is a commercially important chemical used primarily in the manufacture of polyesters. A 

spray reactor in which the liquid phase, containing dissolved p-xylene (pX) and the catalyst 

(Co/Mn/Br), is dispersed as fine droplets by a nozzle into a continuous vapor phase containing 

the oxidant (O2) is shown to produce high-purity TPA with less than 25 ppm 4-

carboxybenzaldehyde (4-CBA) in the solid TPA product. In sharp contrast, the solid TPA 

product obtained from a conventional stirred reactor similar to the configuration used in the 

conventional Mid-Century (MC) process contains nearly 1000 ppm 4-CBA even though the 

reactor is operated at similar pressure and temperature (15 bar and 200 °C) but with the gas 

phase dispersed into the liquid phase. The dramatic improvement in TPA product quality during 

spray reactor operation is attributed to two main factors: the alleviation of interphase gas-liquid 

mass transfer limitations that facilitates more complete oxidation of the pX and the intermediate 

oxidation products to TPA, and reduced backmixing that enhances the oxidation rates. Kinetic 

studies of pX oxidation to TPA performed in a well-stirred 50 mL reactor confirm that the 

intermediate oxidation steps are subject to mass transfer limitations even at the highest rpm used. 

Theoretical calculations show that the time constants for O2 diffusion in typical spray droplets 

(assumed to be 50 µm diameter) are one to two orders of magnitude lower than the kinetic rate 

constant confirming complete O2 penetration and saturation of the droplets. 

Gas phase concentration measurements show that in the spray reactor gas phase CO formation 

is roughly one-fourth of that in the MC process, indicative of solvent burning. This decrease is 

attributed to the shorter residence times in the spray reactor. Further, the usage of CO2 as an inert 
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gas and the dominance of acetic acid (>50 mol%) in the vapor phase under reaction conditions 

create a gas phase environment that falls outside of the flammability envelope.  

Mathematical modeling of the stirred reactor using MC process conditions accurately predicts 

the steady state temperatures observed in industrial reactors (195 °C). The model also clearly 

divulges that the cooling provided by partial evaporation of the acetic acid solvent, upon 

absorbing the heat of reaction at the set reactor pressure, is vital to maintain stable steady state 

operation. Experimental results clearly attest to the significance of reliable pressure control to 

prevent undesired temperature rises. Comparative economic analyses and gate-to-gate and 

cradle-to-gate life cycle assessments show that the spray process significantly reduces capital and 

operating costs by 55% and 16% respectively, and also imposes less adverse environmental 

impacts than the MC process. These benefits of the CEBC spray process are mainly derived from 

the non-requirement of the hydrogenation step required in the conventional process for purifying 

the crude TPA. Thus, the spray reactor concept has the potential to be a greener and more 

sustainable process for making polymer-grade dicarboxylic acids in one step. The results from 

this dissertation provide valuable guidance for the rational design and development of a 

continuous spray reactor. 
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Chapter 1 Introduction 

 

 

 

The concepts of green chemistry and green engineering [1] were introduced nearly two 

decades ago in an effort to simultaneously achieve the “triple bottom line” — sustainability in 

economic, social, and environmental performance. By providing qualitative guidelines for the 

design of chemical products and processes that reduce or eliminate the use and generation of 

hazardous substances, the twelve principles of green chemistry and the twelve principles of green 

engineering [2] promote sustainability. As part of their professional responsibilities, chemists 

and chemical engineers should continue to evaluate alternative products and manufacturing 

processes, or retrofit existing procedures to meet customer needs, to maintain process safety and 

to enhance environmental protection while ensuring economic viability. 

The University of Kansas Center for Environmentally Beneficial Catalysis (CEBC) 

implements its mission guided by the principles of green chemistry and green engineering to 

develop sustainable chemical technologies in diverse areas such as selective oxidation, 

hydroformylation, alkylation and hydrogenation. Sustainable technologies are achieved by 

designing highly active and selective catalysts, employing benign media and process 

intensification via novel reactor types. As part of the selective oxidation testbed, p-xylene (pX) 

oxidation to terephthalic acid (TPA) has been investigated extensively at CEBC in an effort to 

develop greener alternatives to the conventional Mid-Century process. One of the key published 

findings to date is that the use of a CO2/O2 mixture instead of the traditional air oxidation system 

effectively reduces the solvent burning rate [3]. 
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This dissertation research complements previous work by CEBC researchers and addresses 

some of the sustainability challenges associated with industrial processes for TPA production. In 

this chapter, the state-of-the-art of TPA technologies is reviewed. 

1.1    Applications and End Uses of TPA 

TPA is a commercially important aromatic compound used mainly as a major precursor of 

polyethylene terephthalate (PET) polymer, which is produced by polycondensation of ethylene 

glycol with TPA. More than 90% of the worldwide production of TPA is used to make PET, 

consumed primarily for the manufacture of polyester fibers, solid-state resins (also known as 

bottle-grade resins) and polyester film. 

Figure 1.1 shows the major applications of PET. Polyester fiber application accounts for a 

majority of TPA consumption. End products of polyester fibers include industrial filaments and 

polyester filament yarns for consumer products such as apparel, carpets, home textiles and 

fiberfill. PET solid-state resins are the next major market for TPA. The end-use applications are 

for packaging and plastic bottles as food and beverage containers. The third major TPA 

application is polyester film mostly used for magnetic tape and packaging. Remaining minor 

TPA uses include production of polybutylene terephthalate, polytrimethylene terephthalate and 

aramid fibers.  
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Figure 1.1: Major applications of polyethylene terephthalate (PET) 

1.2    Current Industry Status 

1.2.1 Worldwide demand for TPA 

TPA is a growing industry worldwide and the demand is driven by the polyester markets. 

Global TPA supply and demand was approximately 42 million metric tons in 2009 [4]. From 

1999 to 2009, the global TPA demand grew at a rate of 7-8%/yr. This growth rate decreased 

following the global economic recession in 2008. 

The current global TPA growth is largely driven by the Asia region, which accounts for about 

70% of the world TPA capacity. Asian TPA market is primarily driven by PET fibers, while in 

North America and Western Europe, TPA growth is associated primarily with PET bottle resin 

market [5]. The TPA demand by geographic regions is shown in Figure 1.2 [6]. 

PET 
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Figure 1.2: Projected growth in demand for TPA in various geographic regions [6] 

1.2.2 Commercial TPA processes 

Most of the commercial TPA processes are based on the core technology originally developed 

by Mid-Century Corporation — a liquid phase bromine-promoted catalytic oxidation of p-xylene 

(pX) by means of air or molecular oxygen [7]. Less than 1% of the world capacity of TPA 

production is based on the DMT (dimethyl terephthalate) hydrolysis technology. Based on the 

impurity levels of the TPA product, the commercial TPA processes are categorized into Purified 

TPA (PTA) process and Medium Quality TPA (MTA) process. 

The well-known Amoco (acquired by BP in 1997) Mid-Century (MC) process is currently the 

leading TPA technology. It involves an oxidation reactor system in which air is dispersed into 

the stirred liquid phase containing pX and Co/Mn/Br based catalyst dissolved in aqueous acetic 

acid. The reactors are lined with titanium to withstand the highly corrosive hydrobromic acid in 
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the reaction mixture. A downstream hydrogenation reactor is deployed to remove 4-

carboxybenzaldehyde (4-CBA), the main and most troublesome impurity. The crude TPA solid 

from the oxidation reactor contains 1000-4000 ppm of 4-CBA [8] due to incomplete oxidation. 

Most polyester applications require stringent TPA purity specifications of less than 25 ppm 4-

CBA and 150 ppm p-toluic acid (p-TA) each [9] because 4-CBA and p-TA are polymerization 

terminators in the polymerization process for PET production. The erstwhile Amoco Company 

developed the hydrogenation purification step to upgrade the resulting crude TPA to high purity 

polymer-grade TPA or purified TPA (PTA) [10]. BP, DuPont, Dow Chemical, Mitsubishi 

Chemical, Eastman Chemical, Mitsui Chemicals, Interquisa, Hitachi and Grupo Petromex are 

currently the main commercial TPA technology license holders and licensors. BP is currently the 

world’s largest TPA producer with an annual capacity of 7.5 million metric tons in 2011 [11].  

By eliminating the hydrogenation step and adding one or more post-oxidation reactors, a 

Medium Quality Terephthalic Acid (MTA) process has been developed and commercialized 

[12]. Eastman Chemical is the original licensor of this technology. The TPA product from the 

MTA process has higher 4-CBA levels (~500 ppm) compared to the MC process, which prevents 

its use in some polyester applications. 

Generally, the variations of the MC process technology are related to reaction conditions, 

catalysts, off-gas treatment method, energy recovery method, acetic acid separation and 

recycling, and solid-liquid separation techniques. Table 1.1 summarizes the oxidation reaction 

conditions and technology characteristics of major commercial TPA processes assembled from a 

large number of patents. 
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Table 1.1: Oxidation reaction conditions and technology characteristics of major commercial 

TPA processes 

Process Oxidation reaction 
conditions Technology characteristics References 

MC Process 
(BP Amoco) 

T: 190-205 °C  
P: 15-30 bar 
catalyst: Co/Mn/Br 
solvent: acetic acid 

Leading TPA technology; 
New-generation TPA process (X 
Technology): involves improvements in 
water recycle and solid-liquid separation 

7, 13-21 

INVISTA 
Process 

(ICI-DuPont) 
 

MC Process conditions 

TOUGH MaxTM process: involves improved 
plant layout and solid-liquid separation 
methods; 
R2R technology of residue recovery 

8, 22-26 

Dow-Inca 
Process MC Process conditions 

COMPRESS™ PTA technology: involves 
pressure filtration technology and a novel 
agitation system (to increase mass transfer 
coefficient) 

27-29 

Eastman-
Kodak 
Process 

T: 120-175 °C  
P: 7.5-15 bar 
catalyst: Co/acetaldehyde 
solvent: acetic acid 

Acetic acid is a co-product in the process; 
Use of acetaldehyde in place of bromide 
allows the use of conventional material of 
construction such as stainless steel and 
carbon steel;  
Product purity ~ 99%. 

13, 14, 30, 31 

Toray 
Process 

T: 110-140 °C  
P: 30 bar 
catalyst: Co/paraldehyde 
solvent: acetic acid 

Paraldehyde is effective at relatively mild 
reaction conditions resulting in less colored 
impurities; 
Use of acetaldehyde in place of bromide 
allows the use of conventional material of 
construction such as stainless steel and 
carbon steel; 
Product purity ~ 99%. 

13, 14, 32, 33 

Teijin 
Process 

T: 100-130 °C  
P: 10 bar 
catalyst: Co 
solvent: acetic acid 

High concentrations of Co are used under 
mild conditions with no promotors; 
Conventional material of construction such 
as stainless steel and carbon steel can be used 
for the apparatus; 
No coloring impurities such as biphenyl 
ketone compounds are present so good color 
tone is easily achieved; 
Product purity ~ 99%. 

14, 34, 35 
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1.3    Technical Aspects of TPA Process 

1.3.1 Main chemical reactions 

The commercial MC process involves a TPA synthesis step by the oxidation of pX and a TPA 

purification step by the hydrogenation of 4-CBA. The overall stoichiometric equation for pX 

oxidation and 4-CBA hydrogenation is shown in eqns. 1.1 and 1.2, respectively. 

     (eqn. 1.1) 

     (eqn. 1.2) 

pX oxidation 

The pX oxidation is typically conducted at 190-205 °C and 15-30 bar [13]. A catalyst mixture 

of cobalt and manganese acetates is employed and hydrobromic acid or sodium bromide acts as 

the catalyst promoter reducing the induction period [14, 36]. Aqueous acetic acid is used as the 

reaction medium. The oxidation reaction is highly exothermic with the heat of reaction of 

approximately 1,300 kJ/mol for pX conversion to TPA [37, 38]. The reaction involves a complex 

free radical chain mechanism [36] and is believed to proceed through the sequential reactions 

shown in Figure 1.3. 

CH3

CH3 COOH

COOH

+   3O2 +    2H2O    

  pX TPA

CHO

COOH COOH

CH3

+   2H2 +    H2O    

  4-CBA  p-TA
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Figure 1.3: Sequential reaction network for pX oxidation to TPA 

In addition to the intermediates shown in Figure 1.3, there are many other byproducts formed 

in the pX oxidation process to TPA. These impurities can be grouped into the derivatives of 

benzoic acid, phenol, terephthalic acid, diphenyl, fluorenone, benzophenone, anthraquinone, 

aromatic esters and bromine-substituted intermediates [39]. The formation of these compounds is 

due to the side reactions, radical and/or ionic, occurring among pX, the oxidation intermediates, 

reaction solvent, and the catalytic system. The major impurities are 4-CBA, p-TA, p-

tolualdehyde (TALD), benzoic acid, 1,4-benzenedimethanol diacetate and 4-hydroxymethyl 

benzoic acid (4-HMBA), the structures of which are shown in Figure 1.4. These byproducts are 

mostly present in the mother liquor and can be easily separated from the solid TPA product by 

crystallization under specified conditions. Some troublesome impurities such as 4-CBA tend to 

co-precipitate during the reaction and be embodied in the solid product obtained from the final 

step of the mother liquor separation. Hence, a subsequent purification step is needed to reduce 

these impurities to acceptable levels. 

 

terephthalic acid    

COOH

COOH

4-carboxybenzaldehyde

CHO

COOHCOOH

CH3
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CH3

CHO
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CH3

CH3
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Figure 1.4: Structures of major impurities formed during pX oxidation to TPA 

Over-oxidation of hydrocarbon reactant, intermediates and solvent (also termed as “burning” 

[40]) along with decarboxylation and decarbonylation form the undesired products such as CO, 

CO2, water, benzoic acid, methyl acetate and methyl bromide. The formation of COx (CO and 

CO2) provides a measure of burning reactions and the CO2/CO molar ratio (the so-called 

“burning index”) is typically around 3 [3] in the TPA process. It is estimated that 70% of acetic 

acid produced worldwide is used to manufacture TPA. Approximately 5% of the acetic acid is 

burned per pass [3]. This is equivalent to approximately 0.07 lb of acetic acid burned per pound 

of TPA produced [6]. Another important byproduct during TPA production is methyl acetate, 

which is formed by the oxidation of acetic acid solvent (eqn. 1.3). Roffia et al. [41] studied the 

formation of methyl acetate and found that methyl acetate can be conveniently hydrolyzed over 

ion exchange catalysts, for example, to convert methyl acetate to methanol and acetic acid, 

which is then recycled. 

2 CH3COOH + ½ O2 ! CH3COOCH3 + H2O + CO2    (eqn. 1.3) 

4-CBA hydrogenation 

The 4-CBA is dissolved with the crude TPA in water and then selectively converted to p-TA. 

The TPA re-dissolved in water is recrystallized from aqueous solution. The hydrogenation of 4-

CBA is typically carried out in a fixed-bed reactor containing a carbon-supported palladium 

  4-CBA

CHO

COOH
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COOH

CH3
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CH3
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catalyst to quantitatively convert 4-CBA to p-TA at 275-290 °C and 70-90 bar [8, 10]. The p-TA 

produced is then removed from the recrystallized TPA product by solid-liquid separation. The 

hydrogenation step also removes coloring in the TPA product by converting the yellow-colored 

fluorenones to the colorless fluorenes. The examples of structures of fluorenones and fluorenes 

are shown in Figure 1.5. 

 

Figure 1.5: Structures of fluorenones and fluorenes 

1.3.2 Product quality specifications 

The TPA product that is used in the polyester industry must satisfy stringent product 

specifications. Impurities with only one carboxylic acid group, such as 4-CBA, p-TA and 

benzoic acid, are polymerization terminators in the polymerization process for PET production 

and must be limited to very low levels. Trifunctional carboxylic acids can cause chain branching 

resulting in undesirable rheological and spinning properties. Inorganic impurities such as residual 

Co and Mn contents must also be restricted to < 10 ppm. Color and particle size are also 

important specification parameters. Colored impurities such as 4-CBA and fluorenones can be 

incorporated into the polyester. In particular, it is believed that 4-CBA levels of 1000-4000 ppm 

in the crude TPA have a major impact on the polyester color. However, 4-CBA levels below 300 

ppm are less of color concern. Particle size determines the flow and the handling of the crystal 

TPA product as well as the viscosity of the slurry when mixed with ethylene glycol. Table 1.2 

O

COOH

COOH

fluorenone   

COOH

COOH

fluorene       



! 11 

lists the quantitative TPA product specifications on impurity levels, color and particle size [42]. 

The acid number is typically determined by titration. A perfectly pure TPA sample will have an 

acid number of 675.5 mg KOH/g, but the extremely low impurity levels make the acid number 

meaningless as a quantitative indication of purity, and it is being phased out [42]. 

Table 1.2: TPA product specifications 

Item Specification 
Typical value 

PTA MTA 
Acid number, mg KOH/g 675±2 673-675 673-675 
Organic impurities, ppm    
     4-CBA ≤ 25 15 250-500 
     p-TA ≤ 125±45 100-250 < 50 
     Benzoic acid — < 5 15-40 
     Acetic acid — Trace 400-800 
     Trimellitic acid — 10-20 40-100 
Inorganic impurities    
     aMetals, ppm ≤ 9 < 2 < 2 
     bAsh, ppm ≤ 15 < 3 < 3 
     Water, wt% ≤ 0.2 0.1 < 0.1 
cColor-L, % — 98.7-99.1 97.5-99 
Color-b — 0.7-1.7 2-3 
Particle size, µm — 100-150 65-85 
aCo+Mn+Fe+Cr+Ni+Mo+Ti. 
bTrace metal oxides. 
cThe color of TPA crystals is measured in terms of a tristimulus color scale such as the CIE 

L*a*b scale [43]. The L* value measures dark to light and ranges from 0 to 100. The b* value 

measures yellow to blue, with higher values indicating higher yellow intensity.  

1.3.3 Mechanism of pX oxidation with MC catalyst 

The liquid-phase catalytic oxidation of pX with the MC catalytic system (Co/Mn/Br) is 

generally believed to follow a free radical chain mechanism [36]. As other free radical chain 

reactions generally have, the oxidation reaction of pX to TPA involves initiation, propagation 
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and termination steps. The model for redox activity of the MC catalyst [6] and the three steps of 

free radical chain reactions [44] are shown in Figures 1.6 and 1.7, respectively. In Figure 1.7, M 

denotes metal catalyst such as Co or Mn, R denotes aromatic reactants and I denotes radicals 

produced.  

 

Figure 1.6: Model for redox activity of MC catalyst components [6] 

 

Figure 1.7: Initiation, propagation and termination steps of free radical chain reactions  

during pX oxidation to TPA with Co/Mn/Br system [44] 

O2 or 
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The initiation step involves the formation of a highly unstable radical of pX by hydrogen atom 

abstraction. Even though Co(III) is capable of performing hydrogen abstraction to make the 

radical of pX, using cobalt as the sole catalyst is inefficient because the hydrogen abstraction is 

very slow. It is well accepted that the initiation mechanism is predominantly due to bromine 

radicals originated from bromine ions that are oxidized by Co(III) and Mn(III). The formation of 

the radical of pX invokes the classical chain reaction scheme and greatly amplifies the initiation 

sequence via a propagation step. The propagation steps consist of oxidation of the substrates by 

molecular oxygen, metal ion, and bromine radical, and the reduction of radicals and 

hydroperoxides by metal ion. A substance of interest is the peroxy acid that is formed from 

oxygenated radicals like benzaldehydes, which is the basis of the Eastman-Kodak process and 

the Toray process (refer to Table 1.1), in which aldehydes are added as promoters due to their 

ability to form the peroxy acid as the radical initiating specie. In addition, owing to the electron-

withdrawing nature of the carboxyl group, the oxidation of the second methyl group (i.e., the 

methyl group on the p-TA) is more challenging. Heiba et al. [45] found that the rate of reaction 

of Co(III) in acetic acid of p-TA is 26 times slower than that of pX. The addition of acetaldehyde 

in the Eastman-Kodak process and the Toray process can effectively resolve the problem of the 

termination of oxygenation caused by the electronic deactivation of the ring. The termination 

step consists of the reactions between two radicals to form the TPA product and the byproducts. 

Partenheimer [46] illustrated the functions of the Co/Mn/Br catalyst in the oxidation of pX to 

TPA. Generally, according to his chemical model, cobalt appears unique among the first row 

transition metals in its weak reaction with acetic acid, which produces a small amount of Co(III) 

to initiate the reaction. When bromide is added, there is a large increase in activity and selectivity 

due to the rapid electron transfer from cobalt to bromide. In addition, there is a competition for 
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Co(III) by methylbenzene (to make the radical of p-TA) and decarboxylation of acetic acid. At 

high temperatures, most of the Co(III) is being wasted in the decarboxylation of the solvent. The 

addition of bromide raises the temperature barrier to increase the reaction rate of the oxidation of 

the second methyl group. Manganese operates in much the same way as bromide by rapid 

electron transfer between cobalt and manganese species. The synergy effect between manganese 

and cobalt further increases the activity and selectivity as well as decreases decarboxylation 

reactions. In addition, given that manganese costs less than cobalt there is an economic incentive 

to reduce the cobalt usage. 

1.3.4 Kinetics of pX oxidation to TPA 

The intrinsic kinetic rates of the sequential steps during pX oxidation under MC process 

conditions (200 °C, 15 bar) are extremely fast and tend to be limited by gas-liquid mass transfer 

resistance. Due to this reason, obtaining reliable kinetics of pX oxidation to TPA is a challenge. 

Some reported kinetic studies are under low temperatures or under conditions that are far away 

from the industrial reaction conditions to slow down the reactions. To the best of our knowledge, 

all the reported kinetic studies of pX oxidation to TPA are based on relatively high pX 

concentrations at which the TPA product will exceed its solubility and precipitate resulting in a 

gas-liquid-solid reaction system. Literature review of kinetic study of liquid phase pX oxidation 

to TPA will be summarized in section 2.2 of Chapter 2. 

1.3.5 Heat management 

The reaction of pX oxidation is highly exothermic and the heat of reaction can reach 

approximately 1,300 kJ/mol at the total conversion of pX to TPA [37, 38].  Heat removal with 

the use of jacket cooling or cooling coils in the reactor or an external heat exchanger could be 

ineffective because fouling is important in this case due to the precipitation of TPA. Here 
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evaporative cooling is a preferable heat removal method compared to the others. Evaporative 

cooling reactors, also known as autorefrigerated reactors, are chemical reactors in which the 

cooling of the liquid phase where the reaction takes place is achieved by partial evaporation of 

the liquid [47]. The heat generation due to the oxidation of pX to TPA in industrial oxidation 

reactors is partly controlled by the evaporative cooling of the solvent (acetic acid) [48]. The 

latent heat of evaporation of acetic acid plays a significant role in thermal management as large 

quantities of the solvent are used in this process. A mathematical model of an evaporative 

cooling reactor operated at typical MC process conditions will be developed to quantify the 

effect of the solvent evaporation as a main source of reactor cooling in section 2.1.2. 

1.3.6 Technical developments 

Incremental technical developments have been made during the last several decades to 

improve the TPA process. Efforts towards developing greener TPA technologies have focused 

on several fronts such as the elimination of the hydrogenation step (the aforementioned MTA 

process is a typical example), an alternative solvent that is less susceptible than acetic acid to 

burning, milder reaction conditions and less corrosive catalytic system that avoids the use of 

bromine. This section reviews the developments of significance in this area. 

1.3.6.1 Reaction conditions 

Acetic acid to pX ratio in the feed 

The typical acetic acid solvent to pX weight ratio in the reactor feed is 2-4 in the MC process. 

Mitsui Petrochemical [49] reported a TPA process wherein this ratio falls in the range of 6.5-15, 

leading to a solid TPA concentration in the oxidation reactor below 20 wt%. The residence time 

was reported to be in the range of 4.5-45 minutes. This set of operating conditions is claimed to 
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facilitate the diffusion of oxygen into the reaction medium and to allow operation at a shorter 

residence time than that in the conventional MC process resulting in increased volumetric 

productivity in the reactor and an efficient production of aromatic carboxylic acids. However, the 

higher acetic acid throughput will require greater equipment sizing and higher energy input, 

resulting in an adverse economic and environmental impact. The effects of acetic acid to pX ratio 

in the feed on temperature control and on process economics and environmental impacts will be 

discussed in Chapters 2 and 4, respectively. 

Co/Mn/Br ratio 

As explained in section 1.3.3, cobalt and manganese exhibit synergy in the overall mechanism. 

Cheng et al. [50] reported that the variation of the Co/Mn ratio had a strong effect on the activity 

and selectivity of the catalyst system. For the main reaction (pX ! TPA), Cheng et al. reported 

an optimum Co/Mn ratio at which the rates of the two intermediate oxidation steps of p-TA and 

4-CBA (Figure 1.3) attained a maximum. The optimum Co/Mn ratio decreased with an increase 

of reaction temperature. However, for the side reactions, the rate increased monotonically with 

the increase of Co/Mn ratio. In addition, since cobalt is more expensive than manganese, more 

manganese is typically used than cobalt. The molar Mn/Co ratio in the MC process is typically 

between 1 and 3. 

 The role of bromide in the MC catalyst system has also been described in section 1.3.3. 

Kamiya et al. [51] investigated the effect of bromine/metals ratio on the reaction rate and found 

that at a cobalt concentration of 0.05 M, the pX ! TPA oxidation rate rapidly increased to a 

maximum value as the molar Br/Co ratio was increased to 1 and remained constant up to a ratio 

of 9. The optimum Br/Co ratio, at which the pX ! TPA oxidation rate attains a maximum, 

increased when lowering the cobalt concentration. However, considering the equipment 
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corrosion issue and the production of methyl bromide, an ozone depleting gas, high levels of 

bromide should be avoided. The operating molar Br/Co ratio is typically 0.5-1 in the MC process 

[52]. On the other hand, too low a concentration of bromide can cause precipitation of the 

manganese resulting in MnO2, leading to a grey color in the solid TPA product. Incorporating 

one or more types of transition or lanthanide metal components as additives to the MC catalyst 

can effectively alleviate this problem. Further, most of these additives were reported to also 

increase catalytic activity [53-59].  

Amoco Corporation [53] reported that the addition of hafnium [<250 ppmw (parts per million 

by weight) of the total reactor mother liquor] to the Co/Mn/Br catalyst system could increase the 

catalytic activity and allow a reduction in the net catalyst amounts required, leading to a 

reduction in bromine emissions. In one of their more recent patents [54], cerium was used as a 

catalyst additive and the molar ratio of bromine to total cobalt and manganese could be reduced 

to <0.3 by adding 0.1-0.3 mole of cerium per mole of cobalt. The addition of molybdenum [55] 

has also been shown to enhance catalytic activity as manifested by higher yields of aromatic 

acids. In addition, zirconium [56-58] has also been proven to activate a Co/Mn/Br catalyst and to 

enhance the rate of oxidation of pX. Samsung General Chemicals [59] reported an alkali metal or 

alkaline earth metal (preferably K, Na, or Cs) as additives to the Co/Mn/Br catalyst system and 

found that such additives enhanced both the yield as well as purity of the TPA product. Thus, in 

addition to alleviating Mn precipitation, the aforementioned catalyst additives are to some extent 

able to also improve the catalytic activity allowing the use of reduced amounts of catalytic 

components. The reduction in Br usage should significantly alleviate the environmental and 

equipment corrosion problems. 
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Co-feeds 

Use of hydrocarbon additives as co-feeds with pX has been reported. Mitsubishi Chemical [60] 

incorporated 3-35 wt% of p-tolualdehyde in the pX feed and reported that the additive could 

reduce the acetic acid solvent burning rate and improve the solid TPA product quality. Mitsui 

Petrochemical [61] claimed that adding 0.5 ppm to 1 wt% of n-eicosane to the pX feed prevented 

foaming of the reaction mixture and improved the volumetric production efficiency in the 

oxidation reactor. Use of CO2 additive as co-feed was first reported by Samsung General 

Chemicals [62]. In their patent, a feed gas containing oxygen and at least 4 vol% of CO2 was 

used to oxidize pX to TPA. It was reported that the addition of CO2 enhanced the TPA yield by 

nearly 8%. 

Oxygen-enriched feed gas 

A number of patents [48, 63-66] deal with the use of pure or nearly pure oxygen or oxygen-

enriched air as the feed gas for pX oxidation. This method was aimed to reduce the compressor 

energy, the amount of vent gas treated and the operating pressure. However, the inventions do 

not address gas-phase flammability and associated safety issues. The use of oxygen-enriched gas 

has not yet been commercialized. 

Zuo et al. [3] investigated the use of CO2-expanded liquids (CXLs) for pX oxidation to TPA 

and found that the reaction with a CO2/O2 mixture (with the maximum O2 content being 50 vol%) 

instead of the traditional air oxidation system at lower temperatures (around 160 °C) increases 

the yield and purity of the TPA product while significantly reducing solvent burning. Since CO2 

has higher heat capacity and superior flame inhibition properties relative to nitrogen, oxygen-

enriched gas could be used as the reaction oxidant. The reduction in the flammability envelope in 

the pressure of CO2 will be addressed in more detail in Chapter 2. 
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1.3.6.2 Alternative catalyst 

Efforts have been studied over the years to seek alternative catalyst to the halide promoters in 

order to resolve the environmental and equipment corrosion problems. Shell Oil Company [67] 

reported that using a Co-Zr catalyst system between 80 and 130 °C and 2-3 atm in a stainless 

steel stirred tank reactor gave the pX conversion and TPA selectivity exceeding 90%. Chester et 

al. [68] found that the optimum Co/Zr ratio in neat acetic acid was 6-7 for maximum TPA yield 

and minimum induction period. Promotors such as CoBr2-MnBr2 [69, 70] instead of HBr as a 

bromine source, N-hydroxyphthalimide [71, 72], and N-hydroxy succinimide [73, 74] have also 

been reported for pX oxidation to TPA under milder conditions (~100 °C), but the pX conversion 

and TPA selectivity are below the typical industrial values. 

1.3.6.3 Alternative solvent 

Another promising alternative is to carry out the reaction of pX oxidation to TPA in a solvent 

other than acetic acid. The use of either supercritical or high-temperature liquid water as a benign 

substitute for acetic acid has been reported [75-78].  The reaction systems were necessarily 

operated at high temperatures (330-450 °C) and high pressures (250-270 bar) with TPA yields of 

>90%. The absence of acetic acid reduced the methyl bromide formation and CO2 emissions, and 

also eliminated the distillation column for acetic acid/water separation. A solvent comprising of 

benzoic acid and water has been reported by BP for the oxidation of pX to TPA [79]. Benzoic 

acid is easier to separate from water than acetic acid. Further, the use of benzoic acid allowed 

solid-liquid separation at elevated temperatures, leading to reduced co-crystallization of the 

product impurities. Dow chemical [80] reported an aqueous medium containing at least 30 wt% 

water and preferably up to 30 wt% surfactant such as stearic acid or α-olefin sulfonate and a low 

molecular weight material containing a hydrophilic end group as co-surfactant such as acetic 
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acid or benzoic acid for pX oxidation. To the best of our knowledge, none of these alternative 

solvents have been applied commercially yet. 

The above literature review outlined only the major technical developments regarding the 

oxidation reactor. In addition, a great number of patent applications deal with reactor design, unit 

operations for crystallization, product drying, acetic acid solvent dehydration, off-gas treatment, 

hydrogenation reactor, energy recovery method, and solid-liquid separation techniques. One 

should note that this literature review is by no means exhaustive as the volume of work reported 

on the TPA process is quite extensive. 

1.4    Challenges in the MC Process 

Although the MC process for TPA production has been practiced since the 1950s and has long 

been considered to be a mature technology, there are several challenges that remain to be 

addressed or improved. The major issues of the MC process are as follows. 

Hydrogenation step 

The polymer grade TPA product is achieved following complex purification steps involving 

hydrogenation under harsh reaction conditions (high temperature and pressure) using expensive 

metal catalysts as well as a number of additional solid-liquid separation steps. The TPA 

purification by hydrogenation doubles capital investment and increases operating costs by 

several cents/lb TPA [81]. Further, the fossil fuel-based hydrogen production and energy 

generation required for the hydrogenation step increases the environmental burdens. 

Solvent burning 

Roughly 5% of the acetic acid is destroyed by oxidative burning per pass, resulting in 

significant solvent loss and CO2 emissions. The burning of acetic acid is considered to be one of 
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the primary contributors to the variable cost in the production of TPA [6]. Therefore, solvent 

burning is a significant factor in the economics of the MC process. 

Corrosion issues 

Due to the corroding capability of acetic acid and hydrogen bromide at high operating 

temperatures toward the conventional material of construction apparatus such as stainless steel, 

titanium-lining is required for the oxidation reactor and some of the columns and heat 

exchangers, resulting in higher capital costs. Besides, the use of titanium only alleviates the 

corrosion and has limitations of its own.  

Safety issues 

The use of a flammable organic solvent (acetic acid) during the pX oxidation to TPA gives 

rise to vapor phase flammability concerns. Air is used as the primary oxidant instead of pure O2 

or oxygen-enriched air for safety reasons. The upper flammability limit (UFL) for acetic acid in 

air under ambient or elevated pressure (above 30 bar) is below 25 vol% and the lower 

flammability limit (LFL) is approximately 3 vol% [6, 82]. The oxidation reaction should be 

operated outside the flammability envelope. In addition, there exists an inherent safety concern, 

owning to titanium burning under oxygen-enriched atmospheres at high temperatures [6]. Both 

of these safety concerns necessitate monitoring and control of the oxygen content in the vapor 

phase. 

Off-Gas treatment 

Gaseous emissions from the TPA process are mostly the oxygen-depleted air from the 

oxidation step [83]. Volumes are large and the vent gas contaminated with VOCs (volatile 

organic compounds), COx and NOx must be cleansed via catalytic combustion followed by 
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scrubbing to meet the most demanding regulations for process vents. The large volumes of off-

gases requiring treatment increases process costs. 

1.5    Objectives and Organization of This Work 

This dissertation is aimed at developing a new process concept for TPA production that 

promotes process sustainability by solving some of the existing process challenges explained 

above. Toward this end, this dissertation introduces a novel spray reactor system for the 

oxidation of pX to TPA. The overall project goal is to investigate the feasibility and potential 

benefits of the spray reactor for TPA production — in terms of rational reactor design and safe 

operation, superior product yield and purity, economic viability and environmental sustainability 

— employing complementary experimental and theoretical approaches for process development. 

Specific objectives are to: 

(1) Perform kinetic study of pX liquid phase oxidation to TPA in a stirred reactor under 

homogeneous conditions (i.e., low pX concentrations employed to avoid TPA 

precipitation); 

(2) Develop and demonstrate a laboratory-scale spray reactor system for pX oxidation to 

TPA, benchmarking the process with performance metrics (pX conversion, TPA yield 

and purity, etc.) from a conventional stirred reaction configuration; 

(3) Develop and demonstrate a laboratory-scale continuous spray process. 

(4) Perform comparative economic and environmental impact assessments of the MC process 

and spray process for TPA production, based on plant-scale process simulations. 

The various chapters following this introductory chapter are organized as follows. In the next 

chapter of this dissertation, the kinetic study of pX liquid phase oxidation to TPA is investigated 

in a stirred reactor under homogeneous conditions employing low pX concentrations at which 
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product precipitation is avoided. A pseudo first-order kinetic model is proposed and kinetic rate 

constants are determined based on the experimental data. In Chapter 3, a semi-batch spray 

reactor is developed and demonstrated to produce high-purity TPA in one step. Theoretical 

analyses based on reactor engineering fundamentals such as O2 availability throughout the liquid 

phase, reactor stability and vapor phase flammability issues are considered in order to rationally 

design the reactor. Reaction parameters such as pX conversion, TPA yield and purity are 

examined to test the performance of the spray reactor. Chapter 4 describes the methodology and 

procedures to develop a continuous spray process. Some preliminary experimental results from 

the continuous spray reactor are reported. Chapter 5 covers the economic and environmental 

aspects of the conceptual spray process based on plant-scale simulation to assess the economic 

viability and the environmental benignity of the alternative spray process for TPA production. 

Finally, in Chapter 6, a summary of the conclusions of the current work and recommendations 

for future work are provided.  
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Chapter 2 Kinetic Studies of Homogeneous p-Xylene Oxidation to 

Terephthalic Acid in Acetic Acid with a Co/Mn/Br Catalyst 

 

 

 

In this chapter, the intrinsic kinetics of pX liquid phase oxidation to TPA is investigated in a 

stirred reactor under homogeneous conditions without product precipitation by employing low 

initial pX concentrations in order to avoid interphase gas-liquid and gas-solid mass transfer 

limitations. The kinetic study is important to the rational design and optimization of the CEBC 

spray process as well as to aid in reactor modeling studies. Before getting started, solubility 

studies are first performed to determine the homogeneous reaction conditions at which the TPA 

remains dissolved in solution. 

2.1    Solubility Studies of the MC Process Related Components 

2.1.1 Motivation 

The intrinsic solubilities of TPA, 4-CBA, and p-TA are generally considered in industrial 

TPA purification by crystallization. TPA is purified from the mixture of acetic acid and water as 

follows. In the oxidation section, the crude TPA product is recovered by a series of flash 

crystallizers (3-6 stages) with stepwise cooling [20]. In the subsequent hydrogenation section, the 

crude TPA is re-dissolved in water at elevated temperature of 275-290 °C [8, 10], then purified 

by hydrotreating and finally passed through a series of 3-6 stage crystallizers [10, 84] with 

stepwise cooling to recover the purified TPA product from aqueous solution. Measurements of 

solubilities of the aforementioned compounds in aqueous acetic acid are important for the 
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rational choice of operating conditions and for rational equipment design for the separation and 

purification steps.  

In the case of the spray reactor, reliable solubility data are important to determine the 

concentrations at which the TPA remains dissolved in solution at the reaction conditions. If the 

TPA and impurities precipitate, the solid particles could trap liquid reaction mixture and give rise 

to O2 diffusion limitations resulting in incomplete oxidation.  Intrinsic solubility studies will help 

determine the maximum pX concentration that may be used to maintain TPA dissolved in the 

liquid phase. These results will guide the choice of operating conditions that avoid solids 

formation during the kinetic studies (discussed in the next section) and during continuous 

operation to minimize O2 diffusion limitations as well as the possibility of valve plugging during 

continuous operation. 

The solubilities of TPA, 4-CBA and p-TA in acetic acid/water solvent mixtures have been 

investigated by several research groups [85-89]. Most of these studies followed the procedure of 

first experimentally measuring the solubility using one of the following techniques: (a) steady 

state method by sampling and analyzing the saturated solution, or (b) laser technique by 

observing the equilibrium temperature, and then correlating the experimental data to various 

phase equilibrium models. Table 2.1 outlines the temperature ranges of the reported solubility 

data. These literature data were obtained in relatively limited temperature ranges that do not 

provide adequate guidance for our experiments. Hence, it was decided to perform solubility 

studies covering a relatively wide temperature range. 
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Table 2.1: Temperature ranges of available literature solubility data 

Solute Solvent T Range Ref. 

TPA HOAc/H2O (HOAc = 0-100 wt%) 150 – 240 °C 85-89 

4-CBA HOAc/H2O (HOAc = 84.2 wt% or 100 wt%) 15 – 56 °C 87 

p-TA HOAc/H2O (HOAc = 84.2 wt% or 100 wt%) 18 – 76 °C 87 
 

2.1.2 Experimental method 

The solubility studies were performed in a 50 mL stirred vessel (Parr Instrument Company, 

Series 4560 Mini Bench Top Reactor) with view windows. The experimental method is similar 

to that reported by Chen and Ma [87], except that instead of using a laser technique, we observed 

the dissolving process visually, which is more common and simpler. The experimental procedure 

for a typical run is as follows: (a) A certain amount of TPA and 20 g of solvent (pure acetic acid 

or acetic acid/water solvent mixture with 95 wt% acetic acid) are loaded in the 50 mL vessel; (b) 

The vessel is pressurized with N2 to 15 bar; (c) The vessel is heated and the T at which 

dissolution and reprecipitation occurs is visually noted. Figure 2.1 shows the typical T & P 

profiles during the solubility studies. The vessel was heated very slowly and the stirring was 

started and stopped alternatively until no solute was precipitated from the solution, at which 

point the temperature would be the solubility temperature. The apparent oscillations in 

temperature and pressure rise and fall are due to the stirrer being turned on and off during the 

experiments. 
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Figure 2.1: Typical T & P profiles during solubility studies  

(T & P rise and fall due to stirrer turned on and off deliberately) 

2.1.3 Experimental results 

Solubility data of TPA, 4-CBA and p-TA in a wide temperature range were obtained (Figure 

2.2). Numerical data of the experimental solubilities are shown in Table A1 of Appendix A. The 

measured TPA solubility matches well with the literature data (Figure 2.2a) thus validating the 

experimental method. It was found that while water addition enhances TPA solubility in acetic 

acid at temperatures above 130 °C, the solubility is unaffected below this temperature. The 

solubilities in acetic acid follow the order p-TA > 4-CBA > TPA, with each successive increase 

or decrease being approximately one order of magnitude. The reaction was carried out at P and T 

such that TPA remains soluble in the liquid phase at reactor conditions during kinetic studies and 

continuous runs. The TPA was precipitated post reactor by cooling. 
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Figure 2.2: Solubilities of the MC process related components (14.5-15.5 bar in N2) 

(a) TPA; (b) 4-CBA and p-TA 
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2.2    Previous Work on Kinetics of pX Oxidation to TPA 

Due to its industrial importance, the kinetics of liquid-phase pX oxidation to TPA has been 

the subject of several reports [90-99]. The catalytic oxidation of pX to TPA with Co/Mn/Br 

catalyst system is known to proceed via a free radical chain mechanism (refer to section 1.3.3 for 

details of the reaction mechanism) involving a large number of radical and molecular species. A 

detailed kinetic scheme including all the elementary reactions and intermediates has not been 

possible primarily due to the difficulties in detecting and monitoring the highly reactive radicals 

over time. Because of this, “lumped” kinetic schemes and models [93, 97-99] have been adopted 

to simplify this complex reaction by taking into account only the most important molecular 

intermediates and relatively stable intermediate products such as p-tolualdehyde (TALD), p-

toluic acid (p-TA), 4-carboxybenzaldehyde (4-CBA) and TPA. 

The reported kinetic models of pX oxidation to TPA were developed based on the power law 

assumption or derived from the simplified radical chain reaction mechanisms. Cao and co-

workers [94-97] investigated the kinetics of pX oxidation at low temperatures (80-130 °C) and 

low pressure (1 atm) using methyl benzoate as the solvent and cobalt naphthenate and TALD as 

the catalyst and promoter, respectively. The rate of each oxidation step was assumed to be zero 

order in oxygen (when the oxygen partial pressure was greater than 50-100 Torr) and first-order 

with respect to the reactants being oxidized. A semi-batch reactor model which accounts for 

inter- and intra-phase gas-liquid mass transfer processes was presented and the agreement 

between model predictions and experimental data was shown to be satisfactory. Wang and co-

workers [44, 98] developed a fractional kinetic model based on the complicated radical chain 

reaction mechanism and determined that the apparent reaction order was <<1 based on pX 

oxidation to TPA experiments performed under industrial oxidation conditions. Model 
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parameters were determined from both batch and semi-continuous experimental results. Yan and 

co-workers [99, 100] extended the power law model and the fractional model to correlate the 

kinetic parameters from the industrial CSTR with those from the laboratory reactor using data 

mining approach based on artificial neural network (ANN). Researchers from the same institute 

as Yan [93, 101] developed a simplified free-radical reaction kinetic model in which peroxy 

radicals were involved in the lumped reaction equations. Table 2.2 lists the various kinetic 

models along with lumped reaction equations and reaction conditions from the available 

literature. 

 



!
31

 

Ta
bl

e 
2.

2:
 V

ar
io

us
 k

in
et

ic
 m

od
el

s f
or

 p
X

 o
xi

da
tio

n 
to

 T
PA

 fr
om

 li
te

ra
tu

re
 

In
st

itu
tio

n 
R

ea
ct

io
n 

co
nd

iti
on

s 
pX

 c
on

c.
 

(M
) 

Lu
m

pe
d 

ki
ne

tic
 sc

he
m

e 
K

in
et

ic
 m

od
el

 
R

ef
. 

Th
e 

U
ni

ve
rs

ity
 

of
 C

ag
lia

ri,
 

Ita
ly

 

T:
 8

0-
13

0 
°C

 
P:

 1
 a

tm
 

ca
ta

ly
st

:  
co

ba
lt 

na
ph

th
en

at
e 

 
   

(1
.6

7-
33

.3
*1

0-4
 m

ol
/k

gl
) 

pr
om

ot
er

: T
A

LD
 (0

.1
1 

m
ol

/k
g l

 ) 
so

lv
en

t: 
m

et
hy

l b
en

zo
at

e 
pu

re
 O

2 o
r a

ir 

4.
33

-9
.7

5 

 

 r j
=

k jc
j 

97
 

Zh
ej

ia
ng

 
U

ni
ve

rs
ity

, 
C

hi
na

 

T:
 1

85
-1

97
 °

C
 

P:
 P

O
2=

12
-4

0 
kP

a 
ca

ta
ly

st
:  

C
o 

(2
.5

-5
.5

*1
0-2

 m
ol

/k
g H

A
c) 

M
n 

(2
.3

3-
5.

12
*1

0-2
 m

ol
/k

g H
A

c) 
B

r (
3.

39
-9

.4
9*

10
-2

 m
ol

/k
g H

A
c) 

so
lv

en
t: 

ac
et

ic
 a

ci
d 

ai
r 

0.
50

 –
 3

.3
0 

 
  r j

=
k j

c j

d iC
i
+
θ

i=
14 ∑⎛ ⎝⎜

⎞ ⎠⎟β
j

 
98

 

Ea
st

 C
hi

na
 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

, 
C

hi
na

 

T:
 1

80
-1

95
 °

C
 

ca
ta

ly
st

:  
C

o 
(0

.0
1-

0.
08

 w
t%

) 
M

n 
 (0

.0
1-

0.
08

 w
t%

) 
B

r  
(0

.0
1-

0.
1 

w
t%

) 
so

lv
en

t: 
ac

et
ic

 a
ci

d 
ai

r 
 

0.
21

 –
 3

.6
8 

 

 r j
=

k jc
jm

 
m

 =
 0

.6
5 

w
he

n 
j 

re
pr

es
en

ts
 p

X
; m

 =
 1

 
w

he
n 
j r

ep
re

se
nt

s 
ot

he
r l

iq
ui

d 
re

ac
ta

nt
s 

99
 

pX
k 1

k 2
TA

LD
k 5

p-
TA

k 6
4-

C
B

A
TP

A

p-
to

lu
ic

 a
lc

oh
ol

k 4
k 3

k 7
k 8

4-
ca

rb
ox

yb
en

zy
la

lc
oh

ol

te
re

ph
th

al
ic

 a
ld

eh
yd

e
k 9

k 1
0

TP
A

4-
CB
A

k 4
p-
TA

k 3
TA
LD

k 2
k 1

pX

TP
A

4-
CB
A

k 4
p-
TA

k 3
TA
LD

k 2
k 1

pX



!
32

 

Ea
st

 C
hi

na
 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

, 
C

hi
na

 

T:
 1

58
-1

90
 °

C
 

ca
ta

ly
st

:  
C

o 
(4

50
-8

00
 p

pm
) 

M
n 

 (2
00

-4
00

 p
pm

) 
B

r  
(7

00
-1

20
0 

pp
m

) 
so

lv
en

t: 
ac

et
ic

 a
ci

d 
ai

r 

0.
35

-0
.5

 

 
M

 d
en

ot
es

 p
X

, T
A

LD
, p

-T
A

, 4
-C

B
A

 o
r T

PA
; i

 a
nd

 j 
de

no
te

 a
lk

yl
 o

r a
cy

l; 
[O

] d
en

ot
es

 c
or

re
sp

on
di

ng
 

pe
ro

xy
 ra

di
ca

ls
 

 r j
=

k j
c i

∏
 

93
 

 

M
  +

  O
2

[O
] M

k 1

[O
] M

+ 
 p

X
  +

  O
2

k 2
M

  +
  [

O
] p

X

M
  +

  [
O

] T
A

LD
k 3

+ 
 T

A
LD

  +
  O

2
[O

] M

[O
] M

+ 
 p

-T
A

  +
  O

2
k 4

M
  +

  [
O

] p
-T

A

[O
] M

+ 
 4

-C
B

A
  +

  O
2

k 5
M

  +
  [

O
] 4

-C
B

A

i-O
O

k 6
j-O

O
+

i-O
4-
j



! 33 

2.3    Motivation and Significance of This Work 

To the best of our knowledge, all the reported kinetic studies of pX oxidation to TPA are 

based on relatively high pX concentrations (Table 2.2) at which the TPA product will exceed its 

solubility and precipitate resulting in a gas-liquid-solid reaction system. The kinetic parameters 

obtained under these reaction conditions could be subject to interphase mass transfer limitations. 

If TPA precipitates as a solid, it traps some of the reaction intermediates into its solid structure 

removing the intermediates from solution.  The trapped intermediates would then react slower. 

By eliminating the formation of solids in the liquid phase (lower pX concentrations are used to 

prevent TPA precipitation) gas-solid and liquid-solid mass transfer steps can be eliminated. 

Further, the various dissolved products can be more accurately sampled and analyzed. 

In this work, the intrinsic kinetics of pX liquid phase oxidation to TPA was investigated in a 

stirred reactor under homogeneous conditions employing low pX concentrations at which 

product precipitation is avoided even at total pX conversion to TPA. In this manner, interphase 

gas-liquid and gas-solid mass transfer resistances that are prevalent in most reported kinetic 

studies are avoided. A first order kinetic model was assumed based on a lumped reaction scheme 

in which the oxygen concentration is maintained constant in stoichiometric excess for complete 

pX oxidation to TPA. Kinetic rate constants were obtained by non-linear regression of the 

experimental data to fit the model. Such a kinetic model is essential for the rational design, 

optimization and scale-up of the spray reactor.  
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2.4 Experimental 

2.4.1 Materials 

The following chemicals were used as obtained from Sigma-Aldrich without further 

purification: pX (substrate), cobalt(II) acetate tetrahydrate (catalyst), manganese(II) acetate 

tetrahydrate (catalyst), hydrobromic acid (48% in water) (promoter), acetic acid (solvent), 

biphenyl (internal standard). Ultra high purity (UHP) grade oxygen and industrial grade CO2 

were purchased from Airgas and Linweld, respectively. 

2.4.2 Experimental setup and procedure 

The experimental apparatus employed in this work is shown in Figure 2.3. The 50 mL 

titanium stirred vessel (Parr Instrument Company, Series 4560 Mini Bench Top Reactor) was 

equipped with a magnetically driven impeller for stirring, a dual probe J-type thermocouple and 

an OMEGA transducer for measuring the reactor temperature and pressure. The temperature and 

pressure were continuously recorded and controlled with the help of a LabVIEW® data 

acquisition system. The reactor was modified to accommodate multiple inlet/outlet ports for (a) 

introducing O2 via a dip tube/sparger, (b) sampling the liquid phase via a 1/16” titanium dip tube, 

(c) withdrawing the vapor phase, and (d) providing a pressure relief valve. 
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Figure 2.3: Experimental apparatus for pX oxidation to TPA 

In a typical experimental run, the reactor was initially charged with a 35 mL solution of pX, 

Co/Mn/Br catalyst and biphenyl in acetic acid. This homogeneous mixture is pressurized with 

CO2 to 2.5 bar, and then heated to the desired temperature. After the temperature and pressure 

stabilized, O2 was added to the reactor to initiate the oxidation reaction. The O2 consumed in the 

liquid phase by reaction was continuously replenished from an external reservoir such that O2 

partial pressure (and therefore reactor pressure) was maintained constant. To avoid sampling 

errors due to product flashing and the TPA sticking to the inner wall of the tubing, the liquid 

phase was directly sampled into 15 mL DMF (N,N-dimethylformamide) solvent. The titanium 

sampling line was heated to 200 °C to avoid TPA precipitation. The unheated line was flushed 

by DMF after each sampling to remove residual reactants and products from the line. Table 2.3 
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summarizes the operating conditions of the pX oxidation experiments. Typical industrial 

conditions and operating conditions used for the reported kinetic study are also listed for 

comparison. 

Table 2.3: Operating conditions of the pX oxidation experiments  

Run # Stirring rate 
(rpm) 

T (°C) aPO2 (bar) CpX,0 (M) CCo (M) CMn (M) CBr (M) 
1 600 200 3.4 0.025 0.0125 0.0125 0.035 
2 800 200 3.4 0.025 0.0125 0.0125 0.035 
3 1000 200 3.4 0.025 0.0125 0.0125 0.035 
4 1200 200 3.4 0.025 0.0125 0.0125 0.035 
5 1400 200 3.4 0.025 0.0125 0.0125 0.035 
6 1000 200 3.4 0.025 0.0125 0.0125 0.016 
7 1000 200 3.4 0.025 0.0125 0.0125 0.009 
8 1000 200 3.4 0.025 0.0125 0.0125 0.005 
9 1000 200 3.4 0.025 0.0125 0.0125 0.002 
10 1000 200 3.4 0.025 0.0125 0.0125 0.001 
11 1000 200 3.4 0.035 0.0125 0.0125 0.016 
12 1000 200 3.4 0.014 0.0125 0.0125 0.016 

Industry [20] — 195 0.5 3.8 0.006 0.017 0.01 
Wang et al [98] 800 191 0.4 0.9 0.3 0.3 0.9 

aThe total pressure is 15 bar. 

2.4.3 Analytical techniques 

The reactant (pX), intermediates (TALD, p-TA, BPTA and 4-CBA) and desired product (TPA) 

were analyzed by HPLC using the gradient elution technique described by Viola and Cao [102]. 

Specifically, the mobile phase consisted of three eluents: aqueous phase (0.1 wt% phosphoric 

acid) and an organic phase consisting of 7 parts acetonitrile and 2 parts methanol by volume. The 

gradient elution program was as follows: at 0 min, 100 vol% aqueous phase; from 0 to 5 min, the 

eluent mixture was changed linearly with time to 95 vol% aqueous phase and 5 vol% organic 

phase; from 5 to 10 min, the mixture composition changed linearly with time to become 40 vol% 
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aqueous phase and 60 vol% organic phase; from 10 to 24 min, the mixture composition was kept 

constant. The total flow rate of the mobile phase was 1 mL/min. A UV detector was used to 

quantify the products using biphenyl as internal standard (215 nm for pX and 254 nm for all 

other products). The HPLC samples were prepared from those collected during the reaction and 

adding 15 mL acetic acid to each sample. Figure 2.4 shows a typical chromatogram obtained 

from HPLC analysis of a sample. The carbon balance estimated from only the concentrations of 

the aromatic compounds was found to be >95%. In this work, the combustion reactions and 

volatilization were neglected. 

 

Figure 2.4: Typical HPLC chromatogram of a product sample  

(after 15 sec. of pX oxidation showing initial product + intermediates) 

2.5    Lumped Kinetic Scheme and Semi-Batch Reactor Model 

None of the reported lumped kinetic models for pX oxidation to TPA account for 4-

bromomethyl benzoic acid (BPTA), significant amounts of which are detected in our 
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experiments. Considering its possible important role in the process, the formation and 

disappearance of BPTA are also included in our proposed lumped kinetic scheme as a parallel 

reaction, as shown in Figure 2.5. BPTA is formed by the substitution reaction involving p-TA 

and HBr, and is oxidized in the presence of oxygen to 4-CBA. The proposed chemical reaction 

equations associated with the formation and oxidation of BPTA are shown in Figure 2.6. 

 

Figure 2.5: Proposed lumped kinetic scheme for pX oxidation to TPA 
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Figure 2.6: Formation and oxidation of BPTA 

The reported power law kinetic models for pX oxidation to TPA mainly assume pseudo-first 

order oxidation kinetics (in excess of O2). Cao et al. [95] applied the first order kinetic model at 

low pX conversions wherein no solid phase was formed; i.e., the system was considered 

homogeneous. Wang et al. [44] also deduced from their fractional model that when the reactant 

(pX) concentration was low enough compared to O2, the first order kinetic model was valid. In 

our experiments, we chose to operate at low enough initial pX concentrations such that even at 

total conversion to TPA, there would not be any TPA precipitation. Further, the O2 

concentrations relative to the pX concentration was maintained in excess (at least 5-fold). Based 

on these experimental conditions, we adopted the pseudo-first order kinetic model for the 

sequential reactions involving O2, with the O2 concentration partial pressure (and therefore its 

activity in the liquid phase dominated by acetic acid) being maintained constant. The model 

equations based on these assumptions are given below: 

COOH
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CH2Br
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COOH

CH2Br
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dc1

dt
= −k1c1

dc2

dt
= k1c1 − k2c2

dc3

dt
= k2c2 − k3c3 − k5c3

dc4

dt
= k5c3 − k6c4

dc5

dt
= k3c3 + k6c4 − k4c5

dc6

dt
= k4c5

         (eqn. 2.1) 

with the initial conditions: 

  c1 = c10 ,c2 = c3 = c4 = c5 = c6 = 0         (eqn. 2.2) 

Athena Visual Studio [103] was used to estimate the kinetic parameters. The non-linear least 

squares method was employed. The optimization method was implemented in the software and 

encoded using Fortran. The convergence criteria is based on the evaluation of an experimental 

variance, σ2, defined as: 

  
σ 2 =

(YE −YP )2

1

n

∑
n− p

<10−3          (eqn. 2.3) 

where YE and YP are experimental and predicted functions (in this case, concentration), n is the 

number of experimental points and p is the number of parameters. 

The following observations based on published literature provide valuable guidance for our 

experimental and modeling studies. It is generally believed that the p-TA ! 4-CBA reaction is 

the slowest step in the overall oxidation sequence [97, 98]. If this is indeed the case in our 

experiments, then the estimated first-order rate constant for this step (k3) should be several-fold 

less than the other rate constants in the sequential oxidation.  The overall oxidation rate would 
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then be the rate of the slowest step in the sequence. In such a case, it should be possible to assess 

the presence or absence of gas-liquid mass transfer limitations associated with the slowest step 

from the influence of stirrer speed on the estimated rate constant for that step. The estimated rate 

constants associated with the non-rate determining steps could be merely mass transfer 

coefficients, recognizing that the O2 transport into the liquid phase is also a first-order rate 

process. 

2.6    Results and Discussion 

2.6.1 T & P profile 

Figure 2.7 shows the temperature and pressure profiles corresponding to run 3 (Table 2.3). 

Since low enough initial pX concentration (0.025 M) was charged in the reactor, the reactor 

temperature rise was within 1 °C caused by the generated heat of reaction, which allowed us to 

consider that the reactor was operated under isothermal conditions. The reactor pressure was 

maintained constant (15 bar) except for brief, insignificant pressure fluctuations during sampling.  

 

Figure 2.7: Temporal temperature and pressure profiles during intrinsic kinetic studies of pX 

oxidation in a stirred reactor  
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2.6.2 Effect of stirring rate 

The intrinsic kinetic rates of the sequential steps during pX oxidation under MC process 

conditions (200 °C, 15 bar) are very fast and tend to be limited by gas-liquid mass transfer 

resistance. The experiments (Runs 1-5 of Table 2.3) were carried out in the stirred reactor to 

evaluate the effect of stirring speed on the reaction rates. Figure 2.8 shows the temporal product 

distributions at various stirring speeds. Effective rate constants were obtained from the reactant 

and product concentration profiles as explained previously. 

 

Figure 2.8: Experimental and simulated product distributions at different stirring rates 

(Reaction conditions: T = 200 °C, P = 15 bar; Initial pX = 25 mM, Co = 12.5 mM, Mn = 12.5 

mM, Br = 32.5 mM; O2:CO2 (mol:mol) = 1:1) 

The estimated rate constants are shown in Table 2.4. Clearly, the slowest step in the series 

reaction sequence is the formation of 4-CBA from p-TA, and that in the parallel reaction is the 

oxidation of BPTA to 4-CBA. At all stirrer speeds ranging from 600-1400 rpm, the rate 

constants associated with these steps (k3 and k6) are several-fold lower than those associated with 

the other steps. The uncertainties associated with the higher rate constants are greater, as might 

be anticipated with the measurement of faster reaction rates. For example, because the first two 
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reaction rates in the oxidation sequence are so fast, the sampling errors associated with TALD 

and p-TA will be substantially more. This also manifests in the uncertainties of the estimated rate 

constants. In contrast, the uncertainties associated with the rate constants of the slowest steps (k3, 

k5 and k6) are much lower. For the sequential oxidation steps, the rate constant associated with 4-

CBA formation form p-TA (k3) increases from 600 to 800 rpm (beyond the range of uncertainty) 

and tends to level off around 1000 rpm. In contrast, the other rate constants in the oxidation 

sequence (k1, k2 and k4) do not vary in this stirrer speed range. These observations suggest that 

while it is possible to overcome gas-liquid mass transfer limitations associated with the p-TA ! 

4-CBA step in the stirred reactor, the kinetics associated with other rates are much faster to 

eliminate gas-liquid mass transfer limitations. In addition, the lowest rate constant (k6) is 

invariant in this stirrer rpm range suggesting that it is not influenced by gas-liquid mass transfer 

limitations. Note that there is an apparent decrease in rate constants with a further increase in the 

stirring rate to 1400 rpm. This is probably due to the formation of a deep meniscus at the higher 

agitation speed that decreases the liquid level below that of the sparger (either partly or fully) 

used for introducing O2 into the reactor. Hence, we conclude that the maximum rate of TPA 

formation in this stirred reactor occurs beyond 1000 rpm and that it is likely not possible to 

completely eliminate the mass transfer limitations associated with the formation of the 

intermediates, TALD and p-TA, in a conventional stirred reactor. In other words, the saturation 

of the liquid phase with oxygen is most likely the rate-limiting step. Any further increase in the 

overall TPA formation rate must involve another reactor configuration in which the gas-liquid 

mass transfer limitations associated with the formation of these intermediates are better 

alleviated. 
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Table 2.4: Estimated reaction rate constants at different stirring rates (initial [pX] = 0.025 M; all 

other experimental conditions are as shown in Table 2.3) 

Stirring 
rate 

(rpm) 

k1 
(min-1) 

k2 
(min-1) 

k3 
(min-1) 

k4 
(min-1) 

k5 
(min-1) 

k6 
(min-1) 

600 11.7 (1.72)a 33.2 (18.9) 3.90 (0.548) 17.5 (4.78) 4.12 (0.568) 0.421 (0.0405) 
800 11.8 (1.96) 37.1 (26.0) 4.45 (0.764) 18.6 (5.24) 4.71 (0.799) 0.423 (0.0450) 
1000 11.7 (1.85) 39.0 (27.1) 5.89 (1.10) 22.5 (6.83) 6.00 (1.10) 0.414 (0.0406) 
1200 13.6 (2.31) 42.1 (32.9) 5.56 (1.03) 23.2 (6.77) 5.81 (1.05) 0.435 (0.0364) 
1400 13.9 (2.75) 36.8 (28.9) 4.49 (0.793) 20.5 (5.91) 4.88 (0.844) 0.401 (0.0369) 

aIn  parenthesis: 95% confidence level. 

Figure 2.8 also shows the experimentally observed concentrations at various stirrer rpms. The 

fitted concentration profiles at 1000 rpm (solid line) match the experimental observations quite 

well. 

2.6.3 Comparison of estimated rate constants with literature data 

Table 2.5 compares the estimated reaction rate constants in this work with the reported data 

from literature. Only those employing the lumped reaction scheme (Figure 1.3) are compared 

here. Even though different reaction conditions and kinetic models are employed, the relative 

rate constants of the various steps follow the same trend: k3<k1<k4<k2. Our investigations concur 

with previous reports that the slowest step is the oxidation of p-TA to 4-CBA. The estimated 

reaction rate constants in this work are at least one order of magnitude greater than those 

reported in the referenced studies. We attribute this to the fact that the reaction was performed 

under homogeneous conditions in this work, avoiding product precipitation in the liquid phase 

and thereby eliminating gas-solid and liquid-solid mass transfer limitations. 
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Table 2.5: Comparison of estimated rate constants with literature data 

Model type k1 
(min-1) 

k2 
(min-1) 

k3 
(min-1) 

k4 
(min-1) Ref. Remarks 

Fractional model 
derived from reaction 

mechanism 

0.176 0.725 0.0361 0.338 [98]  

0.732 1.422 0.139 0.873 [100] Parameter re-estimated 
for Wang’s model 

Power law 
assumption 

1.9*10-3 7.6*10-2 6.6*10-4 1.86*10-2 [95] first-order to liquid 

0.38 0.99 0.123 0.44 [99] 0.65-order to pX, first-
order to others 

11.74 39.03 5.889 22.50 this work* Run # 3 in Table 2.3 

*Stirring rate = 1000 rpm; initial [pX] = 0.025 M; all other operating conditions listed in Table 

2.3. 

2.6.4 Effect of bromide concentration 

Different bromide concentrations (Runs 3 & 6-10 of Table 2.3) were used in the kinetic study 

experiments for pX oxidation to TPA to investigate the effect of bromide concentration on the 

reaction rate. Figure 2.9 shows the color change of the reaction solution corresponding to the 

various bromide concentrations in Runs 3 & 6-10 of Table 3.2, respectively. The solution 

changes color from blue to pink with bromide concentration from 34.8 mM to 0.91 mM. 
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Figure 2.9: Color changes of the reaction solution due to the formation of various cobalt 

bromides [104] at various bromide concentrations in acetic acid. [Co(II)] = 12.5 mM 

Figure 2.10 shows the component concentrations with different bromide concentrations. 

Surprisingly high concentrations of BPTA were detected during the pX oxidation. Although it is 

well recognized that the p-TA to 4-CBA conversion is the rate determining step, the slowest step 

is BPTA oxidation according to the estimated rate constants (Table 2.6). The decrease of the 

bromide concentration will slow down the BPTA disappearance rate. It is reported as much as 

99% of the initial inorganic bromide is converted to benzylic bromide and its concentration 

remains about the same until the oxidation of the hydrocarbon is nearly complete [105]. 

Partenheimer [106, 107], Saha and Espenson [108] also found that a decrease in Co/Mn/Br 

catalytic activity is attributed to the benzylic bromide formation and benzylic bromide has 

virtually no activity or promotional effect in Co/Mn/Br autoxidations whereas the inorganic ionic 

bromide is active. The mechanism of BPTA oxidation has not been well studied. Metelski et al. 

[105] developed a proposed mechanism for benzyl bromide oxidation (Figure 2.11). According 
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to this, benzyl bromide is oxidized in the presence of Co(III), leading to the recovery of bromide 

ions. Simultaneously, Co(III) is reduced to Co(II) by hydrogen bromide (faster) and also by 

benzyl bromide, albeit at a much slower rate. Partenheimer [106] reported that the competing 

mechanisms of oxidation and solvolysis for the disappearance of benzylic bromide occur at 

approximately the same rates under the studied experimental conditions. 
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Figure 2.10: Experimental and simulated product distributions with various bromide 

concentrations (initial [pX] = 0.025 M; stirring rate = 1000 rpm; all other experimental 

conditions are as shown in Table 2.3) 

Table 2.6: Estimated reaction rate constants at different bromide concentrations (initial [pX] = 

0.025 M; stirring rate = 1000 rpm; all other experimental conditions are as shown in Table 2.3) 

CBr 
(mM) 

k1 
(min-1) 

k2 
(min-1) 

k3 
(min-1) 

k4 
(min-1) 

k5 
(min-1) 

k6 
(min-1) 

34.8 11.7 (1.91)a 39.0 (27.1) 5.89 (1.10) 22.5 (6.83) 6.00 (1.10) 0.414 (0.0405) 
15.8 11.8 (1.60) 39.6 (25.1) 7.75 (1.45) 29.3 (10.3) 7.69 (1.42) 0.307 (0.0227) 
9.44 11.6 (2.28) 45.6 (43.2) 5.64 (1.27) 25.4 (12.8) 4.17 (0.955) 0.261 (0.0359) 
4.93 8.25 (2.36) 56.3 (48.2) 2.43 (0.648) 11.8 (6.51) 1.17 (0.413) 0.205 (0.0913) 
2.40 6.45 (1.70) 17.6 (11.0) 0.927 (0.183) 7.84 (4.08) 0.223 (0.119) 0.152 (0.125) 
0.91 7.80 (2.66) 14.5 (8.92) 0.419 (0.0719) 3.87 (1.93) 0.0585 (0.0477) 0.0658 (0.0599) 

aIn  parenthesis: 95% confidence level. 
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Figure 2.11: Proposed Scheme for the autoxidation of benzyl bromide [105] 

2.6.5 Effect of substrate concentration 

Experiments with different pX concentrations (Runs 6, 11 & 12 of Table 2.3) were carried out 

to study the effect of substrate concentration on the regressed rate constants. Table 2.7 shows the 

estimated rate constants. It was found that the rate constants at the different concentrations are 

invariant when the confidence intervals are taken into account. This invariance is to be expected 

in the case of intrinsic rate constants. However, as shown in Figure 2.12, the rate constants are 

reported to decrease with the increase of initial pX concentration in a three-phase reaction system 

[99]. This suggests that the formation of a solid phase introduces mass transfer resistances that 

lower the rates and therefore the rate constants. 

 

 

 

!
!
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Table 2.7: Estimated reaction rate constants at different pX concentrations (P = 15 bar; T = 200 

(°C; stirring rate = 1000 rpm; all other experimental conditions are as shown in Table 2.3) 

Run # CpX,0 
(mM) 

k1 
(min-1) 

k2 
(min-1) 

k3 
(min-1) 

k4 
(min-1) 

k5 
(min-1) 

k6 
(min-1) 

12 14 11.8 (2.56)a 40.1 (42.0) 5.20 (1.27) 18.73 (6.60) 5.64 (1.37) 0.225 (0.0255) 
6 25 11.8 (1.60) 39.6 (25.1) 7.75 (1.45) 29.3 (10.3) 7.69 (1.42) 0.307 (0.0227) 
11 35 11.0 (2.10) 38.9 (29.9) 8.81 (2.36) 30.3 (16.9) 5.87 (1.61) 0.302 (0.0445) 

aIn  parenthesis: 95% confidence level. 

 

Figure 2.12: Effect of initial concentration of pX on the reaction rate [99] 

2.7    Summary 

In order to provide guidelines for the rational design and optimization of the spray process for 

TPA production as well as reactor modeling studies, the kinetic study of pX liquid phase 

oxidation to TPA was investigated in a stirred reactor under homogeneous conditions (i.e., low 

pX concentrations employed to avoid TPA precipitation). Solubility data of MC process related 
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components such as TPA, 4-CBA and p-TA in acetic acid over a wide temperature range were 

obtained experimentally and verified with reported data. Based on the solubility data, appropriate 

reaction conditions were determined for investigating the kinetics of the oxidation reaction. A 

first order kinetic model was developed based on a lumped reaction scheme that includes a 

parallel step describing the formation of 4-(bromomethyl)benzoic acid (BPTA). Kinetic rate 

constants regressed from the experimental data are shown to be at least one order of magnitude 

greater than those reported in the literature. This is attributed to the fact that the conversion data 

were operated under homogeneous conditions in this study (unlike the literature data that were 

obtained in gas-liquid-solid systems) avoiding solid formation in the liquid phase and thereby 

eliminating gas-solid and liquid-solid mass transfer limitations. Our investigations concur with 

previous reports that the slowest step is the oxidation of p-TA to 4-CBA. Systematic 

investigations of the effects of stirring rate reveal that it is not possible to completely eliminate 

the gas-liquid mass transfer limitations in even a laboratory scale stirred reactor. This further 

confirms that other reactor configurations (such as a spray reactor in which the liquid is the 

dispersed phase) are needed to overcome gas-liquid mass transfer limitations. The effects of 

bromide and initial pX concentrations on the reaction rate were also investigated. Bromide 

concentration accelerates the reaction rate significantly up to a certain concentration level and 

shows zero order dependence at high concentrations where the intermediate BPTA elimination is 

favored. Decreasing reaction rate constants with an increase of initial pX concentration reported 

in traditional three-phase reaction systems were not observed in the homogeneous system, which 

further confirms that the solid phase hinders the reaction rate and the literature reported kinetic 

rate constants are not intrinsic kinetic parameters.   
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Chapter 3 A Spray Reactor Concept for Catalytic Oxidation of p-Xylene  

to Produce High-Purity Terephthalic Acid 

 

 

 

Knowledge of intrinsic kinetics and the type of internal contacting pattern employed for the 

reactants are key factors among many that dictate chemical reactor performance (Figure 3.1). 

Kinetics provides information on the speed of the various steps in the overall reaction as a 

function of reactant concentrations and temperature. The contacting pattern determines how 

materials flow through and contact each other in the reactor, how early or late they mix, their 

clumpiness or state of aggregation [109].  

 

Figure 3.1: Factors that dictate reactor performance [109] 

Kinetic studies of liquid phase pX oxidation to TPA in the previous chapter reveal that it is 

not possible to completely eliminate the gas-liquid mass transfer limitations in even a laboratory 

scale stirred reactor. Any further increase in the overall TPA formation rate must involve another 

reactor configuration in which the gas-liquid mass transfer limitations associated with the 

Reactor 
Input Output 

Contacting pattern Kinetics 

Performance equation 
output = f (input, kinetics, contacting) 
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formation of these intermediates are better alleviated. This is the issue of internal contacting 

pattern of the reactants in the reactor configuration. 

Contacting pattern is especially important in the case of gas-liquid reaction systems, due 

primarily to possible gas-liquid mass transfer resistance. The commercial MC process for TPA 

production employs either a CSTR or a bubble column reactor where air is bubbled through the 

liquid phase. Given that the rates of the sequential oxidation reaction steps are extremely rapid, 

the presence of gas-liquid mass transfer limitations will cause O2 starvation in the liquid phase 

resulting in incomplete oxidation. A number of patents deal with improving the agitation system 

to maximize the O2/liquid mass transfer coefficient, thereby improving the oxidation rates and 

obtaining a purer TPA product [110, 111]. In addition, Osada and Savage [112] found that the 

oxygen introduction method has a profound influence on the course of pX partial oxidation 

reaction in high-temperature water as reaction medium. Adding oxygen in quick, discrete, small 

incremental bursts led to dramatically higher yields and selectivities of TPA than continuous 

addition of oxygen. They hypothesized that the rapid step-wise O2 introduction provided 

additional turbulence and better mixing as well as higher local O2 concentrations compared to 

steady introduction of an identical amount of O2 in a given time. The authors suggested that an 

optimal reactor configuration is a tubular reactor in which a stream of high-temperature water 

containing dissolved catalyst and substrate (pX) is flowed with intermittent introduction of 

oxygen bursts through side-stream jets placed along the tube length. 

This chapter describes a spray reactor concept with a different gas/liquid contacting pattern 

compared to the conventional MC process reactor for TPA production. A theoretical basis guide 

by reactor engineering fundamentals is provided to justify this contacting pattern and to 

rationally design the spray reactor. A mathematical model of the conventional reactor provides 
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valuable insights into how effective temperature control and safe operation of the exothermic 

oxidation system are achieved in industrial practice. These insights provide rational guidance for 

experimental demonstration of safe operation of a laboratory scale spray reactor whose 

performance is compared with a stirred tank reactor with respect to product yield and purity. 

3.1    Theoretical Considerations 

3.1.1 Rationale for choosing spray reactor as an alternative to a stirred reactor 

At the operating temperature of the MC process, the gas phase containing the oxidant is 

dispersed through the liquid phase containing the substrate (pX). The TPA formation involves a 

series of partial oxidation steps in which the methyl groups in pX are sequentially oxidized to 

yield TALD, p-TA, 4-CBA and finally TPA. However, the oxidation rates are so fast such that, 

even if the O2 in the bulk gas phase is present in stoichiometric amounts for TPA formation, the 

overall conversion is limited by severe gas-to-liquid mass transfer limitations. This in turn causes 

O2 starvation in the bulk of the liquid phase containing the substrate and the intermediate 

oxidation products. If one envisions spherical droplets, the outermost liquid layer in each droplet 

that is in contact with the oxygen will be easily oxidized causing the TPA to precipitate with 

incomplete oxidation products trapped in the inner core of the particles. In order to overcome the 

O2-to-liquid mass transfer limitations, we conceptualized a spray-reactor concept in which the 

liquid phase is dispersed as micron sized droplets into a continuous gas phase containing the 

oxidant (oxygen). Each of these droplets may be envisioned to function as a microreactor. In this 

manner, the gas-liquid interfacial area is significantly enhanced relative to the stirred reactor in 

which the gas is the dispersed phase.  

If the oxygen surrounding each droplet is able to completely penetrate the droplet [i.e., if the 

O2 diffusion time scale (Rp
2/D) is shorter than the kinetic time scale (1/k)], then the oxidation 
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should progress uniformly throughout the droplet. Such a scenario provides the potential for 

complete p-xylene conversion to produce the ultimate product (TPA) at relatively high purity. In 

contrast, if the droplet size is large such that the oxygen diffusion time scale is much longer than 

the kinetic time scale, the resulting gradient in the O2 concentration within the droplet could give 

rise to non-uniform oxidation of the p-xylene leading to a less pure TPA product contaminated 

by intermediates, lower product yield and quality. Clearly therefore, smaller droplets should 

favor the production of TPA product with higher purity and yield.  

Table 3.1 provides quantitative estimates of the O2 diffusion time scale (Rp
2/D) and the kinetic 

time scale (1/k). For this estimation, we assumed an average droplet size of 50 µm that is typical 

for the nozzles (BETE PJ6, BETE Fog Nozzle, Inc.) employed in our experiments. The O2 

diffusivity (D) in acetic acid (the dominant specie in the droplet) at 200 °C and 15 bar is 

estimated from the Wilke-Chang correlation [113]. The first-order rate constant (k) corresponds 

to the slowest step in the consecutive oxidation sequence (typically p-TA oxidation to 4-CBA). 

Values reported in the literature [94-99] vary widely depending on the catalyst and operating 

conditions used. We used all these values as well as the rate constants determined in this work 

(Chapter 2) to estimate the square of Hatta number (Hatta number, MH, is defined by eqn. 3.1 

[109]) for this gas-liquid reaction at various operating conditions as summarized in Table 3.1. 

The fact that the square of Hatta number is far less than unity at all the conditions allows us to 

conclude that it is possible to eliminate O2 starvation in typical spray droplets. 

 
MH

2 = max  possible    conversion in   film
max   diffusional   transport   through   the   film

     (eqn. 3.1) 
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Table 3.1: Estimation of Hatta number for simultaneous O2 diffusion and reaction in a droplet 

Operating conditions k 
(min-1) 

kRp
2/D 

(analogous to 
Hatta number 

square) 

Reference 
(for k) 

T = 130 °C, P = 1 atm 
CpX, 0 = 3.8 mol/kgsol 
Ccatalyst (cobalt naphtenate) = 0.001 mol/ kgsol 

6.6(10-4) 2.3(10-7) 94 

T = 191 °C, PO2 = 40 kPa 
CpX, 0 = 0.943 mol/kgHAc 
CCo = 0.055 kg/kgHAc, CMn = 0.0512 kg/kgHAc 
CBr = 0.0746 kg/kgHAc 

0.0568 2.0(10-5) 98 

T = 187 °C 
CpX, 0 = 0.2 mol/kgHAc 
CCo = 0.04 wt%, CMn = 0.02 wt%, CBr = 0.08 wt% 

0.123 4.3(10-5) 99 

T = 200 °C 
CpX, 0 = 0.025 M 
CCo = 12.5 mM, CMn = 12.5 mM, CBr = 16 mM 

7.75 2.7(10-3) This work 

 

3.1.2 Droplet/reactor stability considerations 

The oxidation of pX to TPA is highly exothermic with ΔHR = 1,300 kJ/mol [37, 38]. The 

droplet temperature rise due to reaction is partly controlled by the evaporative cooling of the 

solvent (acetic acid). At typical operating conditions, the latent heat of vaporization provides 

enough heat capacity to absorb the heat of reaction and maintain the maximum droplet 

temperature at the acetic acid boiling point. As shown in Figure 3.2, the heat of vaporization of 

acetic acid decreases and the boiling point increases with an increase in pressure. Clearly, proper 

choice and control of the operating pressure are essential to limit the droplet temperature rise to 

the boiling point of acetic acid and thereby prevent temperature overshoot that can lead to 

undesired reactions (burning of acetic acid, for example) and a thermal runaway situation. 
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Figure 3.2: Variation of acetic acid boiling point and heat of vaporization with pressure 

To better understand temperature control by evaporative cooling, we chose to mathematically 

model the continuous stirred tank reactor configuration (Figure 3.3) in the MC process. In 

addition to the feed and recycle streams, the latent heat of evaporation of the mixed solvent 

(acetic acid and water) at the reactor P and T is also a potential coolant source. Note in Figure 

3.3 that the acetic acid and water vapor steams are condensed in an external separator and 

recycled back to the reactor. Based on these assumptions, the energy balance equation for the 

oxidation reactor is given by: 

  
Fj0

H j0
− H j( ) + riV

ν ij=1

n

∑ −ΔHR( ) = N jCp, j

dT
dtj=1

n

∑      (eqn. 3.2) 
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The first term of the left hand side of eqn. 3.2 represents the heat removal rate (-QR) and the 

second term represents the heat generation rate (QG). These individual terms are further 

elaborated in eqns. 3.3 and 3.4. 

  

Fj0
H j0

− H j( ) = −QR = Fj0
Cp, j dT

T

Tj0∫
j=1

n

∑
j=1

n

∑ − Fjvap
ΔHvap, j

j=1

m

∑
                                       = FfeedCp, feed T0 −T( ) + FairCp,air T0 −T( )
                                         + FHAc,condensedCp,HAc Trecycle −T( ) + FH2O ,condensedCp,H2O Trecycle −T( )
                                          − FHAc,vapΔHvap,HOAc − FH2O ,vapΔHvap,H2O

    (eqn. 3.3) 

 

riV
ν i

−ΔHR( ) = QG = FpX X −ΔHR( )        (eqn. 3.4) 

 

Figure 3.3: Schematic of oxidation reactor at typical MC process conditions [13, 14, 20] 

For this analysis, the exothermic heat effects from the intermediate oxidation products 

(TALD, p-TA, 4-CBA) and from solvent burning are neglected as being insignificant compared 

to the heat effects associated with the predominant TPA formation reaction. Since the pX 
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conversion is complete under typical MC process conditions (with TPA being the dominant 

product), the heat generation rate is constant at all simulated conditions. The physical property 

data required to evaluate the various enthalpies in eqn. 3.3 are taken from HYSYS® database 

[37] and other sources [38]. The vapor phase compositions in the reactor at various T and fixed 

reactor P are also estimated using the HYSYS® database.  

Figure 3.4 shows the heat generation rate (QG) and heat removal rate (QR) as a function of 

temperature for the MC process oxidation reactor at two different reactor operating pressures: 

15.2 bar and 12.5 bar.  Note the exponential increase in QR as the boiling point of the acetic acid 

(dominant component in the reaction mixture) is approached at the two pressures. At the typical 

MC process operating pressure of 15.2 bar, the steady state temperature (where QG  = QR) is 

approximately 195 °C. This is remarkably close to the steady state operating temperature 

reported for industrial reactors [13, 14]. The evaporative cooling effect accounts for 65% of the 

total heat removed. As seen in Figure 3.4, the steady state temperature decreases as pressure 

decreases. This is because the boiling point of the solvent (acetic acid/water is a tangentially 

zeotropic system [114]) decreases while the latent heat of evaporation increases with pressure. 

Further, the slope of heat removal curve is greater than that of heat generation curve, implying 

that the steady states are open-loop stable. This analysis should clearly hold even when the 

dispersed and continuous phases are switched: i.e., when the liquid phase exists as droplets (i.e., 

as microreactors) surrounded by a continuous gas phase containing the oxidant, implying that a 

spray reactor operated under similar conditions should also be open-loop stable. 
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Figure 3.4: Predicted heat generation (QG) and heat removal (QR) rates for pX oxidation reactor 

(conditions noted in Figure 3.3) 

Effect of water content in feed on reactor temperature 

Modeling of the stirred reactor at MC process conditions clearly shows that a substantial 

portion of the heat generated by the oxidation reactions is removed by the evaporation of the 

solvent. The modeling results also reveal that proper control of the reactor operating pressure is 

essential to limit the reactor temperature to the boiling point of the solvent and thereby prevent 

temperature overshoot. 

The feed stream in the MC process typically contains about 5 wt% water. Since water has a 

lower boiling point and a higher value of heat of vaporization compared to acetic acid, water 

content in the solvent affects the steady state reactor temperature at a given operating pressure. 
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To quantify this effect, the mathematical model developed previously is applied to the MC 

oxidation reactor conditions at various water contents in the feed. Figure 3.5 shows the results of 

such an analysis. Higher water content in the solvent results in lower reactor temperature.  

 

Figure 3.5: Effects of water content on reactor temperature in MC process 

3.1.3 Vapor phase flammability considerations 

In both the MC process and the spray process, the use of a flammable organic solvent (acetic 

acid) during pX oxidation gives rise to vapor phase flammability concerns. The upper 

flammability limit (UFL) for acetic acid in air under ambient or elevated pressure (above 30 bar) 

is below 25 vol% [6, 82]. In the spray reactor, an O2/CO2 mixture (instead of air) is used as the 
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diluent for O2 because of its higher heat capacity and superior flame inhibition properties relative 

to nitrogen. Under typical experimental P and T (15 bar and 200 °C), the estimated vapor phase 

acetic acid and O2 concentrations at equilibrium are 58 vol% and 23 vol% respectively, assuming 

no reaction. The remaining component in the vapor phase is CO2 (~19 vol%). The vapor phase 

component compositions were obtained from HYSYS simulation of a separator under the 

selected P and T. For estimating vapor-liquid equilibrium, the UNIQUAC model was applied 

and Peng-Robinson equation of state was used to model the vapor phase [115]. CO2/acetic acid 

binary interaction coefficient was assumed to be 0.02 [116]. Because O2 is fed at near-

stoichiometric amounts needed for pX ! TPA oxidation, typical vapor phase O2 partial pressure 

is about 0.4 bar [98] or approximately 3 vol% in the MC oxidation reactor. Using Calculated 

Adiabatic Reaction Temperature (CART) approach, Rajagopalan [6] demonstrated that even a 

vapor phase containing acetic acid at a molar concentration of 20% and equimolar amounts of 

CO2 and O2 (i.e., 40 mol% each) falls outside the flammability envelope. Thus, the presence of 

CO2 as an inert gas and excess acetic acid (>50 mol%) in the vapor phase under reaction 

conditions create an environment that falls outside of the flammability envelope. 

3.2    Experimental Demonstration 

3.2.1 Materials 

The substrate (pX), catalyst materials (cobalt acetate, manganese acetate and 48% 

hydrobromic acid in water), solvent (acetic acid) and internal standard (biphenyl) were 

purchased from Sigma-Aldrich and used without further treatment. Ultra high purity (UHP) 

grade oxygen was purchased from Airgas. Industrial grade CO2 and equimolar CO2/UHP O2 gas 

mixtures were purchased from Linweld. 



! 63 

3.2.2 Oxidation experiments in spray reactor 

Figure 3.6 shows the schematic of a 700 mL titanium spray reactor equipped with a 4-point 

thermocouple and a transducer for measuring axial reactor temperatures and the reactor pressure, 

respectively. Four profile thermocouples are located inside the reactor, with intervals of 1.5 

inches. The temperature and pressure are continuously recorded and controlled with the help of a 

LabVIEW® data acquisition system. The reactor lid accommodates multiple inlet/outlet ports for 

(a) liquid injection via a custom-made titanium nozzle (BETE®, Model PJ), (b) continuously 

introducing an O2/CO2 gas mixture to the gas sparger immersed in the liquid phase at the bottom 

of the spray tower, (c) continuously withdrawing the vapor phase, and (d) a safety pressure relief 

valve.  
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Figure 3.6:  Schematic of the spray reactor:!The four thermocouple locations (black dots) are 

evenly spaced and numbered from the bottom to the top as follows: T1,bottom (in the liquid phase),  

T2 (above T1,bottom), T3 (above T2) and T4,top (above T3). 

The spray reactor was operated in a semi-batch mode with and without gas withdrawal. In a 

typical experimental run, the reactor was initially charged with 50 mL of acetic acid (97 wt% 

purity, used as received) and pressurized with an equimolar O2/CO2 gas mixture, and then heated 

to the desired temperature (approximately 200 °C) such that the eventual pressure is 15 bar. After 

the temperature and pressure stabilized, the O2/CO2 gas mixture was preheated to the reactor 

temperature by means of an oil bath and continuously introduced into the reactor at a flow rate of 

606 std cm3/min. Simultaneously, the pre-mixed and pre-heated feed solution (containing 

T1 

T2 

T3 

T4 
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specific concentrations of pX, cobalt acetate, manganese acetate and hydrobromic acid dissolved 

in acetic acid) was sprayed into the reactor for 3 minutes at a rate of 35 mL/min. For a typical 

run, the O2/pX (mol:mol) is approximately 3.26 which is sufficient to fully convert the pX to 

TPA. In the constant pressure operation mode, the gas was also continuously withdrawn from the 

vapor phase to maintain the reactor pressure constant at the desired value (15 bar) with a back-

pressure regulator (DRESSER®, Model SD91LW) connected to the gas-effluent line. In the 

experiments without gas withdrawal, the pressure was allowed to rise continuously during the 3-

minute duration of the spray. In both cases, the liquid volume increased by approximately 105 

mL during the 3-minute spray duration. At the end of a run, the spray as well as the O2 addition 

was stopped and the reactor was allowed to cool down with any further reaction occurring 

mostly in the liquid phase in the presence of residual O2. Both the spray and the stirred reactors 

were typically allowed to cool down to room temperature in a programmed fashion ensuring that 

any observed differences in product quality in the two reactors are not due to temperature 

differences during the cooling step. 

3.2.3 Benchmark oxidation experiments in a stirred reactor 

To enable comparisons with the spray reactor performance, experiments were also performed 

in a 50 mL titanium stirred vessel (Parr Instrument Company, Series 4560 Mini Bench Top 

Reactor). Details of this reactor unit and operation are provided elsewhere [3]. Briefly, 25 mL of 

acetic acid (~97 wt% in water) solution containing the catalyst components, whose 

concentrations were identical to those in the spray reactor experiments, was initially charged into 

the Parr reactor. The reactor was then pressurized with an equimolar O2/CO2 mixture to the 

desired operating pressure (15 bar) and temperature (200 °C). The stirred reactor was operated in 

a semi-batch mode in which pX was continuously pumped into the reactor at a rate of 0.067 
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mL/min for 3 minutes. The molar O2/pX ratio based on the pX added and the O2 partial pressure 

of 3.2 bar is 2.5. To ensure that there was always sufficient stoichiometric O2 supply to complete 

the pX oxidation to TPA, the O2 consumed during reaction is continuously replenished from an 

external O2 reservoir to maintain a constant partial pressure of 3.2 bar. There is about 58 mol% 

acetic acid vapor in the gas phase. The total 15 bar pressure consists of 58% acetic acid and 

equimolar O2 and CO2 in the gas phase. The O2 pressure profile in the external reservoir was 

continuously monitored to maintain the desired rate of O2 consumption and total O2 

consumption. 

3.2.4 Product analysis 

The solid product was filtered, washed, dried and analyzed by HPLC using the gradient 

elution technique described by Viola and Cao [102]. The sample preparation procedure and the 

chromatographic column used in this work are identical to those used in the work by Zuo et al. 

[3]. Specifically, the mobile phase consisted of three eluents: aqueous phase (0.1 wt% 

phosphoric acid) and organic phase (consisting of 7 parts acetonitrile and 2 parts methanol by 

volume). The gradient elution program was as follows: starting with an aqueous phase, the eluent 

mixture composition was changed linearly during a five minute span to 95 vol% aqueous phase 

and 5 vol% organic phase. From 5 to 10 min, the mixture composition was altered linearly with 

time to 15 vol% aqueous phase and 85 vol% organic phase and kept constant thereafter until 16 

min. The total flow rate of the mobile phase was 1 mL/min. A UV detector was used to quantify 

the products using biphenyl as internal standard (215 nm for pX and 254 nm for all other 

products). 

The 4-CBA detection limit is 200 ppm for the aforementioned HPLC method. In order to 

increase the 4-CBA detection sensitivity to less than 25 ppm in the TPA solid (and thereby 
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enable assessment of polymer-grade purity), the following sensitive HPLC method was 

developed: a 20 mg solid sample was dissolved in 20 mL of water with 150 µL ammonium 

hydroxide and analyzed by HPLC. The gradient elution program is the same as explained above 

except that during the time period of 10-16 min, a mobile phase composition of 60 vol% aqueous 

phase and 40 vol% organic phase was used with a total flow rate of 1 mL/min. The detection 

limit of this sensitive analytical method is down to 1 ppm 4-CBA. The overall carbon balance 

based on analysis of pX and the oxidation products (in the liquid and solid phases) is around 

95% in all experiments. 

3.3 Experimental results and discussion 

3.3.1 Roles of liquid sparger 

A high surface area 4-blade titanium sparger immersed into the liquid phase for introducing 

the O2/CO2 gas mixture into the liquid (Figure 3.7) was attempted to maintain acetic acid 

saturation and sufficient O2 availability in the vapor and liquid phases. To test the liquid sparger 

in a blank run, the amounts of acetic acid condensed from the reactor overhead stream (vapor 

phase) were measured. As shown in Figure 3.8, without sparger, the acetic acid flow rate 

decayed with time and the vapor phase tended to dry out (undesired). Further, temperature 

gradients were observed in the reactor. With sparger, however, acetic acid collected from 

overhead condenser fluctuated around 1.4 g/min and temperature gradients were minimized. 
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Figure 3.7:  Schematic of the liquid sparger 

 
Figure 3.8:  Measurement of acetic acid condensed from gas phase during blank run 

 Left: without sparger; Right: with sparger 
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3.3.2 Performance of spray reactor 

Table 3.2 shows a summary of the solid TPA product purities from the spray reactor. The 

experimental procedure was described in section 3.2.2. In addition to the main product and 

intermediates shown in Figure 1.3, the presence of 4-(bromomethyl)benzoic acid (BPTA) was 

also checked during product analysis. It was found that the spray reactor produced high-purity 

solid TPA product with 4-CBA at concentrations of less than 25 ppm (Table 3.2) being the only 

impurity detected. The TPA crystals produced from the spray reactor were white and needle-like 

with particles in the 600-1500 µm size range, as seen from SEM (scanning electron microscope) 

image (Figure 3.9). A UV-Vis spectrometer was used to determine the optical density of the 

solid TPA product as an indicator of the extent of colored compounds present. The measurement 

of optical density and details of associated calculations are provided elsewhere [3]. The typical 

OD340 (optical density at 340 nm) values of the obtained solid TPA product from the spray 

reactor are in the range of 0.013-0.018. These values meet the specification required for a 

polymer-grade TPA product (< 0.08) [6]. 

Table 3.2: Purity of solid TPA product obtained from the spray reactor 

Run # Operation mode T  
(°C) 

P  
(bar) 

pX added 
(mmol) 

Solid product quality 
4-CBA 
(ppm) 

BPTA 
(ppm) 

p-TA 
(ppm) 

1 With gas outlet 
(P constant) 200 15 13.8 3±1 n.d.a n.d. 

2b With gas outlet 
(P constant) 200 15 20.7 <1 n.d. n.d. 

3c With gas outlet 
(P constant) 200 15 27.6 <1 n.d. n.d. 

4 No gas outlet 
(P increases) 200-235 30-38 27.5 13±1 n.d. n.d. 

Co = 12.5 mM, Mn = 12.5 mM, Br = 32.5 mM; spray rate = 35 mL/min, spray time = 3 min; 

gas mixture flow rate (O2:CO2 = 1:1) = 606 std cm3/min; an.d.: not detected; bO2/CO2 gas mixture 

flow rate = 1,009 std cm3/min; cO2/CO2 gas mixture flow rate = 1,045 std cm3/min. 
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Figure 3.9: SEM (scanning electron microscope) image of TPA crystals  

produced from the spray reactor 

Figures 3.10a and 3.10b show the temperature and pressure profiles corresponding to runs 1 

and 4 (Table 3.2). During operation without gas outlet (Figure 3.10b), the reactor pressure 

increased by up to approximately 7.5 bar (from 30 to 38 bar) and the temperature increased by up 

to 35 °C with the maximum temperature occurring in the liquid phase at the bottom of the spray 

reactor. In sharp contrast, when the reactor pressure was maintained at a constant value during 

reactor operation with gas outlet (Figure 3.10a), the temperature profiles were nearly flat and the 

temperature rise was within a few degrees. The significant temperature rise in Figure 3.10b is 

partly attributed to the greater amount of heat generated at the higher pX concentrations and 

partly to the increasing pressure (30-38 bar) during the run that increases the boiling point of the 

solvent and lowers the evaporative cooling effect. When an experiment using the same pX 

concentration as that in run 4 was performed at 15 bar with gas outlet (run 3), similar T & P 

profiles as in run 1 (Figure 3.10c) were obtained. This indicates that the increasing reactor 
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pressure in run 4 was the main reason for the increasing T during that run. The increase in T 

enhances the possibility of not only solvent burning but also titanium which partially burns in 

pure O2 at 200 °C and O2 partial pressure of roughly 25 bar [6, 117].  Clearly, a reactor pressure 

of 15 bar is preferred to take better advantage of evaporative cooling due to acetic acid boiling at 

lower T (232.5 °C at 15 bar, Figure 3.2), as explained in section 3.1.2. 
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!

Figure 3.10:  Temporal temperature and pressure profiles during spray reactor operation:  

(a) with gas outlet (operating conditions correspond to run 1, Table 3.2);  

(b) without gas outlet (operating conditions correspond to run 4, Table 3.2); 

(c) with gas outlet (operating conditions correspond to run 3, Table 3.2). 
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It is important to point out that the reaction solution was preheated to the desired temperature 

via a two-stage oil bath before being sprayed into the reactor. During the development phase of 

the spray reactor, a single stage oil bath was used resulting in an inlet temperature of <150 °C 

just before the liquid stream passed through the nozzle. Even though the entire reactor was 

heated to 200 °C and other reaction conditions stayed the same as those aforementioned 

experiments, the solid TPA produced under low inlet temperatures was yellowish and the 4-CBA 

content was on the order of tens of thousands of ppm, clearly confirming the importance of 

preheating the reaction mixture to 200 °C before contacting with O2 to avoid the kinetic 

limitations at the lower temperatures and take full advantage of the increased O2/liquid mass 

transfer area. 

Table 3.3 summarizes the results of analyses of the solid and liquid phases from run #1 (Table 

3.2). The majority of the TPA product exists in the solid phase. The high-purity solid TPA 

product harvested following a 3-minute spray is approximately 2.07 g, translating to an overall 

productivity of 394 kg m-3 h-1 based on the liquid phase volume. While only minor amounts of 4-

CBA and TALD intermediates were detected in the liquid, a significant amount of BPTA was 

also found. It was found that this intermediate can be completely eliminated (i.e., oxidized to 

TPA) if the reactor temperature was maintained at 200 °C for 30 minutes following the spray. 

Further, p-TA, a major impurity in industrial grade purified TPA, was not detected in either the 

solid or liquid phases. In this study, only the concentrations of the aromatic compounds were 

used to calculate carbon balance, which was found to be around 95%, which is within 

experimental error. 
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Table 3.3: Product specifications from run #1 of Table 3.2  

Item Solid phase Liquid phase Overall yield 
(solid + liquid phases) 

TPA 99.99+% 289±10 ppm - 
TPA yield 91.3% 2.7% 94.0% 
4-CBA 3±1 ppm <2 ppm 0.0087% 
BPTA n.d. 58±10 ppm 0.42% 
p-TA n.d. n.d. n.d. 
TALD n.d. <2 ppm 0.024% 

aCarbon balance - - 94.5% 
aBased on analysis of pX fed and oxidation products in the liquid and solid phases 

3.3.3 Comparison of product from spray and stirred reactors 

Table 3.4 compares the TPA yield and solid product quality from the spray reactor and the 

stirred reactor with identical initial pX concentrations and under similar reactor pressures and 

temperatures. While the spray reactor facilitates near-complete pX oxidation producing nearly 

pure TPA product (4-CBA <25 ppm), the solid TPA produced from the stirred reactor contains 

1000-4000 ppm 4-CBA, which falls in the range of crude TPA from the conventional MC 

process. Further, the presence of the p-TA and BPTA in the solid TPA product from the stirred 

reactor implies oxygen starvation in the liquid phase [39]. At all conditions investigated, the 

spray reactor produces similar TPA yield as a stirred reactor with a carbon balance closure of 

above 94% for each experiment but significantly better solid TPA product that conforms to 

polymer-grade purity. 
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Table 3.4: Comparison of product purity and yields from spray and stirred reactors  

Run 
# Reactor T 

(°C) 
P 

(bar) 

Initial 
pX 

conc. 
(M) 

Impurities in solid TPA 
product  

Overall yield (%) 
(solid + liquid phases) 

4-CBA 
(ppm) 

p-TA 
(ppm) 

BPTA 
(ppm) TALD p-TA BPTA 4-CBA TPA 

4 Spray 200-
235 

30-
37 0.264 13±1 n.d. n.d. 0.12 0.46 0.64 0.10 97.6 

5 Stirred 200 30 0.264 1,621±10 1,062±10 n.d. 0.36 1.57 0.96 0.61 96.0 

6 Spray 200 15 0.066 46±1 n.d. n.d. 0.015 − 0.072 0.0044 94.8 

7 Stirred 200 15 0.066 924±10 n.d. 986±10 0.21 0.68 5.23 0.36 92.7 

8 Spraya 200 15 0.066 <1 n.d. n.d. − − − − 95.6 
9 Stirreda 200 15 0.066 112±1 n.d. n.d. 0.11 0.27 − 0.07 93.7 

Reaction conditions:  

Co = 12.5 mM, Mn = 12.5 mM, Br = 32.5 mM; 

O2:CO2 (mol:mol) = 1:1 

spray rate = 35 mL/min, spray time = 3 min; 

gas mixture flow rate (O2:CO2 = 1:1) = 606 std cm3/min; 
aReactors were maintained at 200 °C for 1 hour after completion of pX introduction. 

Typically, the products were removed from the reactor following a cool-down phase after a 

run. It was found that the stirred reactor cooled down faster than the spray reactor. While the 

stirred reactor cooled from 200 °C to approximately 160 °C in 10 minutes (Figure 3.11a), the 

temperature of the liquid phase in the spray reactor was nearly 190 °C after 10 minutes of natural 

cooling (Figure 3.11b). To rule out the effects of higher temperatures during the cool-down 

phase in promoting more complete oxidation of the intermediates, experiments were conducted 

wherein the stirred reactor temperature was maintained at 200 °C for 1 h following completion of 

pX introduction. In this manner, the average temperatures during the cool-down phase were 

much higher in the stirred reactor compared to the spray reactor. Despite the higher temperatures, 

the 4-CBA content in the TPA product from the stirred reactor was still 112 ppm, several-fold 
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greater than the 4-CBA concentrations attained with the spray reactor. In fact, if the spray reactor 

is also maintained at 200 °C for 1 h following cessation of pX introduction, the 4-CBA content 

in the solid TPA product almost vanishes. This shows that the reaction also occurs in the liquid 

phase. Overall, the spray reactor is able to provide much better oxidation rates of pX and of the 

intermediates compared to the stirred reactor, resulting in a much better TPA product quality 

(i.e., with lower concentrations of intermediates). This finding has important practical 

implications as it shows that with proper optimization, a continuous spray reactor has the 

potential to produce polymer-grade TPA obviating the need for the hydrogenation reactor used in 

the conventional MC process. The resulting savings in capital and operating costs, and in GHG 

emissions (due to reduction in hydrogen use and solvent burning) can be significant and lead to 

improved process sustainability. These potential benefits are quantified and discussed in Chapter 

5. 
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!
Figure 3.11: Temperature profiles during the cool down phase  

(a) stirred reactor; (b) spray reactor. 

3.3.4 CO formation as a measure of burning reactions 

The increase in the concentration of CO2 in the gas phase is typically measured to assess the 

extent of burning reactions during pX oxidation. Because we use a CO2/O2 mixture, it is difficult 

to accurately measure incremental CO2 concentrations in the gas phase due to burning reactions. 

Hence, we chose to measure the CO concentration in the gas phase as an approximate measure of 

the extent of burning reactions. The gas mixture was analyzed by GC (column: Shin Carbon ST 

100/120 mesh) to determine the CO formation from solvent burning. Preliminary experimental 

results from the spray process (Table 3.5) show that at identical feed conditions, the observed 

CO formation during spray reactor operation was approximately one fourth or less of that 

observed during stirred reactor operation [CO/pX (mol/mol) ~ 0.045]. The reduced burning is 
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presumably because the residence time in the spray reactor (~1.5 min) is much shorter than that 

in the MC reactor (~35 min). Further experiments encompassing longer spray durations and 

14CO2-labeling studies are needed to confirm the extent of solvent burning during spray reactor 

operation. 

Table 3.5: CO analysis during the pX oxidation in the spray reactor 

Run # Time duration for vapor sample collection CO/pX (mol/mol) 
10 1’25” ~ 2’45” 0.0112 

11 40” ~ 2’15” 0.0048 

12 1’ ~ 3’05” 0.0114 

Reaction conditions:  

T = 200 °C, P = 15 bar; 

Co = 12.5 mM, Mn = 12.5 mM, Br = 32.5 mM;  

pX added = 6.9 mmol, spray rate = 35 mL/min. 

3.4    Summary 

For p-xylene oxidation to TPA, a spray reactor in which the liquid phase is dispersed as fine 

droplets into the gas phase containing oxygen produces high-purity TPA (<25 ppm 4-CBA) in 

one step at 200 °C and 15 bar pressure. This result is in sharp contrast to the performance of the 

conventional stirred reactor in which the solid TPA product contains >1000 ppm 4-CBA 

requiring further purification steps. We attribute the superior performance of the spray reactor to 

increased O2-liquid mass transfer area thus avoiding starvation that can occur when gas is 

sparged into a continuous liquid phase, as in the stirred reactor. In addition, the reduced 

backmixing in the spray reactor has also contributed to enhanced conversion. Another advantage 

of the spray reactor is that the solvent (acetic acid) burning rate is reduced due to the shorter 

residence times in the spray reactor, which was demonstrated by our preliminary experimental 
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results of CO formation rate. Theoretical calculations confirm that in typical spray droplets, the 

O2 diffusion time constants are one to two orders of magnitude lower than the kinetic time 

constant (associated with the rate determining step) implying facile penetration of the O2 

throughout the liquid phase and elimination of O2 starvation. Further, mathematical modeling of 

a stirred reactor operated at typical Mid-Century process conditions shows that solvent 

evaporation is a main source of cooling that results in steady states that are open-loop stable. The 

modeling also shows that control of reactor operating pressure around 15 bar is critical to 

achieving stable operation without temperature overshoot that might lead to solvent and titanium 

burning in the presence of oxygen. These model predictions were verified experimentally. Spray 

reactor operation in which the reactor pressure is maintained constant results in constant pressure 

and temperatures whereas operation in which the reactor pressure is allowed to rise during 

continuous gas introduction results in a steadily rising temperature in the reactor. In addition, 

higher water content in the solvent results in lower reactor temperature in both the MC and spray 

processes because water has a lower boiling point and a higher value of heat of vaporization 

compared to acetic acid. Further, the presence of CO2 and acetic acid vapor in the gas phase in 

sufficiently high concentrations is shown to maintain the reaction outside the flammability 

envelope. The elimination of the hydrogenation step and reduction of solvent burning (due to 

smaller residence times compared to the stirred reactor) provide potential economic and 

environmental benefits that would make a continuous spray process a greener alternative to the 

conventional Mid-Century process. Furthermore, this work also suggests that the spray process 

may be extended to other fast gas-liquid reactions to overcome gas-liquid mass transfer 

limitations in conventional stirred reactors.  
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Chapter 4 Development of a Continuous Spray Process  

for Terephthalic Acid Production 

 

 

 

In the previous chapter, a semi-batch spray process concept for the oxidation of pX to TPA 

was successfully demonstrated. This chapter is intended to demonstrate the spray process 

concept in continuous operation mode. Some preliminary experimental results from the 

continuous spray process are reported. 

4.1    Continuous Spray Reactor: Initial Efforts 

A major goal of this research program is to develop and demonstrate a continuous, laboratory-

scale spray reactor process in which polymer-grade (<25 ppm 4-CBA) TPA is produced as a 

solid product in one step at high yields (comparable to the Mid-Century process) while 

simultaneously reducing the solvent (acetic acid) burn rate. In Chapter 3, it was demonstrated 

that a 700 mL spray reactor operated in semi-batch mode (i.e., gas phase is continuously 

introduced in and withdrawn from the spray reactor while liquid phase remains in the reactor 

during the 3-min spray duration) produces high-purity TPA (<25 ppm 4-CBA). The next 

challenge to address is whether the high-purity product can be continuously withdrawn from the 

reactor in order to demonstrate a continuous process. The progress to date is described in this 

section. 

The intrinsic kinetic studies of the homogeneous reaction system indicate that pX oxidation to 

TPA requires several minutes of reaction time in the liquid phase to convert the partial oxidation 

products to TPA. Given that the minimum spray rate of 35 mL/min required by the nozzle to 



! 81 

generate micron sized droplets, the 700 mL spray reactor with 50 mL of liquid phase (initially) 

would provide only 1-3 minutes of residence time (based on the liquid phase holdup) during 

continuous operation. In order to provide flexibility in allowing longer residence times, it was 

decided to construct a longer (2 ft.) 4 L spray reactor. In addition to allowing larger liquid 

holdups (and therefore longer residence times), the larger vessel also increases the zone in which 

the oxidations occur without backmixing, which is particularly important for achieving purity 

levels of 99.99%. The dimensions of the two generations of spray reactors are shown in Figure 

4.1. 

 

Figure 4.1: Dimensions of 700 mL and 4 L spray reactors 

Table 4.1 shows the solid TPA product quality obtained from the 4 L spray reactor operated in 

semi-batch mode. The reaction conditions were identical to those employed in the 700 mL 

reactor (Table 3.3) except that 300 mL of acetic acid (instead of 50 mL) were loaded in the 4 L 

reactor. The 4-CBA content in the solid TPA product was 93 ppm and significant amounts of 

BPTA (449 ppm) were detected (run #2). The higher impurity levels observed in the 4 L reactor 

700 mL, 6-in height 4 L, 2-ft height 
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compared to the 700 mL reactor were probably due to the faster cool-down resulting in unequal 

post-oxidation times in the two reactors. Indeed, polymer-grade TPA product was obtained given 

15-min post-oxidation time at 200 °C (run #4). Based on these results, we can conclude that high 

purity TPA is also obtainable in the longer 4 L reactor.  

The experimental results shown in Table 4.1 also demonstrated the significant role of sparger 

by which O2/CO2 gas mixture was introduced into the liquid phase. Without sparger, polymer-

grade TPA product could not be obtained even given 1-hour post-oxidation time at 200 °C (run 

#3). With sparger, however, the impurity contents of 4-CBA and BPTA are greatly reduced (run 

#2). Further, polymer-grade TPA product is obtained given 15-min post-oxidation time at 200 °C 

(run #4). All this evidence shows that the vapor and liquid phases are better saturated with acetic 

acid and O2 with the help of the liquid sparger. 

Table 4.1: Gas sparger effects on solid TPA product quality from the 4-L spray reactor  

Run 

# 
Sparger 

Solid product quality  

TPA purity (wt%) 4-CBA (ppm) BPTA (ppm) 
p-TA 

(ppm) 

1 No 99.59±0.01 1689±1 2367±1 n.d.a 

2 Yes 99.95±0.01 93±1 449±1 n.d. 

3b No 99.97±0.01 278±1 n.d. n.d. 

4c Yes 99.99+ 19±1 n.d. n.d. 

Reaction conditions: 

T = 200 °C; P = 15 bar; pX added = 6.9 mmol; Co = 12.5 mM, Mn = 12.5 mM, Br = 32.5 mM;  

spray time = 3 min; spray rate = 35 mL/min; O2:CO2 (mol:mol) = 1:1; gas mixture flow rate = 

600 scc/min;  
an.d.: not detected;  
bReactor was maintained at 200 °C for 1 hour after spray;  
cReactor was maintained at 200 °C for 15 min after spray.  
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4.2   Preliminary Experimental Results from Continuous operation of the 4 L Spray 

Reactor 

The performance of the sparged continuous spray reactor was investigated initially using a 

manually controlled micro-metering valve in the liquid effluent stream. The experimental setup 

is similar to the semi-batch spray reactor setup (Figure 3.6) with the only difference being that 

there is an outlet at the bottom of the reactor and a manually controlled micro-metering valve is 

used to control the liquid effluent flow rate. In a typical experimental run, the reactor was 

initially pressurized with an equimolar O2/CO2 gas mixture, and then heated to the desired 

temperature (approximately 200 °C). After the temperature stabilized, the O2/CO2 gas mixture 

was preheated to the reactor temperature by means of heating tape and continuously introduced 

into the reactor at a flow rate of 600 std cm3/min. Simultaneously, the gas was also continuously 

withdrawn on the top of the reactor from the vapor phase to maintain the reactor pressure 

constant at the desired value (15 bar) with a back-pressure regulator (DRESSER®, Model 

SD91LW) connected to the gas-effluent line. Approximately 300 mL of acetic acid was first 

sprayed into the reactor (approximately 8 minutes and 40 seconds with a flow rate of 35 

mL/min). Then the pre-mixed and pre-heated feed solution (containing specific concentrations of 

pX, cobalt acetate, manganese acetate and hydrobromic acid dissolved in acetic acid; [pX] = 66 

mM; [Co] = 12.5 mM, [Mn] = 12.5 mM, [Br] = 32.5 mM;) was sprayed into the reactor at a rate 

of 35 mL/min, while simultaneously opening the micro-metering valve to withdraw the liquid 

phase from the bottom of the reactor. For a typical run, the O2/pX (mol:mol) is approximately 

5.8 which is sufficient to fully convert the pX to TPA. The initial pX concentration (0.066 M) is 

low enough to maintain the produced TPA completely dissolved in the liquid phase. 
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 Excellent T & P control and constant acetic acid flow rate from the bottom of the reactor 

were obtained during a 25-min blank run. T & P profiles and collected acetic acid amounts (from 

the bottom liquid phase and the gas stream exiting at the top of the reactor) are shown in Figure 

4.2 and Table 4.2. HYSYS simulation (Figure B1 in Appendix B) gave a flow rate of the 

overhead acetic acid vapor stream of approximately 1.8 g/min (~9 g for 5 min duration) in a 

continuous reactor with vapor phase reaching equilibrium. The condensed acetic acid from 

overhead, obtained from the blank experiment, is shown to be 7.3-8.1 g during 5 minutes. 

Considering the possible acetic acid loss from the overhead condenser, it is surmised that the 

vapor phase is most probably saturated with acetic acid. This needs to be verified more 

thoroughly in future work. 

Table 4.2: Acetic acid amounts from the top (gas stream) and bottom (liquid stream) of the spray 

reactor (operating conditions same as in Table 4.1) 

Time duration (min) 
Condensed HOAc from 

overhead (g) 
HOAc from bottom (g) 

0 – 5 8.01 207 

5 – 10 6.30 206 

10 – 15 8.08 205 

15 – 20 7.40 203 

20 – 25 7.36 204 
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!
Figure 4.2: T & P profiles during a 25-min blank run  

with manual control of micro-metering valve 

However, in the preliminary reaction run, manual control led to varying liquid holdup in the 

reactor with time as shown in Table 4.3, as well as high concentrations of intermediates probably 

due to low catalyst concentration and/or inadequate residence time in the liquid phase. To get 

better liquid level control (and therefore more constant residence time in the liquid phase), 

automated liquid level control of the liquid level was implemented. A stepper-motor-controlled 

micro-metering valve for liquid level control was designed by Mr. Edwin Atchison (Electronics 

Technician, CEBC), employing the instantaneous reactor mass as feedback. Constant T & P 

profiles and acetic acid weight in the reactor were obtained during a 30-min blank run (Figure 

4.3). This should permit further testing and development of the continuous spray reactor by 

future researchers. 
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Table 4.3: Solid TPA product quality during 25-min continuous run in 4 L spray reactor 

Time duration 

(min) 

Liquid Holdup 

(mL) 

Solid product quality 

TPA purity 

(wt%) 

4-CBA 

(ppm) 
BPTA (ppm) p-TA (ppm) 

0 – 5 125 98.15 5,423 13,065 n.d. 

5 – 10 127 98.87 3,294 8,012 n.d. 

10 – 15 116 99.08 1,821 7,339 n.d. 

15 – 20 176 99.03 1,489 8,217 n.d. 

20 – 25 ~ 300 98.92 1,489 9,304 n.d. 

pX = 0.066 M; other reaction conditions are the same as those for Table 4.1. 

 

!

!

Figure 4.3: 30-min blank run with stepper motor controlled micro-metering valve 
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4.3    Summary 

Preliminary experimental results of pX oxidation from a 4 L continuous spray reactor during a 

25-min experimental run using a manually controlled micro-metering valve show high 

concentrations of undesirable intermediates products, which could be due to several reasons such 

as non-steady state operation with varying liquid holdup in the reactor caused by the manual 

control, low catalyst concentration and inadequate residence time in the liquid phase. To get a 

steady state continuous operation, automatic control of the bottom liquid phase flow rate must be 

used. A stepper-motor-controlled micro-metering valve was successfully designed and 

implemented in the 4-L continuous spray reactor. Excellent T & P control as well as constant 

acetic acid weight in the reactor were obtained during a 30-min blank run. This should permit 

testing and development of the continuous spray reactor for pX oxidation by future researchers. 
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Chapter 5 Economic and Environmental Impact Assessment of the Spray 

Process for Terephthalic Acid Production 

 

 

 

With dwindling natural resources and increasing global population, sustainable development 

has assumed increased importance in this new millennium. The well-accepted definition of 

sustainability is “development that meets the needs of the present without compromising the 

ability of future generations to meet their own needs” [118]. Sustainability indicators include 

economic, environmental and social issues [119, 120]. A sustainable process is one that covers 

all of these three dimensions. 

As stated by the International Council of Chemical Associations (ICCA) in the United Nations 

Environmental Programme’s GEO-2002, the chemical industry has laid a solid platform for 

moving toward becoming a sustainable sector. Many companies are continuing to evaluate 

resource-efficient manufacturing processes, and substituting more sustainable products as 

alternatives, where appropriate [121]. The CEBC mission is well aligned with this sustainability 

goal. The development of the CEBC spray process as a potentially more sustainable substitute 

for the conventional stirred process is exemplary of its efforts to promote sustainability in the 

chemical industry sector. The technical feasibility of the spray process concept has been 

demonstrated in Chapter 3. This chapter deals with quantitative comparison of the economics 

and potential environmental impacts of the CEBC spray process and the conventional MC 

process to assess the practical viability and the environmental benignity of the alternative spray 

process for terephthalic acid production. 
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5.1    Introduction 

It has been demonstrated in Chapter 3 that the CEBC spray process in which the liquid phase 

containing dissolved pX and the catalyst is dispersed as fine droplets into the gas phase 

containing oxygen produces high-purity TPA (<25 ppm 4-CBA) in one step at 200 °C and 15 bar 

pressure. The elimination of the hydrogenation step and the reduction of solvent burning provide 

economic and environmental benefits that make a continuous spray process as a potentially more 

sustainable alternative to the conventional Mid-Century process. The non-requirement of the 

energy-intensive hydrogenation section obviates a number of processing steps resulting in the 

reduction in energy requirements as well as capital and operating costs. The lower solvent 

burning rate reduces not only the cost for make-up acetic acid but also CO2 emissions. By 

conserving material and energy, and also reducing CO2 emissions, the spray process satisfies 

several principles of green chemistry [122]. However, quantitative sustainability assessment is 

essential to not only numerically determine the economic and environmental benefits but, 

equally importantly, to also identify areas for further improvement in sustainability-related 

metrics. Such a quantitative assessment is especially insightful when process conditions are 

different. For example, the pX concentration in the demonstrated spray process is 10 times lower 

compared to the industrial process. This means that the acetic acid that must be processed to 

meet a certain production requirement is ten times higher in the spray process. The processing of 

such large quantities of acetic acid increases not only equipment and energy costs, but also the 

CO2 emissions associated with solvent burning. These adverse effects could either partially or 

totally offset the potential economic and environmental benefits anticipated by eliminating the 

hydrogenation step. Clearly, quantitative comparative assessment of the economics and 
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environmental impact assessments of the two processes are essential to unambiguously address 

and resolve such issues. 

 Several reported case studies of quantitative economic and environmental impact assessments 

of process design alternatives provide valuable guidance for the evaluation of this particular 

spray process. Dunn and Savage [123 , 124] examined the economic feasibility and the 

environmental impact of a terephthalic acid process using high-temperature water (HTW) as the 

reaction medium. They found that a subcritical HTW-based process was equally capital 

intensive, less energy intensive, and more environmentally benign than the current acetic-acid-

based process (MC process). Similar methodology of economic and environmental impact 

analyses have been employed to evaluate alternative chemical processes such as CO2-based 

hydroformylation process [125], solid-acid catalyzed alkylation process in supercritical CO2 

[126], liquid-phase H2O2-based ethylene oxide process [127] and H2O2-based propylene oxide 

process [128], all of which were developed by CEBC researchers. The work presented herein is a 

relatively thorough quantitative evaluation of the CEBC spray technology for TPA production, 

from both economic and environmental points of view. The conventional MC process is 

employed as the industrial benchmark, against which the economics and environmental impacts 

of four different spray reactor case studies using varying amount of acetic acid in the feed are 

simulated and compared. The results reveal key operating factors that affect the economics and 

environmental impacts, and provide valuable guidance for process design and optimization. 

5.2    Methodology 

The methodology employed here generally includes three steps as follows. First, both the MC 

process and the CEBC spray process (4 cases with various acetic acid/p-xylene ratios in the feed) 

are simulated by the HYSYS® software assuming a certain TPA production capacity for the 
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plant.  Process flow diagrams (PFDs), developed for each technology with various operating 

parameters/variables and product specifications as inputs, provide the relevant mass and energy 

flow rates associated with the process streams. These values are used in process equipment 

design and sizing. Secondly, comparative economic analyses are performed by estimating capital 

investment and total production cost for each technology. The capital investment is estimated 

following the percentage of purchased-equipment cost method [129], in which the cost for 

purchased equipment is treated as the estimation basis. Other direct costs or indirect costs are 

estimated by multiplying the purchased equipment cost with a corresponding factor. The 

purchased equipment costs are estimated based on attributes such as equipment size, material of 

construction, weight or surface area [129, 130]. For determining the production costs, the 

amounts of utilities and chemicals consumed are estimated from the HYSYS®-estimated stream 

properties. The costs associated with utilities and raw materials labor are obtained from specified 

current sources. Finally, comparative gate-to-gate LCA (life cycle assessment) and cradle-to-gate 

LCA of both processes are performed to evaluate the relative environmental impacts [127, 128]. 

The stream flows and compositions from the PFDs are used to estimate the potential 

environmental impacts associated with the emitted streams from both processes. More details of 

the methodologies are provided in the following sections.  

5.3    Process Simulations 

5.3.1 Process simulation basis 

The design basis for both of the conventional MC process and the CEBC spray process is a 

production rate of 500,000 t/yr of purified terephthalic acid (PTA) at a 0.9 stream factor (i.e., 328 

on-stream days). Plant-scale data for the simulated conventional MC process were obtained from 

published patent data [27, 28, 132-134]. Data for simulating the spray process were obtained 
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from laboratory scale data reported in Chapter 3. Simulations of both processes were carried out 

with Aspen HYSYS® V7.3 software. For estimating vapor-liquid equilibrium, the UNIQUAC 

model was used to simulate the liquid phase composition and Peng-Robinson equation of state 

was used to model the vapor phase. CO2/acetic acid binary interaction coefficient [116] was set 

as 0.02, and other binary interaction coefficients are based on the HYSYS database. Tables 5.1 

and 5.2 summarize the key operating parameters for process simulation basis and the 

assumptions, respectively, associated with acetic acid use and loss for the four cases of the 

CEBC spray process. 

Table 5.1: Key operating parameters for the simulation of the MC and CEBC spray processes 

 MC Process Spray Process 
Oxidation reactor conditions   
     Temperature (°C) 195 200 
     Pressure (psia) 220 220 
     Water concentration in reaction solvent feed (wt%) 5 5 
     p-xylene conversion (%) 98.1 99.6 
     Solid product quality   
         4-CBA concentration (ppmw) 1375 23 
         p-TA concentration (ppmw) 608 2 
Hydrogenation reactor conditions   
     Temperature (°C) 267 ― 
     Pressure (psia) 975 ― 
     4-CBA conversion (%) 90 ― 
     Solid product quality   
         4-CBA concentration (ppmw) 7 ― 
         p-TA concentration (ppmw) 100 ― 
Overall TPA yield (%) 95 97 
!
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Table 5.2: Assumed acetic acid use and loss for the MC process and the CEBC spray process 

 MC process 
Spray process 

Case 1 Case 2 Case 3 Case 4 
HAc/pX feed ratio (wt/wt) 2.3 20.8 14.4 8.1 2.3 

HAc loss from oxidation reactor (%) 5.3 1.3 1.3 1.3 1.3 
!

5.3.2 Process descriptions 

The process flow diagrams of the conventional MC process and the CEBC spray process 

simulated by HYSYS® are shown in Figures 5.1 & 5.2. Details of the simulation parameters, 

operating conditions of major unit operations and flow rates of key streams are provided in 

Tables C1 & C2 of Appendix C. 
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5.3.2.1 Conventional MC process 

Oxidation section 

Oxidation reactor (CSTR) 

The feed solution pumped into the oxidation reactor contains p-xylene, catalyst (cobalt 

acetate, manganese acetate and hydrogen bromide) and solvent. Cobalt acetate and manganese 

acetate are mostly recovered in the catalyst recovery unit, so that hydrogen bromide is the only 

significant makeup component. Acetic acid is the solvent of choice in the TPA process primarily 

due to its unique interaction with Co to produce Co(III) that initiates the oxidation reaction [46]. 

In the MC process, the acetic acid solvent contains approximately 5 wt% of water [134]. The 

oxidation reactor requires a substantial amount of acetic acid, most of which is recycled via the 

solvent dehydration column where acetic acid is separated from water. The fresh (makeup) acetic 

acid accounts for approximately 3% of the amount of acetic acid fed to the oxidation reactor.  

Air (oxidant) passes though two stages of compressors and is then also fed into the oxidation 

reactor. The oxidation reactor in the MC process is usually a stirred vessel in which pX is 

oxidized to TPA by the oxygen in the air. The reactor is assumed to be adiabatic and maintained 

at 200 °C and 15 bar under steady operation. A substantial amount of the heat generated from the 

highly exothermic reaction (the heat of reaction is 1,300 kJ/mol at total pX conversion to TPA) is 

removed by the evaporative cooling of the solvent (see Chapter3, section 3.1.2). The liquid level 

is maintained at about 70% of the reactor volume to provide sufficient vapor disengaging space. 

The exit gas oxygen concentration is limited to approximately 3 mol% to prevent the formation 

of explosive vapor phase mixtures [20]. Acetic acid combustion rate is estimated to be 5.4 wt% 

of the acetic acid fed, resulting in significant solvent loss owing to CO2, CO and methyl acetate 
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formation (most of the methyl acetate formed from the oxidation reactor is converted to acetic 

acid via ion exchange catalyst and recovered). 

Solid-liquid separation 

The reactor effluent flows through three-stage flash crystallizers (refer to Table C1 in 

Appendix C for operating conditions), each of which has a condenser and a separator. The slurry 

from the third crystallizer is sent to a centrifuge, where the mother liquor containing the 

dissolved impurities in acetic acid are separated from crude TPA crystals. Approximately 20% of 

the heavies (acetic acid) from the solvent dehydration column (described in a later section) is 

diverted to the centrifuge to wash the crude TPA crystals. After leaving the centrifuge, the crude 

TPA is then sent to a dryer to remove the volatile acetic acid, yielding dry crude TPA, which 

contains about 1,400 ppmw 4-CBA and 600 ppmw p-TA. Over the past several decades, efforts 

have been made to eliminate the drying step prior to purification by hydrogenation (described in 

a subsequent section) in order to reduce the capital and operating costs [27, 28,132]. The related 

alternative technology is to introduce the crude TPA from the centrifuge into a rotary drum filter 

or belt filter and pressurize with water to remove the acetic acid (pressure filtration). More 

particularly, a filter cake is built up through the rotary drum filter or belt filter and the filter cake 

is covered with a layer of water, and then the water is pressured through the cake to displace the 

acetic acid. 

Catalyst recovery 

Most of the mother liquor from the centrifuge is fed to a reboiled stripper, in which almost all 

of the acetic acid is vaporized and the heavy ends containing the uncrystallized TPA, 

intermediates and catalysts are formed in the bottom. The heavies are pumped to the catalyst 

recovery unit, which is not simulated in this work because this would be common to both of the 
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MC process and the spray process. Briefly, the heavies containing the catalysts from the reboiled 

stripper are sent to an incinerator where the metal acetate catalysts are converted to metal oxide 

by pyrolysis. Then the metal oxides are converted to metal acetate tetrahydrates by reaction with 

hydrazine and acetic acid [135].  

Off-gas treatment 

In addition to nitrogen, oxygen and combustion gases (CO2 and CO), the exhaust gas from the 

oxidation reactor contains significant amounts of acetic acid and methyl acetate, and minor 

amounts of unreacted pX and methyl bromide.  A high-pressure scrubber is used to recover 

acetic acid by countercurrent contact with a water stream derived from the overhead stream of 

the dehydration column [20]. The scrubber has a bed of cation exchange resin that converts most 

of the methyl acetate into acetic acid and methanol. In other words, the scrubber is used to 

recover acetic acid from other VOCs. The acetic acid is then sent to the solvent dehydration 

column for recycle while the VOCs are let to a fixed bed combustion reactor [136] in which the 

VOCs are burned to CO2 and water over a supported palladium catalyst. The high temperature 

treated gas (above 400 °C) then passes through an expander where the energy content of the gas 

is converted to mechanical power that is used to either drive one of the air compressors or for 

electric power generation. Before being vented to the atmosphere, the effluent gas from the 

expander is usually fed to a scrubber (not considered in this work) to remove the residual 

bromine components by countercurrent contact with a caustic solution [136]. 

Acetic acid dehydration 

The overhead vapor from the reboiled stripper, the liquid and uncondensed streams from 

crystallizer separators, the bottom stream from the high-pressure scrubber and the vaporized 

solvents from the dryer are all fed to a distillation column to remove the water generated in the 
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oxidation reactor. About 80% of the dehydrated acetic acid (~98 wt%) is then recycled to the 

oxidation reactor. Azeotropic distillation is generally used for acetic acid/water separation and 

methyl acetate is used as the entrainer in this case. Water and the entrainer are distilled overhead 

and separated in a decanter, with only the organic phase being totally refluxed to the column 

[134]. 

Hydrogenation unit 

The crude TPA from the oxidation section is mixed with the recycled steam from the solvent 

evaporator (described in a later section) and the recycled water to form a slurry of about 20 wt% 

TPA in water [133]. The slurry is pumped to a dissolver that operates at 267 °C and 63 bar and is 

agitated for approximately 15 minutes to dissolve all of the TPA in water. The liquid is then 

pumped to a hydrogenation reactor in which 4-CBA is converted to p-TA by H2. The 

hydrogenation reactor has two catalyst beds: a top (main) Pd/C catalyst bed and a bottom 

(smaller) Rh/C catalyst bed [137]. The TPA/water solution leaving the hydrogenation reactor 

flows through two-stage crystallizers, a centrifuge and then to a final stage of crystallization 

followed by a rotary vacuum filter and a PTA (purified TPA) dryer. The dry PTA includes 7 

ppmw 4-CBA and 100 ppmw p-TA.  

A major problem associated with the crystallization recovery process is the potential 

contamination of the purified TPA crystals with p-TA. Shock or sudden cooling is avoided and 

gradual cooling is achieved in a series of crystallizers to minimize the co-precipitation of the 

impurities. A subsequent “water reslurry” step is used to remove the impurities (mainly p-TA) 

dissolved in the mother liquor, and thus the p-TA content in the purified TPA is lowered to 100 

ppmw. It should be noted that the previously described pressure filtration technology can also be 

applied to effect solid-liquid separation for obtaining purified TPA. This technology can 
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eliminate the need for a second stage of reslurrying and filtration of the purified TPA crystals 

[27, 28]. 

About 51% of the mother liquor from the centrifuge is recycled to the hydrogenation reactor 

such that the p-TA concentration in the feed is about 3000 ppmw (assumed basis). The rest of the 

mother liquor is concentrated in the solvent evaporator and the heavy-ends are recycled to the 

oxidation reactor, in which the p-TA is converted back to TPA. Approximately half of the steam 

from the top of the solvent evaporator is directly mixed with the crude TPA slurry and the rest is 

used to heat up the reslurry water. 

5.3.2.2 CEBC spray process 

The spray process layout looks similar to the MC process oxidation section. Instead of a 

CSTR in the MC process, the oxidation reaction occurs in a spray reactor in which the liquid 

phase containing dissolved pX and the catalyst (cobalt acetate, manganese acetate and hydrogen 

bromide) in acetic acid is dispersed as fine droplets by a nozzle into a continuous vapor phase 

containing the oxidant (O2). Compressed air is used as the oxidant in the simulation of the spray 

process and the O2/pX molar feed ratio is 3.5:1. Note that equimolar CO2/O2 gas mixture rather 

than air was used in the laboratory-scale spray reactor.  It has been demonstrated that the use of 

equimolar amounts of CO2 and O2 and excess acetic acid in the vapor phase falls outside the 

flammability envelope under the experimental conditions (section 3.1.2). It must be noted that 

using air as the oxidant source in the spray reactor also falls outside the flammability envelope. 

In the MC process, typical vapor phase O2 partial pressure is about 0.4 bar [98] or approximately 

3 vol% in the MC oxidation reactor to prevent explosions. In the HYSYS simulation of the spray 

reactor, O2 concentration in the off-gas is also limited to 3 mol%. In addition, the acetic acid 

amount employed in the spray process is more than or equal to that in the MC process, resulting 
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in a higher acetic acid composition in the vapor phase. Given that the acetic acid is above the 

upper flammability limit in the MC oxidation reactor, it follows that the acetic acid should also 

be above the flammability limit in the spray reactor.  

The reaction temperature and pressure are very close to those in the MC oxidation reactor, i.e., 

200 °C and 15 bar, respectively. As outlined in Table 5.2, four alternative spray processes using 

varying amounts of acetic acid in the feed are simulated with Case 1 having the highest acid feed 

rate (10-fold more than that in the MC process) and Case 4 having the least (acetic acid feed rate 

comparable to that in the MC process). In all of the four spray cases employed in the simulation, 

the acetic acid combustion is assumed to be 1.3 wt% of what is fed. This assumption is based on 

our preliminary experimental results from the 700 mL semi-batch spray reactor showing that the 

CO formed is approximately one-fourth compared to the MC process (section 3.2.5.4). The 

reactor product stream flows through three-stage crystallizers, a centrifuge and then a dryer to 

yield dry TPA, which is composed of 23 ppmw 4-CBA and 2 ppmw p-toluic acid. The purity of 

the solid TPA meets the polymer-grade TPA requirement and therefore no further purification 

was deemed necessary. The off-gas treatment part and the distillation part are similar to those 

employed in the MC process oxidation. 

5.4    Economic Analysis 

5.4.1 Capital investment 

5.4.1.1 Purchased equipment costs 

The estimates of purchased equipment costs are determined by equipment parameters such as 

equipment size, weight, surface area, and material of construction [129, 130] that are in turn 

based on the material and energy balances obtained from HYSYS simulation. Cost estimation 
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details including equipment design parameters and correlating equations for both processes are 

provided in Tables D1 & D2 of Appendix D. All the costs are adjusted to June 2012 figures 

using Chemical Engineering Plant Cost Index (CEPCI) [138]. Figure 5.3 shows the purchased 

costs (f.o.b., free on board, meaning that the purchaser pays the freight) of major equipment in 

both processes. Special equipment costs such as crystallizers, solid-liquid separation units, dryers 

and storage silos account for about 40% of the costs in both processes. Miscellaneous equipment 

costs mainly consist of the Pd and Rh catalysts for the hydrogenation reaction in the MC process. 

 

Figure 5.3: Comparison of purchased equipment costs for MC and spray processes 

5.4.1.2 Estimate of capital investment 

The estimate of capital investment is based on the “purchased equipment cost” method, in 

which the purchased equipment cost is treated as the basis, and other cost (direct, indirect and 

0

20

40

60

80

100

120

Total

Hydrogenation
Oxidation

Case 4
Case 3

Case 2
Case 1

MC process Spray process

 

 

 

C
os

t, 
$M

illi
on

s

 Pumps
 Miscellaneous equipment
 Special equipment
 Vessels and tanks
 Heat exchangers
 Compressors
 Columns
 Reactors



! 103 

working capital) are estimated by multiplying the purchased equipment cost with a 

corresponding factor [129]. Table 5.3 compares the capital investments for both MC and spray 

processes. The estimated total capital investments of the spray process case 1 ($241 million 

when nearly 10 times more acetic acid is used in the feed compared to the MC process) and case 

4 ($136 million when similar amounts of acetic acid feed is used as in the MC process) are 

approximately 80% and 45%, respectively, of those estimated for the MC process ($302 million). 

Thus, the capital cost benefit margin in the CEBC spray process (due to non-requirement of 

hydrogenation section) is progressively diminished from 55% at case 4 to 20% at the highest 

acetic acid throughputs of case 1.  

Table 5.3: Comparison of capital costs for both MC and spray processes 

 MC Process 
($Million) 

Spray Process ($Million) 
Case 1 Case 2 Case 3 Case 4 

Purchased equipment costs (f.o.b.) 79.7 63.6 54.8 45.8 35.9 
Direct installation costs 98.1 78.2 67.4 56.4 44.2 
Direct costs (others) 35.9 28.6 24.7 20.6 16.2 
      Total direct costs 213.8 170.4 146.9 122.9 96.3 
Indirect costs 58.2 46.4 40.0 33.5 26.2 
      Fixed capital investment (FCI) 272.0 216.8 186.9 156.3 122.6 
Working capital 30.2 24.1 20.8 17.4 13.6 
      Total capital investment (TCI) 302.2 240.9 207.7 173.7 136.2 

5.4.2 Total production cost 

5.4.2.1 Utilities and raw material costs 

The utilities and raw material costs (variable costs) for both MC process and spray process are 

summarized in Table 5.4. The p-xylene makes up the bulk of the raw material costs for both 

processes. Steam and electricity, used mainly in the heat exchangers and special equipment, 
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compressors and pumps, account for the large part of the utilities. Note that the estimated utility 

costs for the MC process (¢7.37/lb of TPA) are more compared to even case 1 of the CEBC 

process (¢6.46/lb of TPA), wherein maximum energy input is needed to handle the higher acetic 

acid throughputs (cases 1-3).  
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5.4.2.2 Estimate of total production cost 

Figure 5.4 compares the total product cost for both processes (cost details of each item are 

provided in Table D3 of Appendix D). The total cost of the polymer-grade TPA product from the 

MC process is estimated to be $0.67/lb. The total TPA cost from CEBC process case 1 and case 

4 is estimated to be $0.635/lb and $0.56/lb, respectively.  

!
Figure 5.4: Comparison of total production costs for both processes 

(Others include other direct, indirect costs, depreciation and general expenses such as labor, 

research, plant overhead, operating supplies and maintenance,  

details are provided in Table D3 of Appendix D) 
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weight ratio. The capital investment and production cost of the spray process can increase by 

120% and 13% respectively when acetic acid amounts increase nearly 10-fold, and this change is 

linear. Clearly, as high a pX concentration as practically feasible should be used to maximize the 

savings in the CEBC spray process. 

!
Figure 5.5: Capital and operating cost rise with acetic acid throughput in CEBC spray process 

5.5    Environmental Impact Analysis 

A sustainable process should demonstrate not only clear economic advantages, but also 

superiority in terms of of environmental stewardship and social progress [141, 142]. To this end, 

comparative environmental impacts of the MC and spray processes are evaluated in this section. 

There are several techniques for environmental assessment such as input-output analysis, 

environmental impact assessment (EIA), environmental impact indices, environmental risk 

assessment and life cycle assessment (LCA) [143]. Among the various environmental assessment 
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approaches, LCA has become increasingly attractive and widely adopted in environmental 

impact analysis for making environmental decisions. 

5.5.1 Introduction to LCA 

LCA is a developing scientific methodology for identifying, quantifying and assessing 

environmental impacts throughout the life cycle of a product, process, or activity. The full LCA 

considers the material and energy uses and releases to the environment of the entire life cycle 

from cradle-to-grave (from raw material extraction through manufacturing, use and disposal 

phase) [144]. In fact, the user is free to select any of the following type of LCA: cradle-to-gate 

(from raw material extraction to factory gate, i.e., before transported to the consumer), gate-to-

gate (an assessment when the product is at the manufacturing facility), gate-to-grave (evaluation 

of the environmental impact when the product leaves manufacturing facility to final product 

disposal).  

Efforts have been made to develop and standardize the LCA methodology for decades, with 

inputs from important active organizations including the Society for Environmental Toxicology 

and Chemistry (SETAC), the United Nations Environmental Program (UNEP) and the 

International Organization for Standardization (ISO) [145-147]. An international standard for 

LCA developed by ISO suggests the four main phases in LCA in ISO 14040 series: a) goal and 

scope definition (ISO 14040); b) life cycle inventory (ISO 14041); c) life cycle impact 

assessment (ISO 14042) and d) life cycle assessments and interpretation (ISO 14043). [148, 149] 

Since the standard must be applicable to many industrial and consumer sectors, it is rather 

general. Nonetheless, it includes a comprehensive set of terms and definitions, a methodological 

framework for each of the four components, reporting considerations, approaches for critical 

review, and an appendix describing the application of LCA [150]. 
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One key question during the practical application of LCA to processes is how to translate the 

inventory results of material, energy, waste and toxic emissions into category indicators for 

directly assessing the environmental burdens. There are several category-specific 

characterization models such as TRACI (the Tool for the Reduction and Assessment of Chemical 

and other environmental Impacts), CML 2001 [CML stands for Centrum voor 

Milieuwetenschappen (Dutch: Leiden University Institute of Environmental Sciences)] and Eco-

indicator 99 to accomplish this translation efficiently. Generally, these LCA models can be 

grouped into two categories: mid-point approaches (problem-oriented approach or classical 

impact assessment method) which translates the category impact into real phenomenon such as 

acidification and ozone depletion and end-point approaches (damage-oriented approach) which 

translates the category impact based on the area of protection such as human health, natural 

resources and natural and human made environment in a cause-effect chain or network [151]. 

TRACI, CML 2001, EDIP 97 are typical of mid-point models while Eco-indicator 95 and 99, 

EPS 92, 96 and 2000 and LIME 2003 are examples of end-point approaches [151]. 

LCA is a powerful tool used for collecting and analyzing inventory data, weighing and 

ranking the environmental burdens of products, processes, or activities in a transparent and 

scientific way. It can help identify the hot spots that cause the greatest environmental impacts of 

the life cycle and thus provide decision makers with the resulting information to make 

improvements. It can also offer a link between the environmental impacts and economics of 

processes to help select an optimized application. CEBC researchers have employed LCA 

methodology for performing comparative environmental impacts of process concepts (ethylene 

and propylene epoxidations) developed at CEBC with conventional processes [127, 128]. 

5.5.2 Methodology 
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Comparative gate-to-gate LCA and cradle-to-gate LCA of the conventional MC process and 

the CEBC spray process (4 cases) were performed. The approach employed in this analysis 

follows the four phases (goal and scope definition, life cycle inventory, impact assessment and 

interpretation) suggested by ISO. Figure 5.6 depicts the methodological framework for LCA of 

the TPA processes. Life cycle inventory database of the material and energy flows associated 

with the conventional and CEBC processes was provided by the Aspen HYSYS simulations 

which were also used for performing the comparative economic analysis. The life cycle impact 

assessment was accomplished using GaBi 6 software [152] developed by PE International jointly 

with University of Stuttgart LBP (former IKP). TRACI, incorporated in GaBi® with U.S. 

professional and extension databases, was used to translate the inventory results into category 

indicators for environmental impact assessment. 

 

Figure 5.6: Methodological framework for LCA of TPA processes 

GaBi® is a commercial LCA software tool for product sustainability solution by creating life 
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production processes such as chemicals, power generation and transport over the supply chain of 

the represented cradle-to-gate inventory according to individual country/region specific situation. 

GaBi® incorporates various LCA models such as TRACI, CML 2001 and Eco-indicator 99. 

While most of these models have been developed for use in specific country/region particularly 

in Europe or Japan, TRACI was developed by United States Environmental Production Agency 

(US EPA) in 2002. The underlying methodologies in TRACI reflect state-of-the-art 

developments for LCA in the US, and are using input parameters that are specific to US 

locations [153-156]. TRACI facilitates the characterization of the following environmental 

categories: ozone depletion, global warming, acidification, eutrophication, tropospheric ozone 

(smog) formation, ecotoxicity, human particulate effects, human carcinogenic effects, human 

non-carcinogenic effects, fossil fuel depletion, and land use effects. Consistent with EPA’S 

decision not to aggregate between environmental impact categories, many of the impact 

assessment methodologies within TRACI are based on mid-point characterization approaches 

[154]. 

In order to validate the methodologies employed in the Aspen HYSYS simulations as well as 

in the GaBi® LCA software, a gate-to-gate environmental impact assessment of the simulated 

conventional MC process was first performed and the predictions were compared with the total 

and released chemical wastes and green house gas emissions from a commercial plant (BP 

Amoco Chemical Company Cooper River Plant). The actual commercial plant emission data are 

available from public databases such as the annual toxic release inventory data reported to US 

EPA [157] and EPA’s facility level information on Green House Gases Tool [158]. 

 Fugitive emissions (unintentional releases of process fluid from equipment and evaporation 

of volatile liquids from open areas) are an important environmental intervention [143]. It was 
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reported that 70-90% of air emissions for some plants in the United States resulted from the 

fugitive emissions [159]. Siegell [160] also claimed that in almost all cases, fugitive emissions 

from equipment leaks were the largest source of volatile organic compounds (VOCs) emissions 

in refineries, typically accounting for 40-60% of total VOC emissions. However, GaBi® fails to 

reveal these emissions from mass and energy balances based on process flowsheets for the LCA 

study. To the best of our knowledge, most LCA software tools don’t include estimates for 

fugitive emissions. To execute a thorough gate-to-gate environmental impact analysis, the 

method used for gate-to-gate emission estimation was based on the Environmental Fate and Risk 

Assessment Tool (EFRAT) developed by Shonnard and Hiew [161]. Specifically, the emission 

rates from process unit operations were calculated by the throughput of VOCs in each piece of 

equipment multiplied by the average emission factors for that particular type of chemical process 

unit. Emission sources considered in the gate-to-gate environmental impact analysis include the 

unit operations such as reactors, distillation columns and strippers, the fugitive emissions from 

valves, flanges and pump seals, as well as the fuel combustion emissions for utility production. 

The estimate of utility emissions was based on the GaBi® database. In the cradle-to-gate 

environmental impact analysis, the fugitive emissions would also be considered. 

5.5.3 Environmental impact analysis of TPA processes 

5.5.3.1 Goal and scope definition 

Goal 

The major project goal is to quantitatively benchmark the environmental impacts of TPA 

production by the CEBC spray process against the conventional MC process. Such a comparison 
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should provide a clear picture of potential environmental advantages of the spray process and 

also identify the hot spots and opportunities for improvements. 

Scope definition (LCA assumptions and system boundaries) 

Functional unit 

Functional unit for this analysis is the production of 63450 kg/h (500,000 metric tons/year) of 

purified TPA (i.e., polymer-grade TPA quality specifications) by both the conventional MC 

process and the CEBC spray process. 

System boundaries 

The scope of the evaluation is limited to gate-to-gate and cradle-to-gate analyses. The use and 

disposal phases are not considered. For gate-to-gate analysis, the system boundaries of both 

processes are limited to factory entry gate to exit gate (Figure 5.7). In other words, only the 

environmental impacts during TPA manufacture at the production facility stemming from 

emissions from unit operations, fugitive emissions, and utility emissions are considered. 

Electricity is assumed to be obtained from U.S. power grid from a portfolio of energy sources. 

Steam is assumed to be produced from natural gas. In contrast, the cradle-to-gate analysis 

assessment includes gate-to-gate scope and also the environmental impact from the extraction, 

manufacture and transportation of the raw materials. 
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Figure 5.7a: System boundaries of conventional MC process  

for gate-to-gate and cradle-to-gate LCA 
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Figure 5.7b: System boundaries of CEBC spray process  

for gate-to-gate and cradle-to-gate LCA 

Raw material sources 

The main raw materials used in the CEBC spray process and MC process oxidation section 

are p-xylene and acetic acid. The production of cobalt acetate, manganese acetate and 

hydrobromic acid is not considered since the usage amounts of these catalysts are small 

compared to the other raw materials. Hydrogen and demineralized water are also important raw 

materials for the MC process hydrogenation section. Besides, the environmental impacts due to 

energy production such as electricity and steam from fossil fuel sources are also considered. 

Petroleum is practically the only natural source of xylenes. p-Xylene is primarily separated 

from reformates, in which naphtha fractions (from naphthenic crude oils or produced by oil 

pX = 41,650 kg 

CEBC spray 
process 

Raw materials  
extraction, manufacture,  

and transportation 

p-Xylene  
from reformate 

Acetic acid 
from methanol 

Treatment of 
wastes 

Catalytic 
combustion 

Purified TPA manufacture 
and separation 

Thermal energy from 
natural gas 

Electricity from 
power grid 

Gate-to-Gate 

Cradle-to-Gate 

Purified TPA product 

TPA = 63,450 kg 



! 116 

hydrocracking) are used as the raw materials for the catalytic reforming process [162]. The C8 

and heavier aromatics (C8+ fraction) produced from the reformates pass through a distillation 

column where p-xylene is first separated (from o-xylene and C9+ aromatics. m-Xylene, which has 

a nearly identical boiling point to p-xylene, is mostly isomerized to o- and p-xylenes before fed 

to the distillation column). The p-xylene is further purified from the isomer mixture by 

adsorption on a molecular sieve [163]. 

The major synthetic routes to acetic acid are methanol carbonylation and liquid-phase 

oxidation of butane, naphtha, or acetaldehyde, with methanol carbonylation being the preferred 

route for large-scale production [164]. A rhodium catalyst is usually used for the one-step 

methanol carbonylation process, in which methanol and carbon monoxide are fed into a stirred 

reactor and the reaction is conducted at 200 °C and 35 bar [165]. Methanol is generally produced 

from synthesis gas, which in turn is produced from natural gas by either steam reforming or 

partial combustion. 

Steam reforming of natural gas or heavy fuel oil is the main technology used for the industrial 

scale production of hydrogen [166]. Electrolysis of water and hydrocracking of hydrocarbons are 

relatively minor sources of industrial hydrogen. In steam reforming, the natural gas or heavy fuel 

oil and steam are passed over a nickel-based catalyst to form hydrogen and carbon monoxide. 

There are usually three methods to obtain demineralized water: distillation, ion exchange and 

reverse osmosis [167]. Ion exchange, in which cations and anions are exchanged with protons 

and hydroxide ions, is modeled in the GaBi dataset.  

In the GaBi dataset, the electricity used is modeled according to the individual country-

specific situation. Specifically in our case, the power plants in service are based on the US power 

grid from a portfolio of energy sources. In this model, the net losses and imported electricity as 
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well as the import, transport, mining and exploration processes for the energy carrier supply 

chain are all considered. The steam used for heat exchangers is assumed to be produced from 

natural gas. 

Allocation 

Since no valuable byproducts are obtained from either the MC process or the spray process, 

the allocation rule need not be considered in this evaluation. 

5.5.3.2 Life cycle inventory 

For both the MC process and the CEBC process, the inventory of the LCA system includes 

the inputs and outputs for the processes within the system boundaries (Figure 5.5), including the 

raw material and energy inputs, products and co-products outputs, and generated wastes released 

to air, water and soil. In this particular analysis, the foreground inventory data associated with 

the material and energy balances during TPA production at the facility are identical to those used 

for the comparative economic analysis (obtained from Aspen HYSYS simulations, refer to 

Appendix C). The background inventory data associated with raw material extraction, utility 

production and transportation are obtained from GaBi U.S. professional and extension databases. 

Flow models for cradle-to-gate LCA consistent with the system boundaries defined in Figure 5.7 

are shown in Figure 5.8a (MC process) and Figure 5.8b (CEBC spray process). Flow models for 

gate-to-gate LCA (not shown here) look similar to those for cradle-to-gate LCA except that the 

section related to raw material extraction, manufacture and transportation is omitted. 
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Figure 5.8a: Flow model of conventional MC process for cradle-to-gate LCA simulated in GaBi® 

 

Figure 5.8b: Flow model of CEBC spray process for cradle-to-gate LCA simulated in GaBi® 
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5.5.3.3 Life cycle impact assessment 

Methodology validation by gate-to-gate LCA of MC process 

Comparison of VOC emissions 

As described in section 5.5.2, the gate-to-gate VOC emission rate from a unit operation is 

estimated by the VOC mass flow rate passing through the equipment multiplied by an average 

emission factor. The industry emission factors for various unit operations are summarized in the 

textbook by Allen and Shonnard [168] which also provides average emission factors for 

estimating fugitive emissions from valves, pump seals, flanges and other connections. The 

estimates of air emissions of two VOCs, p-xylene and methanol, are given in Table 5.5. These 

estimated emissions are compared with the waste quantity report of a commercial TPA plant, 

namely, BP Amoco Chemical Company Cooper River Plant in South Carolina with an annual 

production capacity of 1.345 million metric tons of purified TPA [11] The report was obtained 

from EPA public database [157], and the data therein are also included in Table 5.5.  

Table 5.5: Comparison of conventional MC process VOC emissions obtained from U.S. EPA 

Toxic Release Inventory (TRI) data for commercial facility with GaBi®-estimated emissions  

Chemical 

Reported total and released chemical wasteb (lb) 
 by BP Amoco Chemical Co., 2011 Gate-to-gate 

emissions (lb), 
this work Total waste Adjusted total 

wastea  Released waste Adjusted 
released wastea  

p-xylene 1,125,800 418,513 25,794 9,589 228,713 
methanol 1,703,100 633,123 103,100 38,327 298,332 

aAdjusted wastes corresponded to the simulated annual capacity (500,000 metric tons PTA); 
bThe TRI reported waste is the chemical waste emissions (pX and methanol VOC emissions) to 

air. 

As shown in Table 5.5, the estimated VOC emissions are approximately half of those reported 

by BP (total wastes). The TRI data are generally higher probably because the BP facility has two 
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other chemical production sites in addition to the purified TPA site [11]. Nevertheless, the 

predicted and reported waste quantities are of the same order of magnitude, implying the method 

used for the process simulation and gate-to-gate VOC emission estimation is generally 

satisfactory on this level of analysis. One can also observe from Table 5.5 that more than 90% of 

the generated wastes are treated at the facility and the rest of them are released to the 

atmosphere. 

Comparison of CO2 emissions 

Major sources for direct gate-to-gate CO2 emissions to air are CO2 generated from solvent 

burning in the oxidation reactor, the combustion reactor for VOCs treatment as well as the on-

site boilers for steam production by fuel combustion. Table 5.6 compares the estimated CO2-

equiv. for the conventional MC process obtained from GaBi® with the reported facility CO2 

emissions by BP Amoco Chemical Company Cooper River Plant (SC) for year 2011 [158]. 

Clearly, less than 10% of the total CO2 emission equivalent is emitted as direct CO2 emissions to 

air at the facility. The predicted and reported CO2-equiv. quantities are of the same order of 

magnitude, which provides a measure of the predictive ability of the TRACI tool incorporated in 

GaBi®. 

Table 5.6: Comparison of conventional MC process CO2 emissions obtained from U.S. EPA 

GHG data for commercial facility with GaBi®-estimated emissions  

Reported total facility CO2 emissions (in metric 
tons CO2-equiv.), by BP Amoco Chemical Co., 

2011 

Gate-to-gate CO2 emissions (in metric 
tons CO2-equiv.), this work 

Reported Adjusteda Off-gas 
Fuel 

combustion 
Total 

101,458 37,717 60,625 327,833 388,458 

aAdjusted emissions corresponded to the simulated annual capacity (500,000 metric tons purified 

TPA). 
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Comparative gate-to-gate life cycle impact assessment 

Figure 5.9 compares the gate-to-gate environmental impact potentials of TPA production by 

the conventional MC and CEBC spray processes (only the major impact categories are shown in 

Figure 5.9). The numerical data and a complete list of all impact potentials are provided in Table 

E1 of Appendix E. The estimated environmental impact potential of direct process emissions 

such as off-gas, wastewater, VOCs from unit operations and fugitive emissions (fuel combustion 

effect for steam production excluded) are also provided in Figure 5.9 (shaded regions). The 

interpretation of the results will be discussed in detail in next section. As expected, the adverse 

environmental impact potentials in the CEBC spray process decreases with a lower substrate 

(pX) concentration, i.e., smaller amounts of acetic acid employed. Table 5.2 copied the HYSYS 

simulation parameters associated with acetic acid for the MC process and CEBC spray process 

(case 1 to case 4). 

Table 5.2: Simulation parameters associated with acetic acid for both processes 

 MC process 
Spray process 

Case 1 Case 2 Case 3 Case 4 
HAc/pX feed ratio (wt/wt) 2.3 20.8 14.4 8.1 2.3 

HAc loss through 
oxidation reactor (%) 5.3 1.3 1.3 1.3 1.3 
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Figure 5.9: Comparison of predicted gate-to-gate environmental impact potential for both 

processes 

(Orange: MC process oxidation section; Magenta: MC process hydrogenation section; Cyan: 

spray process; Shaded: environmental impact potential of direct process emissions such as off-

gas, wastewater, VOCs from unit operations and fugitive emissions;  

Unshaded: fuel combustion for process steam production) 
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Comparative cradle-to-gate life cycle impact assessment 

The predicted cradle-to-gate environmental impact potential for both processes are shown in 

Figure 5.10. The numerical data and a complete list of all impact potentials are provided in Table 

E2 of Appendix E. The predicted cradle-to-gate environmental impact potential for most of the 

impact categories are generally an order of magnitude greater than the gate-to-gate impact 

potentials, while they are of the same order of magnitude with respect to ecotoxicity air and 

ecotoxicity water potential, the major contributors to which are VOC emissions to air and the 

organic solvents contained in wastewater. The contributors to the various environmental impact 

categories are described in the following sections. 
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Figure 5.10: Predicted cradle-to-gate environmental impact potential for both processes 

(Orange: MC process; Cyan: Spray process) 
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5.5.3.4 Data interpretation 

Environmental impact potential contributors in the TPA processes 

Global warming potential 

Global warming potential arises from CO2 emissions and other greenhouse gases that trap the 

sun’s heat. As shown in Figure 5.9, the CO2 emissions for a TPA plant that employs the MC 

process technology are primarily associated with the fuel combustion for steam production by 

on-site boilers, accounting for nearly 85% of the total CO2 emissions. The hydrogenation section 

alone accounts for approximately 57% of the total on site CO2 emissions, primarily due to the 

large energy input for the hydrogenation reactor. The other CO2 emission source is the solvent 

burning in the oxidation reactor and the combustion reactor for VOCs treatment. For the gate-to-

gate CO2 emissions in the CEBC spray process, the fuel combustion for energy input contributes 

to approximately 80% of the total on site CO2 emissions in each of the four cases. The global 

warming potential in CEBC spray process Case 4 (similar acetic acid throughput to the MC 

process) is only approximately 23% of that in the MC process. In contrast, the global warming 

potential in the CEBC spray process that uses tenfold more acetic acid than the MC process 

(Case 1) is still approximately 91% of that for the MC process. The environmental benefits of 

eliminating the hydrogenation step in the spray process is partially offset by higher acetic acid 

usage, which leads to higher energy requirements for the separation columns as well as the larger 

off-gas CO2 emissions from solvent burning and the VOCs treatment reactor.  

The conventional MC process cradle-to-gate global warming potential is about fourfold 

greater than that for gate-to-gate analysis (Figure 5.10), due primarily to CO2 emissions from 

fossil fuel-based energy required for pX production. Interestingly, the impact associated with H2 

production from natural gas is minor because very small amounts of H2 are used for the 
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hydrogenation reaction. Since similar amounts of pX are employed in the spray process, the 

increased emissions for cradle-to-gate LCA compared to gate-to-gate LCA in the spray process 

are about the same as those in the MC process.  

Acidification potential 

The acidification potential from on-site emissions is attributed to SOx and NOx emissions 

from the natural gas-based energy production (Figure 5.9). The gate-to-gate acidification 

potential correlates with the steam usage in the process. When cradle-to-gate assessment is 

considered, the acidification potential results primarily from the coal-based electrical power 

generation for producing pX and other raw materials. Compared to the MC process, the on-site 

acidification potential for case 1 (tenfold more acetic acid than the MC process) and case 4 (same 

acetic acid usage as the MC process) of the spray process are approximately 88% and 19%, 

respectively, while the cradle-to-gate impacts for the two cases are approximately 96% and 85%, 

respectively. These results show that while acetic acid usage dictate the acidification potential 

from on-site emissions, coal-based power generation is a major contributor to the overall 

acidification potential stemming from cradle-to-gate emissions. 

Human health non-cancer air potential 

Heavy metals (arsenic, cadmium, lead, mercury, etc.) and halogenated organic substances 

emitted during the fossil fuel-based energy generation (electricity and steam) contribute to this 

category. When compared to the MC process, the human health non-cancer air potentials of the 

spray process (case 1 and case 4) are approximately 88% and 19%, respectively, based on on-site 

emissions, and, 94% and 69%, respectively, when considering cradle-to-gate LCA. These 

comparisons again show the dominant effect of increased acetic acid usage on site and the use of 

coal-based power generation for producing the raw materials. 
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Ecotoxicity air potential 

Fugitive VOC emissions and VOCs emitted from various unit operations contribute primarily 

to the ecotoxicity air potential. The emitted VOCs associated with the TPA processes are mainly 

acetic acid, methyl acetate and methanol. Partitioning of inorganic chemicals into the air phase 

during fossil-fuel based energy generation has a relatively minor contribution compared to VOC 

emissions. As can be seen from Figure 5.9, for the MC process, the ecotoxicity air potential 

based on on-site emissions mainly stems from the fugitive acetic acid emissions from the 

oxidation section. The impact from the hydrogenation section, in which the relevant VOCs are 

mainly methanol, is relatively insignificant compared to the oxidation section (Appendix E1). 

There is a reflection of the fact that the solvent used in the hydrogenation process is water. The 

ecotoxicity air potential of the spray process that uses tenfold greater acetic acid (case 1) is 

greater (by approximately four times) based on both gate-to-gate and cradle-to-gate LCA results. 

These results show that the extent of acetic acid usage is by far the major contributor to the air 

toxicity potential in both processes. 

Smog air potential 

Smog air potential is attributed to chemicals released to air that cause smog via photochemical 

reactions [155]. Both the VOC emissions during the on-site TPA processes and the inorganic 

chemical emissions (NOx) to air during the fossil-fuel based energy generation are primary 

contributors to this type of air pollution. The smog air potential of the spray process case 1 is 

approximately 2-fold greater than that in the MC process based on on-site emissions and 1.2 

times based on cradle-to-gate LCA. This trend is consistent with the greater VOC emission 

potential associated with acetic acid usage (see previous section). 
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Ecotoxicity water potential 

Organic solvents such as acetic acid, methanol and methyl acetate, as well as trace amounts of 

benzoic acid contained in the wastewater released to fresh water, are the primary causes of water 

contamination. Partitioning of metal emissions (mercury, lead, chromium, etc.) and inorganic 

chemicals into the water phase during the fossil-fuel based energy generation has a relatively 

small impact on the ecotoxicity water potential compared with the emissions/disposal of process 

wastewater. In the conventional MC process, the wastewater release occurs in the hydrogenation 

section, in which a solvent evaporator is used to concentrate the mother liquor from a centrifuge 

and the heavies are recycled back to the oxidation reactor while part of the lights containing trace 

amounts of acetic acid, methanol and benzoic acid are emitted to the water phase as process 

wastewater. The overhead water phase from the distillation column in the oxidation section is 

sent to the hydrogenation reactor for use as solvent. In the spray process, however, since the 

hydrogenation section is eliminated, the corresponding aqueous phase from the distillation 

column is released as wastewater directly, resulting in significant discharge of acetic acid, 

methanol and methyl acetate into the wastewater stream. This explains why the ecotoxicity water 

potential of the spray process is dramatically higher than that of the MC process in either gate-to-

gate or cradle-to-gate LCA (Figures 5.9 & 5.10). 

Potential opportunities for improvements in the CEBC spray process 

Substrate concentration (acetic acid throughput) 

The use of lower substrate (pX) concentration in the CEBC spray process necessitates higher 

acetic acid throughput (e.g., nearly 10 times of acetic acid amounts in case 1 compared to the 

MC process). This is definitely undesirable, from both economic and environmental points of 

view. The higher acetic acid throughput requires bigger equipment, higher energy input, higher 
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CO2 emission rates (the base number is huge despite of a lower solvent burning rate), higher 

makeup acetic acid amount and higher VOC emissions. The benefits of eliminating the 

purification step are either partially or almost totally offset (as in case 1) with respect to capital 

investment, operating costs and almost all the potential environmental impacts except ecotoxicity 

water potential, which is primarily caused by the directly released wastewater from the 

distillation column. To gain benefits in both the economic a well as environmental factors, as 

high a pX concentration as practically possible should be used for the alternative spray 

processes. The CEBC spray process would provide significant improvements in economic and 

environmental performances if it is able to employ the same pX concentration as the 

conventional MC process and produce polymer-grade TPA product in one step. This analysis 

also shows that the conventional MC process itself can be improved with respect to both 

economics and environmental performance if the acetic acid amount can be reduced at constant 

production capacity. 

Wastewater treatment 

Instead of directly releasing the corresponding aqueous stream (containing mainly acetic acid, 

methanol and methyl acetate) from the distillation column to fresh water, the wastewater stream 

should first be treated by passing through an absorber followed by burning the off-gas containing 

VOCs to CO2. Adding one or two unit operations will place a small burden on the capital and 

operating costs but will play an important role in minimizing the environmental impact. 

p-Xylene sourcing 

Comparisons of the gate-to-gate LCA and the cradle-to-gate LCA (Figures 5.9 & 5.10) 

indicate that the major contributors to the overall environmental impact potential stem from the 

fossil fuel-based energy for raw material production (primarily for p-xylene). Being able to use 
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bio-sourced p-xylene as renewable feedstock instead of pX sourced from petroleum reformates 

will reduce the adverse environmental impacts, not only for the CEBC spray process, but also for 

the conventional MC process. 

5.6    Summary 

The spray process for producing high purity TPA from pX has the potential to provide both 

economic and environmental benefits when compared to the conventional MC process. Both 

benefits accrue mostly from the non-requirement of the hydrogenation step required in the 

conventional process for purifying the crude TPA. The estimated capital cost of the CEBC spray 

process is 20% lower than that of the conventional MC process even assuming tenfold more 

acetic acid is used in the spray process to achieve the TPA production rate. In contrast, when an 

identical amount of acetic acid is used in both processes, the capital cost in the spray process is 

55% lower than the MC process.  The corresponding costs for producing polymer-grade TPA are 

lower than the MC process by 3.5 ¢/lb (when using tenfold greater acetic acid) and 10.5 ¢/lb 

(when using an identical amount of acetic acid), respectively, in the two cases.  The lower acetic 

acid usage decreases both equipment and energy costs.  

The GaBi® software predicts cradle-to-grave environmental impacts for both processes that 

are, for most of the impact categories, generally an order of magnitude greater than the on-site 

(gate-to-gate) impacts. The environmental impacts are dominated by coal-based electricity 

generation required for producing the raw materials (pX, in particular). Even though acetic acid 

is the dominant component in the feed, >97 wt% of the acetic acid used in the process is recycled 

such that the net usage of acetic acid per pound of product is much less than that of pX. The 

emissions from coal-based electricity generation contribute to global warming, acidification 

potential and air pollution that cause adverse but non-cancerous human health hazards. With 
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respect to both on-site emissions as well as cradle-to-gate emissions, the predicted environmental 

impacts for the spray process are lower than those of the MC process, even in the case where the 

acetic acid usage is tenfold greater compared to the MC process. However, such acetic acid 

usage contributes to greater fugitive VOC emissions that result in more air toxicity (non 

carcinogenic) and smog formation potential. Potential opportunities for improvements in the 

CEBC spray process are to lower the acetic acid throughput at fixed TPA production rate and to 

treat process wastewater before discharging to fresh water.  The use of bio-sourced p-xylene as 

feedstock will improve the environmental performance of both the conventional and spray 

processes. 
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Chapter 6 Conclusions and Recommendations 

 

 

 

6.1    Conclusions 

This dissertation research presents a comprehensive investigation of the oxidation of p-xylene 

to terephthalic acid in a spray reactor process. The design and development of an alternative 

process to the conventional Mid-Century (MC) process for terephthalic acid production that 

admits the principles of green chemistry and green engineering motivated this research work. 

Several aspects of terepthalic acid synthesis in a spray reactor were addressed, including: the 

acquisition of kinetic data under homogenous reaction conditions avoiding TPA precipitation; 

theoretical analyses and experimental demonstration of one step high-purity terephthalic acid 

production in a semi-batch spray reactor; rational design and preliminary demonstration of a 

continuous spray reactor process; and the economic and environmental impact assessments of a 

simulated spray process for terephthalic acid production. 

Intrinsic kinetics of pX liquid phase oxidation to TPA was investigated in a stirred reactor 

under homogeneous conditions without TPA precipitation by using low p-xylene concentrations 

to provide guidelines for the rational design and optimization of the spray process for TPA 

production as well as reactor modeling studies. A first order kinetic model was developed and 

kinetic rate constants obtained based on the experimental data. The estimated rate constants are 

shown to be at least one order of magnitude greater than those literature reported data, probably 

because the reaction was operated under homogeneous conditions avoiding solid formation in the 

liquid phase and thereby eliminating gas-solid and liquid-solid mass transfer limitations. Our 
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investigations concur with previous reports that the slowest step is the oxidation of p-toluic acid 

to 4-carboxybezaldehyde. However, our investigations show that it is not possible to completely 

eliminate the gas-liquid mass transfer limitations associated with the fast intermediate oxidation 

steps in a conventional stirred reactor, even when operating under homogeneous conditions at 

high rpm. This confirms that other reactor configurations (such as spray reactor) are needed to 

overcome gas-liquid mass transfer limitations. The effects of bromide and initial p-xylene 

concentrations on the reaction rate were also investigated. Bromide concentration shows zero 

order dependence at high concentrations where the intermediate 4-bromomethyl benzoic acid 

elimination is favored. Decreasing reaction rates with an increase of initial p-xylene 

concentration shown in the traditional three-phase reaction system were not observed in the 

homogeneous system (wherein the intrinsic rate constants were invariant within the respective 

confidence intervals), which further confirms that the solid phase hinders the reaction rate and 

the literature reported kinetic rate constants are not intrinsic kinetic parameters.  

The spray reactor is configured to disperse the liquid phase containing the dissolved p-xylene 

and Co/Mn/Br based catalyst in acetic acid as fine droplets (by means of a nozzle) into a 

continuous vapor phase containing the oxidant (O2). Each of these droplets is envisioned to 

function as a microreactor. The switching dispersed and continuous phases in the conventional 

MC process [in which the gas phase (air) is dispersed into the continuous liquid phase] was 

aimed at maximizing the gas/liquid interfacial mass transfer area and eliminating O2 starvation in 

the liquid phase, thereby avoiding incomplete oxidation to achieve improved TPA selectivity and 

purity, as well as reducing the solvent burning by shortening the reactor residence times. 

A spray process concept for terephthalic acid production was successfully demonstrated in a 

700 mL semi-batch spray reactor, custom designed and built in house at CEBC, in which high-
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purity terephthalic acid (<25 ppm 4-carboxybenzaldehyde) was produced in one step at 200 °C 

and 15 bar pressure. This result is in sharp contrast to the performance of the conventional stirred 

reactor in which the solid terephthalic acid product contains >1000 ppm 4-carboxybenzaldehyde 

requiring further purification steps. We attribute the superior performance of the spray reactor to 

our initial hypothesis that the increased gas-liquid mass transfer area avoids O2 starvation that 

can occur when gas is sparged into a continuous liquid phase, as in the stirred reactor. In addition, 

the reduced backmixing in the spray reactor has also contributed to enhanced conversion. 

Theoretical calculations confirm that in typical spray droplets (50 µm diameter), the O2 diffusion 

time constants are one to two orders of magnitude lower than the kinetic time constant 

(associated with the rate determining step) confirming the complete penetration of the O2 

throughout the liquid phase and the elimination of O2 starvation.  

Mathematical modeling of a stirred reactor operated at typical MC process conditions shows 

that solvent evaporation is a main source of cooling that results in steady states that are open-

loop stable. Based on steady state heat generation and heat removal rates, the stirred reactor 

model accurately predicts the reactor temperature reported in conventional reactors. In addition, 

the modeling also shows that control of reactor operating pressure around 15 bar is critical to 

achieving stable operation without temperature overshoot that might lead to solvent and titanium 

burning in the presence of oxygen. These model predictions were verified experimentally. Spray 

reactor operation in which the reactor pressure is maintained constant results in constant pressure 

and temperatures whereas operation in which the reactor pressure is allowed to rise during 

continuous gas introduction results in a steadily rising pressure and temperature in the reactor.  

Gas phase concentration measurements show that CO formation (an indicator of solvent 

burning reaction) in the spray reactor is roughly one-fourth of that formed in the MC process. 
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This suggests that the shorter residence times in the spray reactor could also reduce solvent 

burning. Further, the use of CO2 as an inert gas has the advantage of higher heat capacity and 

superior flame inhibition properties compared to nitrogen. The presence of CO2 and acetic acid 

vapor in the gas phase in sufficiently high concentrations is shown to maintain the vapor phase 

outside the flammability envelope. 

The promising results from the semi-batch spray reactor led us to the more challenging task of 

demonstrating continuous spray reactor operation and its benefits. Preliminary experimental 

results from a larger 4 L continuous spray reactor during a 25-min experimental run using a 

manually controlled micro-metering valve show high concentrations of intermediates. This is 

attributed to various factors such unsteady state operation with varying liquid holdup in the 

reactor, low catalyst concentration and inadequate residence time in the liquid phase. A stepper-

motor-controlled micro-metering valve was successfully designed and implemented in the 4 L 

continuous spray reactor. Excellent T & P control as well as constant acetic acid holdup in the 

reactor were demonstrated during a 30-min blank run. Further process optimization, guided by 

modeling of the spray reactor, is essential to rationally address the challenging task of 

demonstrating continuous/stable spray reactor operation that produces high-purity TPA as 

observed in the semi-batch spray reactor. 

Comparative economic analyses of the conventional MC process and CEBC spray process 

(four alternative spray cases using varying amount of acetic acid in the feed) for terephthalic acid 

production were performed assuming a production rate of 500,000 t/yr of purified terephthalic 

acid. The estimated capital cost of the CEBC spray process is 20% lower than that of the 

conventional MC process even though tenfold more acetic acid is used in the spray process to 

achieve the TPA production rate. In contrast, when an identical amount of acetic acid is fed in 
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both processes, the capital cost in the spray process is 55% lower than the MC process.  The 

corresponding costs for producing polymer-grade TPA are lower than the MC process by 3.5 

¢/lb (when using tenfold greater acetic acid) and 10.5 ¢/lb (when using an identical amount of 

acetic acid), respectively, in the two cases.  The economic benefits of the CEBC spray process 

are mainly derived from the non-requirement of the hydrogenation step required in the 

conventional process for purifying the crude TPA. 

Gate-to-gate and cradle-to-gate life cycle assessments of the conventional MC process and 

CEBC spray process for terephthalic acid production were performed and potential 

environmental impacts were estimated based on the TRACI model incorporated in GaBi® 

software. The predicted cradle-to-grave environmental impacts for both processes are, for most 

of the impact categories, generally an order of magnitude greater than the on-site (gate-to-gate) 

impacts. Cradle-to-gate LCA reveals that the overall environmental impacts in both processes are 

dominated by coal-based electricity generation required for producing the raw materials (p-

xylene, in particular). Even though acetic acid is the dominant component in the feed, >97 wt% 

of the acetic acid used in the process is recycled such that the net usage of acetic acid per pound 

of product is much less than that of p-xylene. The emissions from coal-based electricity 

generation contribute to global warming, acidification potential and air pollution that cause 

adverse but non-cancerous human health hazards. With respect to both on-site emissions as well 

as cradle-to-gate emissions, the predicted environmental impacts for the spray process are lower 

than those of the MC process, even in the case where the acetic acid usage is tenfold greater 

compared to the MC process. However, such acetic acid usage contributes to greater fugitive 

VOC emissions that result in more air toxicity (non carcinogenic) and smog formation potential. 

Potential opportunities for improvements in the CEBC spray process are to lower the acetic acid 



! 137 

throughput at fixed TPA production rate and to treat process wastewater before discharging to 

fresh water.  The use of bio-sourced p-xylene as feedstock will improve the environmental 

performance of both the conventional and spray processes. 

In summary, the spray concept for p-xylene oxidation to terephthalic acid has the potential to 

be an alternative greener process concept for making polymer-grade dicarboxylic acids in one 

step. The several potential green attributes (no need for hydrogenation step, reduced solvent 

burning, and reduced capital and operating costs as well as environmental burdens) make this 

process especially eminent for making chemical intermediates for renewable plastics. This spray 

concept could also be applied to other fast gas-liquid reaction systems. 

6.2    Recommendations 

The following studies are recommended as extensions of the research project on the spray 

process for terephthalic acid production. 

 1. This work successfully demonstrated the spray process concept to produce high-purity 

terephthalic acid in one step in a 700 mL semi-batch spray reactor (with continuous gas phase 

flow but the liquid phase remained in the reactor) for a 3-min duration. Even though significant 

efforts were made to scale up the spray reactor from 700 mL to 4 L and to make the process 

continuous, the demonstration of the continuous spray process under steady state operation for a 

longer duration (at least several hours) turned out to be more challenging than expected and has 

not yet been achieved. The major roadblock to the steady state continuous operation at a suitable 

large scale is the automatic control of the liquid effluent flow rate to achieve constant liquid 

holdup in the reactor. This has been partially achieved in this work with a stepper-motor driven 

micro-metering valve but a robust, corrosion resistant valve needs to be demonstrated for 

extended operation lasting days. In addition, solubility studies show that terephthalic acid has 
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low solubility in acetic acid (1.6 g terephthalic acid/100 g acetic acid at 200 °C and 15 bar), 

resulting in product precipitation at reactor conditions. Hence, future reactor design should take 

into account the challenge of continuously flowing solids-containing liquid slurry across the 

valve and tubing without plugging. Lessons from high-pressure industrial polymerization 

reactors provide guidance for overcoming this problem [169]. 

2. One of the important advantages of the spray process is to reduce the solvent (acetic acid) 

burning due to the shorter residence times as we claimed. The solvent burning rate has not been 

fully investigated in this work and only CO formation was measured from the 700 mL semi-

batch spray reactor during a 3-min spray duration. Once the 4 L spray reactor setup for steady 

state continuous operation is ready, the quantification of CO/CO2 formation should be 

implemented.   Isotope-labeled studies with mass spectroscopy could help distinguish the CO2 

formation from the burning side reactions against the CO2 used as the inert gas for the reaction 

system [3]. 

3. As the scalability and the steady state continuous operation are demonstrated and more data 

from the continuous runs become available, the comparative economic and environmental impact 

assessments of the spray process for terephthalic acid production should be continually updated 

to evaluate the economic viability and the environmental benefits as well as to guide process 

development. In addition, the plant-scale simulation of the CEBC spray process used air for the 

oxidant source, which was not the case in our laboratory experiments in which CO2/O2 was used 

instead of air. It is strongly recommended to investigate the p-xylene oxidation with air as the O2 

source in the spray reactor and update the economic and environmental analyses based on these 

experimental data. Additionally, the analyses based on the process simulation using CO2 as the 

inert gas should also be performed for comparison. 
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4. Modeling of the spray process for terephthalic acid production is essential for rational 

optimization and scale-up of the continuous process. The initial model could focus on 

representing the spray reactor as a series of mixed cells in the vapor phase followed by the well-

mixed liquid phase at the bottom, incorporating the kinetics obtained in this work. Such a model 

should clearly bring out the importance of back-mixing and liquid phase residence times on the 

observed product purity profiles, and could provide guidance for the development of a more 

comprehensive model that incorporates nozzle geometry, spray pattern and detailed fluid 

dynamics in addition to the kinetics of the reaction system. The availability of advanced 

computational fluid dynamics (CFD) software, such as COMSOL Multiphysics® [170] software, 

makes it easier to perform such detailed reactor simulations. 
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Nomenclature 

Cp,j  heat capacity of species j, kJ/(mol °C) 

 D  diffusivity of O2 in the acetic acid-dominated reaction mixture, cm2/s 

 Fj0  molar feed rate for species j, mol/h 

 Fjvap  evaporative molar rate for species j, mol/h 

 Hj0  partial molar enthalpy for species j in feed stream, kJ/mol 

 Hj  partial molar enthalpy for species j in effluent stream, kJ/mol  

 ∆HR  heat of reaction, kJ/mol  

 ∆Hvap,j    heat of vaporization for species j, kJ/mol  

 k  kinetic rate constant for the rate-determining step, s-1 

 Nj  moles of species j inside reactor at any instant of time, mol 

 QG  heat generation rate, kJ/h 

 QR  heat removal rate, kJ/h 

 Rp  radius of the droplet, m 

 ri  rate of formation of species i, mol/(h m3) 

 T  temperature of reaction mixture or effluent stream, °C 

 t  time, h 

V  volume of reaction mixture, m3  

X  conversion of p-xylene to TPA 
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Appendices 

Appendix A: Numerical Data of the Experimental Solubilities 

Table A1. Experimental solubilities of TPA, 4-CBA and p-TA in acetic acid or aqueous acetic 
acid 

Solubilities of TPA in acetic acid 
T (°C) S (g TPA/100 g HOAc) 
118.5 0.243 
134.5 0.318 
153.1 0.392 
171.3 0.646 
180.1 1.061 
202.4 1.618 
214.5 2.038 

Solubilities of TPA in 95 wt% aqueous acetic acid 
T (°C) S (g TPA/100 g solvent) 
117.5 0.242 
137.2 0.389 
149.5 0.584 
171.2 0.963 
187 1.406 

202.7 1.968 
208.5 2.219 

Solubilities of 4-CBA in acetic acid 
T (°C) S (g 4-CBA/100 g HOAc) 

112 6.238 
124 10.18 
148 23.09 
179 45.25 
196 68.71 

Solubilities of p-TA in acetic acid 
T (°C) S (g p-TA/100 g HOAc) 

79 31.45 
97 63.26 
112 125.6 
127 261.7 
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Appendix B: HYSYS Simulation for Saturated Acetic Acid 

 

 

 
 

Figure B1: HYSYS simulation of saturated acetic acid flow in the vapor phase 

HOAc = 36.75 g/min 

CO2/O2 = 24.53 mmol/min 

HOAc = 1.8 g/min 

HOAc = 34.95 g/min 

P = 15 bar 
T = 200 °C 



 
15

5 

A
pp

en
di

x 
C

: H
Y

SY
S 

Si
m

ul
at

io
n 

of
 M

C
 a

nd
 C

E
B

C
 P

ro
ce

ss
es

 

Ta
bl

e 
C

1.
 S

im
ul

at
io

n 
pa

ra
m

et
er

s f
or

 th
e 

ox
id

at
io

n 
se

ct
io

n 
of

 b
ot

h 
pr

oc
es

se
s 

O
pe

ra
tin

g 
Pa

ra
m

et
er

s 
M

C
 P

ro
ce

ss
 

Sp
ra

y 
Pr

oc
es

s 
C

as
e 

1 
C

as
e 

2 
C

as
e 

3 
C

as
e 

4 

Fe
ed

 e
nt

er
in

g 
re

ac
to

r 
Su

bs
tra

te
 

   
p-

xy
le

ne
 

So
lv

en
t 

   
ac

et
ic

 a
ci

d 
   

w
at

er
 

C
at

al
ys

t 
   

co
ba

lt 
ac

et
at

e 
   

m
an

ga
ne

se
 a

ce
ta

te
 

   
hy

dr
og

en
 b

ro
m

id
e 

A
ir 

   
ox

yg
en

 
   

ni
tro

ge
n 

  42
,6

79
 k

g/
h 

 10
0,

06
6 

kg
/h

 
5,

48
6 

kg
/h

 
 10

9 
kg

/h
 

31
1 

kg
/h

 
86

 k
g/

h 
 45

,2
03

 k
g/

h 
14

8,
87

1 
kg

/h
 

  41
,6

49
 k

g/
h 

 86
7,

14
2 

kg
/h

 
44

,5
34

 k
g/

h 
 10

9 
kg

/h
 

31
1 

kg
/h

 
86

 k
g/

h 
 44

,1
61

 k
g/

h 
14

5,
43

0 
kg

/h
 

  41
,6

48
 k

g/
h 

 59
8,

58
8 

kg
/h

 
32

,7
82

 k
g/

h 
 10

9 
kg

/h
 

31
1 

kg
/h

 
86

 k
g/

h 
 44

,1
61

 k
g/

h 
14

5,
43

0 
kg

/h
 

  41
,6

48
 k

g/
h 

 33
5,

51
7 

kg
/h

 
20

,5
48

 k
g/

h 
 10

9 
kg

/h
 

31
1 

kg
/h

 
86

 k
g/

h 
 44

,1
61

 k
g/

h 
14

5,
43

0 
kg

/h
 

  41
,6

48
 k

g/
h 

 97
,8

71
 k

g/
h 

5,
37

1 
kg

/h
 

 10
9 

kg
/h

 
31

1 
kg

/h
 

86
 k

g/
h 

 44
,1

61
 k

g/
h 

14
5,

43
0 

kg
/h

 

pX
 : 

O
2 (

m
ol

:m
ol

) 
1:

3.
5 

1:
3.

5 
1:

3.
5 

1:
3.

5 
1:

3.
5 

W
at

er
 c

on
te

nt
 in

 so
lv

en
t 

5.
2 

w
t%

 
4.

9 
w

t%
 

5.
2 

w
t%

 
5.

8 
w

t%
 

5.
2 

w
t%

 
C

at
al

ys
t m

ol
ar

 ra
tio

 
C

o:
M

n:
B

r =
 1

:2
.9

:1
.7

 
C

o:
M

n:
B

r =
 1

:2
.9

:1
.7

 C
o:

M
n:

B
r =

 1
:2

.9
:1

.7
 

C
o:

M
n:

B
r =

 1
:2

.9
:1

.7
 

C
o:

M
n:

B
r =

 1
:2

.9
:1

.7
 

pX
 c

on
c.

 (m
ol

/k
g 

so
l) 

3.
8 

0.
43

 
0.

62
 

1.
1 

3.
8 

B
r c

on
c.

 (m
ol

/k
g 

so
l) 

0.
01

 
0.

00
12

 
0.

00
17

 
0.

00
3 

0.
01

 
B

r:p
X

 (m
ol

:m
ol

) 
1:

37
8 

1:
36

9 
1:

36
9 

1:
36

9 
1:

36
9 

C
o:

pX
 (m

ol
:m

ol
) 

1:
65

3 
1:

63
7 

1:
63

7 
1:

63
7 

1:
63

7 

So
lv

en
t 

   
Fr

es
h 

(m
ak

eu
p)

 a
ce

tc
 a

ci
d 

   
R

ec
yc

le
 so

lv
en

t f
ro

m
 

de
hy

dr
at

io
n 

co
lu

m
n 

an
d 

m
ot

he
r 

liq
uo

r t
an

k 
   

   
ac

et
ic

 a
ci

d 
   

   
w

at
er

 

 3,
22

6 
kg

/h
 

   96
,5

96
 k

g/
h 

4,
93

4 
kg

/h
 

 3,
53

5 
kg

/h
 

   86
3,

37
7 

kg
/h

 
44

,4
56

 k
g/

h 

 2,
84

5 
kg

/h
 

   59
5,

51
3 

kg
/h

 
32

,7
04

 k
g/

h 

 2,
21

2 
kg

/h
 

   33
3,

07
5 

kg
/h

 
20

,4
70

 k
g/

h 

 1,
51

9 
kg

/h
 

   96
,1

22
 k

g/
h 

5,
29

3 
kg

/h
 



 
15

6 

C
at

al
ys

t 
   

Fr
es

h 
(m

ak
eu

p)
 c

at
al

ys
t 

   
   

co
ba

lt 
ac

et
at

e 
   

   
m

an
ga

ne
se

 a
ce

ta
te

 
   

   
hy

dr
og

en
 b

ro
m

id
ea  

   
R

ec
yc

le
 c

at
al

ys
t f

ro
m

 c
at

al
ys

t 
re

co
ve

ry
 u

ni
tb  

   
   

co
ba

lt 
ac

et
at

e 
   

   
m

an
ga

ne
se

 a
ce

ta
te

 
   

   
hy

dr
og

en
 b

ro
m

id
e 

   
R

ec
yc

le
 c

at
al

ys
t f

ro
m

 m
ot

he
r 

liq
uo

r 
   

   
co

ba
lt 

ac
et

at
e 

   
   

m
an

ga
ne

se
 a

ce
ta

te
 

   
   

hy
dr

og
en

 b
ro

m
id

e 

  4 
kg

/h
 

9 
kg

/h
 

60
 k

g/
h 

  73
 k

g/
h 

21
0 

kg
/h

 
0   32

 k
g/

h 
93

 k
g/

h 
26

 k
g/

h 

  4 
kg

/h
 

9 
kg

/h
 

60
 k

g/
h 

  73
 k

g/
h 

21
0 

kg
/h

 
0   32

 k
g/

h 
93

 k
g/

h 
26

 k
g/

h 

  4 
kg

/h
 

9 
kg

/h
 

60
 k

g/
h 

  73
 k

g/
h 

21
0 

kg
/h

 
0   32

 k
g/

h 
93

 k
g/

h 
26

 k
g/

h 

  4 
kg

/h
 

9 
kg

/h
 

60
 k

g/
h 

  73
 k

g/
h 

21
0 

kg
/h

 
0   32

 k
g/

h 
93

 k
g/

h 
26

 k
g/

h 

  4 
kg

/h
 

9 
kg

/h
 

60
 k

g/
h 

  73
 k

g/
h 

21
0 

kg
/h

 
0   32

 k
g/

h 
93

 k
g/

h 
26

 k
g/

h 
O

xi
da

tio
n 

re
ac

to
r 

   
Pr

es
su

re
 

   
Te

m
pe

ra
tu

re
 

   
R

ea
ct

io
n 

co
nv

er
si

on
 

   
M

ai
n 

re
ac

tio
ns

 
pX

+O
2=

TA
LD

+H
2O

 
TA

LD
+0

.5
O

2=
p-

TA
 

p-
TA

+O
2=

4-
C

B
A

+H
2O

 
4-

C
B

A
+0

.5
O

2=
TP

A
 

   
Si

de
 re

ac
tio

ns
 

2H
A

c+
3.

5O
2=

3C
O

2+
C

O
+4

H
2O

 
2H

A
c+

0.
5O

2=
C

O
2+

H
2O

+M
-

ac
et

at
e 

pX
+3

O
2=

B
en

zo
ic

 
ac

id
+C

O
2+

2H
2O

 
pX

+9
.5

O
2=

6C
O

2+
2C

O
+5

H
2O

 
    

pX
 c

on
ve

rs
io

n 
   

Se
le

ct
iv

ity
 to

 T
PA

 
   

Se
le

ct
iv

ity
 to

 4
-C

B
A

 
   

Se
le

ct
iv

ity
 to

 p
-T

A
 

 22
0 

ps
ia

 
19

4.
3 

°C
 

  89
.5

5%
 

10
0%

 
99

.4
4%

 
99

.7
4%

 
 0.

01
6%

 
 1.

4%
 

 0.
5%

 
1.

4%
 

 98
.1

%
 

98
.8

%
 

0.
25

4%
 

0.
53

3%
 

 22
0 

ps
ia

 
19

9.
9 

°C
 

  98
.3

5%
 

99
.9

8%
 

10
0%

 
99

.9
9%

 
 0.

00
69

%
 

 0.
77

%
 

 0.
21

%
 

0.
6%

 
 99

.6
%

 
99

.2
%

 
0.

00
8%

 
0.

00
08

%
 

 22
0 

ps
ia

 
19

9.
7 

°C
 

  98
.2

3%
 

99
.9

8%
 

10
0%

 
99

.9
9%

 
 0.

00
69

%
 

 0.
66

%
 

 0.
21

%
 

0.
6%

 
 99

.6
%

 
99

.2
%

 
0.

00
8%

 
0.

00
08

%
 

 22
0 

ps
ia

 
19

9.
5 

°C
 

  97
.9

6%
 

99
.9

8%
 

10
0%

 
99

.9
9%

 
 0.

00
69

%
 

 0.
5%

 
 0.

21
%

 
0.

6%
 

 99
.6

%
 

99
.2

%
 

0.
00

8%
 

0.
00

08
%

 

 22
0 

ps
ia

 
19

9.
8 

°C
 

  97
.1

3%
 

99
.9

8%
 

10
0%

 
99

.9
9%

 
 0.

00
69

%
 

 0.
29

%
 

 0.
21

%
 

0.
6%

 
 99

.6
%

 
99

.2
%

 
0.

00
8%

 
0.

00
08

%
 



 
15

7 

    
So

lv
en

t e
va

po
ra

tiv
e 

ra
te

 
   

   
ac

et
ic

 a
ci

d 
   

   
w

at
er

 
   

ac
et

ic
 a

ci
d 

co
m

bu
st

io
n 

  27
9,

70
5 

kg
/h

 
13

5,
39

4 
kg

/h
 

5.
3%

 

  58
3,

67
8 

kg
/h

 
10

0,
12

6 
kg

/h
 

1.
3%

 

  56
4,

06
4 

kg
/h

 
10

9,
10

8 
kg

/h
 

1.
3%

 

  52
1,

23
5 

kg
/h

 
12

1,
03

6 
kg

/h
 

1.
3%

 

  35
3,

66
9 

kg
/h

 
14

5,
90

5 
kg

/h
 

1.
3%

 
C

ry
st

al
liz

er
 o

pe
ra

tin
g 

co
nd

iti
on

s 
   

1st
-s

ta
ge

 c
ry

st
al

liz
er

 
   

   
Pr

es
su

re
 

   
   

Te
m

pe
ra

tu
re

 
   

2nd
-s

ta
ge

 c
ry

st
al

liz
er

 
   

   
Pr

es
su

re
 

   
   

Te
m

pe
ra

tu
re

 
   

3rd
-s

ta
ge

 c
ry

st
al

liz
er

 
   

   
Pr

es
su

re
 

   
   

Te
m

pe
ra

tu
re

 

   13
9 

ps
ia

 
18

7 
°C

 
 77

 p
si

a 
17

0 
°C

 
 17

 p
si

a 
11

7 
°C

 

   13
9 

ps
ia

 
18

7 
°C

 
 77

 p
si

a 
17

0 
°C

 
 17

 p
si

a 
11

7 
°C

 

   13
9 

ps
ia

 
18

7 
°C

 
 77

 p
si

a 
17

0 
°C

 
 17

 p
si

a 
11

7 
°C

 

   13
9 

ps
ia

 
18

7 
°C

 
 77

 p
si

a 
17

0 
°C

 
 17

 p
si

a 
11

7 
°C

 

   13
9 

ps
ia

 
18

7 
°C

 
 77

 p
si

a 
17

0 
°C

 
 17

 p
si

a 
11

7 
°C

 
C

ru
de

 T
PA

c  sp
ec

ifi
ca

tio
ns

 
   

C
ru

de
 T

PA
 p

ro
du

ct
io

n 
ra

te
 

   
4-

C
B

A
 c

on
te

nt
 

   
p-

TA
 c

on
te

nt
 

 64
,3

05
 k

g/
h 

1,
37

3 
pp

m
 

60
7 

pp
m

 

 63
,4

75
 k

g/
h 

23
 p

pm
 

2 
pp

m
 

 63
,4

80
 k

g/
h 

23
 p

pm
 

2 
pp

m
 

 63
,4

79
 k

g/
h 

23
 p

pm
 

2 
pp

m
 

 63
,4

73
 k

g/
h 

23
 p

pm
 

2 
pp

m
 

H
ig

h 
pr

es
su

re
 sc

ru
bb

er
d  

op
er

at
io

n 
   

Pr
es

su
re

 

  18
0 

ps
ia

 

  18
0 

ps
ia

 

  18
0 

ps
ia

 

  18
0 

ps
ia

 

  18
0 

ps
ia

 
C

om
bu

st
io

n 
re

ac
to

re  o
pe

ra
tin

g 
co

nd
iti

on
s 

  P
re

ss
ur

e 
   

Te
m

pe
ra

tu
re

 
   

R
ea

ct
io

n 
co

nv
er

si
on

 
M

-a
ce

ta
te

+3
.5

O
2=

3C
O

2+
3H

2O
 

H
A

c+
2O

2=
2C

O
2+

2H
2O

 
2M

eO
H

+3
O

2=
2C

O
2+

4H
2O

 
pX

+1
0.

5O
2=

8C
O

2+
5H

2O
 

  18
0 

ps
ia

 
44

1.
4 

°C
 

 10
0%

 
10

0%
 

10
0%

 
10

0%
 

  18
0 

ps
ia

 
45

2.
1 

°C
 

 10
0%

 
10

0%
 

10
0%

 
10

0%
 

  18
0 

ps
ia

 
40

1.
5 

°C
 

 10
0%

 
10

0%
 

10
0%

 
10

0%
 

  18
0 

ps
ia

 
39

1.
6 

°C
 

 10
0%

 
10

0%
 

10
0%

 
10

0%
 

  18
0 

ps
ia

 
38

6.
9 

°C
 

 10
0%

 
10

0%
 

10
0%

 
10

0%
 

a.
 S

in
ce

 c
ob

al
t a

ce
ta

te
 a

nd
 m

an
ga

ne
se

 a
ce

ta
te

 a
re

 m
os

tly
 re

co
ve

re
d,

 h
yd

ro
ge

n 
br

om
id

e 
is

 th
e 

on
ly

 si
gn

ifi
ca

nt
 m

ak
eu

p 
ca

ta
ly

st
; 



 
15

8 

b.
 In

 c
at

al
ys

t r
ec

ov
er

y 
un

it,
 th

e 
m

ot
he

r l
iq

uo
r a

fte
r c

ry
st

al
liz

er
s 

an
d 

ce
nt

rif
ug

e 
pa

ss
es

 th
ro

ug
h 

a 
re

bo
ile

d 
st

rip
pe

r, 
in

 w
hi

ch
 a

lm
os

t a
ll 

th
e 

ac
et

ic
 a

ci
d 

is
 v

ap
or

iz
ed

, a
nd

 t
he

 h
ea

vi
es

 c
on

ta
in

in
g 

th
e 

ca
ta

ly
st

s 
fr

om
 o

xi
da

tio
n 

ar
e 

se
nt

 t
o 

an
 i

nc
in

er
at

or
 w

he
re

 t
he

 m
et

al
 

ac
et

at
e 

ca
ta

ly
st

s 
ar

e 
co

nv
er

te
d 

to
 m

et
al

 o
xi

de
 b

y 
py

ro
ly

si
s. 

Th
en

 th
e 

m
et

al
 o

xi
de

s 
ar

e 
co

nv
er

te
d 

to
 m

et
al

 a
ce

ta
te

 te
tra

hy
dr

at
es

 b
y 

re
ac

tio
n 

w
ith

 h
yd

ra
zi

ne
 a

nd
 a

ce
tic

 a
ci

d;
 

c.
 T

he
 T

PA
 p

ro
du

ct
 p

ro
du

ce
d 

fr
om

 th
e 

sp
ra

y 
pr

oc
es

s m
ee

ts
 th

e 
po

ly
m

er
-g

ra
de

 p
ro

du
ct

 p
ur

ity
; 

d.
 T

he
 u

nc
on

de
ns

ed
 v

ap
or

s f
ro

m
 th

e 
ox

id
at

io
n 

re
ac

to
r c

on
ta

in
 si

gn
ifi

ca
nt

 a
m

ou
nt

 o
f a

ce
tic

 a
ci

d 
an

d 
m

et
hy

l a
ce

ta
te

. A
 sc

ru
bb

er
 is

 u
se

d 

to
 s

cr
ub

 a
ce

tic
 a

ci
d 

by
 c

ou
nt

er
cu

rr
en

t c
on

ta
ct

 w
ith

 a
 w

at
er

 s
tre

am
 w

hi
ch

 is
 fr

om
 th

e 
ov

er
he

ad
 s

tre
am

 o
f t

he
 d

eh
yd

ra
tio

n 
co

lu
m

n.
 

Th
e 

sc
ru

bb
er

 h
as

 a
 b

ed
 o

f 
ca

tio
n 

ex
ch

an
ge

 r
es

in
 t

ha
t 

co
nv

er
ts

 m
os

t 
of

 t
he

 m
et

hy
l 

ac
et

at
e 

in
to

 a
ce

tic
 a

ci
d 

an
d 

m
et

ha
no

l. 
In

 

su
m

m
ar

y,
 th

e 
sc

ru
bb

er
 is

 u
se

d 
to

 re
cy

cl
e 

ac
et

ic
 a

ci
d 

fr
om

 o
th

er
 V

O
C

s. 
Th

e 
ac

et
ic

 a
ci

d 
is

 th
en

 s
en

t t
o 

th
e 

de
hy

dr
at

io
n 

co
lu

m
n 

fo
r 

re
cy

cl
e 

an
d 

th
e 

V
O

C
s g

o 
to

 o
ff

-g
as

 tr
ea

tm
en

t. 

e.
 T

he
 V

O
C

s 
co

nt
ai

ni
ng

 m
et

ha
no

l, 
ac

et
ic

 a
ci

d,
 m

et
hy

l a
ce

ta
te

 a
nd

 p
-x

yl
en

e 
ar

e 
bu

rn
ed

 in
 th

e 
ca

ta
ly

tic
 c

om
bu

st
io

n 
re

ac
to

r, 
w

hi
ch

 

co
nt

ai
ns

 a
 fi

xe
d 

be
d 

of
 p

al
la

di
um

 c
at

al
ys

t o
n 

an
 in

er
t s

up
po

rt.
 

          



 
15

9 

Ta
bl

e 
C

2.
 S

im
ul

at
io

n 
pa

ra
m

et
er

s f
or

 th
e 

hy
dr

og
en

at
io

n 
se

ct
io

n 
of

 c
on

ve
nt

io
na

l M
C

 p
ro

ce
ss

 

H
yd

ro
ge

na
tio

n 
re

ac
to

ra  
   

 P
re

ss
ur

e 
   

 T
em

pe
ra

tu
re

 
   

 R
ea

ct
io

n:
 

   
   

  4
-C

B
A

+2
H

2=
p-

TA
+H

2O
 

   
   

  4
-C

B
A

 c
on

ve
rs

io
n 

   
 4

-C
B

A
:H

2 (
m

ol
:m

ol
) 

 97
5 

ps
ia

 
26

7 
°C

 
  90

.2
%

 
1:

3.
6 

C
ry

st
al

liz
er

 o
pe

ra
tin

g 
co

nd
iti

on
s 

   
 1

st
-s

ta
ge

 c
ry

st
al

liz
er

 
   

   
   

Pr
es

su
re

 
   

   
   

Te
m

pe
ra

tu
re

 
   

 2
nd

-s
ta

ge
 c

ry
st

al
liz

er
 

   
   

   
Pr

es
su

re
 

   
   

   
Te

m
pe

ra
tu

re
 

   
 3

rd
-s

ta
ge

 c
ry

st
al

liz
er

 
   

   
   

Pr
es

su
re

 
   

   
   

Te
m

pe
ra

tu
re

 

  11
4 

ps
ia

 
17

0 
°C

 
 69

 p
si

a 
15

0 
°C

 
 17

 p
si

a 
10

4 
°C

 
So

lv
en

t e
va

po
ra

to
r o

pe
ra

tio
n 

co
nd

iti
on

sb  
   

 P
re

ss
ur

e 
   

 T
em

pe
ra

tu
re

 

 15
0 

ps
ia

 
18

1 
°C

 (o
ve

rh
ea

d)
 

Pu
rif

ie
d 

TP
A

 sp
ec

ifi
ca

tio
ns

 
   

 P
ur

ifi
ed

 T
PA

 p
ro

du
ct

io
n 

ra
te

 
   

 4
-C

B
A

 c
on

te
nt

 
   

 p
-T

A
 c

on
te

nt
 

 63
,4

48
 k

g/
h 

7 
pp

m
 

10
0 

pp
m

 

a.
 T

he
 h

yd
ro

ge
na

tio
n 

re
ac

tio
n 

ha
s 

a 
to

p 
(m

ai
n)

 P
d/

C
 c

at
al

ys
t b

ed
 a

nd
 a

 b
ot

to
m

 (s
m

al
le

r)
 R

h/
C

 c
at

al
ys

t b
ed

. T
he

 in
pu

t s
tre

am
 c

on
ta

in
s 

20
 w

t%
 sl

ur
ry

 o
f T

PA
 c

om
pl

et
el

y 
di

ss
ol

ve
d 

in
 w

at
er

 a
t 2

67
 °C

.  

b.
 T

he
 s

ol
ve

nt
 e

va
po

ra
to

r i
s 

us
ed

 to
 c

on
ce

nt
ra

te
 th

e 
fil

tra
te

 fr
om

 th
e 

ce
nt

rif
ug

e 
to

 p
ro

du
ce

 a
 h

ea
vy

 e
nd

 s
tre

am
 c

on
ta

in
in

g 
m

ai
nl

y 
TP

A
 

an
d 
p-

TA
 a

nd
 re

cy
cl

e 
it 

ba
ck

 to
 th

e 
ox

id
at

io
n 

re
ac

to
r w

he
re

 th
e 
p-

TA
 c

an
 b

e 
co

nv
er

te
d 

to
 T

PA
. 

 
 



 
16

0 

A
pp

en
di

x 
D

: E
co

no
m

ic
 A

na
ly

si
s 

Ta
bl

e 
D

1.
 P

ur
ch

as
ed

 e
qu

ip
m

en
t c

os
t e

st
im

at
io

n 
de

ta
ils

 o
f c

on
ve

nt
io

na
l M

C
 p

ro
ce

ss
 

Eq
ui

pm
en

t 
M

at
er

ia
l o

f 
co

ns
tru

ct
io

n 
D

es
ig

n 
pa

ra
m

et
er

s 
C

or
re

la
tin

g 
eq

ua
tio

ns
 fo

r c
os

t e
st

im
at

e 
C

os
t (

$1
00

0)
 

(y
ea

r)
/U

til
ity

 (h
ou

r)
 

R
em

ar
ks

 

O
xi

da
tio

n 
Se

ct
io

n 
 

 
 

O
xi

da
tio

n 
re

ac
to

r 
(C

ST
R

) 

31
6 

SS
 

tit
an

iu
m

 
cl

ad
di

ng
 

re
si

de
nc

e 
tim

e:
 τ

 =
 3

5 
m

in
 

fe
ed

 li
qu

id
 fl

ow
 ra

te
: F

 =
 5

99
.6

 
m

3 /h
 

liq
ui

d 
le

ve
l: 

q 
= 

70
%

 
re

ac
to

r s
iz

e:
 V

 =
 F

*τ
/q

 =
 4

99
.7

 
m

3 

di
am

et
er

: D
 =

 6
.8

26
 m

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 1

3.
65

3 
m

 
pr

es
su

re
: P

 =
 1

51
7 

kP
a 

 
12

98
.9

 (2
00

2)
 

R
ef

 fo
r c

os
t 

es
tim

at
io

n 
m

et
ho

d:
 

[1
29

] 
A

 re
du

ce
d 

fa
ct

or
 to

 
co

nv
er

t t
he

 c
os

t o
f 

tit
an

iu
m

 re
ac

to
r t

o 
th

e 
co

st
 o

f t
ita

ni
um

 
cl

ad
di

ng
 re

ac
to

r: 
0.

6 
[1

31
] 

Th
e 

to
ta

l r
ea

ct
or

 
w

ei
gh

t i
nc

lu
de

s 
15

%
 in

cr
ea

se
 fo

r 
no

zz
le

s, 
m

an
ho

le
s, 

an
d 

sa
dd

le
s 

t: 
w

al
l t

hi
ck

ne
ss

, m
 

S:
 st

re
ss

, 9
45

00
 k

Pa
 

E:
 jo

in
t e

ff
ic

ie
nc

y,
 0

.8
5 

C
: a

llo
w

an
ce

 fo
r c

or
ro

si
on

, 0
.0

03
2 

m
 

  
W

s: 
w

ei
gh

t o
f s

he
ll,

 k
g 

ρ:
 d

en
si

ty
 o

f c
ar

bo
n 

st
ee

l, 
78

40
 k

g/
m

3 

  
W

h: 
w

ei
gh

t o
f t

w
o 

he
m

is
ph

er
ic

al
 h

ea
ds

, k
g 

  
W

: t
ot

al
 w

ei
gh

t, 
(W

s +
 W

h)
*1

.1
5,

 k
g 

f: 
co

st
 fa

ct
or

 to
 c

on
ve

rt 
ca

rb
on

 st
ee

l t
o 

tit
an

iu
m

, 7
.7

 
O

xi
da

tio
n 

re
ac

to
r 

ag
ita

to
r 

tit
an

iu
m

 
po

w
er

 =
 5

74
 k

W
 

es
tim

at
e 

fr
om

 a
 c

os
t-p

ow
er

 c
ha

rt 
17

5 
(1

97
6)

 
el

ec
tri

ci
ty

: 5
74

 k
w

h 
R

ef
: [

12
9]

 

C
om

bu
st

io
n 

re
ac

to
r 

31
6 

SS
 

re
ac

to
r s

iz
e:

 V
 =

 1
7.

5 
m

3 
m

et
ho

d 
id

en
tic

al
 to

 th
e 

ox
id

at
io

n 
re

ac
to

r c
os

t 
es

tim
at

e 
10

9.
8 

(2
00

2)
 

R
ef

: [
12

9]
 

 
 

di
am

et
er

: D
 =

 2
.2

35
 m

 
st

re
ss

: 7
56

15
 k

Pa
 

 
 

 
 

ra
id

iu
s:

 R
 =

 D
/2

 
co

st
 fa

ct
or

 to
 c

on
ve

rt 
ca

rb
on

 st
ee

l t
o 

31
6 

SS
: 

3.
3 

 

 
 

le
ng

th
: L

 =
 4

.4
69

 m
 

 
 

 
 

 
pr

es
su

re
: P

 =
 1

24
1 

kP
a 

 
 

 

  t=
PR

SE
−

0.
6P

+
C

 W
s
=
π

D
Lt
ρ

  W
h
=

2π
R2 tρ

×
2

  C
os

t=
W

×
73

×
W

−0
.3

4
×

f



 
16

1 

 
So

lv
en

t 
de

hy
dr

at
io

n 
co

lu
m

n 

sh
el

l: 
31

6 
SS

 
tra

y:
 3

16
 S

S 
tra

y 
ty

pe
: 

va
lv

e 

di
am

et
er

: D
 =

 1
8.

5 
ft 

 
10

19
.7

 (1
98

4)
 

R
ef

: [
13

0]
 

ra
id

iu
s:

 R
 =

 D
/2

 
 

 
le

ng
th

: L
 =

 1
56

 ft
 

tra
y 

nu
m

be
r: 

N
 =

 7
0 

t p:
 w

al
l t

hi
ck

ne
ss

 o
f t

he
 s

he
ll,

 in
ch

 

pr
es

su
re

: P
 =

 1
10

.3
 k

Pa
 

S:
 s

tre
ss

, 1
09

56
3 

kP
a 

 
C

: a
llo

w
an

ce
 fo

r c
or

ro
si

on
, 0

.1
58

 in
 

 

t p:
 w

al
l t

hi
ck

ne
ss

 a
t t

he
 b

ot
to

m
, i

nc
h 

 
 

W
: t

ot
al

 w
ei

gh
t, 

lb
 

ρ:
 d

en
si

ty
 o

f 3
16

 S
S,

 4
99

 lb
/ft

3 

fla
ng

ed
 a

nd
 d

is
he

d 
he

ad
s 

w
ei

gh
 3

25
 lb

 e
ac

h 
 

 

C
os

t, 
$ 

in
 y

ea
r 1

98
4 

f 1
 =

 2
.1

, f
or

 3
16

 S
S 

 

f 2
 =

 1
.4

01
+0

.0
72

4D
, f

or
 3

16
 S

S 
 

 

f 3
 =

 1
, f

or
 v

al
ve

 tr
ay

s 

 

 

  
    t p

=
PR

SE
−

0.
6P

+
C

  C
b
=

ex
p

7.
12

3+
0.

14
78

ln
W

(
)+

0.
02

48
8

ln
W

(
)2
+

0.
15

8
L

/D
(

)ln
t b

/t
p

(
)

⎡ ⎣⎢
⎤ ⎦⎥

  f 4
=

2.
25

/(
1.

04
14

)N

  C t
=

37
5.

8e
xp

0.
17

39
D

(
)

  C
p1
=

20
4.

9D
0.

63
32

L0.
80

16

  t b
=

1.
5t

p

  W
=
π

D
t p

Lρ
+

2
×

32
5

  C
os

t=
f 1C

b
+

N
f 2

f 3
f 4C

t
+

C
p1



 
16

2 

R
eb

oi
le

d 
st

rip
pe

r 
sh

el
l: 

31
6 

SS
 

tit
an

iu
m

 
cl

ad
di

ng
 

tra
y:

 3
16

 S
S 

tra
y 

ty
pe

: 
va

lv
e 

di
am

et
er

: D
 =

 9
 ft

 
to

ta
l w

ei
gh

t o
f t

he
 c

ol
um

n 
is

 id
en

tic
al

 to
 th

e 
di

st
ill

at
io

n 
co

lu
m

n 
18

3.
9 

(1
98

4)
 

R
ef

: [
13

0]
 

ra
id

iu
s:

 R
 =

 D
/2

 
st

re
ss

: 9
45

00
 k

Pa
 

 
A

 re
du

ce
d 

fa
ct

or
 to

 
co

nv
er

t t
he

 c
os

t o
f 

tit
an

iu
m

 c
ol

um
n 

to
 

th
e 

co
st

 o
f t

ita
ni

um
 

cl
ad

di
ng

 re
ac

to
r: 

0.
6 

[1
31

] 

le
ng

th
: L

 =
 3

8 
ft 

 
tra

y 
nu

m
be

r: 
N

 =
 1

4 
pr

es
su

re
: P

 =
 1

72
.4

 k
Pa

 
C

os
t, 

$ 
in

 y
ea

r 1
98

4 

 
 

 
 

 
 

 
f 1

 =
 7

.7
, f

or
 ti

ta
ni

um
 

 
 

 
f 2

 =
 2

.3
06

+0
.1

12
D

, f
or

 ti
ta

ni
um

 
 

 
 

C
t, 

f 3
 a

nd
 f 4

 a
s 

fo
r d

is
til

la
tio

n 
co

lu
m

n 
 

H
ig

h 
pr

es
su

re
 

sc
ru

bb
er

 

sh
el

l: 
31

6 
SS

 d
ia

m
et

er
: D

 =
 7

.5
 ft

 
co

st
 e

st
im

at
io

n 
($

, 1
98

4)
 a

s 
fo

r t
he

 re
bo

ile
d 

st
rip

pe
r 

13
8.

0 
(1

98
4)

 
R

ef
: [

13
0]

 

tra
y:

 3
16

 S
S 

ra
id

iu
s:

 R
 =

 D
/2

 
st

re
ss

: 1
16

69
9 

kP
a 

tra
y 

ty
pe

: 
va

lv
e 

le
ng

th
: L

 =
 3

0 
ft 

f 1
 =

 2
.1

, f
or

 3
16

 S
S 

tra
y 

nu
m

be
r: 

N
 =

 6
 

f 2
 =

 1
.4

01
+0

.0
72

4D
, f

or
 3

16
 S

S 
pr

es
su

re
: P

 =
 1

24
1 

kP
a 

R
ea

ct
or

 
co

m
pr

es
so

r 
(s

ta
ge

 1
) 

ca
rb

on
 s

te
el

 
po

w
er

: H
P 

= 
13

45
5.

3 
hp

 =
 

10
03

3.
7 

kW
 

 
23

55
.9

 
(1

98
1)

/e
le

ct
ric

ity
: 

10
03

3.
7 

kw
h 

R
ef

: [
13

0]
 

C
os

t, 
k$

 in
 y

ea
r 1

98
1 

R
ea

ct
or

 
co

m
pr

es
so

r 
(s

ta
ge

 2
) 

ca
rb

on
 s

te
el

 
po

w
er

: H
P 

= 
13

40
1.

7 
hp

 =
 

99
93

.6
4 

kW
 

co
st

 a
s 

fo
r c

om
pr

es
so

r (
st

ag
e 

1)
 

23
50

.1
 

(1
98

1)
/e

le
ct

ric
ity

: 
99

93
.6

4 
kw

h 

R
ef

: [
13

0]
 

  C
p1
=

24
6.

4D
0.

73
96

L0.
70

68

  C
b
=

ex
p

6.
62

9
+

0.
18

26
ln

W
(

)+
0.

02
29

7
ln

W
(

)2
⎡ ⎣⎢

⎤ ⎦⎥

  C
os

t=
f 1C

b
+

N
f 2

f 3
f 4C

t
+

C
p1

  C
os

t=
6.

49
H

P
(

)0.
62



 
16

3 

O
xi

da
tio

n 
re

ac
to

r 
co

nd
en

se
r 

ty
pe

: a
ir 

co
ol

er
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 4
94

.9
 M

B
tu

/h
r =

 
5.

22
*1

08  k
J/

hr
 

as
su

m
e 

ai
r i

nl
et

 T
: 1

6 
°C

, o
ut

le
t 

T:
 5

0 
°C

 
ΔT

lo
g 

m
ea

n 
= 

89
 °

C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 2
50

 W
/m

2 K
 

q 
= 

U
A
ΔT

lo
g 

m
ea

n 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

 =
 7

01
32

 
sq

ft 

 
13

4.
7 

(1
98

1)
 

R
ef

: [
12

9,
 1

30
] 

C
os

t, 
k$

 in
 y

ea
r 1

98
1 

C
ry

st
al

liz
er

 
A

 
co

nd
en

se
r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 
tit

an
iu

m
 

he
at

 fl
ow

: q
 =

 8
.3

8 
M

B
tu

/h
r =

 
8.

84
*1

06  k
J/

hr
 

as
su

m
e 

w
at

er
 in

le
t T

: 2
5 

°C
, 

ou
tle

t T
: 4

5 
°C

 
ΔT

lo
g 

m
ea

n 
= 

69
 °

C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 5
00

 W
/m

2 K
 

q 
= 

U
A
ΔT

lo
g 

m
ea

n 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

 =
 7

63
 sq

ft 

 
99

.5
 (1

97
9)

/c
oo

lin
g 

w
at

er
: 4

.2
3*

10
5  k

g 
R

ef
: [

12
9,

 1
30

] 

C
os

t, 
$ 

in
 y

ea
r 1

97
9 

 
 

 

 

 

g 1
 =

 1
.1

81
, g

2 =
 0

.2
94

5 
C

ry
st

al
liz

er
 

B
 

co
nd

en
se

r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 8
.2

3 
M

B
tu

/h
r =

 
8.

69
*1

06  k
J/

hr
 

as
su

m
e 

w
at

er
 in

le
t T

: 2
5 

°C
, 

ou
tle

t T
: 4

5 
°C

 
ΔT

lo
g 

m
ea

n 
= 

64
 °

C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 5
00

 W
/m

2 K
 

q 
= 

U
A
ΔT

lo
g 

m
ea

n 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

 =
 8

12
 sq

ft 

co
st

 a
s f

or
 c

ry
st

al
liz

er
 A

 c
on

de
ns

er
 

g 1
 =

 0
.8

60
3,

 g
2 =

 0
.2

32
96

, f
or

 3
16

 S
S 

80
.5

 (1
97

9)
/c

oo
lin

g 
w

at
er

: 4
.1

5*
10

5  k
g 

R
ef

: [
12

9,
 1

30
] 

  C
os

t=
24

.6
(A

/1
00

0)
0.

40

 C
os

t=
f d

f m
f pC

b

  C
b
=

ex
p

8.
82

1−
0.

30
86

3
ln

A
(

)+
0.

06
81

ln
A

(
)2

⎡ ⎣⎢
⎤ ⎦⎥

  f d
=

ex
p

−1
.1

15
6
+

0.
09

06
ln

A
(

)
⎡ ⎣

⎤ ⎦

  f p
=

ex
p

0.
77

71
+

0.
04

98
1

ln
A

(
)

⎡ ⎣
⎤ ⎦

  f m
=

g 1
+

g 2
ln

A
(

)



 
16

4 

C
ry

st
al

liz
er

 
C

 
co

nd
en

se
r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 1
7.

66
 M

B
tu

/h
r =

 
1.

86
*1

07  k
J/

hr
 

as
su

m
e 

w
at

er
 in

le
t T

: 2
5 

°C
, 

ou
tle

t T
: 4

5 
°C

 
ΔT

lo
g 

m
ea

n 
= 

46
 °

C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 5
00

 W
/m

2 K
 

q 
= 

U
A
ΔT

lo
g 

m
ea

n 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
 =

 2
42

3 
sq

ft 

co
st

 a
s 

fo
r c

ry
st

al
liz

er
 B

 c
on

de
ns

er
 

21
7.

8 
(1

97
9)

/c
oo

lin
g 

w
at

er
: 8

.9
1*

10
5  k

g 
R

ef
: [

12
9,

 1
30

] 

D
is

til
la

tio
n 

co
lu

m
n 

co
nd

en
se

r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 2
06

.4
 M

B
tu

/h
r 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
 =

 8
33

0 
sq

ft 

co
st

 a
s 

fo
r c

ry
st

al
liz

er
 B

 c
on

de
ns

er
 

80
6.

3 
(1

97
9)

/c
oo

lin
g 

w
at

er
: 1

.0
4*

10
7  k

g 
R

ef
: [

12
9,

 1
30

] 

D
is

til
la

tio
n 

co
lu

m
n 

re
bo

ile
r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
31

6 
SS

 
tu

be
: 

tit
an

iu
m

 

he
at

 fl
ow

: q
 =

 1
65

.9
 M

B
tu

/h
r =

 
1.

75
*1

08  k
J/

hr
 

ΔT
 =

 1
9 

°C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 3
90

0 
W

/m
2 K

 
q 

= 
U

A
ΔT

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

 =
 7

05
8 

sq
ft 

co
st

 a
s 

fo
r c

ry
st

al
liz

er
 A

 c
on

de
ns

er
 

g 1
 =

 1
.2

01
2,

 g
2 =

 0
.3

31
1 

94
5.

5 
(1

97
9)

/H
P 

st
ea

m
: 2

.2
7*

10
5  lb

 
he

at
 in

te
gr

at
io

n 
w

ith
 

ox
id

at
io

n 
re

ac
to

r 
co

nd
en

se
r 

R
ef

: [
12

9,
 1

30
] 

R
eb

oi
le

d 
st

rip
pe

r 
re

bo
ile

r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
tit

an
iu

m
 

tu
be

: 
tit

an
iu

m
 

he
at

 fl
ow

: q
 =

 4
9.

82
 M

B
tu

/h
r =

 
5.

26
*1

07  k
J/

hr
 

ΔT
 =

 4
0 

°C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 1
10

0 
W

/m
2 K

 
q 

= 
U

A
ΔT

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

 =
 3

54
6 

sq
ft 

co
st

 a
s 

fo
r c

ry
st

al
liz

er
 A

 c
on

de
ns

er
 

g 1
 =

 1
.5

42
, g

2 =
 0

.4
29

13
 fo

r t
ita

ni
um

 
58

3.
3 

(1
97

9)
/H

P 
st

ea
m

: 6
.8

1*
10

4  lb
 

R
ef

: [
12

9,
 1

30
] 

C
om

pr
es

so
r 

co
ol

er
 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 3
4.

39
 M

B
tu

/h
r =

 
3.

63
*1

07  k
J/

hr
 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
 =

 6
83

0 
sq

ft 

co
st

 a
s 

fo
r c

ry
st

al
liz

er
 B

 c
on

de
ns

er
 

64
4.

6 
(1

97
9)

/c
oo

lin
g 

w
at

er
: 1

.7
3*

10
6  k

g 
R

ef
: [

12
9,

 1
30

] 



 
16

5 

O
ff

-g
as

 
he

at
er

 
ty

pe
: s

he
ll-

an
d-

tu
be

 
sh

el
l: 

ca
rb

on
 

st
ee

l 
tu

be
: 3

16
 S

S 

he
at

 fl
ow

: q
 =

 1
5.

07
 M

B
tu

/h
r =

 
1.

59
*1

07  k
J/

hr
 

ΔT
 =

 9
1 

°C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 9
0 

W
/m

2 K
 

q 
= 

U
A
ΔT

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

 =
 5

80
2 

sq
ft 

co
st

 a
s f

or
 c

ry
st

al
liz

er
 B

 c
on

de
ns

er
 

53
8.

4 
(1

97
9)

/H
P 

st
ea

m
: 2

.0
6*

10
4  lb

 
R

ef
: [

12
9,

 1
30

] 

A
ce

tic
 a

ci
d 

ta
nk

 
31

6 
SS

 
ta

nk
 si

ze
: V

 =
 4

00
00

 g
al

 
 

61
.6

 (1
97

9)
 

R
ef

: [
13

0]
 

 

C
os

t, 
$ 

in
 y

ea
r 1

97
9 

F M
 =

 2
.7

 fo
r 3

16
 S

S 
 

 

p-
X

yl
en

e 
ta

nk
 

30
4 

SS
 

ta
nk

 si
ze

: V
 =

 1
00

00
0 

ga
l 

10
0.

9 
(1

97
9)

 
R

ef
: [

13
0]

 
 

 

C
os

t, 
$ 

in
 y

ea
r 1

97
9 

 
F M

 =
 2

.4
 fo

r 3
04

 S
S 

A
ce

tic
 a

ci
d 

st
or

ag
e 

ta
nk

 31
6 

SS
 

ta
nk

 si
ze

: V
 =

 1
40

00
0 

ga
l 

co
st

 a
s f

or
 p

-x
yl

en
e 

ta
nk

 
F M

 =
 2

.7
 fo

r 3
16

 S
S 

13
2.

1 
(1

97
9)

 
R

ef
: [

13
0]

 

p-
X

yl
en

e 
st

or
ag

e 
ta

nk
 31

6 
SS

 
ta

nk
 si

ze
: V

 =
 7

50
00

0 
ga

l 
co

st
 a

s f
or

 a
ce

tic
 a

ci
d 

st
or

ag
e 

ta
nk

 
32

7.
4 

(1
97

9)
 

R
ef

: [
13

0]
 

C
at

al
ys

t 
m

ix
er

 
31

6 
SS

 
ve

ss
el

 si
ze

: V
 =

 1
10

0 
ga

l 
di

am
et

er
: D

 =
 4

.9
98

 ft
 

ra
id

iu
s:

 R
 =

 D
/2

 
le

ng
th

: L
 =

 7
.4

96
 ft

 
pr

es
su

re
: P

 =
 1

01
.3

25
 k

Pa
 

te
m

pe
ra

tu
re

: T
 =

 2
5 

°C
 

sh
el

l w
ei

gh
t: 

W
, l

b,
 a

s f
or

 th
e 

sh
el

l w
ei

gh
t o

f 
th

e 
di

st
ill

at
io

n 
co

lu
m

n 
25

.4
 (1

97
9)

 
R

ef
: [

13
0]

 

st
re

ss
: 1

21
73

9 
kP

a 
 

C
os

t, 
$ 

in
 y

ea
r 1

97
9 

 

F M
 =

 2
.7

 fo
r 3

16
 S

S 
 

  C
os

t=
F M

ex
p

2.
63

1+
1.

36
73

ln
V

(
)−

0.
06

30
9

ln
V

(
)2

⎡ ⎣⎢
⎤ ⎦⎥

  C
os

t=
F M

ex
p

11
.6

62
−

0.
61

04
ln

V
(

)−
0.

04
53

6
ln

V
(

)2
⎡ ⎣⎢

⎤ ⎦⎥

  C
b
=

ex
p

9.
10

0
−

0.
28

89
ln

W
(

)+
0.

04
57

6
ln

W
(

)2
⎡ ⎣⎢

⎤ ⎦⎥

  C
a
=

24
6D

0.
73

96
L0.

70
68

 C
os

t=
F M

C
b
+

C
a



 
16

6 

C
at

al
ys

t 
m

ix
er

 
ag

ita
to

r 

31
6 

SS
 

po
w

er
: H

P 
= 

17
 h

p 
es

tim
at

e 
fr

om
 a

 c
os

t-p
ow

er
 c

ha
rt 

15
 (2

00
2)

/e
le

ct
ric

ity
: 

12
.6

8 
kw

h 
R

ef
: [

12
9]

 

Fe
ed

 m
ix

 
ta

nk
 

31
6 

SS
 

ve
ss

el
 si

ze
: V

 =
 1

06
50

 g
al

 
di

am
et

er
: D

 =
 1

0.
65

 ft
 

ra
id

iu
s:

 R
 =

 D
/2

 
le

ng
th

: L
 =

 1
5.

98
 ft

 
pr

es
su

re
: P

 =
 1

03
.4

 k
Pa

 
te

m
pe

ra
tu

re
: T

 =
 9

4 
°C

 

co
st

 a
s f

or
 c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
12

58
8 

kP
a 

54
.6

 (1
97

9)
 

R
ef

: [
13

0]
 

O
xi

da
tio

n 
re

ac
to

r 
se

pa
ra

to
r 

31
6 

SS
 

ve
ss

el
 si

ze
: V

 =
 1

13
00

 g
al

 
di

am
et

er
: D

 =
 1

0.
86

 ft
 

ra
id

iu
s:

 R
 =

 D
/2

 
le

ng
th

: L
 =

 1
6.

3 
ft 

pr
es

su
re

: P
 =

 1
51

7 
kP

a 
te

m
pe

ra
tu

re
: T

 =
 6

6 
°C

 

co
st

 a
s f

or
 c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
16

30
1 

kP
a 

12
6.

0 
(1

97
9)

 
R

ef
: [

13
0]

 

C
ry

st
al

liz
er

 
A

 se
pa

ra
to

r 31
6 

SS
 

ve
ss

el
 si

ze
: V

 =
 6

50
 g

al
 

di
am

et
er

: D
 =

 4
.1

94
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 6

.2
91

 ft
 

pr
es

su
re

: P
 =

 9
58

.4
 k

Pa
 

te
m

pe
ra

tu
re

: T
 =

 5
2 

°C
 

co
st

 a
s f

or
 c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
18

15
8 

kP
a 

28
.1

 (1
97

9)
 

R
ef

: [
13

0]
 

C
ry

st
al

liz
er

 
B

 se
pa

ra
to

r 31
6 

SS
 

ve
ss

el
 si

ze
: V

 =
 3

50
 g

al
 

di
am

et
er

: D
 =

 3
.4

12
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 5

.1
18

 ft
 

pr
es

su
re

: P
 =

 5
30

.9
 k

Pa
 

te
m

pe
ra

tu
re

: T
 =

 5
2 

°C
 

co
st

 a
s f

or
 c

ry
st

al
liz

er
 A

 se
pa

ra
to

r 
21

.3
 (1

97
9)

 
R

ef
: [

13
0]

 

C
ry

st
al

liz
er

 
C

 se
pa

ra
to

r 31
6 

SS
 

ve
ss

el
 si

ze
: V

 =
 5

00
 g

al
 

di
am

et
er

: D
 =

 3
.8

43
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 5

.7
64

 ft
 

pr
es

su
re

: P
 =

 1
17

.2
 k

Pa
 

te
m

pe
ra

tu
re

: T
 =

 5
2 

°C
 

co
st

 a
s f

or
 c

ry
st

al
liz

er
 A

 se
pa

ra
to

r 
20

.9
 (1

97
9)

 
R

ef
: [

13
0]

 



 
16

7 

Sl
ur

ry
 ta

nk
 

(b
ef

or
e 

ce
nt

rif
ug

e)
 31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 3

20
0 

ga
l 

di
am

et
er

: D
 =

 7
.1

34
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 1

0.
7 

ft 
pr

es
su

re
: P

 =
 1

17
.2

 k
Pa

 
te

m
pe

ra
tu

re
: T

 =
 1

17
 °

C
 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
09

53
8 

kP
a 

35
.7

 (1
97

9)
 

R
ef

: [
13

0]
 

Sl
ur

ry
 ta

nk
 

ag
ita

to
r 

31
6 

SS
 

po
w

er
: H

P 
= 

14
 h

p 
es

tim
at

e 
fr

om
 a

 c
os

t-p
ow

er
 c

ha
rt 

15
 (2

00
2)

/e
le

ct
ric

ity
: 

10
.4

4 
kw

h 
R

ef
: [

12
9]

 

A
ce

tic
 a

ci
d 

w
as

h 
ta

nk
 

(b
ef

or
e 

ce
nt

rif
ug

e)
 31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 4

50
 g

al
 

di
am

et
er

: D
 =

 3
.7

1 
ft 

ra
id

iu
s:

 R
 =

 D
/2

 
le

ng
th

: L
 =

 5
.5

65
 ft

 
pr

es
su

re
: P

 =
 1

10
.3

 k
Pa

 
te

m
pe

ra
tu

re
: T

 =
 1

19
 °

C
 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
09

27
2 

kP
a 

20
.4

 (1
97

9)
 

R
ef

: [
13

0]
 

M
ot

he
r 

liq
uo

r t
an

k 
(a

fte
r 

ce
nt

rif
ug

e)
 31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 2

45
0 

ga
l 

di
am

et
er

: D
 =

 6
.5

27
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 9

.7
9 

ft 
pr

es
su

re
: P

 =
 1

17
.2

 k
Pa

 
te

m
pe

ra
tu

re
: T

 =
 1

17
 °

C
 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
09

53
8 

kP
a 

32
.7

 (1
97

9)
 

R
ef

: [
13

0]
 

C
ry

st
al

liz
er

 
A

 
31

6 
SS

 
tit

an
iu

m
 

cl
ad

di
ng

 

cr
ys

ta
lli

ze
r s

iz
e:

 V
 =

 4
00

00
 g

al
 =

 
54

37
 c

uf
t 

 
11

15
.6

 (1
97

5)
 

R
ef

: [
13

0]
 

A
 re

du
ce

d 
fa

ct
or

 to
 

co
nv

er
t t

he
 c

os
t o

f 
tit

an
iu

m
 

cr
ys

ta
lli

ze
r t

o 
th

e 
co

st
 o

f t
ita

ni
um

 
cl

ad
di

ng
 

cr
ys

ta
lli

ze
r: 

0.
6 

[1
30

] 

C
os

t, 
k$

 in
 y

ea
r 1

97
5 

f =
 4

.0
 fo

r t
ita

ni
um

 

C
ry

st
al

liz
er

 
A

 a
gi

ta
to

r 
31

6 
SS

 
po

w
er

: H
P 

= 
45

 h
p 

es
tim

at
e 

fr
om

 a
 c

os
t-p

ow
er

 c
ha

rt/
el

ec
tri

ci
ty

: 
33

.5
6 

kw
h 

15
 (2

00
2)

/e
le

ct
ric

ity
: 

33
.5

6 
kw

h 
R

ef
: [

12
9]

 

C
ry

st
al

liz
er

 
B

 
31

6 
SS

 
cr

ys
ta

lli
ze

r s
iz

e:
 V

 =
 3

20
00

 g
al

 =
 

42
78

 c
uf

t 
co

st
 a

s 
fo

r c
ry

st
al

liz
er

 A
 

f =
 2

.0
 fo

r S
S 

31
6 

83
0.

6 
(1

97
5)

 
R

ef
: [

13
0]

 

C
ry

st
al

liz
er

 
B

 a
gi

ta
to

r 
31

6 
SS

 
po

w
er

: H
P 

= 
45

 h
p 

es
tim

at
e 

fr
om

 a
 c

os
t-p

ow
er

 c
ha

rt/
el

ec
tri

ci
ty

: 
33

.5
6 

kw
h 

15
 (2

00
2)

/e
le

ct
ric

ity
: 

33
.5

6 
kw

h 
R

ef
: [

13
0]

 

  C
os

t=
8.

16
fV

0.
47



 
16

8 

C
ry

st
al

liz
er

 
C

 
31

6 
SS

 
cr

ys
ta

lli
ze

r s
iz

e:
 V

 =
 3

20
00

 g
al

 =
 

42
78

 c
uf

t 
co

st
 a

s f
or

 c
ry

st
al

liz
er

 B
 

83
0.

6 
(1

97
5)

 
R

ef
: [

13
0]

 

C
ry

st
al

liz
er

 
C

 a
gi

ta
to

r 
31

6 
SS

 
po

w
er

: H
P 

= 
45

 h
p 

es
tim

at
e 

fr
om

 a
 c

os
t-p

ow
er

 c
ha

rt/
el

ec
tri

ci
ty

: 
33

.5
6 

kw
h 

15
 (2

00
2)

/e
le

ct
ric

ity
: 

33
.5

6 
kw

h 
R

ef
: [

12
9]

 

C
en

tri
fu

ge
 3

16
 S

S 
so

lid
 fl

ow
 ra

te
: W

 =
 7

3 
to

ns
/h

r 
so

lid
 

po
w

er
: H

P 
= 

26
0 

hp
 

 
46

7.
4 

(1
97

5)
/e

le
ct

ric
ity

: 
19

3.
9 

kw
h 

R
ef

: [
13

0]
 

C
os

t, 
k$

 in
 y

ea
r 1

97
5 

a 
= 

98
, b

 =
 5

.0
6,

 fo
r 3

16
 S

S 
C

ru
de

 T
PA

 
dr

ye
r 

31
6 

SS
 

su
rf

ac
e 

ar
ea

: A
 =

 9
10

0 
sq

ft 
 

86
8.

8 
(1

97
5)

 
R

ef
: [

13
0]

 

C
os

t, 
k$

 in
 y

ea
r 1

97
5 

F 
= 

2.
0 

fo
r 3

16
 S

S 
C

ru
de

 T
PA

 
st

ro
ra

ge
 b

in
 30

4 
SS

 
bi

n 
si

ze
: V

 =
 3

00
00

 c
uf

t =
 

22
44

30
 g

al
 

co
st

 a
s f

or
 p

-x
yl

en
e 

ta
nk

 
14

7.
7 

(1
97

9)
 

R
ef

: [
13

0]
 

O
ff

-g
as

 
ex

pa
nd

er
 

ca
rb

on
 st

ee
l 

po
w

er
: H

P 
= 

13
59

0 
hp

 
 

69
0.

7 
(1

98
1)

/e
le

ct
ric

ity
: 

96
33

 k
w

h 

R
ef

: [
13

0]
 

C
os

t, 
k$

 in
 y

ea
r 1

98
1 

A
ce

tic
 a

ci
d 

pu
m

p 
ty

pe
: o

ne
-

st
ag

e,
 3

55
0 

rp
m

, H
SC

 
31

6 
SS

 

flo
w

 ra
te

: Q
 =

 3
.0

43
 m

3 /h
 =

 1
3.

4 
ga

l/m
in

 
he

ad
: H

 =
 6

0 
m

 =
 1

96
.8

 ft
 

po
w

er
: H

P 
= 

3.
17

*1
0-3

 h
p 

 
4.

9 
(1

97
9)

 
R

ef
: [

13
0]

 

C
os

t, 
$ 

in
 y

ea
r 1

97
9 

  F M
 =

 1
.1

5 
fo

r 3
16

 S
S 

 
p-

X
yl

en
e 

pu
m

p 
ty

pe
: o

ne
-

st
ag

e,
 3

55
0 

rp
m

, H
SC

 
31

6 
SS

 

flo
w

 ra
te

: Q
 =

 4
9.

73
 m

3 /h
 =

 2
19

 
ga

l/m
in

 
he

ad
: H

 =
 6

0 
m

 =
 1

96
.8

 ft
 

po
w

er
: H

P 
= 

5.
18

*1
0-2

 h
p 

co
st

 a
s f

or
 a

ce
tic

 a
ci

d 
pu

m
p 

5.
2 

(1
97

9)
 

R
ef

: [
13

0]
 

 C
os

t=
a
+

bW

  C
os

t=
1.

83
FA

0.
60

  C
os

t=
0.

31
H

P
(

)0.
81

  F T
=

ex
p

0.
06

32
+

0.
27

44
ln

Q
H

(
)−0

.0
25

3
ln

Q
H

(
)2

⎡ ⎣⎢
⎤ ⎦⎥

  C
b
=

1.
55

ex
p

8.
83

3−
0.

60
19

ln
Q

H
(

)+0
.0

51
9

ln
Q

H
(

)2
⎡ ⎣⎢

⎤ ⎦⎥

 C
os

t=
F M

F T
C

b



 
16

9 

Fe
ed

 p
um

p 
ty

pe
: o

ne
-

st
ag

e,
 3

55
0 

rp
m

, H
SC

 
tit

an
iu

m
 

flo
w

 ra
te

: Q
 =

 1
49

.1
 m

3 /h
 =

 6
56

.5
 

ga
l/m

in
 

he
ad

: H
 =

 6
0 

m
 =

 1
96

.8
 ft

 
po

w
er

: H
P 

= 
10

4.
8 

hp
 

co
st

 a
s 

fo
r a

ce
tic

 a
ci

d 
pu

m
p 

F M
 =

 9
.7

0 
fo

r t
ita

ni
um

 
50

.7
 

(1
97

9)
/e

le
ct

ric
ity

: 
78

.1
3 

kw
h 

R
ef

: [
13

0]
 

Pd
 

co
m

bu
st

io
n 

ca
ta

ly
st

 

Pd
-C

 c
at

al
ys

t s
iz

e:
 1

50
 c

uf
t 

 
75

4.
0 

(2
01

2)
 

R
ef

: [
13

9]
 

Pd
 u

ni
t p

ric
e:

 $
75

8 
pe

r t
ro

y 
ou

nc
e 

H
yd

ro
ge

na
tio

n 
se

ct
io

n 
 

 
 

 
H

yd
ro

ge
na

t
io

n 
re

ac
to

r 
31

6 
SS

 
re

ac
to

r s
iz

e:
 V

 =
 6

8.
9 

m
3 

di
am

et
er

: D
 =

 3
.5

27
 m

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 7

.0
53

 m
 

pr
es

su
re

: P
 =

 6
72

2 
kP

a 
te

m
pe

ra
tu

re
: T

 =
 2

67
.2

 °
C

 

co
st

 e
st

im
at

io
n 

as
 fo

r o
xi

da
tio

n 
re

ac
to

r 
st

re
ss

: 8
96

31
 k

Pa
 

co
st

 fa
ct

or
 to

 c
on

ve
rt 

ca
rb

on
 s

te
el

 to
 3

16
 S

S:
 

3.
3 

70
0.

6 
(2

00
2)

 
R

ef
: [

12
9]

 
 

 
  

 

Pd
 

hy
dr

og
en

at
i

on
 c

at
al

ys
t 

Pd
-C

 c
at

al
ys

t s
iz

e:
 1

80
0 

cu
ft 

 
90

47
 (2

01
2)

 
R

ef
: [

13
9]

 
in

iti
al

 c
ha

rg
e:

 8
04

34
 lb

 (P
d-

C
 c

at
al

ys
t b

ed
) 

 
 

Pd
 =

 0
.9

3 
w

t%
 

 
 

 
R

h 
hy

dr
og

en
at

i
on

 c
at

al
ys

t 

R
h-

C
 c

at
al

ys
t s

iz
e:

 2
00

 c
uf

t 
 

50
4.

9 
(2

01
2)

 
R

ef
: [

13
9]

 
R

h 
un

it 
pr

ic
e:

 
$1

25
0 

pe
r t

ro
y 

ou
nc

e 

in
iti

al
 c

ha
rg

e:
 1

74
27

 lb
 (R

h-
C

 c
at

al
ys

t b
ed

) 
 

So
lv

en
t 

ev
ap

or
at

or
 sh

el
l: 

31
6 

SS
 

tra
y:

 3
16

 S
S 

tra
y 

ty
pe

: 
va

lv
e 

di
am

et
er

: D
 =

 7
.5

 ft
 

ra
id

iu
s:

 R
 =

 D
/2

 
le

ng
th

: L
 =

 2
5 

ft 
tra

y 
nu

m
be

r: 
N

 =
 7

 
pr

es
su

re
: P

 =
 1

03
4 

kP
a 

C
os

t e
st

im
at

io
n 

as
 fo

r s
ol

ve
nt

 d
eh

yd
ra

tio
n 

co
lu

m
n 

st
re

ss
: 1

00
51

9 
kP

a 

19
0.

0 
(1

98
4)

 
R

ef
: [

13
0]

 

TP
A

 s
lu

rr
y 

he
at

er
 

(b
ef

or
e 

en
te

rin
g 

di
ss

ol
ve

r)
 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 1
24

.2
 M

B
tu

/h
r =

 
1.

31
*1

08  k
J/

hr
 

ΔT
 =

 1
05

.4
 °

C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 6
50

 W
/m

2 K
 

q 
= 

U
A
ΔT

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

 =
 5

71
4 

sq
ft 

co
st

 e
st

im
at

io
n 

as
 fo

r o
ff

-g
as

 h
ea

te
r 

52
9.

6 
(1

97
9)

/H
P 

st
ea

m
: 1

.7
0*

10
5  lb

 
R

ef
: [

12
9,

 1
30

] 



 
17

0 

C
ry

st
al

liz
er

 
A

 
co

nd
en

se
r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 1
73

.5
 M

B
tu

/h
r =

 
1.

83
*1

08  k
J/

hr
 

as
su

m
e 

w
at

er
 in

le
t T

: 2
5 

°C
, 

ou
tle

t T
: 4

5 
°C

 
ΔT

lo
g 

m
ea

n 
= 

64
 °

C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 1
35

0 
W

/m
2 K

 
q 

= 
U

A
ΔT

lo
g 

m
ea

n 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
 =

 6
33

5 
sq

ft 

co
st

 e
st

im
at

io
n 

as
 fo

r T
PA

 s
lu

rr
y 

he
at

er
 

59
3.

0 
(1

97
9)

/c
oo

lin
g 

w
at

er
: 8

.7
5*

10
6  k

g 
R

ef
: [

12
9,

 1
30

] 

C
ry

st
al

liz
er

 
B

 
co

nd
en

se
r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 2
0.

32
 M

B
tu

/h
r =

 
2.

14
3*

10
7  k

J/
hr

 
as

su
m

e 
w

at
er

 in
le

t T
: 2

5 
°C

, 
ou

tle
t T

: 4
5 

°C
 

ΔT
lo

g 
m

ea
n 
= 

57
.4

 °
C

 
ov

er
al

l h
ea

t t
ra

ns
fe

r c
oe

ff
ic

ie
nt

: 
U

 =
 1

35
0 

W
/m

2 K
 

q 
= 

U
A
ΔT

lo
g 

m
ea

n 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
 =

 8
26

 s
qf

t co
st

 e
st

im
at

io
n 

as
 fo

r c
ry

st
al

liz
er

 A
 

co
nd

en
se

r 
81

.7
 (1

97
9)

/c
oo

lin
g 

w
at

er
: 1

.0
2*

10
6  k

g 
R

ef
: [

12
9,

 1
30

] 

C
ry

st
al

liz
er

 
C

 
co

nd
en

se
r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 2
6.

99
 M

B
tu

/h
r =

 
2.

84
8*

10
7  k

J/
hr

 
as

su
m

e 
w

at
er

 in
le

t T
: 2

5 
°C

, 
ou

tle
t T

: 4
5 

°C
 

ΔT
lo

g 
m

ea
n 
= 

40
.9

 °
C

 
ov

er
al

l h
ea

t t
ra

ns
fe

r c
oe

ff
ic

ie
nt

: 
U

 =
 1

35
0 

W
/m

2 K
 

q 
= 

U
A
ΔT

lo
g 

m
ea

n 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

 =
 1

54
0 

sq
ft 

co
st

 e
st

im
at

io
n 

as
 fo

r c
ry

st
al

liz
er

 A
 

co
nd

en
se

r 
14

1.
5 

(1
97

9)
/c

oo
lin

g 
w

at
er

: 1
.3

6*
10

6  k
g 

R
ef

: [
12

9,
 1

30
] 

W
as

h 
w

at
er

 
he

at
er

 
ty

pe
: s

he
ll-

an
d-

tu
be

 
sh

el
l: 

31
6 

SS
 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 3
1.

15
 M

B
tu

/h
r 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
 =

 1
17

0 
sq

ft 

co
st

 e
st

im
at

io
n 

as
 fo

r c
ry

st
al

liz
er

 A
 

co
nd

en
se

r 
11

0.
4 

(1
97

9)
/H

P 
st

ea
m

: 4
.2

6*
10

4  lb
 

R
ef

: [
12

9,
 1

30
] 



 
17

1 

R
ec

yc
le

 
w

at
er

 
co

ol
er

 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 3
16

 S
S 

he
at

 fl
ow

: q
 =

 3
8.

39
 M

B
tu

/h
r 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
 =

 2
28

0 
sq

ft 

co
st

 e
st

im
at

io
n 

as
 fo

r c
ry

st
al

liz
er

 A
 

co
nd

en
se

r 
20

5.
2 

(1
97

9)
/c

oo
lin

g 
w

at
er

: 1
.9

4*
10

6  k
g 

R
ef

: [
12

9,
 1

30
] 

W
as

te
w

at
er

 
co

ol
er

 
ty

pe
: s

he
ll-

an
d-

tu
be

 
sh

el
l: 

ca
rb

on
 

st
ee

l 
tu

be
: 3

16
 S

S 

he
at

 fl
ow

: q
 =

 5
4.

51
 M

B
tu

/h
r 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
 =

 1
87

0 
sq

ft 

co
st

 e
st

im
at

io
n 

as
 fo

r c
ry

st
al

liz
er

 A
 

co
nd

en
se

r 
16

9.
7 

(1
97

9)
/c

oo
lin

g 
w

at
er

: 2
.7

5*
10

6  k
g 

R
ef

: [
12

9,
 1

30
] 

So
lv

en
t 

ev
ap

or
at

or
 

re
bo

ile
r 

ty
pe

: s
he

ll-
an

d-
tu

be
 

sh
el

l: 
ca

rb
on

 
st

ee
l 

tu
be

: 
tit

an
iu

m
 

he
at

 fl
ow

: q
 =

 1
57

.1
 M

B
tu

/h
r =

 
1.

65
7*

10
8  k

J/
hr

 
ΔT

 =
 3

4.
9 

°C
 

ov
er

al
l h

ea
t t

ra
ns

fe
r c

oe
ff

ic
ie

nt
: 

U
 =

 2
15

0 
W

/m
2 K

 
q 

= 
U

A
ΔT

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

 =
 6

59
9 

sq
ft 

co
st

 e
st

im
at

io
n 

as
 fo

r c
ry

st
al

liz
er

 A
 

co
nd

en
se

r 
g 1

 =
 1

.1
81

, g
2 =

 0
.2

94
5 

80
4.

3 
(1

97
9)

/H
P 

st
ea

m
: 2

.1
5*

10
5  lb

 
R

ef
: [

12
9,

 1
30

] 

W
at

er
 ta

nk
 3

04
 S

S 
ta

nk
 s

iz
e:

 V
 =

 2
30

00
0 

ga
l 

co
st

 e
st

im
at

io
n 

as
 fo

r p
-x

yl
en

e 
ta

nk
 

14
9.

5 
(1

97
9)

 
R

ef
: [

13
0]

 
Fe

ed
 s

lu
rr

y 
ve

ss
el

 
31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 1

23
50

 g
al

 
di

am
et

er
: D

 =
 1

1.
19

 ft
 

ra
id

iu
s:

 R
 =

 D
/2

 
le

ng
th

: L
 =

 1
6.

79
 ft

 
pr

es
su

re
: P

 =
 1

01
.3

25
 k

Pa
 

te
m

pe
ra

tu
re

: T
 =

 2
5 

°C
 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
21

73
9 

kP
a 

57
.3

 (1
97

9)
 

R
ef

: [
12

9]
 

Fe
ed

 s
lu

rr
y 

ve
ss

el
 

ag
ita

to
r 

31
6 

SS
 

po
w

er
: H

P 
= 

37
 h

p 
es

tim
at

e 
fr

om
 a

 c
os

t-p
ow

er
 c

ha
rt 

15
 (2

00
2)

/e
le

ct
ric

ity
: 

27
.5

9 
kw

h 
R

ef
: [

12
9]

 

D
is

so
lv

er
 

31
6 

SS
 

ve
ss

el
 s

iz
e:

 V
 =

 3
74

50
 g

al
 

di
am

et
er

: D
 =

 1
6.

2 
ft 

ra
id

iu
s:

 R
 =

 D
/2

 
le

ng
th

: L
 =

 2
4.

3 
ft 

pr
es

su
re

: P
 =

 6
30

9 
kP

a 
te

m
pe

ra
tu

re
: T

 =
 2

67
 °

C
 

  

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 8
96

44
 k

Pa
 

10
25

.1
 (1

97
9)

 
R

ef
: [

13
0]

 



 
17

2 

D
is

so
lv

er
 

ag
ita

to
r 

31
6 

SS
 

po
w

er
: H

P 
= 

91
 h

p 
es

tim
at

e 
fr

om
 a

 c
os

t-p
ow

er
 c

ha
rt 

15
 (2

00
2)

/e
le

ct
ric

ity
: 

67
.8

6 
kw

h 
R

ef
: [

12
9]

 

C
ry

st
al

liz
er

 
A

 s
ep

ar
at

or
 31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 1

70
0 

ga
l 

di
am

et
er

: D
 =

 5
.7

78
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 8

.6
67

 ft
 

pr
es

su
re

: P
 =

 7
86

 k
Pa

 
te

m
pe

ra
tu

re
: T

 =
 5

2 
°C

 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
18

15
8 

kP
a 

38
.2

 (1
97

9)
 

R
ef

: [
13

0]
 

C
ry

st
al

liz
er

 
B

 s
ep

ar
at

or
 31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 2

00
 g

al
 

di
am

et
er

: D
 =

 2
.8

31
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 4

.2
47

 ft
 

pr
es

su
re

: P
 =

 4
75

.7
 k

Pa
 

te
m

pe
ra

tu
re

: T
 =

 5
2 

°C
 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
18

15
8 

kP
a 

18
.4

 (1
97

9)
 

R
ef

: [
13

0]
 

C
ry

st
al

liz
er

 
C

 s
ep

ar
at

or
 31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 3

00
 g

al
 

di
am

et
er

: D
 =

 3
.2

41
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 4

.8
61

 ft
 

pr
es

su
re

: P
 =

 1
17

.2
 k

Pa
 

te
m

pe
ra

tu
re

: T
 =

 5
2 

°C
 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
18

15
8 

kP
a 

18
.7

 (1
97

9)
 

R
ef

: [
13

0]
 

C
en

tri
fu

ge
 

ta
nk

 
31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 1

14
00

 g
al

 
di

am
et

er
: D

 =
 1

0.
9 

ft 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 1

6.
34

 ft
 

pr
es

su
re

: P
 =

 4
75

.7
 k

Pa
 

te
m

pe
ra

tu
re

: T
 =

 1
50

 °
C

 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
05

16
1 

kP
a 

80
.3

 (1
97

9)
 

R
ef

: [
13

0]
 

C
en

tri
fu

ge
 

ta
nk

 
ag

ita
to

r 

31
6 

SS
 

po
w

er
: H

P 
= 

30
 h

p 
es

tim
at

e 
fr

om
 a

 c
os

t-p
ow

er
 c

ha
rt 

15
 (2

00
2)

/e
le

ct
ric

ity
: 

22
.3

7 
kw

h 
R

ef
: [

12
9]

 



 
17

3 

R
es

lu
rr

y 
ve

ss
el

 
31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 8

75
0 

ga
l 

di
am

et
er

: D
 =

 9
.9

76
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 1

4.
96

 ft
 

pr
es

su
re

: P
 =

 5
24

 k
Pa

 
te

m
pe

ra
tu

re
: T

 =
 1

50
 °

C
 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
05

16
1 

kP
a 

72
.7

 (1
97

9)
 

R
ef

: [
13

0]
 

R
es

lu
rr

y 
ve

ss
el

 
ag

ita
to

r 

31
6 

SS
 

po
w

er
: H

P 
= 

33
 h

p 
es

tim
at

e 
fr

om
 a

 c
os

t-p
ow

er
 c

ha
rt 

15
 (2

00
2)

/e
le

ct
ric

ity
: 

24
.6

1 
kw

h 
R

ef
: [

12
9]

 

Fi
lte

r t
an

k 
31

6 
SS

 
ve

ss
el

 s
iz

e:
 V

 =
 7

75
0 

ga
l 

di
am

et
er

: D
 =

 9
.5

81
 ft

 
ra

id
iu

s:
 R

 =
 D

/2
 

le
ng

th
: L

 =
 1

4.
37

 ft
 

pr
es

su
re

: P
 =

 1
17

.2
 k

Pa
 

te
m

pe
ra

tu
re

: T
 =

 1
04

 °
C

 

co
st

 a
s 

fo
r c

at
al

ys
t m

ix
er

 
st

re
ss

: 1
11

26
1 

kP
a 

49
.1

 (1
97

9)
 

R
ef

: [
13

0]
 

Fi
lte

r t
an

k 
ag

ita
to

r 
31

6 
SS

 
po

w
er

: H
P 

= 
29

 h
p 

es
tim

at
e 

fr
om

 a
 c

os
t-p

ow
er

 c
ha

rt 
15

 (2
00

2)
/e

le
ct

ric
ity

: 
21

.6
3 

kw
h 

R
ef

: [
12

9]
 

Fi
lte

r 
(b

ef
or

e 
cr

ys
ta

lli
ze

r 
A

) 

31
6 

SS
 

fil
te

r s
iz

e:
 A

 =
 3

50
 s

qf
t 

 
14

6.
5 

(1
98

1)
 

R
ef

: [
13

0]
 

 

C
os

t, 
$ 

in
 y

ea
r 1

98
1 

 
C

ry
st

al
liz

er
 

A
 

31
6 

SS
 

cr
ys

ta
lli

ze
r s

iz
e:

 V
 =

 6
00

00
 g

al
 =

 
80

21
 c

uf
t 

co
st

 a
s 

fo
r c

ry
st

al
liz

er
 B

 in
 o

xi
da

tio
n 

se
ct

io
n 

11
16

.1
 (1

97
5)

 
R

ef
: [

13
0]

 

C
ry

st
al

liz
er

 
A

 a
gi

ta
to

r 
31

6 
SS

 
po

w
er

: H
P 

= 
55

 h
p 

es
tim

at
e 

fr
om

 a
 c

os
t-p

ow
er

 c
ha

rt 
15

 (2
00

2)
/e

le
ct

ric
ity

: 
41

 k
w

h 
R

ef
: [

12
9]

 

C
ry

st
al

liz
er

 
B

 
31

6 
SS

 
cr

ys
ta

lli
ze

r s
iz

e:
 V

 =
 6

00
00

 g
al

 =
 

80
21

 c
uf

t 
co

st
 a

s 
fo

r c
ry

st
al

liz
er

 A
 

11
16

.1
 (1

97
5)

 
R

ef
: [

13
0]

 

C
ry

st
al

liz
er

 
B

 a
gi

ta
to

r 
31

6 
SS

 
po

w
er

: H
P 

= 
55

 h
p 

es
tim

at
e 

fr
om

 a
 c

os
t-p

ow
er

 c
ha

rt 
15

 (2
00

2)
/e

le
ct

ric
ity

: 
41

 k
w

h 
R

ef
: [

12
9]

 

C
ry

st
al

liz
er

 
C

 
31

6 
SS

 
cr

ys
ta

lli
ze

r s
iz

e:
 V

 =
 4

00
00

 g
al

 =
 

54
37

 c
uf

t 
co

st
 a

s 
fo

r c
ry

st
al

liz
er

 A
 

92
9.

7 
(1

97
5)

 
R

ef
: [

13
0]

 

C
ry

st
al

liz
er

 
C

 a
gi

ta
to

r 
31

6 
SS

 
po

w
er

: H
P 

= 
45

 h
p 

es
tim

at
e 

fr
om

 a
 c

os
t-p

ow
er

 c
ha

rt 
15

 (2
00

2)
/e

le
ct

ric
ity

: 
33

.5
6 

kw
h 

R
ef

: [
12

9]
 

  C
os

t=
A

ex
p

11
.2

0
−

1.
22

52
ln

A
(

)+
0.

05
87

ln
A

(
)2

⎡ ⎣⎢
⎤ ⎦⎥



 
17

4 

C
en

tri
fu

ge
 3

16
 S

S 
so

lid
 fl

ow
 ra

te
: W

 =
 7

0 
to

ns
/h

r 
so

lid
 

po
w

er
: H

P 
= 

26
0 

hp
 

co
st

 e
st

im
at

in
g 

as
 fo

r c
en

tri
fu

ge
 in

 o
xi

da
tio

n 
se

ct
io

n 
45

2.
2 

(1
97

5)
/e

le
ct

ric
ity

: 
19

3.
9 

kw
h 

R
ef

: [
13

0]
 

R
ot

ar
y 

va
cu

um
 

fil
te

r 

 
po

w
er

: H
P 

=4
5 

hp
 

co
st

 e
st

im
at

e 
id

en
tic

al
 to

 th
e 

fil
te

r b
ef

or
e 

cr
ys

ta
lli

ze
r A

 
14

6.
5 

(1
98

1)
/e

le
ct

ric
ity

: 
33

.5
6 

kw
h 

R
ef

: [
13

0]
 

Pu
rif

ie
d 

TP
A

 d
ry

er
 

31
6 

SS
 

su
rf

ac
e 

ar
ea

: A
 =

 9
10

0 
sq

ft 
co

st
 e

st
im

at
e 

id
en

tic
al

 to
 c

ru
de

 T
PA

 d
ry

er
 in

 
ox

id
at

io
n 

se
ct

io
n 

86
8.

8 
(1

97
5)

 
R

ef
: [

13
0]

 

Pu
rif

ie
d 

TP
A

 
st

ro
ra

ge
 b

in
 31

6 
SS

 
bi

n 
si

ze
: V

 =
 2

30
00

 c
uf

t =
 

17
20

63
 g

al
 

co
st

 a
s 

fo
r c

ru
de

 T
PA

 s
to

ra
ge

 b
in

 
F M

 =
 2

.7
 fo

r 3
16

 S
S 

14
5.

7 
(1

97
9)

 
R

ef
: [

13
0]

 

C
ru

de
 T

PA
 

pu
m

p 
ty

pe
: o

ne
-

st
ag

e,
 3

55
0 

rp
m

, H
SC

 
tit

an
iu

m
 

flo
w

 ra
te

: Q
 =

 2
95

.3
 m

3 /h
 =

 1
30

0 
ga

l/m
in

 
he

ad
: H

 =
 6

0 
m

 =
 1

96
.8

 ft
 

po
w

er
: H

P 
= 

13
6.

8 
hp

 

co
st

 a
s 

fo
r f

ee
d 

pu
m

p 
in

 o
xi

da
tio

n 
se

ct
io

n 
57

.2
 

(1
97

9)
/e

le
ct

ric
ity

: 
10

2 
kw

h 

R
ef

: [
13

0]
 

TP
A

 s
lu

rr
y 

pu
m

p 
ty

pe
: o

ne
-

st
ag

e,
 3

55
0 

rp
m

, H
SC

 
tit

an
iu

m
 

flo
w

 ra
te

: Q
 =

 3
70

 m
3 /h

 =
 1

62
9 

ga
l/m

in
 

he
ad

: H
 =

 6
0 

m
 =

 1
96

.8
 ft

 
po

w
er

: H
P 

= 
96

9.
3 

hp
 

co
st

 a
s 

fo
r f

ee
d 

pu
m

p 
in

 o
xi

da
tio

n 
se

ct
io

n 
59

.8
 

(1
97

9)
/e

le
ct

ric
ity

: 
72

2.
8 

kw
h 

R
ef

: [
13

0]
 

H
yd

ro
ge

na
t

io
n 

fe
ed

 
pu

m
p 

ty
pe

: o
ne

-
st

ag
e,

 3
55

0 
rp

m
, H

SC
 

tit
an

iu
m

 

flo
w

 ra
te

: Q
 =

 4
24

.8
 m

3 /h
 =

 1
87

0 
ga

l/m
in

 
he

ad
: H

 =
 6

0 
m

 =
 1

96
.8

 ft
 

po
w

er
: H

P 
= 

87
.3

 h
p 

co
st

 a
s 

fo
r f

ee
d 

pu
m

p 
in

 o
xi

da
tio

n 
se

ct
io

n 
61

.6
 

(1
97

9)
/e

le
ct

ric
ity

: 
65

.1
1 

kw
h 

R
ef

: [
13

0]
 

So
lv

en
t 

ev
ap

or
at

or
 

pu
m

p 

ty
pe

: o
ne

-
st

ag
e,

 3
55

0 
rp

m
, H

SC
 

tit
an

iu
m

 

flo
w

 ra
te

: Q
 =

 8
8.

82
 m

3 /h
 =

 3
91

 
ga

l/m
in

 
he

ad
: H

 =
 6

0 
m

 =
 1

96
.8

 ft
 

po
w

er
: H

P 
= 

23
.4

 h
p 

co
st

 a
s 

fo
r f

ee
d 

pu
m

p 
in

 o
xi

da
tio

n 
se

ct
io

n 
47

.0
 

(1
97

9)
/e

le
ct

ric
ity

: 
17

.4
5 

kw
h 

R
ef

: [
13

0]
 

 
 



 
17

5 

Ta
bl

e 
D

2.
 P

ur
ch

as
ed

 e
qu

ip
m

en
t c

os
t e

st
im

at
io

n 
de

ta
ils

 o
f C

EB
C

 sp
ra

y 
pr

oc
es

s 

Eq
ui

pm
en

t 
D

es
ig

n 
pa

ra
m

et
er

s 
C

as
e 

1 
C

as
e 

2 
C

as
e 

3 
C

as
e 

4 
O

xi
da

tio
n 

re
ac

to
r 

(s
pr

ay
) 

no
zz

le
: t

ita
ni

um
 

 
 

 
 

sp
ra

y 
ra

te
 fo

r e
ac

h 
no

zz
le

: Q
 =

 5
 L

/m
in

 
 

 
 

re
si

de
nc

e 
tim

e:
 τ

 =
 1

0 
m

in
 

 
 

 
 

fe
ed

 li
qu

id
 fl

ow
 ra

te
 th

ro
ug

h 
th

e 
no

zz
le

 (F
1)

 
11

72
 m

3 /h
 

82
9.

8 
m

3 /h
 

49
3.

8 
m

3 /h
 

18
5.

1 
m

3 /h
 

re
cy

cl
e 

so
lv

en
t f

lo
w

 ra
te

 (F
2)

 
71

7.
6 

m
3 /h

 
70

5.
2 

m
3 /h

 
67

1.
2 

m
3 /h

 
51

5.
7 

m
3 /h

 
to

ta
l f

ee
d 

liq
ui

d 
flo

w
 ra

te
 (F

 =
 F

1 +
 F

2)
 

18
89

.6
 m

3 /h
 

15
35

 m
3 /h

 
11

65
 m

3 /h
 

70
0.

8 
m

3 /h
 

liq
ui

d 
le

ve
l: 

q 
= 

70
%

 
 

 
 

 
re

ac
to

r s
iz

e:
 V

 =
 F

*τ
/q

 
44

9.
9 

m
3 

36
5.

5 
m

3 
27

7.
4 

m
3 

16
6.

9 
m

3 

di
am

et
er

: D
  

6.
59

2 
m

 
6.

15
1 

m
 

5.
61

0 
m

 
4.

73
6 

m
 

ra
id

iu
s:

 R
 =

 D
/2

 
 

 
 

 
le

ng
th

: L
  

13
.1

8 
m

 
12

.3
0 

m
 

11
.2

2 
m

 
9.

47
3 

m
 

pr
es

su
re

: P
 =

 1
51

7 
kP

a 
 

 
 

 
st

re
ss

: S
 =

 9
45

00
 k

Pa
 

 
 

 
 

no
zz

le
 n

um
be

r: 
F 1

/Q
 

39
07

 
27

66
 

16
46

 
61

7 
no

zz
le

 u
ni

t c
os

t: 
$1

50
 e

ac
h 

(v
en

do
r)

 
 

 
 

 
re

ac
to

r c
os

t (
$1

00
0)

 (y
ea

r)
 

12
13

.3
 (2

00
2)

 
10

60
.2

 (2
00

2)
 

88
6.

7 
(2

00
2)

 
63

8.
4 

(2
00

2)
 

no
zz

le
 c

os
t (

$1
00

0)
 (y

ea
r)

 
58

6.
1 

(2
01

2)
 

41
4.

9 
(2

01
2)

 
24

6.
9 

(2
01

2)
 

92
.6

 (2
01

2)
 

C
om

bu
st

io
n 

re
ac

to
r 

id
en

tic
al

 to
 c

om
bu

st
io

n 
re

ac
to

r i
n 

ox
id

at
io

n 
se

ct
io

n 
10

9.
8 

(2
00

2)
 

 
 

 

So
lv

en
t d

eh
yd

ra
tio

n 
co

lu
m

n 
va

po
r p

ha
se

 fl
ow

 ra
te

  
73

.3
2 

m
3 /h

 
63

.8
9 

m
3 /h

 
49

.6
6 

m
3 /h

 
22

.9
6 

m
3 /h

 
di

am
et

er
: D

 
26

.8
8 

ft 
25

.0
9 

ft 
22

.1
2 

ft 
15

.0
4 

ft 
le

ng
th

: L
 =

 1
56

 ft
 

 
 

 
 

tra
y 

nu
m

be
r: 

N
 =

 7
0 

 
 

 
 

pr
es

su
re

: P
 =

 1
10

.3
 k

Pa
 

 
 

 
 

co
lu

m
n 

co
st

 ($
10

00
) (

ye
ar

) 
  

22
40

.8
 (1

98
4)

 
18

23
.0

 (1
98

4)
 

13
56

.5
 (1

98
4)

 
83

2.
8 

(1
98

4)
 



 
17

6 

R
eb

oi
le

d 
st

rip
pe

r 
va

po
r p

ha
se

 fl
ow

 ra
te

  
1.

8*
10

5  m
3 /h

 
1.

26
*1

05  m
3 /h

 
7.

2*
10

4  m
3 /h

 
2.

37
*1

04  m
3 /h

 
di

am
et

er
: D

 
22

.8
2 

ft 
19

.0
9 

ft 
14

.4
3 

ft 
8.

28
 ft

 
le

ng
th

: L
 =

 3
8 

ft 
 

 
 

 
tra

y 
nu

m
be

r: 
N

 =
 1

4 
 

 
 

 
pr

es
su

re
: P

 =
 1

72
.4

 k
Pa

 
 

 
 

 
co

lu
m

n 
co

st
 ($

10
00

) (
ye

ar
) 

13
45

.7
 (1

98
4)

 
74

2.
9 

(1
98

4)
 

37
9.

0 
(1

98
4)

 
16

9.
1 

(1
98

4)
 

H
ig

h 
pr

es
su

re
 sc

ru
bb

er
 

va
po

r p
ha

se
 fl

ow
 ra

te
 c

lo
se

 to
 th

at
 in

 o
xi

da
tio

n 
se

ct
io

n 
 

 
 

co
lu

m
n 

co
st

 ($
10

00
) (

ye
ar

) 
13

8.
0 

(1
98

4)
 

 
 

 
R

ea
ct

or
 c

om
pr

es
so

r 
(s

ta
ge

 1
) 

po
w

er
: H

P 
= 

13
16

8.
2 

hp
 =

 9
81

9.
54

 k
W

 
 

 
 

co
m

pr
es

so
r c

os
t (

$1
00

0)
 (y

ea
r)

/u
til

ity
 (1

 
ho

ur
) 

23
24

.6
 (1

98
1)

/e
le

ct
ric

ity
: 9

81
9.

54
 k

w
h 

 

R
ea

ct
or

 c
om

pr
es

so
r 

(s
ta

ge
 2

) 
po

w
er

: H
P 

= 
13

06
8.

4 
hp

 =
 9

74
5.

11
 k

W
 

 
 

 
co

m
pr

es
so

r c
os

t (
$1

00
0)

 (y
ea

r)
/u

til
ity

 (1
 

ho
ur

) 
23

13
.7

 (1
98

1)
/e

le
ct

ric
ity

: 9
74

5.
11

 k
w

h 
 

O
xi

da
tio

n 
re

ac
to

r 
co

nd
en

se
r 

he
at

 fl
ow

: q
 

5.
61

*1
08  k

J/
hr

 
5.

52
*1

08  k
J/

hr
 

5.
42

*1
08  k

J/
hr

 
5.

43
*1

08  k
J/

hr
 

ΔT
lo

g 
m

ea
n 

 
10

9.
4 

°C
 

11
3.

7 
°C

 
11

7.
8 

°C
 

10
8.

8 
°C

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

  
61

28
0 

sq
rt 

58
03

2 
sq

rt 
54

98
1 

sq
rt 

59
68

2 
sq

rt 
co

st
 ($

10
00

) (
ye

ar
) 

12
7.

6 
(1

98
1)

 
12

4.
9 

(1
98

1)
 

12
2.

2 
(1

98
1)

 
12

6.
3 

(1
98

1)
 

C
ry

st
al

liz
er

 A
 

co
nd

en
se

r 
he

at
 fl

ow
: q

 
2.

81
*1

07  k
J/

hr
 

2.
18

*1
07  k

J/
hr

 
1.

52
*1

07  k
J/

hr
 

7.
41

*1
06  k

J/
hr

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

  
24

25
 sq

rt 
18

82
 sq

rt 
13

12
 sq

rt 
64

0 
sq

rt 
co

st
 ($

10
00

) (
ye

ar
) 

28
3.

1 
(1

97
9)

 
22

1.
9 

(1
97

9)
 

15
9.

1 
(1

97
9)

 
86

.2
 (1

97
9)

 
co

ol
in

g 
w

at
er

 (1
 h

ou
r)

 
1.

34
*1

06  k
g 

1.
04

*1
06  k

g 
7.

26
*1

05  k
g 

3.
54

*1
05  k

g 
C

ry
st

al
liz

er
 B

 
co

nd
en

se
r 

he
at

 fl
ow

: q
 

4.
29

*1
07  k

J/
hr

 
3.

07
*1

07  k
J/

hr
 

1.
85

*1
07  k

J/
hr

 
7.

49
*1

06  k
J/

hr
 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
  

40
09

 sq
rt 

28
69

 sq
rt 

17
29

 sq
rt 

70
0 

sq
rt 

co
st

 ($
10

00
) (

ye
ar

) 
36

2.
7 

(1
97

9)
 

25
7.

5 
(1

97
9)

 
15

7.
6 

(1
97

9)
 

71
.2

 (1
97

9)
 

co
ol

in
g 

w
at

er
 (1

 h
ou

r)
 

2.
05

*1
06  k

g 
1.

47
*1

06  k
g 

8.
83

*1
05  k

g 
3.

58
*1

05  k
g 

    



 
17

7 

C
ry

st
al

liz
er

 C
 

co
nd

en
se

r 
he

at
 fl

ow
: q

 
9.

70
*1

07  k
J/

hr
 

6.
94

*1
07  k

J/
hr

 
4.

16
*1

07  k
J/

hr
 

1.
65

*1
07  k

J/
hr

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

  
12

63
6 

sq
rt 

90
41

 sq
rt 

54
19

 sq
rt 

21
49

 sq
rt 

co
st

 ($
10

00
) (

ye
ar

) 
13

11
.3

 (1
97

9)
 

88
5.

6 
(1

97
9)

 
49

9.
9 

(1
97

9)
 

19
3.

8 
(1

97
9)

 
co

ol
in

g 
w

at
er

 (1
 h

ou
r)

 
4.

63
*1

06  k
g 

3.
31

*1
06  k

g 
1.

99
*1

06  k
g 

7.
88

*1
05  k

g 
D

is
til

la
tio

n 
co

lu
m

n 
co

nd
en

se
r 

he
at

 fl
ow

: q
 

20
3.

1 
M

B
tu

/h
 

17
8.

2 
M

B
tu

/h
 

13
9.

3 
M

B
tu

/h
 

64
.9

9 
M

B
tu

/h
 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
  

81
96

 sq
rt 

71
92

 sq
rt 

56
22

 sq
rt 

26
23

 sq
rt 

co
st

 ($
10

00
) (

ye
ar

) 
79

1.
5 

(1
97

9)
 

68
2.

9 
(1

97
9)

 
52

0.
2 

(1
97

9)
 

23
5.

5 
(1

97
9)

 
co

ol
in

g 
w

at
er

 (1
 h

ou
r)

 
1.

02
*1

07  k
g 

8.
99

*1
06  k

g 
7.

02
*1

06  k
g 

3.
28

*1
06  k

g 
D

is
til

la
tio

n 
co

lu
m

n 
re

bo
ile

r 
he

at
 fl

ow
: q

 
16

3.
4 

M
B

tu
/h

 
14

3.
4 

M
B

tu
/h

 
11

2.
2 

M
B

tu
/h

 
52

.1
6 

M
B

tu
/h

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

  
69

50
 sq

rt 
61

02
 sq

rt 
47

74
 sq

rt 
22

19
 sq

rt 
co

st
 ($

10
00

) (
ye

ar
) 

92
9.

3 
(1

97
9)

 
80

4.
5 

(1
97

9)
 

61
6.

6 
(1

97
9)

 
28

2.
5 

(1
97

9)
 

H
P 

st
ea

m
 (1

 h
ou

r)
 

2.
23

*1
05  lb

 
1.

96
*1

05  lb
 

1.
53

*1
05  lb

 
7.

13
*1

04  lb
 

R
eb

oi
le

d 
st

rip
pe

r 
re

bo
ile

r 
he

at
 fl

ow
: q

 
3.

17
*1

08  k
J/

hr
 

2.
22

*1
08  k

J/
hr

 
1.

29
*1

08  k
J/

hr
 

4.
42

*1
07  k

J/
hr

 
ΔT

 
82

.7
 °

C
 

83
.2

 °
C

 
83

.9
 °

C
 

82
.2

 °
C

 
he

at
 e

xc
ha

ng
er

 a
re

a:
 A

  
10

41
4 

sq
rt 

72
49

 sq
rt 

41
77

 sq
rt 

14
61

 sq
rt 

co
st

 ($
10

00
) (

ye
ar

) 
19

07
.2

 (1
97

9)
 

12
59

.2
 (1

97
9)

 
69

1.
7 

(1
97

9)
 

24
6.

1 
(1

97
9)

 
H

P 
st

ea
m

 (1
 h

ou
r)

 
4.

10
*1

05  lb
 

2.
87

*1
05  lb

 
1.

67
*1

05  lb
 

5.
72

*1
04  lb

 
C

om
pr

es
so

r c
oo

le
r 

id
en

tic
al

 to
 c

om
pr

es
so

r c
oo

le
r i

n 
ox

id
at

io
n 

se
ct

io
n 

64
4.

6 
(1

97
9)

 
 

 
 

co
ol

in
g 

w
at

er
 (1

 h
ou

r)
 

1.
73

*1
06  k

g 
 

 
 

O
ff

-g
as

 h
ea

te
r 

he
at

 fl
ow

: q
 

1.
34

*1
07  k

J/
hr

 
1.

20
*1

07  k
J/

hr
 

1.
05

*1
07  k

J/
hr

 
1.

15
*1

07  k
J/

hr
 

ΔT
 

76
.7

 °
C

 
68

.2
 °

C
 

58
.6

 °
C

 
66

.0
 °

C
 

he
at

 e
xc

ha
ng

er
 a

re
a:

 A
  

58
01

 sq
rt 

58
43

 sq
rt 

59
50

 sq
rt 

57
86

 sq
rt 

co
st

 ($
10

00
) (

ye
ar

) 
53

8.
3 

(1
97

9)
 

54
2.

6 
(1

97
9)

 
55

3.
5 

(1
97

9)
 

53
6.

8 
(1

97
9)

 
H

P 
st

ea
m

 (1
 h

ou
r)

 
1.

73
*1

04  lb
 

1.
55

*1
04  lb

 
1.

36
*1

04  lb
 

1.
49

*1
04  lb

 
A

ce
tic

 a
ci

d 
ta

nk
 

id
en

tic
al

 to
 th

e 
on

e 
in

 o
xi

da
tio

n 
se

ct
io

n 
61

.6
 (1

97
9)

 
 

 
 

p-
X

yl
en

e 
ta

nk
 

id
en

tic
al

 to
 th

e 
on

e 
in

 o
xi

da
tio

n 
se

ct
io

n 
10

0.
9 

(1
97

9)
 

 
 

 
A

ce
tic

 a
ci

d 
st

or
ag

e 
ta

nk
 

id
en

tic
al

 to
 th

e 
on

e 
in

 o
xi

da
tio

n 
se

ct
io

n 
13

2.
1 

(1
97

9)
 

 
 

 
p-

X
yl

en
e 

st
or

ag
e 

ta
nk

 
id

en
tic

al
 to

 th
e 

on
e 

in
 o

xi
da

tio
n 

se
ct

io
n 

32
7.

4 
(1

97
9)

 
 

 
 

C
at

al
ys

t m
ix

er
 

id
en

tic
al

 to
 th

e 
on

e 
in

 o
xi

da
tio

n 
se

ct
io

n 
25

.4
 (1

97
9)

 
 

 
 



 
17

8 

C
at

al
ys

t m
ix

er
 a

gi
ta

to
r 

id
en

tic
al

 to
 th

e 
on

e 
in

 o
xi

da
tio

n 
se

ct
io

n 
15

 (2
00

2)
 

 
 

 
el

ec
tri

ci
ty

 (1
 h

ou
r)

 
12

.6
8 

kw
h 

 
 

 
Fe

ed
 m

ix
 ta

nk
 

fe
ed

 fl
ow

 ra
te

: F
 

11
72

 m
3 /h

 
82

9.
8 

m
3 /h

 
49

3.
8 

m
3 /h

 
18

5.
1 

m
3 /h

 
ve

ss
el

 si
ze

: V
 

77
38

0 
ga

l 
54

78
8 

ga
l 

32
60

0 
ga

l 
12

22
0 

ga
l 

di
am

et
er

: D
 =

 1
0.

65
 ft

  
20

.6
3 

ft 
18

.3
8 

ft 
15

.4
6 

ft 
11

.1
5 

ft 
le

ng
th

: L
 =

 1
5.

98
 ft

 
30

.9
5 

ft 
27

.5
9 

ft 
23

.2
0 

ft 
16

.7
3 

ft 
co

st
 ($

10
00

) (
ye

ar
) 

13
4.

3 
(1

97
9)

 
11

2.
9 

(1
97

9)
 

88
.2

 (1
97

9)
 

57
.7

4 
(1

97
9)

 
O

xi
da

tio
n 

re
ac

to
r 

se
pa

ra
to

r 
flo

w
 ra

te
 c

lo
se

 to
 th

at
 in

 o
xi

da
tio

n 
se

ct
io

n 
12

6.
0 

(1
97

9)
 

 
 

 

C
ry

st
al

liz
er

 A
 se

pa
ra

to
r 

fe
ed

 fl
ow

 ra
te

: F
 

11
4 

m
3 /h

 
81

.8
8 

m
3 /h

 
50

.4
5 

m
3 /h

 
24

.7
6 

m
3 /h

 
ve

ss
el

 si
ze

: V
 

27
30

 g
al

 
19

60
 g

al
 

12
10

 g
al

 
59

0 
ga

l 
di

am
et

er
: D

   
6.

77
2 

ft 
6.

06
5 

ft 
5.

16
1 

ft 
4.

07
1 

ft 
le

ng
th

: L
 

10
.1

6 
ft 

9.
09

7 
ft 

7.
74

1 
ft 

6.
10

6 
ft 

co
st

 ($
10

00
) (

ye
ar

) 
49

.3
 (1

97
9)

 
42

.7
 (1

97
9)

 
35

.1
 (1

97
9)

 
27

.2
 (1

97
9)

 
C

ry
st

al
liz

er
 B

 se
pa

ra
to

r 
fe

ed
 fl

ow
 ra

te
: F

 
53

.4
8 

m
3 /h

 
37

.2
1 

m
3 /h

 
21

.1
7 

m
3 /h

 
7.

17
6 

m
3 /h

 
ve

ss
el

 si
ze

: V
 

17
50

 g
al

 
12

20
 g

al
 

69
0 

ga
l 

23
0 

ga
l 

di
am

et
er

: D
   

5.
84

1 
ft 

5.
17

6 
ft 

4.
28

9 
ft 

2.
99

0 
ft 

le
ng

th
: L

 
8.

76
1 

ft 
7.

76
4 

ft 
6.

43
3 

ft 
4.

48
5 

ft 
co

st
 ($

10
00

) (
ye

ar
) 

35
.4

 (1
97

9)
 

31
.1

 (1
97

9)
 

25
.9

 (1
97

9)
 

19
.3

 (1
97

9)
 

C
ry

st
al

liz
er

 C
 se

pa
ra

to
r 

fe
ed

 fl
ow

 ra
te

: F
 

14
2 

m
3 /h

 
98

.5
5 

m
3 /h

 
55

.6
7 

m
3 /h

 
18

.1
3 

m
3 /h

 
ve

ss
el

 si
ze

: V
 

37
00

 g
al

 
25

70
 g

al
 

14
50

 g
al

 
47

0 
ga

l 
di

am
et

er
: D

   
7.

49
3 

ft 
6.

63
4 

ft 
5.

48
4 

ft 
3.

77
3 

ft 
le

ng
th

: L
 

11
.2

4 
ft 

9.
95

0 
ft 

8.
22

5 
ft 

5.
65

9 
ft 

co
st

 ($
10

00
) (

ye
ar

) 
37

.3
 (1

97
9)

 
33

.0
 (1

97
9)

 
27

.7
 (1

97
9)

 
20

.7
 (1

97
9)

 
       



 
17

9 

Sl
ur

ry
 ta

nk
 (b

ef
or

e 
ce

nt
rif

ug
e)

 
Sl

ur
ry

 ta
nk

 a
gi

ta
to

r 

fe
ed

 fl
ow

 ra
te

: F
 

73
4.

6 
m

3 /h
 

53
4.

7 
m

3 /h
 

34
5.

2 
m

3 /h
 

16
6.

5 
m

3 /h
 

ve
ss

el
 s

iz
e:

 V
 

13
80

0 
ga

l 
10

04
0 

ga
l 

64
80

 g
al

 
31

20
 g

al
 

di
am

et
er

: D
   

11
.6

1 
ft 

10
.4

5 
ft 

9.
02

9 
ft 

7.
08

1 
ft 

le
ng

th
: L

 
17

.4
2 

ft 
15

.6
7 

ft 
13

.5
4 

ft 
10

.6
2 

ft 
co

st
 ($

10
00

) (
ye

ar
) 

62
.0

 (1
97

9)
 

54
.5

 (1
97

9)
 

45
.9

 (1
97

9)
 

35
.5

 (1
97

9)
 

id
en

tic
al

 to
 th

e 
on

e 
in

 o
xi

da
tio

n 
se

ct
io

n 
15

 (2
00

2)
 

 
 

 
el

ec
tri

ci
ty

 (1
 h

ou
r)

 
10

.4
4 

kw
h 

 
 

 
A

ce
tic

 a
ci

d 
w

as
h 

ta
nk

 
(b

ef
or

e 
ce

nt
rif

ug
e)

 
fe

ed
 fl

ow
 ra

te
: F

 
80

.7
2 

m
3 /h

 
56

.1
2 

m
3 /h

 
31

.5
8 

m
3 /h

 
8.

92
8 

m
3 /h

 
ve

ss
el

 s
iz

e:
 V

 
65

10
 g

al
 

45
20

 g
al

 
25

40
 g

al
 

72
0 

ga
l 

di
am

et
er

: D
   

9.
04

2 
ft 

8.
01

0 
ft 

6.
61

3 
ft 

4.
34

0 
ft 

le
ng

th
: L

 
13

.5
6 

ft 
12

.0
2 

ft 
9.

92
0 

ft 
6.

51
0 

ft 
co

st
 ($

10
00

) (
ye

ar
) 

45
.7

 (1
97

9)
 

40
.1

 (1
97

9)
 

33
.0

 (1
97

9)
 

22
.9

 (1
97

9)
 

M
ot

he
r l

iq
uo

r t
an

k 
(a

fte
r c

en
tri

fu
ge

) 
fe

ed
 fl

ow
 ra

te
: F

 
1.

70
9*

10
5  m

3 /h
 

1.
44

8*
10

5  m
3 /h

 
1.

09
*1

05  m
3 /h

 
4.

5*
10

4  m
3 /h

 
ve

ss
el

 s
iz

e:
 V

 
17

00
 g

al
 

14
40

 g
al

 
10

90
 g

al
 

45
0 

ga
l 

di
am

et
er

: D
   

9.
56

0 
ft 

9.
04

6 
ft 

8.
22

9 
ft 

6.
12

7 
ft 

le
ng

th
: L

 
14

.3
4 

ft 
13

.5
7 

ft 
12

.3
4 

ft 
9.

19
1 

ft 
co

st
 ($

10
00

) (
ye

ar
) 

49
.0

 (1
97

9)
 

46
.0

 (1
97

9)
 

41
.5

 (1
97

9)
 

30
.8

 (1
97

9)
 

C
ry

st
al

liz
er

 A
 

fe
ed

 fl
ow

 ra
te

: F
 

16
00

 m
3 /h

 
11

65
 m

3 /h
 

72
3.

2 
m

3 /h
 

31
6.

7 
m

3 /h
 

cr
ys

ta
lli

ze
r s

iz
e:

 V
 

19
87

9 
cu

ft 
14

47
5 

cu
ft 

89
85

 c
uf

t 
39

35
 c

uf
t 

co
st

 ($
10

00
) (

ye
ar

) 
20

51
.9

 (1
97

5)
 

17
67

.6
 (1

97
5)

 
14

12
.7

 (1
97

5)
 

95
8.

4 
(1

97
5)

 
C

ry
st

al
liz

er
 A

 a
gi

ta
to

r 
id

en
tic

al
 to

 th
e 

on
e 

in
 o

xi
da

tio
n 

se
ct

io
n 

15
 (2

00
2)

 
 

 
 

el
ec

tri
ci

ty
 (1

 h
ou

r)
 

33
.5

6 
kw

h 
 

 
 

C
ry

st
al

liz
er

 B
 

fe
ed

 fl
ow

 ra
te

: F
 

99
4.

7 
m

3 /h
 

69
9.

8 
m

3 /h
 

42
5.

3 
m

3 /h
 

19
3.

9 
m

3 /h
 

cr
ys

ta
lli

ze
r s

iz
e:

 V
 

22
58

7 
cu

ft 
15

89
0 

cu
ft 

96
57

 c
uf

t 
44

03
 c

uf
t 

co
st

 ($
10

00
) (

ye
ar

) 
18

15
.7

 (1
97

5)
 

15
39

.0
 (1

97
5)

 
12

17
.9

 (1
97

5)
 

84
1.

9 
(1

97
5)

 
C

ry
st

al
liz

er
 B

 a
gi

ta
to

r 
id

en
tic

al
 to

 th
e 

on
e 

in
 o

xi
da

tio
n 

se
ct

io
n 

15
 (2

00
2)

 
 

 
 

el
ec

tri
ci

ty
 (1

 h
ou

r)
 

33
.5

6 
kw

h 
 

 
 

C
ry

st
al

liz
er

 C
 

id
en

tic
al

 to
 c

ry
st

al
liz

er
 B

 
18

15
.7

 (1
97

5)
 

15
39

.0
 (1

97
5)

 
12

17
.9

 (1
97

5)
 

84
1.

9 
(1

97
5)

 
  



 
18

0 

C
ry

st
al

liz
er

 C
 a

gi
ta

to
r 

id
en

tic
al

 to
 th

e 
on

e 
in

 o
xi

da
tio

n 
se

ct
io

n 
15

 (2
00

2)
 

 
 

 
el

ec
tri

ci
ty

 (1
 h

ou
r)

 
33

.5
6 

kw
h 

 
 

 
Pu

rif
ie

d 
TP

A
 d

ry
er

 
id

en
tic

al
 to

 th
e 

TP
A

 d
ry

er
 in

 o
xi

da
tio

n 
se

ct
io

n 
86

8.
8 

(1
97

5)
 

 
 

 
Pu

rif
ie

d 
TP

A
 st

ro
ra

ge
 

bi
n 

id
en

tic
al

 to
 th

e 
on

e 
in

 o
xi

da
tio

n 
se

ct
io

n 
14

5.
7 

(1
97

9)
 

 
 

 

O
ff

-g
as

 e
xp

an
de

r 
po

w
er

: H
P 

 
13

80
0 

hp
 

12
90

0 
hp

 
11

92
0 

hp
 

10
09

0 
hp

 
co

st
 ($

10
00

) (
ye

ar
) 

69
9.

3 
(1

98
1)

 
66

2.
1 

(1
98

1)
 

62
1.

1 
(1

98
1)

 
54

2.
6 

(1
98

1)
 

el
ec

tri
ci

ty
 (1

 h
ou

r)
 

10
29

2 
kw

h 
96

19
 k

w
h 

88
89

 k
w

h 
75

25
 k

w
h 

A
ce

tic
 a

ci
d 

pu
m

p 
po

w
er

: H
P 

 
3.

47
*1

0-3
 h

p 
2.

79
*1

0-3
 h

p 
2.

17
*1

0-3
 h

p 
1.

49
*1

0-3
 h

p 
co

st
 id

en
tic

al
 to

 th
e 

on
e 

in
 o

xi
da

tio
n 

se
ct

io
n 

4.
9 

(1
97

9)
 

 
 

 
p-

X
yl

en
e 

pu
m

p 
po

w
er

: H
P 

 
3.

77
*1

0-2
 h

p 
 

 
co

st
 id

en
tic

al
 to

 th
e 

on
e 

in
 o

xi
da

tio
n 

se
ct

io
n 

5.
2 

(1
97

9)
 

 
 

 
Fe

ed
 p

um
p 

po
w

er
: H

P 
 

64
4.

0 
hp

 
45

6.
1 

hp
 

27
1.

5 
hp

 
10

1.
8 

hp
 

fe
ed

 fl
ow

 ra
te

: Q
  

91
6 

m
3 /h

 
64

8.
8 

m
3 /h

 
38

6.
2 

m
3 /h

 
14

4.
9 

m
3 /h

 
co

st
 ($

10
00

) (
ye

ar
) 

73
.7

 (1
97

9)
 

67
.7

 (1
97

9)
 

60
.4

 (1
97

9)
 

50
.5

 (1
97

9)
 

el
ec

tri
ci

ty
 (1

 h
ou

r)
 

48
0.

3 
kw

h 
34

0 
kw

h 
20

2.
4 

kw
h 

75
.9

2 
kw

h 
Pd

 c
om

bu
st

io
n 

ca
ta

ly
st

 
co

st
 id

en
tic

al
 to

 th
e 

on
e 

in
 o

xi
da

tio
n 

se
ct

io
n 

75
4.

0 
(2

01
2)

 
 

 
 

C
en

tri
fu

ge
 

id
en

tic
al

 to
 th

e 
on

e 
in

 o
xi

da
tio

n 
se

ct
io

n 
46

7.
4 

(1
97

5)
 

 
 

 
el

ec
tri

ci
ty

 (1
 h

ou
r)

 
19

3.
9 

kw
h 

 
 

 
 

 



 
18

1 

Ta
bl

e 
D

3.
 T

ot
al

 p
ro

du
ct

io
n 

co
st

 fo
r b

ot
h 

pr
oc

es
se

s 

 
M

C
 P

ro
ce

ss
 

Sp
ra

y 
Pr

oc
es

s 
C

as
e 

1 
C

as
e 

2 
C

as
e 

3 
C

as
e 

4 
Fi

xe
d 

ca
pi

ta
l, 

C
FC

 
$2

71
.9

6 
M

 
$2

16
.8

0 
M

 
$1

86
.8

9 
M

 
$1

56
.3

2 
M

 
$1

22
.5

7 
M

 
W

or
ki

ng
 c

ap
ita

l (
11

.1
 %

 o
f f

ix
ed

 c
ap

ita
l),

 C
W

C
 

$3
0.

22
 M

 
$2

4.
09

 M
 

$2
0.

77
 M

 
$1

7.
37

 M
 

$1
3.

62
 M

 
To

ta
l c

ap
ita

l i
nv

es
tm

en
t, 

C
TC

 
$3

02
.1

8 
M

 
$2

40
.8

9 
M

 
$2

07
.6

6 
M

 
$1

73
.6

9 
M

 
$1

36
.1

9 
M

 
 

$/
lb

 o
f T

PA
 

$/
lb

 o
f T

PA
 

$/
lb

 o
f T

PA
 

$/
lb

 o
f T

PA
 

$/
lb

 o
f T

PA
 

D
ire

ct
 

 
 

 
 

 
  R

aw
 m

at
er

ia
ls

 
0.

44
69

 
0.

43
66

 
0.

43
37

 
0.

43
11

 
0.

42
83

 
  O

pe
ra

tin
g 

la
bo

r 
0.

00
19

 
0.

00
12

 
0.

00
12

 
0.

00
12

 
0.

00
12

 
  D

ire
ct

 su
pe

rv
is

or
y 

an
d 

cl
er

ic
al

 la
bo

r (
15

%
 o

f o
pe

ra
tin

g 
la

bo
r)

 
0.

00
03

 
0.

00
02

 
0.

00
02

 
0.

00
02

 
0.

00
02

 
  U

til
iti

es
 

0.
07

37
 

0.
06

46
 

0.
05

27
 

0.
03

97
 

0.
02

43
 

  M
ai

nt
en

an
ce

 a
nd

 re
pa

irs
 (2

%
 o

f f
ix

ed
 c

ap
ita

l i
nv

es
tm

en
t) 

0.
00

49
 

0.
00

39
 

0.
00

34
 

0.
00

28
 

0.
00

22
 

  O
pe

ra
tin

g 
su

pp
lie

s (
10

%
 o

f m
ai

nt
en

an
ce

 a
nd

 re
pa

irs
 ) 

0.
00

05
 

0.
00

04
 

0.
00

03
 

0.
00

03
 

0.
00

02
 

  L
ab

or
at

or
y 

ch
ar

ge
s (

10
%

 o
f o

pe
ra

tin
g 

la
bo

r)
 

0.
00

02
 

0.
00

01
 

0.
00

01
 

0.
00

01
 

0.
00

01
 

  P
at

en
ts

 a
nd

 ro
ya

lti
es

 (1
%

 o
f t

ot
al

 e
xp

en
se

) 
0.

00
68

 
0.

00
64

 
0.

00
61

 
0.

00
59

 
0.

00
56

 
   

  T
ot

al
 d

ire
ct

 m
an

uf
ac

tu
rin

g 
ex

pe
ns

es
 (e

xc
lu

di
ng

 d
ep

re
ci

at
io

n)
, A

D
M

E 
0.

53
52

 
0.

51
34

 
0.

49
78

 
0.

48
13

 
0.

46
22

 
In

di
re

ct
 

 
 

 
 

 
  O

ve
rh

ea
d 

(p
ay

ro
ll 

an
d 

pl
an

t),
 p

ac
ka

gi
ng

, a
nd

 st
or

ag
e 

(5
0%

 o
f t

he
 su

m
 o

f 
op

er
at

in
g 

la
bo

r, 
su

pe
rv

is
io

n,
 a

nd
 m

ai
nt

en
an

ce
) 

0.
00

35
 

0.
00

26
 

0.
00

24
 

0.
00

21
 

0.
00

18
 

  L
oc

al
 ta

xe
s (

1%
 o

f f
ix

ed
 c

ap
ita

l i
nv

es
tm

en
t) 

0.
00

25
 

0.
00

20
 

0.
00

17
 

0.
00

14
 

0.
00

11
 

  I
ns

ur
an

ce
 (0

.5
%

 o
f f

ix
ed

 c
ap

ita
l i

nv
es

tm
en

t) 
0.

00
12

 
0.

00
10

 
0.

00
08

 
0.

00
07

 
0.

00
06

 
   

  T
ot

al
 in

di
re

ct
 m

an
uf

ac
tu

rin
g 

ex
pe

ns
es

, A
IM

E 
0.

00
72

 
0.

00
56

 
0.

00
49

 
0.

00
42

 
0.

00
35

 
   

   
   

To
ta

l m
an

uf
ac

tu
rin

g 
ex

pe
ns

es
 (e

xc
lu

di
ng

 d
ep

re
ci

at
io

n)
, A

M
E 

0.
54

24
 

0.
51

90
 

0.
50

27
 

0.
48

56
 

0.
46

56
 

D
ep

re
ci

at
io

n 
(1

0%
 o

f f
ix

ed
 c

ap
ita

l i
nv

es
tm

en
t),

 A
B

D
 

0.
02

47
 

0.
01

97
 

0.
01

70
 

0.
01

42
 

0.
01

11
 

G
en

er
al

 E
xp

en
se

s 
 

 
 

 
 

  A
dm

in
is

tra
tiv

e 
co

st
s (

25
%

 o
f o

ve
rh

ea
d)

 
0.

00
09

 
0.

00
07

 
0.

00
06

 
0.

00
05

 
0.

00
04

 
  D

is
tri

bu
tio

n 
an

d 
se

lli
ng

 e
xp

en
se

s (
10

%
 o

f t
ot

al
 e

xp
en

se
) 

0.
06

76
 

0.
06

35
 

0.
06

12
 

0.
05

89
 

0.
05

62
 

  R
es

ea
rc

h 
an

d 
de

ve
lo

pm
en

t (
5%

 o
f t

ot
al

 e
xp

en
se

) 
0.

03
38

 
0.

03
18

 
0.

03
06

 
0.

02
95

 
0.

02
81

 
   

  T
ot

al
 g

en
er

al
 e

xp
en

se
s, 

A
G

E 
0.

10
23

 
0.

09
59

 
0.

09
24

 
0.

08
89

 
0.

08
47

 
   

   
   

To
ta

l e
xp

en
se

 (t
ot

al
 p

ro
du

ct
io

n 
co

st
), 

A
TE

 
0.

66
94

 
0.

63
46

 
0.

61
20

 
0.

58
86

 
0.

56
15

 

 

 
 



 
18

2 

A
pp

en
di

x 
E

: E
nv

ir
on

m
en

ta
l I

m
pa

ct
 A

na
ly

si
s 

Ta
bl

e 
E1

. P
re

di
ct

ed
 g

at
e-

to
-g

at
e 

en
vi

ro
nm

en
ta

l i
m

pa
ct

 p
ot

en
tia

ls
 fo

r c
on

ve
nt

io
na

l a
nd

 C
EB

C
 p

ro
ce

ss
es

 

Im
pa

ct
 

U
ni

ts
 

C
on

ve
nt

io
na

l M
C

 p
ro

ce
ss

 
C

EB
C

 sp
ra

y 
pr

oc
es

s 
O

xi
da

tio
n 

se
ct

io
n 

H
yd

ro
ge

na
tio

n 
se

ct
io

n 
To

ta
l 

C
as

e 
1 

C
as

e 
2 

C
as

e 
3 

C
as

e 
4 

G
lo

ba
l w

ar
m

in
g 

[1
04 kg

 C
O

2-
eq

ui
v.

] 
2.

54
 (1

.7
7)

a  
2.

39
 (2

.3
9)

 
4.

93
 (4

.1
6)

 
4.

53
 (3

.6
5)

 
3.

49
 (2

.7
9)

 
2.

38
 (1

.8
7)

 
1.

11
 (0

.8
03

) 
A

ci
di

fic
at

io
n 

[1
02 m

ol
 H

+ -e
qu

iv
.] 

8.
15

 (8
.1

5)
 

11
.0

 (1
1.

0)
 

19
.2

 (1
9.

2)
 

16
.8

 (1
6.

8)
 

12
.9

 (1
2.

9)
 

8.
63

 (8
.6

3)
 

3.
71

 (3
.7

1)
 

H
um

an
 h

ea
lth

 n
on

-
ca

nc
er

 a
ir 

[1
03 kg

 to
lu

en
e-

eq
ui

v.
] 

4.
24

 (4
.2

4)
 

5.
74

 (5
.7

4)
 

9.
98

 (9
.9

8)
 

8.
76

 (8
.7

6)
 

6.
71

 (6
.7

1)
 

4.
49

 (4
.4

9)
 

1.
93

 (1
.9

3)
 

Ec
ot

ox
ic

ity
 a

ir 
[1

03 PA
F 

m
3  d

ay
/k

g]
 

7.
16

 (0
.0

15
) 

0.
04

4 
(0

.0
21

) 
7.

20
 (0

.0
36

) 
31

.3
 (0

.0
32

) 
24

.3
 (0

.0
24

) 
17

.0
 (0

.0
16

) 
8.

29
 (0

.0
07

) 
O

zo
ne

 d
ep

le
tio

n 
[1

0-7
kg

 C
FC

 1
1-

eq
ui

v.
] 

4.
06

 (4
.0

6)
 

5.
50

 (5
.5

0)
 

9.
56

 (9
.5

6)
 

8.
38

 (8
.3

8)
 

6.
43

 (6
.4

3)
 

4.
30

 (4
.3

0)
 

1.
85

 (1
.8

5)
 

Eu
tro

ph
ic

at
io

n 
[1

0-1
kg

 N
-e

qu
iv

.] 
8.

83
 (8

.8
3)

 
11

.9
 (1

1.
9)

 
20

.7
 (2

0.
7)

 
18

.2
 (1

8.
2)

 
14

.0
 (1

4.
0)

 
9.

35
 (9

.3
5)

 
4.

01
 (4

.0
1)

 
Sm

og
 a

ir 
[1

02 kg
 O

3-
eq

ui
v.

] 
9.

03
 (4

.0
7)

 
5.

60
 (5

.5
1)

 
14

.6
 (9

.5
8)

 
29

.2
 (8

.4
) 

22
.6

 (6
.4

4)
 

15
.6

 (4
.3

1)
 

7.
41

 (1
.8

5)
 

H
um

an
 h

ea
lth

 n
on

-
ca

nc
er

 w
at

er
 

[1
0-5

kg
 to

lu
en

e-
eq

ui
v.

] 
1.

35
 (1

.3
5)

 
2.

23
 (1

.8
3)

 
3.

58
 (3

.1
8)

 
3.

74
 (2

.7
9)

 
2.

68
 (2

.1
4)

 
1.

67
 (1

.4
3)

 
0.

71
 (0

.6
2)

 

H
um

an
 h

ea
lth

 
ca

nc
er

 a
ir 

[1
0-6

kg
 b

en
ze

ne
-e

qu
iv

.] 
1.

23
 (1

.2
3)

 
1.

66
 (1

.6
6)

 
2.

89
 (2

.8
9)

 
2.

54
 (2

.5
4)

 
1.

95
 (1

.9
5)

 
1.

30
 (1

.3
0)

 
0.

56
 (0

.5
6)

 

Ec
ot

ox
ic

ity
 w

at
er

 
[1

02 PA
F 

m
3  d

ay
/k

g]
b  

7.
68

 (7
.6

8)
 

10
5 

(1
0.

4)
 

11
3 

(1
8.

1)
 

50
3 

(1
5.

9)
 

43
4 

(1
2.

1)
 

33
2 

(8
.1

3)
 

22
7 

(3
.4

9)
 

a In
  p

ar
en

th
es

is
: e

nv
iro

nm
en

ta
l i

m
pa

ct
 p

ot
en

tia
ls

 fr
om

 fu
el

 c
om

bu
st

io
n 

fo
r p

ro
ce

ss
 st

ea
m

 p
ro

du
ct

io
n;

 
b [P

A
F 

m
3  d

ay
/k

g]
: p

ot
en

tia
lly

 a
ff

ec
te

d 
fr

ac
tio

n 
of

 sp
ec

ie
s (

PA
F)

 in
te

gr
at

ed
 o

ve
r t

im
e 

an
d 

vo
lu

m
e 

pe
r u

ni
t m

as
s o

f a
 c

he
m

ic
al

 e
m

itt
ed

. 

 
 



 
18

3 

Ta
bl

e 
E2

. P
re

di
ct

ed
 c

ra
dl

e-
to

-g
at

e 
en

vi
ro

nm
en

ta
l i

m
pa

ct
 p

ot
en

tia
ls

 fo
r c

on
ve

nt
io

na
l a

nd
 C

EB
C

 p
ro

ce
ss

es
 

Im
pa

ct
 

U
ni

ts
 

C
on

ve
nt

io
na

l 
M

C
 p

ro
ce

ss
 

C
EB

C
 sp

ra
y 

pr
oc

es
s 

C
as

e 
1 

C
as

e 
2 

C
as

e 
3 

C
as

e 
4 

G
lo

ba
l w

ar
m

in
g 

[1
04 kg

 C
O

2-
eq

ui
v.

] 
19

.6
 

18
.8

 
17

.6
 

16
.4

 
14

.9
 

A
ci

di
fic

at
io

n 
[1

02 m
ol

 H
+ -e

qu
iv

.] 
24

2 
23

2 
22

5 
21

6 
20

5 
H

um
an

 h
ea

lth
 n

on
-c

an
ce

r a
ir 

[1
03 kg

 to
lu

en
e-

eq
ui

v.
] 

33
.3

 
31

.4
 

28
.9

 
26

.2
 

23
 

Ec
ot

ox
ic

ity
 a

ir 
[1

03 PA
F 

m
3  d

ay
/k

g]
 

8.
1 

32
.2

 
25

.2
 

17
.9

 
9.

14
 

O
zo

ne
 d

ep
le

tio
n 

[1
0-7

kg
 C

FC
 1

1-
eq

ui
v.

] 
43

.8
 

41
.7

 
38

.8
 

35
.9

 
32

.5
 

Eu
tro

ph
ic

at
io

n 
[1

0-1
kg

 N
-e

qu
iv

.] 
12

1 
11

6 
11

0 
10

4 
96

.2
 

Sm
og

 a
ir 

[1
02 kg

 O
3-

eq
ui

v.
] 

61
.8

 
75

 
67

.7
 

60
 

50
.6

 
H

um
an

 h
ea

lth
 n

on
-c

an
ce

r w
at

er
 

[1
0-5

kg
 to

lu
en

e-
eq

ui
v.

] 
45

.8
 

44
.9

 
43

.4
 

41
.9

 
40

.4
 

H
um

an
 h

ea
lth

 c
an

ce
r a

ir 
[1

0-6
kg

 b
en

ze
ne

-e
qu

iv
.] 

17
.5

 
16

.7
 

15
.9

 
15

.1
 

14
 

Ec
ot

ox
ic

ity
 w

at
er

 
[1

02 PA
F 

m
3  d

ay
/k

g]
a  

17
6 

56
5 

49
3 

39
1 

28
3 

a [P
A

F 
m

3  d
ay

/k
g]

: p
ot

en
tia

lly
 a

ff
ec

te
d 

fr
ac

tio
n 

of
 sp

ec
ie

s (
PA

F)
 in

te
gr

at
ed

 o
ve

r t
im

e 
an

d 
vo

lu
m

e 
pe

r u
ni

t m
as

s o
f a

 c
he

m
ic

al
 e

m
itt

ed
. 


