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Abstract

Monitoring programs, where numbers of individuals are followed through time, are central to conservation. Although
incomplete detection is expected with wildlife surveys, this topic is rarely considered with plants. However, if plants are
missed in surveys, raw count data can lead to biased estimates of population abundance and vital rates. To illustrate, we
had five independent observers survey patches of the rare plant Asclepias meadii at two prairie sites. We analyzed data with
two mark-recapture approaches. Using the program CAPTURE, the estimated number of patches equaled the detected
number for a burned site, but exceeded detected numbers by 28% for an unburned site. Analyses of detected patches using
Huggins models revealed important effects of observer, patch state (flowering/nonflowering), and patch size (number of
stems) on probabilities of detection. Although some results were expected (i.e. greater detection of flowering than
nonflowering patches), the importance of our approach is the ability to quantify the magnitude of detection problems. We
also evaluated the degree to which increased observer numbers improved detection: smaller groups (3–4 observers)
generally found 90 – 99% of the patches found by all five people, but pairs of observers or single observers had high error
and detection depended on which individuals were involved. We conclude that an intensive study at the start of a long-
term monitoring study provides essential information about probabilities of detection and what factors cause plants to be
missed. This information can guide development of monitoring programs.
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Introduction

Conservation biologists use long-term monitoring to character-

ize population trajectories, quantify rates of survival and fecundity,

and explore how population data relate to management. When

collected with reliable protocols, such data provide essential

information for decision-making in applied ecology. With few

exceptions, population monitoring ultimately depends on observ-

ers’ records of the number of plants and animals in field

environments. Counting organisms can, however, be challenging:

organisms may be mobile or cryptic, observers may vary in their

detection skills, and often survey time is limited. Conservation

biologists therefore need to explicitly consider detection issues in

field protocols and data analysis [1–3]. Many zoologists do use

methods that provide estimates of population size and vital rates

despite incomplete detection [4–6]. Incomplete detection of plants,

however, has received less attention. Although sessile plants are

likely inherently easier to study than animals, imperfect detection

can result from processes that make it impossible or unlikely to

observe plants (i.e. growing-season dormancy, seed banks,

herbivory prior to surveys) and from observer error [2,7–12].

Ignoring incomplete detection can lead to bias in estimating plant

population distributions, sizes, survival and recruitment rates, as

well as population growth rates and extinction probabilities

[7,10,12–16].

We illustrate how an intensive study at the start of a plant

monitoring program can 1) identify whether probabilities of

detection are less than one and, 2) if so, quantify what factors affect

detection. We focus on observer error, which we define as cases

where people do not observe plants that have above-ground parts

at the time of the survey. Quantifying observer error typically

involves a ‘‘double observer’’ methodology (i.e., the presence or

absence of plants is surveyed independently by at least two

observers (or one observer at two time periods)). If results differ

between the two surveys, detection probabilities can be estimated

using closed mark-recapture models (which assume no changes in

the population size over the survey period). Past work suggests

many reasons for observer error. For example, in contrast to the

near 100% detection of flowering orchids, the probability of initial

detection of vegetative plants was approximately 0.8 [17,18]. In a
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Chinese forest, detection of the presence or absence of different

trees and shrubs varied from 0.09 to 0.34 [11]. Variation in

detection among observers can also be important: detection

probabilities varied from 0.09 to 1.0 among 12 observers searching

for an exotic plant [12].

A practical challenge with double observer methodologies is that

repeated visits to plants can lead to vegetation tramping.

Trampling can have two adverse effects. First, plant growth,

herbivory rates, and soil properties can be altered by repeated

visits to individual plants [19–21]. Second, trampling complicates

interpretation of mark-recapture analyses. Specifically, the prob-

ability of detection is likely to increase between first and

subsequent observers because later observers may notice paths

that the first observer took in finding plants. These negative effects

of trampling are expected with dense herbaceous vegetation (i.e.

prairies, savannahs), which are exactly the habitats where

imperfect detection is problematic [13,22].

Our work focuses on Mead’s milkweed (Asclepias meadii (Torr ex

A. Gray)), a rare prairie plant. In past studies, we found detection

probabilities considerably less than one, and utilized this

information to improve estimates of population size, survival

rates, and population growth rates [10,13,14,23]. As we expanded

our work to new sites we faced the classic challenge: how does one

accurately determine the numbers of plants in a defined area

within a reasonable amount of time? Our solution was an intensive

survey that quickly provided data on imperfect detection, yet

avoided vegetation trampling. In our analyses, we estimated the

total number of patches (our surrogate for individual plants) for

study areas at two sites. For detected patches, we examined

whether detection was affected by a) patch state (flowering or not

flowering), b) patch size (number of stems), c) patch distance (near

or far from observer) and d) observer (four experienced observers

and one naı̈ve observer). Finally, we evaluated how the number of

observers affected the probability of a patch being detected by at

least one person. Although our specific results are restricted to this

species, sites, and group of observers, our general approach

illustrates explicit consideration of detection in monitoring, and

thus has broad applications for plant conservation biologists.

Methods

Study species
Asclepias meadii (Asclepiadoideae, Apocynaceae) is a long-lived

herbaceous perennial of tallgrass prairies and glades in Kansas and

Missouri, USA and is listed as threatened under the Endangered

Species Act [24,25]. Plants consist of one to many flowering and

nonflowering stems, with underground rhizome connections.

Flowering stems have an average of twelve white flowers in early

summer [26]; fruits are produced in late summer. At the Anderson

County Prairie Preserve (hereafter, Preserve), flowering and

nonflowering stems are typically 27 to 40 cm and 20 to 25 cm

tall, respectively. See [27] for details of the species’ ecology.

Study sites
The Preserve is a 554 ha area of conservation significance in

eastern Kansas (USA), 8 km south of Garnett, KS; of the 282

known locations of A. meadii, this site is listed as the largest

population (478 stems in 2001; K. Lah, 2008 compilation,

personal communications). 84% of the other known locations

have 30 or fewer stems. We used units 9 (6.9 ha) and 10 (20.2 ha)

of the Preserve. Both units are unplowed native tallgrass prairie

that had been hayed in mid summer since at least the 19409s.

Divergent management began in 1999: unit 9 was hayed from

1999–2006 (with no burns), whereas Unit 10 was not hayed and

burned only in 2001. On 16 April 2007, unit 10 was burned again.

The fire in unit 10 (hereafter, burned site) created open bare

patches, but also regrowth of grasses. Unit 9 (unburned site) had

few bare patches. The Preserve is owned by the Nature

Conservancy and managed by the University of Kansas Field

Station. We had approval of the Station for this work.

Field methods
On 22–23 May 2007, we established three 100 m64 m

transects in both burned and unburned sites; each 100 m transect

had markers at 20 m intervals. Within each site, transects were

separated by at least 8 m. Logistical issues made it impossible to

choose strictly random locations for the transects, as is most

desirable [1], but care was taken to choose locations that were

typical of the larger area. Importantly, transects were established

without regard to locations of A. meadii. On 4 June 2007, we laid

out 100 m tapes, and five individuals (observers A–E) indepen-

dently searched for stems of A. meadii along each transect. Four of

the five observers had experience with A. meadii surveys (A–D). The

naı̈ve observer (E) was trained in field identification of A. meadii for

approximately one hour. Individuals were instructed to record the

time spent searching within each 20 m portion of each transect,

with the goal of completing a transect in 40 minutes (8 minutes

per 20 m portion). Each individual walked with feet close to, and

on either side of the meter tape and did not walk into the

surrounding vegetation. He or she then visually searched a 2 m

area to the right and left of the meter tape. When a stem was

found, its state (flowering vs. nonflowering) and x,y coordinates

were recorded. Coordinates were defined as y = location along the

meter tape, and x = distance to the right or left of the meter tape

as measured by a placing a 2 m pole (marked in 5 cm intervals)

perpendicular to the tape with the 0 end located at the tape. Our

method ensured independent detection by each observer: each

person worked alone and we did not trample vegetation around

stems which could have provided insight on stem locations to

others. The immediate area next to the tape was, of course,

trampled but this small area rarely contained A. meadii stems. Next,

the x,y coordinates from all five observers were plotted on maps so

that a subset of researchers could verify the location of all stems on

5–6 June. Very few errors were found, but this reconciliation step

corrected cases where people recorded data to the right instead of

the left of the central transect line (or vice versa) or misidentified

the species. This validation was important since these rare errors

could lead to patches with single detection encounter histories (see

below), artificially decreasing detection probabilities.

We defined ‘‘patches’’ of plants using the criterion that stems in

the same patch were separated by no more than 1.25 m. This

definition was used in past work [10,13,14,27] and was chosen

because the maximum length of rhizomes observed in this species

is 1 m (Marlin Bowles, personal observation). Patches are likely

genetic individuals, but we use ‘‘patch’’ to be conservative since

seeds falling from fruits could potentially germinate within the

mother plant [27]. Patches often consisted of stems separated from

each other by 5 to 30 cm; the largest patches had multiple stems

within a 1–2 m2 area. We did remove one area (30 m – 40 m,

transect 1) from analyses because milkweed stems were scattered

throughout, hindering clear patch designations. Hence our study

area was 2360, not 2400 m2.

Each patch was assigned as flowering (at least one flowering

stem) or nonflowering (no flowering stems) and patch size was

defined as the maximum number of stems per patch found by all

observers. We recognize that patches close to the transect edge

were not completely surveyed; thus, in some cases, patch size

reflects the size of the patch within our survey area and
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underestimates actual patch size. Patch distance was classified as

either near (#1 m from the measuring tape) or far (.1 m from the

measuring tape). If patches spanned the 1 m mark and were

flowering, we assigned ‘‘near’’ vs. ‘‘far’’ by the location of the

flowering stem, given our past experience that flowering increases

detection [10,14]. If a patch had only nonflowering stems, we

assigned ‘‘near’’ vs. ‘‘far’’ by averaging the x coordinate for all

stems per patch, with weighting based on the number of observers

detecting each stem. Observers were noted to have detected a

patch if he or she found at least one stem in the patch. We assigned

encounter histories for each patch; a history consisted of five digits,

where 0 = no detection and 1 = detection and each digit refers to

an observer. For example, a patch with an encounter history of

10011 was detected by observers A, D, and E.

Analyses
We created two encounter history data sets, one for each site

(there were too few patches per transect to do transect-specific

analyses). First, using the program CAPTURE [28], we estimated

the total number of patches (in the set of three transects at each

site) based on the encounter histories for each site. Typically

encounter histories describe detection or lack of detection of

individuals over multiple time periods, so our five ‘‘observers’’ are

analogous to five ‘‘time periods’’ in most mark-recapture

applications. CAPTURE can account for variability in probability

of detection: we focused on ‘‘temporal’’ variation (variation in

detection among the five observers; typical notation of Mt has been

replaced by Mobs in this paper) and ‘‘heterogeneity’’ (differences in

detection among patches). We did not consider CAPTURE

models with ‘‘behavioral’’ variation since this would imply that

detection varied depending on observer order; our methods were

designed for independence of observers (i.e. avoiding vegetation

trampling). We focused on four possible models: Mo (no variation

among observers, homogeneity of detection among patches), Mobs

(only observer variation), Mh (only heterogeneity in detection

among patches), and Mobs,h (observer variation, heterogeneity in

detection among patches). We ran separate models for the burned

site (flowering), burned site (nonflowering), and unburned site

(nonflowering) because past work revealed that the presence/

absence of flowering stems was important in patch detection

[10,14]. We did not run a unburned (flowering) model because

only 3 flowering patches were found at that site. To choose the

best model for each data set, we used model selection procedures

within CAPTURE [29].

Next, we used the Huggins model [30] within the software

package MARK [31] to focus on detected patches; this model uses

covariates to determine what variables are predictors of incom-

plete detection. We defined sites as groups and considered patch

state (flowering vs. nonflowering), patch size (number of stems),

and patch distance (near vs. far) as individual covariates. The

typical ‘‘temporal’’ effect in this model was, as in CAPTURE, a

measure of variation in detection among observers A–E. The

program assumes multiple sampling times and encounter histories

are interpreted in terms of initial and subsequent detection; this

was inconsistent with our study. We thus analyzed the data by

assuming that 100% of patches were initially detected (by adding a

‘‘1’’ at the start of all encounter histories); the five ‘‘resighting

probabilities’’ estimated by the program were therefore the initial

detection probabilities for observers A – E. With three covariates

and potential observer differences, it was not feasible to run all

possible models. Hence, one of us (AWR) explored subsets of all

possible models, with more model variants utilizing a particular

covariate if previous models that included that covariate had high

fit. We used Akaike’s information criterion (AICc) values to select

the most parsimonious models from the set of explored models.

Following [32], the best model had the lowest AICc score. Models

with similar scores (AICc ,2) were considered to have similar

support, and we used model weights for averaging estimated

parameters among these models. To average models, we ran each

model with specified values for each individual covariate. We then

used the parameter estimates for resighting probability and the

model weight to derive model-averaged estimates for each

parameter. This process was repeated for each value and

combination of individual covariates. We estimated abundance

by dividing count data by probabilities of detection [33];

specifically, we divided the number of patches seen for combina-

tions of site, observer, patch state, and patch size by model-

averaged probabilities of detection for these same combinations of

factors. To illustrate the impact of ignoring a source of variation in

detection, we compared estimated abundance using probabilities

of detection from a reduced model that ignored patch size.

For each site, we also determined group probabilities of

detection; i.e. p5 = the probability that a patch was detected by

at least one of the five observers, assuming independence of

observers. This value was calculated as:

1{ 1{pAð Þ 1{pBð Þ 1{pCð Þ 1{pDð Þ 1{pEð Þ½ � ð1Þ

where pA, pB, pC, pD, and pE refer to observer-specific detection

probabilities. We calculated a common variance using the delta

method [34]. Each observer-specific detection probability was the

average of the observer’s probability of detection for patches of

different types (i.e. patch state and size, see Fig. 1), with weighting

by the number of patches detected by all five observers at each site.

We also explored the effect of number and identity of observers on

detection. Specifically, we determined the probability that a patch

was detected by all possible combinations of groups of two, three,

or four observers (e.g., p2, p3, p4). Given that detection of

nonflowering patches is more challenging, we also calculated

{pA, pB, pC, pD, pE } and {p2, p3, p4, and p5} for only nonflowering

patches at each site.

Results

Overview
The five observers detected 51 (8 flowering, 43 nonflowering)

and 35 (3 flowering, 32 nonflowering) patches in the burned and

unburned sites, respectively (Table S1). For detected patches, the

proportion of flowering patches did not differ significantly between

sites (Fisher Exact Test, P = 0.51); we thus combined patches from

both sites to compare numbers of stems for flowering vs.

nonflowering patches. The median number of stems per patch

was higher for flowering patches (3, range 2–9) than for

nonflowering patches (2, range 1–12) (Kruskal-Wallis test,

H = 6.76, d.f. = 1, P = 0.01). After partitioning patches into one

versus two or more stems, we found 44% of nonflowering patches

had a single stem compared to 0% of flowering patches (Fisher

Exact Test, P = 0.006). All but one detected flowering patch were

seen by all observers; the percentage of detected nonflowering

patches seen by each observer was variable and depended on

patch size (Table S1).

Each observer was asked to spend 40 minutes per transect.

These instructions were largely followed in the burned site but

there was more variation in survey time at the unburned site

(Table S1). Although the observer spending the longest time had

highest detection probability at each site (see below), overall there

was no clear relationship between the proportion of detected

patches that an observer saw and the time spent surveying.

Detection and Plant Monitoring Programs
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Mark-recapture analyses
For the burned site, Mo and Mobs were the best fitting

CAPTURE models for the flowering and nonflowering patches,

respectively. Estimated population sizes were 8 for flowering

patches (SE = 0.0003) and 43 for nonflowering patches

(SE = 0.0109); these estimates exactly matched the number of

detected patches of each type. For the unburned site, Mh was the

best fitting model for the nonflowering patches, with an estimated

population size of 41 (SE = 5.34); the 95% confidence interval for

numbers of patches did not include the number of nonflowering

patches detected at this site (32).

Using the Huggins model, the best fitting model (model 1)

revealed that probability of detection was higher for flowering

patches relative to nonflowering patches, and detection increased

with increasing number of stems per patch. Observers also differed

in probability of detection (Table 1). Three other models also fit

the data well (models 2, 3, 4; Table 1). We thus used model

averaging to estimate probability of detection for combinations of

observers, patch state, and patch size for each site (Fig. 1; we did

not include patch distance since it was a factor only in the fourth

model). Model 2 was similar to model 1 but included an

interaction so that the overall detection probability of observers

depended on the site (compare Observer C and D at the two sites,

Fig. 1). In model 3, one or more observers differed in how the

presence or absence of flowering or number of stems affected their

detection (suggestion of nonparallel lines in Fig. 1, implying the

number of stems per patch affected detection by some observers

more than others). Finally, model 4 was similar to model 1 but

suggested that patch distance (near/far) affected detection.

Although near vs. far had no apparent effect for observers A-D,

observer E had slightly higher detection for ‘‘far’’ nonflowering

patches with 1 or 2 stems. When we incorporated model-averaged

detection probabilities due to site, state, observer, and patch size,

our estimated abundances were similar to the observed number of

detected patches (Table S1). When we ignored variation due to

patch size, our estimated abundances were lower than observed

numbers (Table S1).

If we considered observer-specific probabilities of detection for

the five observers, the probability of detection of a patch was very

high (p5.0.98), regardless of site and whether all patches or only

nonflowering patches were included (Fig. 2). If surveys had been

done with fewer observers, our analyses suggest overall detection

would decrease and be increasingly affected by the particular

combination of observers (Fig. 2).

Discussion

Plant monitoring challenges
We asked a deceptively simple question: how likely is it that all

individuals of a species of interest will be detected in a single

survey? This question is central for many conservation goals,

including monitoring of rare [10] and exotic species [12,35].

Typically, estimation of plant population size involves counting

individuals in small plots or diverse plot-less methods [36–38].

These methods can be very successful; detection issues are not a

concern for all species. However, if characteristics of the plant

species, site, or observers reduce detection, expensive and time-

intensive field work may lead to erroneous conclusions, even when

performed by skilled observers. Not only can total population sizes

be underestimated, but we may misinterpret population structure

(i.e. overestimate the abundance of larger or flowering individuals).

If the goal of the survey is to initiate a long-term demography

study, incomplete detection could lead to such work being done on

a nonrandom subset of the population. These issues are not new:

field biologists know they can miss plants and recent work

documents the extent of detection problems across species [11].

However it has been challenging for plant biologists to go from

general knowledge of the issue to incorporating detection in their

own work. Further, although we applaud the momentum behind

citizen science, involving more naı̈ve observers will likely increase

the need to consider detectability to ensure data quality [39].

Given that time, budgets, and human resources are inevitably in

short supply in monitoring, we limited our primary data collection

to a single day, but worked at two sites with five observers. Our

results gave us confidence that flowering patches will be found,

even by single observers. However, we were sobered by the low

probabilities of detection for nonflowering patches, the importance

of stem number in patch detection, and the differences in detection

among observers, especially since four of the five people had

extensive experience with this species. Observers A and B, for

example, had participated in surveys of A. meadii for over 10 years.

However, observers C and D detected more patches yet had less

experience (1–3 prior surveys). Individual E is an accomplished

ecologist but had never worked with the species. An observer’s

detection level also may depend on the degree to which he/she

tried to finish a transect within the 40 minute guideline. Further,

Figure 1. Probabilities of detection for observers A – E
calculated from a Huggins model. Probabilities were calculated
for flowering (filled symbols) and nonflowering (open symbols) patches
with 1 (triangle), 2 (circle), 3 (square) and .4 (diamond) stems per patch
for a) burned and b) unburned prairie sites. Symbols are offset so that
SE values can be examined. Lines connect values for the same patch
state and size for different observers.
doi:10.1371/journal.pone.0052762.g001

Detection and Plant Monitoring Programs

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e52762



we note that although the positive relationship between probabil-

ities of detection and number of observers was expected, it was

striking that three or more observers were needed to have

consistently high detection and probabilities greatly depended on

observer identity. Two points should be emphasized. First, no

observers were redundant: everyone saw some patches that were

not seen by others. Second, even though combinations of two

observers did not yield close to 100% detection, use of two

observers is greatly preferred over a single observer since it allows

estimation of probability of detection, and thus quantifies the

extent of the problem. Our work at two sites allowed us to begin

exploring the generality of our approach. Given little evidence of

site-specificity (similarity of Fig. 1a,b), our methodology may be

effective for monitoring across haymeadow sites, the most

common habitat for this plant.

There is no point in doing a ‘‘double observer’’ survey if the

second observer discovers plants by simply following the trampled

vegetation from the first observer. To ensure independent

discoveries of plants by multiple observers, we developed a

protocol using distance sampling methods [40] which have only

rarely been applied to plants [41]. A surveyor using this approach

typically walks along a defined line and records the estimated

distances to detected individuals (measuring perpendicular to the

line). In wildlife applications, the observed decline in number of

animals detected at increasing distances from the line is central to

estimation of population size. With A. meadii, we found no evidence

of reduced detection at increasing distance (i.e. ‘‘near’’ plants were

not more likely to be seen). The two meter survey area on either

side of a transect line is thus an appropriate distance for A. meadii

detection with our field conditions. Using the 4 m6100 m belt

transect approach also allowed our crew to move quickly across

the landscape. Covering relatively large areas was essential since A.

meadii is scattered across prairies and the units of interest are not

only single stems but also defined patches of stems (presumably

genotypes [27]).

Analyses of plant abundance and probabilities of
detection

Prior to intensive analysis of detection, one can simply examine

data from double observer surveys: if the plants found by the first

observer were inevitably found by a second observer, there is no

cause for concern. However, if detection issues are evident, mark-

recapture programs should be employed. We took a two-step

approach. First, we addressed whether our surveys likely detected

all visible patches. We estimated abundance taking into account

variation in detection among observers and patches (eliminating

variation due to patch state by subdividing the data set). For the

burned site, CAPTURE results suggest that the five-person group

found all patches. However, for the unburned site, the number of

estimated nonflowering patches was 28% higher than the number

detected. CAPTURE model Mh was selected for the unburned

site, indicating that patches differed in likelihood of being found.

This heterogeneity in detection may be due to the large variation

in patch size (equal numbers of detected patches with very small or

very large numbers of stems, Supplementary Table S1) as well as

likely variation in stem height. The net result was that even surveys

by five observers likely missed patches.

Our second step focused on the detected patches. At both sites,

variation in detection due to patch state (flowering/not flowering),

patch size (number of stems), and observer (individuals A – E) was

evident. All five observers in our survey had high detection of

flowering patches, but there was considerable variation in

detection of nonflowering patches (Fig. 1). The naı̈ve observer

(E) did not appear to be greatly handicapped by lack of experience.

This result is not generalizable (i.e. only one naı̈ve observer was

used); other studies with multiple observers have [42] or have not

[12] demonstrated effects of observer experience on detection.

Table 1. Comparison of Huggins models.

AICc Delta AICc wi k Dev State Size Dist Site Obs Interactions

M1 476.8 0.00 0.38 7 462.5 - - -

M2 478.3 1.54 0.18 12 453.7 - - Site*Obs

M3 478.5 1.71 0.16 11 455.9 - - - State*Obs, Size*Obs

M$ 478.7 1.90 0.15 8 462.4 - - - -

The four best fitting models are shown (M1–M4), with model 1 having the lowest AICc value and thus the best fit. Dev describes the fit of the model, k is the number of
parameters and wi refers to the weighting factor. A dash indicates whether a model included a term for differentiating probability of detection depending on patch
state (flowering vs. nonflowering), patch size (number of stems), patch distance (dist; near or far from observer), site (burned vs. unburned), and observer (obs;
individuals A–E). Interaction terms are noted.
doi:10.1371/journal.pone.0052762.t001

Figure 2. Probability of detection of patches depending on the
number of observers per group. Numbers of observers per group
range from 1 – 5; probabilities shown are p1, p2, p3, p4, and p5, defined as
the probability that at least one observer in a group of defined size will
detect patches; see text). For each group size, probabilities are
indicated for four categories (all vs. only nonflowering patches, burned
vs. unburned site). For group size 5, a single detection probability was
calculated for each category (see equation 1). For group sizes 2–4,
probabilities of detection are indicated for all combinations of the
number of observers (10 combinations for 2 and 3 observers, 5
combinations for 4 observers; see text). For group size 1, five values are
shown, corresponding to the observer-specific detection probabilities
for the five observers in the actual study. Bars are SE of a common
variance.
doi:10.1371/journal.pone.0052762.g002

Detection and Plant Monitoring Programs

PLOS ONE | www.plosone.org 5 December 2012 | Volume 7 | Issue 12 | e52762



Search time also could also affect detection. The 40-minute time

span per transect was chosen because it allowed surveyors to

search for plants at a slow but steady pace and complete all six

transects in a single day. Conservation monitoring in general is

time-limited: monitoring typically requires workers to visit many

remote sites, and thus time per site has defined bounds (see [42] for

related discussion on floristic surveys). Detection probabilities are

also, of course, dependent on season and habitat: we surveyed in

early summer to maximize detectability (i.e. A. meadii is flowering;

prairie grasses are relatively short).

A major strength of the Huggins mark-recapture model [30] is

that it incorporates covariates so causes of incomplete detection

can be explored. However patches that are not detected cannot be

assigned covariates. To deal with this problem, Huggins used

conditional likelihood theory; he conditioned the model on only

the patches that were detected. Therefore, the model assumes that

detected and undetected patches are the same in terms of their

state, size, and distance from the observer ([43], http://warnercnr.

colostate.edu/class_info/fw663/Mark.html). In the case of flow-

ering patches, CAPTURE analyses suggest that this assumption

was not a concern: we saw all reproductive individuals. For

nonflowering patches, we had complete detection at the burned

site but not at the unburned site. We suspect that single-stemmed

nonflowering patches have been missed at the unburned site,

potentially making the effect of patch size on detection even more

pronounced than evident in Figure 1. However, our CAPTURE

analysis was performed separately for the two sites whereas the

Huggins model was allowed to choose the best models regardless

of site. Detection probabilities in the burned site thus may be less

than one and perhaps overestimated by the CAPTURE analysis.

Conclusions

In our work on A. meadii, we had hoped that five observers

would prove unnecessary for monitoring. However, a five observer

team did improve our estimates of numbers and thus we retained

them in our monitoring. Our next goal is to use multiple years of

data to estimate vital rates (i.e., patch survival). Extremely high

survivorship seems necessary to explain the persistence of

haymeadow populations of A. meadii because complete removal

of fruiting stems with haying means seedling recruitment must be

close to zero. We want to compare patch survival rates at the

haymeadow sites to the 0.95 survival rate found at a periodically

burned site [10]. Asclepias meadii may respond to haying by more

extensive vegetative growth [24,44], thus spreading mortality risk

among multiple stems.

The strength of our study is its exploration of detection while

considering multiple observers, plants of different states/sizes, and

two sites (and avoiding vegetation trampling). Other recent studies

explore plant detection probabilities from other perspectives

[11,12,45,46]. Regardless of the specific approach, three classes

of questions are important to address as one embarks on a survey.

First, the observers themselves: do observers vary in ability?

experience? motivation? Second, the target plants: how does plant

species, size, or stage (seedling, nonflowering plant, flowering

plant) affect detection? Third, the habitat: does detection differ

among sites? depend on habitat structure, relative size of the target

plants versus background vegetation, or frequency of encounter of

the target plants (which may alter both observer detection and

motivation)? All three issues may change with weather or season.

Given the diversity of situations, we do not advocate a single

universal sampling protocol. Instead, we encourage botanists to

quantify diverse factors that may affect detection at the start of

studies, and to utilize this information in subsequent development

of monitoring programs. Given species differences in detectability,

this general issue is equally relevant for research questions at the

community level [11].

Supporting Information
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