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Abstract 

It is important to recognize that bifurcation boundaries do not necessarily separate stable from 

unstable solution domains.  Bifurcation boundaries can separate one kind of unstable dynamics 

domain from another kind of unstable dynamics domain, or one kind of stable dynamics domain 

from another kind, such as monotonic stability from damped periodic stability or from damped 

multiperiodic stability.  There are not only an infinite number of kinds of unstable dynamics, 

some very close to stability in appearance, but also an infinite number of kinds of stable 

dynamics.  Hence subjective prior views on whether the economy is or is not stable provide little 

guidance without mathematical analysis of model dynamics. 

The thesis analyzes, within its feasible parameter space, the dynamics of the Uzawa-Lucas 

endogenous growth model.  We examine the stability properties of both centralized and 

decentralized versions of the model and locate Hopf and transcritical bifurcation boundaries. In 

an extended analysis, we investigate the existence of Andronov-Hopf bifurcation, branch point 

bifurcation, limit point cycle bifurcation, and period doubling bifurcations. While these all are 

local bifurcations, the presence of global bifurcation is confirmed as well. We find evidence that 

the model could produce chaotic dynamics, but our analysis cannot confirm that conjecture. 

Further this thesis analyses the dynamics of a variant of Jones semi-endogenous growth model 

“Sources of US Economic growth in a World of Ideas” The American Economic Review, March 

2002, Vol 92 No. 1, pp 220-239. A detailed bifurcation analysis is done within the feasible 

parameter space of the models. We showed the existence of codimension-1 bifurcations (Hopf, 

Branch Point, Limit Point of Cycles, and Period Doubling). In addition some codimension-2 

(Bogdanov-Takens and Generalized Hopf) bifurcations are detected in the modified Jones model. 
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While the aforementioned are all local bifurcations, the Uzawa-Lucas model also shows the 

presence of global bifurcation. 
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Chapter 1. Introduction 

The Uzawa-Lucas (Uzawa (1965) and Lucas (1988)) model is among the most important 

endogenous growth models. It has two sectors producing human capital and physical capital, 

respectively. Individuals spend certain amount of their time in producing goods and devote the 

remainder in training themselves. They have the same level of work qualification and expertise 

(H).  

The social planner solution for the Uzawa-Lucas model is saddle path stable, however, the 

representative agent’s equilibrium exhibits indeterminacy, as shown by Benhabib and Perli 

(1994). The presence of externalities in human capital results in the market solution being 

different from the social planner solution. The externality leads to differences between return on 

capital, as perceived by the representative agent, and return on capital from a social point of 

view. 

We solve for the steady states and provide a detailed bifurcation analysis of the model. The task 

of this thesis is to examine whether the dynamics of the model change within the feasible 

parameter space of the model. A system undergoes a bifurcation, if a small, smooth change in a 

parameter produces a sudden qualitative or topological change in the nature of singular points 

and trajectories of the system. The presence of bifurcation damages the inference robustness of 

the dynamics, when inferences are based on point estimates of the model. Hence, knowing the 

stability boundaries within the feasible region of the parameter space, especially near the point 

estimates, can lead to more robust inferences and more reliable policy conclusions.  



2 

 

Using Mathematica, we locate transcritical and Hopf bifurcation boundaries in two-dimension 

and three-dimension diagrams. The numerical continuation package, Matcont, is used to analyze 

further the stability properties of the limit cycles generated by Hopf bifurcations and the presence 

of other kinds of bifurcations. We show the existence of Hopf, branch-point, limit-point-of-

cycles, and period-doubling bifurcations within the feasible parameters set of the model’s 

parameter space. While these are all local bifurcations, presence of global bifurcation is also 

confirmed. There is some evidence of the possibility of chaotic dynamics through the detected 

series of period-doubling bifurcations. Some of these results have not previously been 

demonstrated in the literature on endogenous growth models. 

In Uzawa- Lucas model, it is the human capital formation itself that, by non-decreasing marginal 

returns, creates endogenous growth. On the other hand, Romer(1990) proposed the idea of 

growth being driven by technological change that results from research and development of 

profit maximizing agents and led the foundation for endogenous growth models. These models 

suggest that the long-run growth rate of per capita income should be rising with the increases in 

R&D intensity or time spent accumulating skills.  

Knowledge can be used by many people simultaneously without any loss. This indicates the 

presence of increasing returns to scale in production associated with any new idea which in turn 

depends on population (number of researchers). This is the “strong” scale effect of the first 

generation idea based growth models (Romer(1990) and Grossman and Helpman(1991)) where 

the growth rate of the economy is an increasing function of scale (population).  Contrary to these 

results, the US data shows that the economy is fluctuating around its balanced growth path 

although educational attainment and research intensity has been steadily rising. Jones(2002) 
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model tries to explain these facts using a model that exhibits “weak” scale effects. Jones found 

that long-run growth arises from the worldwide discovery of ideas, which depends on rate of 

population growth of the countries contributing to world research rather than the population. 

Such models are often called semi-endogenous growth models. 

We incorporate a human capital accumulation in Jones model where technological progress (the 

invention of new varieties of intermediate goods) can positively, negatively or not influence at 

all the investment in skill acquisition. Compared to Bucci (2008), we introduce the possibility of 

decreasing returns to scale associated with human capital itself and time spent accumulating it in 

the human capital production equation. Along the balanced growth path of this modified Jones 

model, the long run growth can be even positive with no population growth. Hence reinforcing 

Bucci’s (2008) result that economic growth is no longer semi-endogenous and is ultimately 

driven by private incentives to invest in human capital.  

We showed the existence of codimension-1 bifurcations (Andronov-Hopf, Branch Point, Limit 

Point of Cycles, and Period Doubling). In addition some codimension-2 (Bogdanov-Takens and 

Generalized Hopf) bifurcations are detected in the modified Jones model.  

 Stability analysis is critical in understanding the dynamics of the model. Benhabib and Perli 

(1994) analyzed the stability property of the long-run equilibrium in the Lucas (1988) model. 

Arnold (2000a,b) analyzed the stability of equilibrium in the Romer (1990) model. Arnold 

(2006) has done the same for the Jones (1995) model. Mondal (2008) examined the dynamics of 

the Grossman-Helpman (1991b) model of endogenous product cycles. The results derived in 

these papers provide important insights to researchers considering different policies. But a 
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detailed bifurcation analysis has not been provided so far for many of these popular endogenous 

growth models. The current dissertation thesis aims to fill this gap.  

 As pointed out by Banerjee et al (2011): “Just as it is important to know for what parameter 

values a system is stable or unstable, it is equally important to know the nature of stability (e.g. 

monotonic convergence, damped single periodic convergence, or damped multi-periodic 

convergence) or instability (periodic, multi-periodic, or chaotic).”  Barnett and his coauthors 

have made significant contribution in this area. Barnett and He (1999, 2001, 2002) examined the 

dynamics of the Bergstrom-Wymer continuous-time dynamic macroeconometric model of the 

UK economy. Both transcritical bifurcation boundaries and the Hopf bifurcation boundaries for 

the model were found. Barnett and He (2008) have found singularity bifurcation boundaries 

within the parameter space for Leeper and Sims (1994) model. Barnett and Duzhak (2010) found 

Hopf and period doubling bifurcations in a New Keynesian  model. More recently, Banerjee et al 

(2011) examined the possibility of cyclical behavior in the Marshallian Macroeconomic Model. 

Chapter 2 and 3 discuss the advantages of continuous time models and use of non-linear 

dynamics in economics, respectively. Chapter 4 provides survey of work done in bifurcation and 

chaos in economics. Chapter 5 describes the Uzawa-Lucas model and the derivations of the 

dynamic equations for the centralized and the decentralized economy. In Chapter 6 we discuss 

the possibility of the existence of various bifurcations in the model. Chapter 7 describes the 

modified Jones model and its balanced growth path with Chapter 8 presenting the bifurcation 

analysis for the model. Finally, Chapter 9 concludes the thesis. 
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Chapter 2. Advantages of Continuous Time Models 

This section provides a very brief overview of the advantages of continuous time models used in 

macroeconomics (Bergstrom, 1996). The first advantage is that a continuous time model can 

account better the interaction between the variables during the unit observation period. Most 

macroeconomic variables are measured at discrete intervals like quarterly or annually. But in 

reality the variables adjust at much shorter random intervals due to economic agents making 

uncoordinated decisions at different points of time. This fact is completely ignored in discrete 

time models. Furthermore, economic theory provides information on the particular interactions 

of these variables.  If the sample size is small it is important that one uses all this information for 

the purpose of estimation. This again can be accomplished using continuous time models.   

The second advantage is the ability of continuous time models to represent a causal system.  In a 

causal system variables responds directly to stimulus provided by a proper subset only of the 

other variables of the model even though all variables interact during the unit observation period. 

Causal chain  models are  able  to  take  account  of the  a priori  information  regarding  the 

causal orderings of variables.  For example, consider the case of aggregate consumer  

expenditure on a particular day.  In this case variables known to the consumer (such as the 

personal income, personal assets and prices for that particular day) will affect expenditure. 

Variables such as exports, imports or investments for that day will not affect expenditure. The 

use of this information can reduce variance of parameter estimates greatly but to do this  

efficiently, one would need to use continuous  time models. 

The third advantage of a continuous time models is that they allow for more accurate 

representation of the partial adjustment processes in dynamic disequilibrium model. A typical 
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equation in a dynamic disequilibrium model have two parts. The first part can be derived from 

microeconomic equilibrium theory which relates the partial equilibrium level of the causally 

dependent variable to a proper subset of other variables in the model. The second part is a 

differential equation of first or higher order, representing the adjustment of the causally 

dependent variable in response to the deviation of its current level from its partial equilibrium 

level.  

The fourth advantage is that a continuous time model provides the basis for a more accurate 

estimation of the distributed lags with which each variable depends on the variables on which it 

is directly causally dependent. 

The standard estimation procedures for discrete time models treat stock and flow variables in the  

same manner thus leading to bias due to specification error.  The stock variables (e.g. money 

supply or stock of capital) are measured in points of time whereas the flow variables (e.g. output 

and consumption) are measured as integrals. Hence the fifth advantage is that the procedures for 

estimating continuous time models can distinguish between stock and flow variables.  

The sixth advantage is that the form of a continuous time model does not depend on the unit 

observation period. Discrete time models are not flexible enough since the form of any particular 

discrete time model will depend on the unit observation period.  This is a serious drawback due 

to many different types of data available.  However,  continuous  time  models are  not  affected  

by this drawback  as they  do not depend on the observation  period.  This is an advantage for 

econometricians who generally work on available data rather than choose the observation period.  

Moreover even if variables are observable at discrete intervals of time, continuous time models 

can be used to generate continuous time paths for such variables. 
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A seventh advantage is that a continuous time model can be used to generate forecasts of the 

continuous time paths of the variables. Such forecasts are of considerable value even though the 

variables are actually observable only at discrete intervals of time. For example, forecast of the 

continuous time path of the gross domestic product could be used by businessmen for sales 

forecasting or by the government for policy formulation. 
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Chapter 3. Non-linear Dynamics in Economics 

Most economic phenomena are non-linear which are represented in continuous time by systems 

of non-linear differential equations.  For these non-linear differential equations it is extremely 

difficult or in many cases impossible to find a solution even though the existence and uniqueness 

theorem for a solution is satisfied. The analytical study of differential equations follows two 

main approaches: the qualitative and the quantitative (Gandalfo 2008). Under the qualitative (or 

topological) approach the properties of the solutions of a differential equation (system) studied 

without actually knowing the solution itself by examining phase diagrams, Liapunov’s second 

method, etcetera. The quantitative approach however, requires to find the explicit analytical 

solution of the differential equation or to approximate it by using power series and other 

methods. The  qualitative approach  is hence very important  in economic  dynamics  since in 

many cases we  do not  know the  exact form of the  functions  involved in the  model.  Having 

emphasized this my thesis focuses on bifurcation and chaos theory as they are an integral part of 

non-linear qualitative dynamics 

Grandmont (1985) found that the parameter space of even the most simple classical models can 

have stable solutions or more complex solution like cycle or chaos. This is because the parameter 

space are stratified into different bifurcation regions. Due to the presence of bifurcation the 

dynamics of the model change within the feasible parameter space of the model. A system 

undergoes a bifurcation, if a small, smooth change in a parameter produces a sudden qualitative 

or topological change in the nature of singular points and trajectories of the system.  The 

presence of bifurcation damages the inference robustness of the dynamics, when inferences are 

based on point estimates of the model. Hence, knowing the stability boundaries within the 

feasible region of the parameter space, especially near the point estimates, can lead to more 
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robust dynamical inferences and more reliable policy conclusions. Hence it is important that the 

modeler is aware of the existence of such boundaries inside the confidence intervals of 

parameters point estimates. 

Local bifurcations can be analyzed entirely through the local stability properties of equilibria or 

periodic orbits or other invariant sets of a system when parameters cross a critical value. The 

mathematical technique for examining local bifurcations involves linearizing a non-linear  

system around its equilibrium or steady state. In doing so we make an implicit assumption that 

the qualitative feature of the linearized system represents the qualitative feature of the original 

system in a very small neighbourhood of the equilibrium. That is we calculate and evaluate the 

Jacobian matrix of the original system at the equilibrium  and then  study  the eigenvalues of the 

Jacobian. It is important to recognize that bifurcation boundaries do not necessarily separate 

stable from unstable solution domains.  Bifurcation boundaries can separate one kind of unstable 

dynamics domain from another kind of unstable dynamics domain, or one kind of stable 

dynamics domain from another kind, such as monotonic stability from damped periodic stability 

or from damped multiperiodic stability.  There are not only an infinite number of kinds of 

unstable dynamics, some very close to stability in appearance, but also an infinite number of 

kinds of stable dynamics.  Hence subjective prior views on whether the economy is or is not 

stable provide little guidance without mathematical analysis of model dynamics.  

Global bifurcations often occur when larger invariant sets of the system 'collide' with each other, 

or with equilibria of the system. This causes changes in the topology of the trajectories in the 

phase space which cannot be confined to a small neighbourhood, as is the case with local 

bifurcations. The changes in topology extend out to an arbitrarily large distance (hence 'global').  
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Chaos occurs when the dynamical systems are aperiodic and exhibit sensitive dependence on 

initial conditions. Sensitive dependence on initial conditions means that for a very small change 

in the initial state will have progressively larger changes in later system states. As initial states 

are not known exactly in real-world systems, the time evolution of the dynamical system appears 

random. 
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Chapter 4: Bifurcation and Stability Analysis in Economics 

This section provides a brief survey of the literature in bifurcation and stability analysis done for 

various economic models. Benhabib and Perli (1994) analyzed the stability property of the long-

run equilibrium in the Lucas (1988) model. Arnold (2000a,b) analyzed the stability of 

equilibrium in the Romer (1990) model. Arnold demonstrated that the steady-state solution of the 

optimal growth problem in Romer’s (1990) model is globally saddle-point stable. He showed 

that a unique and monotonic growth path converges to the steady state. Furthermore, there is no 

indeterminacy in the system as already shown by Benhabib, Perli and Xie. Hence instability and 

cyclical behavior are ruled out as the equilibrium growth path is well behaved. Arnold showed 

that the optimal growth path can be attained as a market equilibrium through a (unique) 

combination of production and R&D subsidies. Arnold (2006) has done the steady state analysis 

for the Jones (1995) model.  He provided an analytical treatment of the model’s transitional 

dynamics. He showed that with constant returns to labor in R&D, a unique trajectory converging 

to balance growth path exists. The equilibrium growth path can be monotonic or oscillatory.  

Mondal (2008) provided the local stability analysis of the Grossman-Helpman (1991b) model of 

endogenous product cycles.  He showed that there exists a unique saddle path converging to the 

steady state growth equilibrium in two versions of the model. 

The results derived in these papers provide important insights to researchers considering 

different policies. But a detailed bifurcation analysis has not been provided so far for many of 

these popular endogenous and semi-endogenous growth models. My work aims to fill this gap 

for the two endogenous growth models, the Uzawa-Lucas model and a modified version of Jones 

model.  
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As pointed out by Banerjee et al (2011): “Just as it is important to know for what parameter 

values a system is stable or unstable, it is equally important to know the nature of stability (e.g. 

monotonic convergence, damped single periodic convergence, or damped multi-periodic 

convergence) or instability (periodic, multi-periodic, or chaotic).”  Barnett and his coauthors 

have made significant contribution in this area. Barnett and Chen (1988) and Barnett, Gallant, 

Hinich, Jungeilges, Kaplan and Jensen (1997) have tested for chaos and for other forms of non-

linearity in univariate time series.  Barnett and He (1999, 2001, 2002) examined the dynamics of 

the Bergstrom-Wymer continuous-time dynamic macroeconometric model of the UK economy 

to answer if stabilization policy would indeed result in stability. Both transcritical bifurcation 

boundaries and the Hopf bifurcation boundaries for the model were found. They have 

numerically constructed bifurcation boundaries that intersect with the statistical confidence 

regions for the model. The model shows that the policy conclusions drawn from the model could 

even be wrong if bifurcation boundaries are not accounted for. Barnett and He (2008) have found 

singularity bifurcation boundaries within the parameter space for Leeper and Sims (1994) model. 

Barnett and Duzhak (2010) found Hopf and period doubling bifurcations in a New Keynesian 

model. More recently, Banerjee et al (2011) examined the possibility of cyclical behavior in the 

Marshallian Macroeconomic Model. 

Onozakia, Sieg and Yokood (2003) provide an example in which a slight behavioral 

heterogeneity can fundamentally change the dynamical properties of the model. It is a nonlinear 

cobweb market model with a quadratic cost function and an isoelastic demand function and two 

types of producers, cautious adapters and naïve optimizers. They showed that in a market of 

naive optimizers a single cautious adapter stabilizes the otherwise exploding market. In a market 

of cautious adapters a single naive optimizer may destabilize the market and there may appear 
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many (possibly infinite) coexisting periodic attractors. Hornmesa, Nusse and  Simonovits (1995),  

deals with the dynamics of a continuous piecewise linear model of a socialist economy. The 

model has Hicksian-type nonlinearities which means that it is a linear model with ceilings and 

floors. In addition to stable cycles the model demonstrates possibility of chaotic and quasi-

periodic behavior. Border-crossing bifurcations exists inside the confidence region of the 

parameters point estimates. 

Hommes, Huang, Wang (2005) investigate the dynamics in an adaptive evolutionary asset 

pricing model with fundamentalists, trend followers and a market maker. Agents can choose 

between a fundamentalist strategy or choose a trend following strategy. Agents asynchronously 

update their strategy according to realized net profits in the recent past. They showed that when 

agents become more sensitive to differences in strategy performance, the steady state becomes 

unstable and multiple steady states may arise. As the traders’ sensitivity to differences in fitness 

increases, a bifurcation route to chaos sets in due to homoclinic bifurcations of stable and 

unstable manifolds of the fundamental steady state. 

Deissenberg and Nyssen (1998) study global dynamics of a discrete-time model of endogenous 

growth with a market for the resource used for innovation-creating investment. They show that 

the level of investment may fluctuate chaotically for a compact range of model parameters, as a 

consequence of the explicit intermediation and market imperfections created by the temporary 

monopoly power that the firm achieves following an innovation. 

Chiarella C. and Flaschel P. (1998) investigate an open monetary growth model with sluggish 

prices and quantities. The model combines the dynamics of Rose's employment cycle and 

Metzler's inventory cycle with internal nominal dynamics of Tobin and external nominal 
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dynamics of Dornbusch type. These intrinsically nonlinear system demonstrate asymptotically 

stable dynamics for low adjustment speeds of prices and expectations. But Hopf-bifurcations 

emerges as adjustment parameters are increased and we may have explosive behavior with a 

further change in adjustment parameter. Nishimura and Yano (1995) demonstrated the possibility 

of ergodically chaotic optimal accumulation in the case in which future utilities are discounted 

arbitrarily weakly. In a two-sector model with Leontief production functions with a condition 

such that the optimal transition function is unimodal and expansive, they showed that the set of 

parameter values satisfying that condition is nonempty no matter how weakly the future utilities 

are discounted. Nishimura and Mitra (2001) paper studies the relationship between the discount 

rate and the nature of long-run behavior in dynamic optimization models under two conditions. 

The first is history independence, which rules out multiple limit sets. The second is a condition 

that avoids the reversion to a stable steady state, as the discount factor is lowered, once cycles 

have emerged. 

Mitra (2000) provides a sufficient condition for topological chaos for unimodal maps which can 

be satisfied when the well-known Li-Yorke condition is not satisfied. He shows how this result 

can be applied to a model of endogenous growth with externalities to establish the existence of 

chaotic equilibrium growth paths in that framework. Mitra,(1996) explores the precise extent of 

discounting needed to generate period-three cycles in a standard aggregative dynamic 

optimization framework. He showed that there is a ``universal constant'', M, such that (i) if an 

optimal program of any dynamic optimization model exhibits a period-three cycle, then the 

discount factor is less than M and (ii) if the discount factor is smaller than M, then it is possible 

to construct a transition possibility set and a utility function such that the resulting dynamic 

optimization model exhibits a period-three cycle. 
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Benhabib and Nishimura (1979) study a multisector optimal growth model and use bifurcation 

analysis to show that the optimal growth path (steady state) becomes a closed orbit for some 

values of the discount rate within the theoretical feasible region. Nishimura and Takahashi 

(1992) consider a multisector neoclassical optimal growth model and show that for a given 

discount factor, Hopf bifurcations can happen based on the factor intensity within each sector.  

Mathematical Definitions of Bifurcations 

Some of the important mathematical concept used in my dissertation are presented in this section 

(Kuznetsov, 1998 and Matcont , 2006) 

Hyperbolic Equilibrium in Continuous Time 

Consider a continuous  time dynamical  system  defined by 

˙    ̇                

where f is smooth.   Let        be an  equilibrium  of the  system  and  let  A denote  the 

Jacobian matrix 
  

  
, evaluated at   . Let  ,  ,   , be the number of eigen values of 

A (counting multiplicities) with negative, zero and positive real parts  respectively. 

Definition 4.1 An equilibrium is called hyperbolic if     , that is if there are no 

eigen- values on the imaginary  axis. 

Consider two dynamical systems: 

                    ̇                        

                    ̇                         
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with smooth  right hand  sides and the same number  of variables  and parameters 

Definition 4.2 Dynamical systems  (4.1)  is topologically equivalent  to dynamical  system 

(4.2)  if 

a.  there exists a homeomorphism  of the parameter space  

                 

b.  there is a parameter-dependent homeomorphism of the phase space 

                  

hα (x),  mapping  orbits  of the system (4.2)  at parameter values β = p(α),  preserving the 

direction  of time. 

Definition 4.3 The appearance of a topologically  non-equivalent   phase  portrait under 

variation of parameters is called a bifurcation. 

Sufficiently small perturbations of parameters do not lead to changes in structural stability 

of a hyperbolic equilibrium.   Thus bifurcation of equilibrium takes place at only non-

hyperbolic points. 

Consider a continuous time dynamical system that depends on parameters represented 

As 

               ̇                        

where x represents  phase variables  and α represents  parameters respectively. 

Definition 4.4 The codimension of a bifurcation  in system (4.3)  is the difference 
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between the  dimension  of the parameter space and the dimension  of the corresponding  

bifurcation  boundary. 

A more practical definition of codimension as in Kuznetsov  [1998] is the number  of inde- 

pendent conditions  determining  the bifurcation boundary. 

Consider a continuous time system depending  on a parameter α 

                      ̇                        

where f is smooth  with respect  to both  x and α. 

Definition 4.5 The bifurcation associated with the appearance of      is called a 

saddle- node or fold bifurcation. 

Here      is a simple real eigenvalue of the system. 

Definition 4.6 The bifurcation corresponding to the presence of                   

is called a Hopf(or Andronov-Hopf ) bifurcation. 

Here      are the  complex  conjugate  eigenvalues  of the  continuous  time  dynamical 

system. 

Note that unlike for the three codimension one bifurcations, namely fold, transcritical 

and pitchfork,  Hopf bifurcation requires  at least a 2X2 system. 

Now I will outline the mathematical concepts used by Matcont for detecting bifurcations. 

Some Mathematical definition 

Consider a differential equation 
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We are interested in an equilibrium curve, i.e.          . The defining function is 

therefore: 

               

with                    . Denote by         the tangent vector to the equilibrium curve 

at x. 

Bifurcations 

In continuous-time systems there are two generic codimension 1 bifurcations that can be 

detected along the equilibrium curve  

• fold, also known as limit point ( LP)  

• Hopf-point, denoted by H 

The equilibrium curve can also have branch points. These are denoted with BP. To detect 

these singularities, we first define 3 test functions: 

           (
  
  

) 

        

(

 
 
[
              

  
 

  

 
]  (

  
 
 

)

)
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where ⊙ is the bialternate matrix product and       are 
      

 
 vectors chosen so that the 

square matrix in (4.5) is non-singular. Using these test functions we can define the 

singularities: 

• BP:       

• H:       

• LP:            

A saddle-node bifurcation is a collision and disappearance of two equilibria in dynamical 

systems. In systems generated by autonomous ODEs, this occurs when the critical equilibrium 

has one zero eigenvalue. This phenomenon is also called fold or limit point bifurcation. 

Andronov-Hopf bifurcation is the birth of a limit cycle from an equilibrium in dynamical 

systems generated by ODEs, when the equilibrium changes stability via a pair of purely 

imaginary eigenvalues. The bifurcation can be supercritical or subcritical, resulting in stable 

or unstable (within an invariant two-dimensional manifold) limit cycle, respectively. 

Continuation of limit cycles 

Consider the following differential equation 

  

  
                      

A periodic solution with period T satisfies the following system 

{
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For simplicity the period T is treated as a parameter resulting in the system 

{

  

  
             

         
            

If u(τ ) is its solution then the shifted solution u(τ +s) is also a solution to (   ) for any value 

of s. To select one solution, a phase condition is added to the system. The complete BVP 

(boundary value problem) is 

{
 
 

 
 

  

  
             

           

∫ ⟨      ̇      ⟩
 

 

    

             

where  ̇    is the derivative of a previous solution. A limit cycle is a closed phase orbit 

corresponding to this periodic solution.  

Bifurcations 

On a limit cycle curve the following bifurcations can occur 

• Branch Point of Cycles, this will be denoted as BPC 

• Period Doubling, denoted as PD 

• Fold, also known as Limit Point of Cycles, this will be denoted as LPC 

• Neimark-Sacker, this will be denoted as NS 

Continuation of limit cycles from the Hopf point, can give rise to limit point (Fold/ Saddle 

Node) bifurcation of cycles. From the family of limit cycles bifurcating from the Hopf point, 

limit point cycle (LPC) is a fold bifurcation, where two limit cycles with different periods are 
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present near the LPC point. Continuing computation from a Hopf point may also give rise to 

period doubling (flip) bifurcations.  Period doubling bifurcation is defined as a situation in 

which a new limit cycle emerges from an existing limit cycle, and the period of the new limit 

cycle is twice that of the old one.  

The test function for the Period Doubling bifurcation is defined by the following system 

{
 
 

 
  ̇                                 

           

∫ ⟨         ⟩
 

 

    

 

here ϕ and   are so-called bordering vector-functions [Kuznetsov, 1998]. The system is 

discretized using orthogonal collocation and solved using the standard matlab sparse system 

solver. The solution component G   R of this system is the test function and equals zero when 

there is a Period Doubling bifurcation. 

The Fold bifurcation is detected in the same way as the Fold bifurcation of equilibria, the last 

component of the tangent vector (the   component) is used as the test function. The Neimark-

Sacker bifurcation is detected by monitoring the eigenvalues of the monodromy matrix for the 

cycle. The monodromy matrix is computed by a block elimination in the discretized form of 

the Jacobian of (4.7). 

BPC cycles are not generic in families of limit cycles, but they are common in the case of 

symmetries, if the branch parameter is also the continuation parameter. CL MatCont uses a 

strategy that requires only the solution of linear systems; it is based on the fact that in a 

symmetry-breaking BPC cycle    has rank defect two, where    is the square matrix   , 
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obtained from the discretized form of the Jacobian of (4.7). To be precise, if 

     [   ]    then 

   [
 ̇                 

         
] 

And 

       
 [

  ̇                    

         
] 

where ()   and ()   denote discretization in mesh points and in collocation points, 

respectively. 

Therefore we border    with two additional rows and columns to obtain 

     (

      

  
   

  
   

) 

so that      is nonsingular in the BPC cycle. Then we solve the systems 

    ( 

      

            

            

)  ( 
                    

  
  

) 

where    ,     have (Nm + 1)n components, and                                 are 

scalar test functions for the BPC. In the BPC cycle they all vanish. 

The singularity matrix is 

  (

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

) 
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The first row corresponds to the BPC. It contains 4 zeros which indicates that 

                               should vanish. The last row corresponds to the NS. 

Because we have to exclude that all four testfunctions of the BPC are zeros, we introduce an 

extra testfunction which corresponds to the norm of these four testfunctions. A NS is detected 

if this norm is nonzero,the test function for the fold is nonzero and the testfunction for the NS 

is equal to zero. 

Hopf Continuation to detect Codimension-2 Bifurcations 

In the MatCont / CL MatCont toolbox Hopf curves are computed by minimally extended 

defining systems, The Hopf curve is defined by the following system 

{

         

     
         

     
         

 

with the unknowns                       {1, 2} and where   (
      

      
) is obtained by 

solving  

(
  

         

    
  

) [
 
 
]  [

    

  
]           

Where     has eigenvalues ±      > 0, k =    and                  are chosen such that 

the matrix in (4.4) is nonsingular.                           are auxiliary variables that can be 

adapted 

Bifurcations 

In continuous-time systems there are four generic codimension 2 bifurcations that can be 
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detected along the Hopf curve: 

• Bogdanov - Takens. We will denote this bifurcation by BT 

• Zero - Hopf point, denoted by ZH 

• Double - Hopf point, denoted by HH 

• Generalized Hopf point, denoted by GH 

The Bogdanov-Takens  bifurcation is a bifurcation of an equilibrium point in a two-parameter 

family of autonomous ODEs at which the critical equilibrium has a zero eigenvalue of 

(algebraic) mulitplicity two. For nearby parameter values, the system has two equilibria (a 

saddle and a nonsaddle) which collide and disappear via a saddle-node bifurcation. The 

nonsaddle equilibrium undergoes an Andronov-Hopf bifurcation generating a limit cycle. This 

cycle degenerates into an orbit homoclinic to the saddle and disappears via a saddle 

homoclinic bifurcation.   

The Generalized Hopf (Bautin) bifurcation is a bifurcation of an equilibrium at which the 

critical equilibrium has a pair of purely imaginary eigenvalues and the first Lyapunov 

coefficient for the Andronov-Hopf bifucation vanishes. The bifurcation point separates 

branches of sub- and supercritical Andronov-Hopf bifurcations in the parameter plain. For 

nearby parameter values, the system has two limit cycles which collide and disappear via a 

saddle-node bifurcation of periodic orbits.  

The Zero -Hopf bifurcation is a bifurcation of an equilibrium point in a two-parameter family 

of autonomous ODEs at which the critical equilibrium has a zero eigenvalue and a pair of 

purely imaginary eigenvalues 
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To detect these singularities, we first define 4 test functions: 

     

           

   

(

 
 
[
              

  
 

  

 
]  (

  
 
 

)

)

 
 

   

 

                                  

where      are carefully constructed and updated 
      

 
   matrices. 

In this case the singularity matrix is: 

  (

  
  

  
  

  
  

  
  

) 
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Chapter 5. The Uzawa Lucas Model 

The production function in the physical sector is defined as follows: 

               
 
                    , 

where Y is output, A is constant technology level, K is physical capital,   is the share of physical 

capital, L is labor, and h is human capital per person . In addition,   and       are the fraction of 

labor time devoted to produce output and human capital, respectively, where      .     is 

the quantity of labor in efficiency units employed to produce output.   
 
 measures the externality 

associated with average human capital of the labor force,   , where   is the positive externality 

parameter in the production of human capital.  In per capita terms,               
 
. 

The physical capital accumulation equation is  ̇               
 
     . In per capita 

terms,  ̇              
 
         , and the human capital accumulation equation is 

 ̇         ,  where   is defined as schooling productivity. 

The decision problem is  

   
     

∫         
 

 

 [         ]                                             

subject to   

  ̇              
 
                    

and 

 

 

̇
       , 
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where           is the subjective discount rate, and        is the inverse of the 

intertemporal elasticity of substitution in consumption.  

5.1. Social Planner Problem 

 

The social planner takes into account the externality associated with human capital when solving 

the maximization problem (1) subject to physical capital accumulation equation and the human 

capital accumulation equation. From the first order conditions (see Appendix 1), we derive the 

equations describing the economy of the Uzawa-Lucas model from a social planner’s perspective 
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̇
        

 

 

̇
 

                      

 
 

 

 

̇
  

       

     
   

       

 
 

 

 
 

     

 
      

 

 

̇
   

      
 

 
                      

 

 
  Taking logarithms of m and g and differentiating with 

respect to time, the following 2 equations define the dynamics of Uzawa Lucas model 

               
 

 

̇
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̇
 (

 

 
  )  

 

 
  (

 

 
  )      

The steady state         is given by  ̇   ̇    and derived to be 

     
       

 
 

     

 
 

   
   

 
 

     

 
       

       

      

     

 
 

A unique steady state exists, if    

  
       

 
               . 

 as   is the necessary and sufficient for the transversality condition to hold for the consumer’s 

utility maximization problem.  Following the footsteps of Barro and Sala-i-Martín (2003) and 

Mattana (2004), it can be shown that social planner solution is saddle path stable. We linearize 

around the steady state,           , to analyze the local stability properties of the system (I) 

and (II).  The result is 

[
 ̇
 ̇
]  

[
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  ̇

  
|
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where 

    [
         

(
 

 
  )    ] 
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As                                                 hence saddle path stable.  

5.2. Representative Agent Problem 

 

From the first order conditions (see Appendix 2) and setting     , we derive the equations 

describing the economy of the Uzawa-Lucas model from a decentralized economy’s perspective. 
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.  Taking logarithms of m and g and differentiating with respect to time, 

the following 3 equations define the dynamics of Uzawa Lucas model 
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The steady state            is given by  ̇   ̇   ̇    and derived to be 
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Note that   
            

 [          ]
                          . 

A unique steady state exists if    

  
       

 
                

      

 as   is the necessary and sufficient for the transversality condition to hold for the consumer’s 

utility maximization problem and        is necessary for        . We linearize the 

system (i), (ii) and (iii) around the steady state,              , to acquire 
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The characteristic equation associated with     is       
          , where 

    
[          ]

 
      , 

          

 
             , 
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Chapter 6. Bifurcation Analysis of Uzawa-Lucas Model 

In this chapter, we examine the existence of codimension 1 and 2, transcritical, and Hopf 

bifurcations in the system (i), (ii), and (iii). The codimension, as defined by Kuznetsov (2004), is 

the number of independent conditions determining the bifurcation boundary. Varying a single 

parameter help to identify codimension-1 bifurcation, and varying 2 parameters helps to identify 

codimension-2 bifurcation. 

An equilibrium point, s , of the system is called hyperbolic, if the coefficient matrix,   , has no 

eigenvalues with zero real parts. For small perturbations of parameters, there are no structural 

changes in the stability of a hyperbolic equilibrium, provided that the perturbations are 

sufficiently small. Therefore, bifurcations occur at nonhyperbolic equilibria only.  

A transcritical bifurcation occurs, when a system has a nonhyperbolic equilibrium at the 

bifurcation point with a geometrically simple zero eigenvalue, and also additional transversality 

conditions must be satisfied, as given by Sotomayor’s Theorem [Barnett and He (1999)]. So the 

first condition we are going to use to find the bifurcation boundary is     det(      .  The 

result is the following. 

Theorem 6.1:     has a zero eigen value, if 

 
[          ]

 
                                

Hopf bifurcations occur at points at which the system has a nonhyperbolic equilibrium with a 

pair of purely imaginary eigenvalues, but without zero eigenvalues. Also additional 

transversality conditions must be satisfied. We use the following theorem, based upon the 
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version of the Hopf Bifurcation Theorem in Guckenheimer and Holmes (1983):     has precisely 

one pair of pure imaginary eigen values, if                     If                  

 , then J has no pure imaginary eigen values.  The result is: 

Theorem 6. 2: The matrix     has precisely one pair of pure imaginary eigen values, if 

     (              )                        

   

 
  

 
                     }

 

 
              

6.1  Case Studies 

To be able to display the boundaries, we consider two or three parameters. But the procedure is 

applicable to any number of parameters. 

 Let                                                  and 

                                                .  

Case I: Free parameters,    . 

Assume that other parameters operate at   . The result is illustrated in Figure 1.  The red line 

gives a range of         satisfying the Hopf bifurcation conditions, while the blue line depicts 

the value of         satisfying conditions for a transcritical bifurcation boundary. 

Similarly, the following cases gives the range of parameter values satisfying condition (a) and 

condition (b), in blue and red respectively, while the rest of the parameters are set at     

Case II: Free parameters,     (figure 2). 
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Case III: Free Parameters,       (figure 3). 

Case IV: Free Parameters,     (figure 4). Notice that for case IV we do not have a Hopf 

bifurcation boundary. 

We now add another parameter as a free parameter and continue with the analysis. The following 

cases give the range of parameter values satisfying condition (a) and condition (b), in blue and 

red regions respectively, while the rest of the parameters are assumed to be at      

Case V: Free parameters,           (figure 5). 

Case VI: Free parameters,          (figure 6). 

Case VII: Free parameters,         (figure 7). For case VII, we do not have a Hopf bifurcation 

boundary. 

Case VIII: Free parameters,         (figure 8). 

Case IX:  Free parameters,         (figure 9). 

The following is an approach to exploring cyclical behavior in the model. Suppose there is a 

change in policy, encouraging increase in savings rate.  Consumption decreases initially, when 

intertemporal substitution for consumption is high (  is low), as people start saving more.  This 

will encourage a movement of labor from output production to human capital production. Human 

capital begins increasing. This implies faster accumulation of physical capital when sufficient 

externality to human capital is present in production of physical capital. If people care about the 

future more (subjective discount rate   is lower), consumption starts rising gradually with faster 

capital accumulation, leading to greater consumption-goods production in the future. This will 
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eventually lead to a decline in savings rate. Hence two opposing effects exist, when the savings 

rate is different from the equilibrium rate. A lower savings rate now will cause a slower rate of 

physical capital accumulation. When   is lower, consumption starts falling over the time leading 

to an increase in savings rate. Interaction between different parameters can cause cyclical 

convergence to equilibrium (figure 10) or may cause instability; and for some parameter values 

we may have convergence to cycles (figure 11). 

Using the numerical continuation package Matcont, we further investigate the stability properties 

of cycles generated by different combinations of parameters. While some of the limit cycles 

generated by Andronov-Hopf bifurcation are stable (supercritical bifurcation), there could be 

some unstable limit cycles (subcritical bifurcation) created as well. Table 1 reports the values of 

the share of capital    , externality in production of human capital    , and the inverse of 

intertemporal elasticity of substitution in consumption    . A positive value of the first 

Lyapunov coefficient indicates creation of subcritical Hopf bifurcation. Thus for each of the 

cases reported in Table 1, an unstable limit cycle (periodic orbit) bifurcates from the equilibrium. 

All of these cases also produce branch points (pitchfork/transcritical bifurcations). 

Continuation of limit cycles from the Hopf point, when   is the free parameter, gives rise to limit 

point (Fold/ Saddle Node) bifurcation of cycles. From the family of limit cycles bifurcating from 

the Hopf point, limit point cycle (LPC) is a fold bifurcation, where two limit cycles with 

different periods are present near the LPC point at   = 0.738. 

Continuing computation further from a Hopf point gives rise to a series of period doubling (flip) 

bifurcations.  Period doubling bifurcation is defined as a situation in which a new limit cycle 

emerges from an existing limit cycle, and the period of the new limit cycle is twice that of the old 
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one. The first period doubling bifurcation, at   = 0.7132369, has positive normal form 

coefficients, indicating existence of unstable double-period cycles.  The rest of the period 

doubling bifurcations have negative normal-form coefficients, giving rise to stable double-period 

cycles.  

The period of the cycle rapidly increases for very small perturbation in parameter  , as is evident 

in figure 12(C). The limit cycle approaches a global homoclinic orbit. A homoclinic orbit is a 

dynamical system trajectory, which joins a saddle equilibrium point to itself.  In other words, a 

homoclinic orbit lies in the intersection of an equilibrium’s stable manifold and unstable 

manifold. There exists the possibility of reaching chaotic dynamics through the series of period 

doubling bifurcations. 

For the cases in which    and    are free parameters, we carry out the continuation of limit cycle 

from the first Hopf point. Both cases give rise to limit point cycles with a nonzero normal-form 

coefficient, indicating the limit cycle manifold has a fold at the LPC point. Similar results are 

found, if we carry out the continuation of limit cycles from the second Hopf point for each of 

these cases, and hence we do not report those results. 

 

 

 

 

 

http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Stable_manifold
http://en.wikipedia.org/wiki/Unstable_manifold
http://en.wikipedia.org/wiki/Unstable_manifold
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Table 1 

Parameters 

Varied 

Equilibrium Bifurcation Bifurcation of Limit Cycle 

  

(Figure 12) 

Other 

parameters 

set at    

Figure 12 (A) Figure 12 (B) 

Hopf (H) 

First Lyapunov coefficient = 0.00242, 

  =0.738207 

Limit point cycle (LPC) 

period = 231.206,   = 0.7382042 

Normal form coefficient = 0.007 

Period Doubling (PD) 

period = 584.064,   = 0.7132369 

Normal form coefficient = 0.910 

Period Doubling (PD)  

period = 664.005,   = 0.7132002 

Normal form coefficient = -0.576 

Period Doubling (PD) 

period = 693.988,   = 0.7131958 

Normal form coefficient = -0.469 

Period Doubling (PD) 

period = 713.978,   = 0.7131940 

Normal form  coefficient = -0.368 

Period Doubling (PD) 

period = 725.667,   = 0.7131932 

Normal form coefficient = -0.314 

Period Doubling (PD) 

period = 784.104,   = 0.7131912 

Normal form coefficient = -0.119 

Branch Point (BP)  

  

(Figure 13) 

Other 

parameters 

set at    

Figure 13 (A) Figure 13 (B) 

Hopf (H) 

First Lyapunov coefficient = 0.00250, 

  =0.107315 

Limit point cycle (LPC) 

period = 215.751,    = 0.1073147 

Normal form coefficient = 0.009 

Hopf (H) 

First Lyapunov coefficient = 0.00246 

  =0.052623 

 

Branch Point (BP) 

             
  

(Figure 14) 

Other 

parameters 

set at    

Figure 14 (A) Figure 14 (B) 

Hopf (H) 

First Lyapunov coefficient = 0.00264 

  =0.278571 

Limit point cycle (LPC) 

period = 213.83,    = 0.1394026 

Normal form coefficient = 0.009 

Hopf (H) 

First Lyapunov coefficient = 0.00249 

  =0.139394 

 

Branch Point (BP) 
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Figure 4: Free Parameters 𝜁  𝜌 
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Figure 5: Free parameters 𝛼   𝜁 𝜌   
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Figure 6: Free Parameters 𝜂 𝜁 𝜎 
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Figure 7: Free parameters  𝛼  𝜂 𝜌   
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Figure 8: Free parameters, 𝛼  𝜎 𝜌 8: 𝛼 

 𝜎 𝜌 free
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Figure 9: Free parameters, 𝛼  𝜂 𝜎  
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Figure 10 
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Figure 11 
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Chapter 7. The Modified Jones Model 

There are    identical, infinitely lived individuals present with a population growth rate of 

      . Each individual is endowed with one unit of time and divides this unit among 

producing goods, producing ideas and producing human capital.  

                                                                                

Where, at time t,     is employment,     is the total amount of raw labor employed in producing 

output,     is the total number of researchers.    denotes the amount of time individuals spend 

working and        represents the amount of time the individual spends accumulating human 

capital.  

Physical capital is accumulated by foregoing consumption. 

          ̇              ,              

where     is the fraction of output that is invested ((1-     is the fraction consumed).   is the 

exogenous, constant rate of depreciation.    is the aggregate production of homogenous final 

good and    is capital stock. Hence, we can also write 

         ̇               

Output is produced using total quantity of human capital,     and a set of intermediaries j, which 

are obtained one-from-one from capital. 

     is given by 
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where    is human capital per person and     is total amount of raw labor employed in producing 

output. An individual’s human capital (  ) is produced by foregoing time in the labor force.  

Since individual spend        amount of time accumulating human capital,  

          ̇      
         

                                          ,         

Where   is the productivity of human capital in the production of new human capital,   reflects 

the effect of technological progress on human capital investment and    is the growth rate of 

technology.                                                                

Equation (  5) builds on the human capital accumulation equation from the Uzawa-Lucas 

(Uzawa, 1965 and Lucas, 1988) model.  Firstly, it is modified to show that higher the level of 

human capital or time spent accumulating human capital, the more difficult it is to generate 

additional human capital (Gong, Greiner and Semmler, 2004). This is reflected in the equation 

by            . Values of            imply that an increase in the time spent for 

education or higher level of human capital itself, raises the growth rate of human capital 

accumulation monotonically which in turn, raises the balanced growth rate. This can be 

interpreted as “strong” scale effect. US data clearly reject that as shown by Jones(2002). The US 

economy is fluctuating around its balanced growth path even though educational attainment and 

research intensity is steadily rising for last 50 years. Secondly, we incorporate the fact that faster 

technological progress      may influence the rate of human capital accumulation. This depends 

on the technological parameter          as in Bucci (2008). Hence faster technological 

progress may increase, decrease or have no effect on human capital investment. 

The production function is given by 
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    ∫      

 

 
     

     is the input of intermediate j and A is the number of available intermediates,         and 

 

   
 is the elasticity of substitution for any pair of intermediates. Research and development 

(R&D) enables firms to produce new intermediates. The R&D technology is 

          ̇        
   

     

According to this equation, new ideas produced at any point in time depends on the number of 

researchers       and existing stock of ideas    .   captures the externalities associated from 

R&D,       Past discoveries can either increase or decrease current research productivity.  

       captures the possibility of duplication in research.      is effective research effort 

given by 

                        

7.1  Final Goods Sector 

 Faced with a price list             for all the producer durables, the representative final 

output firm choose a profit–maximizing quantity      for each durable  

   
    

∫ [  
   

 

 

                 ]        

Where ‘w’ is the rental rate per unit of human capital. Solving the maximization problem gives   
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 7.2  Intermediate Goods Sector 

Given the demand curve in equation (  9), the producer of each specialized durable chooses the 

profit maximizing output to set.  Faced with a given value of    and r, a firm that has already 

incurred the fixed cost of investment in a design will choose a level of output   to maximize its 

revenue minus variable cost at every date. 

     
 

         

where ‘ ’ is the interest rate on loans denominated in goods. Solving the Monopoly profit 

maximization problem gives  

                ̅   
 

 
 

The flow of monopoly profit is  

               ̅    ̅ ̅    ̅        ̅ ̅  

7.3  R&D Sector 

The market for designs is competitive. Hence the price for designs     will bid up until it is equal 

to present value of the net revenue that a monopoly can extract. 

         ∫   ∫       
 
             

 

 

 

Because of the assumption that anyone engaged in research can freely take advantage of the 

entire existing stock of designs in doing research to produce new designs, its follow from R&D 

technology equation (   ), 

                    
        

If       denote the value of the innovation 
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               ∫   ∫       
 
       

 

 

 

Therefore, equation (  14) can be equivalently written as  

                 
         

Also because of symmetry with respect to different intermediate,      , equation (  6)  is 

written as   

                 
        

Hence, from equation (  10) and (  17), 

                  (
 

   
)
 

 

From zero profits in the final goods sector     
                 and equation 

(    ) 

                              

Notice that wages equalize across sectors due to free entry and exit. 

 7.4  Consumers 

Each individual supply labor and receive some amount of consumption,       Individual 

maximize the intertemporal utility function choosing consumption and the fraction of time to 

devote in human capital production (or the fraction of time to devote in market work). Hence, the 

agent’s problem is 
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∫         
 

 

 [         ]               

Subject to 

 ̇    [       ]                ̇    ̇   

  ̇      
         

                

   [   ] 

where           is the subjective discount rate, and        is the inverse of intertemporal 

elasticity of substitution in consumption.  

Balanced Growth Path (BGP) Analysis  

Definition 7.1. (Balanced Growth Path (BGP)) I define a BGP as a state where variables A, K, H  

and Y grow at a constant (possibly positive) rates, (ii) technological progress (A) and the 

available stock of human capital (H) grow at the same rate,        and, (iii) r , 
 

 
 
 

 
 and 

  

 
 are 

constants (iv) the amount of time the individual spends on accumulating human capital is 

constant  ̇       

It can be shown that a BGP equilibrium exists (Bucci 2008) when the R&D technology has 

constant returns to scale in    and A together. Using equation (7.7) and (7.8) and using the fact 

that 
  ̇

  
  , the growth rate of A,      

  
 

  
, is constant along a BGP when,      

 

 
[   

 ]             , that is when        

Using Definition 7.1 and the fact that in a BGP R&D technology exhibits constant returns to 

scale, we get the following result along the BGP (see Appendix 4), 
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Hence along a BGP, consumption (C), physical capital (K), human capital (H) and technology 

(A) grow at a same constant rate. 

Proposition 7.1:  The long run growth rate depends on the preference and technological 

parameters. A positive long run growth rate exists under certain combination of these 

parameters. While the effect of population growth on growth rate of output is ambiguous, 

positive long run output growth rate is still achievable with zero population growth. 

Proof: A simple inspection of equation        proves the results of proposition 1. 
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Chapter 8. Bifurcation Analysis of the Modified Jones Model 

In this chapter, we examine the existence of codimension 1 and codimension 2 bifurcations in the 

Modified Jones Model. 

       
 

 
        

  

 
                                                 

              

And the physical capital equation can be written as, 

        
 ̇

 
        

The consumers intertemporal optimization conditions are (for proof see appendix 3) 

         
 ̇

 
 

   

 
 

     

 
 

            
 ̇

 
(

    

       
  )      (

    

       
        )         

    ̇

     
  

 ̇

 
     

Substituting equations (  0), (  1), (  2) and using   
  

 
, we can derive 

 ̇

 
 

 ̇

 
 

 ̇

 
 

 ̇

 
. 

        
 ̇

 
 (

  

 
  )  

 

 
       

Now multiplying both sides of equation (7.1) by     and using the definitions of equations (7.4) 

and (7.8),  

               ⏟  
    

       ⏟  
   

      ⏟
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Using equations (7.10), (7.16) and (8.24) in equation (7.7), 
 ̇

 
 

    

  , and setting λ=1 for the rest 

of the analysis, 

        
 ̇

 
 

 

     ⏟  
 

 
      

  ⏟  
 

    

The following can be shown from equation (7.15) and using   
       

 
 (from equations (7.12) 

and (7.19)), 

         
 ̇

 
   

 

 
        

Let   
   

       
 . Using equation (7.10) and (7.16), it can be shown,    

        
     

         
 

 

           

       

  
 

  

 
 

Let     
        

  

  
    

 , equation (7.5) can be written as,  

        
 ̇

 
        

We can derive  
 ̇

 
 

 ̇

 
      

 ̇

 
   from equation (7.16) and substitute equation (  5) and (  6) 

in it, to get 

        
 ̇
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Equation (8.2’) is simplified in the following way by using (  7), (  8) and (  9) 

         
 ̇

 
 

 

       
[                  

   

 
             ] 

           
 

 
  (

   

 
)
   

                         

Using equation (7.16), (7.18) and (  11),                  (
 

   
)
 

  
 

    
       

  
 

Substituting equations (  5) and (  6) in,  
 ̇

 
 

     

 
[ 

 ̇

 
  

 ̇

 
], derived from the above relation 

          
 ̇

 
 

     

 
[              ] 

From equations (8.1) and (8.12) and using 
 ̇

 
  

 ̇

 
 

 ̇

 
, 

         
 ̇

 
 

     

 
[              ]          

Plugging in results from (  5), (  6) and (  13) in  
 ̇

 
 

 ̇

 
 

 ̇

 
 

 ̇

 
 

         
 ̇

 
 [           {

      

 
  }        ] 

Using equation (8.10) in 
 ̇

 
     

 ̇

 
       

 ̇

 
       

 ̇

 
 

 ̇

 
     , we derive, 

         
 ̇

 
 

 

       
[                  

   

 
             ]  

               

         
 ̇

 
 

     

       
[                  

   

 
             ]  
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Using equations (  5), (  8), (  10) in 
 ̇

 
 

 ̇

 
 

 ̇

 
  

 ̇

 
 

 ̇

 
  

        
 ̇

 
                

[                  
   

 
             ]

       
  

Equations (  3), (  12), (  14), (  15), (  16) and (  17) represent the dynamic equations for the 

model.  

8.1 Steady State 

Definition 8.1. (Steady State) We define a steady state as a state where variables 

                grow at a constant (possibly zero) rates. A steady state is a BGP with zero 

growth rate. 

Therefore, the steady state                         is such that,  ̇   ̇   ̇   ̇   ̇   ̇  

 . It is derived by solving the following equations (I)-(VI). 

      (
  

 
  )  

 

 
         

                        

                     {
      

 
  }         

                      
[                  

   

 
             ]

       
    

      
 

       
[                  

   

 
             ]          
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   (  
  

 
)     

 

 
        

  

     
  

   

   
 

       

 
           

Theorem 8.1. A unique steady state exists if    

                     

Proof:   is the necessary and sufficient for the transversality condition for the consumer’s utility 

maximization problem to hold (appendix 3)       

8.2   Local Bifurcation Analysis  

We examine the existence of codimension 1 and 2 bifurcations in the dynamical system defined 

by equations (  3), (   2), (  14), (   5), (   6), and (  17). The codimension, as defined by 

Kuznetsov (2004), is the number of independent conditions determining the bifurcation 

boundary. This procedure of varying a single parameter helps us to identify codimension-1 

bifurcation and varying 2 parameters helps us to identify codimension-2 bifurcation. 

Andronov-Hopf bifurcation is the birth of a limit cycle from an equilibrium in the dynamical 

system, when the equilibrium changes stability via a pair of purely imaginary eigenvalues. We 

use the numerical continuation package Matcont to detect such bifurcations. While some of the 

limit cycles generated by Andronov-Hopf bifurcation are stable (supercritical bifurcation), there 

could be some unstable limit cycles (subcritical bifurcation) created as well. Table 2 reports the 

values of subjective discount rate    , share of human capital and share of time devoted for the 

human capital production                       , effect of technological progress on human 

http://www.scholarpedia.org/article/Bifurcation
http://www.scholarpedia.org/article/Limit_cycle
http://www.scholarpedia.org/article/Equilibrium
http://www.scholarpedia.org/article/Dynamical_systems
http://www.scholarpedia.org/article/Dynamical_systems
http://www.scholarpedia.org/article/Equilibrium
http://www.scholarpedia.org/article/Stability
http://www.scholarpedia.org/article/Eigenvalues
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capital accumulation     and the depreciation rate of capital,    at which Hopf bifurcation 

occurs when they are treated as free parameters. 

 A positive value of the first Lyapunov coefficient indicates creation of subcritical Hopf 

bifurcation. Thus for each of the cases reported in Table 2, an unstable limit cycle (periodic 

orbit) bifurcates from the equilibrium. When           are treated as free parameters, a slight 

perturbation of them give rise to Branch Points (Pitchfork/Transcritical bifurcations). Notice that 

some of the Hopf points detected are neutral saddles and are not bifurcations.  

The cyclical behavior could occur for various reasons. For instance, suppose profit for 

monopolist increases. As the market for designs is competitive, the price for designs     bids up 

until it is equal to present value of the net revenue that a monopoly can extract. From equation 

(7.14), wages in the R&D sector rises. As a result of higher wages in the research sector, labor 

move out of output production to research sector. When sufficient amount of externalities to 

R&D (       in equation (7.7)) is present, the growth rate of technology    starts rising.  If 

there is a negative effect of technical progress on human capital investment (    , human 

capital accumulation start declining. The price of final good durables is a positive function of the 

average quality of labor given by equation (7.4) and (7.9). This implies that prices start falling in 

the final goods sector due to decline in average quality of labor which in turn, implies that 

monopoly profits start falling. 

We further investigate the stability properties of cycles generated by different combination of 

such parameters. Continuation of limit cycle from the Hopf point for the case when    is the free 

parameter gives rise to two Period Doubling (flip) bifurcations. Period doubling bifurcation is 

defined as a situation when a new limit cycle emerges from an existing limit cycle, and the 
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period of the new limit cycle is twice that of the old one. The initial period doubling bifurcations 

occur at    = 0.0257 and   = 0.0258 with a negative normal form coefficients indicating stable 

double-period cycles are involved. 

Continuing computation further from the Hopf point, gives rise to Limit Point (Fold/ Saddle 

Node) bifurcation of Cycles. From the family of limit cycles bifurcating from the Hopf point, 

Limit Point Cycle (LPC) is a fold bifurcation of the cycle where two limit cycles with different 

periods are present near LPC point at   = 0.0258. We get another Period Doubling (flip) 

bifurcations upon further computation.  

We carry out the continuation of limit cycle from the second Hopf point for the case when   is 

treated as the free parameter. We investigate the existence of codimension-2 bifurcations by 

allowing two free parameters   and   for the first case and                        Two points 

were detected corresponding to codim 2 bifurcations: Bogdanov-Takens and Generalized Hopf 

(Bautin) for each of the cases. At each Bogdanov-Takens point the system has an equilibrium 

with a double zero eigenvalue and the normal form coefficients (a; b) are reported in Table 2 

which are all nonzero. The Generalized Hopf points are nondegenerate since the second 

Lyapunov coefficient l2 are nonzero. The Generalized Hopf (Bautin) bifurcation is a bifurcation 

of an equilibrium at which the critical equilibrium has a pair of purely imaginary eigenvalues and 

the first Lyapunov coefficient for the Andronov-Hopf bifucation vanishes. The bifurcation point 

separates branches of sub- and supercritical Andronov-Hopf bifurcations in the parameter plain. 

For nearby parameter values, the system has two limit cycles which collide and disappear via a 

saddle-node bifurcation of periodic orbits. 

 

http://www.scholarpedia.org/article/Bifurcation
http://www.scholarpedia.org/article/Equilibrium
http://www.scholarpedia.org/article/Stability_of_Equilibria
http://www.scholarpedia.org/article/Eigenvalues
http://www.scholarpedia.org/article/Andronov-Hopf_Bifurcation
http://www.scholarpedia.org/article/Andronov-Hopf_Bifurcation
http://www.scholarpedia.org/article/Periodic_Orbit
http://www.scholarpedia.org/article/Saddle-node_Bifurcation_of_Periodic_Orbits
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Table 2 

Parameters Varied Equilibrium Bifurcation Continuation 

     
           (Figure i) 

                   
                  
           } 

Branch Point (BP) 

       
 

 

     
           (Figure ii) 

                     
                  
                 } 

Hopf (H) 

First Lyapunov coefficient = 

0.0000230,          

 

    

                  
                  
                
       

Hopf (H) 

First Lyapunov coefficient 

=0.00002302,     
          

 

  

                  
                 
                     

Branch Point (BP) 

             
 

  

           (Figure iii) 

                  
                 
                 
           

Figure iii (A) Figure iii (B) 

Hopf (H) 

First Lyapunov coefficient = 

0.0000149 

  =0.025772 

 

Bifurcation of Limit Cycle 

Period Doubling  

(period = 1,569.64;    = 0.0257) 

Normal form coefficient =  

-4.056657e-013 

Period Doubling  

(period = 1,741.46;   = 0.0258)  

Normal form coefficient = 

-7.235942e-015 

Limit point cycle  

(period = 2,119.53;   = 0.0258) 

Normal form coefficient= 

7.894415e-004 

Period Doubling  

(period = 2,132.13;   = 0.0258) 

Normal form coefficient =  

-1.763883e-013 
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Branch Point (BP) 

 =0.026726 

 

Hopf (H), Neutral Saddle, 

 =0.026698 

 

  

   
          (Figure iv) 

                  
                
                  
                   

Figure iv (A) Figure iv (B) 

Hopf (H) 

First Lyapunov coefficient 

=0.0000230,   =0.400000 

 

Hopf (H) 

First Lyapunov coefficient = 

0.00001973 

  =0.355216 

 

Codimension-2 bifurcation 

Generalized Hopf (GH) 

               = 0.580853 

l2= (0.000001254) 

Bogdanov-Takens (BT) 

  =0,   =0.644247 

(a,b)= (0.000001642, -0.003441) 

Generalized Hopf (GH) 

            
 
 

 
            

l2=0.0000008949 

Bogdanov-Takens (BT) 

  =0,     =0.903003 

(a,b)=(0.000006407790,0.03291344) 

Hopf (H) 

Neutral saddle,  =0.612624 

 

Branch Point (BP), 
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Chapter 9. Conclusion 

This thesis provides a detailed stability and bifurcation analysis of the Uzawa-Lucas model and 

the Modified Jones model. Transcritical bifurcation and Hopf bifurcation boundaries, 

corresponding to different combination of parameters, are located for the decentralized version 

of the Uzawa-Lucas model. Examination of the stability properties of the limit cycles from 

various Hopf bifurcations in the model depicts occurrence of limit point-of-cycles bifurcations 

and period-doubling bifurcations within the model’s feasible parameter set. The series of Period 

Doubling bifurcations confirms the presence of global bifurcation. This also highlights the 

possibility of having chaotic dynamics in the model. On the contrary, the social planner solution 

for the Uzawa-Lucas model is always saddle path stable with no possibility of occurrence of 

bifurcation in the feasible parameter range of the model. Thus the externality of human capital 

parameter plays an important role in determining the dynamics of the decentralized Uzawa-

Lucas model.  

Our result emphasizes the need for simulations of decentralized macroeconometric models at 

settings throughout the parameter-estimates’ confidence regions, rather than at the point 

estimates alone, since dynamical inferences otherwise can produce oversimplified conclusions 

subject to robustness problems. 

Along the balanced growth path in the modified Jones model, I have shown that the long run 

growth rate of the model does depend on the rate of population growth. But the long run growth 

rate can even be positive with no population growth.  Several Andronov-Hopf  bifurcations and 

Branch Points are located. The stability properties of the limit cycles created from these Hopf 

bifurcations are examined. We showed the existence several codimension-1 bifurcations (Limit 

Point of Cycles and Period Doubling bifurcations) and codimension-2 bifurcations (Bogdanov-
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Takens and Generalized Hopf) are located. The choice of certain parameters in locating various 

bifurcations emphasizes the role played by human capital in such a model where growth is 

driven by technological progress, which in turn, is ultimately driven by human capital 

investment. The parameters in the human capital accumulation among others equation play a key 

role in determining the dynamics of the model. 

===================================================================== 
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Appendix 

Appendix 1:  

Social Planner Problem:  

  
[         ] 

      
  [                      ]   [       ]. 

The first order conditions are 

(1) c:                

(2)                             

(3) k:   [                      ]    ̇ 

(4) h:                                 ̇    

Appendix 2: 

Decentralized or Market Solution: 

  
[         ] 

      
  [             

 
         ]   [       ]. 

The first order conditions are 

(1) c:                

(2)                       
 
      

(3) k:   [                
 
      ]    ̇ 

(4) h:                    
 
           ̇    
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 Appendix 3: 

I use the zero profit condition             ̇ and equation (8.6),     ̇              in 

the wealth accumulation equation of the households  ̇    [       ]            

  ̇       ̇, to get 

 ̇                                       

The relevant Hamiltonian for the consumer’s problem is 

           [         ]          [                                

    ]   [   
         

          ]  

The first order conditions are 

i.                      
 ̇

 
  

    

 
 

ii.                                       
 

 
  

                  

  
 

iii.               ̇       
 ̇

 
    

iv.                         
                      ̇ 

Dividing (iv) by   and substituting (ii) in it,   

              [
    

      
    ]         

 ̇

 
        

              

 ̇

 
  

 ̇

 
       (

   ̇ 

    
)         

 ̇

 
  

 ̇
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 ̇

 
(

    

       
  )      (

    

       
        )         

    ̇

     
  

 ̇

 
     

Transversality Conditions:  

   
   

  [       ]    

   
   

       

In a steady state,  ̇   ̇   ̇   ̇   ̇   ̇   , and using the fact that in the steady state, 
  

 
  

is constant, we can derive the following relations 

 ̇         ̇            
 ̇

 
 

 ̇

 
   

 ̇

 
 

        ̇     

 ̇

 
        

 ̇

 
        ̇   

 ̇

 
                                   

 ̇

 
 

       

  

 ̇

 
 

       ̇  
 ̇

 
 

 ̇

 
  

 ̇

 
 

 ̇

 
           

 ̇

 
 

  

         
[     ] 

  ̇

  
 

 ̇

 
 

 ̇

 
 

 ̇

 
 

 ̇

 
     

From equation (8.12), 

  
 

 
  (

   

 
)
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 ̇

 
      [

 ̇

 
 

  ̇

  
 

 ̇

 
]            

 ̇

 
 

 ̇

 
 

  ̇

  
         

           
 ̇

 
 

 ̇

 
 

 ̇

 
         

Hence, the transversality condition implies that,  

                   

Appendix 4: 

  
 

 
 is constant    ̅ is constant since       The flow of monopoly profit is  ̅  

       ̅ ̅.  From equation (7.13), we know the PDV of this stream of profit must equal to 

price    of the design and using equation (7.9), 

       
 

 
   

 

 
        ̅ ̅   

      

 
   

           
       

 
  

        

The condition determining the allocation of    and    says that wages paid to human 

capital in each sector must be the same, from equation (7.16) and (7.18), 

       
               

  
      

  
  

      
 

 
 
  

   
 
     

 

   
    

From equation (7.11) and (7.12), we get,   ̅   
     

 
  ̅ and from, equation (7.15), 

      
 

 
 
 ̇
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 ̇

 
  

 ̇

 
      

  ̇

  
      

 ̇

 
             

Dividing the household's wealth accumulation equation  ̇               by K 

and incorporating, 
  ̇

 
  , we get 

                             
 ̇

 
       

  

 
 

  

 
 

 

 
                                   (a) 

For the first order conditions from the consumer’s optimization problem (see Appendix 3 for 

derivation), 

             [
  

     

  

 
    ]        

  ̇

 
 

 ̇

 
  

 ̇

 
              

 

     
                 

the human capital equation,     
       

            , implies, 

                    
  ̇

 
          [

  

     

  

 
    ]                         (b) 

and,                    along a BGP,           implies 

 
 ̇

 
  

 ̇

 
                                    

Substituting (a) and (b) in (c), 

     
  

 
  

 

 
  

 

 
           [

  

     

  

 
    ]                    
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As    
 

   
    and in a BGP,          are constants, 

  

  
         , that is 

  

  
          

                                                 
  

 ⁄                    . 

I        
  

 
 
 

 
     

 

 
                                                  

   

 
     . Substituting             and using                 in the 

equation below (see consumer’s optimization problem in Appendix I) 

    
 ̇

 
(

    

       
  )      (

    

       
        )         

    ̇

     
  

 ̇

 
    

                  (
    

       
  )      (

    

       
        )       

            
        

                  
         

    

       
           

 

 
  (

   

 
)
   

 where 
  

 
 is constant along a BGP. 
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