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Abstract 

Motivated by the experiences of the National Broadcasting Company (NBC), we 

present an analytical model for managing on-air ad inventory in broadcast television. The ad 

inventory in this industry is priced based on rating points or the number of viewers that watch 

a commercial.  The rating points during a broadcast year are sold through two distinct 

processes: the Upfront, which occurs before the broadcast season, and the Scatter, which 

occurs during the broadcast season.  A firm needs to allocate its total rating points inventory 

to these two markets before knowing either the performance rating of its shows or the Scatter 

market price, both of which are random. The networks offer ratings (performance) guarantees 

on the inventory that is sold in the Upfront market while such guarantees are seldom offered 

in the Scatter market. We propose an optimization model for the networks to manage their 

rating points inventory.  Our model explicitly incorporates the performance uncertainty of the 

television shows as well as the revenue uncertainty of the Scatter market.  We derive 

conditions for feasibility of the problem and characterize the optimal amount of rating points 

to sell in the Upfront market.  Our model explains the current practice of selling around 60-

80% of the total rating points for the season during the Upfront market and analyzes other 

common strategies used by the firms. In addition to providing key managerial insights, our 

work introduces quantitative methodologies to television networks in planning their Upfront 

markets. 
 
Key Words: Broadcast Television, Uncertainty, Services Management 
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1. INTRODUCTION 

 This work, motivated by the experiences of National Broadcasting Company (NBC), presents an 

analytical model for managing on-air ad inventory in broadcast television.  The practice in the broadcast 

television industry is to sell the ad inventory through two distinct processes: the Upfront selling and the 

Scatter selling. A broadcast year in network television in the United States of America begins in the third 

week of September.  Upfront market typically occurs at the end of the month of May, much before the 

start of the actual broadcast season.  At this time, the broadcast networks unveil their fall prime-time 

program schedule and tempt the big advertisers and media buyers to buy airtime in bulk for the entire 

year.  The remaining inventory after the Upfront market is available for sale in the Scatter market, which 

occurs throughout the broadcast season.  

The performance of television shows is measured using Nielsen rating points, which are measures 

of the number of people that watch the shows. A rating point is equal to one percent of all US households 

with television sets.   The gross rating points (GRP) of a network during a broadcast year is the sum of all 

rating points generated by all 30-second commercials that the network can air during the broadcast year. 

GRP is typically calculated in the industry by multiplying the number of 30-second commercial slots with 

the rating points for each airing of a show and summing them over all airings of all shows during the 

broadcast year.  Though the commercials that are aired can be of any length, a 30-second slot is used as a 

standard in computing the GRP. A 15-second slot is considered to deliver half the rating points of a 30-

second slot and is, consequently, charged half the price. Similarly, a 60-second slot is said to deliver twice 

the rating points of a 30-second slot and is sold at twice the price of a 30-second slot. 

Since the show ratings are random and unknown at the time of the Upfront, the networks 

guarantee the delivery of certain number of rating points on their Upfront contracts. In fact, networks 

price sales contracts based on the guaranteed rating points using a negotiated price per rating point (or 

price per thousand viewers). If the network cannot deliver the guaranteed rating points in the time slots 

allocated to a customer, it has to air additional commercials for the customer to make up for the 

difference. On the other hand, if the shows perform much better than expected the network still needs to 

air the number of commercials in the Upfront contract which may lead to over delivering on the 

guaranteed rating points.  This results in lost revenues as pricing in this industry is by the audience 

delivered. To avoid this situation, the networks generally over-promise ratings in the Upfront market.  A 

television network can sell any amount of rating points up to the maximum potentially realizable value of 

the GRP to the advertisers.  However, the GRP depends on the performance (or ratings) of the shows. 

Under the scenario described above, a network television firm often faces the following decision 

problem: how much of the total expected GRP to sell during the Upfront market?  We propose an 

analytical model to accomplish this.   This problem has several interesting features.  The gross rating 
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points of a network is random and depends on the performance of its shows.  A network needs to make 

the decision about the rating points to be sold during the Upfront market before knowing whether a show 

will be a hit or a miss during the broadcast season.  Rating points not sold during the Upfront market are 

sold on the Scatter market during the broadcast season at the prevailing price.  Therefore, for any fixed 

amount of rating points sold during the Upfront market, a network will have more rating points to sell in a 

Scatter market when its shows are hits compared to when its shows are misses.  Unlike the Upfront 

market, no rating points guaranty is offered during the Scatter market. The price per rating point during 

the Upfront market, or the Upfront price, is fixed (non-random) during the short duration of the Upfront 

market that usually lasts for about one to two weeks.  In contrast, the price per rating point during the 

Scatter market, or the Scatter price, is random as several factors that influence it including the prevailing 

macro-economic conditions are not realized until the broadcast year begins. Thus, while making decisions 

about the Upfront inventory, a network needs to take into account the performance uncertainty of its 

shows as well as the price uncertainty of the Scatter market.  In addition, a network has to pay a penalty 

when it is unable to meet its commitment for the number of viewers offered during the Upfront market.  

This happens when a network sells a large amount of rating points during the Upfront market and its 

shows turn out to be misses.   

Selling commercial times through the Upfront and the Scatter markets has been the standard 

practice in the broadcast television industry since the mid-1970s.  The volume of the Upfront market in 

broadcast television was $500 million during the spring of 1979 (Source: The Gale group, 1999).  For the 

year 2002, the volume of the Upfront market was $8.2 billion with NBC leading the market with a sale of 

$2.7 billion (Steinberg, 2003; Nelson & Vranica, 2003).  The Upfront market rose to an all time high of 

$9.3 billion during 2003 (Chunovic, 2003), and remained essentially flat for 2004 and 2005 (Steinberg, 

2004, 2005).  The common practice among television networks is to sell about 60-80% of the total 

inventory (i.e., 60-80% of the expected value of the GRP) of commercial times during the Upfront 

market.  However, CBS deliberately sold less during the 2001’s Upfront market, holding more for the 

Scatter market in anticipation of economic recovery following the crash of the stock market (Nelson & 

Vranica, 2003).  On the other hand, facing an uncertain Scatter market, each of the six broadcast networks 

(NBC, CBS, ABC, Fox, WB, and UPN) sold between 85% and 90% of total inventory during the strong 

Upfront of 2003 (Chunovic, 2003).  The Scatter price, in general, is higher than the Upfront price.  In fact, 

the Scatter prices have been higher than the Upfront prices for 11 out of the last 12 years (Lafayette and 

Friedman, 2004).  On an average, the Scatter price is around 15% higher than the Upfront price. 

We propose an analytical model to study how much of the total ad inventory of a network should 

be sold during the Upfront market.  Our model explicitly incorporates the performance uncertainty of the 

television shows as well as the revenue uncertainty of the Scatter market.  We derive the conditions for 
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feasibility of the problem and characterize the optimal amount of rating points to sell in the Upfront 

market.  Our model also provides insights on the current process of inventory allocation followed by the 

major networks.  We provide an intuitive explanation for the current practice of selling 60-80% of the 

average GRP during the Upfront market.  We also analyze other common strategies used by the networks 

in the Upfront market.  We show that selling more in a strong Upfront cannot be a universally optimal 

strategy for a network. Our work makes important contributions to the operations management literature 

by providing explanations for the current practices in the broadcast television industry.  In addition, it 

provides a quantitative methodology for the television networks to plan their Upfront markets. The 

practice in the industry thus far has been to determine the Upfront strategy qualitatively, based mostly on 

human judgment. To the best of our knowledge, no other paper has looked at the problem we address in 

this paper.  Throughout the paper we refer to and quote from the popular business press extensively to 

demonstrate the relevance of our analytical results to the practitioners. 

The remainder of this paper is organized as follows.  The next section provides a review of the 

related literature.  We describe our model in Section 3.  Our analytical results are presented in Section 4.  

Section 5 presents a numerical study that complements our analytical findings.  We describe the 

managerial implications and conclude the paper in Section 6. 

 

2. LITERATURE REVIEW 

The previous research on television industry is problem-driven.  A bulk of the model-based 

literature deals with scheduling strategies for programs to maximize ratings.  The typical examples are 

Goodhardt et al. (1975), Headen et al. (1979), Henry and Rinnie (1984), Webster (1985), Rust and 

Echambadi (1989), and Reddy et al. (1998).  Sales planning and scheduling of television commercials has 

been studied by Bollapragada et al. (2002), Bollapragada, Bussieck, & Mallik (2004), and Bollapragada 

& Garbiras (2004).  Jones and Koehler (2002) propose an auction mechanism for the Upfront sales 

problem where multiple buyers compete for the ad slots in the Upfront market by submitting bids.  They 

propose a heuristic solution to the resulting integer program that provides a satisfactory solution within a 

short computation time.  The focus of our work is fundamentally different from these studies. Araman and 

Popescu (2005) consider the stochastic revenue management problem for broadcast television networks. 

The focus of their study is to draw parallels between the airtime inventory allocation problems of 

television industry and the inventory/revenue management problems, while that of ours is to explain the 

observed practices in the broadcast television industry. As a result, our paper differs from theirs 

extensively on the approach taken as well as the results obtained. 

Our work adds to the growing stream of literature in operations management that studies 

uncertainty in various forms.  Our work comes closest to the papers studying advance booking discounts 
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(ABD).  The ABD contract between a retailer and a supplier typically has two wholesale prices, a 

discounted price for the inventory purchased before the selling season and a regular price for 

replenishments during the selling season.  The main source of uncertainty is the consumer demand.  Many 

authors studied the ABD problem including Tang et al. (2004), Weng and Parlar (1999), McCardle, 

Rajaram and Tang (2004) and others. In addition to capturing the demand uncertainty by letting the 

Scatter market revenue to be a function of random variables, our work also incorporates supply 

uncertainty by considering the performance uncertainty of the television shows unlike in the ABD 

literature.  

Several authors study a two-mode production problem in the context of demand and production 

planning where the first mode of production is relatively cheap and requires long leadtime while the 

second is expensive and offers quick turnaround. The manufacturer and/or the retailer receive updated 

information about the demand in between the two production modes. Fisher and Raman (1996) study the 

production decisions under such a scenario. This scenario does not arise in the process of selling 

commercial times broadcast television because of the short duration of the Upfront market which occurs 

well before the scatter market. In addition, the dynamics of the Upfront and the scatter market are 

different. A network guarantees the delivery of rating points in Upfront market while such guaranties are 

not offered in the scatter market. These features distinguish our work from Fisher and Raman (1996) and 

others studying secondary markets. 

There is a vast body of literature on the revenue management for perishable assets such as the 

seats in a commercial airplane or the rooms in a hotel.  The area of revenue management that comes 

closest to our work is capacity control where the total seat inventory in an aircraft or the rooms in a hotel 

is allocated among different fare classes.  The researchers study this problem in considerable depth and 

details. Instead of reviewing this vast literature, we refer an interested reader to the excellent and up-to-

date reviews by Talluri and van Ryzin (2004) and Bitran and Caldentey (2003). Savin et al. (2005) 

consider the problem of revenue management in rental business with two customer classes where a single 

unit of capacity (an equipment, for example) can be used multiple times. The following feature 

distinguishes our work from this literature. The available inventory of seats/rooms is known (i.e., 

deterministic) in this literature.  Our work, in contrast, treats the GRP (or the available inventory) as 

random. Bitran and Gilbert (1996) consider the problem of managing hotel reservations with uncertain 

arrivals. In addition to the customer demand, they treat the available supply (i.e., the inventory of 

available rooms) to be random because of stay-overs, no-shows, and cancellations. The focus of their 

work is whether to accept a guest that requires a room on a target day. The focus of our work, on the 

contrary, is to determine how much inventory to sell in Upfront. As a result, we differ extensively from 

Bitran and Gilbert (1996) in terms of problem formulation and the resulting insights. A few researchers 
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have studied the problem of group revenue management for hotels. This literature distinguishes between 

groups that book multiple rooms and the individual or transient customers booking single rooms. Group 

reservations are often made far in advance at a discounted rate. Schwartz and Cohen (2003) propose a 

model that can be used to calculate the lowest group room rate to which a hotel should agree. Choi (2006) 

considers the problem of whether to accept a group’s offer for reservation. We note that the problem of 

group revenue management will be similar to our problem if a hotel is allowed to determine how many 

rooms will be sold to the groups at a discounted rate for a target date and that the available supply is 

random (because of no-shows, cancellations etc.). The published research on group revenue management 

is scarce and we do not know of any study that considers such a scenario. Rather, the literature considers 

the problem of whether to accept a group reservation of given size. In addition, none of the cited studies 

consider a random supply of rooms. 

Finally, it is worth pointing out the difference between our work and the random yield 

literature. The fundamental assumption in the random yield literature is that the quantity of good 

units produced is always less than or equal to the number of starting units. On the contrary, our 

work allows both over- and under-delivery on the rating points sold in Upfront market.  A reader 

is referred to Yano and Lee (1995) for a review of the random yield literature. 
 

3. THE MODEL 

Consider a single broadcast television network that is interested in determining the amount of 

rating points inventory to sell in the Upfront market.  Throughout this paper, we will simply use the word 

“network” to denote a broadcast network television firm.  The gross rating point (GRP) of a network 

during the broadcast season depends on the performance of its shows.  Let X~  be the random variable 

denoting the GRP available to the network.  A realization of X~ will be denoted by x. Throughout our 

paper we will use the symbol tilde to denote a random variable while a corresponding letter without the 

tilde will denote its realization. Let f(.) and F(.) denote the probability density function and the cumulative 

distribution function of X~  respectively.  We assume F(.) to be continuously differentiable. The GRP of a 

network is affected by the performance rating of its shows as well as by the number of slots available for 

airing commercials.  The former of the two is beyond the direct control of a network as it depends on a 

viewer’s taste and preference. A network often tries to influence this by picking the “right” shows and by 

using scheduling strategies that consider schedules for other shows within the network as well as 

schedules of shows for competing networks. Several studies address these issues, as described in the 

Section 2 of our paper. The number of slots for airing commercials is standard across the industry 

(typically five commercial breaks for an hour of programming in the broadcast television). A network 
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cannot single-handedly increase the number of commercial slots within a program for the fear of 

alienating the viewers. A network decides on number of commercial breaks to use as well as its 

scheduling strategies separately at a strategic level much before making decisions about the Upfront 

inventory. As a result, we will treat X~ , the GRP, to be an exogenous random variable in our model. The 

firm sells 0≥ux  amount of rating points in the Upfront market and commits to airing commercials in 

nu(xu) slots out of the available N slots during the broadcast year. An Upfront contract guaranties the 

delivery of the promised rating points as well as the predefined minimum number of slots (nu) to 

customers. Given the show ratings are random, let )(~
uxY be the GRP delivered in the nu(xu) slots 

promised to the customers during the Upfront. Note that the random variable Y~ is a function of nu(xu). 

However, the number of slots promised, nu, is not a decision variable (we elaborate more on this matter 

later and justify it in Proposition 1). As a result, we will write Y~ to be simply a function of xu and denote 

it by )(~
uxY . Obviously, the random variable )(~

uxY is highly correlated with the random variable X~ and 

that X~ is always larger than )(~
uxY . Let y  be a realization of )(~

uxY . If uxy ≤ , the network needs to 

air additional commercials (over the promised numbers nu) to make up for the ratings shortfall of yxu − . 

On the other hand if uxy > , i.e. if the shows perform better than expected, the network still needs to air 

commercials in the promised nu slots and, consequently, ends up over-delivering on its guarantees. Since 

the network is obligated to air commercials in all nu slots included in the Upfront contract, an over 

delivery represents a lost revenue opportunity for the network. To avoid such a situation, networks in 

practice promise more rating points than they expect to deliver in the time slots sold during the Upfront 

market. As a reader will see in Proposition 1, this is indeed an optimal strategy for a network. Our model 

formulation will capture these tradeoffs explicitly without making nu a decision variable for our model. 

Let )( uu xr  denote the Upfront revenue for the network when 0≥ux  amount of rating points are 

sold during the Upfront. We assume that 0)0( =ur .  We also assume that 0
)(

≥
u

uu

dx
xdr

 and that 

0
)(

2

2

≤
u

uu

dx
xrd

, implying (.)ur is increasing and concave in xu.  Our objective here is to have a price-

dependent demand function (downward slopping). A concave revenue function allows us to achieve this 

objective without assuming anything specific about the shape of the demand function for the Upfront 

market.  Let )~,~,~( θωXrs denote the Scatter revenue. The scatter revenue is a function of three random 

quantities: the gross rating point X~ , the availability of the rating points in the Scatter market ω~ , and a 
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random parameter θ~ . We assume that the expected value of the Scatter revenue is increasing with the 

realized gross rating point. This assumption is consistent with the observation in practice that price per 

rating point is higher when the shows of a network are hits compared to when the shows are misses.   The 

rating points available to sell during the Scatter market,ω~ , depends on ux and the realized values of X~ , 

)(~
uxY  and is given by: 










<

≥≥−

<≥−

=

u

uuu

uuu

xXfor

xYxXforxYX

xYxXforxX

~,0

~,~),(~~

~,~,~

~ω .      (1) 

Recall that the random variable Y~ denotes the rating points delivered in the promised nu airings, while X~

denotes the GRP. . If uxx ≥ and uxy ≤ , the network needs to air additional commercials (over the 

promised numbers nu) to make up for the ratings shortfall. Therefore, after delivering on the rating points 

guaranty, it will only have uxx − rating points available for sale in the scatter market. On the other hand 

if uxx ≥  and uxy > , i.e., if the shows perform better than expected, the network still needs to air 

commercials in the promised nu slots and, consequently, ends up over-delivering on its guarantees. Under 

this scenario, the network will have yx − rating points available for sale in the scatter market. Since the 

network is obligated to air all nu commercials included in the Upfront contract, an over delivery 

represents a lost revenue opportunity for the network.  

Similar to the assumption about Upfront revenue, we will assume that the Scatter revenue 

is increasing and concave in the availability of rating points in the Scatter market. We will also 

assume that θθ ,,0),0,( xxrs ∀= . Finally, the random parameter θ~ captures the effect of exogenous 

parameters on the scatter revenue. We mentioned in Section 1 that the Scatter market price often exhibits 

a correlation with the prevailing macroeconomic conditions. The parameter θ~ might capture such effects. 

For notational convenience, let 
u

uu
uu dx

xdr
xm

)(
)( =  denote the marginal revenue from the Upfront  

market and )]~,~,~([)( ,, θω
ω

ω θω XrE
d
dm sXs =  denote the marginal value of the expected revenue from 

the Scatter market. 
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A network pays a penalty whenever the rating points sold in the Upfront market, ux , exceeds the 

realized value of the gross rating point X~ .  Let 0>op  be the penalty per rating point for over-selling 

during the Upfront market. The revenue of the network is given by: 





<−−
≥

+=
uuo

us
uuu xxforxxp

xxforxr
xrx

),(
),,,(

)()(
θω

π ,      (2) 

where, ω is given by (1). The first term in (2) represents the Upfront revenue while the second 

term represents the scatter revenue.  When uxx ≥ , the availability of rating points for Scatter sales is 

determined by equation (1). On the other hand, when uxx < , even the entire GRP realized is not 

sufficient to meet the commitments made during the Upfront. As a result the network pays a unit penalty 

cost of po on the shortfall. We assume that )0(so mp >  and )0(uo mp > . The first assumption ensures 

that a network must first honor the rating points promised during the Upfront before making any Scatter 

sales. This situation always occurs in practice as a network can reliably predict the gross rating points by 

looking at the performances of its shows during the first few weeks of any broadcast year. Moreover, 

Scatter sales occur throughout the broadcast year as Upfront contracts are being fulfilled. The second 

assumption ensures that a network cannot make money simply by over-promising in the Upfront market. 

The value of this parameter is specified in the Upfront contract. We describe the timing of the events of 

our model next. The Upfront typically occurs in the month of May, almost four months before the start of 

the broadcast season, when a network makes decisions about how much rating points to sell in the 

Upfront ( ux ). Substantial uncertainty about the GRP, X~ , exists at that point. The scatter market occurs 

throughout during the broadcast season (mid-September through May of the following year).  The 

uncertainty about the show performances during the Scatter market is much smaller when compared to 

the uncertainties of the Upfront market as the show ratings do not vary significantly during the broadcast 

year. Both the networks and the advertisers have good estimates about the rating points of shows once the 

broadcast year has begun. Moreover, though the commercial times sold in the Scatter market are priced 

based on the rating points that they are expected to deliver, they do not carry any guaranty on the rating 

points.  Therefore we assume the following timing of events in the paper. A network first decides ux  in 

the Upfront. The GRP ( X~ ) and the random parameter θ~  for the Scatter market are realized next. Finally, 

the Scatter sales are made based on the market price and available rating points. It is worth emphasizing 

that the objective of our paper is to study the amount of rating points to be sold during the Upfront. Given 

the timing of events described, we are not concerned about the dynamic allocation of rating points based 

on continuously realizable values of the GRP. 

http://dx.doi.org/10.1080/07408170802323026�
http://kuscholarworks.ku.edu/dspace/�
https://openaccess.ku.edu/OA_Benefits�


Bollapragada, Srinivas, and Suman Mallik. "Managing On-air Ad Inventory in Broadcast Television." IIE Transactions 40.12 
(2008): 1107-123.  Publisher’s official version: http://dx.doi.org/10.1080/07408170802323026. Open Access version:  
http://kuscholarworks.ku.edu/dspace/. 

Please share your stories about how Open Access to this item benefits you.  
 

11 
 

The objective of a network is to determine the amount of rating points to be sold in the Upfront 

market. A network often exhibits risk averseness while making such decisions. Broadcast networks have 

to commit to a large portion of their costs in developing the programming (entertainment shows) well 

before the broadcast season begins. By being risk averse, a network can have a large part of its revenues 

booked before the broadcast season begins. We model this behavior of the network by introducing a 

chance constraint that ensures that its revenues are greater than a pre-specified value R with a large 

probabilityψ . The problem facing a network is as follows. 

 
Problem P1 

πEzMaximize
ux

=
≥0

,          (3) 

Subject to: ψπ ≥≥=Ψ }.{Pr)( Rxu .       (4) 

 
Our objective, in this paper, is to maximize the expected profit of a network.  However, the short-term 

cost of a network is largely a fixed cost, in the form of programming development cost. In addition, the 

total cost of a network does not change with respect to our decision variable ux , the quantity of rating 

points sold in the Upfront market.  As a result, it is sufficient for us to seek a ux that maximizes the 

expected revenue.  Problem P1, thus, maximizes the expected revenue of the network subject to the fact 

that the revenue must be greater than or equal to a pre-specified value R with a probability of at least ψ .  

The chance constraint (4) models the risk-averse behavior of the network. Note that our model 

formulation in (1)-(4) does not require nu to be a decision variable. This is consistent with our observation 

in practice that the price of an Upfront deal (and hence the revenue for a network) depends only on the 

promised rating points. Equations (1) and (2) capture all constraints faced by a network for committing to 

nu airings without explicitly making nu a decision variable. Finally, it is important to note that the current 

practice in the industry is to make decisions qualitatively, rather than using any formal models.  

 

4. RESULTS AND ANALYSES 

 We begin our discussion by establishing the concavity of the expected value of the revenue 

function of the network defined by equation (2). 

 

Lemma 1: The expected revenue function πEz = , where π is defined by (2) is concave in xu, the amount 

of rating points sold during the Upfront. 
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The proof of Lemma 1, as well as those of other results, is included in the appendix. Establishing a 

desirable property like the concavity of the expected revenue helps us in our analyses throughout this 

paper.   

 We stated in the previous section that the common practice among the networks is to over-

promise rating points during the Upfront. The next proposition shows that this is an optimal strategy for 

any expected-revenue-maximizing network. 

 

Proposition 1: For any given amount of rating point sold in Upfront (xu), 

(a) it is optimal for an expected-revenue-maximizing network to allocate as few slots(nu) as possible 

during the Upfront. 

(b) the probability of a network over delivering on its promised rating points increases as the mean of Y~

increases. 

(c) the probability of a network over delivering on its promised rating points increases as the variance of 

Y~ increases if amount of rating points sold is more than the mean of Y~ ; otherwise the probability of 

over-delivery decreases with the variance of Y~ . 

 
Proposition 1(a) states that a network should promise as few slots as possible during the Upfront implying 

over-promising during the Upfront is an optimal strategy for a network. It is, indeed, a common practice 

among all six major broadcast networks to over-promise on the rating points during the Upfront season. 

The larger the amount by which a network over promises the smaller is the probability of over-delivery. 

This behavior is consistent with Proposition 1. Buyers of commercial times normally accept a certain 

amount of inflation in the promised rating points since they are compensated by extra commercials to 

make up for the shortfall in meeting the guarantees. Proposition 1(a) also implies that we have not lost 

any generality of our model by not making nu a decision variable. Propositions 1(b) and 1(c) state how the 

probability of over delivery is affected by the mean and variance of Y~ .When a network enters a 

broadcast season with many new shows, resulting in a higher variance of Y~ , the chance of leaving money 

on the table increases whenever the amount of rating points sold in the Upfront exceeds the expected 

value of  Y~ . For example, the shows “Apprentice” on NBC and “Desperate Housewives” on ABC 

performed much better than expected when they were first introduced and both networks ended up 

leaving some money on the table in their first seasons.  
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We are now ready to discuss the optimal solution of problem P1.  A brief description of a special 

case of problem P1, where we ignore the chance constraint in (4), is warranted first.  These results are 

presented in Section 4.1.  The results for the problem P1 are presented in Section 4.2. 

 
4.1 A Special Case of Problem P1 

 This sub-section considers a risk neutral firm by ignoring the constraint (4) in the 

Problem P1.  We call this as Problem P0. 

 
Problem P0 

πEzMaximize
ux

=
≥0

 

The following proposition describes our result. 

 
Proposition 2: Let ),,( θyxh denote the joint probability density function of the random variables 

X~ , )(~
uxY andθ~ . The optimal solution to problem P0 satisfies the condition: 

.)],,(),,([

)],,(),,([)()(
0

∫ ∫ ∫

∫ ∫ ∫
∞

=

∞

=

=

∞

=

−
∂
∂

−

−
∂
∂

−=

θ

θ

θθθ

θθθ

u u

u

u

xy xx
s

u

x

y xx
us

u
uouu

ddydxyxhyxxr
x

ddydxyxhxxxr
x

xFpxm

 

 
It is important for us to characterize the optimal solution for problem P0 as several of our results for 

problem P1 will depend on this quantity. Proposition 2 characterizes this optimal solution in terms of a 

critical fractile of the joint distribution of X~ , )(~
uxY , and θ~ .  We will denote this solution as 

0

*

Pux . The 

intuition behind Proposition 2 is similar to that of the newsvendor optimal quantity. The quantity 
0

*

Pux

represents the tradeoff between under- and over-delivery of the promised rating points. 

 Note that the problem P0 represents a risk neutral network. However, a network is rarely risk 

neutral in practice. As a result, the solution for problem P0 is often unable to explain the observed 

behavior of a network in practice. Since the Scatter prices, in general, are higher than the Upfront prices, 

it is optimal for a risk neutral network to sell more in the Scatter market than in the Upfront market. 

However, the exact opposite behavior is observed in practice. Problem P0, nevertheless, remains a useful 

benchmark and we will be referring to 
0

*

Pux , the optimal quantity a risk-neutral network sells in the 

Upfront, several times throughout the remainder of this paper. 
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4.2 Analysis of Problem P1 

 We will now analyze problem P1 and develop some useful properties and results. We begin our 

discussion by exploring the properties of the chance constraint in equation (4). This analysis will come in 

handy in characterizing the optimal solution of problem P1.  Using conditional probability the expression 

)( uxΨ in (4) can be written as follows. 

}Pr{}|Pr{}Pr{}|Pr{}Pr{)( uuuuu xxxxRxxxxRRx >>≥+≤≤≥=≥=Ψ πππ     

Using equations (A2) and (A5) from the Appendix, the expression for )( uxΨ can further be simplified as 

follows. 







>Ψ

≤Ψ
=Ψ

−

−

)(),(

)(),(
)(

1
2

1
1

Rrxx
Rrxx

x
uuu

uuu
u ,        (7) 

Where, 
 )}()~,~,~(Pr{)(1 uusu xrRXrx −≥=Ψ θω , and       (8) 

)/)(/(1)(2 ouuuou pxrxpRFx −+−=Ψ .      (9) 
 

The following proposition describes the structural properties of )( uxΨ . 

 
Proposition 3: In the region )(1 Rrx uu

−≥ , )( uxΨ is the largest at )(1 Rrx uu
−= . 

 

Proposition 3 describes the structure of the function )( uxΨ .  The result is quite intuitive. The quantity 

)(1 Rru
− denotes the amount of inventory a firm needs to sell to achieve the target revenue entirely from 

the Upfront market. Thus, selling more than )(1 Rru
−  amount of rating points in the Upfront does not 

increase the chance of achieving the target revenue any more. On the other hand, it might increase the 

chances of incurring a penalty for not delivering on the promised rating points. As a result, in the region 

)(1 Rrx uu
−≥ , )( uxΨ is the largest at )(1 Rrx uu

−= . Note that the result is very general in nature as we 

have not assumed anything about the distributions of the random variables X~ , )(~
uxY , or θ~  beyond the 

differentiability of respective CDFs.  Neither have we assumed anything about the specific functional 

forms for ru(.) and (.)sr beyond concavity. In addition, Proposition 3 has significant implications as stated 

by the following corollary.   
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Corollary 1:  The maximum value of )( uxΨ  lies in the region )](,0[ 1 Rru
− . Furthermore, if 

)(1

0

* Rrx uPu
−≤ , then the optimal solution for problem P1 lies in the region )](,0[ 1 Rru

− . Otherwise, the 

optimal solution for problem P1 lies in the region ],0[
0

*

Pux . 

 
The quantities 

0

*

Pux and )(1 Rru
−  play important roles in Corollary 1 as well as in our subsequent results. 

As a result, these two quantities warrant a brief discussion. The quantity  
0

*

Pux maximizes the expected 

revenue of a network (i.e. solves problem P0) by optimally balancing the over- and under-delivery of 

promised rating points. The quantity )(1 Rru
− is the amount of rating points a network needs to sell in the 

Upfront if it wishes to book the target revenue of R entirely from the Upfront sales. Our extensive 

numerical experiments using realistic values of the problem parameters suggest that the relationship 

)(1

0

* Rrx uPu
−≤ is likely to hold is practice. Intuitively, given the concave nature of the Upfront revenue 

function, booking the target revenue entirely from the Upfront will require a substantial amount of rating 

points to be sold in Upfront, which is likely to be more than the expected-revenue-maximizing quantity. 

 

When the relationship )(1

0

* Rrx uPu
−≤ holds, per Corollary 1, the optimal solution for problem P1 

lies in the region )](,0[ 1 Rru
− .  Corollary 1 allows us to restrict our searches for the optimal solution of 

problem P1 to a specific region for any arbitrary distribution of the random variables X~ , )(~
uxY , and θ~ . 

It is easy to see from the formulation of P1 that given specific distributions of X~ , )(~
uxY , and 

θ~ ,  problem P1 may not be feasible for certain combination of the parameters R and ψ.  The next 

proposition describes a sufficient condition for feasibility of problem P1, as well as an upper bound for it. 

 
Proposition 4: A sufficient condition for the feasibility of problem P1 is )1()( 11 ψ−≤ −− FRru . 

Moreover, the upper bound on the optimal solution to problem P1 is given by 

}]),([),1({
0

*11

1

*

PuuPu xRrMaxFMinx −− −≤ ψ . 

 
Proposition 4 is a useful guiding tool for any practitioner involved in the planning Upfront sales event.  It 

states that as the value of target revenue R increases, the target probability ψ must decrease. The first part 

of the proposition describes a sufficient condition for feasibility of problem P1.  The elegance of the 
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result lies in easily calculable parameters.  It is also clear from Proposition 4 that as ψ increases, R must 

decrease for P1 to remain feasible. 

 We next characterize the optimal solutions for problem P1 and develop useful properties of the 

optimal solutions. As a reader will see, our analyses explain many of the observed practices followed in 

this industry. The following Lemma is useful in characterizing the optimal solution of P1. 

 

Lemma 2: If )( uxΨ  is a decreasing function of xu at a point ux  in the region [0, )(1 Rru
− ], then it 

cannot be increasing at any uu xx ≥  in the region [0, )(1 Rru
− ]. 

 
Theorem 1 (Optimal Solution for P1): Assume problem P1 is feasible. When ψ≥Ψ )(

0

*

Pux , 

0

*

1

*

PuPu xx = .  Otherwise consider the case when: 

(a) )( uxΨ  is increasing in xu in the region [0, )(1 Rru
− ]. If )(1

0

* Rrx uPu
−≤ , then 

1

*

Pux  is given by the 

solution of the equation ψ=Ψ )(1 ux , otherwise 
1

*

Pux  solves .)(2 ψ=Ψ ux  

(b) )( uxΨ  is decreasing in xu in the region [0, )(1 Rru
− ]. If )(1

0

* Rrx uPu
−≤ , then 

1

*

Pux  is given by the 

solution of the equation ψ=Ψ )(1 ux , otherwise if ψ≥Ψ − ))(( 1 Rru , then
1

*

Pux  solves ψ=Ψ )(2 ux , else 

1

*

Pux  solves ψ=Ψ )(1 ux . 

(c) )( uxΨ  is not monotone in xu in the region [0, )(1 Rru
− ]. The optimal solution for problem P1, 

1

*

Pux , 

can be found by a bisection search.  
 
Theorem 1 characterizes the optimal solution for problem P1. Section 5 will provide ample numerical 

examples to further develop insights on the properties of the optimal solution. It is obvious that the 

optimal solutions of problems P1 and P0 are identical when ψ≥Ψ )(
0

*

Pux . This scenario is likely to 

happen when a network has not set the target revenue R and target probability ψ aggressively. When the 

cost of program development is high, a network will set a high value of the target revenue and the target 

probability. Under this scenario, the relationship ψ≥Ψ )(
0

*

Pux is unlikely to hold and the optimal 

solution of P1 depends on whether the function  )( uxΨ  is increasing or decreasing (or both) in the region 

[0, )(1 Rru
− ] as well as on the problem parameters. Lemma 2 implies that when )( uxΨ is both increasing 

and decreasing in the region [0, )(1 Rru
− ], it cannot first be decreasing and then increasing. This property 

allows us the check for whether the function  )( uxΨ  is increasing or decreasing (or both) in the region 
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[0, )(1 Rru
− ] for any given problem parameters by simply evaluating the derivative uu xx ∂Ψ∂ /)(1 at the 

two points 0=ux and )(1 Rrx uu
−= . 

Theorem 1 provides a precise quantitative guideline to a practitioner on how much inventory to 

sell during the Upfront. As described in Section 1, the practice in the industry thus far has been to make 

this decision qualitatively, based mostly on human judgments. A quantitative methodology provides an 

enormous improvement opportunity over a qualitative judgment.  A large network like NBC will typically 

book revenues worth more that $2.5 billion during the Upfront. Thus, even a one percentage point 

deviation from the optimal expected revenue will represent millions of dollars.  

Theorem 1 has additional implications as well. It is interesting to note that choosing )(1 Rrx uu
−=

will lead to a feasible solution of P1under many circumstances. For example, it is easy to see that when 

the condition of Theorem 1(a) is satisfied, choosing )(1 Rrx uu
−= will always result in a feasible solution 

of problem P1. Under the conditions of Theorem 1(b) and 1(c), choosing )(1 Rrx uu
−= will result in a 

feasible solution of P1 as long as the relationship ψ≥Ψ − ))(( 1 Rru holds. The current practice in the 

industry, as we mentioned earlier in the paper, is to make decisions qualitatively. Thus, in absence of any 

formal quantitative model, )(1 Rrx uu
−= might be an attractive choice for a practicing manager making 

decisions about Upfront inventory. In practice, many networks choose the value of the target revenue R 

such that )(1 Rru
− falls in the range of 60-80% of the expected value of the gross rating point. This might 

explain the widely observed practice of selling 60-80% of the expected value of the available inventory in 

the Upfront. In absence of a formal model, a practicing manger may also inadvertently attempt to 

maximize the probability of hitting the target revenue (i.e. maximize )( uxΨ ) instead of solving problem 

P1. This behavior might arise when the program development cost is very high and that a risk-averse 

manager would like to book a substantial part of the revenue with very high probability. It is easy to see 

that under the condition of Theorem 1(a), choosing )(1 Rrx uu
−=  will maximize the probability of hitting 

the target revenue R (i.e. maximize the function )( uxΨ ). Therefore for a network making qualitative 

decision about the Upfront inventory, )(1 Rrx uu
−= , or a value of xu around )(1 Rru

− , is an attractive 

choice not only when it is attempting to solve P1 but also when it is inadvertently attempting to maximize 

the probability of hitting the target revenue instead of solving problem P1. This might provide an 

additional explanation for the practice of selling 60-80% of the expected value of the available ad 

inventory by all six major broadcast networks. A network probably has arrived at this solution by trial and 

error. 
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How do the optimal solutions for P0 and P1 compare? The following Corollary provides an answer. 

 

Corollary 2: If )(1

0

* Rrx uPu
−≤ and )( uxΨ is an increasing function of xu in the region )](,0[ 1 Rru

− , then 

for any given set of problem parameters, 
1

*

0

*

PuPu xx ≤ .  

 

As mentioned earlier, )(1 Rru
− denotes the amount of inventory a network needs to sell to achieve the 

target revenue entirely from the Upfront market. Our numerical studies indicate that )( uxΨ  is an 

increasing function of xu unless the target revenue R is very high and the target probability ψ is small. 

Thus, the conditions of Corollary 2 are likely to be satisfied for any realistic choice of R and ψ. Under the 

assumptions of this corollary, the optimal quantity to sell in the Upfront market goes up as a network 

becomes more risk averse.   

 
Proposition 5: The maximum value of )( uxΨ  is independent of the penalty cost po. Furthermore, if 

)(1

0

* Rrx uPu
−≤  then the optimal solution of problem P1 is also independent of the penalty cost po. 

 

The discussion following Corollary 1 describes why the relationship )(1

0

* Rrx uPu
−≤ is likely to hold for 

realistic values of the problem parameters. When this relationship holds, it is interesting to note that a 

network can simply ignore the penalty cost while making its decision about Upfront inventory.  The 

intuitive explanation for this result is as follows. When )(1

0

* Rrx uPu
−≤ , by Corollary 1, the optimal 

solutions of problem P1 lies in the region )](,0[ 1 Rru
− . For any xu in this region, the relationship 

Rxr uu ≤)(  holds. The penalty cost becomes an issue for a network when the entire GRP is not enough to 

meet the rating points committed during the Upfront. Under such a situation, the Scatter revenue for the 

network is zero and the revenue of the network is no longer more than the target revenue R. This implies 

that the optimal solution of P1 cannot be dependent on the penalty cost. By Corollary 1, the maximum 

value of )( uxΨ lies in the region )](,0[ 1 Rru
− . Note from equations (7) and (8) that )( uxΨ , is 

independent of the penalty cost po in this region.  As a result, the maximum value of )( uxΨ  is also 

independent of the penalty cost.    

 

We next look at the sensitivity of the optimal solution of problem P1 with respect to a 

stronger/weaker Upfront season. Per industry terminology, the higher the Upfront price, the stronger an 
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Upfront Season. We formally define Upfront 2 to be stronger than Upfront 1 if and only if 

uuuuu xxrxr ∀≤ ),()( 21 .  The following proposition describes our result. 

 
Proposition 6: When all other parameters remain constant,

1

*

Pux is non-increasing in a stronger Upfront 

if 
0

*

1

*

PuPu xx ≥ , while it is non-decreasing in a stronger Upfront if 
0

*

1

*

PuPu xx < . 

 

Proposition 6 describes an interesting tradeoff. Given the concavity of our revenue functions for Upfront 

and scatter markets, each successive unit of inventory brings in lower marginal returns. When the 

relationship 
0

*
1

*
PuPu xx ≥ holds, a network is already selling a substantial amount (i.e. more than 

0
*

Pux ) 

of inventory in the Upfront. Thus selling more may not bring in a substantial incremental contribution. In 

addition, the stronger Upfront allows the network to achieve the same Upfront revenue of a weaker 

Upfront with less inventory. Thus, the optimal quantity to sell in the Upfront decreases in a stronger 

Upfront when 
0

*
1

*
PuPu xx ≥ . On the other hand, when 

0

*

1

*

PuPu xx < , a network is not selling a 

substantial amount of inventory in the Upfront and can take advantage of the stronger Upfront by making 

additional inventory available during the Upfront. Proposition 6, thus, represents the tradeoff between a 

strong Upfront and a decreasing marginal contribution of each additional unit of inventory. 

 Corollary 2 provides a sufficient condition for the relationship 
0

*
1

*
PuPu xx ≥ to hold. Our 

extensive numerical experimentation indicates that the relationship 
0

*

1

*

PuPu xx ≥ is likely to hold in 

practice for almost all realistic values of the target revenue R and the target probability ψ. The intuitive 

explanation for this is as follows. The quantity 
0

*

Pux is the expected revenue maximizing choice for a risk 

neutral network.  For any realistic values of the target revenue R and the probability ψ, a risk-averse 

network solving problem P1 is likely to sell more inventory in the Upfront. Our numerical experiments 

indicate that the relationship 
0

*

1

*

PuPu xx < is only likely to hold under the unrealistic scenario where the 

target revenue R is very large while the target probability ψ is small (Section 6 of the paper describes a 

numerical study to complement our analytical findings. Using the baseline parameter values from this 

study, we needed the target revenue R to be more than the optimal expected revenue of problem P0 and ψ 

< 25% in order to have 
0

*

1

*

PuPu xx < ). Proposition 6 thus implies that a risk averse network solving 

problem P1 should sell less inventory in a strong Upfront. Section 6 of our paper will elaborate on the 

managerial implications of this important finding. 
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Proposition 7: When the standard deviation of the distribution of GRP as well as all other parameters 

remains constant, the optimal solution of problem P1,
1

*

Pux , is non-increasing in the mean of the 

distribution of GRP if 
0

*

1

*

PuPu xx ≥ , while it is non-decreasing in the mean of the distribution of GRP if 

0

*

1

*

PuPu xx < . 

 
Proposition 7 describes the sensitivity of the optimal solution of problem P1 with respect to the mean of 

the gross rating point. It is worth noting that it may not always be possible to vary the mean of a 

distribution independent of its standard distribution (exponential distribution, for example). Proposition 7, 

thus, applies to only those distributions of GRP where it is possible to change the mean independently of 

the standard deviation. The intuition behind this result similar to that of Proposition 6.  When the mean of 

GRP increases while the variance is held constant, the Scatter market becomes more attractive to a 

network. Proposition 7 represents the tradeoff between decreasing marginal revenue in the scatter market 

and an attractive scatter market. When 
0

*

1

*

PuPu xx ≥ , the network is making less inventory available in 

the scatter market (as it is selling a substantial amount in the Upfront). Thus, making more inventory 

available in the scatter market (by reducing 
1

*
Pux ) allows a network to take advantage of the attractive 

scatter market without a substantial reduction in marginal revenue. However, the opposite effect becomes 

more dominant when 
0

*

1

*

PuPu xx <  and a network reduces the inventory availability in the scatter market 

by selling more in the Upfront. It is hard to analytically characterize the sensitivity of the optimal solution 

of P1 with respect to the standard deviation of the GRP when all other parameters are held constant. Our 

numerical study described in Section 5 will provide insights on this. Finally, it is worth mentioning that 

the sensitivity behavior of the optimal solution of problem P1 with respect to the mean of the random 

parameter θ~ when its standard deviation is held constant is similar to that of the mean of gross rating 

point as long as a higher realization of θ is associated with higher scatter revenue, i.e., 0/ ≥∂∂ θsr . The 

proof of this result is similar to that of Proposition 7. 

 

 Section 4 describes the analytical solution of problem P1.  Our analysis throughout this section 

indicates that the two quantities )(1 Rru
−  and 

0

*

Pux play very important roles in our model. The former of 

the two denotes the amount of inventory a firm needs to sell to achieve the target revenue entirely from 
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the Upfront market, while the later denotes the optimal inventory a risk-neutral network sells in the 

Upfront. The next section presents a numerical study to complement our analytical findings. 

 

5. NUMERICAL STUDY 

In this section we present a numerical study to complement our analytical findings. We use the following 

revenue functions for the Upfront and Scatter markets throughout this Section: 

)003.01()( uuuuu xxpxr −=  and )004.01.().,~(~),,~(~ ωωθθω −= XpXr ss , where, pu and (.)~
sp  are the 

Upfront and the Scatter prices respectively. Note that consistent with our discussion earlier, the Scatter 

price (.)~
sp  depends both on the gross rating point and the random environmental parameter θ. We 

choose ))~(/~(9.0)(~ XEXxxY uu = which implies that the network over promised ratings by 10% on 

average (since uxYE 9.0)~( = ). All random variables in our model are assumed to follow normal 

distributions. We use the following values as the baseline parameters in our numerical study. 

pu = 100,  po = 140, ψ = 90%, 100)~( =XE , SD( X~ ) = 10, 
)~(

)~(~
.3115)~(

XSD
XEXpE s

−
+= , SD( sp~ ) = 35, 

R = 6000, 6500, and 7000.  

 
Our numerical study explores the optimal solution to problem P1 and its sensitivity with respect 

to various problem parameters not discussed in our analytical study. We solved problem P1 using 

MATLAB. We computed the optimal value of xu using simulation as follows. We first generated 

100,000 instances for each of the random variables X~ and (.)~
sp . Using these values we computed the 

expected revenue, z and the probability that the revenue is greater than the target value R for a chosen 

value of xu. By varying the value of xu, we compute z and (.)Ψ  as a function of xu. The value of xu for 

which z is maximized is the solution for problem P0. The value of xu for which the function ψ≥Ψ )( ux  

and z is maximized is the optimal quantity to sell in the Upfront market for problem P1.  

The remainder of this Section is organized as follows. Section 5.1 discusses the sensitivities of 

the optimal solution and the optimal objective function values of problem P1 with respect to various 

problem parameters. Section 5.2 studies the robustness of the expected revenue with respect to the 

inventory decisions in the Upfront market.  

 
5.1 Sensitivity of the Optimal Solution of P1 with respect to Problem Parameters 

 Figures 1(a), 2(a), and 3(a) describe the optimal solution of problem P1 under various 

representative values of the problem parameters. Recall that the mean of the distribution of the gross 
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rating point is set to 100 as our baseline parameter. As a result, the value of optimal amount of inventory 

to sell in these figures is also the percentage of inventory to sell in the Upfront. These figures give a 

reader an idea about the optimal percentage of inventory to sell during the Upfront under various 

representative parameter values. Figures 1(a) and 1(b), respectively, describe the sensitivity of the optimal 

solution of P1, 
1

*

Pux , and its optimal objective function value z* with respect to the standard deviation of 

the scatter price for different values of the target revenue R.  Here we vary the standard deviation of the 

scatter price from 5 to 50, while all other parameters remain constant at their respective baseline values. 

The two figures confirm the intuition that as the standard deviation of the scatter price increases, the 

scatter market becomes less attractive to a network resulting in an increase in the optimal quantity to sell 

during the Upfront and a decrease in the optimal expected revenue. Figures 2(a) and 2(b), respectively, 

describe the sensitivity of the optimal solution of P1 and its optimal objective function value with respect 

to the mean of the scatter price, 
spµ . As the mean of Scatter price increases while all other parameter 

remains constant, the Scatter market becomes more attractive to a network.  As a result, the optimal 

solution of P1 is non-increasing in the mean of Scatter price (Figure 2a). Figure 2(b), expectedly, shows 

that the optimal objective function value for both problem P1 increase as mean of the scatter price 

increases. We summarize our discussion so far in the following Observation. 

 
Observation 1: When all other parameters are held constant, the optimal solution of problem P1 is non-

increasing with respect to the mean of the scatter price and non-decreasing with respect to the standard 

deviation of the scatter price. 

 
 We next look at the sensitivity of the optimal solution of problem P1 with respect to the standard 

deviation of the distribution of the gross rating point X~ . Proposition 7 describes the sensitivity of the 

optimal solution of problem P1 with respect to the mean of the gross rating point. Therefore, it is 

sufficient for us to study the sensitivity with respect to the standard deviation here.  Figures 3(a) and 3(b), 

respectively, describe our results for the optimal solution and the optimal objective function values.  The 

intuition behind Figure 3(a) is quite interesting. When the target revenue is high (R = 7000), as the 

standard deviation of the gross rating point increases, it becomes more and more difficult to satisfy the 

chance constraint in (4) with smaller values of xu; resulting in an increase in  the optimal solution of 

problem P1.  On the other hand, when the target revenue is small, a network may be able to satisfy the 

chance constraint in (4) with small values of xu as the standard deviation of the gross rating point 

increases. As a result, the optimal solution of P1 goes down. In this scenario, leaving money on the table 
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by over-delivering on the promised rating points becomes an issue and a network tries to reduce this by 

selling less rating points in the Upfront. 

 
Observation 2: When all other parameters are held constant,  the optimal solution of problem P1 is  non-

increasing in the standard deviation of the GRP distribution for smaller values of the target revenue R 

while it is non-decreasing in the standard deviation  of the GRP distribution for higher values of R. 

 

5.2 Computation of Expected Revenues under Different Scenarios 

 Our objective in this sub-section is two-fold. First, we would like to characterize the value of 

using both the Upfront and the Scatter market to a network. To accomplish this, we will compare the 

optimal expected revenue of problem P1 with the expected revenue when a network makes no inventory 

available in the Upfront. Second, we will study the robustness of expected revenue with respect to the 

inventory decisions made during the Upfront. 

 Consider a scenario where a network sells all of its airtime in the Scatter market. Clearly, the 

expected revenue of a network selling all airtime in the Scatter market is )]~,~,~([,, θωθω XrE sX . We 

calculated the value of this expression using the revenue functions and the problem parameters described 

at the beginning of Section 5. Figure 4(a) compares the optimal expected revenue of P1 to the expected 

revenue from selling everything in the Scatter market as a function of the mean of GRP distribution. As 

seen from the plot, the optimal expected revenues of problem P1 is higher than the expected revenue from 

an all-Scatter sale for all values of the mean of GRP distribution. The result is intuitive. When a network 

makes its entire inventory available in the Scatter market, because of the concavity of the revenue 

function, the scatter price falls, resulting in a reduction of the expected revenue for the network. On the 

other hand, by selling a considerable part of the inventory in the Upfront (in problem P1), a network 

effectively restricts the supply in the Scatter, resulting in a higher Scatter price and a higher total expected 

revenue. This result holds for all values of mean of the GRP distribution studied. Figures 4(b) and 4(c), 

respectively, compare the optimal expected revenue of P1 to the expected revenue of selling everything in 

scatter as a function of the standard deviation of the GRP distribution and the mean of the scatter price 

distribution. The intuition behind these figures is identical to that behind Figure 4(a). Figures 4(a)-(c) 

suggest that a using both the Upfront and the Scatter market results in a higher expected revenue for 

network than using the scatter market alone. The concave nature of the revenue functions contribute to 

this result. Finally, Figure 5 describes how the expected revenue deviates from its optimal value as the 

Upfront inventory changes from its optimal value. 

 We have described the optimal solution of problem P1 under the assumption of Normal 

distribution. Our findings complement our analytical findings by describing the sensitivity of the optimal 
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solution of P1 with respect to various problem parameters.   Our extensive numerical experiments also 

involved repeating all calculations under the assumption that both ),~(~ θXps  and X~  follow the beta 

distribution.  These results are qualitatively similar to those of the Normal Distribution and are available 

from the authors under request. We have also tested the robustness of our numerical findings using 

exponential revenue functions of the following form: )exp()( 1 uuuuu xxpxr γ−= , and 

0,),exp(.).,~(~),,~(~
212 >−= γγωγωθθω XpXr ss , under normal and beta distribution assumptions.  

The results are again qualitatively similar and that Observations 1 and 2 continue to hold. 

 
 

6. SUMMARY AND MANAGERIAL IMPLICATIONS 

Allocating the inventory of commercial rating points between the Upfront and the Scatter markets 

is an important decision facing any broadcast television network.  The Upfront market represents a sizable 

proportion of the total advertising revenue for a television network.  In this paper, we studied the problem 

of optimal inventory allocation between the Upfront and the Scatter markets.  We proposed an 

optimization model with a chance constraint that explicitly incorporated the performance uncertainty of 

the television shows as well as the revenue uncertainty of the Scatter market. Starting with a very general 

framework, we derived the structural properties of the optimization problem and characterized the optimal 

solution. We discussed several useful properties of the optimal solution including its sensitivity with 

respect to a stronger Upfront, and the mean of the distribution of the gross rating point. We also address 

the issue of over-delivering on the promised rating points. Our numerical study complements our 

analytical findings and provides additional sensitivity results of the optimal solution of problem P1. Our 

work has the following implications for managers. 

 Our work represents the first attempt to bring quantitative methodologies in planning the Upfront 

event for a television network.  The current practice in the industry is to make decisions based on 

qualitative human judgments. In line with our observation in the industry, we incorporated the risk-

averseness of a network by including a chance constraint. Our work provides both descriptive and 

prescriptive implications for a manager involved in planning the Upfront event for a network. 

 Our model (Theorem 1) provides specific prescriptive recommendations to a manager on the 

amount of rating points to sell during the Upfront while specifically taking into account the risk 

preference of the network. A quantitative methodology provides an enormous improvement opportunity 

over a qualitative judgment.  A large network like NBC will typically book revenues worth more that $2.5 

billion during the Upfront. Thus, even a one percentage point deviation from the optimal expected 

revenue will represent millions of dollars. This underscores the importance of using quantitative 
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methodologies in making the decisions for Upfront inventory. On the descriptive side, our model provides 

an explanation for the widely observed practice of selling 60-80% of the total inventory during the 

Upfront event. The discussion following Theorem 1 shows that choosing )(1 Rrx uu
−= results in a feasible 

solution to Problem P1 under many circumstances.  In addition, this choice might maximize the 

probability of hitting the target revenue R (i.e. maximize the function ))( uxΨ . In absence of a formal 

model, a risk-averse manager might inadvertently do this instead of solving P1. This might explain why it 

is common for all six major broadcast networks to sell 60-80% of the total inventory during the Upfront. 

We also show in Proposition 5 that when )(1

0

* Rrx uPu
−≤ , the optimal solution of problem P1 is 

independent of the penalty cost. This is a useful insight for a manager planning the Upfront event. This 

might explain why a network is often more concerned about leaving money on the table by over-

delivering on the promised rating points than paying penalty for falling short on the promised rating 

points. 

Per Proposition 7, the optimal amount of rating points to sell in Upfront increases as the mean of 

GRP decreases as long as the relationship 
0

*

1

*

PuPu xx ≥  holds. We have discussed following Proposition 

6 that the relationship 
0

*

1

*

PuPu xx ≥ is likely to hold for any realistic choices of the target revenue and the 

target probability. NBC, facing a 17% rating slump during the 2004 broadcast year, sold only 70% of the 

inventory during the Upfront of 2005, while it sold about 83% during the Upfront of 2004 (Higgins, 

2005). Proposition 7 suggests that this might, indeed, have been a good strategy for NBC. 

Not all shows of a network are entirely new in any broadcast year.  Popular shows often run over 

multiple seasons.  The famed show “Seinfeld”, for example, ran for nine broadcast seasons.  There are 

other examples in recent years (CBS in 2004-2005 broadcast year) when a network started a new 

broadcast year with a stable line up of hit shows and only a few new shows.  Under such a circumstance, 

a network will have a very good estimate of the mean and standard deviation of the GRP (high mean, low 

standard deviation) and will set a high value of target revenue R. Per Observation 2, for a high value of 

target revenue, the optimal Upfront inventory should decrease as the standard deviation of GRP 

decreases, while per Proposition 7, the optimal Upfront inventory should decrease as the mean of GRP 

increases as long as the relationship 
0

*

1

*

PuPu xx ≥  holds.   Therefore, a network with a stable lineup of 

hit shows will make lesser amount of the ad inventory available for the Upfront market.  The buyers, on 

the other hand, will be highly interested in buying commercial times on such a network.  Given our 

concave revenue functions, a network will command a higher Upfront price.  This was the case with CBS 

during the Upfront market of 2004.  We quote from a The Wall Street Journal (Steinberg, 2004). 
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According to a person familiar with the matter, CBS expects to secure about $2.4 billion in 
advertising commitments for its coming prime-time schedule, up from about $2.2 billion in 2003. 
CBS was able to convince marketers to pay double-digit percent increases in the price it charges 
to reach 1,000 viewers, while UPN was able to secure price increases in the 9% range, the person 
said. 

 
An article in Television Week (Lafayette and Friedman, 2004) provides further details about why CBS 

was able to negotiate double-digit percent increases in Upfront price. We again quote. 
 

Coming off a strong season and with a stable programming lineup enhanced by a third edition of its 
“CSI” franchise, CBS was waiting to do deals that would bring the double-digit price increases that 
CBS Television President Leslie Moonves talked about before the Upfront began. 

 
The Fox network also faced a similar situation recently. Fox sold less inventory during the Upfront of 

2005 (Steinberg, 2005) after leading all networks among 18- to 49-year-old viewers for the season 2004-

2005 (Grego and Lisotta, 2005). This is, again, consistent with problem P1 as long as the relation 

0

*

1

*

PuPu xx ≥ holds. Our work, thus, not only explains the observed behavior in the industry, but also 

provides specific quantitative recommendations on quantity to sell during the Upfront season for various 

“what-if” scenarios. 

We mentioned in Section 1 that facing an uncertain Scatter after the slow Upfront seasons of 

2001 and 2002, each of the six major broadcast networks sold between 85% and 90% of total ad 

inventory during the strong Upfront season of 2003 (Chunovic, 2003). Similarly, when ABC negotiated a 

4-6% hike in the Upfront price in 2005 over 2004, it sold between 78% and 83% of the total ad inventory 

in 2005, as opposed to 75-80% during the Upfront of 2004 (Steinberg, 2005). Thus, it appears that several 

networks pursued the policy of selling more in a strong Upfront. Per Proposition 6, this cannot be a 

universally optimal strategy. In fact, Proposition 6 underscores that for any reasonable and realistic values 

of the problem parameters, a network should sell less in a strong Upfront. Our analyses provide specific 

quantitative recommendations on when to sell more in a strong Upfront and how much inventory to make 

available in a stronger/weaker Upfront. This can, again, be useful guiding tool for a practicing manager.   

Proposition 1 of our paper states that the probability of leaving money on the table increases as 

the show performances become hard to predict. It happens when a network enters a broadcast season with 

new shows. Under such a situation, per Figure 3(a), it is optimal for a revenue-maximizing network to sell 

more in the Upfront only if the target revenue is set very aggressively. Otherwise, a firm should sell less 

during the Upfront.  This was the case with ABC during the Upfront of 2004 when it underestimated the 

impact of the first seasons of the shows “Desperate Housewives” and “Lost” and sold more inventory in 

the Upfront, leaving money on the table. Our suspicion is that ABC probably did not set its target revenue 

very aggressively, which made the practice of selling more in the Upfront sub-optimal per Figure 3(a). 

http://dx.doi.org/10.1080/07408170802323026�
http://kuscholarworks.ku.edu/dspace/�
https://openaccess.ku.edu/OA_Benefits�


Bollapragada, Srinivas, and Suman Mallik. "Managing On-air Ad Inventory in Broadcast Television." IIE Transactions 40.12 
(2008): 1107-123.  Publisher’s official version: http://dx.doi.org/10.1080/07408170802323026. Open Access version:  
http://kuscholarworks.ku.edu/dspace/. 

Please share your stories about how Open Access to this item benefits you.  
 

27 
 

The Wall Street Journal commented, “ABC learned last year that it pays to take risks in programming” 

(Steinberg, 2005).  

Selling commercial times through the Upfront and the Scatter markets has been the common 

practice since the 1970s. Our numerical results discussed in Section 5.2 indicate that this process is indeed 

valuable to a risk-averse network. In addition to booking a significant chunk of revenues from the Upfront 

market, this two-stage selling process allows a network to derive higher expected revenue compared to 

selling everything in the scatter market. The advertisers and media buyers too find this process to be 

attractive as it allows them to purchase commercial times with guaranteed rating points at a price which is 

often lower than the Scatter market price. Thus, by selling the bulk of the available inventory in the 

Upfront, a network is probably helping to build strong customer relationship as well.  

Our work adds to the growing stream of literature in operations management that studies 

uncertainty in various forms.  The distinguishing feature of our model is the dual uncertainty regarding 

the Scatter revenue and the gross rating point.  Our results are distribution-independent and remain valid 

for any distributions of the Scatter revenue and the gross rating point.  Our models make important 

contributions to the operations management literature by extending the revenue management framework 

to random supply problems. In addition, it provides explanations for the current practices in the broadcast 

television industry and a new quantitative tool to the TV Networks in planning for Upfront market.  To 

the best of our knowledge, no other paper has looked at the dynamics of selling rating points in the 

broadcast television industry before.   

Like any other work in operations management, our work is not free from assumptions.  We have 

assumed concave revenue functions. This assumption is reasonable and is consistent with price-dependent 

demand functions. Our current work focuses on the decision problem faced by a single firm only. 

Studying the strategic interactions between firms at the Upfront and Scatter markets in a game theoretic 

context would be a useful extension of our current work. 
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APPENDIX : PROOFS OF RESULTS 
 
Proof of Lemma 1 
For notational convenience, let us write )~,~,~;()( ,,,, θπ θθ YXxqExrEz uYXuuYX +== . Using 
equations (1) and (2), clearly, 
 









<−−
≥≥−
<≥−

=

uuo

uus

uuus

u

xxforxxp
xyxxforyxxr
xyxxforxxxr

yxxq
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,),,,(
,),,,(

),,;( θ
θ

θ . 

 
We want to establish the concavity of z with respect to xu. Given )( uu xr is concave in  xu, and that 
the expectation operator preserves concavity (see, for example, proof of Theorem 1 in Fisher and 
Raman, 1996), it is sufficient to establish the concavity of ),,;( θyxxq u with respect to xu. 
Consider two values of xu, 1ux and 2ux , with 21 uu xx < . Depending upon the random variables X~   
and Y~ the following six scenarios are possible. 
1. 21 , uu xxx ≥ ; 21 , uu xxy ≥  
2. 21 , uu xxx ≥ ; 21 uu xyx ≤≤  
3. 21 , uu xxx ≥ ; 21 , uu xxy <  
4. 21 uu xxx ≤≤ ; 21 uu xyx ≤≤  
5. 21 uu xxx ≤≤ ; 21 , uu xxy ≤  
6. 21 , uu xxx <  
We will show that ),,;( θyxxq u is concave in each of the six scenarios described above. Consider 
Case 2 above for example.  

),,;( 1 θyxxq u = =−≥− ),,(),,( 2 θθ uss xxxryxxr ),,;( 2 θyxxq u . 

0
),,;(

1

=
∂

∂

= uu xxu

u

x
yxxq θ , as yxu ≤1  

        
2

),,(

uu xx

s xr

=∂
∂

−≥
ω

θω
, as rs(.) is increasing in ω  

        
2

),,;(

uu xxu

u

x
yxxq

=
∂

∂
=

θ  

Therefore, ),,;( 1 θyxxq u  is concave in xu. The proofs for other five cases are similar. 
 
Proof of Proposition 1 
(a) We want to show that for a given ux , if 

21 uu nn ≤ then 21 ππ EE ≥ , where π is the revenue of a 

network as defined in equation (1). We will let 1
~Y and 2

~Y denote the GRP realized in 
1un and 

2un slots 

respectively. Given 
21 uu nn ≤ , the random variable 2

~Y is stochastically larger than the random variable 1
~Y
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. (note that we will use the standard definitions of stochastic dominance, as given in any standard 

stochastic processes textbook. See, for example, p. 404 of Stochastic Processes by Sheldon Ross, 2nd 

Edition, John Wiley, 1996). Therefore, for any given X~ , 1
~~ YX − is stochastically larger than 2

~~ YX − . 

Using Proposition 9.1.2 on p. 405 of Stochastic Processes by Sheldon Ross, 2nd Edition, and noting that 

)(ηsr is an increasing function of η for any realization of sr~ , the following relationship holds for any 

realization of sr~ . )]~~([)]~~([ 21 YXrEYXrE ss −≥− . From equation (1), this implies that 21 ππ EE ≥ . 

(b) Let µ and σ denote the mean and the SD of Y~ . Define σµε /)~(~ −= Y . 
Prob. of over-delivery = )/)((1}/)(~Pr{}~Pr{ σµσµε ε −−=−>=> uuu xFxxY . Therefore, the 
probability of over-delivery increases as µ increases or as σ increases and µ≥ux . 
 
 
 
Proof of Proposition 2 
By Lemma 1, the expected revenue is concave. Therefore, the first-order conditions are sufficient to 
characterize the optimal solution of P0. Using equations (1), (2), 
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We get the condition for Proposition 1 by letting 0=
∂
∂

ux
z

. 

 
Proof of Proposition 3 
We will consider the two cases uxy < and uxy ≥  separately and show that Proposition 3 holds for both 

cases. Consider uxy ≥  first. Note that uxy ≥ implies uxX >
~  and that no penalty will be incurred under 

this scenario. Therefore,  
})~,~,~()(Pr{}Pr{)( RXrxrRx suuu ≥+=≥=Ψ θωπ .       (A2) 

Clearly, 1))(( 1 =Ψ − Rru , indicating )( uxΨ is maximum at )(1 Rrx uu
−= . Next consider the case uxy < . 

Using conditional probability under this condition, 
}Pr{}|Pr{}Pr{}|Pr{}Pr{)( uuuuu xxxxRxxxxRRx >>≥+≤≤≥=≥=Ψ πππ ,     

)}(1{}|),,()(Pr{)(}|)()(Pr{ u

B

usuuu

A

uuouu xFxxRxrxrxFxxRxxpxr −>≥++≤≥−−=
    

θω . (A3) 

Note that at )(1 Rrx uu
−= , the term A above is zero, while the term B is one.  Therefore, 

 ))((1))(( 11 RrFRr uu
−− −=Ψ .          (A4) 

When )(1 Rrx uu
−≥ , the term B in (A3) is equal to one. Therefore, from (A3):  

)(1)(}|)()(Pr{)( uuuuouuu xFxFxxRxxpxrx −+≤≥−−=Ψ  
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)(1},)()(Pr{ uuuouu xFxxRxxpxr −+≤≥−−=  
)(1},/)(/Pr{ uuouuuo xFxxpxrxpRx −+≤−+≥=  

)(1)/)(/()( uouuuou xFpxrxpRFxF −+−+−=  
)/)(/(1 ouuuo pxrxpRF −+−=        (A5) 

))(())((1 11 RrRrF uu
−− Ψ=−≤ , as oouuuu pRpxrxRr //)()(1 +−<−  

Note that when )(1 Rrx uu
−> ,the assumption )0(so mp >  and the concavity of (.)ur together imply 

oouuuu pRpxrxRr //)()(1 +−<− . Therefore, for )(1 Rrx uu
−≥ , )( uxΨ is maximum at )(1 Rrx uu

−= . 
 
Proof of Corollary 1 
It obvious from Proposition 3 that the maximum value of )( uxΨ  lies in the region )](,0[ 1 Rru

− .  By 

Lemma 1 the objective function of problem P1 is concave and is maximized at 
0

*

Pux .  Therefore, when 

)(1

0

* Rrx uPu
−≤ , by Proposition 3, )](,0[ 1

1

* Rrx uPu
−∈ . A similar argument can be made for the case 

)(1

0

* Rrx uPu
−> . 

 
Proof of Proposition 4 
Consider the two cases uxy < and uxy ≥ separately. When uxy ≥ , from the proof of Proposition 3,  

ψ≥=Ψ − 1))(( 1 Rru . Therefore, P1 is always feasible. Next consider the case uxy < . Using (A4), If 

ψ≥−=Ψ −− ))((1))(( 11 RrFRr uu  then problem P1 is feasible.  Rearranging terms in this inequality, we 
get the stated sufficient condition for feasibility of P1. We next look at the upper bound of P1. When 

uxy ≥ , from (A1), 

)(1}~Pr{)}()~,~,~(,~Pr{

)}()~,~,~(Pr{)}()~,~~,~(Pr{)(

uuuuusu

uuusuusu

xFxXxrRxXXrxX

xrRxXXrxrRYXXrx

−=>≤−≥−>=

−≥−≤−≥−=Ψ

θ

θθ
  (A6a) 

When uxy < , the first term in the expression of )( uxΨ  in (A3) is zero.  Thus,  
)}(1}{|)(~)(Pr{)( uuusuuu xFxxRxxrxrx −>≥−+=Ψ )(1 uxF−≤     (A6b) 

Any feasible solution to P1 must satisfy: 
 ψ≥Ψ )( ux .             (A7) 

Combining (A6a), (A6b), and (A7) we get, ψ≥− )(1 uxF  or )1(1

1

* ψ−≤ −Fx
Pu .   

From Corollary 1, )}](,max{,0[ 1

0

*

1

* Rrxx uPuPu
−∈ . Combining these two results, we get the desired 

result. 
 
Proof of Lemma 2 
Using the notation from the proof of Lemma 1, }),,;()(Pr{}Pr{)( RyxxqxrRx uuuu ≥+=≥=Ψ θπ . 
We have established in the proof of Lemma 1 that ),,;( θyxxq u is concave in ux . By assumption, )( uu xr
is also concave in ux . Therefore, ),,;()()( θπ yxxqxrx uuuu += is concave in ux , implying that if 

)( uxπ is decreasing at uu xx = then it cannot be increasing at any uu xx ≥ . To see that the same 
result holds for }Pr{)( Rxu ≥=Ψ π , consider two values of ux , ux and ε+ux , with 0>ε  and 
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assume that )( uxΨ is decreasing at uu xx = . Given )( uxΨ is decreasing, it follows that )( uxπ is 
decreasing as well at uu xx = . Therefore,  

}),,;()(Pr{)( Ryxxqxrx uuuu ≥+=Ψ θ  
 = }),,;()(Pr{ RKyxxqxr uuu ≥++++ θεε ,where K is a constant, as )()( uu xx πεπ ≤+  
 )(}),,;()(Pr{ εθεε +Ψ=≥+++≥ uuuu xRyxxqxr , as adding a constant leads to first 

order stochastic dominance. 
 
Proof of Theorem 1 
It is obvious that 

0

*

1

*

PuPu xx = when ψ≥Ψ )(
0

*

Pux  

(a). Assume ψ<Ψ )(
0

*

Pux and that )( uxΨ  is increasing in xu in the region [0, )(1 Rru
− ].  By 

Proposition 3, in the region )(1 Rrx uu
−> , )( uxΨ is maximum at )(1 Rrx uu

−= . Therefore, for 
feasibility of P1 we must have ψ≥Ψ − ))(( 1 Rru . Given the concavity of the objective function, it 

is easy to see that 
1

*

Pux  solves ψ=Ψ )(1 ux  when )(1

0

* Rrx uPu
−≤ while it solves ψ=Ψ )(2 ux  

when )(1

0

* Rrx uPu
−> .  

(b). The proof for part (b) is similar to that of part (a), and hence is omitted. 
(c). Follows directly from Lemma 2 
 
Proof of Corollary 2 
When )(1

0

* Rrx uPu
−≤ , if there exists an 

0

*

Puu xx < for which ψ≥Ψ )( ux , then ψ≥Ψ )(
0

*

Pux  as well 

and that 
0

*

1

*

PuPu xx = . If ψ<Ψ )(
0

*

Pux , then 
0

*

1

*

PuPu xx > .  

 
Proof of Proposition 5 
It follows from Corollary 1 that the maximum value of )( uxΨ  lies in the region [0, )(1 Rru

− ]. 
Observe from the expression of )( uxΨ in (8) that it is independent of the penalty cost po in this 

region. Look at the optimal solution of problem P1 next. If possible, let 
1

*

Pux be dependent on po. 

When )(1

0

* Rrx uPu
−≤ , by Theorem 1, any optimal solution of P1 must satisfy )(1

1

* Rrx uPu
−≤ , 

implying the condition Rxr uu ≤)( must be satisfied. When uxx ≤ , a penalty is incurred. Under 
such a situation the total revenue of the network must be less than )( uu xr , which in turn is less 
that R. Therefore, the constraint ψ≥Ψ )( ux  can no longer be satisfied under this scenario. 

Therefore, 
1

*

Pux must be independent of the penalty cost po. 
 
 
Proof of Proposition 6 
It is easy to see from (A2) that )( uxΨ  is increasing in a stronger Upfront. Note that for any arbitrary 

distribution of X~ , the first term in (A3)is increasing in a stronger Upfront.  Similarly, for any arbitrary 
distributions of (.)~

sr  and X~ , the second term in (A3) is also increasing in a stronger Upfront.  Therefore, 
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)( uxΨ  is increasing in a stronger Upfront. This allows smaller values of *
ux , closer to 

0

*

Pux , to become 

an optimal solution of P1 when 
0

*

1

*

PuPu xx ≥ . As a result, 
1

*

Pux is non-increasing in a stronger Upfront. 

A similar argument can be made for the 
0

*

1

*

PuPu xx < . 

 
Proof of Proposition 7 

Increasing the mean of a random variable while keeping its variance constant is simply 
equivalent to adding a constant positive term to it. This gives rise to first order stochastic 
dominance. Thus, for any random variable X and any constant a, )(1}Pr{ aFaX −=≥ increases 
as the mean of X increases while its variance is held constant. This implies that )(2 uxΨ increases 
as the mean of X~  increases while its variance is held constant. Given rs(.) is an increasing 
function of x, )(1 uxΨ also increases as the mean of X~  increases while its variance is held 

constant. Consider the case )(1

0

* Rrx uPu
−≤ and )(1 uxΨ  is increasing in ux . Under this scenario, 

by Theorem 1, the optimal solution of P1 is given by the ψ=Ψ )(1 ux and that the relationship 

0

*

1

*

PuPu xx ≥ holds. In this case, as the mean of X~  increases, (.)1Ψ also increases. Therefore, the 

solution of ψ=Ψ )(1 ux  decreases implying 
1

*

Pux is also non-increasing in the mean of X~ when its 

variance is held constant. A similar analysis can be done for the three additional cases involving 
whether )(1 uxΨ  is increasing in ux  and whether the relationship )(1

0

* Rrx uPu
−≤ holds. In each of 

these three cases, 
0

*

1

*

PuPu xx < and that 
1

*

Pux is also non-decreasing in the mean of X~ when its 

variance is held constant. This proves our result. 
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  Figure 1(a): Sensitivity of 

1

*

Pux wrt psσ          Figure 1(b): Sensitivity of z*wrt psσ  

 
 

 
Figure 2(a): Sensitivity of 

1

*

Pux wrt psµ      Figure 2(b): Sensitivity of z*wrt psµ  

 
 

 
Figure 3(a): Sensitivity of 

1

*

Pux wrt Xσ      Figure 3(b): Sensitivity of z*wrt Xσ  
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Figure 4(a): Expected revenue as a function of Xµ     Figure 4(b): Expected revenue as a  
           function of Xσ  
 

 

 
Figure 4(c): Expected revenue as a function of psµ   Figure 5: % deviation from optimal  
                  expected revenue with respect to change in xu 
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