
A POS Tagging Approach to Capture Security

Requirements within an Agile Software Development

Process

Annette Tetmeyer

Submitted to the graduate degree program in Electrical

Engineering and Computer Science and the Graduate

Faculty of the University of Kansas in partial

fulfillment of the requirements for the degree of Master

of Science.

Committee Members: ________________________

 Dr. Hossein Saiedian

 Professor and Thesis Adviser

 Dr. Arvin Agah

 Professor

 Dr. Prasad Kulkarni

 Associate Professor

 Date Defended ___________

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213401704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

The thesis committee for Annette Tetmeyer certifies that this is the approved version

of the following thesis:

A POS Tagging Approach to Capture Security Requirements

within an Agile Software Development Process

Committee Members: ________________________

 Dr. Hossein Saiedian

 Professor and Thesis Adviser

 Dr. Arvin Agah

 Professor

 Dr. Prasad Kulkarni

 Associate Professor

 Date Approved ___________

iii

Abstract

Software use is an inescapable reality. Computer systems are embedded into devices

from the mundane to the complex and significantly impact daily life. Increased use

expands the opportunity for malicious use which threatens security and privacy.

Factors such as high profile data breaches, rising cost due to security incidents,

competitive advantage and pending legislation are driving software developers to

integrate security into software development rather than adding security after a

product has been developed. Security requirements must be elicited, modeled,

analyzed, documented and validated beginning at the initial phases of the software

engineering process rather than being added at later stages. However, approaches to

developing security requirements have been lacking which presents barriers to

security requirements integration during the requirements phase of software

development. In particular, software development organizations working within short

development lifecycles (often characterized as agile lifecycle) and minimal resources

need a light and practical approach to security requirements engineering that can be

easily integrated into existing agile processes.

In this thesis, we present an approach for eliciting, analyzing, prioritizing and

developing security requirements which can be integrated into existing software

development lifecycles for small, agile organizations. The approach is based on

identifying candidate security goals, categorizing security goals based on security

principles, understanding the stakeholder goals to develop preliminary security

requirements and prioritizing preliminary security requirements. The identification

iv

activity consists of part of speech (POS) tagging of requirements related artifacts for

security terminology to discover candidate security goals. The categorization activity

applies a general security principle to candidate goals. Elicitation activities are

undertaken to gain a deeper understanding of the security goals from stakeholders.

Elicited goals are prioritized using risk management techniques and security

requirements are developed from validated goals. Security goals may fail the

validation activity, requiring further iterations of analysis, elicitation, and

prioritization activities until stakeholders are satisfied with or have eliminated the

security requirement. Finally, candidate security requirements are output which can

be further modeled, defined and validated using other approaches. A security

requirements repository is integrated into our proposed approach for future security

requirements refinement and reuse. We validate the framework through an industrial

case study with a small, agile software development organization.

v

Acknowledgements

I would like to thank the members of my committee, Dr. Arvin Agah and Dr. Prasad

Kulkarni, for their time and assistance during this undertaking. I have had the

opportunity to take classes with both of them and appreciate the time, expertise and

enthusiasm that they contribute to students.

I would especially like to thank Dr. Hossein Saiedian for his support,

instruction and mentoring over the past few years. His impressive knowledge,

commitment to quality and exceptional work ethic drive those of us who have had the

chance to work with him to improve ourselves. I don't know how he does it but am

very grateful that I have had the opportunity to pursue my academic endeavors with

his exceptional guidance.

vi

Table of Contents

Abstract ... iii

Acknowledgements ... v
Table of Contents ... vi
List of Tables .. viii
List of Figures ... ix
1 Introduction ... 1

 Problem Statement .. 2 1.1

 Significance... 3 1.2

 Research Methodology ... 8 1.3

 Thesis Organization .. 9 1.4

2 Survey of Software Security Requirements Approaches 10
 Best Practices and Enumerations .. 14 2.1

2.1.1 SSDL TouchPoints .. 14

2.1.2 OWASP Cheat Sheets and Enterprise Security API 15
2.1.3 Enumerations and Classifications ... 17

 Frameworks... 18 2.2

2.2.1 Secure TROPOS .. 19
2.2.2 The Software Security Framework ... 19

2.2.3 Building Security In Maturity Model 20
 Methodologies... 21 2.3

2.3.1 SQUARE ... 21
2.3.2 CLASP .. 23

2.3.3 OCTAVE ... 24
2.3.4 USeR Method .. 25

2.3.5 SURE/ASSURE .. 26
 Elicitation Techniques and Models ... 27 2.4

2.4.1 UMLsec and SecureUML ... 27

2.4.2 SDL and STRIDE.. 28
2.4.3 Extended Activity-Based Quality Model 30
2.4.4 Misuse Cases, Security Use Cases and Abuse Cases 30

2.4.5 Abuser Stories ... 31
2.4.6 Attack Trees .. 32
2.4.7 Attack Patterns and Security Patterns 34

 Comparison of Approaches... 34 2.5

3 Security Requirements Elicitation ... 38
 Security Requirements Repository Design ... 40 3.1

3.1.1 Security Terminology Entity ... 41

3.1.2 Security Principles Entity .. 41
3.1.3 Terminology and Principles Entity ... 42
3.1.4 Requirements Artifacts Entity ... 42
3.1.5 Security Requirements Entity.. 42
3.1.6 Software Requirements Entity .. 43

vii

 Security Requirements Elicitation Activities 43 3.2

3.2.1 Identify Candidate Security Goals .. 44
3.2.2 Categorize Security Goals Based on Security Principle 50
3.2.3 Understand Stakeholder Goals and Develop Preliminary

Security Requirements .. 52
3.2.4 Prioritize Preliminary Security Requirements......................... 53

4 Research Results Evaluation and Validation ... 59
 POS Tagging ... 59 4.1

4.1.1 Analysis of Tagged Security Terms .. 63

 Security Requirements Elicitation .. 65 4.2

4.2.1 Identify Candidate Security Goals .. 66
4.2.2 Categorize Security Goals Based On Security Principle 68

4.2.3 Understand Stakeholder Goals and Develop Preliminary

Security Requirements .. 69
4.2.4 Prioritize Preliminary Security Requirements......................... 69

 Analysis of Security Requirements Elicitation Approach 72 4.3

 Feasibility of the Proposed Solution ... 78 4.4

 Summary ... 79 4.5

5 Conclusions and Future Work ... 80
 Summary ... 80 5.1

 Research Contributions ... 81 5.2

 Suggestions for Future Work .. 82 5.3

Bibliography .. 84
Appendix A Characterizing a Small, Agile Organization 88

 Company Background and Culture ... 88 A.1

 Product Lifecycle .. 89 A.2

 Agile Philosophy ... 90 A.3

 Requirements Process ... 90 A.4

 Security Needs .. 91 A.5

 Development and Collaboration Tools ... 92 A.6

 Summary ... 93 A.7

viii

List of Tables

Table 2.1: SQUARE Methodology Steps (Mead et al., 2005) 23

Table 2.2: Comparison of Security Requirements Approaches 37

Table 3.1: Security Terms ... 41

Table 3.2: Security Principles and Description... 42

Table 3.3: FMEA Standard Scale ... 55

Table 3.4: FMEA Severity Scale .. 56

Table 3.5: FMEA Occurrence Scale ... 56

Table 3.6: FMEA Detection Scale ... 57

Table 3.7: FMEA Analysis of Security Requirements ... 57

Table 4.1: Security Terminology Frequency and Rank ... 61

Table 4.2: SRS Document Security Term Frequency .. 62

Table 4.3: FMEA Analysis of Preliminary Security Requirements 70

Table 4.4: Security Requirements Elicitation Template .. 71

Table 4.5: Security Requirements Analysis of SRS Documents 72

ix

List of Figures

Figure 1.1: Security Requirements Elicitation Approach .. 7

Figure 1.2: Security Requirements Elicitation Approach ... 8

Figure 3.1: Security Requirements Repository Model .. 40

Figure 3.2: Security Requirements Approach Components 44

Figure 3.3: Identify Candidate Security Goals Activity .. 45

Figure 3.4: Categorize Security Goals Activity ... 52

Figure 3.5: Understand Stakeholder Goals Activity .. 53

Figure 3.6: Prioritize Preliminary Security Requirements ... 58

Figure 4.1: Security Term Frequency from POS Tagging ... 64

Figure 4.2: Security Term Average Frequency from POS Tagging 65

Figure 4.3: Comparison of Original and Remaining Term Frequency 67

Figure 4.4: Average Security Term Frequency After Reduction 67

Figure 4.5: Percentage of Security Terms Retained After Initial Review 76

Figure 4.6: Comparison of Original and Pruned Security Term Frequency 77

1

1 Introduction

Software security is a complex, evolving problem that has only recently begun to

receive additional attention. One area that has previously received less attention is

building security into software (Mead, Hough, & Stehney II, 2005) rather than

correcting security flaws after release. Integrating security requirements into the

software development life cycle (SDLC) from the start can significantly improve

software security and reduce rework at later stages. However, traditional SDLC

processes tend to focus attention on functional requirements leaving non-functional

requirements, such as security, as an aside or afterthought. Current processes exist to

aid the development of security requirements, but these processes have several

drawbacks when security goals are vague or difficult for stakeholders to quantify. In

particular, small software development teams have not only limited personnel

resources, but may also be working within shorter time frames than large scale

software development projects. The need to balance resources for fast paced software

development projects and to remain competitive in the market has influenced the shift

from traditional to agile development processes (Boehm, 2002). Therefore, there is a

need for a security requirements approach to aid small, agile development

organizations with the elicitation and development of security requirements when

stakeholders have a difficulty explicitly expressing software security needs. The

2

approach must be easy to implement, efficient and reusable regardless of the

development style followed by an organization.

 Problem Statement 1.1

A hurdle to eliciting security requirements is the difficulty stakeholders and software

engineers have in explicitly expressing security needs. Stakeholders involved with

requirements development will have varying levels of awareness, education and

training related to security. Business goals generally represent desired functionality,

but may also imply general security needs. The software requirements engineer must

be skilled in eliciting functional and non-functional requirements, but in small

organizations, education and resources to develop requirements may be lacking.

Small organizations may also be drawn to agile development processes due to the

desire to produce software quickly while responding to customer needs (Peeters,

2005; Savolainen, Kuusela, & Vilavaara, 2010). For this work, we are focusing on

small, agile organizations. These organizations need to balance resources effectively

and are not likely to have devoted resources to expertly guide the development of

security requirements. Therefore, there is a need to discover and extract implied

security goals from existing requirements artifacts in order to develop security

requirements. This thesis proposes a unique approach to capture security

requirements within an agile software development process by utilizing part of speech

(POS) tagging, analysis tools and a security requirements repository.

3

 Significance 1.2

Security has predominately been an afterthought to the software development

process. Functional requirements are developed at the beginning of the process, but

non-functional requirements such as security are often overlooked. This results in

security requirements that are “bolted on” (McGraw, 2005) later in the development

cycle or worse, after the product has been released in response to security events,

market response or regulatory demands. Adding requirements at later stages of

development significantly impacts project cost. As security requirements become

integrated, software product quality is expected to improve and rework due to

security requirements added later in the process should decrease. However, existing

security requirement approaches have drawbacks. Modeling tools such as misuse

cases, abuse cases, and attack trees assume that security goals have already been

identified and are used to refine security requirements. Methodologies may be useful

when developing comprehensive security development best practices and policies, but

do not focus specifically on security requirements. Other approaches specifically

address the development of security requirements, but can be cumbersome and

lengthy for agile development teams.

The reasons for the lack of attention to software security are many. Software

engineers and stakeholders may lack general security awareness and education.

Project constraints may focus resources on delivering functional requirements leaving

non-functional requirements such as security a lower priority. In other cases,

decisions about security may simply have been made based on the technology

4

capabilities at the time. Consider the development of supervisory control and data

acquisition (SCADA) systems that manage power plants and public utilities. Early

infrastructure systems were not networked and reachable by the outside world to the

degree that they are today. Physical security was more important than system

security and specific system security requirements were either limited or undefined.

As awareness of system vulnerabilities increased, security requirements and

mechanisms were added to existing systems on an ad hoc basis.

Software security vulnerability awareness increased not only for critical

system software, but also for common software that impacted the general public.

Highly publicized data breaches, such as the 2003 theft of over 45 million credit and

debit card data from T.J. Maxx (Jewell, 2007), increased awareness among the

general public. Legislation at the state and federal level has also been increasing as

the need for privacy and security becomes apparent. Some legislation has been long-

standing, such as the Privacy Act of 1974, but additional legislation has recently been

enacted. Privacy and security rules for the Health Insurance Portability and

Accountability Act (HIPAA) were enacted at the federal level in 2003
1
. Nearly all

states have enacted either security
2
 or data breach

3
 notification legislation.

Vulnerability awareness also drove increased security awareness among software

engineers who frequently turned to implementing security mechanisms in order to

1
 http://www.hhs.gov/ocr/privacy/

2
 http://www.ncsl.org/issues-research/telecom/overview-security-

breaches.aspx
3
 http://datalossdb.org/us_states

5

mitigate risk. However, this does not address the core problem that security

requirements need to be built into software from the start, not addressed later.

Small organizations with fewer than twenty people on the development team

are likely to operate with limited resources. A single person may be responsible for

multiple roles, such as performing both quality engineer and tester roles. A single

security engineer may be available, but it is unlikely that a security engineering team

exists. For agile organizations, development will be iterative and extensive

documentation will be less valuable than developing a working product
4
.

Development schedules are likely to be shorter placing increased emphasis on project

cost and time constraints. Therefore, integrating security requirements into the

software development process for small, agile organizations requires careful

balancing of project resources and constraints.

Increasing security threats, lack of software engineering security skills,

consumer expectations for secure software and project constraints for small, agile

organizations demonstrates the need to improve security requirements engineering.

The increased complexity and integration of systems increases attack surfaces and

makes it difficult to understand software vulnerabilities. Software engineers

traditionally do not receive adequate training or attention to security to address

software vulnerabilities. Publicity of the latest data breach or widespread virus now

makes front page news. In addition, introducing project requirements strain limited

project resources in terms of cost, time and personnel. Traditional software

4
 http://agilemanifesto.org/

6

development processes have focused on cost and time constraints which leave little

room for additional requirements development. Software companies now realize that

software security creates a competitive advantage to market their products (Barnum

& Sethi, 2006; Devanbu & Stubblebine, 2000).

Security requirements can no longer be ignored. The increasing number of

software security threats combined with general security awareness means that

software security is no longer an additional feature, but an expectation. Consider the

analogy of bank security. A customer walking into a bank has an assumed

expectation of security. They expect security via safes, locks, guards, and identity

verification. These basic security devices are easy to understand and can be

verbalized regardless of technical expertise. There are likely to be additional security

devices in place at a bank, but understanding these devices requires additional

technical expertise that the average customer does not possess. While customers do

explicitly request all elements of banking security, they express their requirements by

choosing the bank with a combined fee and security structure that balances their

needs. Consumers of software have similar security appetites. Security may again be

expected, but verbalizing specific security requirements may be difficult due to a lack

of understanding. It is difficult to elicit security requirements without the aid of those

experienced with software security. Justifying additional costs for security, in terms

of time or money, can be a difficult sell since they are non-functional requirements.

7

Figure 1.1: Security Requirements Elicitation Approach

We propose a security requirements elicitation approach that is part of the

requirements elicitation phase (see Figure 1.1). Preliminary functional requirements

artifacts are used as inputs and draft security requirements are output. Although not

part of the approach, draft security requirements can be then modeled, defined and

validated as part of the final software requirements specification (SRS). The security

requirements elicitation approach activities are defined as follows:

 Identify candidate security goals

 Categorize security goals based on security principle

 Understand stakeholder goals and develop preliminary security

requirements

 Prioritize preliminary security requirements

8

An overview of the security requirements elicitation approach is shown in Figure 1.2.

The tasks comprising our proposed approach are discussed in Chapter 3.

Figure 1.2: Security Requirements Elicitation Approach

 Research Methodology 1.3

The security requirements elicitation approach was evaluated and validated using an

empirical research methodology. Existing software requirements approaches were

studied to understand the current state. Best practices, frameworks, methodologies,

models and elicitation techniques were examined to determine applicability to a

small, agile organization. Next, a small, agile software development organization

9

was studied. Observations regarding organizational roles, agile development

processes and security requirements development practices were made. These

observations combined with the study of software requirements approaches formed

the basis for areas to be addressed by the proposed solution. A unique approach using

part of speech tagging, analysis tools and a security requirements repository were

modeled for the approach. Activities, roles and sample artifacts were developed.

Next, the approach was experimentally evaluated with representative organizations.

The experimental results were evaluated in order to validate the effectiveness of the

approach solution.

 Thesis Organization 1.4

This thesis is organized into the following chapters:

 Chapter 1: Introduction – The background of the problem, significance, and

research methodology for the solution.

 Chapter 2: Previous Work – A survey of software security requirements

approaches.

 Chapter 3: Security Requirements Elicitation Approach – POS tagging,

security requirements repository and activities for the security requirements

elicitation approach.

 Chapter 4: Research Results Evaluation and Validation – The security

requirements elicitation approach evaluation and validation.

 Chapter 5: Conclusion – Conclusion and recommendations for future

research.

10

2 Survey of Software Security

Requirements Approaches

Approaches to software security requirements engineering are evolving to address the

lack of integration into existing development processes. General software

requirements engineering methods have evolved over time, but little research focuses

on the specific aspect of software security requirements. Given that attention to

software requirements has been studied and shown to be beneficial to project budget

and defect reduction (Mead & Stehney, 2005), additional attention to software

security requirements should also prove beneficial.

Security is traditionally classified as a non-functional requirement and many

of the approaches for developing security requirements have roots in software quality

(Haley, Laney, Moffett, & Nuseibeh, 2008; Mead & Stehney, 2005). Improved

quality leads to reduced defects and lower software development costs if conducted

early in the development process (Mead & Stehney, 2005). If a software product is

not secure, it can be seen as defective. A secure software product may therefore been

seen as of higher quality if it has fewer security defects. Quality and security are also

similar in that defining each in terms of a software product can be challenging.

Security, like quality, is in the eye of the beholder.

Quality and security defects are similar in that a tradeoff analysis may

determine acceptable levels (i.e., the level of acceptable quality or security). A key

difference between quality and security is that quality defects can be viewed as

11

unintentional whereas security defects are the result of intentional action or inaction.

A business would rarely intentionally produce a product or service that is seen as

having a quality defect if they wish to remain in business. On the other hand, security

defects may not be addressed during development due to prioritization of

requirements that do not leave room for addressing security issues. Other security

defects may simply not be known to the stakeholders and are therefore

unintentionally omitted. An attacker specifically targets a security defect for some

malicious purpose. Software engineers do not intentionally introduce defects into

software, yet about half of defects leading to security vulnerabilities found in today’s

software are actually attributable to flaws in architecture and design (Allen, Barnum,

Ellison, McGraw, & Mead, 2008). Security vulnerabilities tend to be the result of the

ad-hoc nature of incorporating security into the development process rather than

taking a proactive approach from the beginning of the process (Malone & Siraj,

2008).

A lack of education and understanding are contributing factors to the ad-hoc

nature of incorporating security requirements into software. Generating software

security requirements can be difficult given that it is necessary to have a “black hat”

mentality (i.e., thinking like an attacker) when maliciously exploiting a vulnerability.

Requirements are derived based on what a software product should do, not what it

should not do. In order to derive good security requirements, software engineers must

be educated and experienced in all aspects of software security. However, in practice,

this may not necessarily be the case since education in security is often lacking

12

(Barnum & Sethi, 2006; Viega, 2005) and a “security by obscurity” (Barnum & Sethi,

2006; Mercuri & Neumann, 2003) mentality persists among software engineers.

Hiding or attempting to obscure software flaws in the hope that attackers will not find

them is a poor approach to security. Educating software engineers to think like an

attacker will improve the proactive integration of security requirements into the

software development lifecycle.

Abuse cases, misuse cases, attack trees and security patterns are approaches

designed to develop “black hat” thinking among software engineers and stakeholders.

Developing misuse and abuse cases is an example of an approach that aids both

software engineers and users to see beyond expected use in order to develop security

requirements. The case approach encourages user input and aids all stakeholders with

visualizing different scenarios. Attack trees and security patterns are different

approaches to visualize scenarios but are presented in a different manner. All of these

approaches encourage user input and interaction with software engineers which is

critical when eliciting and developing software requirements. User security

awareness should also improve when these approaches are implemented. Users

expect security, but have difficulty defining security and should not be the sole source

of developing security requirements. Broadly, users may define security requirements

as meeting state and federal regulations or upholding company policies without a

clear idea of what the regulations or policies entail. Therefore, the “black hat”

approaches that software engineers use can aid users in defining security

requirements.

13

Another tactic that may be followed is to test security into software products

(McGraw, 2005). Although not an ad-hoc approach, testing security into software is

certainly not a proactive approach either. Traditionally, testing in software

development life cycles occurs near the end of the project. If security flaws are

uncovered during testing, significant rework may be required, especially if testing is

in the later stages of development. Even agile organizations which integrate testing

throughout the development lifecycle will experience rework if security requirements

are discovered during testing rather than being specified at the start. In fact, security

cannot conclusively be proven through testing regardless of the development process

(McGraw, 2005). For example, how is it possible to conclusively test against the

unauthorized disclosure of information? If security cannot be “tested in”, security

requirements must be developed along with functional requirements in order to meet

stakeholder goals.

To understand the current nature of software security requirements

approaches, best practices, enumerations, frameworks, methodologies, elicitation

techniques and models were studied. Best practices and enumerations range from

very broad activities to focusing on specific solutions. Frameworks and

methodologies expand the view and begin addressing the security requirements

process as a whole. Elicitation techniques focus on defining or drawing out key

elements under consideration. Models define relationships between elements in a

structured manner. Understanding the current state of security requirements

approaches can be useful in determining barriers and drawbacks. Based on this

14

survey of approaches, the following sections will outline the evolution of current

security requirements approaches. Pros and cons to current approaches will be

addressed in order to determine the key elements required to develop a new security

requirements elicitation approach.

 Best Practices and Enumerations 2.1

Software security engineering has evolved from best practices such as enforcing

coding standards to mitigating risk at the organizational level (Giorgini, Massacci,

Mylopoulos, & Zannone, 2005). Best practices are often associated with the design

and implementation phases rather than during the requirements specification phase

(Falcarin & Morisio, 2004; McGraw, 2008). Best practices should enhance

requirements elicitation and analysis during requirements specification instead of

focusing purely on design and development phases. SSDL Touchpoints and OWASP

cheat sheets are best practices approaches that were examined to determine relevancy

to the requirements specification and analysis phases of development.

2.1.1 SSDL TouchPoints

Secure Software Development Lifecycle (SSDL) Touchpoints are part of the

Software Security Framework (McGraw, Migues, & West, 2012). SSDL

Touchpoints consist of architectural analysis, code review and security testing

practices which should be included in any software security framework.

Architectural analysis occurs early in the development lifecycle but is performed after

requirements have been specified. Code review and security testing occur even later

in the lifecycle. Each of these practices focuses on later stages of development rather

15

than on earlier requirements elicitation and development phases. Abuse cases and

attack patterns are recommended practices to be used during the requirements phase,

but specific details are not given as part of the framework (McGraw, 2005).

Touchpoints provide an overview of practices that should be followed but do not

define specific tasks or processes for accomplishing these practices. Therefore,

SSDL Touchpoints broadly address all areas of development rather than specifically

focusing on requirements elicitation.

2.1.2 OWASP Cheat Sheets and Enterprise Security API

“Cheat sheets”
1
, such as those available at The Open Web Application Security

Project (OWASP), are intended to aid software engineers with solutions to specific

security problems and as overall guidance for application security. Compiled by an

open source community of security experts, OWASP cheat sheets tend to target

specific development activities and provide tips in the form of “what-to-do” and

“what-not-to-do”. The majority of the cheat sheets give guidance on development

specific topics rather than requirements development. For example, the authentication

cheat sheet provides general guidelines related to passwords including length,

complexity, secure recovery mechanisms and authentication error messages. General

examples of security vulnerabilities related to authentication are given, but attacker

scenarios, such as abuse cases, are not covered in detail. Many of the cheat sheets

target later stages of software development rather than the requirements elicitation

phase.

1
 https://www.owasp.org/index.php/Cheat_Sheets

16

Cheat sheets are dynamic documents and can be categorized as either

established or draft versions. Established cheats sheets primarily address code

development activities, but draft cheat sheets are being developed that take a broader

approach. Secure SDLC and threat modeling are topics under development that may

prove more useful for requirements development activities rather than later stages

such as design and testing. As a requirements elicitation tool, cheat sheets provide an

opportunity to open the discussion with stakeholders on application security related

topics.

The Enterprise Security API (ESAPI)
2
 is a security control library for web

application development. The ESAPI is downloadable for several development

languages, but the extent of each library varies significantly. As a supporting

development tool, the ESAPI is best used to implement security requirements, but not

as a requirements elicitation or development tool.

There are disadvantages to using OWASP “cheat sheets” as a security

requirements approach. As the name implies, the OWASP community focuses on

web applications. Security principles that apply to web applications are transferrable

to other types of applications, but as a general approach to developing software,

OWASP may be limited in scope for some software development projects. OWASP

is also developed and maintained by an open source community with loose affiliation

to software development organizations. Ongoing support and resources are limited to

the enthusiasm of the community and project priorities vary. Finally, OWASP tends

2
 https://www.owasp.org/index.php/ESAPI

17

to focus on later stages of the SDLC rather than the early requirements phase. These

factors may limit the OWASP resources as a viable security requirements approach

beyond increasing security awareness during requirements elicitation activities.

2.1.3 Enumerations and Classifications

The U.S. Department of Homeland Security office of Cybersecurity and

Communications co-sponsors enumeration and classifications sites for cybersecurity

related topics. Sites are publically available and are sponsored by the MITRE

Corporation. A community of individuals and organizations maintains and develops

each site based on their respective interest in the site. Three sites are commonly cited

in the field of software security:

 Common Weakness Enumeration (CWE)
3

 Common Vulnerabilities and Exposures (CVE)
4

 Common Attack Pattern Enumeration and Classification (CAPEC)
5

The CWE provides a description of more than 700 software weaknesses each with

applicable platform, common consequences and examples. The CVE site provides a

database of vulnerabilities and exposures identified by participating organizations.

CVE identifiers are numbered and include brief information about the vulnerability

and exposure. Vulnerability scanners and reporting tools can use the CVE identifier

to provide feedback to the developer for further analysis. Both the CWE and CVE

provide technical information that requires knowledge of software systems and is

unlikely to be understood by the average user. Specific topics can be searched in

3 http://cwe.mitre.org/
4 http://cve.mitre.org/
5 http://capec.mitre.org/

18

either database, but a basic level of security knowledge is required as a starting point.

For example, a specific weakness or vulnerability would have to be known first in

order to search either database. The amount of detail provided varies and specific

information that could be used for risk analysis is not included. Details provided are

also generally focused on later stages of development, such as design, testing and

maintenance.

The CAPEC provides attack pattern information in a format similar to CVE

and CWE and lists over 400 attack patterns. CAPEC identifiers include a general

description, attack prerequisites, likelihood of exploit, methods of attack and

examples. A scope of attack motivation and consequences (i.e., loss of

confidentiality, lack of authorization) is given which could be used to understand

general security principles, but this small detail is lost with respect to the other detail

presented for each attack pattern. Like the CVE and CWE, the information is

presented in a very technical nature and does not include easily interpreted diagrams.

Therefore, enumerations and classifications are of limited use as tools for

requirements elicitation. Additional discussion of the use of attack patterns beyond

the CAPEC classification is included in subsequent sections.

 Frameworks 2.2

Frameworks are a general structure in which the user can choose to define the actual

approaches used to solve a problem. Secure TROPOS, the Software Security

Framework, the Building Security In Maturity Model, and Integrating Requirements

and Information Security were surveyed.

19

2.2.1 Secure TROPOS

Secure Tropos extends the Tropos methodology to develop a “formal framework for

modeling and analyzing security and trust requirements” (Giorgini, Massacci,

Mylopoulos, & Zannone, 2004). Tropos takes into account not only computer

systems, but the organizational environment in which the system interacts. This

includes the perspective of the users and stakeholders (actors) as well as their

interactions, goals, shared resources and dependencies. Secure Tropos incorporates

security requirements engineering by modeling and analyzing trust and delegation

relationships among agents or services. The trust model has similarities with abuser

stories which are common in agile development.

A drawback to using Secure Tropos is the assumption that requirements been

elicited and identified in order to be modeled and analyzed. Dependency and trust

models need to be created. If these models are complex, the requirements engineer

would need to spend significant time and resources developing the model along with

taking time to explain and clarify the model to business stakeholders. The model also

does not include risk information that could be used for prioritization of goals. Other

tools, such as abuser stories, may be easier to use and implement during the

requirements elicitation phase for a project with limited resources.

2.2.2 The Software Security Framework

The Software Security Framework (SSF) addresses overall security, not just the

development of software security requirements (McGraw, Migues, & West, 2012).

SSF is organized into four domains: Governance, Intelligence, SSDL Touchpoints,

and Deployment. Each domain has three practices with individual activities (111

20

total activities for all domains). The domains cover overall organizational security

activities, but the intelligence domain addresses software security activities.

Intelligence domain practices include attack models, security features and design, and

standards and requirements. Key elements from the intelligence domain can be

useful when eliciting security requirements. In particular, attack models can aid

software engineers in eliciting security requirements by encouraging them to think

like an attacker. Although SSF defines specific practices to address security

requirements engineering, the large number of activities and abstract nature of the

framework do not make SSF suitable as a requirements elicitation solution

2.2.3 Building Security In Maturity Model

The Building Security In Maturity Model (BSIMM)
6
 was developed from security

initiative data gathered from fifty-one organizations (McGraw, Migues, & West,

2012). The McGraw study began in 2008 and has evolved over the years to the

current fourth iteration. McGraw maintains that developing only security processes is

insufficient and a broader security initiative is required. The current iteration,

BSIMM4, incorporates four domains with 12 practices for a total of 111 activities.

An organization can assess their efforts for these activities to create an overall

security score. Scoring allows an organization to compare internal efforts with peer

organizations.

Although the name implies that BSIMM is a specific model that can be

followed, it is actually part of the SSF. This allows organizations to choose specific

6
 http://www.bsimm.com

21

models or activities they wish to follow when undertaking a security initiative.

BSIMM is intended to be used by organizations to benchmark current security

activities against organizations participating in the yearly study. Based on assessment

from the domains, an organization can choose any model they deem appropriate to

address deficiencies. McGraw describes BSIMM as a “descriptive model” rather than

providing “prescriptive guidance” (McGraw, Migues, & West, 2012).

An advantage of BSIMM is that it provides an organization with broad

security perspectives to build an initiative. Deficiencies in any practice area or

domain can be prioritized to improve the security maturity level for the organization.

The disadvantage is that the organization must still choose an approach to addressing

deficiencies. BSIMM gives overall guidance in improving security initiatives for an

organization of which software development activities are included in the intelligence

domain. Attack models are the key activity in the intelligence domain and can be

used to supplement requirements elicitation activities. Other activities include

standards and requirements, but general guidance is given without a specific

framework to follow to complete these activities. Therefore, BSIMM does not

provide enough detail to be used primarily for security requirements elicitation and

development.

 Methodologies 2.3

2.3.1 SQUARE

The SQUARE model was initially developed as the System Quality Requirements

Engineering model by researchers at Carnegie Mellon and the Software Engineering

22

Institute (Mead & Stehney, 2005). The elicitation and prioritization phases of

software development are the focus of the methodology. Nine steps are defined (see

Table 2.1) which produce an output based on recommended input information. Each

step has defined example techniques to accomplish each step as well as likely

stakeholder participants. A CASE tool has been developed by Carnegie Mellon

researchers to implement the methodology (CERT-SEI, 2010).

A possible drawback to the SQUARE model is in step three (develop

artifacts). Researchers suggest that these artifacts may be related to the design phase

rather than the requirements phase (Tondel, Jaatun, & Meland, 2008). The

methodology is quite complex and lengthy. Requirements specification may take

months and requires considerable resources to use the methodology. For small

software development projects, it is likely that entire projects would be completed

during this time frame. Therefore, a more flexible, efficient approach requiring fewer

resources is desired.

23

Table 2.1: SQUARE Methodology Steps (Mead et al., 2005)

Step Description

1 Agree on definitions

2 Identify security goals

3 Develop artifacts to support security requirements definition

4 Perform risk assessment

5 Select elicitation techniques

6 Elicit security requirements

7 Categorize requirements as to level (system, software, etc.) and whether they

are requirements or other kinds of constraints

8 Prioritize requirements

9 Requirements inspection

2.3.2 CLASP

Secure Software’s CLASP (Comprehensive, Lightweight Application Security

Process) was developed in 2005 to address all processes for software security

development from requirements through testing and deployment (Viega, 2005). The

Open Web Application Security Project (OWASP) website
7
 states that CLASP

“contains formalized best practices” related to all aspects of software development.

CLASP is intended to be applicable to existing software or new development projects

using high-level perspectives or views. CLASP views include concepts, roles,

7
 CLASP downloads available at:
http://www.owasp.org/index.php/OWASP_CLASP_Project#Downloads

24

activity assessment, activity implementation and vulnerability. Views tend to cascade

down starting with the concepts view, but views that may be revisited and cycled

back through in a continuous improvement manner. The iterative nature CLASP

departs from traditional development and favors agile development.

CLASP is not a one-size fits all solution for improving application security.

The 24 CLASP activities are not mandatory, but can be addressed at the discretion of

the implementing organization. Metrics for choosing and prioritizing activities are

not specified, this is left up to the organization to choose. In addition, many of the

activities are recommended to be carried out with the use automated tools, but

specific tools are not defined. Details of the problem types for the vulnerability view

are provided in a static checklist which can aid in the implementation of CLASP, but

is not in the form of an easy to use tool. CLASP is therefore a generic roadmap

which can be used for all software development activities, not a step-by-step

checklist.

2.3.3 OCTAVE

Operationally Critical Threat, Asset and Vulnerability Evaluation (OCTAVE)
8
 is a

risk assessment methodology developed by the Software Engineering Institute at

Carnegie Mellon. Several tools are available for implementing OCTAVE and three

OCTAVE methods are available. Smaller organizations can use the OCTAVE-S

method for a less intensive approach requiring fewer resources. OCTAVE is not a

security requirements development approach. It is part of a larger initiative that an

8
 http://www.cert.org/octave/octaves.html

25

organization can undertake to assess organizational risk. The results of the risk

assessment can be used by an organization to understand broader security initiatives

or to improve security awareness. If an organization has undertaken risk assessment,

the results may be useful in directing the development of security requirements.

OCTAVE is not a lightweight approach that would be useful to undertake during

requirements development for small, agile organizations.

2.3.4 USeR Method

Usage-centric Security Requirements engineering (USeR) method integrates quality

tools into requirements engineering to extract security requirements from software

requirements (Hallberg & Hallberg, 2006). Voice of the customer (VoC) is a quality

term often associated with quality function deployment and Six Sigma that helps to

define the quality viewpoint of the customer (Gitlow & Levine, 2005). USeR

implements a voice of the customer table (VCT) by selecting requirements that

appear related to security and generating security statements. Each statement is

analyzed by asking who, what, when, where, why and how to further understand each

security statement. Security needs and the resulting security requirements are further

processed using affinity and hierarchy diagrams. Two additional processes are

performed to analyze security techniques and design implications.

The USeR method is an approach to extract security requirements when users

have a hard time explicitly defining security. Stakeholders take an active role in the

VCT analysis but must be guided by a skilled facilitator to fully extract security

needs. Details of techniques to construct affinity and hierarchy diagrams are lacking

26

and security expert knowledge is assumed to prioritize the diagrams. The researchers

note that tools such as misuse cases may be needed to improve requirements

visualization. However, the concept of extracting security requirements from general

requirements and using quality techniques intriguing and aligns with the goals of this

thesis. Different techniques may be implemented to improve the USeR method as an

improved security requirements approach.

2.3.5 SURE/ASSURE

Secure and Usable Requirements Engineering (SURE) and Automated Support for

Secure and Usable Requirements Engineering (ASSURE) propose to provide support

throughout out all stages of the software development lifecycle (Romero-Mariona,

2009). SURE builds on previous approaches to improve the development of security

requirements and increase the usability in subsequent development activities. There

are two main steps for the SURE process: security requirements and security testing:

The security requirements process combines existing approaches by implementing

CLASP activities and the USeR method. Security statements evolve to security needs

and then finally, security requirements are created (Hallberg & Hallberg, 2006).

Security testing focuses on later stages of software development by deriving three sets

of test cases. Misuse cases and threat consequences are modeled as inputs for the test

cases.

The process of developing security requirements is an extension of the USeR

method that also specifies misuse cases (see section 2.4.4 for further discussion of

misuse cases). Furthermore, the primary focus of SURE is to support all stages of

27

software development rather than just focusing on requirements specification. As

discussed in previous sections, the USeR method is an intriguing approach to

extracting security requirements. The proposed requirements elicitation approach

expands on the general concepts of the USeR and SURE methodologies to improve

security requirements elicitation in an iterative nature.

 Elicitation Techniques and Models 2.4

Elicitation techniques and models are often used in conjunction with each other

during the development process. Commonly, elicitation techniques are activities that

assist stakeholders with defining security requirements. The artifacts developed from

these techniques are then incorporated into the model for further analysis. Models are

used for different purposes during software development. Some models use software

requirements as input in order to design the system architecture. Other models are

used to during elicitation activities to develop requirements. Elicitation techniques

and models to address security in software projects come in varying forms. Some are

geared toward security experts; others do not assume expert knowledge. The

following sections discuss common elicitation techniques and models that are geared

towards software security.

2.4.1 UMLsec and SecureUML

UMLsec extends the Unified Modeling Language (UML) to specifically model

security features (Jürgens, 2002). Security profiles are generated consisting of a

concept called stereotypes that include tagged values and constraints. A goal of

UMLsec is to aid software engineers who do not have strong security backgrounds to

28

use UMLsec to model security requirements (Jürgens, 2001). Automated tools can be

used to implement security checking based on UMLsec (Falcarin & Morisio, 2004).

Like UMLsec, SecureUML is a security modeling language which also extends UML

to include specific security constraints related to access controls and is based on role-

based access control (RBAC) security model (Lodderstedt, Basin, & Doser, 2002).

The main drawback to SecureUML is that the primary focus is to aid in design

activities rather than requirements specifications.

A drawback to both UMLsec and SecureUML is the assumption that software

engineers have a background with UML and will be able to quickly incorporate

security modeling into UML diagrams. The formal nature of UML diagramming

works best in traditional development but could be a drawback for agile development

teams. To address audiences beyond UML users, CARiSMA
9
 is a newer security

modeling tool that is integrated into the popular Eclipse IDE. CARiSMA was built to

succeed UMLsec, but it appears that this takes the emphasis even further from

requirements specification and deeper into the design phase. In addition, UMLsec has

a strong focus on critical systems development which may limit usefulness as a

general security modeling tool.

2.4.2 SDL and STRIDE

The Microsoft Security Development Lifecycle (SDL)
10

 is a group of security

practices that can be integrated into the software development lifecycle. Practices are

grouped into training, requirements, design, implementation, verification, release and

9 http://vm4a003.itmc.tu-dortmund.de/carisma/web/doku.php
10 http://www.microsoft.com/security/sdl/default.aspx

29

response phases. Tools are available for most phases, but are very broadly defined.

For example, there are three practices for the requirements phase. The security

requirements practice generally states that security and privacy requirements should

be defined early. However, no practical mention is made of how to go about defining

security requirements. The SDL provides useful guidance for an overall security

development initiative, but is lacking in detail. Downloadable tools, where available,

also make the assumption that development takes place using Microsoft Visual

Studio.

Threat modeling is treated as a design phase practice. STRIDE is a threat

modeling approach developed by Microsoft to be incorporated during design.

STRIDE stands for Spoofing, Tampering, Repudiation, Information disclosure,

Denial of service, and Elevation of privilege. Each of these threats is tied to a specific

security property (i.e., confidentiality, integrity, availability, etc.). Unlike other

models which focus on assets or attackers, SDL focuses on overall software

development using a tool based approach designed for ease of use by software

engineers. The SDL threat modeling process is illustrated as a cyclical process with

activities of diagram, identify threats, mitigate, and validate making it similar to other

continuous improvement processes. Compliance with Microsoft SDL process

includes but is not limited to 16 mandatory security activities. A drawback of

STRIDE is that language and concepts covered tend to target software engineers

rather than a larger group of stakeholders that includes non-technical users. In fact,

30

the STRIDE overview emphasizes use during the design phase with software

engineers and architects as the primary audience.

2.4.3 Extended Activity-Based Quality Model

The concept of security is similar to quality in that while difficult to define, once

agreed upon, security concepts can be reused. Subsequent reuse of requirements will

lead to a reduction of project cost. This concept is the emphasis behind the Extended

Activity-Based Quality Model (eABQM) which is implements reuse of security

requirements (Luckey, Baumann, Méndez, & Wagner, 2010). Security requirements

are modeled as facts and activities both of which are dependent on impact. The

researchers theorize that incorporating project goals, parameters and relevance factors

into the model will support requirements reusability. The ability to model security

requirements and the reusability of results were the primary goals of implementing

eABQM.

This approach does not support the initial generation of security requirements,

but does show promise that the development of a security requirements repository can

reduce project cost. While not discussed, a requirements repository could aid

software engineers in improving security awareness and training leading to overall

improvements in developing secure software. The concept of project parameters and

categories could be modified to be security terminology and categories for an

improved approach.

2.4.4 Misuse Cases, Security Use Cases and Abuse Cases

Misuse cases are a negative form of use cases used to elicit non-functional security

requirements and analyze security threats (Alexander, 2003; Firesmith, 2003).

31

Misuse cases are generated to clearly highlight how a misuser can violate application

security (Firesmith, 2003). In this context, a misuser is generally defined as an

insider or an outsider with malicious intent. Firesmith refines the use case concept to

analyze and specify security requirements through the development of security use

cases. Software engineers create misuse cases which drive the development of

security use cases to be used to develop security requirements. Reusability of

security use cases is more feasible if they are as generically defined as possible with

details abstracted out (Firesmith, 2003). Architectural and design decisions should not

be made when developing security use cases. Security requirements should also avoid

specifying security mechanisms. Abuse cases (also referred to as threat scenarios)

should be written in the stakeholder’s language to ensure understanding (Boström,

Wäyrynen, Bodén, Beznosov, & Kruchten, 2006). Abuse cases are created in a form

in which the interactions of actors results in a security violation. In this context,

abuse cases differ from misuse cases in that interactions that should not be allowed

are modeled in abuse cases (Giorgini et al., 2004).

2.4.5 Abuser Stories

User stories are commonly used in agile processes to capture the user’s requirements

for the product under development and are preferably written by users. This presents

a quandary when developing security requirements. The agile development team most

likely does not have an abuser (i.e., hacker, attacker) on the team nor are they

considering what the system should not do (attacks). Abuser stories are intended to

take into account the attacker perspective in order to develop security requirements

32

for the proposed system (Peeters, 2005). User experiences can be useful in

determining past security mishaps that may not be readily apparent to the

development team. Because user input is critical to creating user stories, this

reinforces the need for ongoing security awareness and training for all stakeholders in

order to anticipate security concerns and develop security requirements.

Similar to user stories, abuser stories are ranked and scored by business value

but also include perceived threats posed to assets (Peeters, 2005). Prioritization of

security goals plays a key role in developing security requirements for the approach

proposed in this thesis. Data used for ranking abuser stories can be used as input for

the prioritization and validation activities. As an agile elicitation technique, user

stories are easy to implement and do not require significant training. The concept of

generating a prioritized set of security goals is an intriguing concept that will be

useful for the proposed approach. Providing a method to prioritize security goals and

iteratively creating security requirements could be an improvement to the concept of

abuser stories.

2.4.6 Attack Trees

Decision trees are commonly used to graphically demonstrate the route and processes

required to reach a decision. Modeling the decisions that attackers make on a system

has evolved into the concept of attack trees. These trees are used to graphically

analyze attack scenarios and incorporate cost or probability statistics so that the

threats can be prioritized. The root of the tree represents the attacker’s goal and the

33

leaves represent possible avenues to achieve the goal. Highly detailed trees can be

created, but the detail may be limited to the existing knowledge of the tree developer.

Attack trees can go beyond relying on developer intuition about attack vectors

to formalize risk analysis from the viewpoint of the attacker. (Ingoldsby, 2009)

Attack scenarios are created and resources needed (e.g., attacker’s cost and ability)

are used to establish scenario costs. The difficulty that software engineers may have

in determining cost is that they must be experts in the area to determine resource

requirements and they must put on their “black hats”. When creating initial attack

trees, some attack scenarios may have an unlikely probability of being carried out and

are “pruned” or removed from the tree. Attackers make cost-benefit decisions just as

software engineers make the same decisions when prioritizing security requirements.

SecurITree
11

 is a commercially available attack tree tool that can be used to facilitate

attack tree modeling.

Attack trees are another model that can be used for risk and cost-benefit

analysis, but software engineers still need to have a considerable arsenal of

information available to begin constructing attack trees. The model provides a more

structured approach than using best practices and checklists, but still requires

education as well as the ability to apply statistical information. Small, agile

organizations simply may not have the resources to implement attack tree analysis as

it requires security experts for statistical and cost analysis.

11

 http://www.amenaza.com/

34

2.4.7 Attack Patterns and Security Patterns

Patterns are developed through the application of knowledge or experience in order to

be reused over and over again. Over time, adjustments are made to an existing pattern

to improve the pattern or to develop a new pattern. “Attack patterns describe the

techniques that attackers may use to break software” (Barnum & Sethi, 2006). The

concept of patterns for software development originated with design patterns for

reusability. Attack and security patterns expand on this concept by attempting to build

catalogs of patterns to close the gap between attackers and software engineers.

Cataloged information includes pattern name/classification, attack prerequisites,

related vulnerabilities/weaknesses, attack methods (vectors), knowledge required, and

recommended solutions. Security patterns were proposed to “bridge the gap” between

security professionals and systems developers. The Common Attack Pattern

Enumeration and Classification
12

 (CAPEC) was developed by and are supported for

the larger software development community to aid in secure software development.

 Comparison of Approaches 2.5

Integrating security requirements into the software development process can be

difficult. Development teams who have not previously considered security

requirements will not only need to integrate new processes into existing development

but also to understand an entirely new set of problems. Understanding security

terminology, existing and emerging vulnerabilities, analyzing security risk and

prioritizing security requirements into ongoing processes may be difficult. Software

12

 http://capec.mitre.org

35

engineers will seek manageable, efficient approaches to ease this transition. This

survey highlights some of the proposed approaches to address specific issues for

security requirements development.

An organization undertaking a security initiative may be overwhelmed when

trying to determine where to start. The approach taken may depend on many factors

including the size of the organization, security awareness, security culture, types of

products developed, education levels of software engineers and software development

processes followed. A security event may have thrust the initiative into high-gear.

Perhaps there was a general security breach, a pending proposal for a new product

requiring security features or pending legislation. Regardless, the organization

determines that security requirements are to receive attention. The prioritization of

integration may require quick action or as part of an ongoing effort. All of these

factors should be considered as improvements to security requirements integration

approaches.

None of the existing approaches focuses on the financial or risk aspects based

on new legislation. It is difficult to keep up with pending and new legislation as well

as to understand due diligence required to meet regulations. The impact of regulation

should be part of the early requirements elicitation process. This will help users and

software engineers understand general security vulnerabilities that may not have been

given prior consideration as well as to place financial impact on determining which

requirements to include. It is not feasible to include all features that a user desires

whether it is a general feature or security specific feature. Including risk cost analysis

36

if a security requirement is not implemented will clarify security issues for all

stakeholders.

Software engineers are likely to have requirements documents processes in

place. The prototype approach should include an automated scanning tool, much like

automated code review tools, to identify areas to include security requirements. For

example, requirements may already be included that are not specifically identified as

security requirements, but that include security components. Scanning for security

related terminology and identifying these requirements could jump start security

integration process. Stakeholders will have a starting point for beginning to increase

security awareness rather than facing a multi-step approach that may not yield results

as quickly as desired.

Finally, the surveyed approaches are either broad based or focus on specific

phases of the SDLC (see Table 2.2). Focusing on only one aspect of development

process, especially later stages, can lead to omitting important elements. Security

requirements could then become less important if they are seen as part of the process

that someone else will take care of during later phases of development. The same

principle occurs with quality. If quality is seen as something to be checked at the end

of the process, the natural instinct is to pass the problem down the line. However,

when quality becomes the concern of the entire process, then quality is prioritized and

is built into the entire process. The same concept should be applied to the integration

of security requirements into the entire process.

37

Table 2.2: Comparison of Security Requirements Approaches

Approach R D I V M

Best Practices and Enumerations

SSDL Touchpoints

OWASP Cheat Sheets

CWE, CVE, CAPEC

Frameworks

Secure Tropos

SSF

BSIMM

IRIS

Methodologies

SQUARE

CLASP

OCTAVE

USeR

SURE/ASSURE

Elicitation Techniques and Models

UMLsec and SecureUML

SDL

STRIDE

eABQM

Misuse, security use. abuse cases

Abuse stories

Attack trees

Attack patterns

Security patterns

 Software Development Design Phases

 R = Requirements

Strong association

D = Design

Weak association

I = Implementation

 V = Verification

 M = Maintenance

38

3 Security Requirements

Elicitation

Research has shown that integrating security requirements into the early phases of the

software development life cycle has significant benefits (Mead et al., 2005; Moffett,

Haley, & Nuseibeh, 2004). Security requirements should be elicited and developed

along with functional requirements and should be included as part of the software

requirements specification. Best practices, enumerations, frameworks, methodologies,

elicitation techniques and models have been proposed that are intended to improve

the integration of security requirements into early phases of development. SSDL

Touchpoints, SSF, BSIMM, and OWASP take a very broad view emphasizing

building security initiatives at all stages of software development. SQUARE, CLASP

and Secure Tropos address integration of security requirements but are geared

towards long development lifecycles and could be cumbersome for agile

organizations. IRIS and SURE/ASSURE seek to improve usability of security

requirements rather than eliciting security requirements. OCTAVE and STRIDE are

used for threat modeling. CWE, CVE, CAPEC aid software engineers during design

and coding phases to implement requirements rather than eliciting requirements.

UMLsec, SecureUML and eABQM model security features and support reuse of

requirements. Finally, misuse cases, abuse stories, attack trees and other approaches

are elicitation activities that can be undertaken as part of a larger security

requirements elicitation initiative.

39

Each of these approaches may be useful when developing security

requirements, but are too broad, too specific, lengthy, or require expert knowledge to

be used with agile software development. Therefore, integrating security

requirements into existing software development lifecycles in a manner that can be

implemented by small, agile organizations is proposed. The proposed elicitation

approach analyzes, prioritizes and develops preliminary security requirements from

general software requirements artifacts using POS tagging. USeR and

SURE/ASSURE approaches both cite the difficulty with extracting security

requirements from users due to a general lack of security knowledge (Hallberg &

Hallberg, 2006; Romero-Mariona, 2009). Integrating POS tagging to capture security

requirements implied by business stakeholders but not specifically stated is expected

to improve security requirements elicitation. The output preliminary security

requirements captured from POS tagging can then be modeled, defined, and validated

(not covered by this thesis) to generate final security requirements in later stages of

the software development cycle. Figure 1.2 gives a broad overview of how the

proposed approach integrates into the software development lifecycle.

The proposed requirements elicitation approach will be iterative which will

distinguish it from other approaches such as SQUARE (Mead & Stehney, 2005).

SQUARE also assumes that a team is designated for the specific purpose of eliciting

security requirements. Small organizations simply may not have the personnel

resources to allocate an entire team to this task and will need to incorporate these

activities into the regular requirements elicitation activities. POS tagging activities

40

and the implementation of a security requirements repository are also innovative in

that they are not currently implemented by the surveyed approaches. The following

sections describe the POS tagging approach, security requirements repository, and the

identify, categorize, understand and prioritize activities for the security requirements

elicitation approach.

 Security Requirements Repository Design 3.1

The activities in the security requirements elicitation approach rely on the

development of a security requirements repository. A prototype of the security

requirements repository is shown in Figure 3.1. The subsequent sections detail the

entities and attributes for the repository. (Primary keys are denoted as PK.)

Figure 3.1: Security Requirements Repository Model

41

3.1.1 Security Terminology Entity

Attributes for the security terminology entity are TerminologyID (PK),

Security Term, and Security Term Description. Security Term

attributes are single terms (unigrams) that will be used during POS tagging. The

repository will be populated with terms identified by the requirements engineer based

on experience or by using a dictionary of security terms. Over time, security terms

can be refined to improve the effectiveness of POS tagging. Each security term has

additional details, such as definitions or phrases, which enhance the understanding of

each security term. Table 3.1 is a set of security terms that are used to populate the

repository prior to POS tagging. These terms were chosen after a broad scan of

sample software requirements specification documents for security related

terminology.

Table 3.1: Security Terms

Security Terms
 access certificates malicious

audit deny password

authenticate encrypt permission

authentication encryption privileges

authorize https risk

authorized logon security

certificate

3.1.2 Security Principles Entity

Attributes for the security principles entity are PrincipleID (PK), Principle,

and Description. As a minimum, security principles are confidentiality,

integrity, and availability (CIA), but additional security principles can be defined as

42

well. Description attributes are definitions or details to provide a common basis of

understanding among stakeholders. Security principles and description for the

repository are shown in Table 3.2.

Table 3.2: Security Principles and Description

Principle Description

Confidentiality unauthorized disclosure of information

Integrity unauthorized modification or destruction of information

Availability disruption of access to or use of information of an information system

3.1.3 Terminology and Principles Entity

Attributes for the terminology and principles entity are TermPrincipleID (PK)

and secondary keys, TerminologyID, and PrincipleID.

3.1.4 Requirements Artifacts Entity

Attributes for the requirements artifacts entity are ArtifactID (PK), Artifact

Name, Artifact Description, Artifact Type.

3.1.5 Security Requirements Entity

Attributes for the security requirements entity are SecReqID (PK),

TermPrincipleID, SecReq Description, SecReq Comments, and

ArtifactID. Secondary keys are TermPrincipleID and ArtifactID.

SecReq Description is the security requirement that is generated during the

elicitation activity. SecReq Comments are general comments regarding the

security requirement.

43

3.1.6 Software Requirements Entity

Attributes for the software requirements entity are SoftwareReqID (PK) and

secondary key, SecReqID. The entity relates the newly generated security

requirements to the software requirements specification artifact.

 Security Requirements Elicitation Activities 3.2

The activities in the security requirements elicitation approach are:

 Identify candidate security goals

 Categorize security goals based on security principle

 Understand stakeholder goals and develop preliminary security requirements

 Prioritize preliminary security requirements

Each activity defines inputs, roles, techniques and output. Inputs are

requirements related artifacts. Roles are the development team and business

stakeholders responsible for the activity. Techniques are applied to accomplish each

activity and a security requirements artifact is output. The output for the approach is a

prioritized security requirements artifact. Figure 3.2 represents the input, roles,

techniques and output for the approach activities.

44

Figure 3.2: Security Requirements Approach Components

3.2.1 Identify Candidate Security Goals

Identifying security requirements can be difficult if stakeholders have difficulty

expressing security related needs. Business stakeholders may imply the need to

protect assets based on the knowledge of vulnerabilities and threats. However,

business stakeholder knowledge about vulnerabilities and threats may not be

extensive which leads to ambiguity expressing security needs. The result may be

functional requirements written with security terminology that implies security

requirements but that are not explicitly defined. If security terminology can be

discovered, candidate security goals can be identified that with further analysis could

45

be used to develop security requirements. Figure 3.3 shows the detail for the identify

security goals activity.

Figure 3.3: Identify Candidate Security Goals Activity

POS Tagging

Online reviews provide seemingly unbiased opinions about products and services that

can be used to inform consumers about purchasing decisions. Many web sites have

an area for users to post and share comments about products or services. Ratings and

opinion comments are the general form of an online review providing a quick

snapshot of standing as well as testimonials. As the popularity of online reviews

increased, businesses realized the strategic advantages that online reviews present to

influencing reputation and purchasing decisions of consumers. A good review can

46

significantly boost sales whereas as poor review can have a detrimental impact on

business. Therefore, extracting or capturing sentiment from online reviews, or

opinion mining, has been an active area of recent research (Dave, Lawrence, &

Pennock, 2003; Harris, 2012; Hu & Liu, 2004a, 2004b; Jindal & Liu, 2008; Ku,

Liang, & Chen, 2006).

Aggregating and extracting meaning from online reviews requires

understanding the nature of posted reviews. Online reviews are created when a user

posts opinions about products and services. Reviews typically allow the user to

choose from a rating, such as a scale of one to ten stars, as well as entering text

reviews. User reviews are typically in commentary form where the reviewer can enter

opinions in their own words about a product and are intended to enhance the

usefulness of a rating and provide additional product insight. Aggregating ratings is

not a statistically complicated task, but analyzing text reviews presents a challenge

since quantitative analysis methods cannot be easily applied to extract meaning from

natural language input. To address this problem, opinions or sentiment must be

categorized and extracted from text reviews.

Much of the research in opinion mining is based on data mining and natural

language processing techniques. Techniques use a combination of training data,

human classification and fully automated processes with varying accuracy and

performance results. POS tagging is one proposed method to extract opinions from

reviews (Hu & Liu, 2004a; Ku et al., 2006) and is commonly applied to identify

features as noun phrases and opinions as close proximity adjectives. Genre

47

identification and text categorization is one approach used to automate review

classification (Ott, Choi, Cardie, & Hancock, 2011). Parsing tools, such as the

Stanford Parser, are also available to automate POS tagging and determine word

frequency.

Although automated processes were used in many of the approaches, other

work relied on human experts manually identifying words or phrases that indicate

opinion sentiment (Harris, 2012). For small data sets, manual review is feasible if

automated approaches are not available. Larger data sets, such as those requiring

crawling millions of reviews, use automated approaches to create smaller data sets

that are then reviewed manually. Researchers frequently cite the difficulty building a

dataset since it is arduous for human evaluators to manually cull through large

numbers of reviews. Therefore, many approaches also include creating a repository of

relevant terms that are refined over time. Another goal is to create a “gold standard”

dataset that can be used among researchers and refined over time to improve opinion

mining results.

The goals of online review opinion mining and extracting security

requirements are similar. Natural language input contains meaning or sentiment that

may not be easily inferred. Human experts and manual review methods are required

to build a set of words or phrases that are meaningful based on the desired end result.

Machine learning techniques are desired, but the use of experts can be effective and

efficient until these techniques mature and are refined.

48

Word frequency analysis is commonly used in opinion mining but is not as

useful when applied to security requirements extraction. Opinion mining seeks to

find similarities among disparate reviewers for a specific product or service. Reviews

are typically short in length, informal and are intended to convey a specific message.

In contrast, software products are developed for a specific set of stakeholders and

there is a single software requirements document that is formal and lengthy.

Therefore, counting the frequency of a specific term within a set of reviews reveals

different information than the term frequency of a single document. However, if the

frequency of security related terms is high in a software requirements artifact, term

frequency could indicate then need to define security requirements.

Proximity of terms may reveal relevant information within a software

requirements document. For example, if the terms “security” and “encryption” are

located within close proximity of each other, then the terms may be associated with

each other and could reveal an underlying security requirement. Security terms

should therefore be tagged and follow-up analysis performed to determine if security

requirements can be captured. This is the proposed method in which POS tagging

will be implemented to discover security requirements. Additional details on POS

tagging are discussed in the identify activity of the security requirements elicitation

approach.

One method to identify security terminology implied in requirements is

through the use of POS tagging. The requirements engineer takes as input

preliminary requirements documents. These documents can be draft software

49

requirements specifications (SRS), requests for proposals (RFP’s), or other

requirements specification documents that will be used to generate the final software

requirements specification. Artifacts are scanned for commonly used security

terminology. Generating commonly used security terms can be left up to the

knowledge of the requirements engineer or a dictionary of security terminology can

be used if available. Discovered security terminology and the location within the

requirements artifacts are tagged for additional review. After all artifacts have been

tagged, the requirements engineer reviews the requirements artifacts and identifies

candidate security goals.

Candidate security goals (CSG) are general requirements written with implied

security needs that may be developed into security requirements. For example, a

requirements artifact was scanned and tagged for the word malicious. The following

functional requirements (FR) were found:

FR–1: “Malicious requests are detected and rejected”

FR–2: “Malicious requests are identified and acted upon”

The requirements engineer would tag the location(s) where the term malicious was

found and generate a CSG such as:

CSG-1: The system shall identify, detect and determine

appropriate responses to malicious requests

Further examination of the requirements artifacts also reveals that requests are related

to access policies. The CSG can be refined to include this information:

50

CSG-1: The system shall identify, detect and determine

appropriate responses to malicious requests using access

control policies

After all artifacts have been scanned, tagged and reviewed, a candidate security goals

artifact will be created as output for the identify activity. This artifact will be used as

input to the categorize security goals activity.

3.2.2 Categorize Security Goals Based on Security Principle

Candidate security goals identified from the previous activity are used as input for the

categorize activity. The requirements engineer and business stakeholders work

together to review all requirements artifacts that have tagged candidate security goals.

Interactive meetings (face-to-face, web facilitated, teleconference) will likely be the

most efficient, but virtual document review can also take place. Prior to the meetings,

the requirements engineer can assess the goals for quick categorization to facilitate

efficient communications. Business stakeholders should be educated on general

security principles prior to the meeting. During this activity, each security goal is

categorized based on a security principle in order to facilitate additional stakeholder

elicitation. Confidentiality, integrity, and availability principles, also referred to as

CIA, are the key security principles, but other principles can be defined as well. Each

candidate security goal should be categorized with at least one security principle.

Referring to the example CSG from the identify activity; the following

security principles can be associated with the CSG:

51

SP-1: Confidentiality: protect against unauthorized disclosure of

information

SP-2: Integrity: protect against unauthorized modification or

destruction of information

The requirements engineer and business stakeholders will agree upon the general

security principles. If a candidate security goal cannot be categorized, additional

elicitation and analysis can be iteratively undertaken with the stakeholders. If CSG’s

still cannot be categorized after additional iterations, it will fail the activity and the

CSG will be discarded. The details for the categorize security goals based on security

principle activity are shown in Figure 3.4.

52

Figure 3.4: Categorize Security Goals Activity

3.2.3 Understand Stakeholder Goals and Develop Preliminary Security

Requirements

Using the refined security goals from the categorize activity, the requirements

engineer and business stakeholders seek to further understand the implications of the

security goals. Additional artifacts such as policies and regulations are also used as

input to this activity. The requirements engineer chooses techniques and tools to

further elicit information from the business stakeholders. Face-to-face or virtual

meetings are a good choice of techniques for generating discussion. The choice of

tools is likely to be influenced by the requirements engineer but could include

generating misuse or abuse cases, attack trees, or other security related modeling.

The output from this activity is a set of preliminary security requirements based on

53

the CSG’s. Continuing with the previous example, the preliminary security

requirement (PSR) generated from CSG-1 could be:

PSR-1: The system shall protect the confidentiality and integrity

of data by identifying, detecting and rejecting malicious

requests using access control policies

The details for the understand stakeholder goals and develop preliminary security

requirements activity are shown in Figure 3.5.

Figure 3.5: Understand Stakeholder Goals Activity

3.2.4 Prioritize Preliminary Security Requirements

Preliminary security requirements need to be prioritized to generate the final security

requirements. During this activity, the requirements engineer continues to work with

54

business stakeholders to analyze the input preliminary security requirements.

Recommended analysis techniques are risk management tools commonly used by the

stakeholders who will foster familiarity with the process. An additional technique,

Failure Modes and Effects Analysis (FMEA), is also recommended.

FMEA is an analysis and decision making tool often associated with quality

and Six Sigma methodologies. A failure mode is the manner in which something

might fail. Effects analysis is the study of the consequences of these failures. FMEA

is used to identify, estimate, prioritize, and reduce the risk of failure. As a software

engineering tool, FMEA is not widely used, but has advantages over other analysis

tools in that it is easy to implement and can be used by a broad audience. A

requirements engineer can use FMEA to elicit security related information from

stakeholders, prioritize the data, and present an analysis of the risks associated. The

prioritized risks allow for informed decision making to choose which actions to

consider. This approach is very useful to communicate and clarify the impact of

technical materials in an easy to understand format.

Analysis requires creating severity, occurrence and detection rankings in order

to determine a risk priority number (RPN). A standard scale for severity, occurrence

and detection can be adopted similar to Table 3.3 as a starting point for FMEA

analysis. Experienced FMEA users may develop more refined rankings similar to

Table 3.4, Table 3.5, and Table 3.6. The RPN is calculated as the product of the risk

rankings.

RPN = (severity ranking)(occurrence ranking)(detection ranking)

55

Continuing from the previous activities, Table 3.7 demonstrates analyzing the

preliminary security requirement related to malicious requests (SR-1). The security

requirements engineer could generate a preliminary table and follow-up with business

stakeholder or all stakeholders could be involved at the start of analysis. Effects

related to loss of confidentiality and integrity are determined to be viewed, stolen or

corrupted data. Rankings for severity, occurrence and detection are determined by

the stakeholders and the RPN is calculated. The resulting RPN generates a prioritized

list of potential security requirements. In this scenario, the risk of data being stolen

by a malicious request significantly outweighs other effects. Using the FMEA

results, requirements engineer and business stakeholders will refine the preliminary

security requirements until a list of final security requirements has been generated.

The details for the prioritize security requirements activity are shown in Figure 3.6.

Table 3.3: FMEA Standard Scale

Standard Scale for Severity, Occurrence or Detection

Impact Rating Criteria: A Failure Could…

Very

High 9-10 virtually inevitable

 High 8-7 failure likely, many known cases

 Moderate 4-6 somewhat likely, some known cases

 Low 3-2 few known cases

Unlikely 1 no known cases

56

Table 3.4: FMEA Severity Scale

Severity Scale = Likely Impact of Failure

Impact Rating Criteria: A Failure Could…

Bad 10 Injure a customer or employee

 9 Be illegal

 8 Render the software unfit for use

 7 Cause extreme customer dissatisfaction

 6 Result in partial malfunction

 5 Cause a loss of performance likely to result in a complaining

 4 Cause minor performance loss

 3 Cause a minor nuisance; can be overcome with no loss

 2 Be unnoticed; minor effect on performance

Good 1 Be unnoticed and not affect the performance

Table 3.5: FMEA Occurrence Scale

Occurrence Scale = Frequency of Failure

Impact Rating Time period

Probability of

Occurrence

Bad 10 More than once per day > 30%

 9 Once every 3-4 days ≤ 30%

 8 Once per week ≤ 5%

 7 Once per month ≤ 1%

 6 Once every 3 months ≤ 0.3 per 1,000

 5 Once every 6 months ≤ 1 per 10,000

 4 Once per year ≤ 6 per 100,000

 3 Once every 1-3 years

≤ 6 per million (approx.

six sigma)

 2 Once every 3-6 years ≤ 3 per 10 million

Good 1 Once every 6-100 years ≤ 2 per billion

57

Table 3.6: FMEA Detection Scale

Detection Scale = Ability to Detect Failure

Impact Rating Definition

Bad 10 Defect caused by failure is not detectable

 9 Occasional units are checked for defects

 8 Units are systematically sampled and inspected

 7 All units are manually inspected

 6 Manual inspection with mistake proofing modifications

 5 Process is monitored with control charts and manually inspected

 4

Control charts used with an immediate reaction to out-of-control

condition

 3

Control charts used as above with 100% inspection surrounding

out-of-control condition

 2

All units automatically inspected or control charts used to

improve the process

Good 1

Defect is obvious and can be kept from the customer or control

charts are used for process improvement to yield a no-inspection

system with routing monitoring

Table 3.7: FMEA Analysis of Security Requirements

Failure Effect Severity Occurrence Detection RPN

malicious request data viewed 3 7 9 189

malicious request data stolen 9 4 9 324

malicious request data corrupted 5 4 4 80

58

Figure 3.6: Prioritize Preliminary Security Requirements

59

4 Research Results Evaluation

and Validation

The security requirements elicitation approach will be evaluated empirically by

analyzing publically available software requirements specifications (SRS). An

internet search of pdf and Word documents was conducted using the search term

“software requirements specification”. Many student project SRS documents are

available from .edu sites and these were filtered out from the search. Template

documents were also discarded. A base set of 46 SRS documents were downloaded

of which three contained sections specifically for security requirements. The

remaining 43 SRS documents were used analyzed using POS tagging. After tagging

analysis, a smaller subset of the tagged documents was selected and analyzed using

the security requirements elicitation steps. We present POS tagging, security

requirements elicitation and results next.

 POS Tagging 4.1

A set of security terminology was required in order to scan documents and conduct

POS tagging. The security terms chosen were based on manually reviewing SRS

documents containing security requirements and the author’s knowledge. The

resulting set of security terms is show in Table 4.1. Unigrams were chosen for

scanning rather than n-grams (short security phrases). Similar terms such as

authenticate and authentication as well as plural forms of some terms were included

60

due to the requirements of the POS tagging software. The set of security terms would

be refined and updated after preliminary results are evaluated for future iterations of

the approach. Analysis of term frequency, false positives and term relevancy will be

used to prune or expand the security term dataset.

We developed a POS scanner to scan and tag the set of SRS documents.

Small organizations are likely to generate SRS documents using word processing

software rather than sophisticated software development management software. All

pdf documents were converted to Word 2010 format (.doc) in preparation for

scanning. The scanning software was written in Visual Basic for Applications (VBA)

which integrates with Microsoft Word and can easily facilitate the scanning process.

The basic steps in the scanning process are:

1. Open the document

2. Clear all bookmarks

3. Scan for, count and bookmark the location of each security term

4. Write the document name, security term and frequency to a text file

5. Save and close the document

Multiple files can be automatically scanned sequentially. The entire scanning and

tagging process is automated and processing time was approximately 1.5 minutes per

document.

61

Table 4.1: Security Terminology Frequency and Rank

Security Terminology

Security Term Frequency Rank

access 416 2

audit 28 10

authenticate 5 17

authentication 30 8

authorize 0 19

authorized 146 5

certificate 205 4

certificates 85 7

deny 3 18

encrypt 12 14

encryption 20 12

https 14 13

logon 8 15

malicious 8 15

password 237 3

permission 86 6

privileges 24 11

risk 30 8

security 551 1

Number of documents scanned: 43

62

Table 4.2: SRS Document Security Term Frequency

Security Term Frequency per SRS Document

Doc # Frequency

Doc # Frequency

Doc # Frequency

1 119

16 20

31 54

2 24

17 20

32 52

3 20

18 41

33 63

4 14

19 113

34 56

5 35

20 27

35 36

6 22

21 83

36 52

7 701

22 141

37 50

8 17

23 90

38 64

9 44

24 31

39 84

10 29

25 183

40 73

11 36

26 26

41 43

12 21

27 35

42 47

13 18

28 87

43 49

14 14

29 44

15 27

30 49

Average Frequency of Security Terms per Document: 66.4

Total Security Term Frequency: 2854

Total SRS Documents Scanned: 43

63

4.1.1 Analysis of Tagged Security Terms

Table 4.1 lists the security term frequency and relative ranking. Five security terms

with the highest frequency are security, access, password, certificate, and authorized.

Security terms with the lowest frequency are authorize, deny, authenticate, logon and

malicious. Figure 4.1 and Figure 4.2 graphically display the security term frequency

and average frequency for each of the selected security terms. Table 4.2 shows the

per document tagging statistics. The security term frequency per document revealed

a total of 2,854 terms tagged with an average per document frequency of 66.4.

Tagged term frequency ranged from a low of 14 to a high of 701. The average term

frequency may be skewed by one document that has a very high term frequency.

Without this document the average is closer to 51 but even at 66.4, it is low enough

that manual review by a requirements engineer would not be cumbersome. We will

analyze the SRS documents to determine if the size of the security term dataset

impacts the viability of discovering candidate security goals. Results from the

elicitation activities will be analyzed to determine if the set of security terms can be

pruned to a smaller set or if additional security terms are needed to generate security

requirements.

64

Figure 4.1: Security Term Frequency from POS Tagging

0 100 200 300 400 500 600

authorize

deny

authenticate

logon

malicious

encrypt

https

encryption

privileges

audit

risk

authentication

certificates

permission

authorized

certificate

password

access

security

Frequency

S

e

c

u

r

i

t

y

T

e

r

m

65

Figure 4.2: Security Term Average Frequency from POS Tagging

 Security Requirements Elicitation 4.2

Eight tagged documents with the highest frequency were chosen for further analysis

using the security requirements elicitation activities. One of the documents was

eliminated due to formatting issues. The document with the highest security term

frequency was a highly complex document that specified multiple sub-systems and

contained hundreds of functional requirements. The complexity of the SRS was not

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

authorize

deny

authenticate

logon

malicious

encrypt

https

encryption

privileges

audit

risk

authentication

certificates

permission

authorized

certificate

password

access

security

Average Frequency

S

e

c

u

r

i

t

y

T

e

r

m

66

representative of the type of product that would be developed by a small organization

and was also eliminated.

4.2.1 Identify Candidate Security Goals

Each document was manually reviewed to determine if the tagged security terms were

relevant to identifying candidate security goals. Custom code facilitated the process

by selecting each tagged term and allowing the reviewer to accept or reject each term

based on the context of the language surrounding each term. Terms could be rejected

(false positives) for a variety of reasons. Acronym lists, glossaries and references to

other documents were common reasons for rejecting or “un-tagging” a term. Other

terms were found to have a different meaning such as “certificate” paired with nouns

that are not related to security such as “ship certificate”. “Access” was another term

that was frequently paired with “channel” in another document. Other terms were

repeated in close proximity, typically separated by a few words or in a nearby

sentence. When identical close proximity terms were found, only one of the terms

remained tagged. On the average, 15% of the tagged terms remained for an average

of 27 terms per SRS document. Figure 4.3 and Figure 4.4 show the results of security

term frequency before and after false positives are removed.

67

Figure 4.3: Comparison of Original and Remaining Term Frequency

Figure 4.4: Average Security Term Frequency After Reduction

0

20

40

60

80

100

120

140

160

180

200

1 19 23 22 25 28 39 40

Frequency of
terms before and

after analysis

SRS Document #

Original POS Tags

Remaining POS Tags

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 19 23 22 25 28 39 40

Percent of tags
remaining after

analysis

SRS Document #

68

Carrying out the identify activity requires that the remaining security terms

are analyzed to determine to identify candidate security goals (CSG). Analysis from

one of the SRS documents reveals the following CSG’s:

CSG-1: The application will also allow for remote access through

a firewall via outside telecommunications networks by

authorized users.

CSG-2: The logon screen shall request user name and

corresponding password.

CSG-3: For system login purposes, the hash function shall also be

used to encrypt user passwords.

4.2.2 Categorize Security Goals Based On Security Principle

Each of the CSG’s is categorized based on security principle. Security principles

(SP) are commonly known as the CIA triad which stands for confidentiality, integrity

and availability. Common definitions for the security principles are:

SP-1: Confidentiality: protect against unauthorized disclosure of

information

SP-2: Integrity: protect against unauthorized modification or

destruction of information

SP-3: Availability: protect against disruption of access to or use

of information of an information system

The CSG’s can be categorized with multiple security principles. If no security

principles can be applied, the CSG would be rejected.

69

CSG-1: SP-1, SP-2

CSG-2: SP-2

CSG-3: SP-2

4.2.3 Understand Stakeholder Goals and Develop Preliminary Security

Requirements

Stakeholder goals are elicited for each of the categorized CSG’s and preliminary

security requirements (PRS) are developed.

PSR-1: The system shall protect confidentiality and integrity of

data by allowing remote access through a firewall ...only

to authorized users.

PSR-2: The system shall protect integrity of data by requesting a

user name and password prior to access.

PSR-3: The system shall protect confidentiality of user passwords

by encrypting passwords.

4.2.4 Prioritize Preliminary Security Requirements

FMEA analysis is performed on for each PSR. Potential failure modes and effects are

identified. The failure modes and effects are written in general terms for ease of

understanding and quick analysis. Severity, occurrence, and detection ratings were

assigned using the standard FMEA scale shown in Table 3.3. The FMEA analysis is

shown in Table 4.3. If the RPN is determined to be above a minimum threshold, the

PSR will be accepted. Security requirements that are accepted will be included in the

70

SRS as security requirements and will be subject to additional modeling and

validation activities included in later software development activities. The activities

in the security requirements elicitation approach are documented using the template

shown in Table 4.4. All of the candidate security requirements were previously

identified as general security requirements. FMEA analysis confirms the need for

security requirements. The refined requirements can now be accepted as security

requirements and can be input into the security requirements repository.

Table 4.3: FMEA Analysis of Preliminary Security Requirements

Failure Effect Severity Occurrence Detection RPN

remote access by

unauthorized user
data viewed 4 3 7 84

remote access by

unauthorized user
data stolen 7 3 9 189

remote access by

unauthorized user

data

corrupted
5 3 7 105

access by unauthorized

user
data viewed 4 3 7 84

password compromised data viewed 6 3 7 126

password compromised data stolen 6 3 9 162

password compromised
data

corrupted
5 3 7 105

71

Table 4.4: Security Requirements Elicitation Template

Security Requirements Elicitation

Document Name:

Document ID: 19 Original tag count 113

Project ID: Final tag count 43

1 Identify candidate security goals

 Candidate Security Goals (CSG)

CSG - 1 The application will also allow for remote access through a firewall via

outside telecommunications networks by authorized users.

 CSG - 2 The logon screen shall request user name and corresponding password.

CSG - 3 For system login purposes, the hash function will also be used to encrypt

user passwords.

2 Categorize security goals based on security principle

 Apply security principle(s) to CSG

 CSG - 1 SP-1, SP-2

 CSG - 2 SP-2

 CSG - 3 SP-2

3 Understand stakeholder goals and develop preliminary security requirements

 Preliminary Security Requirement (PSR)

 PRS - 1
The system shall protect confidentiality and integrity of data by allowing
remote access through a firewall ...only to authorized users.

 PRS - 2
The system shall protect integrity of data by requesting a user name and
password prior to access.

 PRS - 3
The system shall protect confidentiality of user passwords by encrypting
passwords.

4 Prioritize preliminary security requirements

 PSR Effect FMEA RPN Accept/Reject

 PRS - 1 Data Stolen

189 Accept

 PRS - 2 Data viewed

84 Accept

 PRS - 3 Password compromised 162 Accept

 Prioritized Security Requirements (SR)

 SR – 1
The system shall protect confidentiality and integrity of data by allowing
remote access through a firewall ...only to authorized users.

 SR – 2
The system shall protect integrity of data by requesting a user name and
password prior to access.

 SR – 3
The system shall protect confidentiality of user passwords by encrypting
passwords.

Notes

 All of the identified requirements should be reclassified as security requirements.

72

 Analysis of Security Requirements Elicitation Approach 4.3

The remaining documents were analyzed to determine if security requirements could

be elicited using POS tagging and the security requirement elicitation approach.

Table 4.5 is the analysis of the SRS documents with the highest term frequency.

Security requirements specified indicates if a specific subsection of security

requirements was included in the SRS. If any of the identified security requirements

were originally identified as functional or non-functional requirements and were

subsequently determined to be security requirements, convert to security requirements

is marked as “Yes”. The number of identified security requirements from the analysis

is also indicated. Finally, general comments from the analysis are included.

Table 4.5: Security Requirements Analysis of SRS Documents

Document #: 1

Security Requirements Specified: No

Convert to Security Requirements: Yes

Identified Security Requirements: 9

Contained use cases that discussed security concepts which could be converted to

abuse or misuse cases. Several functional requirements were in fact security

requirements that should be re-written and classified as security requirements. Non-

functional requirements were generally used to address security requirements

(verifiability and security). The verifiability section included requirements that

addressed security concerns (terms used were suspicious records, authorized user,

audits, special privileges). All of these concerns should be converted to security

requirements. Security section described specific security mechanisms. All of the

identified security requirements had at least one tagged security term.

73

Document #: 19

Security Requirements Specified: No

Convert to Security Requirements: Yes

Identified Security Requirements: 12

Security requirements were scattered within other requirements (external system

interfaces, communications interfaces, functional requirements). One interesting

note was found regarding system login (hash function shall be used to encrypt

passwords, question in document asking why this was a requirement).

Document #: 22

Security Requirements Specified: No

Convert to Security Requirements: Yes

Identified Security Requirements: 6

Very ambiguous and general requirements. Authentication in the form of password

requirements were the key security requirements. Categorizing by security

principles was effective since most of the tagged terms eluded to data integrity and

confidentiality principles. Most of the security requirements can be developed from

existing functional and non-functional requirements.

Document #: 23

Security Requirements Specified: No

Convert to Security Requirements: No

Identified Security Requirements: 4

Contained use cases to define the functional requirements. Non-functional

requirements contained a section on security that had a mash-up of policy and

training information. Definitions of strong passwords practices (length, special

characters, numbers, password reuse) were included. The basic specification was to

require authentication using strong passwords or digital certificates. There were

only mild requirements that could be converted to stronger security requirements

and many new security requirements could be added to account for data

confidentiality and integrity.

74

Document #: 25

Security Requirements Specified: No

Convert to Security Requirements: Yes

Identified Security Requirements: 8

“Access” security term generally defined access controls. Data confidentiality and

integrity are also key considerations. Comments were of a form such as: "There

should be security preventing the intrusion into the system by unauthorized users, or

users at unauthorized access levels."

Document #: 28

Security Requirements Specified: Yes

Convert to Security Requirements: Yes

Identified Security Requirements: 6

There is a security requirements section, but it is only a paragraph that broadly

identifies security characteristics. Encryption, passwords, access controls (data

integrity and confidentiality) are all specifically addressed. Several security

requirements were contained within functional requirements.

Document #: 39

Security Requirements Specified: No

Convert to Security Requirements: Yes

Identified Security Requirements: 4

Security requirements were contained within functional requirements. Permission

levels, access controls, non-repudiation, encryption, and passwords were commonly

used terms. Use cases were identified that could be modified into misuse or security

use cases.

Document #: 40

Security Requirements Specified: No

Convert to Security Requirements: Yes

Identified Security Requirements: 6

Contained use cases. Security primarily for passwords and access with references to

“secure connections”. Contained references to legislation and regulations.

75

POS tagging revealed interesting data related to the relevancy of security

terms when identifying security requirements. Security terms with the highest

frequency from initial scanning had a lower retention rate after manual review and

pruning of security terms. Terms such as “password” and “authentication” were

heavily used and often repeated within close proximity. Security requirements were

frequently developed when a high concentration of security terms within a sentence

or in neighboring sentences was found Lower frequency terms were often not

located in close proximity to other security terms but did identify security

requirements. These requirements were more subtly implied and would likely require

additional elicitation and modeling with business stakeholders to fully understand the

security goals. Figure 4.5 and Figure 4.6 illustrate the analysis of security term

frequency after an initial review of tagged security terms was conducted.

76

Figure 4.5: Percentage of Security Terms Retained After Initial Review

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

authenticate

authorize

deny

risk

certificates

certificate

permission

access

security

audit

authentication

encrypt

password

authorized

https

privileges

logon

malicious

encryption

Security Term Average Retained Percentage

S

e

c

u

r

i

t

y

T

e

r

m

77

Figure 4.6: Comparison of Original and Pruned Security Term Frequency

0 50 100 150 200 250 300 350

access

audit

authenticate

authentication

authorize

authorized

certificate

certificates

deny

encrypt

encryption

https

logon

malicious

password

permission

privileges

risk

security

Average Frequency

S

e

c

u

r

i

t

y

T

e

r

m

Pruned Tagged Terms Original Tagged Terms

78

 Feasibility of the Proposed Solution 4.4

Feasibility of the proposed solution should be taken into consideration given that we

are targeting small, agile organizations. Drawbacks to the approaches discussed in

the survey chapter included approach complexity, resources and security expertise.

Given a basic set of security terms and the scanning software, POS tagging can be

accomplished with minimal time and personnel resources. Pruning the tagged terms

is a manual task, but does not require advanced security expertise and can be

accomplished in a relatively short time. The subsequent elicitation activities require

stakeholder meetings to develop security requirements, but do not require significant

expertise or training. Conducting the FMEA analysis will take minor training and

startup time to determine failure modes, expected effects and appropriate scales to be

used to calculate the RPN. However, the process is easy to understand by non-

technical stakeholders and guidance by the requirements engineer makes the FMEA

analysis a feasible technique. Additional models and techniques that are currently in

use by the requirements engineer are not excluded and can also be included in the

approach are desired. The development of a security requirements repository to

improve traceability and reusability as the elicitation approach matures does not

detract from the feasibility of the proposed solution. Therefore, the proposed security

requirements elicitation approach is a feasible alternative to other approaches for

small, agile organizations.

79

 Summary 4.5

This chapter presented an analysis of POS tagging and the security requirements

approach. Sample SRS documents were collected and automated scanning software

developed for this thesis was used for POS tagging of security terms. A subset of

SRS documents with the highest frequency of tagged security terms was analyzed.

Tagged terms that were redundant or were false positives had tags removed. Next,

the activities in the security requirements elicitation approach were undertaken.

Security requirements that had not been previously identified were elicited and

developed from all of the SRS documents.

80

5 Conclusions and Future Work

 Summary 5.1

This thesis describes a solution for eliciting security requirements using POS tagging

which can be implemented by small, agile organizations. Resulting security

requirements are integrated into SRS documents and a security requirements

repository enables rapid reuse of developed requirements. Key elements of the

elicitation solution are (1) identifying security goals, (2) categorizing goals by

security principle, (3) understanding stakeholder goals to develop preliminary

requirements and (4) prioritizing security requirements for inclusion into the SRS

document. Stakeholder roles, input artifacts, techniques and output artifacts are

defined for each phase of the solution. The solution is flexible in order to

accommodate the needs of small, agile software development organizations but

outlines a basic structure that can be easily implemented. The solution takes place at

the earliest phase of the software development process during requirements elicitation

in order to reduce cost and rework at later stages of development.

A POS scanning algorithm was developed as part of the solution to automate

early discovery of security goals by tagging security terms within a document. The

scanning algorithm can be used with individual documents or to scan multiple

documents at one time. Review of tagged terms indicates that security terms are

typically grouped in close proximity and duplicates can be identified and untagged.

81

False positives, or security terms that are not associated with security goals, are also

manually untagged. The resulting set of tagged security terms can then be analyzed

using the proposed solution. Security requirements were discovered and refined in

documents obtained from a sample set of publically available SRS documents. These

results verify that solution is feasible and can be implemented in small, agile

organizations.

 Research Contributions 5.2

Our research provides two major contributions. The first contribution is the POS

scanning algorithm. We use POS tagging to discover security requirements from

existing requirements artifacts by extracting implied security goals from business

stakeholders. POS tagging jump starts the elicitation process and focuses efforts on

specific areas of the requirements document for further examination. This approach

differs from surveyed works that either relies on developing complex security models

or implementing comprehensive security initiatives. Requirements engineers can

have a wide range of security knowledge and expertise to implement the solution

rather than needing to be security experts. For small organizations with limited

resources, this addresses their needs to build security maturity over time rather than

undertaking comprehensive security initiatives. By starting with a basic set of

security terms and understanding of key security principles, POS tagging focuses

resources on fully understanding security goals. The second contribution is

development of a four step process to elicit, analyze, prioritize and document security

requirements. A key component of prioritization is the implementation of FMEA

82

analysis which has roots in Six Sigma methodologies. FMEA analysis has not

previously be considered as an approach that can be used as part of the requirements

elicitation, but has advantages in that it is quick, easy to understand by non-technical

stakeholders and aids in prioritization of security requirements. RPN results are

based on ranking risk based on frequency, occurrence and detection each of which

can be addressed individually to reduce risk. The solution is flexible and the scope of

effort can be adjusted to accommodate resources available for a software project.

Previous works focused on modeling scenarios, addressing specific threats,

implementing security mechanisms, or developing broad security initiatives.

However, if stakeholders do no clearly understanding security needs, deriving

security requirements using these approaches can be a difficult and resource intensive

exercise. The security requirements elicitation solution is designed to be integrated

into the requirements elicitation phase of software development in order to reduce

costly rework at later stages of development.

 Suggestions for Future Work 5.3

The focus of this work has been the integration of POS tagging within a security

requirements elicitation approach. During evaluation of the solution, we observed

that additional work in POS tagging is needed. Frequency of terms, proximity and

associations between terms may be more significant than developing a large dataset

of security terms. Expanding the terminology to include short phrases of related

terms should also be explored to improve understanding of security goals. The

relationship between a combination of terms and association with specific security

83

principles should be explored. Furthermore, the development of a security

requirements language using a formal language such as Backus Normal Form (BNF)

notation to precisely and formally define security requirements and generate a

reusable repository of security requirements. Finally, failure modes and effects

analysis could be used to generate techniques, such as abuser stories, which are

commonly used with agile development elicitation and modeling techniques.

84

Bibliography

Alexander, I. (2003). Misuse cases help to elicit non-functional requirements.

Computing & Control Engineering Journal, 14(1), 40-45.

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R. (2008). Software

security engineering: a guide for project managers: Addison-Wesley.

Barnum, S., & Sethi, A. (2006). Introduction to attack patterns Retrieved 01/27/2011,

from https://buildsecurityin.us-

cert.gov/bsi/articles/knowledge/attack/585-BSI.html

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64-69.

Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K., & Kruchten, P. (2006).

Extending XP practices to support security requirements engineering. Paper

presented at the Proceedings of the 2006 international workshop on Software

engineering for secure systems, Shanghai, China.

CERT-SEI. (2010). SQUARE Tool, from
http://www.cert.org/sse/square/square-tool.html

Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery:

opinion extraction and semantic classification of product reviews. Paper

presented at the Proceedings of the 12th international conference on World

Wide Web, Budapest, Hungary.

Devanbu, P. T., & Stubblebine, S. (2000). Software engineering for security: a

roadmap. Paper presented at the Proceedings of the Conference on The Future

of Software Engineering, Limerick, Ireland.

Falcarin, P., & Morisio, M. (2004). Developing Secure Software and Systems. Paper

presented at the IEC Network Security: Technology Advances, Strategies, and

Change Drivers, Chicago: International Engineering Consortium (IEC).

Firesmith, D. (2003). Security Use Cases. Journal of Object Technology, 2(3), 53-64.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2004). Requirements

engineering meets trust management: model, methodology, and reasoning:

University of Trento, Department of Information and Communication

Technology.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2005, 29 Aug.-2 Sept.

2005). Modeling security requirements through ownership, permission and

85

delegation. Paper presented at the Requirements Engineering, 2005.

Proceedings. 13th IEEE International Conference on.

Gitlow, H. S., & Levine, D. M. (2005). Six Sigma for green belts and champions:

Upper Saddle River, NJ: Financial Times Prentice Hall.

Haley, C. B., Laney, R., Moffett, J. D., & Nuseibeh, B. (2008). Security

Requirements Engineering: A Framework for Representation and Analysis.

Software Engineering, IEEE Transactions on, 34(1), 133-153.

Hallberg, N., & Hallberg, J. (2006, 21-23 June 2006). The Usage-Centric Security

Requirements Engineering (USeR) Method. Paper presented at the

Information Assurance Workshop, 2006 IEEE.

Harris, C. G. (2012, July, 2012). Detecting deceptive opinion spam using human

computation. Paper presented at the Proceedings of the 4th Human

Computation Workshop (HCOMP'12), Toronto, Canada.

Hu, M., & Liu, B. (2004a). Mining and summarizing customer reviews. Paper

presented at the Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining.

Hu, M., & Liu, B. (2004b). Mining opinion features in customer reviews. Paper

presented at the Proceedings of the National Conference on Artificial

Intelligence.

Ingoldsby, T. R. (2009). Attack Tree-based Threat Risk Analysis, from
http://www.amenaza.com/downloads/docs/AttackTreeThre

atRiskAnalysis.pdf

Jewell, M. (2007). T.J. Maxx theft believed largest hack ever Retrieved 03/20/13,

from http://www.nbcnews.com/id/17871485/#.UUnroxxQG5I

Jindal, N., & Liu, B. (2008). Opinion spam and analysis. Paper presented at the

Proceedings of the international conference on Web search and web data

mining, Palo Alto, California, USA.

Jürgens, J. (2001). Towards Development of Secure Systems Using UMLsec. Paper

presented at the Proceedings of the 4th International Conference on

Fundamental Approaches to Software Engineering.

Jürgens, J. (2002). UMLsec: Extending UML for Secure Systems Development. Paper

presented at the Proceedings of the 5th International Conference on The

Unified Modeling Language.

86

Ku, L. W., Liang, Y. T., & Chen, H. H. (2006). Opinion extraction, summarization

and tracking in news and blog corpora. Paper presented at the Proceedings of

AAAI-2006 Spring Symposium on Computational Approaches to Analyzing

Weblogs.

Lodderstedt, T., Basin, D. A., & Doser, J. (2002). SecureUML: A UML-Based

Modeling Language for Model-Driven Security. Paper presented at the

Proceedings of the 5th International Conference on The Unified Modeling

Language.

Luckey, M., Baumann, A., Méndez, D., & Wagner, S. (2010). Reusing security

requirements using an extended quality model. Paper presented at the

Proceedings of the 2010 ICSE Workshop on Software Engineering for Secure

Systems, Cape Town, South Africa.

Malone, B., & Siraj, A. (2008). Tracking requirements and threats for secure

software development. Paper presented at the Proceedings of the 46th Annual

Southeast Regional Conference on XX, Auburn, Alabama.

McGraw, G. (2005). The Security Lifecycle-The 7 Touchpoints of Secure Software-

Just as you can't test quality into software, you can't bolt security features onto

code and expect it to become hack-proof Security. Software Development,

13(9), 42-43.

McGraw, G. (2008). Automated Code Review Tools for Security. Computer, 41(12),

108-111.

McGraw, G., Migues, S., & West, J. (2012). The Building Security In Maturity

Model, from http://www.bsimm.com/

Mead, N. R., Hough, E., & Stehney II, T. (2005). Security Quality Requirements

Engineering. Technical Report CMU/SEI-2005-TR-009, from
http://www.sei.cmu.edu/library/abstracts/reports/05t

r009.cfm

Mead, N. R., & Stehney, T. (2005). Security quality requirements engineering

(SQUARE) methodology. Paper presented at the Proceedings of the 2005

workshop on Software engineering for secure systems\—building

trustworthy applications, St. Louis, Missouri.

Mercuri, R. T., & Neumann, P. G. (2003). Security by obscurity. Communications of

the ACM, 46(11), 160.

87

Moffett, J. D., Haley, C. B., & Nuseibeh, B. (2004). Core security requirements

artefacts. Department of Computing, The Open University, Milton Keynes,

UK, Technical Report, 23.

Ott, M., Choi, Y., Cardie, C., & Hancock, J. T. (2011). Finding deceptive opinion

spam by any stretch of the imagination. arXiv preprint arXiv:1107.4557.

Peeters, J. (2005). Agile Security Requirements Engineering. Paper presented at the

Symposium on Requirements Engineering for Information Security 2005.

Romero-Mariona, J. (2009). Secure and Usable Requirements Engineering. Paper

presented at the Proceedings of the 2009 IEEE/ACM International Conference

on Automated Software Engineering.

Savolainen, J., Kuusela, J., & Vilavaara, A. (2010). Transition to agile development-

rediscovery of important requirements engineering practices. Paper presented

at the Requirements Engineering Conference (RE), 2010 18th IEEE

International.

Tondel, I. A., Jaatun, M. G., & Meland, P. H. (2008). Security Requirements for the

Rest of Us: A Survey. Software, IEEE, 25(1), 20-27. doi: 10.1109/ms.2008.19

Viega, J. (2005). Security - Problem Solved? Queue, 3(5), 40-50. doi:
http://doi.acm.org/10.1145/1071713.1071728

88

Appendix A

Characterizing a Small, Agile

Organization

A software development company’s requirements engineering processes were studied

to determine representative characteristics for a small, agile organization. For the

sake of anonymity, the company will be referred to as “the company” from this point

forward.

 Company Background and Culture A.1

The company has been in existence for roughly ten years starting with a core group of

developers and entrepreneurs. The company has been growing quickly over the past

two years adding key personnel in managerial, marketing, software development, and

quality assurance positions. These new positions have been filled with a mix of

seasoned professionals and well educated computer scientists and engineers. The

software engineering team consists of the following team roles:

 requirements engineer

 software developers

 quality engineer and testers

89

 marketing

 customer support and maintenance engineers

 project manager

A newly hired IT security manager coordinates with the team on internal security

measures and provides general security consultation but is not part of the software

engineering team.

The company culture is entrepreneurial in nature and communication is very

open. Physical office space is at a premium and singly occupied offices are rare.

Core groups such as developers and testers are all within earshot of each other which

aids in open verbal communication. Individuals may have several roles creating

cross-functionality among departments or functional areas. There is a shared sense of

purpose and direction that creates a sense of esprit de corps among all.

 Product Lifecycle A.2

The software products developed by the company are cyclical in nature and revolve

around a few main “seasons”. This leads to very short development life cycles and

tight, unbendable deadlines. A typical project timeframe is about 6 months from

proposal to delivery. Many of the products are developed as part of a subcontract

with mainly one outside developer, but new products developed solely by the

company are seen as a future trend.

90

 Agile Philosophy A.3

As the company grows, the development team sees the need to introduce formality to

processes without losing the flexibility that is so much a part of the company culture.

In addition, the iterative nature of the product lifecycle has led to a movement to

embrace agile philosophies. At this point, a specific agile methodology has not been

chosen to follow and general consensus is to use the best practices from several

methodologies. The software engineering team has been increasing their agile

awareness by attending webinars and through informal research. Currently, they are

leaning towards an iterative approach that will fit into the frequent seasonal products

that they produce.

 Requirements Process A.4

The requirements process depends on the type of product that is to be developed.

There are three primary types of products:

 products developed as part of a contract with another development

organization

 products developed as enhancements to existing products

 new products created and developed solely by the company

Contracted Products

Requirements are typically defined prior to contract negotiations. Minor changes

may be made during implementation, but requirements are generally not modified.

91

Existing Products

Typically, customers drive the development of requirements using a request for

proposal (RFP). The requirements engineer may make a preliminary requirements

document based on the RFP. Final requirements are elicited directly with the

customer in consultation with the requirements engineer.

New Products

Requirements are determined by marketing and research in the absence of an existing

customer. In this case, stakeholders are all internal, but are from upper management,

marketing and high-level developers. Requirements from similar products may be

used as a starting point when eliciting and developing requirements, but a

requirements repository has not been implemented.

 Security Needs A.5

Recently, the company has become more aware of the need to incorporate security

into all aspects of the business. Driven initially by systems administration with the

backing of top management, there has been an effort to educate everyone regarding

security and to develop security policies. This effort seems to have trickled into the

psyche of everyone, including the software development team. Developers are aware

of the need to incorporate secure coding practices and have been instituting “best

practices” into programming. However, these efforts are not driven by any formal

processes.

Systems administration has been tasked with developing an overall security

roadmap for the company which would include elements such as policy, training,

92

incident response, and disaster recovery. As the company grows, the need for

standardized processed is becoming evident. Standardization should not hinder the

entrepreneurial nature and culture of the company and will need to be rolled out in a

continuous manner. Certification or adherence to standards may also be desirable.

 Development and Collaboration Tools A.6

Open source tools are generally preferred and there are not any formal processes for

choosing tools. If a developer, manager or functional unit loosely agrees to use a

particular tool, they appear to be able to green light its use. Development is primarily

managed using Eclipse and software quality assurance (SQA) is trending towards

Bugzilla. One tool that is being utilized company-wide is Egroupware
1
, an open

source business communication tool. Egroupware consists of modular applications

that can be implemented as needed. Key features that are being utilized are general

communication components such as calendars and email as well as modules for

ticketing, document management and wikis.

Ticketing

A tracker application is used for ticketing for a wide range of functions from general

management to specific project management tasks. General management would

include systems administration, help desk, and operational tasks. Specific project

management tasks include setting up developer responsibilities, testing, and ongoing

project communication. For a small company, this tool currently meets their needs.

1
 http://www.egroupware.org/

93

Document Management

There are not any formal document management systems and functional areas have

document repository space allocated on company servers and individual computers.

Egroupware does provide for document management, but this feature is not currently

utilized. Microsoft Word is the default word processing application and document

type used for nearly all internal and external documentation.

Wikis

Wikis can be created by any member of the organization. Company policies and

software development best practices wikis are under development, but

implementation and usage are ad-hoc at the current time.

 Summary A.7

The company is small sized, has fast paced development lifecycles and is moving

towards agile development. Software engineers are not experts in software security

and resources are limited to spend additional time on security training and education.

Therefore, security initiatives including secure software development practices must

be easy to implement and be developed over time. These characteristics are

representative for a typical software development organization and are the basis for

our security requirements elicitation approach that will address the needs of a small,

agile organization.

