
Numerical Methods for Parameter Estimation in

Stochastic Systems

By

Cody E. Clifton

Submitted to the Department of Mathematics
and the Graduate Faculty of the University of Kansas

in partial fulfillment of the requirements for the degree of
Master of Arts

Prof. Bozenna Pasik-Duncan, Chair

Prof. Tyrone Duncan

Prof. Zsolt Talata

Date defended: April 16, 2013

The Thesis Committee for Cody E. Clifton certifies
that this is the approved version of the following thesis:

Numerical Methods for Parameter Estimation in Stochastic Systems

Prof. Bozenna Pasik-Duncan, Chair

Date approved: April 18, 2013

ii

Abstract

The objective of this work is to provide numerical simulations in sup-

port of a collection of existing results on estimation in two distinct types of

stochastic systems.

In the first chapter, we consider a linear time-invariant higher-order

system of order that is subject to white noise perturbation. We numerically

illustrate the result that the quadratic variation estimator of the white noise

local variance is asymptotically biased when a forward-difference approach is

used for numerically approximating the derivatives of the stochastic process,

and that the bias can be eliminated by instead applying a specific alternative

numerical differentiation scheme. Moreover, we consider the result that the

straightforward discretization of a least squares estimation procedure for un-

known parameters in the system leads to an asymptotically biased estimate.

In the second chapter, we consider a controlled Markov chain, taking

values on a finite state space, whose transition probabilities are assumed to

depend on an unknown parameter belonging to a compact set. We first pro-

vide numerical illustration of the result that under a particular identifiability

condition, the maximum likelihood estimator of this parameter is strongly

consistent. Next, we illustrate that under alternative assumptions the se-

quence of maximum likelihood estimates converges and retains a desirable

property relating to the Markov chain’s transition probabilities. Addition-

ally, we present a survey of several other related results.

iii

Acknowledgements

I would first like to thank my advisor, Prof. Bozenna Pasik-Duncan,

for imparting guidance, wisdom, and encouragement. Her infectious passion

for mathematics is truly inspirational.

I wish to thank Prof. Tyrone Duncan and Prof. Zsolt Talata for serving

on my Thesis Committee; especially Prof. Duncan, whose suggestions helped

to further my research on estimation in higher-order linear stochastic systems.

I would also like to thank the KU Mathematics faculty as a whole for

providing instruction and advice.

I would like to recognize Theodore Lindsey for contributing valuable

insight toward the development of MATLAB code for simulating observed

trajectories of a Markov chain.

I wish to thank the phenomenal Mathematics professors of Whitman

College for their efforts in preparing me for graduate school.

I would like to credit Mark Yannotta with originally inspiring me to

study mathematics at an advanced level, and to thank him for encouraging

me to pursue graduate education at KU and for being my friend and mentor.

Finally, I would like to thank my family for their investment in my

education, their support of my varied interests, and their unfailing love.

iv

Contents

1 Estimation in Higher-Order Linear Stochastic Systems 1

1.1 Introduction . 2

1.2 Simulating Sampled SDE Solutions . 9

1.3 Estimating White Noise Local Variance . 11

1.4 Estimating an Unknown Parameter . 12

1.5 Future Investigations . 16

1.6 Concluding Remarks . 16

2 Estimation of Parameters in Markov Chain Transition Probabilities 17

2.1 Introduction . 18

2.2 Simulating Markov Chain Trajectories . 18

2.3 Three Cases of Parameter Dependence . 20

2.4 Parameter Estimation, part I . 22

2.5 Parameter Estimation, part II . 26

2.6 Survey of Related Results . 30

2.7 Future Investigations . 33

2.8 Concluding Remarks . 33

References 35

A MATLAB code 36

A.1 Code for Chapter 1 . 36

A.2 Code for Chapter 2 . 49

v

Chapter 1

Estimation in Higher-Order Linear

Stochastic Systems

Consider a linear time-invariant system of order d ≥ 2 that is subject to white noise per-

turbation. The input and output of this stochastic system are assumed to be sampled

at regular time intervals, and using only these observations the first (d − 1) derivatives

are approximated via a numerical differentiation scheme. In turn, these derivative ap-

proximations are used to produce a quadratic variation estimate of the white noise local

variance.

Duncan et al. [2] have shown that the quadratic variation estimator is asymptotically

biased when a forward-difference approach is used for numerically approximating the

derivatives of the stochastic process, whereas the bias can be eliminated by instead ap-

plying a specific alternative numerical differentiation scheme. In this chapter, we provide

numerical illustrations in support of this result. Additionally, we consider the result (also

from [2]) that the straightforward discretization of a least squares estimation procedure

for unknown parameters in the system leads to an asymptotically biased estimate, that

this bias is a direct consequence of the inconsistency of the quadratic variation estimate

of the white noise local variance, and that it can be eliminated either by the addition

of a correction term when defining the estimator or by again incorporating a particular

numerical scheme for derivative approximation.

1

1.1 Introduction

Let (X(t), t ≥ 0) be an Rn-valued process that is the solution of the following stochastic

differential equation of order d ≥ 2:

dX(d−1)(t) = (
d

∑
i=1

fiX
(i−1)(t) + gU(t)) dt + dW (t)

X(i)(0) = X
(i)
0

(1.1)

for i = 0, . . . , d−1, where t ≥ 0, X(i)(t) = (dX(i−1)/dt) for i = 1,2, . . . , d−1, X(0)(t) =X(t),

(f1, f2, . . . , fd, g) are constant matrices, U(t) ∈ Rq, (W (t), t ≥ 0) is an Rn-valued Wiener

process with local variance matrix h, that is, dW (t)dW ′(t) = hdt, and prime denotes

matrix transposition. Initially, the Rq-valued process (U(t), t ≥ 0) is the solution of the

linear stochastic differential equation

dU(t) = cU(t)dt + dW0(t)

U(0) = U0,

(1.2)

where t ≥ 0, c is a constant matrix, and (W0(t), t ≥ 0) is an Rq-valued Wiener process with

local variance matrix h0 that is independent of (W (t), t ≥ 0). The product gU(t) in (1.1)

may depend on only some components of U(t), which are called relevant components and

are denoted Urel(t).

A first-order system of linear stochastic differential equations is obtained from (1.1)

and (1.2) by defining the following vector and matrices in block form:

X(t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X(t)

X(1)(t)

⋮

X(d−1)(t)

U(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.3)

2

F =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 I 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 I 0

f1 f2 ⋯ fd g

0 0 ⋯ 0 c

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.4)

H =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ⋯ 0

⋮ h 0

0 0 h0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.5)

where I is the identity in Rn and the blocks in F and H correspond to the blocks in X.

Thus, (1.1) and (1.2) can be expressed as the system of first-order equations

dX(t) = FX(t)dt + dW(t)

X(0) = X0,

(1.6)

where t ≥ 0, X(t) is given by (1.3), F is the constant matrix (1.4), and (W(t), t ≥ 0) is an

Rdn+q-valued Wiener process with local variance matrix H given by (1.5).

The following assumption is made on F .

(A1) F is a stable linear transformation; that is, its spectrum is contained in the open

left half-plane.

If (A1) is satisfied, then (X(t), t ≥ 0) has a limiting Gaussian distribution with zero

mean and variance matrix R; that is R = E[XX′], where X is a random variable with the

limiting distribution and R satisfies the Lyapunov equation

FR +RF ′ +H = 0. (1.7)

The variance matrix R is partitioned into blocks that correspond to the block components

of X(t) as follows:

R = (rij)

3

for i, j ∈ {1, . . . , d + 1}, where rij = E[X(i)X(j)′] for i, j ∈ {1, . . . , d}, ri,d+1 = E[X(i)U ′] =

r′d+1,i for i ∈ {1, . . . , d}, rd+1,d+1 = E[UU ′], and E is expectation with respect to the

limiting distribution. The assumption (A1) of the stability of F ensures the validity of

applications of the Law of Large Numbers in proofs of the subsequent results.

It is assumed that there are discrete observations of (X(t), t ≥ 0) and (U(t), t ≥ 0)

with the uniform sampling interval δ > 0. This sampling yields the following random

variables:

(X(mδ), Urel(mδ), m = 0,1, . . . ,N + d). (1.8)

1.1.1 Forward Difference Approach

Initially, the derivatives (X(i)(mδ), m = 0,1, . . . ,N + d − 1 − i) are approximated by the

forward differences

X
(i)
m,δ = (X

(i−1)
m+1,δ −X

(i−1)
m,δ) /δ (1.9)

for i = 1,2, . . . , d − 1. For subsequent notational convenience, let X
(0)
m,δ = X(mδ) for

m = 0,1, . . . ,N + d − 1. Since X
(i)
m,δ is not X(i)(mδ), the ith derivative of (X(t), t ≥ 0), a

bias for some asymptotic computations is introduced that does not converge to zero as δ

tends to zero.

The well-known quadratic variation formula for (1.1) is

lim
δ→0

1

T

[T /δ]

∑
m=0

(X(d−1)((m + 1)δ) −X(d−1)(mδ)) (X(d−1)((m + 1)δ) −X(d−1)(mδ))
′
= h,

(1.10)

where T > 0 is fixed and the limit can be taken in L2(P), i.e. in quadratic mean. The

family of random variables on the left-hand side of (1.10) suggests the following family

of estimates for h:

h∗(N, δ) =
1

Nδ

N−1

∑
m=0

(X
(d−1)
m+1,δ −X

(d−1)
m,δ) (X

(d−1)
m+1,δ −X

(d−1)
m,δ)

′

, (1.11)

where N ∈ N and δ > 0.

The following proposition shows that the family of estimates (h∗(N, δ),N ∈ N, δ > 0)

4

does not converge to h as N → ∞ and δ → 0, but rather to C(d)h, where C(d) is a

nontrivial, explicit constant that depends only on the order d of the system.

Proposition 1.1.1. Assume that (A1) is satisfied. Let (X(d−1)(t), t ≥ 0) satisfy (1.1),

and let h∗(N, δ) for N ∈ N and δ > 0 be given by (1.11). The following equality is satisfied:

lim
δ→0

lim
N→∞

h∗(N, δ) = C(d)h a.s., (1.12)

where

C(d) =
(−1)d

(2d − 1)!

d

∑
j=1

(−1)jj2d−1(
2d

d − j
) (1.13)

for d = 2,3,

Assume now that (1.1) contains a p-dimensional unknown parameter α = (α1, . . . , αp),

so that it may be written

dX(d−1)(t) = (
d

∑
i=1

fi(α)X
(i−1)(t) + g(α)U(t)) dt + dW (t), (1.14)

where

fi(α) = fi0 +
p

∑
j=1

αjfij

for i = 1, . . . , d,

g(α) = g0 +
p

∑
j=1

αjgj,

and (fij, i ∈ {1, . . . , d}, j ∈ {0, . . . , p}), (gj, j ∈ {1, . . . , p}) are known fixed matrices. With

an unknown parameter in (1.1), the notion of Urel is extended to the linear span of gjU

for j = 0, . . . , p. Let α0 denote the true value of the parameter in (1.14). It is assumed

that (A1) is satisfied with fi = fi(α0) for i = 1,2, . . . , d and g = g(α0). The least-squares

estimate of α0 is obtained from the observations (X(t), t ∈ [0, T]) by minimizing the

quadratic functional

∫

T

0

⎡
⎢
⎢
⎢
⎢
⎣

(X(d) −
d

∑
i=1

fi(α)X
(i−1) − g(α)U)

′

`(X(d) −
d

∑
i=1

fi(α)X
(i−1) − g(α)U) −X(d)′`X(d)

⎤
⎥
⎥
⎥
⎥
⎦

dt,

(1.15)

5

where ` is a positive, semidefinite matrix. In (1.15), the undefined term X(d)′`X(d) is

cancelled, and X(d)dt is defined as dX(d−1). The minimization of (1.15) yields the fol-

lowing family of equations for the least-squares estimate, α∗(T) = (α∗1(T), . . . , α∗P (T)),

of α0:

p

∑
k=1

1

T ∫
T

0
(
d

∑
i=1

fijX
(i−1) − gjU)

′

`(
d

∑
i=1

fikX
(i−1) + gkU)dtα∗k(T)

=
1

T ∫
T

0
(
d

∑
i=1

fijX
(i−1) + gjU)

′

`(dX(d−1) − (
d

∑
i=1

fi0X
(i−1) + g0U)dt)

(1.16)

for j = 1,2, . . . , p. Using (1.14) with α = α0, (1.16) can be rewritten as

p

∑
k=1

1

T ∫
T

0
(
d

∑
i=1

fijX
(i−1) − gjU)

′

`(
d

∑
i=1

fikX
(i−1) + gkU)dt (α∗k(T) − αk0)

=
1

T ∫
T

0
(
d

∑
i=1

fijX
(i−1) + gjU)

′

`dW

(1.17)

for j = 1,2, . . . p. If (A1) is satisfied, then

lim
T→∞

1

T ∫
T

0
(
d

∑
i=1

fijX
(i−1) − gjU)

′

`(
d

∑
i=1

fikX
(i−1) + gkU)dt = tr(F ′

j`FkR),

where tr(⋅) is the trace, Fj = (f1j, . . . , fdj, gj) for j = 1, . . . , p, and R satisfies (1.7).

The following assumption is used subsequently.

(A2) The matrix Q ∶= (tr(F ′
j`FkR)) for j, k ∈ {1, . . . , p} is nonsingular.

Since the right-hand side of (1.17) converges to zero a.s. as T → ∞, it follows from

(A2) that

lim
T→∞

α∗(T) = α0 a.s.,

so the family of least-squares estimates (α∗(T), T > 0) is strongly consistent.

Now it is assumed that instead of a continuous observation of the state (X(t), t ≥ 0)

and the input (U(t), t ≥ 0), there is only (1.8) from which (1.9) is computed. Equation

6

(1.16) is replaced by the discrete analog:

1

Nδ

p

∑
k=1

δ
N−1

∑
m=0

(
d

∑
i=1

fijX
(i−1)
m,δ − gjU(mδ))

′

`(
d

∑
i=1

fikX
(i−1)
m,δ + gkU(mδ)) α̂kNδ

=
1

Nδ

N−1

∑
m=0

(
d

∑
i=1

fijX
(i−1)
m,δ + gjU(mδ))

′

`((X
(d−1)
m+1,δ −X

(d−1)
m,δ) − δ (

d

∑
i=1

fi0X
(i−1)
m,δ + g0U(mδ)))

(1.18)

for j = 1,2, . . . , p, where α̂Nδ = (α̂1
Nδ, . . . , α̂

p
Nδ) is an estimate of α0 and is the solution of

(1.18).

The next proposition establishes that the family of least-squares estimates given by

(1.18) is asymptotically biased, whereas the family of estimates given by the following

modified discrete least squares equations is consistent:

1

Nδ

p

∑
k=1

δ
N−1

∑
m=0

(
d

∑
i=1

fijX
(i−1)
m,δ − gjU(mδ))

′

`(
d

∑
i=1

fikX
(i−1)
m,δ + gkU(mδ)) α̂kNδ

=
1

Nδ

N−1

∑
m=0

(
d

∑
i=1

fijX
(i−1)
m,δ + gjU(mδ))

′

`((X
(d−1)
m+1,δ −X

(d−1)
m,δ) − δ (

d

∑
i=1

fi0X
(i−1)
m,δ + g0U(mδ)))

−
1

Nδ

C(d) − 1

2C(d)

N−1

∑
m=0

(X
(d−1)
m+1,δ −X

(d−1)
m,δ)

′

f ′dj ` (X
(d−1)
m+1,δ −X

(d−1)
m,δ)

(1.19)

for j = 1,2, . . . , p, where C(d) is given by (1.13).

Proposition 1.1.2. Assume that (A1) and (A2) are satisfied for α = α0. For N ∈ N and

δ > 0, let α̂Nδ = (α̂1
Nδ, . . . , α̂

p
Nδ) be the solution of (1.19). Then

lim
δ→0

p-lim
N→∞

α̂Nδ = α0,

where p-limN→∞ α̂Nδ is the nonrandom limit in probability.

1.1.2 Alternate Numerical Derivative Approximation

For the next propositions in [2], we consider the following numerical differentiation

scheme:

X̃
(i)
m,δ =X

(i)
m,δ +A(d) (X

(i)
m+1,δ −X

(i)
m,δ) (1.20)

7

for i = 1,2, . . . , d − 1, where X
(i)
m,δ is given by (1.9). Let the estimate of h formed from

(X̃
(d−1)
m,δ ,m = 0,1, . . . ,N − 1) be denoted h̃(N, δ,A(d)), that is

h̃(N, δ,A(d)) =
1

Nδ

N−1

∑
m=0

(X̃
(d−1)
m+1,δ − X̃

(d−1)
m,δ) (X̃

(d−1)
m+1,δ − X̃

(d−1)
m,δ)

′

(1.21)

For suitable values of A(d), the family of estimates (h̃(N, δ,A(d)),N ∈ N, δ > 0) is strongly

consistent, as described in the following proposition.

Proposition 1.1.3. Let (A1) be satisfied, let B(d) be given by

B(d) =
(−1)d

(2d − 1)!

d+1

∑
j=1

(−1)jj2d−1(
2d + 2

d + 1 − j
), (1.22)

and let A(d) be the positive root of the equation

a2 + a + (C(d) − 1)/B(d) = 0. (1.23)

Then the family of estimates (h̃(N, δ,A(d)),N ∈ N, δ > 0), where h̃(N, δ,A(d)) is given

by (1.21) is strongly consistent, that is

lim
δ→0

lim
N→∞

h̃(N, δ,A(d)) = h a.s., (1.24)

for d = 2,3,

Now, the discretized version of (1.16) using the numerical differentiation rule (1.20)

is given by

1

Nδ

p

∑
k=1

δ
N−1

∑
m=0

(
d

∑
i=1

fijX̃
(i−1)
m,δ − gjU(mδ))

′

`(
d

∑
i=1

fikX̃
(i−1)
m,δ + gkU(mδ)) α̃kNδ

=
1

Nδ

N−1

∑
m=0

(
d

∑
i=1

fijX̃
(i−1)
m,δ + gjU(mδ))

′

`((X̃
(d−1)
m+1,δ − X̃

(d−1)
m,δ) − δ (

d

∑
i=1

fi0X̃
(i−1)
m,δ + g0U(mδ)))

(1.25)

for j = 1,2, . . . , p, where α̃Nδ = (α̃1
Nδ, . . . , α̃

p
Nδ) is an estimate of α0 and is the solution of

(1.25). The final proposition asserts that the least squares estimator α̃Nδ is consistent,

without need for the addition of any correction term in the equation above.

8

Proposition 1.1.4. Assume that (A1) and (A2) are satisfied for α = α0. For N ∈ N and

δ > 0, let α̃Nδ = (α̃1
Nδ, . . . , α̃

p
Nδ) be the solution of (1.25). Then, for d ≥ 2,

lim
δ→0

p-lim
N→∞

α̃Nδ = α0.

1.2 Simulating Sampled SDE Solutions

Before illustrating any estimation procedures, we first numerically simulate the sampled

observations of the continuous-time scalar-valued process (X(t), t ≥ 0) by applying the

Euler-Maruyama method to (1.6), as described in [4]. Supposing that α0 = 1 is the true

value of the unknown parameter, we choose f10 = f21 = −2 and f11 = f20 = 1, such that

f1(α) = f2(α) = −1 and the matrix F satisfies assumption (A1).

For the purpose of numerical illustration, the following simplifying assumptions are

made to hold throughout the remainder of this chapter. Fix d = 2, n = 1, p = 1, and

U(t) ≡ 0. Then (1.14) becomes

dX(1)(t) = (f1(α)X(t) + f2(α)X
(1)(t))dt + dW (t), (1.26)

where f1(α) = f10 + f11α and f2(α) = f20 + f21α for known fixed scalars (f10, f11, f20, f21).

Moreover, this second-order linear SDE can be written as a first-order system of linear

SDEs by simplifying (1.3) - (1.5), respectively, as follows:

X(t) =

⎛
⎜
⎜
⎝

X(t)

X(1)(t)

⎞
⎟
⎟
⎠

(1.27)

F =

⎛
⎜
⎜
⎝

0 1

f1(α) f2(α)

⎞
⎟
⎟
⎠

(1.28)

H =

⎛
⎜
⎜
⎝

0 0

0 h

⎞
⎟
⎟
⎠

. (1.29)

9

The system (1.26) is then equivalent to (1.6), where t ≥ 0, X(t) is given by (1.27), F is

the constant matrix (1.28), and (W(t), t ≥ 0) is an R2-valued Wiener process with local

variance matrix H given by (1.29).

Let µ >> 1 be the factor by which the discretization increment of the estimation

procedure varies from the discretization increment of the SDE solution. That is, the

increment δ will be used in computing the numerical derivative approximations, so to

simulate observations of a continuous process we employ the Euler-Maruyama recursion

with the smaller increment ρ ∶= δ/µ. Here, we select µ = 100.

Let η denote the number of process values that will be used to compute the derivative

approximations. In particular, η ∶= N + d for the forward difference approach, while η ∶=

N +d+1 in the case of the alternate numerical differentiation method. Then M ∶= µ(η−1)

is the required number of simulated observations of the process via the Euler-Maruyama

method.

Fix the initial value of the process to be X0 = (0,1)′, and let ηm,ρh ∈ N(0, ρh) for

m = 0,1, . . . ,M − 1 denote normal random values with mean zero and variance ρh. Then

the Euler-Maruyama recursion for the process (X(t), t ≥ 0) is given by

X((m + 1)ρ) = X(mρ) + FX(mρ)ρ +∆Wm,ρh

for m = 0,1, . . . ,M − 1, where

∆Wm,ρh =

⎛
⎜
⎜
⎝

0

ηm,ρh

⎞
⎟
⎟
⎠

.

We assume that only the process (X(t), t ≥ 0) is observed; hence the simulated second

component of (X(t), t ≥ 0) is disregarded and will be replaced by one of the numerical

derivative approximations described above. The MATLAB code for the Euler-Maruyama

method is given in Appendix A.1.1.

10

1.3 Estimating White Noise Local Variance

With the simplifications described in the preceding section, (1.11) becomes

h∗(N, δ) =
1

Nδ

N−1

∑
m=0

(X
(1)
m+1,δ −X

(1)
m,δ)

2
. (1.30)

The value C(2) = 2/3, given in [2], is easily computed directly from (1.13). The MATLAB

code for a function that returns the value of any C(d), d ≥ 2, is given in Appendix A.1.4,

while the forward difference derivative approximations

X
(1)
m,δ = (Xm+1,δ −Xm,δ) /δ, m = 0, . . . ,N (1.31)

are produced by the code in Appendix A.1.2.

Suppose that h = 1 is the true value of the local variance of the scalar-valued Wiener

process (W (t), t ≥ 0). Given the simulated sampled observations of (X(t), t ≥ 0), as

described in Section 1.2, the estimation of h is performed by explicitly calculating the

value of h∗(N, δ) for large N and small δ > 0. Performing this computation within nested

loops corresponding to limN→∞ and limδ→0, respectively, we obtain a mesh of values

that are seen to converge to the value C(2)h = 2/3 (see Figure 1.1), which supports

Proposition 1.1.1 along with the numerical results provided in [3]. The MATLAB code

for this estimation procedure appears in Appendix A.1.7.

H
HHHHHδ

N
101 102 103 104

10−1 0.98 0.66 0.60 0.66

10−2 0.32 0.73 0.71 0.67

10−3 0.79 0.66 0.65 0.66

10−4 0.37 0.58 0.68 0.67

Figure 1.1: The estimator h∗(N, δ) converges to the value C(2)h = 2/3, as predicted.

We now proceed to estimate h via the alternate numerical differentiation method

11

described in Section 1.1.2. With the assumed simplifications, (1.21) becomes

h̃(N, δ,A(d)) =
1

Nδ

N−1

∑
m=0

(X̃
(1)
m+1,δ − X̃

(1)
m,δ)

2
. (1.32)

The value B(2) = 1 is easily computed directly from (1.22). Given C(2) = 2/3 as above,

A(2) is the positive root of (1.23) with d = 2, i.e.

A(2) =
−1 +

√
1 − 4(C(2) − 1)/B(2)

2
=
−1 +

√
1 + 4/3

2
≈ 0.2638.

The MATLAB code for functions that compute any B(d) and A(d), d ≥ 2, is given in

Appendices A.1.5 and A.1.6, respectively.

If we assume that the alternate numerical derivative approximations (X̃
(1)
m,δ,m = 0, . . . ,N)

are given by (1.20) with i = 1, then using (1.32) to produce an array of h̃(N, δ,A(d))-

values for large N and small δ > 0, we repeatedly observe1 convergence to h/2, rather

than to h. Consequently, we use the modified approximations

X̃
(1)
m,δ =

√
2 ⋅ [X

(1)
m,δ +A(d) (X

(1)
m+1,δ −X

(1)
m,δ)] , (1.33)

where (X
(1)
m,δ,m = 0, . . . ,N) is still the collection of forward differences given by (1.31).

With the included correction factor of
√

2, we obtain a mesh of values that are seen

to converge to the value h = 1 (see Figure 1.2). The MATLAB code for producing

(X̃
(1)
m,δ,m = 0, . . . ,N) is given in Appendix A.1.3, while the code for the estimation pro-

cedure appears in Appendix A.1.8.

1.4 Estimating an Unknown Parameter

We now wish to illustrate the estimation of the unknown parameter α. With the sim-

plifications described in Section 1.2 and the assumption that ` = 1, (1.19) reduces to the

1Here, only the case h = 1 is illustrated, but the MATLAB code was tested for a variety of scalar
h-values, i.e. assuming h = 0.5 or h = 2 to be the true value instead of h = 1.

12

HH
HHHHδ

N
101 102 103 104

10−1 0.82 0.93 0.96 0.93

10−2 0.81 1.08 1.02 0.94

10−3 0.77 0.71 0.95 0.94

10−4 1.34 0.95 0.96 0.98

Figure 1.2: The estimator h̃(N, δ,A(d)) converges to h = 1 when the
√

2 factor is used.

single equation

1

N

N−1

∑
m=0

(f11X(mδ) + f21X
(1)
m,δ)

2
α̂kNδ

=
1

Nδ

N−1

∑
m=0

(f11X(mδ) + f21X
(1)
m,δ) ((X

(1)
m+1,δ −X

(1)
m,δ) − δ (f10X(mδ) + f20X

(1)
m,δ))

−
1

Nδ

C(2) − 1

2C(2)

N−1

∑
m=0

f21 (X
(1)
m+1,δ −X

(1)
m,δ)

2
.

(1.34)

To solve for the estimate α̂Nδ in this scalar case, it is sufficient to compute the ratio

S1/S2, where S1 is the right-hand side of (1.34) and

S2 ∶=
1

N

N−1

∑
m=0

(f11X(mδ) + f21X
(1)
m,δ)

2
.

As before, the sampled observations of the process (X(t), t ≥ 0) are simulated via

the Euler-Maruyama recursion, while the forward difference derivative approximations

(X
(1)
m,δ,m = 0, . . . ,N) are given by (1.31). The values of S1 and S2 are computed explicitly,

and their ratio is given as the estimated value of α for a particular N and δ.

The above estimate calculation is repeated within nested loops corresponding to

limN→∞ and limδ→0, respectively, and the MATLAB code for the entire procedure is

provided in Appendix A.1.9. Figures 1.3 and 1.4 illustrate two successive executions of

this code. While the former appears to imply the consistency of the family of estimates

(α̂N,δ,N ∈ N, δ > 0), the later does not. Thus, the numerical results do not presently sup-

13

port the claim of Proposition 1.1.2. We remark that omitting the correction term, denoted

by COR in the MATLAB code, does not alter the behavior of the simulated results.

H
HHH

HHδ
N

101 102 103 104

10−1 0.96 0.73 0.74 0.76

10−2 0.90 0.17 0.74 0.70

10−3 -1.08 1.68 0.46 0.66

10−4 10.6 -5.58 -0.50 1.06

Figure 1.3: The corrected estimator α̂N,δ appears to converge to the true value α0 = 1.

HHH
HHHδ
N

101 102 103 104

10−1 0.38 0.94 0.79 0.76

10−2 8.36 0.93 0.82 0.78

10−3 -2.05 2.35 1.70 0.75

10−4 2.10 6.11 1.77 0.44

Figure 1.4: The corrected estimator α̂N,δ does not converge to the true value α0 = 1.

Applying the alternate numerical differentiation scheme (1.20), with or without the
√

2

factor discussed in Section 1.3, provides similarly inconclusive results. In particular, Fig-

ures 1.5 and 1.6 illustrate that consistency of the family of estimates (α̃N,δ,N ∈ N, δ > 0)

is sometimes observed and sometimes not observed, respectively. Thus, the numerical

results do not presently support the claim of Proposition 1.1.4. The MATLAB code for

this alternate estimation procedure is given in Appendix A.1.10.

14

HH
HHHHδ

N
101 102 103 104

10−1 1.51 0.69 0.81 0.77

10−2 2.22 1.10 0.61 0.77

10−3 9.39 -0.03 1.74 0.80

10−4 3.74 3.49 -0.42 1.01

Figure 1.5: The estimator α̃N,δ appears to converge to the true value α0 = 1.

H
HHH

HHδ
N

101 102 103 104

10−1 2.08 1.04 0.76 0.77

10−2 3.27 1.59 0.73 0.70

10−3 -3.74 1.36 1.36 0.73

10−4 3.25 5.72 1.92 1.87

Figure 1.6: The estimator α̃N,δ does not converge to the true value α0 = 1.

15

1.5 Future Investigations

It remains to understand why the simulated quadratic variation estimates do not con-

verge to the true value of the white noise local variance when the alternate numerical

differentiation approach is used, as described in Section 1.3. In particular, why the cor-

rection factor of
√

2 is needed in order to observe the strong consistency of the estimates

guaranteed by Proposition 1.1.3. Additionally, we would like reconcile the discrepancy

between the theoretical results of Propositions 1.1.2 and 1.1.4 and the numerical simula-

tions presented in Section 1.4.

1.6 Concluding Remarks

The numerical illustrations above support the result that a precise asymptotic bias is

observed in the quadratic variation estimation of the local variance h when forward

differences are used to approximate the derivative of the continuous-time scalar-valued

process (X(t), t ≥ 0) that is the solution of the stochastic differential equation (1.1).

On the other hand, in the case of the alternate numerical differentiation scheme, the

simulated estimates h̃(N, δ,A(d)) were observed to converge to h/2, rather than to the

true value h, barring the insertion of a correction factor of
√

2.

16

Chapter 2

Estimation of Parameters in Markov

Chain Transition Probabilities

Consider a controlled Markov chain, taking values on a finite state space, whose transition

probabilities are assumed to depend on an unknown parameter belonging to a compact

set. Our goal is to numerically analyze the long-term behavior of a sequence of maxi-

mum likelihood estimates of this unknown parameter. Motivated by the work of both

Sagalovksy and Pasik-Duncan, we consider one- and two-dimensional parameter cases.

We further distinguish between cases where the transition probabilities depend linearly

on the parameter and cases where they depend quadratically.

Mandl [6] has shown that, under a specific identifiability condition, the maximum

likelihood estimator is strongly consistent. Similarly, Borkar and Varaiya [1] have shown

that that under alternative assumptions the sequence maximum likelihood estimates con-

verges and retains desirable (although not ideal) property relating to the Markov chain’s

transition probabilities. In this chapter, we provide numerical illustrations in support of

both of these results. Additionally, we present a survey of related results by Kumar [5],

Sagalovsky [8], and Pasik-Duncan [7].

17

2.1 Introduction

Consider a Markov chain, (Xn, n = 0,1, . . .), taking values on the finite state space S =

{1,2, . . . , s}. The state transition probabilities P(Xn+1 = j ∣Xn = i) are assumed to depend

on both an unknown parameter, α, belonging to the compact set A, and a control action,

(un, n = 1,2, . . .), belonging to the finite set U . Thus, we denote these probabilities by

p(i, j;un, α) ∶= P(Xn+1 = j ∣Xn = i), n = 0,1,

At each time n, the maximum likelihood estimate of α is given by α̂n ∶= argmaxα∈ALn(α),

where Ln(α) ∶= ∑
n−1
m=0 log p(xm, xm+1;um, α) is the control-dependent log-likelihood func-

tion. An important question is whether or not the sequence (α̂n, n = 1,2, . . .) converges

and, if it does, whether or not it converges to the true value of α. We will see that under

different assumptions, the maximum likelihood estimator may or may not be consistent.

First, the simulation of trajectories of a general finite-state Markov chain is addressed

in Section 2.2. We identify three distinct cases of parameter dependence in Section

2.3: linear dependance on a one-dimensional parameter, quadratic dependence on a

one-dimensional parameter, and linear dependence on a two-dimensional parameter. In

Section 2.4, we demonstrate numerical simulations that support a result by Mandl [6].

Similarly, in Section 2.5, we exhibit both simulations and counter-examples to concretely

illustrate some of the work of Borkar and Varaiya [1]. Finally, we present a survey of

related results by Kumar [5], Sagalovsky [8], and Pasik-Duncan [7] in Section 2.6.

2.2 Simulating Markov Chain Trajectories

We begin by addressing the general problem of using MATLAB to numerically simulate

an observed trajectory of the Markov chain (Xn, n = 0,1, . . .). To this end, we assume

knowledge of the true value, α0, of the unknown parameter α. Initially, we suppose that

the control, u, is identically zero. Then, at the end of this section, we discuss the case

involving a non-trivial feedback control action.

18

For simplicity, we let P = (P (i, j)) denote the constant (since α0 is assumed to

be known and u ≡ 0) transition probability matrix of the Markov chain. When S =

{1,2}, simulating successive states of the chain is particularly straightforward. Indeed, a

trajectory x0, x1, . . . can be generated in MATLAB through a weighted coin-flip procedure

as follows.

We describe only the initial iteration of the algorithm, as subsequent iterations follow

analogously by the memoryless Markov property. Fix x0 ∈ S. First, a number r is selected

at random from the uniform distribution on the interval [0,1]. If 0 ≤ r ≤ P (x0,1) ≤ 1,

then set x1 = 1; otherwise, set x1 = 2. Repeating this simple procedure, we produce a

Markov chain trajectory x0, x1, . . . in accordance with the transition probability matrix

P .

We now extend the above algorithm to treat the case of a Markov chain with the

arbitrary finite state space S = {1,2, . . . , s}. As before, it suffices to describe only the

initial iteration of the algorithm. Fix x0 ∈ S. First, a number r is selected at random

from the uniform distribution on the interval [0,1]. The idea is then to divide the interval

[0,1] into s subintervals whose lengths are equal to P (x0,1), P (x0,2), . . . , P (x0, s), and

to select the state x1 according to the subinterval in which r lies. This task is easily

accomplished in MATLAB via cumulative row-sums of the transition probability matrix.

The generalized algorithm described above is formalized in Appendices A.2.1 and

A.2.2. In particular, two variations of the code are provided: the first is optimized

to require minimal processing power, while the second is optimized to require minimal

memory. The distinction is subtle but important from a numerical standpoint; however,

the relative computational advantage of each case compared to the other is negligible in

the applications that are considered here.

Suppose now, as is relevant to the maximum likelihood estimation problems considered

throughout the remainder of this chapter, that the transition probabilities of the Markov

chain depend on a non-trivial feedback control action of the form un = φ(α̂n, xn). In

order to simulate an observed trajectory of the chain in such a case, it suffices to modify

the method in which the code in Appendix A.2.1 or A.2.2 is applied (rather than to

19

modify the code itself). In particular, at each time n, the transition probability matrix

depends on the control, un. The code uses this fixed matrix, along with the known value

of the present state, xn, to produce the immediately following state, xn+1. Then, the next

maximum likelihood estimate α̂n+1 is computed, the next control un+1 is determined, and

the procedure repeats.

2.3 Three Cases of Parameter Dependence

Motivated by the work of both Sagalovsky [8] and Pasik-Duncan [7], we now describe

the three distinct cases of parameter dependence that will be considered throughout the

numerical simulations in Sections 2.4 and 2.5. For simplicity, we henceforth consider a

two-state Markov chain by fixing s = 2, although the following results hold for an arbitrary

positive integer s.

2.3.1 Case I: linear dependence, 1D parameter.

Let α0 = 0.02 be the true value of the one-dimensional unknown parameter α, and consider

a Markov chain whose transition probability matrix, P = (p(i, j;u,α)), is defined by

P ∶=

⎛
⎜
⎜
⎝

1 2

1 (u − 2)α + 0.5 (2 − u)α + 0.5

2 1 0

⎞
⎟
⎟
⎠

.

Thus, the transition probabilities depend linearly on α; in particular, they have the form

p(i, j;u,α) = a(i, j;u)α + b(i, j;u),

for i, j = 1,2, where a = (a(i, j;u)) and b = (b(i, j;u)) are the matrices given by

a ∶=

⎛
⎜
⎜
⎝

u − 2 2 − u

0 0

⎞
⎟
⎟
⎠

, b ∶=

⎛
⎜
⎜
⎝

0.5 0.5

1 0

⎞
⎟
⎟
⎠

.

20

2.3.2 Case II: quadratic dependence, 1D parameter.

Again, let α0 = 0.02 be the true value of the one-dimensional unknown parameter α. We

now consider a Markov chain whose transition probability matrix, P = (p(i, j;u,α)), is

defined by

P ∶=

⎛
⎜
⎜
⎝

1 2

1 (u − 2)α2 + (u − 2)α + 0.5 (2 − u)α2 + (2 − u)α + 0.5

2 1 0

⎞
⎟
⎟
⎠

.

Thus, the transition probabilities depend quadratically on α; in particular, they have the

form

p(i, j;u,α) = a(i, j;u)α2 + b(i, j;u)α + c(i, j;u),

for i, j = 1,2, where a = (a(i, j;u)), b = (b(i, j;u)), and c = (c(i, j;u)) are the matrices

given by

a ∶=

⎛
⎜
⎜
⎝

u − 2 2 − u

0 0

⎞
⎟
⎟
⎠

, b ∶=

⎛
⎜
⎜
⎝

u − 2 2 − u

0 0

⎞
⎟
⎟
⎠

, c ∶=

⎛
⎜
⎜
⎝

0.5 0.5

1 0

⎞
⎟
⎟
⎠

.

2.3.3 Case III: linear dependence, 2D parameter.

Finally, suppose that α0 = (0.01,−0.02) is the true value of the two-dimensional unknown

parameter α = (α1, α2). We now consider a Markov chain whose transition probability

matrix P = (p(i, j;u,α)) is defined by

P ∶=

⎛
⎜
⎜
⎝

1 2

1 (u − 2)α1 + (u − 2)α2 + 0.5 (2 − u)α1 + (2 − u)α2 + 0.5

2 1 0

⎞
⎟
⎟
⎠

.

Thus, the transition probabilities depend linearly on α; in particular, they have the form

p(i, j;u,α) = a(i, j;u)α1 + b(i, j;u)α2 + c(i, j;u),

21

for i, j = 1,2, where a = (a(i, j;u)), b = (b(i, j;u)), and c = (c(i, j;u)) are the matrices

given by

a ∶=

⎛
⎜
⎜
⎝

u − 2 2 − u

0 0

⎞
⎟
⎟
⎠

, b ∶=

⎛
⎜
⎜
⎝

u − 2 2 − u

0 0

⎞
⎟
⎟
⎠

, c ∶=

⎛
⎜
⎜
⎝

0.5 0.5

1 0

⎞
⎟
⎟
⎠

.

2.3.4 Notation

For convenience, let am ∶= a(xm, xm+1;um), bm ∶= b(xm, xm+1;um), and cm ∶= c(xm, xm+1;um)

for m = 0,1, Then, at each time n, the log-likelihood function, Ln, is given by:

Case I. Ln(α) =
n−1

∑
m=0

log(amα + bm),

Case II. Ln(α) =
n−1

∑
m=0

log(amα
2 + bmα + cm),

Case III. Ln(α) =
n−1

∑
m=0

log(amα1 + bmα2 + cm).

Moreover, we let ajm = a(xm, j;um), bjm = b(xm, j;um), and cjm = c(xm, j;um), for j ∈ S.

This notation for am, bm, cm, ajm, bjm, cjm and Ln(⋅) is originally due to Sagalovsky

[8], and will be used where appropriate throughout this chapter and especially in the

corresponding MATLAB code (see Appendix A.2).

2.4 Parameter Estimation, part I

We now examine the result by Mandl [6] that, under a specific identifiability condition,

the maximum likelihood estimator for the unknown parameter α is strongly consistent.

The identifiability condition in question is the following.

(IC) For each pair α,α′ ∈ A, if α ≠ α′ then exists i ∈ S such that

[p(i,1;u,α), . . . , p(i, s;u,α)] ≠ [p(i,1;u,α′), . . . , p(i, s;u,α′)]

for every control u ∈ U .

22

Under this assumption, the result is established.

Theorem 2.4.1 (Mandl). If (IC) is satisfied, then the sequence of maximum likelihood

estimates (α̂n, n = 0,1, . . .) converges almost surely to the true parameter value α0.

We explore this result via numerical simulations of Cases I - III for both finite and

compact sets A. It is apparent that (IC) is satisfied in all three cases when the control is

taken to be identically zero. Thus, we assume u ≡ 0 throughout this section.

2.4.1 Case I

It is first assumed that the unknown parameter α belongs to the known finite set A ∶=

{0.01,0.02,0.03}. This case is illustrated in Figure 2.1, and the accompanying MATLAB

code is provided in Appendix A.2.8.

Figure 2.1: a.s. convergence to α0
= 0.02 in Case I for the finite set A = {0.01,0.02,0.03}.

We next suppose that the unknown parameter α belongs to the known compact set

A ∶= [0,0.1]. The corresponding simulation behaves analogously to that in the finite case

23

described above. In particular, the maximum likelihood estimates converge almost surely

to α0 = 0.02, as seen in Figure 2.2. The accompanying MATLAB code is provided in

Appendix A.2.9.

Figure 2.2: a.s. convergence to α0
= 0.02 in Case I for the compact set A = [0,0.1].

2.4.2 Case II

Again, we first assume that the unknown parameter α belongs to the known finite set

A ∶= {0.01,0.02,0.03}, and again, Mandl’s result guarantees almost sure convergence to

the true value α0 = 0.02. Indeed, this can be seen in Figure 2.3, and the accompanying

MATLAB code is provided in Appendix A.2.10.

We next suppose that the unknown parameter α belongs to the known compact set

A ∶= [0,0.1]. Again, the simulation behaves analogously to that in the finite case, in that

almost sure convergence to α0 = 0.02 is clearly observed. This is illustrated in Figure 2.4,

and the accompanying MATLAB code is provided in Appendix A.2.11.

24

Figure 2.3: a.s. convergence to α0
= 0.02 in Case II for the finite set A = {0.01,0.02,0.03}.

2.4.3 Case III

Lastly, it is assumed that the two-dimensional unknown parameter α ∶= (α1, α2) belongs

to a known finite set A ∶= A1 ×A2. In particular, we suppose that

α1 ∈ A1 ∶= {0.01,0.02,0.03},

α2 ∈ A2 ∶= {−0.01,−0.02,−0.03}.

Mandl’s result guarantees almost sure convergence to the true value α0 = (0.01,−0.02),

as illustrated in Figure 2.5. The accompanying MATLAB code is provided in Appendix

A.2.12.

25

Figure 2.4: a.s. convergence to α0
= 0.02 in Case II for the compact set A = [0,0.1].

2.5 Parameter Estimation, part II

We now consider the work of Borkar and Varaiya [1], which treats the case in which

Mandl’s (IC) does not hold. Suppose that the set A is restricted to being finite, and that

in place of (IC) we impose two alternative assumptions:

(A3) There exists ε > 0 such that for all i, j ∈ S either p(i, j;u,α) > ε for all u ∈ U and

α ∈ A or p(i, j;u,α) = 0 for all u ∈ U and α ∈ A.

(A4) The chain is irreducible in the sense that for all i, j ∈ S, there exists a sequence

i = i0, i1, . . . , ir = j such that p(is−1, is;u,α) > 0 for all s = 1,2, . . . , r.

Assuming (A3), (A4), and a feedback control law of the form un = φ(αn, xn), the following

result is established.

Theorem 2.5.1 (Borkar-Varaiya). There is a set N of zero measure, a random variable

26

Figure 2.5: a.s. convergence to α0
= (0.01,−0.02) in Case III for the finite set A = A1 ×A2.

α∗ ∈ A, and a finite random time T such that for ω ∉ N , t ≥ T (ω),

αt(ω) = α
∗(ω), ut(ω) = φ(α

∗(ω), xt(ω)),

p(i, j;φ(α∗(ω), i), α∗(ω)) = p(i, j;φ(α∗(ω), i), α0), (2.1)

for all i, j ∈ S.

That is, α∗ is indistinguishable from α0 under the control law induced by α∗. A more

desirable result, where (2.1) is replaced by

p(i, j;φ(α∗(ω), i), α∗(ω)) = p(i, j;φ(α0, i), α0), (2.2)

is not guaranteed. Indeed, the following simulations illustrate both the conclusion of

Theorem 2.5.1 and a counter-example to (2.2).

27

2.5.1 Case I

It is assumed that the unknown parameter α belongs to the known finite set A ∶=

{0.01,0.02,0.03}. The following example is due to Borkar and Varaiya [1]. Consider a

simple, but non-trivial, feedback control law of the form un = φ(α̂n, xn), where φ(0.01, i) =

φ(0.03, i) = 2 and φ(0.02, i) = 1 for i = 1,2. Suppose that the initial state of the chain is

x0 = 1 and the initial control is u0 = 1.

It is straightforward to verify that if x1 = 1, then the maximum likelihood estimate is

α̂1 = 0.01, while if x1 = 2, then α̂1 = 0.03. In either case, the feedback control law gives u1 =

2. Since p(i, j; 2, α) does not depend on α for any i, j = 1,2, it follows that the maximum

likelihood estimate will subsequently remain unchanged. That is, α̂n ≡ 0.01 if x1 = 1

and α̂n ≡ 0.03 if x1 = 2. Figures 2.6 and 2.7 illustrate the two possibilities: convergence

of the estimates to either α∗ = 0.01 or to α∗ = 0.03, respectively. The accompanying

MATLAB code is provided in Appendix A.2.8. This example concretely establishes that

convergence to the true value of the unknown parameter is not guaranteed.

Figure 2.6: convergence to α∗ = 0.01. Figure 2.7: convergence to α∗ = 0.03.

2.5.2 Case II

Again, we assume that the unknown parameter α belongs to the known finite set A ∶=

{0.01,0.02,0.03}. The earlier example of Borkar and Varaiya is applicable without mod-

ification in this case. Indeed, consider again the feedback control law un = φ(α̂n, xn),

where φ(0.01, i) = φ(0.03, i) = 2 and φ(0.02, i) = 1 for i = 1,2. Suppose that the initial

28

state of the chain is x0 = 1 and the initial control is u0 = 1.

It is straightforward to verify that if x1 = 1, then the maximum likelihood estimate

is α̂1 = 0.01, while if x1 = 2, then α̂1 = 0.03. In either case, the feedback control law

gives u1 = 2. Since p(i, j; 2, α) does not depend on α for any i, j = 1,2, it follows that the

maximum likelihood estimate will subsequently remain unchanged. That is, α̂n ≡ 0.01 if

x1 = 1 and α̂n ≡ 0.03 if x1 = 2. Again Figures 2.6 and 2.7 illustrate the two possibilities,

and again we see that convergence to the true value of the unknown parameter is not

guaranteed. The accompanying MATLAB code is provided in Appendix A.2.10.

2.5.3 Case III

Finally, it is assumed that the two-dimensional unknown parameter α ∶= (α1, α2) belongs

to a known finite set A ∶= (A1,A2). In particular, we suppose that

α1 ∈ A1 ∶= {0.01,0.02,0.03},

α2 ∈ A2 ∶= {−0.01,−0.02,−0.03}.

The example of Borkar and Varaiya can be extended to address this two-dimensional

parameter case. Indeed, consider again the feedback control law un = φ(α̂n, xn), where

φ((0.01,−0.03), i) = φ((0.03,−0.01), i) = 2 and φ((⋅, ⋅), i) = 1 otherwise for i = 1,2. Sup-

pose that the initial state of the chain is x0 = 1 and the initial control is u0 = 1.

It is straightforward to verify that if x1 = 1, then the maximum likelihood estimate

is α̂1 = (0.01,−0.03), while if x1 = 2, then α̂1 = (0.03,−0.01). In either case, the feedback

control law gives u1 = 2. Since p(i, j; 2, α) does not depend on α for any i, j = 1,2,

it follows that the maximum likelihood estimate will subsequently remain unchanged.

That is, α̂n ≡ (0.01,−0.03) if x1 = 1 and α̂n ≡ (0.03,−0.01) if x1 = 2. Figures 2.8 and 2.9

illustrate the two possibilities: convergence of the estimates to either α∗ = (0.01,−0.03)

or to α∗ = (0.03,−0.01), respectively. The accompanying MATLAB code is provided

in Appendix A.2.12. Again, we see that convergence to the true value of the unknown

parameter is not guaranteed.

29

Figure 2.8: convergence to α∗ = (0.01,−0.03). Figure 2.9: convergence to α∗ = (0.03,−0.01).

2.6 Survey of Related Results

Kumar [5] considers a more general problem than that of Borkar and Varaiya [1]. Namely,

the case in which Mandl’s (IC) does not hold and yet the set A of admissible parameter

values is permitted to be compact rather than simply finite. As before, the maximum

likelihood estimates are defined by α̂n ∶= argmaxα∈ALn(α), where Ln is the likelihood

function, and the control has the form un = φ(α̂n, xn). Kumar shows, via counter-example,

that the convergence result of [1] cannot be extended to this case without additional

assumptions. In particular, assuming only (A3), (A4), and that p(⋅, ⋅ ; ⋅, ⋅) and φ(⋅, ⋅) are

continuous, the sequence (α̂n, n = 1,2, . . .) of maximum likelihood estimates may diverge

with probability one.

One example of additional assumptions that guarantee convergence of the maximum

likelihood estimates in this generalized case is given by Sagalovsky [8]. Here, the transition

probabilities are assumed to depend linearly on a one-dimensional unknown parameter

α; that is,

p(i, j;u,α) = a(i, j;u)α + b(i, j;u),

where a(⋅, ⋅ ; ⋅) and b(⋅, ⋅ ; ⋅) are known real functions. Note carefully that the linearity

of the parameter dependence is necessary in order to ensure the validity of the follow-

ing theorems, whereas this same linearity was assumed only for convenience throughout

Sections 2.3, 2.4, and 2.5.

Taking A to be a compact set, the following results are established.

30

Theorem 2.6.1 (Sagalovsky). Under (A3), except for a P -null set of realizations, if the

sequence of maximum likelihood estimates (α̂n, n = 1,2 . . .) has an accumulation point

α∗ ≠ α0, then
∞

∑
m=0

(
s

∑
j=1

(ajm)
2
) <∞. (2.3)

Corollary 2.6.2 (Sagalovsky). Except for a P -null set of realizations, if the sequence of

maximum likelihood estimates (α̂n, n = 1,2 . . .) has an accumulation point α∗ ≠ α0, then

ajm → 0 (2.4)

as m→∞ for all j ∈ S.

In fact, since A is compact, we see that (α̂n, n = 1,2 . . .) has an accumulation point

α∗ ≠ α0 if and only if (α̂n, n = 1,2 . . .) does not converge to α0. Hence, (2.3) and (2.4)

hold almost surely whenever (α̂n, n = 1,2 . . .) does not converge to α0.

The following result verifies that, under assumption (A3), convergence of the sequence

maximum likelihood estimates is always guaranteed.

Theorem 2.6.3 (Sagalovsky). If assumption (A3) holds, then the sequence of maximum

likelihood estimates (α̂n, n = 1,2 . . .) converges almost surely to some α∗ ∈ A.

Moreover, with the additional assumption that

(A5) un = φ(αn, xn), and a(i, j;φ(α, i)) is continuous in α for all i, j ∈ S,

the main result of Borkar and Varaiya [1] is generalized to the compact case as follows.

Theorem 2.6.4 (Sagalovsky). Assuming (A3), (A4), (A5), the sequence of maximum

likelihood estimates (α̂n, n = 1,2, . . .) converges almost surely to a random variable α∗ ∈ A

that satisfies (2.1) for all i, j ∈ S.

The results of Sagalovsky are extended by Pasik-Duncan [7]. Here, the transition

probabilities are assumed to depend linearly on a two-dimensional unknown parameter

31

α = (α1, α2); that is,

p(i, j;u,α) = a(i, j;u)α1 + b(i, j;u)α2 + c(i, j;u),

where a(⋅, ⋅ ; ⋅), b(⋅, ⋅ ; ⋅), and c(⋅, ⋅ ; ⋅) are known real functions. Again, the linearity of

the dependance is vital. Taking A = A1 ×A2 to be a two-dimensional compact set, and

imposing the assumption that

(A6) for all m, either am, bm ≥ 0 or am, bm ≤ 0,

the following results are established.

Theorem 2.6.5 (Pasik-Duncan). Under (A3), (A6), except for a P -null set of realiza-

tions, if the sequence of maximum likelihood estimates (α̂n, n = 1,2 . . .) has an accumu-

lation point α∗ ≠ α0, then

∞

∑
m=0

(
s

∑
j=1

(ajm)
2
+ ajmb

j
m) < +∞, (2.5)

∞

∑
m=0

(
s

∑
j=1

(bjm)
2
+ ajmb

j
m) < +∞. (2.6)

Corollary 2.6.6 (Pasik-Duncan). Except for a P -null set of realizations, if the sequence

of maximum likelihood estimates (α̂n, n = 1,2 . . .) has an accumulation point α∗ ≠ α0,

then

ajm → 0 (2.7)

bjm → 0 (2.8)

as m→∞ for all j ∈ S.

Again, we remark that, since A is compact, (α̂n, n = 1,2 . . .) has an accumulation

point α∗ ≠ α0 if and only if (α̂n, n = 1,2 . . .) does not converge to α0. Hence, (2.5), (2.6),

(2.7), and (2.8) hold almost surely whenever (α̂n, n = 1,2 . . .) does not converge to α0.

Theorem 2.6.7 (Pasik-Duncan). If assumptions (A3), (A6) hold, then the sequence of

maximum likelihood estimates (α̂n, n = 1,2 . . .) converges almost surely to some α∗ ∈ A.

32

Moreover, with the additional assumption (analogous to (A5)) that

(A7) un = φ(αn, xn), and a(i, j;φ(α, i)), b(i, j;φ(α, i)) are continuous in α for all i, j ∈ S,

the result of Sagalovsky is generalized to the two-dimensional parameter case as follows.

Theorem 2.6.8 (Pasik-Duncan). Assuming (A3), (A4), (A6), (A7), the sequence of

maximum likelihood estimates (α̂n, n = 1,2, . . .) converges almost surely to a random

variable α∗ ∈ A that satisfies (2.1) for all i, j ∈ S.

2.7 Future Investigations

It remains to extend the numerical simulations of Sections 2.4 and 2.5 to illustrate the

results of Sagalovsky and Pasik-Duncan presented in Theorems 2.6.4 and 2.6.8, respec-

tively. Specifically, the MATLAB code for should be modified so as to incorporate a

non-trivial feedback control action in all cases (rather than simply when A is a finite set).

This would allow for the illustration of convergence behavior in the case where Mandl’s

(IC) does not hold but where A is assumed to be compact and non-finite.

Moreover, we would like to simulate the results of Theorem 2.6.1 (or Corollary 2.6.2)

and Theorem 2.6.5 (or Corollary 2.6.6), which provide an easily verifiable condition for the

strong consistency of the maximum likelihood estimator in the cases of linear dependence

on a one- and two-dimensional unknown parameter, respectively. We could then explore a

similar condition in the related case of quadratic (more generally, polynomial) dependence

on a one-dimensional unknown parameter when Mandl’s (IC) does not hold; this would

be of particular interest, since for this generalized case a convergence result analogous to

Theorem 2.6.4 has been conjectured by Pasik-Duncan but not proved.

2.8 Concluding Remarks

In considering a controlled Markov chain whose transition probabilities are assumed to

depend on both an unknown parameter, α, and a control action, u, we provided numeri-

cal simulations for maximum likelihood estimation of α in a variety of cases. Specifically,

33

we first considered Mandl’s [6] result regarding the strong consistency of the maximum

likelihood estimator under the assumption of an identifiability condition. Next, we ad-

dressed a similar result by Borkar and Varaiya [1]; in particular, that under alternative

assumptions the sequence of maximum likelihood estimates converges and retains a desir-

able (although not ideal) property relating to the Markov chain’s transition probabilities.

Finally, we surveyed related results by Kumar [5], Sagalovsky [8], and Pasik-Duncan [7].

34

References

[1] V. Borkar and P. Varaiya. Adaptive Control of Markov Chains, I: Finite Parameter

Set. IEEE Trans. on Autom. Control, 24(6):953–957, Dec 1979.

[2] T. E. Duncan, P. Mandl, and B. Pasik-Duncan. Numerical Differentiation and Param-

eter Estimation in Higher-Order Linear Stochastic Systems. IEEE Trans. on Autom.

Control, 41(4):522–532, Apr 1996.

[3] T. E. Duncan, P. Mandl, and B. Pasik-Duncan. On Statistical Sampling for System

Testing. IEEE Trans. on Autom. Control, 39(1):118–122, Jan 1994.

[4] D. J. Higham. An Algorithmic Introduction to Numerical Simulation of Stochastic

Differential Equations. SIAM Review, 43(3):525–546, Aug 2001.

[5] P. R. Kumar. Adaptive Control with a Compact Parameter Set. SIAM J. of Control

and Optim., 20(1):9–13, Jan 1982.

[6] P. Mandl. Estimation and Control in Markov Chains. Adv. in Applied Prob., 6(1):40–

60, Mar 1974.

[7] B. Pasik-Duncan. On Adaptive Control. SGPiS-Publishers, Warsaw, 1986.

[8] B. Sagalovsky. Adaptive Control and Parameter Estimation in Markov Chains: A

Linear Case. IEEE Trans. on Autom. Control, 27(2):414–419, Apr 1982.

35

Appendix A

MATLAB code

Here, we provide the MATLAB code used to produce the numerical simulations presented

throughout Chapters 1 and 2.

A.1 Code for Chapter 1

• Appendix A.1.1 – function for simulating the solution of a stochastic differential

equation via the recursive Euler-Maruyama method.

• Appendices A.1.2, A.1.3 – functions for computing numerical derivative approxi-

mations via the forward difference method and the alternate (linear combination of

forward differences) method, respectively.

• Appendices A.1.4, A.1.5, A.1.6 – functions for computing the values C(d), B(d),

and A(d), respectively, where d ≥ 0 is the order of the stochastic system.

• Appendices A.1.7, A.1.8 – code for performing quadratic variation estimation of

the local variance matrix of a Brownian motion via the forward difference approach

and the alternate numerical differentiation approach, respectively.

• Appendices A.1.9, A.1.10 – code for performing least squares estimation of an un-

known parameter in the higher-order stochastic system via the forward difference

approach and the alternate numerical differentiation approach, respectively.

36

A.1.1 E-M recursion for SDE solution approximation

1 function X = em(F,d,mu,n,delta,true h)

2

3 % −− %

4 % Function returns the approximate solution of a stochastic %

5 % differential equation (SDE) via the Euler−Maruyama recursion %

6 % method. %

7 % %

8 % Written by Cody E. Clifton, 9−25−2012. %

9 % −− %

10

11 M = mu*(n−1)+1; % fix the number of desired SDE solution values

12 rho = delta/mu; % fix the step−size for Euler−Maruyama recursion

13

14 Y = zeros(d,M); % initialize the process Y(t)=[X(t);...;Xˆ{(d−1)}(t)]

15 Y(:,1) = [0 1]'; % fix the initial value of the process

16 for i=2:M % recursively assign values to Y(t)

17 dW = [0; sqrt(rho*true h)*randn];

18 Y(:,i) = Y(:,i−1) + (F*Y(:,i−1))*rho + dW;

19 end % for

20

21 X = zeros(n,1); % initalize the matrix process X(t)

22 for i=1:n % assign values to X(t)

23 X(i,1) = Y(1,mu*(i−1)+1);

24 end % for

25

26 end % function

A.1.2 Forward difference method for derivative approximation

1 function X diff = fwd diff(X,n,delta)

2

3 % −− %

37

4 % Function returns the forward difference numerical derivative %

5 % approximations of the stochastic process X, with step−size delta. %

6 % %

7 % Written by Cody E. Clifton, 9−25−2012. %

8 % −− %

9

10 X diff = zeros(n,1); % initialize the matrix of derivative approx's

11 for i=1:n % compute the forward difference derivative approximations

12 X diff(i,1) = (X(i+1,1) − X(i,1))/delta;

13 end % for

14

15 end % function

A.1.3 Alternate method for derivative approximation

The following code requires the MATLAB function provided in Appendix A.1.2.

1 function X tilde = num deriv(X,n,delta,a)

2

3 % −− %

4 % Function returns a numerical derivative approximation based on %

5 % three stochastic process values, a step size (delta), and a %

6 % constant (a). %

7 % %

8 % Requires the function: fwd diff.m %

9 % %

10 % Written by Cody E. Clifton, 10−22−2012. %

11 % −− %

12

13 X tilde = zeros(n,1); % initialize the matrix of derivative approx's

14 for i=1:n % compute the derivative approximations

15 X tilde(i,1) = sqrt(2)*((X(i+1,1)−X(i,1))/delta + ...

16 a*((X(i+2,1)−X(i+1,1))/delta − ...

17 (X(i+1,1)−X(i,1))/delta));

18 end % for

38

19

20 end % function

A.1.4 Computation of the value C(d)

1 function C = C value(d)

2

3 % −− %

4 % Function returns the value C(d), where d is the dimension of the %

5 % system. %

6 % %

7 % Written by Cody E. Clifton, 6−25−2012. %

8 % −− %

9

10 C = 0;

11 for j=1:d

12 C = C + ((−1)ˆj)*(jˆ(2*d−1))*(nchoosek(2*d,d−j));

13 end % for

14 C = (((−1)ˆd)/(factorial(2*d−1)))*C;

15

16 end % function

A.1.5 Computation of the value B(d)

1 function B = B value(d)

2

3 % −− %

4 % Function returns the value B(d), where d is the dimension of the %

5 % system. %

6 % %

7 % Written by Cody E. Clifton, 6−25−2012. %

8 % −− %

9

39

10 B = 0;

11 for j=1:d+1

12 B = B + ((−1)ˆj)*(jˆ(2*d−1))*(nchoosek(2*d+2,d+1−j));

13 end % for

14 B = (((−1)ˆd)/(factorial(2*d−1)))*B;

15

16 end % function

A.1.6 Computation of the value A(d)

1 function A = A value(B,C)

2

3 % −− %

4 % Function returns the value A(d)>0, using the values B=B(d) and %

5 % C=C(d), where d is the dimension of the system. %

6 % %

7 % Written by Cody E. Clifton, 6−25−2012. %

8 % −− %

9

10 A = (−1 + sqrt(1 − 4*((C−1)/B)))/2;

11

12 end % function

A.1.7 Estimation of h using the forward difference approach

The following code requires the MATLAB functions provided in Appendices A.1.1, A.1.2,

and A.1.4.

1 % −− %

2 % This code performs quadratic variation estimation on the local %

3 % variance matrix h of the Brownian motion, and displays a three− %

4 % dimensional plot of the convergence of this estimator as N −> %

5 % infinity and delta −> 0. %

40

6 % %

7 % Required functions: em.m, fwd diff.m, C value.m %

8 % %

9 % Written by Cody E. Clifton, 11−08−2012. %

10 % −− %

11

12 clear % clear all variables

13

14 true h = 1; % record the true value of the local variance matrix h

15 true alpha = 1; % record the true value of the parameter

16

17 d = 2; % define the dimension of the system

18 C = C value(d); % generate the value of the constant C(d)

19

20 % fix the factor by which the discretization of the estimation

21 % procedure varies from the discretization of the SDE solution

22 mu = 100;

23

24 N size = 4; % fix the number of iterations of N to be tested

25 delta size = 4; % fix the number of iterations of delta to be tested

26

27 h = zeros(N size,delta size); % initialize the estimate array

28 N = zeros(N size,1); % initialize the array of N−values

29 delta = zeros(delta size,1); % initialize the array of delta−values

30

31 % define f ij (with f1=f2=−1) such that f i = f i0 + alpha*f i1

32 f10=−2; f11=1; f20=1; f21=−2;

33

34 F = [0 1; (f10 + true alpha*f11) (f20 + true alpha*f21)];

35

36 for i=1:N size

37 for j=1:delta size

38 N(i,1) = 10ˆi; % fix the number of estimation increments

39 delta(j,1) = 10ˆ(−j); % fix the SDE solution step size

40

41

41 % simulate the SDE solution via Euler−Maruyama

42 X = em(F,d,mu,N(i,1)+d,delta(j,1),true h);

43

44 % compute the forward difference derivative approximations.

45 X diff = fwd diff(X,N(i,1)+d−1,delta(j,1));

46

47 for k=1:N(i,1)

48 h(i,j) = h(i,j) + (X diff(k+1) − X diff(k))ˆ2;

49 end % for

50 h(i,j) = (1/(N(i,1)*delta(j,1)))*h(i,j);

51 end % for

52 end % for

53

54 disp(h) % display the array of estimated h−values

55

56 surf(delta,N,h) % display a surface plot illustrating convergence

57 xlabel('delta (−> zero)','Fontsize',13,'Rotation',0)

58 ylabel('N (−> infinity)','Fontsize',13,'Rotation',0)

59 zlabel('h := h(N,delta)','Fontsize',13,'Rotation',90)

A.1.8 Estimation of h using the alternate approach

The following code requires the MATLAB functions provided in Appendices A.1.1, A.1.3,

A.1.4, A.1.5, and A.1.6.

1 % −− %

2 % This code performs quadratic variation estimation on the local %

3 % variance matrix h of the Brownian motion with the alternate %

4 % numerical differentiation scheme given by num deriv.m, and %

5 % displays a three−dimensional plot of the convergence of this %

6 % estimator as N −> infinity and delta −> 0. %

7 % %

8 % Required functions: em.m, num deriv.m, %

9 % A value.m, B value.m, C value.m %

42

10 % %

11 % Written by Cody E. Clifton, 11−08−2012. %

12 % −− %

13

14 clear

15

16 true h = 1; % record the true value of the local variance matrix h

17 true alpha = 1; % record the true value of the parameter

18

19 d = 2; % define the dimension of the system

20 B = B value(d); % generate the value of the constant B(d)

21 C = C value(d); % generate the value of the constant C(d)

22 A = A value(B,C); % generate the value of the constant A(d)

23

24 % fix the factor by which the discretization of the estimation

25 % procedure varies from the discretization of the SDE solution

26 mu = 100;

27

28 N size = 4; % fix the number of iterations of N to be tested

29 delta size = 4; % fix the number of iterations of delta to be tested

30

31 h = zeros(N size,delta size); % initialize the estimate array

32 N = zeros(N size,1); % initialize the array of N−values

33 delta = zeros(delta size,1); % initialize the array of delta−values

34

35 % define f ij (with f1=f2=−1) such that f i = f i0 + alpha*f i1

36 f10=−2; f11=1; f20=1; f21=−2;

37

38 F = [0 1; (f10 + true alpha*f11) (f20 + true alpha*f21)];

39

40 for i=1:N size

41 for j=1:delta size

42 N(i,1) = 10ˆi; % fix the number of estimation increments

43 delta(j,1) = 10ˆ(−j); % fix the SDE solution step size

44

43

45 % simulate the SDE solution via Euler−Maruyama

46 X = em(F,d,mu,N(i,1)+d+1,delta(j,1),true h);

47

48 % compute the numerical derivative approximations

49 X tilde = num deriv(X,N(i,1)+d−1,delta(j,1),A);

50

51 for k=1:N(i,1)

52 h(i,j) = h(i,j) + (X tilde(k+1) − X tilde(k))ˆ2;

53 end % for

54 h(i,j) = (1/(N(i,1)*delta(j,1)))*h(i,j);

55 end % for

56 end % for

57

58 disp(h) % display the array of estimated h−values

59

60 surf(delta,N,h) % display a surface plot illustrating convergence

61 xlabel('delta (−> zero)','Fontsize',13,'Rotation',0)

62 ylabel('N (−> infinity)','Fontsize',13,'Rotation',0)

63 zlabel('h := h(N,delta)','Fontsize',13,'Rotation',90)

A.1.9 Estimation of α using the forward difference approach

The following code requires the MATLAB functions provided in Appendices A.1.1, A.1.2,

and A.1.4.

1 % −− %

2 % This code performs least squares estimation on the unknown %

3 % parameter in the stochastic differential equation, and displays a %

4 % three−dimensional plot of the convergence of this estimator as %

5 % N −> infinity and delta −> 0. %

6 % %

7 % Required functions: em.m, fwd diff.m, and C value.m %

8 % %

9 % Written by Cody E. Clifton, 11−08−2012. %

44

10 % −− %

11

12 clear

13

14 true h = 1; % record the true value of the local variance matrix h

15 true alpha = 1; % record the true value of the parameter

16

17 d = 2; % define the dimension of the system

18 B = B value(d); % generate the value of the constant B(d)

19 C = C value(d); % generate the value of the constant C(d)

20 A = A value(B,C); % generate the value of the constant A(d)

21

22 % fix the factor by which the discretization of the estimation

23 % procedure varies from the discretization of the SDE solution

24 mu = 100;

25

26 N size = 4; % fix the number of iterations of N to be tested

27 delta size = 4; % fix the number of iterations of delta to be tested

28

29 alpha = zeros(N size,delta size); % initialize the estimate array

30 N = zeros(N size,1); % initialize the array of N−values

31 delta = zeros(delta size,1); % initialize the array of delta−values

32

33 % define f ij (with f1=f2=−1) such that f i = f i0 + alpha*f i1

34 f10=−2; f11=1; f20=1; f21=−2;

35

36 F = [0 1; (f10 + true alpha*f11) (f20 + true alpha*f21)];

37

38 for i=1:N size

39 for j=1:delta size

40 N(i,1) = 10ˆi; % fix the number of estimation increments

41 delta(j,1) = 10ˆ(−j); % fix the SDE solution step size

42

43 % simulate the SDE solution via Euler−Maruyama

44 X = em(F,d,mu,N(i,1)+d,delta(j,1),true h);

45

45

46 % compute the forward difference derivative approximations

47 X diff = fwd diff(X,N(i,1)+d−1,delta(j,1));

48

49 S2 = 0; % initialize the left−hand side of LSE equation

50 for k=1:N(i,1)

51 S2 = S2 + (f11*X(k,1) + f21*X diff(k,1))ˆ2;

52 end % for

53 S2 = (1/N(i,1))*S2;

54

55 S1 = 0; % initialize the right−hand side of LSE equation

56 for k=1:N(i,1)

57 S1 = S1 + (f11*X(k,1) + f21*X diff(k,1))* ...

58 ((X diff(k+1,1) − X diff(k,1)) − ...

59 delta(j,1)*(f10*X(k,1) + f20*X diff(k,1)));

60 end % for

61 S1 = (1/(N(i,1)*delta(j,1)))*S1;

62

63 COR = 0; % initialize the bias correction term

64 for k=1:N(i,1)

65 COR = COR + f21*(X diff(k+1,1) − X diff(k,1))ˆ2;

66 end % for

67 COR = (1/(N(i,1)*delta(j,1)))*((C−1)/(2*C))*COR;

68 S1 = S1 − COR;

69

70 alpha(i,j) = S1/S2;

71 end % for

72 end % for

73

74 disp(alpha) % display the array of estimated parameter values

75

76 % display a surface plot illustrating parameter convergence

77 surf(delta,N,alpha)

78 xlabel('delta (−> zero)','Fontsize',13,'Rotation',0)

79 ylabel('N (−> infinity)','Fontsize',13,'Rotation',0)

46

80 zlabel('alpha := alpha(N,delta)','Fontsize',13,'Rotation',90)

A.1.10 Estimation of α using the alternate approach

The following code requires the MATLAB functions provided in Appendices A.1.1, A.1.3,

A.1.4, A.1.5, and A.1.6.

1 % −− %

2 % This code performs least squares estimation on the unknown %

3 % parameter in the stochastic differential equation, and displays a %

4 % three−dimensional plot of the convergence of this estimator as %

5 % N −> infinity and delta −> 0. %

6 % %

7 % Required functions: em.m, num deriv.m, %

8 % A value.m, B value.m, C value.m %

9 % %

10 % Written by Cody E. Clifton, 11−08−2012. %

11 % −− %

12

13 clear

14

15 true h = 1; % record the true value of the local variance matrix h

16 true alpha = 1; % record the true value of the parameter

17

18 d = 2; % define the dimension of the system

19 B = B value(d); % generate the value of the constant B(d)

20 C = C value(d); % generate the value of the constant C(d)

21 A = A value(B,C); % generate the value of the constant A(d)

22

23 % fix the factor by which the discretization of the estimation

24 % procedure varies from the discretization of the SDE solution

25 mu = 100;

26

27 N size = 4; % fix the number of iterations of N to be tested

47

28 delta size = 4; % fix the number of iterations of delta to be tested

29

30 alpha = zeros(N size,delta size); % initialize the estimate array

31 N = zeros(N size,1); % initialize the array of N−values

32 delta = zeros(delta size,1); % initialize the array of delta−values

33

34 % define f ij (with f1=f2=−1) such that f i = f i0 + alpha*f i1

35 f10=−2; f11=1; f20=1; f21=−2;

36

37 F = [0 1; (f10 + true alpha*f11) (f20 + true alpha*f21)];

38

39 for i=1:N size

40 for j=1:delta size

41 N(i,1) = 10ˆi; % fix the number of estimation increments

42 delta(j,1) = 10ˆ(−j); % fix the SDE solution step size

43

44 % simulate the SDE solution via Euler−Maruyama

45 X = em(F,d,mu,N(i,1)+d+1,delta(j,1),true h);

46

47 % compute the numerical derivative approximations

48 X tilde = num deriv(X,N(i,1)+d−1,delta(j,1),A);

49

50 S2 = 0; % initialize the left−hand side of LSE equation

51 for k=1:N(i,1)

52 S2 = S2 + (f11*X(k,1) + f21*X tilde(k,1))ˆ2;

53 end % for

54 S2 = (1/N(i,1))*S2;

55

56 S1 = 0; % initialize the right−hand side of LSE equation

57 for k=1:N(i,1)

58 S1 = S1 + (f11*X(k,1) + f21*X tilde(k,1))* ...

59 ((X tilde(k+1,1) − X tilde(k,1)) − ...

60 delta(j,1)*(f10*X(k,1) + f20*X tilde(k,1)));

61 end % for

62 S1 = (1/(N(i,1)*delta(j,1)))*S1;

48

63

64 alpha(i,j) = S1/S2;

65 end % for

66 end % for

67

68 disp(alpha) % display the array of estimated parameter values

69

70 % display a surface plot illustrating parameter convergence

71 surf(delta,N,alpha)

72 xlabel('delta (−> zero)','Fontsize',13,'Rotation',0)

73 ylabel('N (−> infinity)','Fontsize',13,'Rotation',0)

74 zlabel('alpha := alpha(N,delta)','Fontsize',13,'Rotation',90)

A.2 Code for Chapter 2

• Appendix A.2.1, A.2.2 – functions for simulating an observed trajectory of a Markov

chain: the first is optimized to require minimal processing power, while the second

is optimized to require minimal memory.

• Appendices A.2.3, A.2.4, A.2.5 – functions for computing the control-dependent

matrices a = (a(i, j;u)), b = (b(i, j;u)), and c = (c(i, j;u)), respectively.

• Appendices A.2.6, A.2.7 – functions for computing a feedback control, un = φ(α̂n, xn),

when the unknown parameter is one-dimensional and two-dimensional, respectively.

• Appendices A.2.8, A.2.9 – code for simulating maximum likelihood estimation in

the case of linear dependence on a one-dimensional parameter belonging to a finite

set and to a compact set, respectively.

• Appendices A.2.10, A.2.11 – code for simulating maximum likelihood estimation in

the case of quadratic dependence on a one-dimensional parameter belonging to a

finite set and to a compact set, respectively.

49

• Appendix A.2.12 – code for simulating maximum likelihood estimation in the case

of linear dependence on a two-dimensional parameter belonging to a finite set.

A.2.1 Simulation of successive states of a Markov chain, v.1

1 function X = MarkovSim1(N,P,X0)

2

3 % −− %

4 % This function is optimized to require minimal processing power. %

5 % −− %

6 % %

7 % Let 'P' denote the transition probability matrix of a Markov %

8 % chain. This function produces a vector containing 'N' simulated %

9 % observations of the state of the chain. %

10 % %

11 % Inputs: P = transition probability matrix of a Markov chain. %

12 % N = desired number of simulated observations. %

13 % X0 = initial state %

14 % %

15 % Outputs: X = vector containing N simulated observations of the %

16 % state of a Markov chain with transition probability %

17 % matrix P. %

18 % %

19 % Written by Cody E. Clifton, 2013−03−22. %

20 % −− %

21

22 S = size(P,1); % let 's' be the size of the Markov chain's state space

23

24 X = zeros(N,1); % initialize the vector of simulated observations

25 X(1) = X0; % fix the initial state of the chain to be 'X0'

26

27 % The distinguishing feature of this function, as compared with

28 % MarkovSim2, is the following preallocation of cumulative row−sum

29 % probabilities from the matrix P, which causes the function to

50

30 % require less processing power but more memory.

31

32 Q = cumsum(P,2);

33

34 for i=1:N−1

35 r = rand; % produce a random value from the Uniform[0,1] distr.

36 for j=1:S

37 if (r < Q(X(i),j))

38 X(i+1) = j; % fix the next simulated state of the chain

39 break; % exit the for−loop containing the if statement

40 end % if

41 end % for

42 end % for

43

44 end % function

A.2.2 Simulation of successive states of a Markov chain, v.2

1 function X = MarkovSim2(N,P,X0)

2

3 % −− %

4 % This function is optimized to require minimal memory. %

5 % −− %

6 % %

7 % Let 'P' denote the transition probability matrix of a Markov %

8 % chain. This function produces a vector containing 'N' simulated %

9 % observations of the state of the chain. %

10 % %

11 % Inputs: P = transition probability matrix of a Markov chain. %

12 % N = desired number of simulated observations. %

13 % X0 = initial state %

14 % %

15 % Outputs: X = vector containing N simulated observations of the %

16 % state of a Markov chain with transition probability %

51

17 % matrix P. %

18 % %

19 % Written by Cody E. Clifton, 2013−03−22. %

20 % −− %

21

22 S = size(P,1); % let 's' be the size of the Markov chain's state space

23

24 X = zeros(N,1); % initialize the vector of simulated observations

25 X(1) = X0; % fix the initial state of the chain to be 'X0'

26

27 % The distinguishing feature of this function, as compared with

28 % MarkovSim1, is that the cumulative row−sum probabilities from the

29 % matrix P are not preallocated, which causes the function to require

30 % less memory but more processing power.

31

32 for i=1:N−1

33 r = rand; % produce a random value from the Uniform[0,1] distr.

34 for j=1:S

35 q = 0;

36 for k=1:j

37 q = q + P(X(i),j); % sum the X(i)th row of P from 1 to j

38 end % for

39 if (r < q)

40 X(i+1) = j; % fix the next simulated state of the chain

41 break; % exit the for−loop containing the if statement

42 end % if

43 end % for

44 end % for

45

46 end % function

A.2.3 Computation of the control-dependent matrix a = (a(i, j;u))

1 function a = a values(u)

52

2

3 % −− %

4 % This function returns the control−dependent matrix a = (a(i,j;u)). %

5 % %

6 % Inputs: u = control. %

7 % %

8 % Outputs: a = matrix of values (a(i,j;u)). %

9 % %

10 % Written by Cody E. Clifton, 2013−03−22. %

11 % −− %

12

13 a = zeros(2); % initialize a

14

15 % assign values to the known function a

16 a(1,1) = u − 2; a(1,2) = 2 − u;

17 a(2,1) = 0; a(2,2) = 0;

18

19 end % function

A.2.4 Computation of the control-dependent matrix b = (b(i, j;u))

1 function b = b values(u)

2

3 % −− %

4 % This function returns the control−dependent matrix b = (b(i,j;u)). %

5 % %

6 % Inputs: u = control. %

7 % %

8 % Outputs: b = matrix of values (b(i,j;u)). %

9 % %

10 % Written by Cody E. Clifton, 2013−03−22. %

11 % −− %

12

13 b = zeros(2); % initialize b

53

14

15 % assign values to the known function b

16 b(1,1) = 0.5; b(1,2) = 0.5;

17 b(2,1) = 1; b(2,2) = 0;

18

19 end % function

A.2.5 Computation of the control-dependent matrix c = (c(i, j;u))

1 function c = c values(u)

2

3 % −− %

4 % This function returns the control−dependent matrix c = (c(i,j;u)). %

5 % %

6 % Inputs: u = control. %

7 % %

8 % Outputs: c = matrix of values (c(i,j;u)). %

9 % %

10 % Written by Cody E. Clifton, 2013−03−22. %

11 % −− %

12

13 c = zeros(2); % initialize c

14

15 % assign values to the known function c

16 c(1,1) = 0.5; c(1,2) = 0.5;

17 c(2,1) = 1; c(2,2) = 0;

18

19 end % function

A.2.6 Computation of feedback control for a 1D parameter

1 function u = control1D(alpha hat)

2

54

3 % −− %

4 % This function returns a feedback control that depends on the %

5 % maximum likelihood estimate (MLE) of a one−dimensional unknown %

6 % parameter in the transition probabilities of a Markov chain. %

7 % %

8 % Inputs: alpha hat = one−dimensional MLE %

9 % %

10 % Outputs: u = feedback control, dependent on the MLE alpha hat. %

11 % %

12 % Written by Cody E. Clifton, 2013−04−03. %

13 % −− %

14

15 if (alpha hat==0.02)

16 u = 1;

17 else

18 u = −1;

19 end % if/else

20

21 end % function

A.2.7 Computation of feedback control for a 2D parameter

1 function u = control2D(alpha1 hat,alpha2 hat)

2

3 % −− %

4 % This function returns a feedback control that depends on the %

5 % maximum likelihood estimate (MLE) of a two−dimensional unknown %

6 % parameter in the transition probabilities of a Markov chain. %

7 % %

8 % Inputs: alpha hat = two−dimensional MLE %

9 % %

10 % Outputs: u = feedback control, dependent on the MLE alpha hat. %

11 % %

12 % Written by Cody E. Clifton, 2013−04−03. %

55

13 % −− %

14

15 if ((alpha1 hat==0.02)&&(alpha2 hat==0.02))

16 u = 1;

17 else

18 u = −1;

19 end % if/else

20

21 end % function

A.2.8 MLE: linear dependence, 1D, finite set

The following code requires the MATLAB functions provided in Appendices A.2.3, A.2.4,

A.2.6, and either A.2.1 or A.2.2.

1 % −− %

2 % Consider a Markov chain whose transition probabilities depend %

3 % linearly on a one−dimensional unknown parameter alpha from a %

4 % finite set A and a feedback control u from a finite set U. This %

5 % code first assumes knowledge of the true value of alpha in order %

6 % to successively simulate states of the chain and perform maximum %

7 % likelihood estimation of alpha. %

8 % %

9 % Required functions: a values.m, b values.m, control1D.m, %

10 % MarkovSim1.m or MarkovSim2.m %

11 % %

12 % Written by Cody E. Clifton, 2013−03−28. %

13 % −− %

14

15 clear % clear all variables

16

17 true alpha = 0.02; % fix the true value of the parameter

18 A = [0.01, 0.02, 0.03]; % define the set of possible parameter values

19 N = 100000; % fix the number of simulated observations of the chain

56

20

21 X = zeros(N+1,1); % initialize the vector of simulated states

22 alpha hat = zeros(N,1); % initialize the vector of ML estimates

23 P = zeros(2); % initialize the transition probability matrix

24

25 u = 1; % initialize the control u

26

27 X(1) = 1; % fix the initial state of the chain to be '1'

28

29 s = size(A,2);

30 L = zeros(s,1);

31

32 for i=1:N

33 % assign values to the matrices a and b

34 a = a values(u); b = b values(u);

35

36 % set P(j,k) = a(j,k)*alpha + b(j,k), j,k=1,2

37 P(1,1) = a(1,1)*true alpha + b(1,1);

38 P(1,2) = a(1,2)*true alpha + b(1,2);

39 P(2,1) = a(2,1)*true alpha + b(2,1);

40 P(2,2) = a(2,2)*true alpha + b(2,2);

41

42 % simulate the "next" state of the Markov chain

43 Y = MarkovSim1(2,P,X(i));

44 X(i+1) = Y(2);

45

46 a m = 0; b m = 0;

47

48 for j=1:2

49 for k=1:2

50 if ((X(i)==j)&&(X(i+1)==k))

51 a m = a(j,k); b m = b(j,k);

52 break; % exit the loop containing the if−statement

53 end % if

54 end % for

57

55 end % for

56

57 for j=1:s

58 L(j) = L(j) + log(a m*A(j) + b m);

59 end % for

60

61 % find indices corresponding to values from A that maximize L

62 m = find(L==max(L(:)));

63

64 % fix the alpha hat as the first from A that maximizes L

65 alpha hat(i) = A(m(1));

66

67 u = control1D(alpha hat(i));

68 end % for

69

70 disp(alpha hat) % display the vector of ML estimates

71

72 n = linspace(1,N,N);

73 plot(n,alpha hat) % plot the ML estimates against the vector n

74 title('Maximum Likelihood Estimation of alpha');

75 xlabel('n');

76 ylabel('ML estimate of alpha');

A.2.9 MLE: linear dependence, 1D, compact set

The following code requires the MATLAB function provided in either Appendix A.2.1 or

Appendix A.2.2.

1 % −− %

2 % Consider a Markov chain whose transition probabilities depend %

3 % linearly on a one−dimensional unknown parameter alpha. This code %

4 % first assumes knowledge of the true value of alpha in order to %

5 % simulate an observed trajectory of the chain, and then uses this %

6 % trajectory to perform maximum likelihood estimation of alpha. %

58

7 % %

8 % Required functions: MarkovSim1.m or MarkovSim2.m %

9 % %

10 % Written by Cody E. Clifton, 2013−04−03. %

11 % −− %

12

13 clear % clear all variables

14

15 true alpha = 0.02; % fix the true value of the parameter

16 N = 100000; % fix the number of simulated observations of the chain

17

18 X = zeros(N+1,1); % initialize the vector of simulated states

19 alpha hat = zeros(N,1); % initialize the vector of ML estimates

20 P = zeros(2); % initialize the transition probability matrix

21

22 u = 0; % initialize the control u, in this case identically zero

23

24 X(1) = 1; % fix the initial state of the chain to be '1'

25

26 % assign values to the matrices a and b

27 a = a values(u); b = b values(u);

28

29 % set P(j,k) = a(j,k)*alpha + b(j,k) for j,k = 1,2

30 P(1,1) = a(1,1)*true alpha + b(1,1);

31 P(1,2) = a(1,2)*true alpha + b(1,2);

32 P(2,1) = a(2,1)*true alpha + b(2,1);

33 P(2,2) = a(2,2)*true alpha + b(2,2);

34

35 % generate N+1 simulated observations of the state of the chain

36 X = MarkovSim1(N+1,P,X(1));

37

38 for i=1:N

39 M = zeros(2); % initialize "index" matrix

40 for j=1:i

41 if ((X(j)==1)&&(X(j+1)==1))

59

42 M(1,1) = M(1,1) − 1;

43 elseif ((X(j)==1)&&(X(j+1)==2))

44 M(1,2) = M(1,2) − 1;

45 elseif ((X(j)==2)&&(X(j+1)==1))

46 M(2,1) = M(2,1) − 1;

47 else

48 M(2,2) = M(2,2) − 1;

49 end % if/else

50 end % for

51 Likelihood = @(alpha) (M(1,1)*log(a(1,1)*alpha+b(1,1)) + ...

52 M(1,2)*log(a(1,2)*alpha+b(1,2)) + ...

53 M(2,1)*log(a(2,1)*alpha+b(2,1)));

54 % M(2,2)*log(a(2,2)*alpha+b(2,2))

55 alpha hat(i) = fminbnd(Likelihood,0,0.1);

56 end % for

57

58 disp(alpha hat) % display the vector of ML estimates

59

60 n = linspace(1,N,N);

61 plot(n,alpha hat) % plot the ML estimates against the vector n

62 title('Maximum Likelihood Estimation of alpha');

63 xlabel('n');

64 ylabel('ML estimate of alpha');

A.2.10 MLE: quadratic dependence, 1D, finite set

The following code requires the MATLAB functions provided in Appendices A.2.3, A.2.4,

A.2.6, and either A.2.1 or A.2.2.

1 % −− %

2 % Consider a Markov chain whose transition probabilities depend %

3 % quadratically on a one−dimensional unknown parameter alpha from a %

4 % finite set A and a feedback control u from a finite set U. This %

5 % code first assumes knowledge of the true value of alpha in order %

60

6 % to successively simulate states of the chain and perform maximum %

7 % likelihood estimation of alpha. %

8 % %

9 % Required functions: a values.m, b values.m, c values.m, %

10 % control1D.m, MarkovSim1.m or MarkovSim2.m %

11 % %

12 % Written by Cody E. Clifton, 2013−03−28. %

13 % −− %

14

15 clear % clear all variables

16

17 true alpha = 0.02; % fix the true value of the parameter

18

19 A = [0.01, 0.02, 0.03]; % define the set of possible parameter values

20 N = 100000; % fix the number of simulated observations of the chain

21

22 X = zeros(N+1,1); % initialize the vector of simulated states

23 alpha hat = zeros(N,1); % initialize the vector of ML estimates

24 P = zeros(2); % initialize the transition probability matrix

25

26 u = 1; % initialize the control u

27

28 X(1) = 1; % fix the initial state of the chain to be '1'

29

30 s = size(A,2);

31 L = zeros(s,1);

32

33 for i=1:N

34 % assign values to the matrices a, b, and c

35 a = a values(u); b = a values(u); c = b values(u);

36

37 % set P(j,k) = a(j,k)*alphaˆ2 + b(j,k)*alpha + c(j,k), j,k=1,2

38 P(1,1) = a(1,1)*true alphaˆ2 + b(1,1)*true alpha + c(1,1);

39 P(1,2) = a(1,2)*true alphaˆ2 + b(1,2)*true alpha + c(1,2);

40 P(2,1) = a(2,1)*true alphaˆ2 + b(2,1)*true alpha + c(2,1);

61

41 P(2,2) = a(2,2)*true alphaˆ2 + b(2,2)*true alpha + c(2,2);

42

43 % simulate the "next" state of the Markov chain

44 Y = MarkovSim1(2,P,X(i));

45 X(i+1) = Y(2);

46

47 a m = 0; b m = 0; c m = 0;

48

49 for j=1:2

50 for k=1:2

51 if ((X(i)==j)&&(X(i+1)==k))

52 a m = a(j,k); b m = b(j,k); c m = c(j,k);

53 break; % exit the loop containing the if−statement

54 end % if

55 end % for

56 end % for

57

58 for j=1:s

59 L(j) = L(j) + log(a m*A(j)ˆ2 + b m*A(j) + c m);

60 end % for

61

62 % find indices corresponding to values from A that maximize L

63 m = find(L==max(L(:)));

64

65 % fix the alpha hat as the first value from A that maximizes L

66 alpha hat(i) = A(m(1));

67

68 u = control1D(alpha hat(i));

69 end % for

70

71 disp(alpha hat) % display the vector of ML estimates

72

73 n = linspace(1,N,N);

74 plot(n,alpha hat) % plot the ML estimates against the vector n

75 title('Maximum Likelihood Estimation of alpha');

62

76 xlabel('n');

77 ylabel('ML estimate of alpha');

A.2.11 MLE: quadratic dependence, 1D, compact set

The following requires the MATLAB function provided in either Appendix A.2.1 or Ap-

pendix A.2.2.

1 % −− %

2 % Consider a Markov chain whose transition probabilities depend %

3 % quadratically on a one−dimensional unknown parameter alpha. This %

4 % code first assumes knowledge of the true value of alpha in order %

5 % to simulate an observed trajectory of the chain, and then uses %

6 % this trajectory to perform maximum likelihood estimation of alpha. %

7 % %

8 % Required functions: MarkovSim1.m or MarkovSim2.m %

9 % %

10 % Written by Cody E. Clifton, 2013−04−03. %

11 % −− %

12

13 clear % clear all variables

14

15 true alpha = 0.02; % fix the true value of the parameter

16 N = 100000; % fix the number of simulated observations of the chain

17

18 X = zeros(N+1,1); % initialize the vector of simulated states

19 alpha hat = zeros(N,1); % initialize the vector of ML estimates

20 P = zeros(2); % initialize the transition probability matrix

21

22 u = 0; % initialize the control u, in this case identically zero

23

24 X(1) = 1; % fix the initial state of the chain to be '1'

25

26 % assign values to the matrices a, b, and c

63

27 a = a values(u); b = a values(u); c = b values(u);

28

29 % set P(j,k) = a(j,k)*alphaˆ2 + b(j,k)*alpha + c(j,k), j,k=1,2

30 P(1,1) = a(1,1)*true alphaˆ2 + b(1,1)*true alpha + c(1,1);

31 P(1,2) = a(1,2)*true alphaˆ2 + b(1,2)*true alpha + c(1,2);

32 P(2,1) = a(2,1)*true alphaˆ2 + b(2,1)*true alpha + c(2,1);

33 P(2,2) = a(2,2)*true alphaˆ2 + b(2,2)*true alpha + c(2,2);

34

35 % generate N+1 simulated observations of the state of the chain

36 X = MarkovSim1(N+1,P,X(1));

37

38 for i=1:N

39 M = zeros(2); % initialize "index" matrix

40 for j=1:i

41 if ((X(j)==1)&&(X(j+1)==1))

42 M(1,1) = M(1,1) − 1;

43 elseif ((X(j)==1)&&(X(j+1)==2))

44 M(1,2) = M(1,2) − 1;

45 elseif ((X(j)==2)&&(X(j+1)==1))

46 M(2,1) = M(2,1) − 1;

47 else

48 M(2,2) = M(2,2) − 1;

49 end % if/else

50 end % for

51 Likelihood = @(alpha) ...

52 (M(1,1)*log(a(1,1)*alphaˆ2+b(1,1)*alpha+c(1,1)) + ...

53 M(1,2)*log(a(1,2)*alphaˆ2+b(1,2)*alpha+c(1,2)) + ...

54 M(2,1)*log(a(2,1)*alphaˆ2+b(2,1)*alpha+c(2,1)));

55 % M(2,2)*log(a(2,2)*alphaˆ2+b(2,2)*alpha+c(2,2))

56 alpha hat(i) = fminbnd(Likelihood,0,0.1);

57 end % for

58

59 disp(alpha hat) % display the vector of ML estimates

60

61 n = linspace(1,N,N);

64

62 plot(n,alpha hat) % plot the ML estimates against the vector n

63 title('Maximum Likelihood Estimation of alpha');

64 xlabel('n');

65 ylabel('ML estimate of alpha');

A.2.12 MLE: linear dependence, 2D, finite set

The following requires the MATLAB functions provided in Appendices A.2.3, A.2.4,

A.2.7, and either A.2.1 or A.2.2.

1 % −− %

2 % Consider a Markov chain whose transition probabilities depend on a %

3 % two−dimensional unknown parameter alpha. This code first assumes %

4 % knowledge of the true value of alpha in order to simulate an %

5 % observed trajectory of the chain, and then uses this trajectory to %

6 % perform maximum likelihood estimation of alpha. %

7 % %

8 % Required functions: FiniteArgMax2D.m and %

9 % MarkovSim1.m or MarkovSim2.m %

10 % %

11 % Written by Cody E. Clifton, 2013−03−28. %

12 % −− %

13

14 clear % clear all variables

15

16 true alpha = [0.01, −0.02]; % fix the true value of the parameter

17

18 % define the set of admissible values for the 1st component of alpha

19 A1 = [0.01, 0.02, 0.03];

20 % define the set of admissible values for the 2nd component of alpha

21 A2 = [−0.01, −0.02, −0.03];

22

23 N = 100000; % fix the number of simulated observations of the chain

24

65

25 X = zeros(N+1,1); % initialize the vector of simulated states

26 alpha hat = zeros(N,2); % initialize the vector of ML estimates

27 P = zeros(2); % initialize the transition probability matrix

28

29 u = 1; % initialize the control u

30

31 X(1) = 1; % fix the initial state of the chain to be '1'

32

33 s1 = size(A1,2);

34 s2 = size(A2,2);

35 L = zeros(s1,s2);

36

37 for i=1:N

38 % assign values to the matrices a, b, and c

39 a = a values(u); b = a values(u); c = b values(u);

40

41 % set P(j,k)=a(j,k)*alpha(1)+b(j,k)*alpha(2)+c(j,k), for j,k=1,2

42 P(1,1) = a(1,1)*true alpha(1) + b(1,1)*true alpha(2) + c(1,1);

43 P(1,2) = a(1,2)*true alpha(1) + b(1,2)*true alpha(2) + c(1,2);

44 P(2,1) = a(2,1)*true alpha(1) + b(2,1)*true alpha(2) + c(2,1);

45 P(2,2) = a(2,2)*true alpha(1) + b(2,2)*true alpha(2) + c(2,2);

46

47 % simulate the "next" state of the Markov chain

48 Y = MarkovSim1(2,P,X(i));

49 X(i+1) = Y(2); %

50

51 a m = 0; b m = 0; c m = 0;

52

53 for j=1:2

54 for k=1:2

55 if ((X(i)==j)&&(X(i+1)==k))

56 a m = a(j,k); b m = b(j,k); c m = c(j,k);

57 break; % exit the loop containing the if−statement

58 end % if

59 end % for

66

60 end % for

61

62 for j=1:s1

63 for k=1:s2

64 L(j,k) = L(j,k) + log(a m*A1(j) + b m*A2(k) + c m);

65 end % for

66 end % for

67

68 % find pairs of indices of values from A1, A2 that maximize L

69 [m1,m2] = find(L==max(L(:)));

70

71 % fix the first pair of values from A1, A2 that maximizes L

72 alpha hat(i,1) = A1(m1(1));

73 alpha hat(i,2) = A2(m2(1));

74

75 u = control2D(alpha hat(i,1),alpha hat(i,2));

76 end % for

77

78 disp(alpha hat) % display the vector of ML estimates

79

80 n = linspace(1,N,N);

81 plot(n,alpha hat) % plot the ML estimates against the vector n

82 title('Maximum Likelihood Estimation of alpha');

83 xlabel('n');

84 ylabel('ML estimate of alpha');

85 legend('alpha1','alpha2');

67

	Estimation in Higher-Order Linear Stochastic Systems
	Introduction
	Forward Difference Approach
	Alternate Numerical Derivative Approximation

	Simulating Sampled SDE Solutions
	Estimating White Noise Local Variance
	Estimating an Unknown Parameter
	Future Investigations
	Concluding Remarks

	Estimation of Parameters in Markov Chain Transition Probabilities
	Introduction
	Simulating Markov Chain Trajectories
	Three Cases of Parameter Dependence
	Case I: linear dependence, 1D parameter.
	Case II: quadratic dependence, 1D parameter.
	Case III: linear dependence, 2D parameter.
	Notation

	Parameter Estimation, part I
	Case I
	Case II
	Case III

	Parameter Estimation, part II
	Case I
	Case II
	Case III

	Survey of Related Results
	Future Investigations
	Concluding Remarks

	References
	MATLAB code
	Code for Chapter 1
	E-M recursion for SDE solution approximation
	Forward difference method for derivative approximation
	Alternate method for derivative approximation
	Computation of the value C(d)
	Computation of the value B(d)
	Computation of the value A(d)
	Estimation of h using the forward difference approach
	Estimation of h using the alternate approach
	Estimation of using the forward difference approach
	Estimation of using the alternate approach

	Code for Chapter 2
	Simulation of successive states of a Markov chain, v.1
	Simulation of successive states of a Markov chain, v.2
	Computation of the control-dependent matrix a = (a(i,j;u))
	Computation of the control-dependent matrix b = (b(i,j;u))
	Computation of the control-dependent matrix c = (c(i,j;u))
	Computation of feedback control for a 1D parameter
	Computation of feedback control for a 2D parameter
	MLE: linear dependence, 1D, finite set
	MLE: linear dependence, 1D, compact set
	MLE: quadratic dependence, 1D, finite set
	MLE: quadratic dependence, 1D, compact set
	MLE: linear dependence, 2D, finite set

