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CHAPTER 1: INTRODUCTION 

 

Analysis of interindividual variation versus analysis of intraindividual 

variation 

 A formidable collection of existing statistical models has been developed in the history of 

scientific research seeking results generalizable to a homogenous population, for example, 

analysis of variance, regression analysis, and factor analysis. In multilevel modeling (MLM), the 

population is assumed to be composed of different subpopulations, and subjects within each 

subpopulation are again considered homogenous. Apparently, the structure of interindividual 

variation has historically been the focus of statistical analysis, and there is a common assumption 

for all these interindividual approaches. That is, human individuals are homogenous in all 

relevant aspects. In other words, each individual has to obey exactly the same dynamical laws. 

Presumably, this focus can be attributed to the scientific ideal of finding nomothetic knowledge 

that should apply to all human individuals. 

In test theory, the current dominant approach to statistical analysis "treats individual 

differences or, equivalently, the distribution of measurements over people" (Lord & Novick, 

1968, p. 32). Particularly, the true and error scores primarily considered in test theory are those 

that deals with groups rather than individuals (selection rather than counseling). However, the 

original definitions of true and error scores rooted completely in the context of intraindividual 

variation. That is, "A mathematically convenient way of defining a true score is as the expected 

observed score with respect to the propensity distribution of a given person on a given 

measurement" and the propensity distribution "is a cumulative distribution function defined over 

repeated statistically independent measurements on the same person" (Lord & Novick, 1968, p. 
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30). The concept of error score comes straightforwardly: "The discrepancy between observed 

value and true value" (Lord & Novick, 1968, p. 31). The reason of this shifted treatment from the 

context of intraindividual variation to the basis of interindividual variation in classical test 

theory, as we know it, is that "it is not usually possible in psychology to obtain more than a few 

independent observations" (Lord & Novick, 1968, p. 30). Thus, it is immediately obvious that 

this raises a fundamentally important validity issue concerning the equivalence between the 

analysis of intraindividual variation and the analysis of interindividual analysis. As Molenaar 

(2003, 2004, 2008) articulated, the results obtained from one type of analysis are not generally 

equivalent to those obtained from the other type of analysis, unless there exists the very strict 

mathematical-statistical condition, i.e., ergodicity. As described by Van Rijn (2008), ergodicity 

is the condition that “the average of a stochastic process over time is equal to the average of the 

ensemble of stochastic processes at a single point in time” (p. 54). However, the ergodicity 

condition should never be expected in classical test theory that is based on a heterogeneous 

population (Molenaar, 2003, 2004, 2008).Therefore, the direct consequence of nonergodicity is 

that knowledge about the structure of interindividual variation in the population cannot be 

applied at the level of individual subjects making up this population, and vice versa (Molenaar & 

Ram, 2010). 

Nonergodicity not only appears in test theory, but also in factor analysis and the analysis of 

developmental processes (Molenaar, 2004, 2007, 2008; Molenaar & Ram, 2009, 

2010).Unfortunately, most statistical methods in psychology/psychometrics are applied to a 

collection of individuals rather than to a single subject, as Kratochwill (1978,p. 3) discussed 

from a historical perspective (cf. Molenaar, 2004; Van Rijn, 2008; Zu, 2008).An obvious reason 

for the remarkable lack of interest in a pure single-subject perspective in education and 
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psychology is that “until recently, we have lacked statistical methods that are appropriate for 

analyzing intraindividual data” (Molenaar, Sinclair, Rovine, Ram, & Corneal, 2009, p. 

260).Despite this type of analysis not in a niche in mainstream psychometrics in the past, single-

subject longitudinal models is not an alternative but "the epistemological necessity of 

idiography" (Molenaar, 2004, p. 204) to obtain valid results concerning individual development, 

learning performance, and so forth. In a hypothetical example of a student learning his English 

vocabulary over three days, Schmitz (2006) pointed out that researchers who adopt the common 

pretest-posttest design would not be able to find out the dynamics of the learning process; 

whereas a sequence of 12 measurements within the three days would provide a totally different 

insight into the characteristics of the whole picture (Figure 1). In fact, the field of single-subject 

research in other branches of sciences (including but not limited to econometrics, meteorology, 

and communications engineering) has grown rapidly, and psychologists would do well to study 

this carefully (Holtzmann, 1963, p. 199). 

Figure 1. The learning of vocabulary: measures of reproduction for one individual before and 

after learning (broken line) and for a series of measurements (continuous line). 

 

Note. This figure is reproduced from Schmitz (2006, Fig. 1). 
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In recent years, both substantive and methodological research devoted to longitudinal 

intraindividual analysis started to appear in the psychological literature (e.g., Browne & 

Nesselroade, 2005; Chow, Ho, Hamaker, & Dolan, 2010; Chow, Nesselroade, Shifren, & 

McArdle, 2004; Chow, Zu, Shifren, & Zhang, 2011; Du Toit and Browne, 2007; Ferrer & 

McArdle, 2003; Ferrer & Nesselroade, 2003; Hamaker, Dolan, & Molenaar, 2002, 2005; 

Hamaker & Dolan, 2009; Ho, Shumway, & Ombao, 2006; Molenaar, 1985, 1987; Molenaar, De 

Gooijer, & Schmitz, 1992; Molenaar & Nesselroade, 1998, 2009; Molenaar et al., 2009; 

Nesselroade, McArdle, Aggen, & Meyers, 2002; Sbarra & Ferrer, 2006; Shifren, Hooker, Wood, 

Nesselroade, 1997; Song & Ferrer, 2009; Van Buuren, 1997; Van Rijn, 2008; Wood & Brown, 

1994; Zhang & Browne, 2006; Zhang & Chow, 2010; Zhang, Hamaker, & Nesselroade, 2008; 

Zu, 2008). Statistical models commonly used in these studies include 

multiple/multivariate/vector autoregressive moving average model, P-technique model, dynamic 

factor model, and state space model (SSM). Although not introduced into psychology until 

recently, SSM has been considered as a very flexible modeling approach to analyze 

intraindividual processes (e.g., Molenaar et al., 2009; Molenaar & Ram, 2010). Time series 

model, P-technique model, and dynamic factor model can all be expressed in the general state 

space form. Furthermore, SSM also subsumes other advanced modeling procedures, such as 

structural equation modeling (SEM) and MLM (Chow et al., 2010; Ho et al., 2006; MacCallum 

& Ashby, 1986; Otter, 1986).In one of the leading texts, Durbin and Koopman (2001) wrote that 

“In our opinion, the only disadvantages are the relative lack in the statistical and econometric 

communities of information, knowledge and software regarding these models” (p. 52).In this 

research, the linear time-invariant SSM will be discussed. 
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State space model: Introduction, software, mathematical formulation, and the 

Kalman filter algorithm 

 State space models have their origin in system theory and engineering, beginning with the 

groundbreaking paper of Kalman (1960). As discussed by Commandeur, Koopman, and Ooms 

(2011), the applications were initially (and still are) used to solve problems in astronautics 

related to accurately tracking the position and velocity of moving objects such as aircrafts, 

missiles, and rockets, and were later adapted to treat time series data in econometrics (Harvey, 

1989). More recently, state space methods received growing attention from behavioral and 

psychological scientists because of the flexibility to both evaluate the measurement properties 

and the concurrent and time-lagged relationships of latent variables in developmental processes 

by combining factor analysis and time series analysis (e.g., Chow et al., 2010; Hamaker et al., 

2005; Ho et al., 2006; Van Rijn, 2008). In general, state space methods provide an effective 

approach for substantive areas that generate intensive longitudinal data (e.g., 

electroencephalography, economic and financial time series, and functional magnetic resonance 

imaging). However, applications of state space model in the social sciences (except 

econometrics) are still uncommon to most behavioral and psychological scientists. 

One of the important aspects for the application of statistical models is software 

implementation. Ho et al. (2006, p. 159) commented that "Though state-space modeling has 

become widespread over the last decade in economics and statistics, there has not been much 

flexible software for the statistical analysis of general models in the state-space form.". In this 

research, the SAS/IML (version 9.3) program provided by Gu and Yung (2012) is adapted for all 

the computational work. It was shown that this program is easy to use and flexible to be modified 

for many specialized purposes (Gu & Yung, 2012). 
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The linear SSM encompasses two equations, namely the measurement equation and the 

transition equation: 

1

,     ~ (0, )

,     ~ (0, )

t t t t t t t

t t t t t t t

y b H z N

z a F z N

 

 

   

   
 

where yt is a p×1 vector of observations at time t, bt is a p×1 vector of intercepts at time t, Ht is a 

p×q loading matrix at time t, zt is a q×1 vector of latent state variables at time t, εt is a p×1 vector 

of measurement errors (also referred to as innovations)at time t, at is a q×1 vector of constants at 

time t, Ft is a q×q transition matrix at time t capturing the underlying dynamic processes, ƞt is a 

q×1 vector of transition noise at time t. For Gaussian SSM, εt and ƞt are assumed to follow 

multivariate normal distribution with zero mean and covariance matrices of Θt and Ψt, 

respectively. Usually, measurement errors are assumed uncorrelated with each other, and thus, Θt 

is a diagonal matrix. The subscript t indicates all parameters (at, bt, Ft, Ht, Ψt, and Θt,) are time-

varying. In many practical applications, it is usually assumed that parameters do not change over 

time so that the subscript can be suppressed. The following linear time-invariant SSM is 

discussed. 

1

,     ~ (0, )

,     ~ (0, )

t t t t

t t t t

y b Hz N

z a Fz N

 

 

   

   
.

 

The Kalman filter (KF) algorithm is used to provide the normal theory (Gaussian) maximum 

likelihood (ML) estimates via any reasonable optimization technique. Beginning with the initial 

state variables (z1|0) and the associated covariance matrix (P1|0), the KF algorithm uses two steps: 

the prediction step and the filtering step. In the prediction step, the conditional expectation of 

state variables and the corresponding covariance matrix are estimated at the current observation 

using all prior observations; then, these estimates are updated using the actual current 
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observation in the filtering step. Specifically, the prediction step is initialized at the first 

observation (t = 1) 

1|0 0|0

1|0 0|0 '

z a Fz

P FP F

 

 
 

with the one-step-ahead prediction error and its associated covariance matrix computed as 

1 1 1|0 1 1|0

1 1|0

ˆ ( )

'

y y y b Hz

D HP H

     

 
, 

and then, these estimates are updated in the filtering step 

1

1|1 1|0 1|0 1 1

1

1|1 1|0 1|0 1 1|0

ˆ'

'

z z P H D

P P P H D HP





 

 
. 

Taking the values of z1|1 and P1|1, the prediction step and the filtering step are recursively 

implemented at the second observation, and so on. For t = 1, 2, …, T, the Kalman recursion can 

be written as 

| 1 1| 1
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| 1 1| 1
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| 1
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| 1

' 1
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

  



   

 

 

    

 



   

   

 

where Kt is called the Kalman gain matrix. After the KF cycles through all observations, t̂ and 

Dt (t = 1, 2, …, T) are readily available to be substituted into the log-likelihood function based on 

the assumption of multivariate normal distribution given by Schweppe (1965), and this function 

is referred to as the prediction error decomposition (PED): 



Gu                                                                                                                                                   11 

' 1

1

1
PED [ log(2 ) log ]

2

T

t t t t

t

p D D  



   
. 

Finally, ML estimates can be obtained by maximizing PED with respect to the parameters (a, b, 

F, H, Ψ, and Θ). 

 

Why is assessing the absolute goodness-of-fit for state space model important? 

 In regression analysis, the coefficient of determination (i.e., R
2
) is almost always 

presented as a measure of goodness-of-fit and as evidence that the model is a good one. In SEM, 

many fit indices have been developed in recent decades, and there are three types of fit indices 

commonly reported: absolute (e.g., chi-square index, goodness of fit index [GFI], root mean 

square residual), parsimony (e.g., adjusted GFI, parsimonious GFI, root mean square error of 

approximation [RMSEA], Akaike information criterion [AIC], Schwarz Bayesian criterion 

[SBC, sometimes referred to as Bayesian information criterion, BIC], McDonald centrality), 

comparative/incremental (e.g., Bentler comparative fit index [CFI], Bentler-Bonett non-normed 

index [NNFI], Bollen normed index Rho1, Bollen non-normed index Delta2). Among the three 

types of fit indices, the absolute goodness-of-fit, particularly the chi-square index, is of critical 

importance because it provides the basisfor the plausibility of a model. Also, many other fit 

indices in the other two types are derived from the chi-square index. Though the chi-square index 

is criticized for its sensitivity to sample sizes, it is undeniably to be considered the flagship in 

reporting SEM because many commonly reported fit indices are derived from the chi-square 

index as we can see from the equations of these derived indices (e.g., RMSEA, CFI, NNFI). 

With the increasing importance and popularity of state space model in psychological 

applications, assessing goodness-of-fit for SSM is becoming a crucial issue because the 

plausibility of a model serves the basis of any meaningful substantive interpretation. However, 



Gu                                                                                                                                                   12 

this area is somewhat underdeveloped as illustrated by the small amount of space (less than a 

page) devoted to this topic in Durbin and Koopman (2001, Section 7.4, p. 152). 

In the literature on econometrics and time series, measures of goodness-of-fit are usually 

associated with forecasting/predictive errors due to the intrinsic purpose of most time series 

models (i.e., forecast/prediction). Additionally, econometrists are mostly interested in selecting a 

model from several competing models. However, when all competing models are fundamentally 

poor in terms of the absolute goodness-of-fit, no matter which model is selected relative to 

others, we do not have a good approximation to the sample data. Compared to regression 

analysis and SEM, there is a noticeable lack of research devoted to the absolute goodness-of-fit 

for SSM. Therefore, this dissertation focuses on this important, but yet underdeveloped, issue—

assessing the absolute goodness-of-fit for SSM. 

 

Goal: Using bootstrap to assess the absolute goodness-of-fit for state space 

model 

 Ideally, a fit index is expected to follow a certain probability distribution so that deviance 

of the index from its expected value can be evaluated on the basis of that probability distribution. 

In other words, the observed value of the index can be compared against a certain distribution to 

determine its likelihood. In SEM, under the assumption of multivariate normality in the observed 

data, or equivalently, the assumption of a joint Wishart distribution among the elements of the 

observed covariance matrix, the ML fit function yields an overall fit index that asymptotically 

follows a chi-square distribution when the model is correct in the population (Bollen, 1989, 

Appendix 4A & 4B).This makes it feasible to test the plausibility of a particular structural 

equation model. In state space model, however, no overall fit index is derived from the fit 
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function (i.e., PED) based on the one-step-prediction error and its covariance matrix obtained at 

each observation from the KF algorithm. Thus, no statistical test can be conducted under the null 

hypothesis that the specified model is correct in the population.As an alternative, when there is 

noinformation about population distribution, the sampling distribution of a statistic could be 

empirically derived through bootstrap techniques (Efron, 1979; Efron & Tibshirani, 1993). 

Bootstrap mimics the sampling process by assuming that the distribution observed in the 

sample resembles the population distribution.The standard nonparametric bootstrap procedure 

includes the following four steps: 

1. Fit a model to the sample. 

2. Draw, with replacement, a random sample of the same size from the original sample. 

3. Fit the same model to the bootstrap sample. 

4. Repeat Steps 2 and 3 a large number of times, B, known as bootstrap replications, and 

obtain the sampling distribution of the statistic of interest. 

After deriving the sampling distribution using the bootstrap method, the observed value of any 

statistic from the available sample can be compared to determine its likelihood. In the context of 

model evaluation, the validity of the model can be assessed without any distributional 

information in the population. 

The standard nonparametric bootstrap procedure described above is not appropriate for time 

series data because it ignores the inherent lead-lag relationship in time. Two bootstrap 

procedures that are appropriate for SSM are used in this study. The first bootstrap method is 

parametric bootstrap (also known as Monte Carlo resampling method).The second bootstrap 

method is the residual-based bootstrap, first proposed by Stoffer and Wall (1991) to assess the 

precision of Gaussian ML estimates of the parameters of linear SSMs. 
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CHAPTER 2: REVIEW OF LITERATURE 

 

At this time there is no literature related to assessing the absolute goodness-of-fit for state 

space model. This chapter reviews selected literature that mainly addresses methodological 

dissemination of state space model geared toward social and behavioral scientists. Also included 

in this chapter is a review of existing literature on assessing goodness-of-fit for state space model 

and on using the bootstrap procedure to assess goodness-of-fit in other contexts. 

 

Recent literature of state space model related to education and psychology 

 Chow, Ho, Hamaker, and Dolan (2010) provided a comprehensive discussion of the 

similarities and differences of SSM and SEM through analytic comparisons and numerical 

simulations. They illustrated relative merits of SSM and SEM in addressing questions pertaining 

to intraindividual change and interindividual differences. Beyond these authors' contribution, 

MacCallum and Ashby (1986) and Otter (1986) also contributed early work on the equivalence 

between the two modeling approaches. 

Hamaker, Dolan, and Molenaar (2005) presented the specific condition that must be satisfied 

to generalize results obtained from the interindividual level to the intraindividual level, and 

illustrated the analyses of intraindividual structure by fitting the P-technique models and multiple 

indicator vector autoregressive models in the state space framework to the empirical data 

collected from the Five Factor Model of personality. 

In an introductory chapter on SSM, Ho, Shumway, and Ombao (2006) presented the flexible 

treatment of state space modeling for intensive longitudinal data.They illustrated two separate 
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applications of SSM. The first one is neural connectivity using fMRI data, and the second is 

traffic networking. 

Molenaar and Nowell (2003) presented a nonlinear SSM using the extended KF and 

smoothing algorithm to fit the Schöner-Haken-Kelso model of human movement phase 

transitions to finger motions data. The extended KF and smoothing algorithm was later applied 

to the state space analyses of human developmental processes at the individual level (Molenaar, 

2008; Molenaar, Sinclair, Rovine, Ram, & Corneal, 2009), a simulated 4-variate time series data 

(Molenaar & Ram, 2009), and a Monte Carlo simulation (Molenaar & Ram, 2010). In general, 

the results from these studies are promising. However, as Molenaar and Ram (2010) pointed out, 

the EKFIS computer program implementing the nonlinear SSM using the extended KF and 

smoothing algorithm"is not at all user-friendly, requiring writing and compiling separate Fortran 

subroutines", and they hoped that "the development of the EKFIS program along these lines will 

further improve its fidelity" (p. 30). 

Song and Ferrer (2009) examined the finite sample properties of the KF and smoothing 

algorithm in a Monte Carlo simulation. Results indicated that parameter estimates are mostly 

asymptotically normal, accurate, precise and robust, especially for moderate and long time series. 

In addition, empirical example was provided by applying the state space methods on the daily 

affect data collected from a dating couple.  

Van Rijn (2008) extended the state space methods for categorical time series data, and 

investigated the performance of the KF and smoothing algorithm. Specifically, it is demonstrated 

that the state space methodology can handle the analysis of both standard and dynamic item 

response theory (IRT) models in a straightforward manner. 
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Zhang, Hamaker, and Nesselroade (2008) compared the state space modeling technique 

using the KF algorithm to other three modeling approaches for estimating a dynamic factor 

model. The simulation results showed that all four methods yielded acceptable parameter 

estimates in almost all conditions. In their work, Zhang, Hamaker, and Nesselroade also 

discussed software programs implementing the four modeling approaches. 

Zu (2008) compared the KF algorithm and the extended KF algorithm to track dynamics of 

both latent factors and time-varying coefficients in a dynamic factor model. The results 

demonstrated that the KF algorithm is robust to the type of model misspecification for estimating 

factor scores considered in the Monte Carlo simulation, and that certain parameter estimates are 

biased while others are not. 

 

Literature on assessing goodness-of-fit for state space model 

 Literature on assessing goodness-of-fit for state space model is very limited, and often 

resides in the context of time series analysis (see Durbin & Koopman, 2001; Harvey, 1989). As 

discussed before in Section 1.3,because the purpose of most time series models is to predict, 

goodness-of-fit for time series model is usually associated with predictive errors, measured by 

the prediction error variance. Besides, goodness-of-fit criterion such as AIC and BIC is used to 

select a comparatively good model (see Harvey, 1989, section 2.6.3 and 5.5, for more details). 

One major limitation of using these strategies in model diagnosis and selectionis that the absolute 

goodness-of-fit is not ensured.In other words, a bad model will inevitably be selected if none of 

the competing models can provide acceptable fit to the data. In addition, published literature is 

almost always limited to univariate time series models. In other texts or related chapters for state 

space methods (e.g., Brockwell & Davis, 2002, Chapter 12; Chatfield, 2004, Chapter 10; 
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Fahrmeir & Tutz, 2001, Chapter 8; Harvey, Koopman, & Shephard, 2004; Lütkepohl, 2005, 

Chapter 18; Shumway & Stoffer, 2011, Chapter 6), the topic of goodness-of-fit is not mentioned 

at all. This lack of literature does present an excellent opportunity for researchers to explore and 

contribute to this body of knowledge. 

 

Using bootstrap to assess goodness-of-fit 

 Some authors have used bootstrap, particularly parametric bootstrap, to assess goodness-

of-fit in different contexts. Bone, Sharma, and Shimp (1989) illustrated how to implement the 

procedure by re-analyzing two previous studies in marketing and consumer research, and 

obtained the sampling distributions for some fit indices in SEM.Von Davier (1997) bootstrapped 

four goodness-of-fit statistics for sparse categorical data in a Monte Carlo study. He concluded 

that parametric bootstrap is a useful alternative approach with some examined statistics even if 

the data are very sparse. Parametric bootstrap has also been used to evaluate goodness-of-fit for 

IRT (Stone, Ankenmann, Lane, & Liu, 1993; Stone, 2000). However, no published work is 

available using bootstrap to assess goodness-of-fit for SSM. 

 

CHAPTER 3: METHODS 

 

The model, the condition, and the data generation procedure 

 The model used in Zhang et al. (2008) is used in this research and is described as the 

following: 

There are six observed variables and two factors in this model. The first three observed 

variables load on the first factor and the other three observed variables load on the second 
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factor. The factors have a one-lag autoregressive and cross-regressive structure, which 

means the first factor at the current time has a direct influence on the first and second 

factors at the next time, and so does the second factor (p. 379). 

Figure 2.The simulated model with six observed variables and two factors. The factor scores 

have one-lag autoregressive structure. 

 

Note. * indicated X17 and X19 are fixed to 0.36 for model identification. 

 

Figure 2 portrays this dynamic factor model, in which the intercepts, b, and the constants, a, 

are both fixed to zero. The other parameter matrices are freely estimated, and the true values of 

the elements in these matrices are provided below (in matrix notation): 



Gu                                                                                                                                                   19 

*

*

* *

* *

*

*

.11 0

.11 0

.8 0 .1.36 .18 1 0
,     ,     ,     .

0 .8 .1.18 .36 0 1

.10 1

.10 1

F H

   
   
   
     

          
       

   
   
    

 

The asterisk beside the value indicates that the element in the matrix is fixed. For example, both 

diagonal elements in   (representing variances of state variables) are fixed to 0.36 to identify the 

model.The condition controlled in this model is the length of the time series data (T = 50, 100, 

500). In order to generalize the results, 100 random samples (N = 100) are generated in each 

condition from the population. 

Given the parameter values and the time series length, the following steps are followed to 

generate each random sample: 

1. Generate 0z from the bivariate normal distribution MultiNorm ((0 0)', diag(100 100)). 

2. Set the iteration number t = 1. 

3. Generate t  from the bivariate normal distribution MultiNorm ((0 0)', ). 

4. Calculate tz  using 1t t tz a Fz    . 

5. Generate t  from the multivariate normal distribution MultiNorm ((0 0 0 0 0 0)',  ). 

6. Calculate ty  using t t ty b Hz    . 

7. Set t = t + 1 and return to Step 3. 

8. Repeat Steps 3 to 6 until t > T + 1000. 

9. Save the data from 1001 to T + 1000. 
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Bootstrap the fit function in state space model: parametric and residual-based 

bootstrap 

 For each random sample, two bootstrap procedures are applied to derive the sampling 

distributions of the PED function of a specified state space model. The first procedure, the 

parametric bootstrap, is essentially a Monte Carlo simulation in which the population parameters 

are estimates from the original sample and repeated bootstrap samples are simulated based on the 

data-generating mechanism implied by the specified model. Specifically, in a parametric 

bootstrap, the steps generating the random samples are followed to obtain a bootstrap sample 

except that the parameter estimates from fitting the model to the original sample are used in 

those steps. The underlying assumptions of parametric bootstrap are that the specified model is 

correct in the population and that the time series data conform to a certain distribution. 

The second procedure, the residual-based bootstrap, is considered as a semi-parametric 

approach because population parameters are taken to be sample estimates, assuming the 

specified model is correct. This is the same as in a parametric bootstrap. On the other hand, 

random samples are drawn, with replacement, from the standardized residuals as in the standard 

nonparametric bootstrap. The residual-based bootstrap procedure is based on the SSM expressed 

in the innovations form: 

| 1

'

| 1

' 1

| 1

1| | 1

| 1

t t t t

t t t

t t t t

t t t t t t
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Let ̂ denote the estimate of  , the residual-based bootstrap is implemented as follows: 

1. Standardize t̂ using
1/ 2ˆ ˆ

t tD 
, denoted as t . 
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2. Draw, with replacement, a random sample from t to obtain *

t . 

3. Construct a bootstrap sample by using the following two equations: 

1/ 2 *

1| | 1

1/ 2 *

| 1

ˆ ˆ ˆ ˆ

ˆ ˆ

t t t t t t t

t t t t t

z Fz FK D

y Hz D







 





 

 
.

 

The basic idea behind the residual-based bootstrap is that the standardized residuals are 

independent and identically distributed, and thereby exchangeable, after all the dynamic and 

measurement relationships have been accounted for by the model. This procedure, however, is 

not robust against model misspecification (c.f. Stoffer & Wall, 1991, 2004; Zhang & Chow, 

2010). 

For each original random sample, both bootstrap procedures are repeated 2000 times to 

obtain the sampling distributions of the PED function. Such a large number of bootstrap 

replications is chosen because the estimated percentiles will be used for hypothesis testing and 

confidence interval construction, as recommended by Yung and Chan (1999, p. 100). All 

computations are done by SAS 9.3 on Unix. 

 

A power analysis 

 In order to examine the power of the bootstrap procedures in assessing the absolute 

goodness-of-fit, a power analysis will be conducted. Specifically, the transition matrix used in 

the model will be fixed, which reduces a SSM to a P-technique model (Cattell, Cattell, & 

Rhymer, 1947), and the P-technique models will be fitted to each random sample. Because the 

random samples are simulated from the SSM, fitting the P-technique model, which is the 

constrained SSM, will bring specification errors. Then, a decision can be made for each random 

sample based on the absolute goodness-of-fit by comparing the PED value from fitting the P-
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technique model to the two sampling distributions derived from both bootstrap procedures. That 

is, if the PED value is inside the confidence interval constructed by the estimated percentiles, the 

plausibility of a model is supported. Otherwise, the model is considered a poor approximation to 

the sample data, and thus, it should be rejected. The power in each condition of both bootstrap 

procedures can be computed by dividing by 100 the number of models rejected. 

Molenaar and Nesselroade (2009) presented some simulation results to demonstrate the 

recoverability of P-technique model. Specifically, the loading parameters and factor scores were 

recovered very satisfactorily from the P-technique models even though the transition matrix was 

incorrectly fixed in the P-technique models. 

 

CHAPTER 4: RESULTS 

 

Convergence 

The numbers of convergent cases from both bootstrap approaches are provided in Table 1. It 

shows that the means of the convergent cases are higher when the length of time series gets 

longer. In addition, the means of the convergent cases from parametric bootstrap are consistently 

higher than those from the residual-based bootstrap, which indicates higher stability of the 

parametric bootstrap approach. 

Table 1. Convergence cases from both bootstrap approaches in each condition. 

 Parametric bootstrap Residual-based bootstrap 

Length 50 100 500 50 100 500 

Mean 1807.12 1883.09 1994.56 1754.23 1850.91 1987.53 

SD 82.19 54.85 5.18 83.92 47.55 6.75 
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Convergence rates at length of 50 from both bootstrap procedures reported here are much 

higher than those reported by Zhang, Chow, and Ong (2011), where they compared a sandwich-

type standard error estimator of a dynamic factor model to the moving block bootstrap approach. 

Specifically, they wrote, “proportions of nonconvergence… were higher than 20% in 59 of the 

first 100 simulation samples at T = 50” (p. 92). The discrepancy in the convergence rates from 

this study and Zhang et al. (2011) is largely due to the different modeling approaches between 

the state space model approach and the block Toeplitz approach in SEM. Discussions about the 

computational issue are provided in the last chapter. 

Confidence intervals 

By bootstrapping the simulated time series and fitting the true state space model to each 

bootstrap sample, the sampling distribution of the PED function, and thus the estimated 

percentiles, are derived. Because the value of the PED function is negative, the negative PED 

function is minimized in the program to find the ML estimates, which is equivalent to 

maximizing the positive PED function. 

The sampling distributions derived from both bootstrap procedures are similar. In general, as 

the length of time series increases, the two sampling distributions get more and more similar. 

Specifically, the 5
th

 percentiles are a bit different from the two sampling distributions when the 

length is 50, and as are the 95
th

 percentiles. But this discrepancy almost disappears when the 

length reaches 100 and 500. Box plots from 3 simulated samples (one for each condition) are 

provided in Figure 3. 

Figure 3. Box plots of the bootstrap estimates from the two bootstrap approaches. 
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Assessing model plausibility in the power analysis 

Nonconverged results are excluded from the power analysis. For each simulated sample, the 

sample PED function values from fitting the true state space model and the misspecified P-

technique model are compared to the 90% confidence interval (CI) constructed by the 5
th

 and 

95
th

 percentiles from both bootstrap procedures. According to the judging rule, plausibility of a 

model is supported, though it is not a sufficient condition to ensure this conclusion, if the PED 

function value is inside the 90% CI; otherwise, the model plausibility is questionable. 

Table 2 provides the results from the power analysis. Because the CIs from both bootstrap 

procedures are very similar, the outcomes are the same. Consistent with the intuitive expectation, 

all PED function values from fitting the true SSMs are within the 90% CI; whereas all PED 
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function values from fitting the misspecified P-technique models are also within the 90% CI
1
, 

which indicates that there is no significant reduction in goodness-of-fit.  

Table 2. Results of the power analysis. 

 State space models P-technique models 

Length 50 100 500 50 100 500 

Not reject 91 94 100 87 95 99 

Reject 0 0 0 0 0 0 

Total 91 94 100 87 95 99 

 

Computation time 

Generally, bootstrap is very computationally intensive, and therefore time-consuming, 

because of the repetitive model fitting to each bootstrap sample. Using the program written in 

SAS/IML, fitting a state space model takes approximately 10 seconds, which in total will require 

about 33,333 hours (3 conditions * 100 samples * 2000 bootstrap replications * 2 bootstrap 

procedures * 10 seconds / 360 seconds per hour = 33,333.33 hours), equivalently 1,389 days, to 

obtain all the bootstrap percentiles if only a single computer is used. Fortunately, such 

tremendous computation tasks were finished in three days using the High Performance 

Computing (HPC) facility provided by the Center for Research Methods and Data Analysis 

(CRMDA). 

 

CHAPTER 5: DISCUSSION 

 

                                                           
1
 A 90% CI was used instead of the more traditional 95% CI because estimation of the 2.5

th
 and 

97.5
th

 percentiles is less stable than estimation of the 5
th

 and 95
th

. An alternative approach could 

have been increasing the number of draws above the 2000 used, but this would have been time 

consuming (see section 4.4) and there is no reason to expect this would impact any of the 

conclusions of this study. 
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Assessing the absolute goodness-of-fit for state space model is necessary to properly interpret 

substantive results in real-data studies. To this end, this dissertation used two bootstrap 

procedures to derive the sampling distribution of the PED function from a state space model that 

is used to generate repeated random samples under different conditions of time series length. The 

PED function values from fitting the true state space model and the misspecified P-technique 

model to each random sample are compared to the CIs to assess the absolute goodness-of-fit. On 

a very positive note, none of the true state space models is rejected. Unfortunately none of the 

misspecified P-technique models were rejected either. The results indicate that both bootstrap 

procedures have no power to detect the specification error of constraining the transition matrix in 

the state space model considered in this study. Though the results are counterintuitive, they are 

consistent with the findings from Molenaar and Nesselroade (2009). That is, constraining the 

transition matrix in the state space model would not significantly affect factor loading and the 

factor score estimates. Similar findings were also reported by Chow et al. (2011) and Zu (2008), 

where these authors referred to the orthogonality of model parameters to explain this 

phenomenon. The concept of orthogonality of parameters is well known in regression analysis, 

and it is extended in the context of SEM by Yuan, Marshall, and Bentler (2003). Adopting the 

orthogonality testing methods proposed in Yuan et al. (2003) for parameters in state space model 

is a topic for future research. 

Despite the results from the power analysis, models that are more complex than the one 

considered here may give opposite results. For instance, it is worth noting that the time series 

model considered in this study is stationary, and it is generally recognized that nonstationary 

time series can be treated by SSM. In time series analysis, stationarity is an important concept. 

The state vector in this example is stationary because all roots of the determinant equation 
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0I F   

lie outside the complex unit circle. A brief definition of weak stationary multivariate time series 

can be found, for example, in Molenaar et al. (p. 262, 2009) in the context of developmental 

psychology. A thorough discussion of stationarity is beyond the scope of this paper, but readers 

can refer to Lütkepohl (2005) for details. Further research on nonstationary time series data is a 

topic for future research. 

Lastly, a practical purpose of fitting a P-technique model is its simple implementation in 

software packages. Conventional SEM packages (e.g., LISREL, SAS PROC CALIS) can be used 

directly for fitting a P-technique model, while fitting a SSM requires extended programming 

skills from the user to write his/her own program, as is realized in this dissertation. An 

alternative method to include the lagged structure in the SEM approach is to use the block 

Toeplitz matrix made up of the concurrent and lagged autocovariance/autocorrelation matrix. 

However, severe computational difficulty, causing possibly very high nonconvergence rate, can 

be a separate problem to overcome. For example, for a p-variate sample, a one-lag model will 

require the researcher to create a 2p × 2p block Toeplitz matrix, and a two-lag model will need a 

3p × 3p block Toeplitz matrix, and so on. Apparently, for large p, a high-dimensional matrix 

needs to be inverted in the algorithm for SEM, which can be very difficult to handle even with 

today's computing power. Compared to the block Toeplitz approach, the KF algorithm for the 

SSM has better efficiency when higher orders of lag are introduced. Therefore, the SSM is 

generally preferred than the block Toeplitz approach in SEM.  
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