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ABSTRACT 

 

Many protein misfolding diseases are due to changes in protein homeostasis. This might 

lead to protein misfolding and possibly intra- or extracellular aggregation, causing loss of protein 

function or gain of toxic function. In several cases, the cellular clearance mechanism is 

sometimes inhibited and unable to degrade the aggregated forms leading to cell injury and death. 

This is frequently observed in misfolding diseases like Parkinson’s disease, Cystic fibrosis, 

Alzheimer’s, etc. These diseases account for nearly 30-50 % of all known human diseases 

afflicting millions and have a significant economic impact. However, there are currently few 

treatments to counteract these diseases. Thus, there is a pressing need to develop strategies to 

treat these diseases. One strategy is to develop small molecule ligand drugs that prevent the 

initial protein misfolding reaction. Proteins are somewhat metastable and naturally exist in 

dynamic equilibria between native fold and an ensemble of partially unfolded forms. This makes 

the misfolded forms moving targets and thus difficult to stabilize. This difficulty is compounded 

while developing high throughput assays to screen for stabilizing ligands for these moving 

protein targets. Consequently, these assays depend on detecting secondary misfolding events 

such as aggregation or removal of misfolded species, thus increasing the duration of the assays 

(hours-days). Additionally, in most instances specific cell-based assay systems have to be 

developed for each misfolding protein. This inhibits the development of broad based assays and 

complicates rapid screening of the huge compound libraries developed by rational drug design 

and combinatorial chemistry. In this dissertation, the development of a broad based high 

throughput assay for identifying novel stabilizers for protein misfolding diseases has been 
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presented. The bacterial chaperonin GroEL binds to proteins that are partially unfolded or exist 

in a folded to partially folded dynamic equilibrium. Based on this property, the development of a 

generic broad based assay to probe a multitude of protein substrates based on changes in 

hydrophobic character was hypothesized and carried out. Using the chaperonin as a detection 

platform will enable the extension of this detection platform to identify potential stabilizers of 

the native fold that prevent or inhibit protein misfolding. 
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CHAPTER 1: ON THE NEED FOR A PLATFORM FOR IDENTIFYING 

PHARMACOLOGICAL CHAPERONES 

1.1 Protein misfolding and proteostasis. 

1.1.1 Protein folding and misfolding. 

a Protein folding and function. 

Proteins are crucial for all essential life functions as they act as catalysts, molecular 

machines, signaling molecules and structural scaffolds. In order to be active and carry out these 

functions, they adopt specific three-dimensional (3D) shapes. Proteins consist of several such 3D 

conformational shapes giving rise to an ensemble of conformations. The conformational shape is 

generally determined by the primary sequences of the amino acid residues. This relationship 

between the protein sequence and its structure has been studied for more than 70 years. Some of 

the initial studies in the field of protein folding were performed by Linus Pauling and E.J. Corey, 

who first discovered that polypeptides form secondary structure elements such as alpha helices 

and beta sheets (1). Later, Christian Anfinsen used the protein ribonuclease to demonstrate that 

the thermodynamically stable native structure dictates protein function and that structure depends 

on the protein sequence (2). 

The protein sequence is essentially a long polypeptide chain. In a denaturing solution in 

vitro, this polypeptide chain behaves like a random coil, whose average radius of gyration can be 

calculated (3, 4). Under folding conditions, the polypeptide is driven towards a conformational 

state that optimizes its interaction with the surrounding solution as well as with itself to attain its 

lowest free energy state. While attaining the lowest free energy state, the polypeptide chain 

residues interact locally to form a variety of folding states with varying degrees of 

thermodynamic stabilities. Collectively these transitional states lead towards a conformational 



	
   2	
  

ensemble with the lowest stability and is commonly referred to as the native state of the protein. 

This folding reaction typically occurs in microseconds-milliseconds range in vitro. CspB, a 67-

residue protein has been measured to fold in 1 millisecond, while the reduced form of the 104-

residue Cytochrome c protein folds in 130 microseconds (5). In vivo, the folding is also dictated 

by the translational rate as well as its interaction with other macromolecules. Given the 

conformational flexibility that a polypeptide can achieve, the act of folding was postulated to 

theoretically sample incredibly large numbers (approximately 1095 different conformations for a 

100 residue polypeptide) of different folded conformational states (and thus a large number of 

folding options) available to the unfolded polypeptide chain. However, the protein frequently 

achieves its native state in a relatively short time. This conundrum is commonly known as 

Levinthal’s paradox and it was concluded that there has to be specific folding pathways (folding 

intermediates) that decreases the folding speed to biologically relevant times (6, 7). This concept 

of folding pathways gave rise to many theoretical models that attempted to describe the folding 

process where the protein is driven towards the native state with increasing speed as the folding 

progresses. In one of the earliest models known as nucleation theory, there are potential folding 

nuclei in the structure around which folding occurs in a stepwise manner (8). An alternative 

model was the hydrophobic collapse theory than envisions the hydrophobic residues collapsing 

to form an intermediate that then rearrange to give the native structure (9). 

A new model of protein folding that gained popularity in the late 90s replaces the idea of 

specific folding pathways with multiple folding routes and the energy landscape. This energy 

landscape, which is the free energy of each conformation as a function of the degrees of freedom, 

is frequently described in terms of a folding funnel energy landscape (Figure 1.1) (10). In the 

Figure, the vertical axes represent the internal free energy of the protein while the horizontal axes 
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represent the conformational entropy. Thus a protein that undergoes folding goes from the large 

conformational freedom and entropy available to the unfolded protein at the top to the native 

state ensemble at the bottom (11). Each protein molecule may follow a different route from the 

top to the bottom and each conformational state is a point on the energy surface of the funnel. As 

an unfolded protein starts folding, the protein changes its conformation by making new 

interactions that lower its energy. This frequently leads to compaction of the chain thus reducing 

the number of available conformational states to sample and, thus, narrowing of the funnel. This 

compaction might be due to the formation of secondary structural elements or collision of 

preformed secondary structures. 

 

Figure 1.1: The energy landscape of protein folding can be projected as a folding 

funnel with the native state at the bottom. Each conformational state of the protein 

represents a point on the funnel surface indicating the many routes available to an 

unfolded protein to achieve its native state. As the protein folds the available conformation 

space decreases narrowing the funnel. Figure adapted from [12] 
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A smooth surface of the folding funnels denotes that the unfolded polypeptide has equal 

chances of reaching the native state no matter what route down the funnel it takes. However, this 

is only true in the case of small, single domain proteins that demonstrate two-state folding, at low 

concentrations in vitro. Multi-state folding might lead to the formation of folding intermediates 

that have low free energy of folding and such folding funnels are characterized by the presence 

of a rough surface with kinetic traps and energy barriers (12). During such a folding process, 

certain intermediate conformations can get stuck in a kinetic trap, where the non-native 

conformation has a favorable energy state. These kinetic trapped non-native intermediates often 

have to partially or completely unfold to overcome the activation barrier to get back “on path” to 

the native state. This step is what usually slows down protein folding, and might cause the 

partially folded intermediates to interact with themselves, leading to protein misfolding and 

aggregation. Such aggregates and misfolded proteins are energetically favored when the cell is 

being constantly challenged by changes in metabolite concentrations, ion balance, and physical 

insults including temperature stress and pathogens leading to the generation non-functional 

entities. To prevent this and in order to maintain a viable concentration of folded functional 

proteins, the cell utilizes other protein systems to achieve or maintain their folded states at 

appropriate concentrations using a process termed as protein homeostasis or proteostasis. 

b Proteostasis and Proteostatic networks. 

Proteostasis is defined as a state of dynamic equilibrium in which protein synthesis and 

folding is balanced against degradation to maintain protein conformational flexibility, leading to 

a healthy proteome (13, 14). The cell maintains proteostasis within the proteome by controlling 

the concentration, conformation, location and the binding interactions of a protein to maintain its 

fold and function. 
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The steady state protein concentrations within the proteome is hence defined by 

biosynthetic processes such as protein synthesis and folding, post translational modifications, 

trafficking and degradation. These biosynthetic processes are kinetic processes in themselves and 

are regulated through a network of different proteins that are commonly called as proteostasis 

networks (Figure 1.2) (15) The proteostatic networks include about seventeen different pathways 

including in total about 1000 different assistant proteins such as folding enzymes, chaperones 

and trafficking components. These assistant proteins act through transcriptional and post 

translational mechanisms to balance protein folding and functional capacity by reducing protein 

synthesis, by enhancing folding and repair processes, and/or by mediating degradation. (15). 

Some of the more commonly known proteostatic network component includes the heat shock 

response pathway, the unfolded protein response pathway and the oxidative stress response. 

Figure 1. 2 shows five of the more common proteostatic networks and some of the biosynthetic 

processes that define protein concentration. 

Proteostasis helps proteins remain in a metastable active state that is required for their 

function. Being metastable is important for protein function because this marginal stability (The 

free energy difference between the folded and unfolded protein is in the range of 5-10 kcal.) 

allows the proteins to interact with other biomolecules, maintaining active conformers. In 

addition, a large number of proteins in the cell (>30%) are unfolded and refold during trafficking 

between the endoplasmic reticulum and cytosol. This dynamic equilibrium (16) between folded 

and partially unfolded or inactive forms (17) of a protein is also affected by several factors like 

temperature, mutations, etc. Other external stress elements also strongly influence the kinetic 

competition between folding, misfolding and concentration dependent aggregation. Proteostasis 

is thus a dynamic process as the proteome itself undergoes constant changes over the course of 
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development of the cell (13). The proteostasis network is highly adaptive (18) and helps to 

preserve the synergy between productive folding and degradation in the proteome of an organism 

during stress, developmental changes, mutations, environmental stress, infectious disease and 

aging. 

 

 

Heat shock 
response 

Unfolded protein 
response 

Oxidative stress 
response 

Post 
translational 
modifications 

Endoplasmic 
reticulum 
associated 

degradation 

Degradation  

Synthesis  

Folding  

Trafficking  Aggregation 

Unfolded Folded Folded Unfolded 

Folded Aggregate 
Unfolded Folded Folded 

Figure 1.2: Proteostasis network as a complex network of integrated pathways. These 

pathways are in a constant crosstalk with each other to balance the protein folding with its 

functional capacity. Here five common networks that influence a protein during its life cycle 

are shown. Each of these networks is involved in the protein lifecycle from its synthesis to 

folding to trafficking and finally degradation. These networks are also involved in case the 

protein undergoes aggregation due to stress.  
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c Chaperones and heat shock proteins. 

Several extraneous factors like chaperones, metabolic enzymes, osmolytes as well as 

small inorganic molecules affect the kinetics of protein folding (19-21). To monitor these 

constant changes, the cell utilizes stress sensors such as the heat shock response and the unfolded 

protein response pathways. The heat shock response (HSR) pathway is a key element of the 

proteostasis networks. This response is conserved in all organisms. The primary role of the HSR 

pathway is maintaining the proteome integrity and allowing cells to survive environmental 

changes such as heat, oxidative, and/or chemical stresses. Under such stress conditions, the 

initial response of the cell is to upregulate the expression of highly conserved cytoprotective 

gene products. These cytoprotective stress response proteins are known as heat shock proteins 

(Hsps). 

Genome wide studies in different model organisms have shown that the HSR 

significantly induces the expression of a total of about 50–200 genes, including the heat shock 

proteins (22). Although overexpressed under stress conditions, many of these proteins are also 

essential housekeeping proteins and are thus constitutively expressed under non-stress conditions. 

Before their function was known, these proteins were initially named according to their 

molecular masses that were resolved on SDS-PAGE. Many Hsp proteins function as molecular 

chaperones that bind to exposed hydrophobic surfaces or sequences and prevent general stress 

induced aggregation. Even under non-stress conditions, chaperones bind to nascent polypeptides 

thus inhibiting misfolding and protein aggregation. They thus help to protect the cells from toxic 

effects of protein misfolding. 

The term molecular chaperone was coined by John Ellis in 1987 (23). He defined these 

proteins as a “Class of proteins whose function is to ensure that the folding of certain other 
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polypeptide chains and their assembly into oligomeric structures occur correctly” without 

becoming part of the final structure (24). Molecular chaperones are nature’s protectors against 

aggregation and actively or passively assist in the process of protein folding. There are instances 

where specific folding chaperones like PapD chaperone (25) are directly involved in assisting in 

the final fold for bacterial pili elongation. However contrary to popular interpretations, a 

substantial number of general heat shock chaperone proteins passively or actively unfold (rather 

than fold) non-native proteins. In fact, most chaperones bind to misfolded proteins and facilitate 

active (Adenosine-5'-triphosphate [ATP] driven) or passive unfolding reactions (26, 27) 

increasing the free energy and entropy to a higher level, from which proper folding can resume. 

This unfolding reaction prevents proteins from populating the kinetic traps associated with 

misfolded proteins (Figure 1.1). The unfolding is carried out by means of applying a force 

(active unfolding through ATP binding energies) or passively (followed by hydrogen exchange 

measurements), forming interactions and sequestering exposed hydrophobic regions (28, 29). 

Some chaperones, such as the Hsp100 classes, act by active unfolding to completely unfold 

proteins and rescue aggregates (30). Thus by inhibiting the accumulation of partially folded 

proteins sequestered in kinetic traps, chaperones are the key elements of the proteostasis 

networks. 

In addition to their roles in shepherding nascent polypeptide folding and trafficking, 

chaperones also act as buffering systems to maintain the protein population in their active states. 

This is an exquisite balance since chaperones are often not in vast excess within the cell (31). A 

particular protein may encounter numerous chaperones during its life cycle of synthesis, folding 

and degradation. With the help of chaperones, proteostasis monitors several networks that 

regulate proteins to maintain the cellular proteome. Most of the chaperone proteins (functioning 
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as both buffers and folding assistants) that bind transiently to partially folded proteins, cycle 

between high and low affinity states using the nucleotide binding free energies (e.g. ATP 

hydrolysis to adenosine diphosphate (ADP)) to drive conformational changes. The distribution of 

these two affinity states is governed by the intrinsic ATP hydrolysis rate of the chaperone. Other 

co-factors such as nucleotide exchange factors or nucleotide hydrolysis factors also act in concert 

with the chaperone to fine tune the ATP hydrolysis, which in turn regulates substrate binding. 

d Control of the heat shock response pathway. 

The HSR pathway is one such eukaryotic signaling pathway that leads to activation of the 

proteostatic network. The pathway is initiated by the heat shock transcription factors (HSFs). 

These are specific transcriptional regulators that bind to Hsp genes and act as master regulators 

for Hsp expression (32). HSF proteins are essential for maintaining cellular integrity and 

thermostability via Hsp. HSF proteins are constitutively expressed but negatively regulated in an 

inert, stress-sensing state (a monomeric state) by interactions with the chaperones, Hsp90 and 

Hsp70. These chaperones bind to the monomers and prevent oligomerization of the HSF proteins. 

However, as stress conditions lead to general protein unfolding, the chaperone proteins 

kinetically partition onto unfolded proteins, allowing the now free HSF monomers to assemble 

into transcriptionally active trimers. This trimerization occurs via hydrophobic heptad repeats 

(HR-A and HR-B) that form a characteristic coiled coil Leu zipper (33). Additionally disulphide 

bonds between the HSF1 monomers stabilize the trimer. These newly formed HSF oligomers 

have a high affinity towards DNA HSR elements (34). Before binding to the response elements, 

they first traverse across the nuclear membrane. Once bound to the gene promoter regions, they 

turn on the expression of the heat shock proteins (Hsps), resulting in a transient overexpression 

of these Hsp/chaperone proteins, which then prevent the partially folded or nascent polypeptides 
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from aggregating. This overexpression allows cells to survive and recover from stress induced 

protein denaturation damage. Once enough Hsp proteins are produced, the HSF1-dependent 

transactivation is repressed via a negative feedback loop, whereby Hsp70 and Hsp40 re-associate 

with the HSF1 transactivation domain, and HSF1 becomes dissociated from DNA following 

acetylation of Lys80 in its DNA binding domain. The activation of the HSR thus prevents the 

overload of unfolded/misfolded proteins within the cell through an up-regulation of chaperones 

that is proportional to the stress induced (35, 36). The chaperones thus assist in balancing 

proteostasis through protein refolding or degradation. 

e Chaperones influence proteostasis during protein folding. 

The proteome is in a constant state of flux. Many cellular processes are involved in 

maintaining normal biological function and the proteostatic network functions as a surveillance 

operation that constantly inhibits misfolding due to stress or missense mutants that normally 

occur within the proteome. As discussed, large shifts in the dynamic equilibrium of the protein 

towards misfolded or aggregation prone state causes the proteostasis system to intervene, usually 

through chaperones. One such example where the proteostasis network chaperones can play an 

essential role is in the maintenance of the intrinsic dynamic equilibria involved in protein folding. 

Although the protein folding is dependent on its sequence, efficient folding for various oligomers, 

transport competent or hard to fold proteins in vivo are usually dependent on the chaperone 

proteins to facilitate the acquisition of the correct or active fold. In this buffering capacity of 

folding function, the binding of the chaperones depends on the forward and backward folding 

rate constants of the protein targets (37). Proteins that fold rapidly to their native states sequester 

any putative hydrophobic binding sites that are recognition sites for interaction with chaperone 

proteins. Proteins that fold slowly need to avoid kinetic traps. These proteins benefit from 
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chaperone interactions to facilitate the early stages of folding and assembly reactions thus 

helping it attain the proper fold (38). 

The chaperones are involved in nascent protein folding events that follows ribosomal 

polypeptide synthesis by facilitating folding in the cytosol, as proteins emerge into the 

endoplasmic reticulum (ER) or after transport into the mitochondria. As discussed earlier, some 

folding seems to occur as the protein emerges from the ribosome (as soon as the N-terminal 

domain exits the ribosome pore). In certain instances, folding might occur within the ribosomal 

tunnel itself leading to formation of secondary structural elements (alpha helices) (39). In 

prokaryotes, the translated nascent polypeptide chain exiting the ribosome interacts with trigger 

factor (a cis-trans peptidyl prolyl isomerase), while in eukaryotes the peptide binds co-

translationally to the nascent associated complex (NAC) (40) / Ssb complex (41), both of which 

shields exposed hydrophobic residues to prevent aggregation (42) and to catalyze proline 

isomerization. Folding is then initiated in the presence of ATP dependent chaperones such as 

DnaK. In eukaryotes, approximately 1/3rd of all proteins are translocated to the ER for folding, 

processing and secretion (43). This translocation occurs via short tags known as signal sequences 

(44) that bind to a ribonucleoprotein called signal recognition particle (SRP) (45), which then 

helps to target the bound signal peptide towards the Sec translocon (46). One of the first 

chaperone proteins encountered by the nascent polypeptide is the Hsp70 protein class. As the 

nascent peptides emerge from the ribosome, they bind to Hsp70 (DnaK in prokaryotes) and its 

co-chaperones such as Hsp40 (DnaJ in prokaryotes). Hsp40 is a nucleotide hydrolysis factor and 

can also bind partially folded proteins. Together, the nascent polypeptide along with the Hsp70 

and Hsp40 classes forms a transient ternary complex. Hsp70 binds to the polypeptides in an 

extended conformation. Hsp40 stimulates the ATP hydrolysis rate of Hsp70, resulting in an 
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ADP-Hsp70 complex that has a higher affinity for the extended substrate. Finally, a nucleotide 

exchange factor such as BAG (GrpE in prokaryotes) facilitates ATP dissociation and ATP 

exchange completing the cycle. The released protein can then undergo additional folding, 

transport, and degradation or might interact with other chaperones. In such instances the nascent 

polypeptide chain in a partially folded form is transferred to the Hsp90 complex or Hsp60/Hsp10. 

The Hsp60/Hsp10 help the partially folded polypeptide to fold by sequestering the proteins in a 

folding cavity (Hsp60 proteins class of molecular chaperones are also called as chaperonins and 

will be discussed later in this chapter). The Hsp90 chaperones act in combination with a very 

large subset of specific co-chaperones to aid protein folding and activation. Hsp90 chaperones 

show a binding preference towards positively charged or hydrophobic proteins (47). In concert, 

these different chaperones help the substrate achieve its functional native state. 

However, if the protein still remains unfolded, which might occur in case of missense 

mutant proteins, the protein is either degraded by the proteasome (also with the help of accessory 

chaperones) or can be captured by dynamic oligomers comprised of the smaller Hsps (the 

Hsp20s). In the latter case, these small Hsps assemble into large multiple subunit oligomers 

where they act as holding chaperones until the proteins fold via the Hsp70 class or are shuttled to 

the proteosome for degradation. Despite all of these checkpoints against protein aggregation, 

some proteins still are unable to fold, overwhelm the chaperone systems and consequently 

undergo intracellular aggregation. Even in these instances, there are classes of chaperones called 

the Hsp100 chaperones (48) that actively (i.e. require ATP binding and hydrolysis) disaggregate 

the problem proteins and either folds these with the above mentioned chaperone classes or in 

cases where protein folding is no longer kinetically viable, shuttles the disaggregated protein 

towards proteosomal degradation. 
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As discussed earlier, a significant portion of eukaryotic proteins is translocated into the 

ER lumen co-translationally via the sec translocon. This ER translocation occurs with soluble 

proteins or in cases of membrane proteins, the membrane protein is incorporated into the ER 

membrane. As with most proteins that undergo efficient translocation inside the cellular 

environment, it is paramount that these proteins remain in their unfolded/partially folded states 

(the diameter of the translocation pore is too small for the passage of folded proteins) (38). The 

presence of the signal sequence usually introduces a measure of instability in the polypeptide and 

prevents it from rapidly achieving a compact thermodynamically stable native state even within 

the cytoplasm. Once translocation occurs, the unfolded peptide binds to chaperones such as 

Binding immunoglobulin protein (BiP) (49) (belonging to Hsp70 family) and other ER 

associated co-chaperones that delay folding and prevents the polypeptide from being trapped into 

a non-native state. The chaperone BiP has been termed as the master regulator of the ER and is 

instrumental in maintaining ER translocation, protein folding, calcium homeostasis, as well as 

the regulation of protein degradation (discussed in the next section). The peptide binding site of 

BiP is composed of seven residues and it recognizes sequences that are usually in the interior of 

a folded protein (50, 51). This sequence is usually a heptameric motif with the sequence 

Ar(WX)ArXArXAr, where Ar is a bulky aromatic or hydrophobic residue (frequently tryptophan, 

phenylalanine or leucine, but also methionine and isoleucine), W is tryptophan, and X is any 

amino acid (52, 53). BiP is also involved in protein translocation through the membrane and is 

involved in occluding the translocational pore when translocation is not occurring (54). The level 

of BiP in the ER is critical and tightly regulated at the post-transcriptional level. Under 

environmental stress conditions, the levels of BiP are increased leading to increased protein 

levels (55). The oxidizing environments of the ER, as well as specialized chaperones such as 



	
   14	
  

protein disulfide isomerases, help in folding of the nascent polypeptide chain, especially in the 

formation of disulfide bonds. These protein disulfide isomerases are actually oxidoreductases 

that catalyze disulfide bond shuffling and ultimately the correct disulfide bond locks into place 

and the protein disulfide isomerase (PDI) no longer interacts with the properly folded protein 

(56). The properly folded proteins are then exported to various cellular organelles through COP 

II coated vesicles. The repeated binding and release of the substrates with various chaperones 

ensures that the improperly folded proteins do not exit the ER. These improperly folded proteins 

however, are subject to quality control courtesy of the chaperone proteins and are in some cases 

ultimately degraded. 

f Chaperones influence protein folding quality control. 

The ER is involved in protein quality control and degradation of proteins that are 

improperly folded or improperly processed and do not achieve their native conformation. This 

proteostatic process is called endoplasmic reticulum associated degradation (ERAD). The quality 

control within the ER helps to recognize and sequester proteins that have exposed hydrophobic 

regions or have incorrect or missing disulfide bonds, both properties that can result in 

inappropriate aggregation (57). Such proteins are initially recognized by the specific Hsp70 

chaperones (BiP) in the ER lumen. If the substrate protein fails to fold rapidly, this prolongs the 

interaction between BiP and the substrate protein leads to that protein being transferred to the 

ubiquitin ligase E3 (58) where it can be ubiquitinated and ultimately cleared. There are also 

instances where the misfolded ER protein is retrotranslocated from the ER via the sec translocon 

back out into the cytosol, where it is polyubiquitinated and then degraded by the proteasome (59). 

If high levels of unfolded proteins or aggregated proteins accumulate within the ER, this 

event leads to a general ER stress. If this stress event occurs, this results in the initiation of a 
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conserved proteostatic pathway called the unfolded protein response (UPR) (60). UPR can be 

initiated by several other stress conditions such as calcium homeostasis changes, energy 

deprivation, redox changes, infections and mutations (61). During UPR, the chaperone BiP acts 

as a stress sensor. The stress condition leads to general protein unfolding, wherein BiP binding to 

the accumulating unfolded protein(s) decreases the BiP/Grp78 concentration levels within the 

ER. As BiP levels fall, a normally BiP bound protein called the ER Transmembrane RNase 

Inositol Regulating Element 1 (IRE1), loses BiP binding because BiP is titrated away by 

unfolded proteins. This loss of BiP binding allows the IRE1 protein to undergo dimerization and 

activation (62). The activated IRE1 dimer catalyzes alternative splicing of a UPR specific 

transcription factor called XBP1 (X-box binding protein 1) messenger RNA. The cleaved mRNA 

now encodes the XBP1 transcriptional activator that binds to the unfolded protein response 

element responsible for inducing the UPR. 

UPR induction leads to three different protein protective functions: (i). Up-regulation of 

BiP translation, (ii). Decreased protein synthesis (63) and (iii). Increased degradation by the 

network of proteins associated with ERAD. These three functions act to counter the 

accumulation of unfolded proteins leading to ER stress, thus maintaining the viability of the cell. 

If these steps fail to initiate UPR, pro-apoptotic factors are activated leading to inflammation and 

eventually leading to apoptosis (64). An example of this is the relation between insulin 

misfolding and ER stress, which is found in some instances of type II diabetes. ER stress in the 

pancreatic beta cells is caused by a variety of factors such as insulin overproduction and can lead 

to insulin misfolding, insulin resistance, calcium depletion and mutations. This stress leads to the 

activation of the UPR to restore function within the pancreatic beta cells by upregulating its 

folding capacity. However, any prolonged ER stress leads to apoptosis because an apoptosis 



	
   16	
  

factor C/EBP homologous protein (CHOP) is activated (65), which then leads to beta cell death 

and subsequent induction of type II diabetes. 

1.1.2 Proteostasis diseases. 

a Protein folding diseases are kinetic events. 

As folding progresses through numerous possible routes dictated by a rough energy 

landscape, the energy landscape hypothesis predicts that there are many different folding 

intermediates all leading to more stable collapsed and compact natively folded states. These 

represent both intermediates at different stages on a linear pathway to proper folding and 

intermediates on parallel pathways to proper folding. Therefore, this energy landscape 

hypothesis also predicts that multiple folding intermediates should exist simultaneously. In 

support of this notion, moderate resolution cryoEM single particle analysis by Helen Saibil and 

colleagues resolved a minimum of five multiple GroEL–substrate complexes (66), in which the 

substrate itself was clearly observed to be folded in numerous unique compact forms. If 

chaperone proteins concentrations become limiting, it is apparent that these metastable 

intermediate populations (e.g. monomeric subunits of oligomers) have a tendency to misfold and 

aggregate inappropriately. This is because the aggregation leads to an overall lower free energy 

state and increased stability. Under normal growth conditions, a majority of folded proteins is 

generally only about –5 kCal/mol to –10 kCal/mol more stable than their unfolded states (67). 

Protein conformations with lower energy stabilization parameters are more susceptible to 

transiently explore less stable states dynamically within narrow temperature ranges. When 

populations of these transients becomes large (in concentrated solutions), they have a tendency to 

self aggregate forming either amorphous aggregates or in ordered fibrils both of which possess 

dramatically stable energy states (68) (see Figure 1.3). The tradeoff of this dynamic behavior is 
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that it is an important property for protein function, from maintenance of active enzymatic 

conformations to allowing proteins to be able to be transported across multiple cellular 

compartment boundaries. Most dramatically, proteins that must be degraded by the proteasome 

are, in most cases, unfolded. Thus proteins are dynamic moving entities, in constant kinetic flux 

between folded and partially folded forms. The longer an intermediate metastable population 

exists in a transient state, the more the chances for it to interact with each other and possibly a 

kinetic selection toward degradation or aggregation. As stated earlier, the concentration shift of 

this dynamic population depends on environmental as well as mutational stress. 

 

Figure 1.3: Proteins are metastable entities that are in a constant equilibrium 

between their native and partially unfolded forms. At higher concentrations, the transient 

partially unfolded species have a tendency to interact with each other leading them to 

aggregate or form ordered fibrils. Such structures have comparatively lower energy and 

more stability. Figure sourced from (69) 
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b Implications of misfolding – protein misfolding diseases. 

As discussed previously, the balance between stress and HSR/UPR for proteostasis and 

cell survival is important. This delicate balance shifts toward more destabilized populations 

during chronic stress conditions due to unfolding. This increase in the destabilized protein 

populations overwhelms the intrinsic buffering capacity of the proteostatic machinery. In such 

instances, the existing cell infrastructure becomes unable to deal with changes in proteostasis 

leading to both loss and gain of function diseases (70). Such disorders often result in protein 

misfolding diseases. These include loss of function diseases such as cystic fibrosis and Gaucher’s 

disease where inefficient folding and excessive degradation leads to a decreased or complete 

elimination of functional protein levels within a cell. If proteins accumulate as aggregates that 

manifest disease states, this leads to instances where a new function (called gain of toxic 

function) arises. This aspect of reduced clearance of a misfolded protein can lead to cell death. 

Curiously in most instances, it is now realized that large aggregates of proteins that are not easily 

degraded appear to play a protective role (71). It is becoming apparent that the actual toxic forms 

of a number of folding diseases such as Alzheimer’s disease, Huntington’s disease and 

Parkinson’s disease may be dictated by smaller oligomers. The mechanism by which these small 

toxic oligomers lead to cell lethality is still under investigation. Regardless of the mechanism, a 

viable treatment strategy for these diseases is the control of the cells own proteostatic network as 

a means of controlling the levels of these misfolded proteins. Some of the strategies currently 

being pursued to induce or upregulate the proteostasis networks are discussed in the next section. 

Current strategies that will be discussed include i) replacing proteins, ii) utilizing protein 

stabilizers and iii) chemically controlling levels of proteostasis regulators (13). 
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1.1.3 Therapeutic approaches for misfolding diseases. 

a Protein replacement. 

The protein replacement approach is the earliest approach that was utilized for loss of 

function diseases resulting from decreased protein concentrations within the cell. In some 

instances, the main mode of therapeutic intervention literally involves injecting wild type protein 

into the body where appropriate trafficking hopefully exists to insure that the replacement 

protein/enzyme targets the deficient cells and compartments. Once transported, the next hurdle is 

to determine if this procedure restores functional levels of enough protein to enhance the quality 

of life. Protein replacement has been found to be beneficial in individuals with lysosomal 

diseases such as Gaucher’s disease. Protein replacement therapies have several drawbacks that 

limit its general use. One of the primary reasons for the failure of therapy involves premature 

removal and/or metabolism of the protein prior to it reaching its desired location. A second 

reason for therapy failure is due to ineffective transport to the affected organelle within the cell. 

The administration of an external protein also carries the risk of inducing an immune response. 

Additionally, the loss of protein function that causes the disease is often a secondary effect, 

usually due to factors such as genetic mutations. Hence, the large-scale protein replacement does 

not affect the underlying cause of the disease thus failing to completely ameliorate the 

pathogenesis of the disease. 

b Gene therapy. 

The promise of gene-based therapy hinges on proper delivery of a therapeutic protein 

through direct production (transcription/translation) inside specific targeted areas, usually those 

that are refractory toward protein replacement therapies. The best candidates for gene therapy are 

single gene disorders that are not subjected to complex regulation. Additionally, those diseases in 
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which raising the protein level by just a small fraction leads to clinical efficacy are often times 

suitable for gene delivery (72). The liver has frequently been used as a depot organ to establish a 

sustained source of therapeutic protein using engineered adenoviral, retroviral and lentiviral gene 

transport vectors in animal studies (73). Gene transfer using viral vectors, may also lead to 

immune response leading to the loss of transduced cells and loss of therapeutic protein 

expression (74). Retroviral and lentiviral vectors are prone to integrate close to expressed genes, 

thus increasing the likelihood of transcriptional interference between the vector and flanking 

endogenous genes (75). Gene therapy studies carried out in animal models show promise but 

further studies are required to address important issues regarding health safety, efficacy and 

ethics before initiating larger scale clinical trials. 

c Proteostasis regulators. 

A newer approach involves strategies aimed at actually controlling the proteostatic 

networks themselves. Proteostasis regulator examples include both small molecule and/or 

biological components designed to directly control the signaling pathways that lead to the 

proteostatic response. This control is often accomplished by upregulating the synthesis of 

components of the proteostasis network. For example, the small molecule drugs diltiazem and 

verapamil inhibit calcium channels. This facilitates a decrease in cytoplasmic Ca2+ levels, which 

in turn upregulates the synthesis of numerous chaperones, including BiP and Hsp40. This up-

regulation leads to enhanced folding and trafficking. An example where such a targeted 

proteostatic therapy works is in the measured increase in enzyme transport and activity of 

defective lysosomal enzyme levels that results in some instances of Gaucher’s disease (76). In 

another application example, the administration of the natural product celastrol activates the heat 

shock factor transcriptional pathway, leading to an up-regulation of the several cytoplasmic 
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chaperones (77). Proteostasis regulators can affect several proteostasis network components 

during the protein life cycle. This has been demonstrated in Figure 1.4, where a proteostasis 

regulator can act on different biological pathways to enhance proteostasis 

 

Figure 1.4: Proteostasis regulators work by acting on several proteostasis 

components during the protein life cycle. These include the protesostasis networks that are 

active in the folding, unfolding, transport, aggregation and degradation of proteins (as 

shown by pink dots in the Figure). On the other hand, pharmacological chaperones (green 

squares) act on the protein folding pathway alone. However, pharmacological chaperones 
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and proteostasis regulators can be used synergistically to increase the concentration of a 

stably folded protein. Figure sourced from (13) 

d Osmolytes (chemical chaperones). 

A common small molecule endogenous response to stress conditions, particularly water 

or osmotic stress involves the intracellular increase of naturally occurring protective osmolytes. 

Osmolytes are small organic compounds that affect protein folding. Naturally occurring 

osmolytes can be classified as protecting and non-protecting. Protective osmolytes shift the 

equilibrium towards the folded state while denaturing osmolytes shift the equilibrium towards 

the unfolded state. Curiously, protective osmolytes are also known as protein stabilizers and are 

routinely used by the biotechnology industry to stabilize protein products. 

Cells routinely encounter various stress conditions due to physiological functions, 

surrounding habitat, or osmotic stresses, resulting in changes in the cytoplasmic volume and 

water content. These stress effects can lead to perturbations in the secondary and tertiary 

structures of proteins within the cell. This occurs as proteins have evolved to be active in only a 

certain range of water activities (78, 79). To maintain the activity of the protein, the cells 

frequently utilize osmolytes. The type of osmolyte used by the cell depends on the duration of 

the stress encountered as well as availability of the osmolyte. Cells deal with short-term osmotic 

stress by utilizing inorganic ions (80). However, the inorganic ions increase the intracellular 

ionic strength, which affect protein-protein interactions as well as enzyme catalysis (81). Under 

long-term stress, cells accumulate protective osmolytes. Unlike inorganic ion accumulation, 

protective osmolytes can accumulate at high concentrations to thermodynamically stabilize 

proteins without affecting normal cellular processes. For example, increased concentrations of 

small molecule osmolytes such as betaine, sorbitol and inositol counteract the denaturing effects 
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of high urea concentrations within the renal medullary cells (82). Sharks, rays and coelacanths 

accumulate high concentrations of urea, which is advantageous for water absorption from 

seawater. In these organisms, the urea enriched cells are still able to maintain general protein 

homeostasis and folding integrity because these cells produce high levels of counteracting 

protecting osmolytes such as trimethylamine N-oxide (TMAO) (81, 83). Thermodynamically, 

different osmolytes exert an additive effect on the protein fold (84). Thus, the higher 

concentrations of various protecting osmolytes effectively cancel out the deleterious effect of 

denaturing osmolytes like urea. 

The protecting osmolytes can be classified into three categories based on their chemical 

properties (81): 

i. The polyols typically includes sugars such as glycerol, sorbitol, trehelose and 

mannoses. 

ii. Amino acids such as proline and arginine. 

iii. Methylamines such as TMAO, betaine and sarcosine. 

Though chemically diverse, these sets of protecting osmolytes show a similarity in the 

mechanism by which they exert their protecting effects on proteins. Timasheff and colleagues 

used equilibrium dialysis measurements to observe that the protecting osmolytes do not bind to 

the proteins and are excluded from the protein vicinity (85). In contrast, urea binds (86) to 

proteins. This was termed preferential exclusion phenomenon and implies that proteins are 

preferentially hydrated in their natively folded state. Preferential exclusion leads to an increase in 

the ∆G of a system between the folded and the unfolded states in the presence of an osmolyte as 

has been demonstrated by Timasheff and Bolen as shown in Figure 1.5 (85, 87). Figure 1.5 

shows that transferring either a native/unfolded protein from water to osmolyte solution increases 



	
   24	
  

the chemical potential of the unfolded species (ΔG2) much more than it does that of the native 

state (ΔG4). This means that the unfolded state of the protein is less favored than the folded state 

in an osmolyte solution thus resulting in its higher stability in an osmolyte solution than in 

aqueous solution. 

 

 

Figure 1.5: The effect of osmolytes on the native and unfolded state of a protein. 

Transfer from buffer to osmolyte solution increases the free energy of the unfolded protein 

thus forcing it to collapse to its native state. Here ΔG1 is the free energy of unfolding in 

aqueous solution, ΔG2 is the free energy of transfer of unfolded protein from aqueous to 

osmolyte solution, ΔG3 is the free energy of unfolding in osmolyte solution and ΔG4 is the 

free energy of transfer of unfolded protein from osmolyte to osmolyte solution. 

Transferring the unfolded protein from water to osmolyte solution increases the chemical 

potential of the unfolded species (ΔG2) much more than it does that of the native state 

(ΔG4) thus indicating that the unfolded protein is unfavorable in an osmolyte solution and 

driving it to a folded state. Image sourced from (88) 



	
   25	
  

In a series of landmark experiments, Bolen and colleagues found that the reason for this 

higher instability of the unfolded protein in osmolyte is due to the decreased solubility of the 

peptide backbone in a protecting osmolyte solution (88). Thermodynamically, the transfer of a 

peptide backbone from an aqueous to a water-osmolyte solution is unfavorable (Figure 1.5 

above). The total interaction energy between protein and the solvent depends on the interaction 

between the solvent with the protein backbone and with the side chains. Since the peptide 

backbone represents the most abundant bonds in any protein, the solution thermodynamics of 

backbone interaction with osmolytes far exceeds the solubility preferences of osmolyte-variable 

side chain interactions. These unfavorable stabilizing osmolyte interactions with the peptide 

leads to both thermodynamic and kinetic preferences for burying the backbone of an initially 

unfolded protein, facilitating rapid and stable collapse to a stable structure. 

The tendency of osmolytes to drive an unfolded protein towards a folded state has been 

utilized as a possible treatment strategy for partially unfolded proteins. For misfolded proteins, a 

protecting osmolyte can facilitate proper folding and prevent inappropriate aggregation from 

occurring. Additionally, since these osmolytes are physiological and naturally occurring 

molecules, it is possible that in some instances they could rescue proteins from misfolding 

without worrying about deleterious side effects. For example, trehalose administration was 

observed to diminish the formation of polyglutamine aggregates within transgenic mouse models 

of Huntington’s disease (89). Proline has been utilized to prevent the aggregation and increase 

the activity of chicken liver fatty acid synthase, chicken egg lysozyme, and rabbit skeletal muscle 

creatine phosphokinase in vitro (90). In vitro studies using cellular systems has shown that 

glycerol administration leads to an increase in folding, proper trafficking and restoration of 

proper ion conductance of cystic fibrous transmembrane conductance regulator (CFTR) mutants 
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(91). These observations gave credible support to the idea that one can utilize small molecules to 

stabilize the fold of proteins, which, in turn, can act as a therapeutic agent for protein misfolding 

diseases. Unfortunately, osmolyte therapies are hampered by the realization that large 

concentrations (molar) are needed to obtain efficacy. 

e Pharmacological chaperones. 

Given that the process of favorable protein folding depends on its final free energy 

minimum, it has long been know that small molecules or biologicals can bind to the natively 

folded states of proteins to stabilize this low energy state. The free energy of simple ligand 

binding can actually shift the folding equilibrium towards a more stable, folded form. Similarly, 

“pharmacological chaperones” (this nomenclature has been adopted despite the fact that these are 

not proteins) are small molecules that can bind to a protein to stabilize it against unfolding and 

aggregation. This thermodynamic stabilization is illustrated in Figure 1.6. In this example, 

binding of small molecules to a dimer can stabilize the dimeric state relative to its monomeric, 

unfolded state. As discussed earlier, a native protein has lower free energy as compared to the 

unfolded protein. However, a mutant might have comparatively higher energy (less stable) thus 

increasing the likelihood of aggregation. Therefore, the binding of the small molecule to the 

transient but stable native form shifts the kinetic and thermodynamic stabilized forms toward a 

lower more stable free energy. In the case of a destabilized mutant (Figure 1.6), this binding 

restores the protein stability to its normal wild type free energy state. This binding results in 

depopulation of the aggregation prone monomer, decreasing the rate of aggregation. 

Again, the realization that small molecules can restore the properly folded state originally 

came from studies involving CFTR with osmolytes (91). In this instance, the osmolytes could 

stabilize properly folded conformations, which in turn allowed the originally misfolded variants 
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to escape the quality control system. Increased stability of the properly folded protein leads to 

increased levels of functional protein. 

 

 

Figure 1.6: Binding of small molecules to the native state of a protein prone to misfolding 

decreases its relative free energy thus decreasing the rate of aggregation. Image sourced 

from (92) 

Since osmolytes are not viable treatments, a very tractable therapeutic strategy that has 

been gaining recognition is the potential utilization of other small molecules. These small 

molecules can selectively bind to the mutant proteins that transiently populate native states, 

thereby stabilizing the fold and kinetically preventing these conformational mutants from 

populating their disease or aberrant non-native forms (Figure 1.7). An example of the successful 

utility of this small molecule pharmacological chaperones approach involves the stabilization of 

the multidrug resistant protein-1 (MDR-1) by capsaicin and vinblastine (93). In this instance as 

well as others, the ability of pharmacological chaperones to exert their effects on targeted protein 

substrates at physiologically acceptable concentrations makes them extremely attractive 

therapeutic candidates to treat various misfolding diseases. One of the most recent clinically 
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approved pharmacological chaperone is Tafamidis, which is involved in the folding rescue of 

mutant transthyretins involved in Type Familial Amyloid Polyneuropathy (TTR-FAP). 

Specifically, Tafamidis binds and stabilizes serum transthyretin tetrameric mutants, in turn 

preventing large-scale dissociation, aberrant amyloid formation and aggregation. (94). Tafamidis 

was discovered by in silico structure based drug design strategy. Unfortunately, this successful 

approach cannot be utilized for all diseases because the structures of the responsible proteins are 

often not known either in the non-mutated or the mutated variants (92). Fortunately, there are 

other generalized techniques that do not depend on the structural information to identify lead 

compounds that enhance specific protein stability. Some of the general screening approaches that 

are used to identify potential therapeutic stabilizers are discussed in the next section. 

 

Figure 1.7: Pharmacological chaperones decreases the free energy of the ligand bound 

native state (Folded + PC) and thus shifts the dynamic equilibrium towards the folded state 

to increase the stability of the native folded state. Here the ligand stabilized native state of a 
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mutant protein such as the enzyme glucosylceramide can escape ER mediated degradation 

and undergoes increased folding and trafficking, leading to overall increase in the enzyme 

concentration. Image sourced from (95) 

 

1.1.4 General (non-structural) approaches to search for potential pharmacological 

chaperones. 

Using pharmacological chaperones to directly stabilize the native state of proteins and 

rescue misfolded proteins from degradation is an attractive proposition to treat protein 

misfolding diseases. The development of general in vitro screens for pharmacological 

chaperones can take advantage of large combinatorial chemistry platforms. Screening for 

misfolding diseases is, however, a problematic proposition because the assay (e.g. activity 

assays) has to be specifically designed for each misfolding disease protein. In addition, it is 

highly conceivable that in cases where multiple missense mutants can lead to the same folding 

disease, each missense mutation may require very specific individual pharmacological 

chaperones as opposed to the more favorable outcome where one global small pharmacological 

molecule can rescue all mutants. As mentioned previously, another problem of general assay 

design is encountered with protein folding diseases because the potential binding targets 

(misfolding proteins) for various misfolding diseases are in constant states of flux. The 

misfolding disease proteins exist in various conformational states that lead to the formation of 

aggregates are therefore moving targets rather than stable entities. The challenge for developing 

a broad based screen for folding diseases is that any test platform must be able to detect 

stabilizers that influence the kinetic behavior of the mutants in question. This section describes 

the most popular screening systems and detection methods that are available. 
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a ThermoFluor. 

The ThermoFluor method utilizes a dye binding reaction to measure heat based 

perturbances in protein stability (96). The process involves the use of environmentally sensitive 

fluorescent dyes to follow the heat based unfolding of protein and determine the proteins melting 

point (Tm). Tm is defined as the apparent midpoint of a kinetically derived thermal melting 

curve and represents a temperature where the transient population of the native and non-native 

forms is equivalent. In this instance, the Tm is actually a kinetic parameter that depends on the 

heating rate. The best protein candidates that can be used for screening of stabilizers are those 

that show well behaved thermal transitions. 

 

Figure 1.8: ThermoFluor utilizes hydrophobic dyes such as Sypro orange to follow 

the heat based unfolding of a protein alone (top panel A). In the presence of a stabilizer, the 

protein-ligand complex melts at a slightly higher temperature resulting in and apparent 

increase in the observed Tm. Adapted from (97). 
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ThermoFluor utilizes dyes such as 1-anilinonaphthalene-8-sulfonic acid (ANS) and Sypro 

Orange that are usually non-fluorescent in solution due to solvent quenching. After a portion of 

the protein unfolds during heating, the transiently exposed hydrophobic regions of the unfolding 

protein binds to these fluorescent dyes resulting in an increase in fluorescent signal due to an 

increase in the fluorescence quantum yield. In a high throughput screen set-up, the ThermoFluor 

instrument uses a high-resolution charge coupled device (CCD) camera to monitor transitions in 

a multiwell plate where each well contains the target protein, different test ligands and the 

reporter dye. As shown in Figure 1.8, as the entire plate is heated at a defined rate, the protein 

starts to unfold and the fluorescent signal gradually increases within each well. Within each well, 

one obtains a temperature dependent fluorescence intensity curve and the effects (or lack there-

of) of the test ligand on the placement of the kinetic Tm position for each potential protein-ligand 

complex is determined. In wells in which a stabilizing ligand binds to the natively folded protein, 

the Tm shifts to a higher temperature. Typical ThermoFluor screening assays use approximately 

0.5 mg of test protein in a 5 ml sample volume and a 384- well plate that can be thermally 

scanned in 90 min. The method is one of the commonly used high throughput methods to 

determine protein stabilizers and for the analysis of the thermal stability of mutant proteins. The 

advantages of ThermoFluor over classical thermal denaturation studies is the utilization of a 

common fluor (such as Sypro Orange), a large reduction in volume (each well utilizes less than 4 

µl), and the ability to carry out measurements in high-density format. ThermoFluor can be also 

be used to identify potential stabilizing ligands for proteins whose functions are unknown or for 

which a functional assay is unavailable (98). 

However, ThermoFluor has significant drawbacks that severely limit its use as a broad 

all-inclusive method to identify potential protein stabilizers. Unfortunately, this method works 
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best for protein systems that show thermodynamically reversible linear unfolding characteristics, 

i.e. the transition is smooth and the protein is well behaved. This method fails for proteins that 

aggregate at higher temperatures since the aggregation reaction itself typically leads to the burial 

of hydrophobic sites and thus prevents fluorescent dye binding, leading to a false positive result 

or an aberrant transition. 

b Aggregation assays. 

Proteins that misfold typically do so by transiently exposing their hydrophobic regions to 

solvent during the unfolding event. These transiently exposed hydrophobic regions drive 

aggregation and lead to an overall lower free energy state (Figure 1.3). This aggregation reaction 

is a function of the initial stability of the protein and kinetically depends on the collisional 

frequency, which in turn depends on the amount of unfolded protein that accumulates. As the 

protein concentration increases, aggregation increases proportionally. Given the large size of 

protein aggregates, this reaction can be easily measured utilizing various techniques such as light 

scattering, fluorescent dye binding or ultracentrifugation. Aggregation can thus be used as an 

indirect downstream measurement of protein stability. In the presence of a stabilizing ligand, one 

may observe that the aggregation reaction is delayed. Consequently, aggregation assays measure 

the aggregation propensity of proteins over time. 

Unfortunately, some of these aggregation assays are slow in situations where the 

transition from folded form to partially folded form is rate limiting. It is not uncommon for some 

aggregation reactions to proceed at slow rates where completion can range from hours to days. 

Such extended time assays are naturally unsuitable for High throughput screening (HTS) studies. 

These types of slow transitions are typically encountered where stabilities of oligomers are tested. 

Alternatively, the proteins can bind to each other to bury the hydrophobic patches and lead to the 
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formation of small aggregates (dimers, tetramers, etc.). In this case, there still exists a misfolding 

and aggregation event that cannot be easily detected. In addition, the assay readout sometimes 

utilizes fluorescent dye binding assays or intrinsic fluorescence measurements. However, these 

measurements can be difficult to interpret since aggregation leads to increased light scattering, 

which interferes with fluorescence measurements. In addition to the time elements and the 

difficulties in obtaining reliable fluorescent signals, the test compounds themselves can interfere 

with the fluorescence analysis (both ThermoFluor and aggregation assays) (99). Given these 

various problems in assay development, one clearly needs a better system to evaluate and 

identify protein stabilizers for metastable misfolding disease proteins. 
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1.2 Introduction to using the GroEL Chaperonin as a detection platform. 

1.2.1 Need for a platform that detects stabilizers for dynamic misfolding proteins. 

To overcome the previously listed challenges, there is a need for a broad based assay 

platform that can rapidly screen for stabilizers of misfolding proteins. An optimal assay platform 

would be able to screen for stabilizers of metastable proteins at near physiological conditions and 

could also include oligomeric and membrane proteins. As with most high throughput protein 

stabilization assays, it would also be highly desirable if the efficacy of protein stabilizer 

candidates could be evaluated using small quantities of the protein. As an additional bonus, it 

would be valuable to be able to salvage the protein of interest after the assay is complete. This 

would be useful especially while screening hard-to-purify misfolding disease proteins. Most 

importantly, the best type of assay would evaluate the stability of the protein states that naturally 

exist in a dynamic equilibrium prior to larger scale unfolding and aggregation. 

An assay platform that monitored the initial unfolding reaction was hypothesized to be a 

better strategy to search for pharmacological chaperones. We decided to utilize the broad binding 

property of the chaperonin to sequester partially unfolded proteins to develop a chaperone based 

screening platform. In the first series of proof-of-concept experiments, we will demonstrate that 

GroEL can capture transient folds and serve as an effective kinetic trap of the initially transient 

states as they appear under near physiological conditions. 

1.2.2 Chaperonins and protein folding. 

There are different chaperone systems such as the Hsp70 system, the Hsp60 chaperonins, 

Hsp90 system and Hsp100 systems that could be potentially utilized for the assay platform. 

However, the wide variation in binding affinities, the specificity requirements of co-chaperones 

with particular protein substrates and the smaller protein binding sites diminishes the 
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effectiveness for using the Hsp90, 100 and 70 classes of chaperones to capture dynamic protein 

folding states. This is not to say that these particular chaperone proteins will not be useful in 

capturing some specific proteins. However, the small size of the binding sites, and the reality that 

higher binding affinities may coincide with multi-protein functional states driven by ATP 

binding and hydrolysis complicates their use as a broad based screening system. In contrast, the 

binding site of the nucleotide free high affinity Hsp60 chaperones is large (~ 45 Å) making them 

attractive protein substrate capture states. 

The Hsp60 chaperones (chaperonins) are comprised of two oligomeric rings that 

associate to form a large barrel like structure. Each ring contains homologous subunits with the 

inner ring surface of the rings forming a continuous binding surface. These chaperonins bind and 

momentarily sequester partially folded proteins and use ATP/ADP binding energies driven by 

hydrolysis to switch between strong and weak binding states, respectively. This produces a 

cycling system that can bind and release partially folded proteins. The primary role of the 

chaperonins is to prevent general protein aggregation. Chaperonin proteins are are found in 

virtually all organisms on earth. They are defined in two different classes. 

a Group I chaperonins. 

The most common chaperonin, the Group I class (alternatively known as Cpn60 or 

Hsp60), is predominantly found in prokaryotes, mitochondria and plastids. Structurally, they 

exist as homotetradecamers in two heptameric rings. They bind to a large variety of proteins via 

hydrophobic interactions. In eubacteria, these chaperonins are called the GroE chaperonin class. 

The GroE class consists of two proteins. The large tetradecamer is called GroEL. A smaller 

heptamer co-chaperone called Cpn10 (GroES in bacteria) is also required to modulate binding 

affinities of GroEL with partially folded proteins. 
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b Group II chaperonins. 

The Group II chaperonins are found in the archaebacteria and in the eukaryotic cytosol. 

An example of this class is the eukaryotic chaperonin TCP-1 ring complex (TRiC). They contain 

14-18 homo or heteromeric subunits per molecule. These subunits differ primarily in their amino 

acid sequence that defines the apical domain structure. They have a built-in lid segment 

protruding from each apical domain and hence do not require a separate co-chaperonin. TRiC is 

present in a lower concentration as compared to other heat shock proteins and requires the aid of 

an auxiliary cofactor (prefoldin or GimC) to form a complex with the substrate protein. This 

chaperonin protein lacks the promiscuous nature of binding to general hydrophobic proteins. 

This chaperonin preferentially binds more folded specific substrates like actin and tubulin 

through hydrophilic or charged residues. It has also been proposed that TRiC facilitates folding 

by a direct interaction with specific residues on the more folded substrate surface (100, 101). 

1.2.3 GroEL is a molecular folding machine regulated by ATP hydrolysis. 

The GroEL chaperonin was discovered by Costa Georgopoulos in the 1970s while 

studying temperature sensitive mutants of the bacteriophage tail spike protein. These proteins 

were observed to fold properly at lower temperatures, but aggregated at higher temperatures. The 

gene responsible for this phenotype was named groE. The gene products of this gene operon 

consists of two proteins, one called GroEL (L stands for large ~ 60 kDa/per subunit) and one is 

called GroES (S stands for small ~ 10 kDa/per subunit) (102). Later on, John Ellis found that 

ribulose-1,5-bisphosphate carboxylase oxygenase (rubisco), a chloroplast enzyme involved in 

carbon fixation via the Calvin cycle, copurified with a protein whose subunit molecular mass 

was also 60 kDa protein and called this the rubisco binding protein (103). The connection 

between GroEL and the rubisco binding protein was finally established via the cloning and 
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sequencing of RsuBP and of the GroE operon. The seminal experiment demonstrating GroEL 

function in vitro was done by Lorimer and colleagues, who found that purified E. coli GroEL and 

GroES binds and refolds a hard to fold bacterial dimeric rubisco with 80% efficacy (104, 105). 

Following this, it was demonstrated that GroEL alone binds protein folding intermediates, 

suppressing non-productive aggregation while improving the efficiency of protein folding. 

GroEL is absolutely essential for cell survival and GroEL deletion mutants or even lower 

expression of GroEL are lethal conditions (106). GroEL is essential for protein folding in E coli 

and the highly related mitochondrial Cpn60 class is absolutely essential for folding proteins that 

are imported into the mitochondria. A proteome wide analysis of folding in E. coli using 

immunoprepitation methods has demonstrated that the nucleotide free GroEL tightly binds (Kd < 

µM) to a wide variety of (250) intracellular proteins (107). Even with this large number of 

proteins, it appears that this immunopreciptation/mass spectroscopic analysis method may miss a 

larger portion of potential protein substrates. 

a Structure. 

The first high-resolution structure of GroEL was determined by Horwich and colleagues 

(108) (see Figure 1.7 ). The GroEL oligomer is a cylindrical structure with a diameter of 135 Å 

and length of 145 Å. Each molecule has two heptameric rings, with each 57 kDa subunit 

comprising of three different domains. The interior of the ring, composed of the apical domains 

is involved in substrate and GroES binding and the binding site is 45 Å in diameter. Each 

individual heptamer interacts with another heptamer in a tail-tail orientation through the 

equatorial domains and forms a tetradecameric cylindrical body. The ATP binding site is located 

in the equatorial domain facing towards the inside of the channel. The intermediate domain 
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forms a hinge between the other apical and equatorial domains and is important for allosteric 

communication (both positive and negative, details below) between the rings (109) (Figure 1.9). 

 

 

Figure 1.9: (A) GroEL tetradecameric cylindrical double barreled ring structure 

capped by the co-chaperonin GroES. (B & C) Each monomeric subunit consists of three 

different domains, apical (red), intermediate (green) and equatorial (blue). These domains 

differ in their conformation in the cis and trans ring due to substrate and ATP interactions. 

Figure sourced from (110). 

b GroEL reaction cycle: Interaction and folding of protein substrates with the complete 

GroE chaperonin system (GroEL and GroES). 

GroEL exerts its effect on non-native (misfolded) proteins that are released from 

ribosomes, Hsp70 chaperones, or those subjected to unfolding under stress conditions. In the 

presence of ATP, one of the heptameric rings of GroEL binds to the smaller partner protein, 

GroES. GroES is a 70 kDa heptameric (10 kDa monomers) structure that forms a GroEL-GroES 

capped nanostructured chamber (see Figure 1.10). GroES can bind to either end of GroEL but 
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the primary stoichiometry is one GroEL bound to one GroES (111). Thus, the primary working 

structure of the GroEL-GroES complex is an asymmetric complex, with one GroEL chamber 

capped with GroES, while the other binding site remains unoccupied due to negative 

cooperativity between binding sites (112, 113). GroES binding to GroEL leads to conformational 

change in the apical domain of the GroEL and an increase in the size of the central cavity that 

can accommodate non-native proteins of up to 60 kDa (114). In the absence of bound GroES, the 

GroEL heptamer binds to the hydrophobic regions on protein folding intermediates via its 

hydrophobic loop elements within the interior ring portion of the apical domains (108). This 

binding region was mapped using site directed mutagenesis. The location of mutations that 

modified substrate binding was mapped onto the structure of GroEL, defining the promiscuous 

hydrophobic binding site within the internal surface of the heptameric rings (115). Using 

isothermal calorimetry titration, heat capacity measurements of the protein-protein interactions 

between a protein substrate and GroEL determined that GroEL interacts with its substrates via 

hydrophobic interactions (116). This protein substrate can be partially folded intermediate or 

intermediates with secondary and tertiary structure elements (117). 
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Figure 1.10: The GroEL reaction cycle with substrate in presence of GroES co-

chaperone is regulated by ATP binding and hydrolysis. The red T and D symbols refer to 

bound ATP and ADP. Binding of the unfolded polypeptide (green squiggle) in step 1 is 

followed by GroES binding (step 2) and folding of the encapsulated folding. ATP 

hydrolysis (step 3-4) allows binding of ATP to the trans ring and the ejection of the 

polypeptide from the cis ring. A new folding cycle then starts on the trans ring. The 

numbers between the steps refers to the approximate time required for each step. Figure 

sourced from (118). 

 

Substrate binding is regulated by ATP binding and hydrolysis at the equatorial domains. 

Seven ATP molecules are needed to bind to the equatorial domains per binding cycle. This ATP 

bound state has a lower affinity for partially folded proteins while the ADP and nucleotide free 
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states have substantially higher affinities for partially folded proteins (119). The binding of ATP 

to one ring inhibits simultaneous and equal ATP binding to the other ring via negative co-

operativity effects as shown in Figure 1.10. This is the main reason why the dominant GroEL 

chaperonin states are asymmetric in character (109). Figure 1.10 demonstrates the various steps 

involved in the binding and release of substrate from GroEL. GroEL apical domain initially 

binds to the partially unfolded protein through hydrophobic as well as electrostatic interactions. 

Seven ATP molecules then bind to the equatorial domain ATP binding sites. The ATP binding 

causes a clockwise twisting of the intermediate domain by 25º towards the equatorial domain, 

closing the ATP binding site and positioning residues to facilitate easier hydrolysis. 

Simultaneously, the apical domain rotates 30º counterclockwise causing the exposure of the 

hydrophobic residues essential for GroES binding (120, 121). Further interaction with GroES 

also leads to a 50º upward and 120º degree clockwise rotation of the apical domain. As GroES 

caps the folding cavity, the substrate protein dissociates from the GroEL binding site and is 

encapsulated. This encapsulation expands the volume of the cavity from 85,000 Å3 to 170,000 

Å3. It also changes the polarity of the central chamber from hydrophobic to highly hydrophilic 

with a net negative charge (122). Encapsulating the unfolded protein in the cavity leads to steric 

confinement thus preventing aggregation and helping the intermediates achieve native 

conformations (123). This model of folding is known as the Anfinsen cage model (124). The 

encapsulated protein is allowed to fold in this environment until ATP hydrolysis occurs in the 

cis-ring (approximately 10 seconds). Once released (detailed mechanism in next paragraph), the 

protein either proceeds towards the native fold or rebinds to GroEL if folding is incomplete and 

another round of chaperonin cycle ensues (125). 
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ATP hydrolysis within the protein occupied cis-ring causes several conformational 

changes in all three domains of the empty trans-ring. The equatorial domain rotates leading to 

upward movement of the apical domain (126). This rotation also leaves the nucleotide binding 

site open for the next cycle of ATP binding. The cis-ring, however, still has the substrate GroES 

and the ADP bound to it. ATP binding on the trans-ring leads to release of the substrates from 

the chamber of the cis-ring, along with the release of GroES and ADP. The steps during the 

release of the substrate are the reverse of what is observed during the encapsulation process i.e., 

the reduction of the volume and change in cavity surface to a hydrophobic nature. Thus, ATP 

hydrolysis regulates a dynamic cycle of substrate binding and release until folding occurs. 

1.2.4 The nucleotide free GroEL tetradecamer as a protein capture platform for the 

chaperonin sink assay. 

Although ATP hydrolysis is important in the release of the substrate, it does not play an 

important role in the binding to substrates. The ATP-free form of the chaperonin (which is 

generated during purification and is not widely existent in the cell), in fact binds to partially 

unfolded substrates with a high affinity and a very slow off rate, thus effectively capturing the 

transiently unfolded state. This ability of the nucleotide free high affinity form of GroEL to 

easily trap folding intermediates has led us to propose that this form of the GroEL chaperonin 

can be utilized to act as a general thermodynamic and kinetic sink. This efficient GroEL 

capture/partitioning reaction should enable one to probe the intrinsic dynamic equilibrium 

between folded and misfolded forms of a given substrate protein, thus allowing one to capture 

kinetically transient misfolded forms. Furthermore, since GroEL has a broad binding specificity 

towards a huge variety of substrate proteins, its ability to capture misfolded intermediates can be 
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used to screen for stabilizers for a wide variety of misfolded proteins that contribute to an array 

of diseases. 

a Rationale. 

In the late 80s, Gatenby and colleagues observed that the overexpression of GroEL 

suppressed mutations in several genes encoding diverse proteins (127). In this study, they used 

temperature sensitive mutants which had point mutations in the his operon of E. coli, which is 

essential for growth in media deficient in histadine. The mutants with normal levels of GroEL 

were observed to be thermosensitive at 37oC. On the other hand, GroEL overexpression 

constructs containing his mutants were observed to survive heat shock. This result led the 

authors to suggest that GroEL directly interacts with mutant proteins allowing these mutant 

proteins to achieve their final fold. This temperature sensitivity is a hallmark of misfolding 

diseases as was observed with CFTR. 

In another landmark study, Lorimer and colleagues observed that incubating the high 

affinity nucleotide free GroEL with the native form of dihydrofolate reductase (DHFR) resulted 

in a time dependent decrease in the DHFR activity and a concomitant decrease in free DHFR 

concentration (128). Once ATP is added to the chaperonin, DHFR activity returns, indicating 

that the missing DHFR activity and protein was bound to GroEL. Further experimentation 

showed that the loss of activity was slow and this activity loss was prevented when DHFR 

substrates such as dihydrofolic acid or nicotinamide adenine dinucleotide phosphate (NADPH) 

were present. The recovery of DHFR activity following ATP addition is a hallmark of GroEL 

binding to the partially unfolded states of DHFR, that are in equilibrium with native populations. 

Thus, transiently unfolded intermediates were shown to partition from their natively folded states 

onto GroEL, provided that this native state is in a dynamic equilibrium with the unfolded 
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transient states. This observation was important to this dissertation as it demonstrated that one 

can utilize GroEL to selectively bind to partially unfolded intermediates of proteins as they 

kinetically appear; a ligand stabilized native form no longer shows appreciable partitioning and 

binding. 

The range of proteins that GroEL interacts with in vivo was initially thought to be not 

more than 5% of all E. coli proteins (129). However, Horwich and colleagues have shown that 

GroEL may interact with a huge array of protein substrates (130). They used a temperature 

sensitive E461K point mutant of GroEL, which is associated with the loss of allosteric 

communication both within and between rings. At non-permissive temperatures, long-range ATP 

induced binding changes are no longer transmitted within both the subunit and within each ring 

(loss of allosteric communication), resulting in a state that tightly binds protein substrates but can 

no longer release them. As a result, all of the GroEL can no longer cycle to its low affinity 

protein releasing state after a rapid temperature upshift. In particular, the E461K mutant fails to 

release the bound substrate, thus behaving as an in vivo polypeptide “trap”. At these non-

permissive temperatures, the rapid inhibition of the cellular GroEL results in massive 

aggregation and precipitation of wide range of E. coli proteins. This suggests that GroEL is 

directly or indirectly involved in maintaining the solubility of a wide range of proteins. The 

precipitated protein mass was subjected to MUDPIT proteomic analysis. The paper lists 330 

different proteins. The authors note that they stopped identifying proteins because there were too 

many of them. It was observed that the precipitated protein masses contained a wide variety of 

proteins including metabolic, stress, ribosome proteins, DNA transcription proteins, as well as a 

large number of membrane proteins. Since GroEL can bind multiple aggregation prone proteins 

both in vitro and in vivo, it is apparent that GroEL can serve as a general binding platform for a 
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wide array of proteins and will be useful as a screening tool to catch protein transients that result 

from misfolding diseases. 

b Hypothesis. 

The above data lead to the hypothesis that one can utilize the ability of the high affinity 

form of the GroEL chaperonin to act as a general thermodynamic and kinetic sink to 

capture the transient misfolded forms of proteins that are prone to misfolding. It is also 

predicted that general hydrophobic binding properties will enable one to develop a broad 

platform to rapidly screen for specific stabilizers for a wide variety of protein misfolding 

diseases. In the subsequent chapters, the experimental support for this hypothesis and the process 

of development and validation of the chaperonin sink assay will be discussed. 
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CHAPTER 2: DEMONSTRATING PROOF-OF-PRINCIPLE FOR THE CHAPERONIN 

SINK ASSAY 

 

a On the advantages of using the GroEL chaperonin. 

The nucleotide free form of GroEL is known to bind proteins that transiently expose 

hydrophobic surfaces even in reactions where these transient intermediates are in rapid 

equilibrium with the native fold (128, 131). GroEL can be thought of as a ‘‘promiscuous 

antibody’’ that binds to non-native folding intermediates (defined epitope) with high affinity 

(sometimes approaching antibody/antigen interactions) (132) as hydrophobic surfaces are 

exposed to the aqueous environment. This makes GroEL an excellent tool to kinetically partition 

(capture) transient partially folded intermediates as they form folded populations. It is these 

transient forms that often lead to the development of protein misfolding diseases (68). The 

advantage of directly capturing transient forms as they form allows one to rapidly monitor initial 

unfolding reactions rather than waiting for downstream accumulation of aggregation prone 

intermediates. In addition, one can control this kinetic partitioning reaction, allowing one to 

speed up the assay so that partitioning can occur in the time span of minutes, rather than 

depending on slower complete unfolding reactions and downstream aggregations. The kinetics of 

partitioning follows pseudo first order reaction because the reaction depends on the transient 

concentrations of the partially unfolded species and GroEL. More specifically, with GroEL 

concentrations in vast excess to the concentration of the rapidly interconverting population of 

newly formed transient species, as the GroEL concentration increases, a limiting partitioning rate 

is likely to be reached. This would be the result of the rate limiting step involved in the dynamic 

interconversion between the folded and transiently folded forms (see (131) for example). 
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Additionally, GroEL is a stable heat shock protein so that it can be utilized at slightly elevated 

temperatures (~40-45ºC) to speed up the kinetics of unfolding and hence partitioning. Since 

GroEL binding mimics general hydrophobic driven in vivo chaperone interactions, 

pharmacological chaperones that stabilize the misfolding protein in the presence of GroEL, may 

also prevent partitioning onto intracellular chaperones, ultimately leading to improved protein 

expression during later clinical trials. All these factors make GroEL an extremely attractive 

option to be utilized in the development of a broad based platform to rapidly screen for 

stabilizers of proteins that tend to misfold. 

In this chapter, experimental evidence that supports the hypothesis that the chaperonin 

can be used to probe the dynamic folding state of a protein and to search for protein folding 

stabilizers has been demonstrated. To accomplish this, the feasibility of the system was initially 

demonstrated with model proteins. Here, DHFR was used as a model substrate along with its 

intrinsic protein stabilizer, NADPH, to investigate the partitioning and refolding from the GroEL 

chaperonin. This was followed by demonstrating that the GroEL chaperonin sink can be used to 

screen for stabilizing conditions of two different disease proteins, the cystic fibrosis 

transmembrane conductance regulator nucleotide binding domain (CFTR-NBD1) and the iron 

binding protein frataxin, which is involved in Friedrich’s ataxia. 

b On the form of the chaperonin best suited for the assay. 

In these first sets of experiments, the partitioning of partially folded proteins onto GroEL 

was examined by determining the time dependent loss of soluble protein in solution. To easily 

quantify the amount of soluble native (folded) protein at various time points and to obtain an 

accurate quantification of the amount of protein that has partitioned onto GroEL, it was essential 

to be able to rapidly separate the substrate protein from the soluble non-partitioned substrate 
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protein. This is based on the observation that the substrate protein dissociates very slowly from 

the high affinity nucleotide free GroEL chaperonin. There are different modes of rapidly 

separating GroEL-protein substrate complexes from soluble remaining protein substrate. In one 

method, the separation of the chaperonin from the native substrate protein can be carried out by 

using ultrafiltration to separate high molecular weight (800 kDa) GroEL (oligomer) from the 

substrate protein. In a second method, one can directly examine the loss of soluble substrate 

protein as a function of time as the dynamically fluctuating protein is incubated with 

immobilized GroEL Sepharose beads. In this latter case, these beads can be rapidly removed 

from solution by centrifugation. The remaining protein in solution can then be quantitated. 

In the first instance tested, there were some drawbacks using the ultrafiltration 

centrifugation method. Ultrafiltration (100 kDa MW cutoff) can separate large complexes from 

smaller proteins. In principle, any protein that does not partition onto the GroEL flows through 

an ultrafiltration membrane and is captured in a filtration cup. The remaining larger complexes 

(GroEL and GroEL substrate complexes) are retained in the retentate cup. Unfortunately this first 

method encountered procedural problems beyond our control. Specifically, when the protein 

samples within the filtrate cup were subjected to high pressure liquid chromatography (HPLC) 

size exclusion chromatographic analysis to detect substrate protein flow through, in some 

instances, GroEL tetradecamer (802 kDa) was also detected. This indicated that the chaperonin 

could leak through the ultrafiltration membrane even though the MW cutoff was 100 kDa. From 

the accumulated data, we found that the failure rate of the ultrafiltration membrane exceeded 

manufacture specifications (Amicon, Pall and Millipore ultrafiltrators). Manufacturer 

specifications were listed at a less than 5% failure rate while we noted that this rate was much 

higher (~20%). 
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On the other hand, the immobilized GroEL beads method was found to be superior to 

using free GroEL. With the immobilized GroEL Sepharose bead system it was possible to assay 

the soluble protein faster due to the easy and more rapid separation by simply spinning down the 

beads, which contain GroEL and the partitioned protein. This method of separation also lends 

itself to be more amenable to scale-up and automation of the screening system. The screening 

can be performed in multiwell plates into which a fixed quantity of beads has been incubated 

with the partially folded protein. The beads can then be easily separated from the free protein in 

solution, which can be rapidly quantified. Another advantage of using GroEL beads is that they 

could be regenerated by treating them with a mixture of ATP and glycerol. On regeneration, the 

substrate is released from the chaperonin on the beads and the beads can then be reused. Hence, 

one of the initial decisions was to utilize GroEL beads instead of free GroEL in the chaperonin 

assay to monitor the time dependent loss of substrate protein during the partitioning reactions. 
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2.1. Part 1: Demonstrating the proof-of-principle for the partitioning assay utilizing a 

model substrate dihydrofolate reductase (DHFR). 

 2.1.1  On the use of DHFR as a model substrate protein for assay development. 

Any assay development involves the optimization of assay parameters. The principal 

components in the chaperonin assay were GroEL and the substrate protein, and the secondary 

components were the pH-adjusted buffers, temperature and other physicochemical parameters. 

While optimizing the principal component i.e., the substrate protein, a disease protein was an 

ideal substrate. However, these are usually difficult to purify and in short supply. Therefore, the 

assay conditions were optimized using a test substrate protein that was easily available and was 

known to dynamically partition onto GroEL. It is also predicted that utilizing a monomeric 

substrate will be useful to monitor refolding without depending on complications of oligomer 

formation. One such monomeric substrate that dynamically partitions onto GroEL from its 

monomeric state is DHFR (108, 133). As mentioned in the chapter 1, DHFR was also the first 

protein whose partitioning onto GroEL was documented from an originally folded substrate (128, 

133). It is an essential enzyme that converts 7,8-dihydrofolate (DHF) to 5,6,7,8, tetrahydrofolate 

(THF) in the presence of the reduced form of NADPH. The binding of the cofactor NADPH has 

also been shown to carry out a large increase in the thermodynamic stability of the protein 

causing a shift in the transition midpoint of urea induced unfolding from 1.4 M urea to 2.8 M 

urea. More important for our assay development is the observation that NADPH stabilized 

DHFR no longer partitions onto the chaperonin at physiological temperatures and conditions 

(128). It was hence predicted that DHFR could be utilized as a model protein to initially 



	
   51	
  

demonstrate proof-of-principle for the chaperonin assay. DHFR could also be utilized to develop 

and validate assay conditions, platforms and high throughput array systems. Additionally, one 

can either monitor the loss in DHFR protein concentration or its activity to measure partitioning 

rates. The return of DHFR activity after ATP addition demonstrates that the protein did indeed 

partition onto GroEL. 

2.1.2 Materials and methods. 

a Materials. 

DHFR was obtained from Sigma. The nucleotide high affinity form of GroEL was 

produced and purified in the lab (134). N-hydroxysuccinimide (NHS)-activated Sepharose fast 

flow beads were obtained from GE Healthcare. All other chemicals and reagents were of the 

highest available purity and obtained from standard sources. 

b Preparation and validation of GroEL beads. 

GroEL beads were generated using the nucleotide free form of the chaperonin and NHS-

Sepharose fast flow beads. The beads were initially cleaned by washing with two column 

volumes of methanol and three column volumes of 1 mM HCl. The cleaned beads were then 

further treated with five column volumes of coupling buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 

8.3) to activate the NHS ester. The activated beads were incubated with the nucleotide free 

GroEL in the amine free coupling buffer at a volumetric ratio of 1 (GroEL oligomers): 2 (beads 

wet volume) to covalently couple the chaperonin to the beads via the NHS ester. These were 

mixed for 3 hours at room temperature under continuous mixing via a rotating shaker. After 3 

hrs., GroEL not bound on beads was recovered by collecting filtrate from beads. The beads were 

then sequentially washed with two column volumes of refolding buffer (50 mM TRIS, 50 mM 
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KCl, 10 mM MgCl2. 0.5 mM EDTA) pH 8, refolding buffer pH 6 and regeneration buffer 

(refolding buffer with 100 mM Dithiothreitol (DTT), pH 7.5). The beads were then finally 

washed with three column volumes of refolding buffer pH 7.5 to obtain the GroEL loaded beads. 

The GroEL concentration on the beads was determined from the labeling efficiency and 

wet bead volumes. The labeling efficiency was determined by measuring the difference in 

GroEL concentration prior to and after incubation with the beads. The wet bead volume was 

calculated by measuring the total void volume of the wet beads. Specifically, a fraction of the 

wet beads was centrifuged to dryness in a spin column (Pierce) and the buffer collected. The 

volume of this buffer was indicative of the void volume of the beads. This void volume in 

conjunction with the difference in the GroEL concentration prior to and after incubation with the 

activated NHS-Sepharose beads allowed us to reasonably estimate the concentration of GroEL 

bound to the beads. This concentration is however not an absolute value, but an estimate of the 

protein immobilized on the beads. 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒  𝐺𝑟𝑜𝐸𝐿  𝑐𝑜𝑛𝑐. 𝑜𝑛  𝑡ℎ𝑒  𝑏𝑒𝑎𝑑𝑠 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙  𝐺𝑟𝑜𝐸𝐿  𝑐𝑜𝑛𝑐.−𝐹𝑖𝑛𝑎𝑙  𝐺𝑟𝑜𝐸𝐿  𝑐𝑜𝑛𝑐.

𝑉𝑜𝑖𝑑  𝑣𝑜𝑙𝑢𝑚𝑒  

The beads were also tested for leaching of the bound GroEL. The beads were stored at 

4oC and periodically the supernatant buffer was analyzed for the presence of GroEL by both 

Ultraviolet (UV) spectroscopy as well as by HPLC. No leaching was observed over a period of 2 

months of bead storage indicating that the covalently immobilized GroEL maintains its integrity 

on the beads. 

c Carrying out chaperonin sink screening assay/GroEL partitioning assay with DHFR. 

A diagrammatic representation of the protocol for the partitioning assay is shown in 

Figure 2.1. The GroEL beads generated by the method detailed in section b were incubated with 

DHFR in a silanized microcentrifuge tube in a 2:1 ratio. This reaction mixture containing DHFR 
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and the GroEL beads was incubated at either room temperature or at 37ºC. To ensure adequate 

mixing, samples were continuously rotated slowly using a rotary mixer. The rotary mixer was 

chosen because this method ensures proper mixing and mass transfer. Other mixing methods 

involving vibrating shakers or orbital shakers were not found to be helpful in ensuring proper 

mixing. 

 

 

Figure 2.1: The experimental methodology to carry out partitioning experiments 

with chaperonin beads involves incubating the beads with the substrate protein. The loss of 

soluble native protein from the reaction mixture could be followed by spinning the mixture 

down to obtain the supernatant. This could then be assayed for protein concentration by 

various protein quantification techniques such as UV-visiable spectroscopy, SDS-PAGE, 

etc. 

GroEL 
Beads* DHFR 

Incubate  

At 30 min intervals, centrifuge to 
spin down beads 

Quantify protein in supernatant by 
enzyme activity using NADPH 

and dihydrofolate 

Remove supernatant from beads 
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At periodic intervals, the GroEL bead-DHFR reaction mixture was spun down for 10 

seconds at 1500xg so that the GroEL beads would sediment at the bottom of the centrifuge tube. 

Taking care that the bed of the beads at the bottom was not disturbed, an aliquot of the 

supernatant was removed and assayed for protein concentration. This quantification can be 

carried out using UV absorption spectroscopy (A280), fluorescence spectroscopy, and/or SDS-

PAGE. With DHFR, measuring the enzymatic activity is a good approach as it allows one to 

measure the concentration of the free native DHFR in solution. The DHFR that is unfolded or 

aggregated would not show any enzymatic activity. Plotting the protein concentration as a 

function of time gave the partitioning kinetic profile for the sample. Control experiments were 

run where DHFR was incubated with blank Sepharose beads. 

 

d Measuring the enzymatic activity of DHFR. 

The DHFR enzyme catalyzes the reduction of dihydrofolate to tetrahydrofolate while 

utilizing NADPH as a cofactor. DHFR enzymatic activity was assayed by following the decrease 

in the UV absorbance of NADPH at 340 nm in the presence of dihydrofolic acid (DHF) (133). 

100 µl of substrate mixture was generated by combining DHF with NADPH to obtain final 

concentration of 7 µM DHF and 5 µM NADPH. 10 µl of the DHFR containing supernatant was 

then combined with the assay mixture to a final volume of 100 µl. The absorbance of this 

solution was then monitored at 340 nm for 60 seconds and the consistently linear decrease in 

absorbance was measured, denoting the presence of active DHFR. This decrease in NADPH 

absorbance was expected to be proportional to the concentration of active DHFR in the solution. 
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2.1.3 Results and discussion. 

a On the suitability of DHFR as a model substrate protein for assay optimization. 

The chaperonin platform can be utilized for virtually any protein that undergoes a 

dynamic folding ⇄  unfolding transition. These transitions are common to most if not all 

mesophilic (normal temperature) proteins, when a small amount of partially folded population is 

generated by physically perturbing the equilibrium under a variety of mild solution conditions. 

This system will work with natively folded proteins as well as specific missense disease proteins. 

To demonstrate this, the partitioning of the test protein DHFR with GroEL beads was carried out. 

The goal of these partitioning experiments was to demonstrate that we could utilize DHFR as a 

test substrate for further optimization studies and to demonstrate that a ligand based stabilization 

of DHFR could be detected utilizing the chaperonin sink assay. It had previously been reported 

in the literature that GroEL sequesters DHFR within its central cavity (117). DHFR was 

incubated with immobilized GroEL and a decrease in DHFR activity was observed (Figure 2.2). 

Blank Sepharose beads (no GroEL control) were used as the control. It was observed that the 

decrease in DHFR concentration was faster in the presence of the GroEL beads as compared to 

the blank beads. The decrease in the DHFR concentration in the blank beads might be due to 

thermal inactivation of DHFR or its aggregation and subsequent spin down with the beads. 

As discussed previously, the transient partially unfolded form of DHFR is what partitions 

onto GroEL. To generate this transient form, DHFR needs to be perturbed slightly, such that the 

equilibrium of 

 

(DHFR)f ⇄ (DHFR)pf 
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is shifted towards the transient partially unfolded species. This equilibrium shift can be achieved 

by using mild denaturation conditions such as temperature, detergents, and/or chaotropic 

osmolytes. In this instance, 1M urea (at 25ºC or room temperature) was included in the reaction 

mixture to achieve the desired equilibrium shift 

 

(DHFR)f ⇄ (DHFR)pf 

 

and observe if the mild destabilizing effect of the chaotropic agent affected the partitioning rate. 

It was predicted that this solution should increase the generation of the transient species and thus 

increase the overall DHFR partitioning rate onto GroEL (GroEL remains active in its 

tetradecameric state in the presence of 1M urea). This in turn was expected speed up the 

partitioning reaction cycle. It was observed that partitioning was faster in the presence of urea 

(Figure 2.2, filled squares). This observation supports our hypothesis that slight perturbation of 

the native species leads to the generation of transiently unfolded species, which can be 

recognized by GroEL. This observation also demonstrates that mild denaturation conditions can 

be used to perturb and shift the equilibrium towards non-native species. This aspect of being able 

to modulate the equilibrium is especially useful in exploring the partitioning conditions for stable 

mesophilic proteins representing the baseline prior to identify stabilizing condition for such 

proteins. 
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Figure 2.2: The chaperonin sink assay was utilized to follow DHFR partitioning and 

refolding from GroEL beads at room temperature. It can be observed that urea denatured 

DHFR partitions onto the chaperonin beads (filled squares) at a higher rate than DHFR 

alone (filled triangles). DHFR concentration was also observed to decrease at a higher rate 

in the presence of the chaperonin beads (filled points) than the control beads (open points). 

To ensure that the decrease in concentration was due to the partitioning of DHFR onto the 

GroEL beads, 10 mM ATP was added to the beads. The addition of ATP causes refolding 

only from the chaperonin beads and not from the control beads. 

 

In both the presence and absence of urea, it is observed that at the end of 90 min., the 

DHFR activity is nearly zero. This indicated that DHFR in the reaction mixture had undergone 
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inactivation by denaturation or had partitioned onto GroEL. To determine which of these two 

options occurred, the beads were extracted and resuspended in a mixture containing 10 mM ATP 

and 4 M glycerol. It has been frequently observed that this mixture can be used to refold any 

protein that has partitioned onto GroEL. Usually the folding reaction for GroEL requires the 

presence of a co-chaperone GroES. However, in our laboratory, the presence of 4 M glycerol has 

been observed to abrogate the necessity of utilizing GroES. If a protein partitioned onto the 

GroEL immobilized on the bead support, the release and refolding of substrate protein after 

ATP/glycerol addition is indicative of GroEL capture. In contrast, DHFR protein that was not 

successfully captured by GroEL would undergo aggregation or heat denaturation and does not 

fold or refolds with very low efficiency. Refolding appears to occur in the presence of GroEL 

beads alone, validating the capture and refolding from the GroEL platform. Incidentally, this 

assay is used to verify and validate GroEL function each time GroEL beads are synthesized. 

The rate of formation of the transiently unfolded species is accelerated with increasing 

temperature. As noted with 1 M urea, one prediction is that the partitioning rate of a substrate 

protein onto GroEL will increase as the temperature of the solution is increased. The partitioning 

assay carried out at the physiologically relevant temperature of 37ºC (Figure 2.3) revealed that 

the DHFR partitioned onto GroEL beads at faster rates than the control (blank beads). It was also 

observed that partitioning occurred at a faster rate than what was observed at 25ºC (Figure 2.2). 

The limited kinetic time points that were used does not allow one to distinguish any differences 

between partitioning in the presence and absence of 1 M urea. To determine any earlier 

partitioning rate differences it may be necessary to measure partitioning at timepoints earlier than 

ten min. 
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Figure 2.3: Following the partitioning of DHFR onto GroEL beads at 37ºC. Increasing the 

reaction temperature increased the partitioning of DHFR onto GroEL beads (filled data 

points) as compared to the blank control beads (open data points). DHFR was incubated 

with GroEL beads in the presence (filled squares) or absence or urea (filled diamonds). In 

both cases, DHFR activity associated with the native protein was observed to decrease 

rapidly. This decrease, also observed in control beads, was predicted to be due to heat 

inactivation. To distinguish between partitioning and heat inactivation, the beads were 

treated with a mixture of ATP-glycerol that helps refold any partitioned protein. The 

GroEL beads showed refolding of DHFR while the control beads did not show any regain 

in activity, confirming heat inactivation. The experiments were repeated in triplicate. 
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Figure 2.4: Glycerol prevents loss of DHFR activity in the presence of GroEL beads (filled 

diamonds) as well as the control beads (open diamonds) indicating stabilization of DHFR 

native state. DHFR incubated with GroEL beads in the presence of urea and 4M glycerol 

(filled diamonds) shows that the activity was maintained over 90 min., while without the 

osmolyte (filled squares), the activity rapidly decreased. The experiments were carried out 

in triplicate with duplicates of each time point assayed for activity. 

Given the demonstration that partially unfolded species partitions onto immobilized 

GroEL, the next step in assay development was to demonstrate that the introduction of an 

authentic stabilizing ligand will prevent or diminish the partitioning rates of initially folded 

DHFR binding onto the immobilized chaperonin bead supports. As discussed in chapter 2, 

osmolytes can also be used to stabilize the native state of a protein and decrease the populations 
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of partial unfolding forms. The most common folding osmolyte that was tested was glycerol. At 

4 M glycerol concentrations (normal cryoprotectant concentration of the wood frog) partitioning 

of DHFR was diminished and activity of the DHFR remained high. This indicates that glycerol 

stabilizes the DHFR protein in its functional state and prevents its general unfolding (Figure 2.4). 

This stabilization was also found to occur both in the presence of 1M urea and at elevated 

temperature. Since both these conditions favor the formation of non-native species, this indicated 

that it was possible to stabilize the native form of the protein. 

 

 

Figure 2.5: A small molecule ligand NADPH that binds to the DHFR native state 

stabilizes the protein as shown by a decrease in loss of DHFR activity in the presence of 

GroEL beads (filled diamonds) as well as the control beads (open diamonds). DHFR 

incubated with GroEL beads in the presence of urea and 5 mM NADPH (filled diamonds) 
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shows the activity was maintained over 90 min., while without the osmolyte (filled square), 

the activity rapidly decreased. The experiments were carried out in triplicate with 

duplicates of each time point assayed for activity. 

 

It has been documented that small molecule ligands of proteins bind preferentially to the 

natively folded state and stabilize this state. For example, biotin increases the thermostability of 

streptavidin and prevents its general unfolding while maintaining structural order (135). DHF 

and NADPH are small molecule ligands that bind to DHFR. Similarly, methotrexate is another 

molecule that binds to native DHFR (136). In the case of methotrexate, this compound is a 

competitive inhibitor that binds to the NADPH binding site with very high affinity. Although this 

compound will also stabilize DHFR, the competitive inhibition of DHFR with methotrexate was 

expected to nullify DHFR activity assayed with NADPH. To demonstrate proof-of-principle 

ligand stabilization and prevention of partitioning onto GroEL, NADPH was utilized. In the 

presence of 5 mM NADPH, DHFR essentially shows very minimal slow partitioning onto 

GroEL beads (Figure 2.5). As predicted, NADPH stabilized the protein in the control sample 

(blank beads) as well. 
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2.2 Part 2: Demonstrating proof-of-principle for partitioning and stabilization of a disease 

protein CFTR NBD1.  

2.2.1 Introduction to cystic fibrosis and CFTR. 

Once proof-of-concept for the chaperonin assay was demonstrated with a model protein, 

the next logical step was to recapitulate the same results with a relevant misfolding disease 

protein. One of the more common misfolding diseases is cystic fibrosis (CF). It is one of the 

most common, fatal genetic diseases to affect caucasians but currently there are no curative 

therapeutics. The CF protein is well characterized and known to be stabilized by nucleotides. 

This makes it an attractive model to be used with the chaperonin to demonstrate proof-of-concept 

for stabilizing misfolding disease proteins. 

a Cystic fibrosis. 

Cystic fibrosis is an autosomal recessive genetic disease that affects about 1 in 2500 

individuals, especially children and young adults. The term cystic fibrosis was coined and the 

disease comprehensively described by Dr. Anderson in 1938. The genetic nature of the disease 

was hypothesized by Lowe and coworkers in 1949 (137). However, identifying the gene 

responsible for the disease took more than 40 years. The gene was finally identified using 

positional cloning by several researchers independently. The CF gene product was determined to 

be encoded by a 230 kb gene located on chromosome 7 (region q31) (138-140). The researchers 

named the gene product cystic fibrosis transmembrane conductance regulator (CFTR). Based on 

hydropathy plots along with amino acid sequence homology to the transmembrane ATP binding 

cassette (ABC) proteins, the gene product was predicted to be a transmembrane protein 

containing 1480 residues (138). This was subsequently supported by various studies where the 
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coding region of CFTR was expressed in various cell types (141). Presently, sequence analysis of 

numerous genomes that are associated with CF indicates that over 1800 mutations have been 

found. These mutations include deletion, missense and nonsense mutations located throughout 

the gene that result in CF disease. 

CF patients were observed to have high levels of salt in their sweat. Extensive 

investigations into the salt concentrations in the sweat of CF patients demonstrated chloride salt 

concentration greater than 60 mEq/liter (142) compared with normal Cl- concentrations (10-35 

mEq/liter). Understanding the pathology of the disease came from studies by Quinton in the 

1980s, who based his assessment on examining abnormal Cl- transport as the underlying 

mechanism for the disease (143). 

CF is now known to be caused by protein defects in the CFTR expression system. This 

leads to pathological changes in CFTR expressing organs involving the lungs, pancreas, liver, 

intestines and reproductive organs. The chief cause of CF symptoms is due to thick dehydrated 

mucosal secretion and obstruction of organs and glands as a result of these abnormal secretions. 

In the lungs, where the CF symptoms are primarily manifested, the submucosa of the bronchial 

airways is obstructed due to thick viscous mucosal secretions. The submucosa, which usually 

expresses the CFTR channel protein (144), secretes the mucous, which also containing of 

neutrophils and cellular debris. Over time, the secretions are infected with pathogens such as 

Pseudomonas aeruginosa, Staphylococcus aureus and Haemophilus influenza. These infections 

are usually very difficult to eradicate and can lead to fatalities. 

The increased mucosal secretions can also lead to complications in other organs. In and 

around pancreatic ducts it leads to fibrosis, fatty replacement and pancreatitis (145), while 

similar obstruction of bile ducts in the liver can lead to cirrhosis. The pancreatitis is observed in 
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about 90% of CF patients and is thought to be due to accumulation of digestive proenzymes 

within the secretion ducts that are then prematurely activated. Chronic liver disease due to 

impaired biliary secretion leads to cirrhosis and portal hypertension. Although men with CF are 

more susceptible to infertility due to mucosal obstruction in the vas deferens (146), women have 

normal reproductive functions. CF patients are also observed to have reduced bone marrow 

density, due to malabsorption of vitamins and calcium (147). 

b Structure and function of CFTR protein. 

Structure: CFTR is a novel ABC transporter protein. ABC proteins are a family of 

ATPase transporter proteins that transport substrates against a concentration gradient and are 

structurally characterized by two homologous nucleotide binding domains (NBD) (148). 

Interestingly, CFTR acts as a simple ion channel rather than an active transporter (149). ATP is 

involved in gating the ion channel. Conformational changes in the CFTR protein brought about 

by ATP binding to the NBD domain keeps the channel open allowing ion flow (150). In addition, 

this flow of ions is down the electrochemical gradient unlike other ABC proteins where ions are 

actively pumped against the gradient. As mentioned previously, there are more than 1800 CFTR 

mutations. These mutations can be grouped into the following six classes: 

a. Class 1:CFTR synthesis problems 

b. Class 2: Defective CFTR processing 

c. Class 3: Defective regulation 

d. Class 4: Conductance problems 

e. Class 5: Partly defective production / processing 

f. Class 6: Defective regulation of other associated channels (151). 
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∆F508 mutation (class 2 defect) is the most common mutation and is present in at least 

90% of known patients and results in a manifestation of all of the physiological defects 

mentioned above. 

High-resolution details of the CFTR structure are currently unavailable because; i) it is a 

large membrane protein, ii) exists in low copy numbers in vivo, and iii) it cannot be produced in 

large quantities due to low expression levels in bacterial/insect/mammalian systems. Mammalian 

expression systems have been used to purify protein for low resolution structures by 2-

dimensional crystal arrays as well as 3-D electron microscopy (152). The low resolution 

structure (20 Å) obtained by these techniques is similar to the initially hypothesized structure 

with respect to the overall shape (138). The CFTR structure is similar to other ABC transporters 

and consists of two NBD and two membrane spanning domains, each consisting of six 

transmembrane alpha helices. CFTR differs from other ABC transporters due to the presence of a 

regulatory R-domain between the two NBD (Figure 2.6). The R-domain is a 200-residue region 

that is highly unstructured (153) and has a conserved set of phosphorylation sites (serine and 

threonine) that are responsible for activating the channel (154). A newer study obtained a better-

resolved structure (18 Å) using electron crystallography (unstained two-dimensional crystals 

imaged by cryoelectron microscopy and processed by software). The structure was modeled 

using the bacterial ABC protein Sav1866, a multidrug efflux transporter, as a template (155). 

This study suggested that the protein adopts an outward facing state when it is actively gating in 

the presence of ATP and was inward facing when inactive. A high-resolution structure (1.7 Å) of 

the smaller soluble domain (NBD1) of the protein synthesized in a bacterial system has also been 

determined (156). 
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Figure 2.6: Theoretical homology model of CFTR structure constructed from the 

bacterial Sav1466 transporter protein, shows two transmembrane domains (green and light 

green), two nucleotide binding domains (pink and light pink) and a regulatory domain 

(grey). The black lines through the structures represent the lipid bilayer. The right panel 

shows the molecule rotated 90o. Figure adapted from (157) 

Function of CFTR: Initially, CFTR was thought to function as a transporter based on its 

structural similarity with other ABC transporters (158). However, it was later found to act as an 

ion channel. It was demonstrated that the expression of CFTR in cells that lacked chloride 

channels led to the restoration of the chloride pathway (159). Later observations that point 

mutations in the CFTR gene caused alterations in ion channel selectivity, single-channel 
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conductance, channel gating, and other properties of CFTR, supported a direct role of the CFTR 

protein functioning as a chloride channel. The role of CFTR functioning as a chloride channel 

was finally confirmed when CFTR was reconstituted in lipid bilayers and was shown to act as an 

ion channel regulated by cyclic AMP (cAMP) (160). It is now known that CFTR transports 

chloride ions across the cell membrane and this transport is regulated by protein kinase A (PKA) 

via cAMP. CFTR is involved in down-regulating sodium transport in conjunction with the 

epithelial sodium channel (161), and in regulating calcium-activated chloride channels and 

potassium channels. CFTR is also involved in exocytosis and the formation of molecular 

complexes in the plasma membrane (158). Targeted deletions of the cftr gene influences the 

expression of proteins important in inflammatory responses, protein maturation, ion transport, 

and cell signaling, indicating that CFTR may play a role in several other cellular processes (162). 

c Treatment strategies. 

No treatment currently exists for CF. The lack of a suitable treatment strategy primarily 

stems from having only low resolution CFTR structures. Higher resolution structures could 

certainly lead to a better understanding of the molecular mechanism dictating CFTR function. 

Despite the lack of such information, better management of CF symptoms and complications has 

contributed to improved patient survival. Antibiotics (Tobramycin, Flucoxacillin, 

Ciprofloxacillin, etc.) are used for prophylaxis, suppression or eradication of respiratory 

pathogens (147). Anti-inflammatories such as NSAIDs, steroids lower inflammation in the 

airways (163, 164). Another strategy to manage CF is to improve hydration of the lung airways 

by decreasing Na+ channel function and utilizing alternate Cl- channels. Denufusol seems to 

stimulate an alternate Cl- channel and is one such promising drug in Phase III clinical trials (165). 
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Several CFTR pharmacological agents aimed at correcting CFTR expression, folding and 

activity are in clinical trials. These are classified according to the nature of the defect that they 

target. Potentiators interact with CFTR that is properly trafficked to the cell surface and result in 

an increase in channel gating. Correctors are drugs that seem to increase the concentration of 

properly folded CFTR trafficked to the cell membrane. An example of a potentiator molecule is 

the recent drug developed by Vertex (Vx770). This drug increases ion transport activity and is 

currently being tested in Phase III clinical trials. Similarly, a CFTR corrector (Vx809) has shown 

encouraging results in Phase II trials (166). Another class includes drugs such as Ataluren that 

prevents premature termination and truncation of CFTR and is currently undergoing Phase III 

trials (167). 

In this section, the chaperonin sink assay was utilized with nucleotide free CFTR NBD1 

to establish proof-of-principle for a relevant disease protein. It was demonstrated that the assay 

could be used to search for stabilizers of misfolding disease proteins. 

2.2.2 Methods and materials. 

a Materials. 

The nucleotide high affinity form of GroEL was produced and purified in the lab (134). 

CFTR NBD1 was a gift from Dr. Phil Thomas (UT Southwestern). The CFTR NBD1 antibodies 

were obtained as a gift from the CFTR folding consortium. All other chemicals were of the 

highest purity and obtained from Sigma. 

b Removal of nucleotide from CFTR NBD1. 

CFTR NBD1 is stabilized by ATP nucleotides and these ATP nucleotides will invariably 

interfere with the chaperonin assay. To avoid interference and insure chaperonin binding, ATP 
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was removed from the protein utilizing commercially available spin columns (Pierce) and 

following the manufacturer specified protocol. The column was initially spun at 1000xg for 1 

minute to remove the storage buffer. The ATP stabilized CFTR NBD1 was then loaded onto the 

column matrix along with an equal volume of phosphate buffer, pH 7.4. The protein-loaded 

column was then spun for 2 minutes at 1500xg to remove the ATP. The process was then 

repeated by loading the filtrate onto another fresh spin column. The complete removal of ATP 

was confirmed by spectroscopic analysis of the filtrate. 

c CFTR NBD1 partitioning experiments. 

To study the partitioning of CFTR NBD1 onto the chaperonin, the monomeric nucleotide 

free CFTR NBD1 was incubated with oligomeric GroEL beads in a molar ratio of 5:1. The 

reaction mixture was then spun down to assay the supernatant. The supernatant was then assayed 

for CFTR NBD1 concentration using UV absorbance spectroscopy (A280) to monitor the decline 

in absorbance. The concentration of CFTR NBD1 was determined using an extinction coefficient 

of 13.490 M-1cm-1. Alternatively, the amount of CFTR NBD1 can also examined using SDS-

PAGE (168) or in our case using a dot blot assay. For carrying out the dot blot assay, the 

supernatant was blotted onto a PVDF membrane followed by blocking with 3% BSA solution for 

1 hr. The blocked membrane was then incubated at 4ºC overnight with CFTR NBD1 monoclonal 

antibodies (1:1000 in 3% BSA in Tris buffered saline-0.5% tween 20 buffer (TBS-T)) as the 

primary antibody. The blot was washed thrice with TBS-T for 5 min. each. This was followed by 

probing with a secondary anti-mouse antibody conjugated with alkaline phosphatase for 3 hrs. 

The presence of CFTR was then determined by treating the blot with a combination of nitro-blue 

tetrazolium chloride (NBT) and 5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt (BCIP). 
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2.2.3 Results and discussion. 

A majority of the individuals affected by CF carry the delta F508 mutation. This mutation 

present in the NBD1 domain of the CFTR protein, results in the general misfolding/mistraffiking 

of CFTR. The NBD1 domain that contains the mutation, is by itself a small soluble protein that 

is much easier to handle than the entire membrane protein. Moreover, the structure of this 

domain has been solved. Some researchers (169, 170) use this particular expressed domain to 

search for stabilizers of both the native and mutated NBD1. It has been noted that this isolated 

domain is stabilized by ATP nucleotides (171). 

 

 

Figure 2.7: The folding state of CFTR NBD1 was analyzed utilizing its intrinsic 

fluorescence. The ATP free (desalted) CFTR NBD1 (dotted line) on excitation at 295 nm, 

shows a fluorescence profile similar to that of the ATP stabilized CFTR NBD1 (solid line), 

whereas unfolded CFTR NBD1 (dashed line) loses the 340nm absorbance peak  
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Upon removal of ATP, the folded domain begins to populate a more aggregation prone 

intermediate. However, the removal is essential as the nucleotide can affect the partitioning onto 

GroEL. The removal of the nucleotide is a simple process of desalting via spin nucleotide 

columns (Pierce). The protein was then analyzed by flourimetry and by gel electrophoresis to 

determine the effect of nucleotide removal on protein structure. Both demonstrated that the 

nucleotide free protein had characteristics similar to that of the ATP bound protein (Figure 2.7). 

This nucleotide free CFTR NBD1 was then utilized for the partitioning assay. 1 µM of 

the protein was incubated with GroEL (oligomer) in a 1:5 molar ratio and the extent of CFTR 

NBD1 partitioning was measured as a function of the amount of free protein remaining in 

solution. The amount of free protein was assessed by measuring the corrected A280 of the 

supernatant. The corrected absorbance was obtained by subtracting the absorbance at 350nm 

from the 280nm absorbance to account for any baseline drift (due to presence of any particulates/ 

beads). It was observed that CFTR NBD1 readily partitions onto GroEL. It was also observed 

that the presence of urea did not increase the partitioning rate of CFTR NBD1 onto GroEL 

(Figure 2.8). 
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Figure 2.8: ATP free CFTR NBD1 was observed to readily partition onto the GroEL 

beads. CFTR NBD1 incubated with the GroEL beads in the presence (filled triangles) or 

absence of urea (filled circles) as a mild denaturant showed a rapid decrease in 

concentration indicating CFTR NBD1 partitioning. The amount of protein did not decrease 

as rapidly with the control blank beads both in presence (open circles) and absence (open 

triangles) of urea. 

The partitioning rate was observed to be very rapid and occurred within a 30 sec. mixing 

time at 37oC. As one would predict from a kinetic partitioning reaction, the CFTR NBD1 

partitioning rates decrease as the amount of GroEL present decreases. The partitioning can also 

be followed by dot blot analysis. Thus both the assays confirmed the partitioning of CFTR onto 

the chaperonin and illustrate the ease of using multiple detection schemes. 
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Before we search for small molecule stabilizers it is essential to determine if the native 

state of the protein can be stabilized. A simple and facile method of achieving this is to utilize 

osmolytes. The full length CFTR protein has been shown to be stabilized by the addition of 

glycerol or by decrease in temperature (91). However, an osmolyte cannot be used as a drug. A 

small molecule stabilizer that can bind to the protein and prevent or delay unfolding may be an 

ideal candidate for CFTR therapy, particularly since this domain is the one that contains the most 

common mutation (ΔF508). If a small molecule stabilizer is present, that molecule could 

effectively increase downstream CFTR expression efficiency by preventing misfolding of this 

domain, thus preventing global mistraffiking. One could potentially facilitate proper expression 

and trafficking of the CFTR protein to the membrane by rescuing the folding of only a small 

amount of the protein. To demonstrate that one can utilize the chaperonin assay to search for 

such a stabilizer, it is necessary to demonstrate that the assay can be used to distinguish between 

a stable folded form of the protein and an unstable unfolded form, i.e. it is essential to 

demonstrate a proof-of-principle for a known CFTR stabilizer to decrease CFTR partitioning. It 

is known that the CFTR NBD1 fragment also binds Guanosine-5'-triphosphate (GTP) (172) and 

this interaction is known to stabilize this protein domain. Importantly, unlike ATP, GTP does not 

bind to the chaperonin GroEL and does not result in polypeptide release (132). Upon the addition 

of GTP to the CFTR NBD, partitioning onto GroEL (as assessed by immunodot blot assays) is 

prevented (Figure 2.9). The use of the dot blot assay to measure partitioning was necessitated by 

the presence of GTP. GTP is a nucleotide and demonstrates a strong absorption maximum at 

260nm. This absorption overlaps and masks the protein absorption maximum at 280nm thus 

preventing the use of spectroscopy (both UV and fluorescence) to measure the protein 

quantitatively. Bradford assay or other dye based protein quantitation assays could not be used 
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since the protein concentration used in the assay was below the detection limits of such assays. 

This partitioning was also prevented even when a low concentration of denaturant such as 1 M 

Urea was added in addition to the GTP. These results indicate that GTP is an excellent 

stabilizing ligand that prevents the CFTR NBD1 from unfolding even under mild denaturing 

conditions. 

 

Figure 2.9: CFTR NBD1 partitioning is demonstrated by decrease in the intensity 

over time (row 1). On addition of the nucleotide GTP, the intensity of the dots remains 

constant both in the presence and absence of GroEL (Rows 2 and 3) indicating that GTP 

inhibits the partitioning of CFTR NBD1 onto GroEL. The intensity remains constant even 

in presence of a mild denaturant (row 4). Row 0 establishes a standard curve for measuring 

the intensity of the dots while row 5 is a control demonstrating that the monoclonal 

antibody has no cross-reactivity with GroEL. 

 

As with any potential stabilizing ligand, one must rule out the possibility that the ligand 

(in this case GTP) inhibits CFTR NBD1 binding to GroEL because GTP binds to GroEL. This 
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secondary screening control is necessary to rule out this possible outcome. For a secondary 

screen, the ability of to GTP interfere with the partitioning and capture of another unrelated 

protein substrate (one that does not bind to GTP) was tested. To test this possibility, 

dihydrofolate reductase (DHFR) was tested in the presence of GTP. As shown in Figure 2.10, the 

inclusion of GTP into the partitioning reaction mixture does not interfere with capturing DHFR 

as it partially unfolds. With DHFR as a test substrate, the partitioning rates remain the same 

regardless of the presence or absence of GTP indicating that GTP does not interfere with GTP 

partitioning. If it did interfere, the partitioning would have occurred at a lower rate and a higher 

concentration of DHFR would have been in solution (or the two curves would not have been 

equivalent). 

 

  

Figure 2.10: GroEL partitioning ability is not affected by GTP. DHFR was 

incubated with the chaperonin beads and the partitioning onto the beads measured by 
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following the decrease in enzyme activity. DHFR partitioning was observed to follow the 

same profile both in the presence (open circles) or absence of GTP (filled circle) indicating 

that GTP has no effect on GroEL partitioning ability. The partitioning of DHFR onto the 

beads was confirmed by the addition of 4 M glycerol and 10 mM ATP that causes the 

release of the substrate from the chaperonin. Here addition of the ATP and glycerol 

mixture leads to an increase in activity confirming partitioning of the protein onto the 

beads. 

 

This outcome is not surprising since GTP neither binds to GroEL, nor does it facilitate 

release and folding of proteins from GroEL (132). In Figure 2.9, the blot intensity is a bit higher 

with GTP and urea present. The slightly lower signal with GTP alone might be due to small 

losses of CFTR NBD1 on the sides of the incubating vials. In summary, we have demonstrated 

that the chaperonin platform can be used to screen for stabilizing conditions for the CFTR NBD1, 

opening up the prospect that one could use the chaperonin system platform to screen for other 

pharmacological small molecule stabilizers of the CFTR NBD1 protein fragment. 
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2.3 Part 3: Demonstrating the utilization of the chaperonin sink assay to distinguish 

between the kinetic stabilities of different point mutants of the same disease. 

2.3.1 Introduction to Friedreich’s ataxia and Frataxin. 

a Friedreich’s ataxia. 

Ataxias are a group of conditions characterized by shaky movements and unsteady gait. 

One of the more common ataxias is Friedreich’s ataxia (FRDA) that was initially described by 

Nicholaus Friedrich in 1863. The disease affects 1 in every 40,000 caucasians worldwide and 1 

in 120 Europeans are thought to be a carrier for the disease (173, 174). It is an autosomal 

recessive neurodegenerative disease that is highly devastating and is characterized by limb 

spasticity, absence of motion and speech impediments in young adults and adolescents. About 

30% of patients develop optic atrophy and hearing loss. There is no treatment to treat or slow 

down the disease progression and afflicted patients rarely survive to adulthood. The disease 

progressively targets various organs though the major cause of death is usually due to cardiac 

myopathy (thickening of the heart muscles), which leads to arrhythmias and congestive cardiac 

failure (175). The various symptoms exhibited by FRDA patients are thought to be due to 

primary degeneration of dorsal root ganglia which are present in the posterior columns, 

spinocerebellar tracts, and corticospinal tracts, and large myelinated fibers of the peripheral 

nerves. The majority of patients with FRDA have a GAA trinucleotide repeat expansion in the 

first intron of the gene encoding frataxin. Normal alleles contain 6–34 uninterrupted GAA 

repeats. However many patients with FRDA have between 67 to over 1,300 GAA repeats in both 

alleles. This leads to impaired transcription and a decrease in the gene expression. The length of 

the triplet repeat region correlates with the onset and severity of the disease. The gene 
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responsible was cloned and sequenced in 1996. The gene product, frataxin (fxn) is found to be 

highly conserved mitochondrial protein from bacteria to humans. 

b Frataxin and its mutants. 

FRDA is due to inability of patients to produce frataxin which leads to a loss of function 

disease characterized by disruption of cellular iron homeostasis (176) and accumulation of iron 

within the mitochondrion (177). Downregulation of several other enzymes involved in systemic 

iron metabolism was also observed (178). The causative agent for FRDA, frataxin, was initially 

mapped to chromosome 9 in 1988 by Chamberlain and colleagues (179) after linkage analysis 

with about 25 families and was subsequently supported by a similar study the next year (180). In 

humans, it is expressed in tissues with high ATP utilization such as the heart, brain, and spinal 

cord, liver, skeletal muscle and pancreas (181). The wild type frataxin is a 210-residue protein 

with a mitochondrial signal sequence at the N-terminus (182). Frataxin imported into the 

mitochondria is cleaved by mitochondrial processing peptidase and the processed protein is 

found peripherally associated with the membranes (183). A small percentage of FRDA patients 

are also characterized by point mutations in frataxin (184). Although the single site missense 

mutant proteins have reduced thermostability and easily aggregate, the wild type frataxin is 

thermostable (Tm ~ 60oC). 

Structure: Nuclear magnetic resonance (NMR) and crystallography based structural 

studies on frataxin and its bacterial homolog have revealed that the protein contains a novel 

structural motif called a frataxin fold. As shown in Figure 2.11, frataxin is characterized by the 

presence of an N-terminal α-helix, a middle β-sheet region composed of seven β-strands, a 

second α-helix, and a C-terminal coil in a α1β1β2β3β4β5β6β7α2 topology. The two alpha chains 

are in one plane while five antiparallel beta strands are in another while the other two beta 6 and 



	
   80	
  

7 strands intersect the two planes. The β sheet is solvent exposed on one side and is packed 

tightly to two helices on the other side due to hydrophobic residues on the beta sheet (185). The 

fifteen residue (196-210) C-terminal domain interacts with α1 and α2 helices. It has also been 

reported that deletion of this C-terminal domain leads to a decreased stability of the protein (186). 

 

Figure 2.11: Frataxin structure (PDB 1 shows the presence of a novel structural 

motif with two α chains in one plane while five antiparallel β strands are in another. The 

other two β strands 6 and 7 intersect the two planes. The C-terminal domain interacts with 

the α1 and the α2 helices. Figure adapted from (187). 

 

The human frataxin has about 60% sequence similarity and 30% sequence identity with 

the bacterial and yeast homologs. The mature protein that is formed after cleavage of the signal 

and transport sequences spans residues 75 to 210. The last seventeen residues on the C-terminus 

are unstructured. About a quarter of the protein surface is negatively charged and the carboxylate 

side chains in this region are proposed to help with metal binding (187). NMR studies indicate 

that ferrous ions bind to frataxin through acidic residues localized in the α1 and β1 region (188). 
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The structure does not show the presence of any specific iron binding motifs that are observed in 

other iron proteins such as ferritin or transferritin. 

Frataxin is thought to play a role in iron homeostasis and transport. The iron binding 

function of frataxin was initially determined in the yeast homolog and later in the human and 

bacterial proteins (189). Frataxin binds to iron utilizing the surface carboxylates of the alpha 

helix-1 and beta strand-1 (Figure 2.9). Human frataxin binds to six ferric ions with a Kd of ~ 10.2 

µM (190) and to ferrous ions with Kd of ~ 55 µM. The yeast frataxin forms oligomers on binding 

to ferrous ions but the human frataxin does not (even at high protein concentrations). Frataxin is 

also involved in formation of iron-sulfur clusters (ISC) and in heme biosynthesis. ISC are 

involved in the respiratory electron transfer chain. Frataxin is proposed to function as an iron 

transport protein by transiently binding to free iron in the mitochondria and transferring the 

bound iron to the protein Isu. Frataxin is also implicated in transferring iron to aconitase for ISC 

repair and reactivation. Frataxin also interacts with the enzyme ferrochelatase that catalyzes 

insertion of ferrous ions into the porphyrin ring suggesting a possible role in heme synthesis (191, 

192). 

c Existing treatment strategies for FRDA. 

Several treatment strategies are currently being investigated to treat patients with FRDA 

(Figure 2.12). Decreased frataxin levels indicate that there is an increase in mitochondrial iron 

and the resulting oxidative stress environment leads to a worsening of the disease state. To 

overcome iron dependent oxidative damage, antioxidants and chelators have been used with 

varying degrees of success. It was demonstrated that more common therapeutic iron chelators 

such as desferoxamine actually decreased frataxin mRNA levels as well as overall protein 

expression, exacerbating the disease (193). This has led to the development of specific 
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mitochondrial targeted iron chelators like deferiprone that decrease free iron within intracellular 

compartments without affecting other cellular iron-enzymes like aconitase or affecting the 

transferrin-bound iron. 

 

 

An alternate approach administered the antioxidant Coenzyme Q (CoQ10) along with 

vitamin E. This combination showed an improvement in cardiac and skeletal muscle 

bioenergetics and FRDA symptoms but did not have any beneficial effect in improving gait and 

posture, nor did it decrease incidences of cardiomyopathy (194). Another short-chain CoQ10 

analogue called Idebenone that initially showed promising results, failed to show statistical 

Figure 2.12: Although there are several classes of drugs that are being investigated for 

their therapeutic potential, most of them are still in clinical trial stages (Figure sourced 

from http://www.curefa.org/pipeline.html). 
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significance improvement in neurological function and is unlikely to be approved for treatment. 

Other antioxidants in trial includes MitoQ, a CoQ10 analogue, to specifically target mitochondria 

Fe oxidation and α-tocopherol quinone which improves mitochondrial function (195). Both these 

compounds prevent oxidative damage associated with FRDA. 

Individuals afflicted with FRDA may be homozygotes or heterozygotes for the GAA 

repeats. About 98% of individuals are homozygous for the trinucleotide repeat sequence on both 

alleles. In patients that are heterozygotes having one copy of the GAA repeat and one copy of a 

clinical mutation, the protective effect of the native protein is eventually lost as genetic 

expansion progresses later in life. For folding mutants, it is unclear where the defect in folding 

competence occurs (i.e. poor synthesis, misfolding inside or outside the mitochondria). Within 

these particular individuals it would be beneficial if strategies were developed to specifically 

increase the stability of the missense folding mutant using small molecule chemical chaperone 

approaches. Here, it was predicted that the chaperonin sink screening system could be utilized to 

determine the stability of the frataxin mutants and search for ligands that stabilize the mutants. It 

was also hypothesized that one could utilize the chaperonin to distinguish between the 

biophysical differences between two missense FRDA mutants, D122Y and I154F, that show very 

similar thermal and chemical stabilities. Since folding diseases for the most part are kinetic 

diseases (i.e, they are based on the kinetic stabilities of proteins), we propose to first determine if 

the frataxin mutants kinetically partition onto the chaperonin at different rates. This would then 

be followed by searching for ligands or conditions (i.e. osmolyte screens) that can stabilize the 

mutant proteins. 
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2.3.2 Materials and methods. 

a Materials. 

Highly purified GroEL was obtained using a protocol derived at EDGE BioSystems using 

a modified purification scheme (134). NHS-derivatized Sepharose fast flow beads were 

purchased from GE Healthcare Inc. All other chemicals were of the highest purity available and 

purchased from Sigma Aldrich. GroEL beads were generated by the method described 

previously (2.1.3 section b). 

b Frataxin protein purification. 

All purified frataxin samples were gifts from Dr. Claudio Gomes (IQTB, Portugal). The 

constructs were expressed in E. coli cells (BL21 (DE3)) and frataxin was purified as previously 

described (185, 196). Plasmid-derived protein expression was induced by addition of 0.5 mM 

IPTG. All protein variants contained the conserved C-terminal domain (amino acids 91–210). 

The vectors were His tagged at the C-terminal and to simplify purification. Although the mutants 

were stable in solution at room temperature, both purified mutants showed visible precipitation 

on slow freezing (196). To prevent this, the frataxin wild type and mutants were flash frozen by 

dropping drops of the protein via a syringe into liquid nitrogen. This procedure insured that all of 

the frataxin variants retained both their native spectroscopic properties and exhibited 

reproducible cooperative melting profiles. 

c GroEL partitioning assay. 

Partitioning studies were carried out by incubating the wild type frataxin and the mutants 

D122Y and I154F with the GroEL beads at 25ºC, 37ºC or 45ºC. 2 µM frataxin was incubated 

with 2 µM GroEL beads (estimated) in refolding buffer (50 mM Tris pH 7.5, 50 mM KCl, 5 mM 
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MgCl2, 0.5 mM EDTA) with 1 M urea and this reaction mixture was incubated while being 

constantly mixed on a rotary mixer at the described temperatures. GroEL remains tetradecameric 

and functional under all of these conditions (197, 198). The reaction mixture was spun down to 

separate the protein partitioned onto the chaperonin beads from the native soluble protein in the 

supernatant. Aliquots of the supernatant were withdrawn from the reaction bead mixture at the 

described time points to quantify the soluble frataxin that had not partitioned onto the GroEL 

beads. The soluble protein remaining in the supernatant was quantified by UV absorbance 

spectroscopy (Shimadzu UV-2401) at 280 nm or alternatively on a SDS/PAGE gel. After 

spectroscopic quantification, the withdrawn sample was reintroduced back into the reaction 

mixture in order to maintain a near constant frataxin concentration. 

2.3.3 Results and discussion. 

a Kinetic differences between frataxin mutants. 

This study was used for determining if the frataxin mutants could partition onto the 

chaperonin and if the chaperonin assay could be used to search for stabilizers. Two of the more 

common frataxin mutants, D122Y and I154F, show very similar thermal and chemical stabilities 

(196, 199), but result in distinct disease phenotypes (200, 201). While D122Y is associated with 

a mild phenotype in GAA/D122Y heterozygotes, heterozygotic individuals containing the I154F 

point mutation manifest a more severe disease phenotype. These differences were also 

manifested while expressing these proteins. While the D122Y mutant is mostly in a soluble form 

in E. coli, most of the I154F is expressed in the form of insoluble inclusion bodies (199). It was 

hypothesized that these solubility differences as well as the differences in the disease states 

might be due to differences in the stabilities of these proteins. Gomes and colleagues had 
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observed that a thermal melting profile demonstrated that both frataxin variants begin to populate 

denatured forms following a thermal denaturation starting at 40ºC (red dotted arrow, Figure 

2.13A) whereas the native fold remains predominantly in its native folded form up to ~ 65oC 

(Green dotted arrow). 

Unfortunately, this approach only examines the consequences of a global unfolding 

reaction within non-physiological denaturant conditions. Since the differences between these 

mutants may reside in the folding/unfolding kinetics, it is best to detect these kinetic transients at 

near physiological conditions unlike the high temperatures used in Figure 2.10 A. One could 

certainly investigate the stabilities of proteins by examining differences in unfolding kinetics in 

denaturant solutions. However, the amount of protein available for extensive stopped flow 

kinetic studies was limiting, especially for the I154F mutant. Alternatively, it was predicted that 

the chaperonin assay could be used to distinguish the biophysical differences between two 

missense FRDA mutants. To achieve this, the high affinity nucleotide free form of the 

chaperonin GroEL can be predicted to capture the transient dynamic states by sequestering them 

via kinetic/thermodynamic partitioning. To carry out such partitioning, the frataxin wild type and 

mutants were subjected to mild destabilizing conditions such as those imposed by mild 

denaturant concentrations and/or slightly increased temperature, which help to modulate frataxin 

equilibrium dynamics and partitioning onto the GroEL. The particular conditions chosen to 

follow the kinetic partitioning of frataxin missense mutants (D122Y and I154F) were derived 

from examining thermal denaturation scan profiles (Figure 2.13 A) (199). From the thermal 

denaturation profiles, it was predicted that the frataxin mutants should be able to kinetically 

partition onto GroEL at temperatures greater than 40oC, while the wild type should not. 
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To test the first hypothesis (differences in kinetic partitioning), the partitioning of the 

different variants onto GroEL was carried out at increasing temperatures of 25ºC, 37ºC and 45ºC. 

An estimated 1:1 molar ratio of GroEL (oligomer) to frataxin monomer was incubated at the 

different temperatures. In these assays, the time dependent decline in the amount of soluble 

protein can be easily measured by following the decline in protein concentration using UV-

visible spectroscopy, fluorescence spectroscopy or SDS/PAGE analysis. In the experiments 

presented herein, the partitioning of the frataxin was measured by the decrease in the protein 

concentration in the supernatant as quantified by UV spectroscopy. As predicted, even under 

these slight denaturing conditions (1 M urea, 25-45ºC), native frataxin shows no decline amount 

of total soluble protein and no partitioning onto GroEL was observed (Figure 2.13 B). Likewise, 

neither one of frataxin variants partitioned onto GroEL at 25ºC or 37ºC (Figure 2.13 C, D), 

indicating that, at these temperatures, the most prevalent variant populations remain in their 

predominantly in their folded soluble forms. It is only at temperatures above 40ºC (specifically 

45ºC) that the increase in the transient unfolded/partially folded populations could be observed 

resulting in a increasing amount of protein that partitioning onto bead immobilized GroEL as a 

function of time (Figure 2.13 C, D).) For these variants, the time dependent decline in protein 

concentration indicated that the partially folded states of the D122Y and I154F variants appears 

to easily partition onto continuously mixing NHS-Sepharose GroEL beads as was demonstrated 

with other dynamically unstable proteins (CFTR and DHFR). 
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Figure 2.13: (A) Thermal melting profiles of the wild type and mutant frataxin. 

Partitioning of wt (B), I154F (D) and D122Y (C) onto GroEL beads at temperatures of 

25ºC (black data points), 37ºC (grey data points) and 45ºC (open data points) shows that 

the frataxin mutants partition only at temperatures higher than 37ºC, while the mutant do 

not. 
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The maintenance of protein function relies on dynamic processes dictated by inherent 

protein homeostasis mechanisms and protein folding/unfolding kinetics. In vivo, protein stability 

or more correctly, optimal steady state levels of functional protein results from overall synthesis 

rates, folding competence, maintenance of the acquired fold (chaperone buffering) and 

degradation rates. Increases in partial unfolded state populations, often found with marginally 

stable missense mutants, can be easily generated under typical stress conditions such as elevated 

temperatures (e.g. fever or heat stress). This experiment thus demonstrates that such an increase 

in the partially folded state is possible for the frataxin mutants under slight protein folding stress 

conditions (temperature 45 ºC and 1 M urea). 

 

 

 

If partitioning is occurring, the interaction between GroEL and the partially folded 

frataxin intermediates is dictated by a bi-molecular collisional process (scheme 1 above). We 

also assume that interaction occurs between the chaperonin and a monomeric frataxin protein. 

Over the short time span of the assay, the slow partitioning of the variants onto GroEL most 

likely indicates that the capture of the dynamic population of the transient unfolded/partially 

folded species is small compared with that of the native population. If this is so, as mentioned in 

the beginning of this chapter, the chaperonin concentration should be in vast excess compared 

with these transient and dynamic misfolded/unfolded populations. From a kinetic perspective, 

this would provide a reasonable explanation as to why the partitioning kinetics should typically 

fit a first order decay approximation, or more correctly, a pseudo first order decay kinetic 
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profiles (99, 131). In addition, as was previously observed for rhodanese partitioning onto 

soluble GroEL, it is predicted that the observed partitioning rates for both of the transient 

frataxin variants onto the immobilized GroEL should increase and then approach a limiting rate 

as the GroEL bead concentration increases. The characteristic kinetic response should follow a 

rise and then reach a plateau as the partitioning rates of misfolded protein populations in 

equilibrium with native states bind onto GroEL approaches to an increasing chaperonin 

concentration. This type of kinetic partitioning response for native proteins slowly partitioning 

onto chaperonins with increasing chaperonin concentrations has been observed in every case 

tested thus far independent of whether one uses soluble (free) or bead immobilized GroEL (99, 

131). One logical explanation for the observation of a plateau in kinetic partitioning rate is that 

these partitioning rate approaches a limiting value that is dictated by the intrinsic 

unfolding/partial unfolding microscopic rates. At high GroEL concentrations, the 

unfolding/partial unfolding of the transient chaperonin binding conformer becomes rate limiting. 

As demonstrated by earlier experiments by Walter et al (202), the high affinity GroEL 

chaperonin does not actively unfold natively folded proteins nor does it affect the microscopic 

unfolding rate constants as GroEL concentrations increase. GroEL simply binds the partially 

folded populations as they form, and partitioning occurs by simple mass action effects. This mass 

action effect results in a shift of the folding-unfolding equilibrium toward a tighter binding 

GroEL bound partially unfolded protein substrate. 

The partitioning profiles of the I154F frataxin mutant indeed shows a saturation at a 

higher limiting rate than does the D122Y mutant. Likewise, the frataxin I154F partitioning rates 

are clearly accelerated compared with than those observed with D122Y and show larger 

amplitudes of change as estimated GroEL concentrations increase (Figure 2.14). For instance, 
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after a 60 min incubation at ~ 3µM GroEL, the soluble fraction of I154F declines to ~ 25% of its 

original starting concentration while under the same conditions, the amount of soluble D122Y is 

present at 55% of its original concentration (Figure 2.14 A, B). From these data, it can be 

inferred that the kinetic stability of the I154F mutant appears to be lower than that of the D122Y 

mutant. 

 

Figure 2.14: (A, B) Partitioning frataxin mutants on to various concentrations of 

GroEL beads. (C) Compiled partitioning rates increase with the GroEL bead concentration. 
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The partitioning rates were fit to a first order relationship and the plot of the partitioning 

rate as a function of estimated GroEL concentration shows a hyperbolic relationship. 

The behavior of the two mutants in solution also shows slight differences at elevated 

temperatures because the amount of recoverable I154F slowly declines in concentration even in 

the absence of the GroEL chaperonin (control experiments). This slow decline is not detected in 

the D122Y control profile (Figure 2.14 A). UV Spectroscopic analysis (i.e. light scattering 

contributions) indicates that under the conditions of assay, the I154F variant slowly aggregates in 

the absence of GroEL. Light scattering at 350 nm is commonly used to monitor aggregation. 

This scattering is a function of the wavelength and particle size. Light scattering intensity 

increases with λ−4. 350 nm is therefore the shortest wavelength that can be used as proteins 

absorb in the 200-320nm range. It is important to note however, that when immobilized GroEL 

beads are present, this general aggregation side reaction is suppressed since the remaining 

soluble I154F mutant within the supernatant shows no evidence of aggregation dependent light 

scattering contributions particularly at the beginning of the partitioning reaction. It is well known 

that the chaperonin binds to the unfolded proteins and suppresses aggregation. This decrease in 

aggregation leads to a corresponding decrease in light scattering and this assay was used in early 

studies with protein folding and GroEL as an end point to measure global aggregation 

suppression (203, 204). In the end analysis, it is clear that the I154F preferentially partitions onto 

GroEL at a substantially higher limiting rates than does D122Y (Figure 2.14 C). 

b Osmolytes differentially stabilize frataxin D122Y and I154F mutants. 

The aggregation as well as the partitioning of the substrate onto GroEL observed in the 

previous section can be decreased by stabilizing the substrate protein. This can be achieved by 

using protective osmolytes. These protective osmolytes act on the protein backbone and force 
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proteins to fold into their native state. Thus, they prevent protein unfolding and aggregation. We 

have used the chaperonin sink approach to examine if folding osmolytes can stabilize the native 

conformation of frataxin variants and prevent aggregation. This approach helps to determine if 

the protein can be stabilized and aggregation can be prevented in a broad sense before screening 

for specific small molecule stabilizers (pharmacological chaperones). In addition, this approach 

is important to determine if all mutants can be similarly stabilized by these small molecule 

chemical chaperones. As stated in the chapter 1, the different osmolytes actually have differential 

effects on backbone stabilities and solubilities (described as an osmophobic effect where some 

work at lower concentrations than others). Here a series of folding osmolytes where backbone 

burial free energies (collapse) ranges from weaker (glycerol) to strong folding osmolytes 

(TMAO) (205) was studied. The osmolytes sets that appeared to provide some stabilization of 

the native folds of I154F and D122Y were substantially different with respect to its folding 

strength (weak/strong). 

A weaker folding osmolyte (4 M glycerol) appears to be effective at stabilizing the native, 

properly folded forms for both mutants. This results in a near complete inhibition of their 

observed partitioning onto GroEL (Figure 2.15) while simultaneously inhibiting general 

aggregation side reactions. At first glance, the stronger folding osmolyte TMAO also appears to 

prevent partitioning of both mutants onto GroEL. However, a closer examination of the I154F 

protein that remained in solution revealed that the stronger osmolytes used here actually induced 

aggregation for this mutant as assessed by light scattering measurements. In contrast, the strong 

folding osmolyte TMAO prevent both GroEL partitioning as well as any large-scale aggregation 

of the D122Y mutant. It is notable that osmolyte-dependent inhibition of chaperonin partitioning 

is not due to inhibition of the chaperonin binding reaction, since it has been repeatedly been 
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demonstrated in our laboratory as well by others that weak or strong folding osmolytes cannot 

prevent the binding of either completely denatured proteins or highly populated partially folded 

proteins onto GroEL (134, 206). 

 

Figure 2.15: Partitioning of the two mutants (I154F and D122Y) onto GroEL beads 

in the presence of 4 M glycerol (A, C) and 1 M TMAO (B, D) demonstrates that the 

C	
   D	
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osmolytes stabilize both mutants preventing partitioning even in the presence of a mild 

denaturant. 

Strong and weak folding osmolytes are defined by the magnitude of free energy burial of 

the peptide backbone in proteins as defined by Bolen and colleagues (207). Thus the different 

effects observed for each mutant may result from the different locations of the mutations within 

the protein structure. I154 is fairly buried within the protein core while D122 is located on a 

more solvent exposed loop region. 

The kinetic and aggregation differences that we observed for these two missense frataxin 

mutants may reflect difficulties in identifying global therapeutic stabilizing ligands. For instance, 

although it is highly desirable to find one ligand that will stabilize a broad range of single site 

mutants within one protein, the kinetic and particularly osmolyte stabilization studies presented 

here may indicate that the identity of stabilizing ligands may be mutant specific. Folding proteins 

are cooperative systems and it may be unlikely that one single ligand would bind and kinetically 

suppress all misfolding intermediates generated by a wide array of missense mutants. 
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Percentage increase in protein aggregation with time (A260/A280) x 100  

Solution Wt (units) I154F (units) D122Y (units) 

Buffer 0.2 100 24 

1M Proline (Weak osmolyte) 0.4 6 3 

4M Glycerol (Weak osmolyte) 0.5 0.1 6 

1M TMAO (Strong osmolyte) 0.4 45 10 

1M Trehalose (Strong osmolyte) 0.2 136 0.5 

Figure 2.16: Measuring the increase in protein aggregation as a function of the 

change in ratio of the UV absorption spectra at 260 and 280 nm over time (lower the value, 

lower the aggregation observed). Weak osmolytes were observed to stabilize both mutants 

while strong osmolytes led to increases in observed aggregation. The green highlighted cells 

indicate the low aggregation observed in the presence of weak osmolytes for I154F. 

In the course of our frataxin partitioning/stabilization experiments, it was observed that 

larger scale protein aggregation would prevent the partitioning onto the chaperonin (Figure 2.13 

B), particularly if the aggregation is rapid. This rise in aggregation could most easily be assessed 

by observing the increase in light scattering profiles of the free protein. Consequently, these 

aggregation reactions will interfere with or even diminish the extent of the partitioning reaction 

(i.e. less substrate being partitioned onto the GroEL beads). Also, although our test solutions are 

continually mixed with GroEL immobilized on a Sepharose bead support, the diffusion of the 

target protein from the bulk solution to the microenvironment of the functional immobilized 

GroEL could limit the kinetics of the collisional processes that lead to tight binding. A review of 
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association constants between GroEL and partially folded or collapsed folding intermediates 

indicates that the kinetic range is anywhere from 108 M-1s-1 (diffusion controlled) (208) to 103 M-

1s-1 (209). These association rates vary because they depend on the nature of the folding 

intermediate (degree of hydrophobicity), electrostatic nature of that intermediate (GroEL surface 

is negatively charged) and/or the kinetic collapse of that particular intermediate (132). The 

easiest way to circumvent this aggregation problem is to either increase the chaperonin 

concentration by using smaller bead constructs effectively competing out aggregation reactions 

or by using different immobilized platform systems. For example it was demonstrated by our 

laboratory and others, that a large excess of soluble chaperonin (10 GroEL to 1 target protein 

molar ratio) effectively prevents competing aggregation side reactions and under these 

conditions, all of the protein eventually partitions onto the chaperonin. Nonetheless, even with 

this limitation at high enough GroEL concentrations, this particular chaperonin could be possibly 

used as a platform to readily identify protein stabilizing conditions, even for the aggregation 

prone proteins like I154F frataxin or previously the aggregation prone CFTR NBD1 (99). 

2.4 Conclusions. 

In this chapter, the proof-of-principle for the chaperonin sink assay with a test substrate, 

dihydrofolate reductase, was established. This was followed by demonstrating the utility of the 

assay to identify small molecule stabilizers for disease causing proteins such as CFTR and 

frataxin. It was also demonstrated that differentiating the kinetic stabilities between different 

mutants or between different proteins could be achieved in a facile manner utilizing the 

chaperonin assay. As with all bead-based assays, it was necessary to ensure the separation of the 

beads from the supernatant and also ensure that the beads did not interfere with the signal output. 

This signal that is used to determine partitioning is dependent on the remaining protein in 
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solution. Thus, the absorption spectra, fluorescence or enzyme activity of the protein that 

remains in solution could be measured as a function of time. To ensure a good signal, a high 

concentration of soluble protein in the assay is required. These studies, although instrumental in 

assay development, have to eventually be scaled up to generate a higher throughput prototype. 

The first prototype high throughput assay system that was developed involves the bead-based 

system described in this chapter coupled with a rapid plate reading system to evaluate protein 

stability in solution. This approach is discussed in the next chapter. 
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CHAPTER 3: OPTIMIZING THE PARAMETERS FOR SCALING UP THE 

CHAPERONIN SINK SCREENING ASSAY TO A HIGH THROUGHPUT PLATE 

BASED SYSTEM 

 

3.1 Introduction to high throughput screening. 

HTS is the process in which large numbers of chemical compounds are tested for binding 

or biological activity preferentially against a biological target (frequently proteins). Moderate to 

HTS screens provides the means to investigate the effectiveness of large numbers of compounds 

against a specific biological target of interest in a comparatively short period. HTS was initially 

established by large pharmaceutical companies like Pfizer and Eli Lilly during the early 1990s. 

The development of HTS progressed rapidly during the human genome-sequencing project in the 

early 2000s. This interest in developing HTS dovetailed with the human genome project, which 

was bringing several new potential protein targets in focus. At about the same time, the trend of 

automating large-scale searches using large combinatorial chemistry libraries expanded the drug 

candidate testing platforms. This made the more traditional low throughput screening methods 

(such as enzyme assays) ineffective and forced the development of strategies that could carry out 

multiple assays simultaneously within a single plate formats (96 wells originally, now up to 1536 

in ultra-high throughput systems). 

The traditional biochemical and pharmacological drug discovery screening methods 

utilized prior to HTS had limited assay capacities. These low throughput assays were generally 

used to uncover structure activity relationships (relation between chemical structure and 

biological activity) of the small molecules to improve them further or generate new molecules 

using combinatorial chemistry (210). Such assays used about 5-10 mg of compound in a volume 



	
   100	
  

of 1 ml or more. They could be carried out with a frequency of about 25-50 assays/week. In 

contrast, HTS carries out hundreds of individual assays at the same time and can be used to 

screen more than 10,000 compounds per day. It is thus an ideal method to probe large chemical 

libraries against a specific drug target. Advances in microplate based instrumentation, robotics 

and cheap computational power helped to make the leap to higher throughput facile and routine. 

The development of analytical techniques such as scintillation assays, fluorescence polarization, 

etc. to be used in conjunction with the robotic set-up further helped to improve screening rate 

and throughput. It also led to the miniaturization of the assay volume to fit into 384 and 1536 

well plate formats. Continuing improvements in screening technologies have enabled the 

screening of literally millions of compounds per week. Such screenings that occur at rates of 

100,000 compounds per day or higher (1,000,000 per day) are usually called ultra-high 

throughput screens or uHTS 

HTS and uHTS assays can be either cell-based, biochemical or in silico screens and 

involves drug targets, assay methodology, compound libraries, robotic automation systems and 

data analysis programs. Cell-based studies report functional end points while biochemical assays 

usually measure the affinity, stability or enzymatic activity resulting from introduction of the test 

compounds for the target. In silico based screens are computer simulation based methods where 

the energy of interaction of the compound binding to the active site or another druggable site of 

the target is used to identify hits. Hits are the compounds that exhibit the desired end points of a 

HTS assay. The hits generated from the primary screen usually have to undergo a secondary 

screen system to confirm their effectiveness or verify the specific interaction with the target 

protein or system. The secondary screening assay can be a non-HTS assay. Secondary screening 
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approaches are also used with other applications in genomics, crystallization, drug 

pharmacokinetics and pharmacodynamics, materials evaluation and environmental toxicity. 

Although several HTS screens have been carried out to identify small molecule 

stabilizers for misfolding proteins, most of these are cell-based assays (211, 212). The advantage 

of such cell-based assay systems is that they provide information about functional read-outs 

while providing information about cytotoxicity, which then help to predict in vivo behavior. 

However, it is difficult to miniaturize and scale-up such assays. These assays are also plagued by 

cell culture variability, poor reproducibility, and low signal intensity. Automating feeding, 

sorting and maintaining the cells increases the number of steps and the costs involved in the 

assay. Alternatively, in silico assays have been used to identify small molecule stabilizers of 

misfolding proteins (213, 214). 

Another system that could potentially be used to screen for small molecule stabilizer of 

biochemical targets is the ThermoFluor system (See Chapter 1, section 1.1.4a). An offshoot of 

this system that uses intrinsic fluorescence of the protein to measure shifts in Tm has been used in 

several studies to carry out HTS (215). Many of the HTS assay systems that have been 

developed for protein misfolding diseases have primarily focused on a subset of diseases that 

results from lysosomal storage defects (216-218), such as Tay-Sachs and Gaucher’s disease. In 

these instances, these assays are only specific for each folding disease state. Prior to the initiation 

of the current study, a broad generalized screening platform did not exist for misfolding diseases 

in general. The chaperonin platform looks to fulfill this broad based requirement. 

A good HTS platform is low cost, precise, sensitive and robust. The robustness of an 

assay is an indication of its reliability. It is a measure of the capacity of an assay to remain 

unaffected in case of well to well, plate-to-plate or day-to-day variability, changes in users, and 
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instruments. A good assay should also have simple steps that can be easily automated. It is 

predicted that the chaperonin assay could be scaled up to a platform design that could be 

potentially be used with a HTS set-up. From what was described thus far, this would involve 

optimizing assay components including the reliability of the plate systems used, the beads used 

for immobilizing the chaperonin and the assay readout to obtain reliability and reproducibility. 

At the end of this evaluation, a prototype platform system that could then potentially be used to 

screen stabilizers for protein prone to misfolding could be developed. 

3.2 Materials and methods. 

 

Figure 3.1: The protocol test setup for carrying out the chaperonin based 

partitioning assay in multiwell plates. In this instance, chaperonin beads were incubated in 

the wells of a multiwell plate with the substrate protein to be tested. At twenty min. 
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intervals, the plates were spun down and the supernatant containing the remaining protein 

was transferred to another plate. The amount of substrate protein remaining in the 

supernatant in the second plate was quantified using UV spectroscopy, fluorescence 

spectroscopy or by measuring the enzyme activity. 

a Materials. 

GroEL beads were prepared and assayed as described earlier in section 2.2.2. To test 

assay efficiency, the test model protein, dihydrofolate reductase and known ligands, dihydrofolic 

acid and NADPH were the protein/ligand pairs of choice. All of these compounds and proteins 

were obtained from Sigma. Microplates with 96 and 384 wells were obtained from the standard 

sources. Silicone mats to cover the 96 and 384 well plates were obtained from Axygen Inc. All 

other chemicals were of the highest purity and obtained from standard sources. 

b Following DHFR partitioning onto chaperonin beads using standard microplates. 

The partitioning assay in microplates was carried out following the scheme outline in 

Figure 3.1. The assay was modified based on whether a 96 or 384 well plate was used. For 

example, the total reaction volume per well was adjusted to 100 µl in a 96 well plate or to 70 µl 

per well in a 384 well plate. 2 µM DHFR was incubated with a roughly equimolar quantity 

(oligomer GroEL to monomer DHFR) of GroEL linked onto beads in clear V-bottomed plates 

(Whatman). The Whatman V-bottom plate was preferred to a U-bottomed or a flat-bottomed 

plate as it facilitated separating the supernatant from the beads during the centrifugation step 

(Figure 3.1). The plate was sealed with a silicone mat (Axygen) to prevent evaporation while 

incubating. The plate was then incubated on an orbital shaker at 25ºC. The plate was centrifuged 

to spin down the beads every 20 min. 10 µl of supernatant was then carefully removed from the 
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test well taking care not to aspirate any beads. Although this step was carried out manually in 

these studies, it can easily be automated. The 10 µl of supernatant was added to a mixture 

containing dihydrofolic acid and NADPH in another plate. This mixture in the second plate was 

then assayed for DHFR content via the DHFR assay using a plate reader in a black 96 well plate. 

The slope of the decrease in the 340 nm absorbance associated with NADPH utilization of 

DHFR was used as the readout for DHFR activity. Alternatively, the amount of protein left in the 

well could be determined via spectroscopic methods. 

c Following DHFR Partitioning assay using an alternative filter bottomed microplate 

method to separate the chaperonin beads from the test partitioning protein. 

Plates with 96-well filter bottoms were obtained from Pall (Figure 3.3). These plates had 

a filter membrane on the bottom of each well. 2 µM DHFR was incubated with a roughly 

equimolar quantity (oligomer GroEL to monomer DHFR) of GroEL linked onto beads in these 

filter bottomed plates. The total reaction volume per well was 100 µl. The plate was sealed with 

a silicone mat (Axygen) to prevent evaporation while incubating. The plate was then incubated 

on an orbital shaker at 25oC. At 20 min. intervals, the filter plates were placed on top of a 

receiving plate (any 96 well plate). The two plates were centrifuged together for 15 seconds at 

3000xg resulting in the supernatant filtering through into the bottom plate while the GroEL beads 

were left behind in the retentate solution (on top of the filter membrane in the top plate.) Care 

was taken while spinning to avoid the beads drying out (all solution removed). 10 µl of the 

filtrate was then carefully removed from the well in the bottom plate (filtrate). This 10µl of 

supernatant was added to a mixture containing dihydrofolic acid and NADPH in another plate. 

This mixture in this plate was then assayed for DHFR content via the DHFR assay using a plate 

reader in a black 96 well plate. The slope of the decrease in the 340 nm absorbance or 
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fluorescence associated with NADPH utilization of DHFR was used as the readout for DHFR 

activity. The remaining filtrate was then added back to the beads and re-incubated. This cycle 

continued until the signal (enzyme activity or protein quantitation) approached a limiting value 

(plateau). 

3.3   Results and Discussion. 

3.3.1 Optimization of the components of HTS set-up for the chaperonin sink assay. 

HTS is frequently used in drug discovery to identify hits for a wide variety of lead 

compounds that can be potential candidates for therapeutic development. However, little 

progress has been made in rapidly identifying protein folding disease stabilizers using HTS due 

to the inherent instability of the target proteins themselves. In chapter 2, a broad based screening 

system based on the promiscuous chaperonin GroEL that could potentially be utilized for HTS of 

small molecule stabilizers of transiently stable target proteins was introduced. Adapting the assay 

for HTS, however, requires the optimization of several factors. As mentioned in the introduction, 

the primary goal outlined in this chapter was to demonstrate that the assay to identify lead 

stabilizer compounds could be scaled up to potential HTS platform. The easiest path to 

demonstrate the efficacy of a viable prototype system is to utilize a model protein with a known 

stabilizing molecule. In this case, the goal was to demonstrate that a bead and plate set-up can 

recapitulate low throughput solution results of chaperonin binding to an easy to obtain substrate 

protein, DHFR, in the presence and absence of the stabilizing compound NADPH. Additionally, 

as mentioned above the assay must be robust (results easy to replicate), rapid and easy to use. 

One way of testing this robust nature is to demonstrate that the assay can be reproduced using a 

variety of different assay screening plate systems. Other HTS experimental parameters that 
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needed to be optimized include testing different bead platforms and demonstrating ease of 

reproducibility during the bead/supernatant separation phase prior to protein assay measurement. 

The signal to background noise of the assay (ruling out non-specific binding, robust 

partitioning) should also be sufficiently high. In the case of DHFR, the first initial signal that is 

used relates to the changes in native DHFR enzyme activity as partitioning onto the chaperonin 

platform proceeds. Even though we will eventually construct a broad based assay, using the 

DHFR enzyme activity will create a high signal to background noise ratio. Once the assay has 

been validated in these plate based HTS formats, cost concerns in the form of the amount of 

protein used also have to be addressed. 

a Optimization of type of beads used in the studies. 

As with any bead-based assay, one has to be aware that the success of these experiments 

depends in part on the nature and chemistry of the beads themselves. Ideally the beads that are 

used should be cheap, stable (should not leach the bound protein), inert (they also should not act 

as surfaces onto which the substrate protein adsorbs non-specifically) and easy to handle. One 

added feature of the chaperonin system is that the partitioned protein could be released from the 

GroEL bead surface. This could potentially make the system reusable for a number of assays. 

The microtube scale experiments carried out during proof-of-concept studies (Chapter 2) utilized 

NHS-Sepharose beads. The plate based bead assay protocol involves separating the beads from 

the reaction mixture to quantify the native protein concentration (or enzyme activity) in the 

supernatant. In an HTS format, the plate based system separation can be carried out by spinning 

down the microplate using a centrifuge to sediment the beads. An aliquot of the supernatant can 

then be easily withdrawn from wells and transferred into another multiwell microplate. Another 

plate based separation method was carried out using chaperonin immobilized magnetic beads 
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that can be separated from the supernatant using a powerful magnet system. This latter method 

was explored because centrifugation steps increases the time involved the HTS set-up. Utilizing 

the magnetic bead-based systems may speed up the assay. 

To determine the effectiveness of these magnetic beads, GroEL was initially immobilized 

onto the NHS-activated magnetic beads using amine coupling. The immobilization simply 

entailed incubating the chaperonin with magnetic beads for two hours at room temperature in an 

amine free buffer. The chaperonin covalently couples via free lysines to the beads through NHS 

ester chemistry. The free activated surface on the beads was quenched by incubating the GroEL 

loaded beads with 1 M ethanolamine (pH 8) for one hour at room temperature. The beads were 

then washed with refolding buffer to obtain GroEL loaded magnetic beads. The successful 

immobilization of GroEL onto these beads was confirmed by boiling the beads in SDS, 

disrupting the attached GroEL oligomer and carrying out gel electrophoresis on the supernatant 

to verify the presence of the ~60kDa band of GroEL monomers. GroEL attached magnetic beads 

were then utilized to carry out partitioning experiments with DHFR. A parallel set of 

experiments with GroEL immobilized on Sepharose beads was run as a positive control. 

However, partitioning of DHFR onto the magnetic beads did not yield any recoverable refolding 

of DHFR when a mixture of 10 mM ATP and 4 M glycerol was added to the GroEL magnetic 

beads. In contrast, under the same conditions, DHFR was able to partition and refold from the 

control Sepharose beads (Figure 3.2). Furthermore, no DHFR was observed to partition onto the 

magnetic beads following a similar SDS removal of GroEL. Only the band corresponding to 

GroEL monomer was observed indicating that DHFR had failed to partition onto the beads. Not 

only did DHFR fail to partition onto GroEL magnetic beads, the costs associated with procuring 

these beads for large-scale studies also limited the magnetic bead feasibility. At this time, it is 
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unknown why GroEL failed to remain in an active polypeptide capture competent state when 

attached to the magnetic bead supports. It was therefore decided to utilize the Sepharose based 

beads for the assay prototype and use centrifugation as the method for separating GroEL beads 

from partitioning protein. 

 

Figure 3.2: No partitioning or refolding of DHFR was observed with the magnetic 

beads. NHS-magnetic beads were loaded with GroEL using amine coupling and then 

incubated with DHFR. At 20 minute intervals, the beads were spun down and the 

supernatant assayed for DHFR. As compared to the control NHS-Sepharose (filled 

squares), no partitioning or refolding of DHFR was observed with the magnetic beads 

(filled triangles). 

During HTS optimization, the National Institutes of Health (NIH) guidelines for assay 

development and optimization were followed. One of the initial requirements in the guidelines is 

to demonstrate the stability of the beads under storage and during the assay. An aliquot of the 

bead sample was stored at 4ºC for long-term studies. It was observed that the beads were stable 
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and active even after a year of storage at 4ºC. Additionally, during studies involving frataxin, the 

beads could be incubated at elevated temperatures as high as 45ºC with complete reversibility. 

These conditions are similar to an accelerated stress test. It was observed that even under these 

harsh conditions, the beads maintained GroEL activity (refolding DHFR). The only caveat 

during these optimization tests was that the beads were required to be maintained in a hydrated 

state, since spinning the fluid away from the beads inactivated the immobilized GroEL. 

Another crucial test for the bead construct system and GroEL is to insure that the GroEL 

remains active in the solvent used in most chemical libraries. Compounds from a chemical 

library that are utilized in HTS are frequently water insoluble. This necessitates them being 

solubilized in water utilizing a dimethyl sulfoxide (DMSO) co-solvent. The concentration of 

DMSO used in these libraries can approach 10%. To ensure that GroEL beads are stable in the 

presence of DMSO, the partitioning assay was carried out in several concentrations of DMSO 

and it was determined that the GroEL beads and soluble GroEL remains stable and active for the 

duration of the assay in the presence of DMSO. 



	
   110	
  

b Optimization of the separation technique for the chaperonin beads. 

 

Figure 3.3: A filter bottom microplate consists of a polypropylene housing with 

membranes placed and sealed in the individual wells. The assay was carried out in such 

plates with DHFR being incubated with GroEL beads. At specific intervals, the plates were 

spun down to obtain the supernatant and the concentration of native active DHFR was 

assayed using the NADPH assay (219). 

In addition to centrifugation, another approach that can be used to separate the GroEL 

beads from the test protein in the supernatant is to utilize plates with ultrafiltration pads on the 

bottom of each well. These plates have an isolated well design and individually sealed filter discs 

that eliminate potential for reagent flow from well to well and can be easily used with particle 

based assays in a high throughput set-up (Figure 3.3). Such plates are called filter bottom plates. 

Although these plates are comparatively more costly than normal plates, the reduction in steps 

associated with the assay and the ability to reuse the plates could be useful for higher throughput 

and would decrease overall assay costs. 
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In this experiments, the chaperonin beads were incubated with DHFR in the filter bottom 

plates. As a control, DHFR was also incubated with blank beads in the same plate. To measure 

the concentration of the native DHFR, the filter plates were fitted with a receiving plate on the 

bottom (any regular 96 well plate) and centrifuged. The buffer containing the native protein 

easily passed through the large MW cutoff filter (100 kDa cutoff) while retaining the chaperonin 

beads and any partitioned DHFR in the top plate (retentate volume of the filter bottom plate). 

The concentration of the native DHFR in the filtrate in the lower plate was measured and 

quantitated using the DHFR assay. It was observed that the assay could be carried out using this 

set-up to follow the partitioning and refolding of DHFR (Figure 3.4). 

However, several operational problems were also encountered while utilizing these filters 

plates. It was observed that the DHFR containing buffer easily leaked through the filter 

membrane at the bottom of the plates into the receiving plate during the course of the assay. This 

undermines the assay since a portion of the DHFR concentration would be unable to partition 

onto the GroEL, skewing the results toward lower partitioning which in turn would lead to a 

false positive result. To overcome this problem, the bottom of the plates were sealed utilizing a 

SealMate® adhesive microplate film. This prevented the buffer leakage over the course of the 

experiment and could be easily removed prior to spinning down the plate. Another problem 

encountered with this step dealt with the drying of the chaperonin beads and subsequent 

inactivation of the immobilized GroEL during the supernatant separation step. Consequently, 

fresh beads had to be added after each run, increasing the quantity of beads that had to be used 

and requiring a multiple sampling procedure. Due to these difficulties and the high costs 

associated with these plates, it was concluded that the filter plates were not useful as a platform 

prototype. 
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Figure 3.4: Partitioning and refolding of DHFR in the presence of GroEL beads 

(filled squares) could be followed using filter plates. The decrease in DHFR activity in the 

presence of blank beads (open circles) is due to heat deactivation and aggregation. Filter 

plates could be utilized to carry out the assay but each assay point required the addition of 

fresh GroEL beads. The experiments were repeated in triplicate. 

c Optimization of microplates used for HTS studies. 

Determining the robustness and reproducibility of the results is an important facet of HTS, 

where multiple factors relating to the type of microplates, liquid handling system, and 

evaporation all contribute to difficulties in the assay outcomes as well as execution. Plate based 

systems are still the predominant platform for typical HTS assays because these are the preferred 

set-ups for screening a libraries of several thousand compounds. The plate based assays must not 

demonstrate large intra-plate and inter-plate variations as these will lead to statistically 

unfavorable variations in the output signals (in this test case the enzyme activity). We 
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investigated these variations by carrying out the assay utilizing three different plates, Corning 96 

well NBS, Whatman 96 well low binding and Griener 96 well low binding plates. Prior to 

carrying out the assay the background signal (enzyme activity in the case of DHFR) from the 

beads was investigated and found to be negligible. This establishes a high signal to background 

ratio as is required of a good HTS assay. The partitioning assay was carried out in quadruplets in 

four different corners of the plate and each assay was repeated thrice thus giving a total of twelve 

data points per time point. It was observed that the intra-plate and inter-plate variance was 

comparatively low (Figure 3.5) with all data points being within one standard deviation. 

However, since the cost associated with the V-bottomed Whatman 96 well low binding plates 

was comparatively lower than the other two, we decided to utilize these plates for further studies. 

 

 

Figure 3.5: Three different plates Corning 96 well NBS (blue traces), Whatman 96 

well low binding (black traces) and Griener 96 well low binding plates (red traces) were 
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utilized to measure inter-plate variations. The assays were carried out in quadruplets for 

each time point and each assay was repeated thrice thus giving a total of 12 data points for 

each point. It was observed that the DHFR traces overlapped with each other for both the 

GroEL beads (filled squares) and the control beads (open circles) demonstrating low 

variance. 

d Optimization of the format of microplates used. 

In recent years, the trend of HTS studies has shifted towards higher throughput set-ups 

that utilize 384 and 1536 well plates. Such set-ups ensure that higher numbers of screens are 

carried out in the smallest possible time. The miniaturization of the assay also decreases the 

volume required for the assay and thus the amount and cost of reagents required per well. The 

1536 well set-up however requires specialized instrumentation that handles lower volumes. The 

typical set-up that is more common and that is readily available is the 384 well plate format. This 

provides sufficient throughput while retaining the same footprint as a 96 well plate (220). The 

assay conditions that work in a 96 well platform could also be predicted to work in 384 well 

format. However, the reagent volumes have been miniaturized to 384 well format. To test the 

efficacy of using the chaperonin with these smaller volumes, the partitioning assays were carried 

out concurrently utilizing a 96 well plate (Whatman) and a 384 well plate (Nunc). These 

experiments were carried out in triplicate. The molar concentration of both DHFR (monomer) 

and GroEL (oligomer) in the assay was maintained at 2 µM. The total volume in the 384 well 

plate was reduced to 70 µl. At 20 min. intervals during partitioning, 5 µl of aliquot was 

withdrawn from the 384 well plate while 10 µl was withdrawn from the 96 well plate utilizing 

positive displacement pipettes to control for volume efficiency in the sample. Both aliquots were 

assayed for DHFR concentration and the readings were normalized to 10 µl. It was observed 
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(Figure 3.6) that the partitioning of DHFR onto the chaperonin beads as well as its refolding 

were easily measured in both the 96 and 384 well plates. The partitioning and refolding traces 

obtained with the 384 well plate was observed to closely follow those traces obtained with the 96 

well plate. This demonstrates that the assay can be easily carried out in a 384 well format with a 

reduced volume and potentially a higher throughput. 

 

 

Figure 3.6: Comparison of chaperonin assays carried out in 384 well plates (red 

traces) and 96 well plates (black traces) showed that the partition and refolding from the 

chaperonin beads (filled squares) could be easily followed even at the lower volumes (70 µl) 

used in a 384 well plate. The assays were carried out in duplicate for each time point and 

each assay was repeated thrice. 
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e Optimization of detection read-outs. 

Most HTS assays rely on very sensitive read-outs that detect the presence of the test 

protein of interest. The development and utility of the chaperonin prototype system with the bead 

supports depends on enzyme assay detection of the test substrate DHFR. However, almost all of 

the disease proteins that would be utilized as a screening target will not have similar enzymatic 

activity measurements. Thus, it is essential to examine other detection techniques to follow the 

partitioning of transiently folded species while measuring the remaining protein in solution. An 

ideal detection readout must be universal (same technique used for all substrate proteins), 

sensitive to low protein concentrations, rapid and reproducible. One approach involves labeling 

the substrate proteins with radioactive or fluorescent labels. However, utilizing such labeling 

reagents increases the costs associated with the assay, increases detection time and has proven to 

be challenging with the low volumes used in HTS assays (221). Another sensitive, facile and 

rapid method to probe the folded state of the protein is to utilize the intrinsic fluorescence of the 

protein. This intrinsic fluorescence is due to the fluorescence emission by phenylalanine, tyrosine 

and tryptophan. However, only tyrosine and tryptophan are used experimentally because of 

reasonable quantum yields. DHFR has six tyrosine and three tryptophan residues. Accordingly 

one should be able to follow partitioning utilizing the intrinsic fluorescence of DHFR. In this 

instance, partitioning was measured as before at 25ºC using a V-bottomed Whatman microplate. 

At 20 min. intervals, the plate was spun at 4000xg for 30 sec. to sediment the beads. 50 µl of the 

supernatant aliquot was then transferred to a 96 well black microplate. The DHFR fluorescence 

was measured using a Spectramax M5 plate reader (Molecular Devices). The sample was excited 

at 295 nm and the emission measured at 340 nm. 
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As DHFR partitions onto GroEL beads, one would expect a concomitant decrease in the 

supernatant fluorescence. Initially, as DHFR partitions onto GroEL, there is a decrease in 

tryptophan fluorescence (Figure 3.7). However, after the initial sharp decrease, the tryptophan 

fluorescence shows smaller changes. The control (partitioning onto blank beads) shows that the 

fluorescence remains virtually the same throughout the course of the experiment (Figure 3.7). 

Thus, although one can utilize fluorescence to detect differences between the DHFR that 

partitions onto GroEL beads and the control, these results are in marked contrast to the enzyme 

activity based results where the DHFR activity reaches zero in the presence of the chaperonin. 

From these observations, one possible reason for the remaining fluorescence may be due to a 

portion of the DHFR that undergoes heat based inactivation and aggregation to remain in 

solution. As shown in chapter 2, any aggregation of the target protein can remain in solution and 

fail to partition onto GroEL. The aggregated DHFR still contributes to a fluorescence signal even 

though it may lose activity. Hence an activity based readout that shows complete loss of activity 

may be due to both a combination of partitioning and inactive aggregation. 
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Figure 3.7: DHFR intrinsic fluorescence can be utilized to follow its partitioning 

where it shows an initial rapid decrease with the chaperonin (filled squares) while the 

control beads (open circles) do not show a similar decrease in fluorescence. The continued 

presence of the DHFR fluorescence over time in both the samples can be due to aggregation 

of the remaining DHFR protein. 

Another problem with using protein fluorescence that depends on UV excitation (295 

nm) is that many small molecule ligands are polyaromatic that may interfere with both excitation 

or may possess their own intrinsic fluorescence. For example, NADPH is a fluorescent molecule. 

It was concluded that intrinsic fluorescence cannot be used as a measure of partitioning transient 

folds onto the GroEL chaperonin. 
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f Utilizing the prototype to demonstrate ligand based stabilization of misfolding proteins. 

The optimization studies carried out using the multiwell plates provides a useful 

prototype chaperonin based partitioning platform provided that an enzyme assay is available 

success of the plate platform is to utilize it for carrying out screening for small molecule 

stabilizers of misfolding proteins. However, prior to carrying out such a large-scale screening, 

one needs to demonstrate that such stabilization can easily be detected using this set-up. The 

proof-of-concept (Chapter 2/microtube based) assays shows that DHFR can be stabilized by 

NADPH or folding osmolytes. By default these stabilizers should also work within the plate 

based system. To carry out such a study, the chaperonin beads were incubated with DHFR alone, 

in the presence of 4 M glycerol or 10 mM NADPH. As predicted, the plate based prototype 

confirms the prediction of stabilization (Figure 3.8). 
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Figure 3.8: The prototype could be utilized to follow a small molecule and an 

osmolyte based stabilization of DHFR. DHFR without any stabilizers (filled squares) 

showed partitioning onto GroEL, while the rate of partitioning was much lower for DHFR 

stabilized with NADPH (crosses) and with 4 M glycerol (filled triangles). 

 3.4   Conclusions 

The development of a successful prototype platform is a crucial step prior to carrying out 

a successful screening to obtain hits that might be useful to generate leads for protein misfolding 

diseases. In order to obtain the right set of hit compounds (one that could easily generate lead 

compounds), the assay should be precise, sensitive and robust. This chapter involved the 

optimization of several parameters that help in achieving this goal. These parameters involve 

factors such as the assay components (type of beads, type of plates), assay throughput (96 vs. 

384 wells) as well as those that help in obtaining a sensitive assay with high signal to noise ratio. 
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A sensitive detection method and high substrate protein concentration per well is essential for the 

higher signal to noise ratio. However, the high per well concentration of the substrate protein 

subsequently increases the overall amount of protein required for a screening study. This is 

particularly problematic for misfolding disease proteins that are difficult to purify. Another 

problem associated with such disease proteins is that they tend to aggregate. As observed with 

DHFR, the shaking set-up required in the assay increases the mass transfer and might lead to the 

partially unfolded species interacting and aggregating. If the aggregation rate is higher than the 

partitioning rate, this might lead to the protein aggregating in solution. In such a case, as with the 

proof-of-concept system, the one problem that continually arises in these systems that depends 

on protein partitioning onto immobilized GroEL is that aggregation will lead to higher false 

positive hits. Thus, although the initial goals of developing a robust and reproducible prototype 

were partially met (one could still utilize the assay to look for differences between stabilized and 

non-stabilized protein), the problems associated with high protein concentrations needed, the 

need for using specific enzyme assays and in solution aggregation makes this particular assay 

cumbersome to use for a HTS. Hence, one needs to look at alternatives that prevent the 

aggregation and at the same time use a lower concentration of the disease protein. 
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CHAPTER 4: USING LABEL-FREE METHODS TO IDENTIFY PROTEIN 

STABILIZERS (PART 1 – SURFACE PLASMON RESONANCE). 

 

4.1  Alternatives to the chaperonin bead platform systems. 

In chapter 3, the development of a bead-based chaperonin assay to identify stabilizers for 

protein misfolding diseases was discussed. However, there are numerous disadvantages of using 

a bead-based approach to develop a reasonably high to moderate throughput protocol. One such 

problem centers on the large concentration of chaperonin and target protein required during the 

assay. It is often a challenge to purify such high concentrations of missense disease causing 

proteins that might be required for a HTS assay, especially in the case of proteins that tend to 

misfold. The higher concentrations are required to ensure that a sufficiently high signal to noise 

ratio is achieved for all of the spectrophotometric methods used thus far. 

One method overcoming the problem associated with substrate protein aggregation is to 

immobilize the substrate protein on a solid support. This would potentially prevent the 

interaction among the substrate protein and prevent aggregation. It would be even more 

advantageous if such a system could get away with utilizing low concentrations of protein. 

Additionally, since the chaperonin protein interaction is reversible, there also exists the potential 

of recovering the substrate protein containing beads and reusing them over several assays. 

A recent advance in examining protein-protein interactions involves the AlphaScreen 

(Amplified Luminescent Proximity Homogeneous Assay) system (222). It is a bead-based 

technology to study interactions in a microplate. It is a proximity assay where the binding of 

molecules that are captured on two different kinds of beads leads to energy transfer between the 

beads (Figure 4.1). There are two kinds of beads, a donor bead and an acceptor bead. Both bead 
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surfaces are coated with latex-based hydrogels containing reactive aldehydes that not only 

reduces non-specific binding but also provides a functionalized surface to which different 

macromolecules can be affixed (223). The donor bead contains pthalocyanine that on 

illumination at 680 nm produces reactive singlet oxygen from ambient oxygen (224). This singlet 

oxygen has a half-life of 4 µs and can diffuse about 200 nm in solution. If there is an acceptor 

bead in the vicinity, the singlet oxygen transfers its energy to dyes (thioxene, anthracene, and 

rubrene derivatives) on the acceptor bead (225). This transfer leads to the acceptor emitting light 

at 520-620 nm. The advantage of AlphaScreen is that it can be used for a wide range of 

interaction affinities (pM to mM) and is easily adapted for HTS and uHTS systems (384-1536 

well systems). 

 

 

Figure 4.1: The AlphaScreen assay studies the interaction between two 

macromolecules bound on two different beads. Here, two antibodies to the same molecule 

are immobilized on a donor and an acceptor bead. When the two antibodies interact with 

the molecule in solution, they are in proximity to each other. On excitation of the donor 

bead at 680 nm, the dyes within the bead convert ambient oxygen into singlet state. This 
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singlet oxygen diffuses for about 200 nm before returning to the ground state. If the 

acceptor bead is within this range, the singlet oxygen reacts with the chemicals within 

acceptor bead and emits light at 615 nm. Figure adapted from (226) 

However, AlphaScreen has its own set of disadvantages. The AlphaScreen is light and 

temperature sensitive. This can be a major problem since in some instances; the chaperonin 

partitioning assay sometimes depends on elevating the temperature of the assay to shift the 

equilibrium of a protein to populate larger steady state populations of the partially unfolded test 

substrate. Another disadvantage that is unique to the target proteins used for protein folding 

diseases relates to the intrinsic aggregation propensity of the disease protein even when it is 

attached to the bead support. This intrinsic aggregation would lead to a situation where the 

substrate beads self aggregate, resulting in a decrease in interaction with the chaperonin bead. 

This aggregation tendency also increases due to the constant stirring that is required in the 

AlphaScreen set-up. 

4.2  Introduction to surface plasmon resonance. 

A viable alternative to partitioning onto chaperonin beads from solution or using the 

AlphaScreen technologies is to explore the possibility to using label-free technologies. For these 

systems, the detection of interactions is more sensitive. The advantage of these detection systems 

is that one can easily immobilize one component on a biosensor surface and examine the 

increases or decreases of binding interactions of the other protein component in real-time. These 

methods probe physical properties that result from the formation of bio-molecular interactions 

due to changes in protein density and refractive index changes. Many such label-free techniques 

are typically faster than traditional assays, and changes due to interactions can be easily 

determined by following the binding kinetics (227). Optical biosensing techniques are among the 
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most commonly used label-free techniques. All optical biosensing label-free techniques have 

three basic components: the biological molecules whose interaction is to be probed, a biosensor 

that captures the molecule to be probed and a detector that converts the physical properties of the 

biological interaction into a photometric, electrochemical, electrical, or acoustical signal change. 

Label-free systems have been utilized for primary screening of small molecules (228), fragment-

based screening (protein binding to peptide fragments of 100-300 Da, reviewed in (229)), and 

epitope mapping. Label-free techniques are especially useful in small molecule screening to 

optimize identification of lead compounds obtained by primary screening, determine affinities of 

interactions and identify optimal affinities. 

One of the most popular and successful label-free interaction techniques used to evaluate 

protein-protein interactions is surface plasmon resonance (SPR). SPR (Figure 4.1) is a 

microfluidic optical biosensing instrument that enables one to analyze real-time binding 

amplitudes between a ligand and an analyte while observing their association and dissociation 

kinetics. Here, the term ligand refers to a molecule that is immobilized onto the biosensor surface 

while the analyte is the molecule that interacts with the ligand. The biosensor used in SPR is in 

the form of a sensor chip. A variety of sensor chips are available for SPR depending on the type 

of application. A common feature associated with these chips is that they have microfluidic flow 

channels with a total volume of 20-60 nL. The flow channels deliver liquid to the sensor surface 

at varying flow rates. The sensor surface is covered with a thin gold film of 50 nm thickness. A 

ligand is frequently immobilized on the gold surface. However, since immobilizing high 

concentrations of the ligand directly to the gold surface is challenging and in some cases can 

denature proteins, a layer of carboxymethyl dextran is applied and serves as the major 

immobilization matrix to serve as a base layer for ligand attachment. With this layer, 
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immobilization can be carried out through non-covalent interactions or by covalently linking the 

ligand directly to the dextran surface via a variety of chemistries such as through an amine, thiol 

or aldehyde group (230). The most common method used is amine coupling used for 

macromolecules containing amine groups (lysine). The immobilization of proteins is discussed in 

a later section in this introduction. 

The ligand and the flow cell are under perpetual flow conditions to generate the initial 

baseline refractive index (defined as the ratio of the velocity of light in a vacuum to its velocity 

in a specified medium, it is a number that describes the propagation of light through a specific 

medium) environment (Figure 4.2 A). Below the gold film lies the flat surface of a prism. A light 

source shines incident red or infrared light (630-1200 nm) on the gold surface through the prism. 

The beam reflected back is detected by a photodetector. During the initial SPR resonance event, 

the incident light transfers energy and excites the electrons on the gold surface to generate a 

surface plasmon at the gold/glass interface. The surface plasmon is a cloud of electrons. When 

this resonance occurs, there is a dip in the intensity of the reflected light. This reduction in 

intensity or the resonance detected by the photodetector happens at a particular incident angle 

called as the resonance angle (see label T1 in Figure 4.2A). The resonance angle is extremely 

sensitive to any change in the refractive index of the medium adjacent to the gold surface (due to 

changes in the refractive index or protein density at the surface). If the optical properties at the 

surface change due to changes in analyte/ligand concentration, buffers or pH, these changes lead 

to a concurrent change in the solution refractive index. During an interaction, the analyte binds 

with the immobilized ligand, leading to a change in the solution refractive index or dielectric 

constant near the surface of the gold surface. Such a change in the refractive index causes a 

change in the surface plasmon generated at the glass/gold interface. Changes in this surface 
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plasmon (resonance), results in a compensating change in angle of the incident light (see label T2 

in Figure 4.2 A). The prism adjusts to pinpoint the changes in the resonance angle that have to be 

made in order to identify the new reflectance angle generated by the new SPR resonance by 

changing the wavelength to find the particular wavelength that initially causes the SPR 

resonance. The changes in refractive index result in changes in the resonance angle (Figure 4.2 B, 

top panel). This change in resonance angle (T2-T1) is exhibited as a change in the signal output 

(231-233) and is measured in terms of an arbitrary unit called resonance unit (RU). The RU 

change as a function of time gives rise to the changes in the kinetic amplitude that results in an 

experimental SPR sensorgram (See Figure 4.2 B, lower panel). The signal change (RU change) 

is thus dependent on time dependent changes as well as the extent of changes in the solution 

refractive index/dielectric constant. These time dependent changes translate into a kinetic 

parameter and a quantitative component. If other conditions are maintained constant under 

experimental conditions (following buffer subtractions, etc.), the increase in signal output (RU) 

change is directly proportional to the mass/concentration of the macromolecule (in this case a 

protein) that is present at the surface. The sensorgram thus provides one with real-time 

quantitative information on the active concentration of molecule in a sample, its specificity of 

binding as well as the kinetics and affinity. In terms of protein binding, 1 RU is approximately 

equivalent to the attachment or binding of about 1 pg of protein immobilized on the sensor. 
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Figure 4.2: The principle behind surface plasmon resonance. (A) Each microfluidic 

channel consists of a glass chip on which ligand (pink squares) is immobilized. Incident 

light generates a surface plasmon at a resonance angle T1. As the analyte (green circles) 

interacts, the prism shifts the resonance angle to T2 to maintain surface. (B) This shift in 

resonance angle T2-T1 when plotted as a function of time gives a SPR sensorgram plasmon. 

Figure adapted from (234). 
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Developing an SPR assay involves preparing the sensor surface, carrying out the 

interactions, regenerating the surface and finally evaluating the results. Preparing the sensor 

surface by immobilization of the ligand is an important facet of the SPR system. The 

immobilization can result from direct covalent coupling, high affinity capture or hydrophobic 

adsorption. The type of immobilization method depends on the nature of the biomolecule as well 

as the specific application of the study (235). Covalent coupling, one of the more commonly 

used immobilization technique, results in a stable attachment and usually does not require the 

ligand to be modified in any way. The most common attachment protocol used for protein 

immobilization is to covalently attach the protein to activated carbonyl groups on the sensor 

surface. They can also be immobilized through amine, thiol or aldehyde functional groups. Thiol 

coupling is used for thiol containing compounds while aldehyde coupling is used in 

macromolecules containing cis-diols and sialic acid groups. 
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Figure 4.3: Different methods of covalently linking a protein to a CM5 biosensor 

involve using amine, thiol or aldehyde functional groups. The CM5 matrix consists of a 

100nm thick carboxymethyl dextran matrix that provides a hydrophilic environment for 

biomolecular interactions. It can be easily chemically modified using a broad range of well 

defined chemistries including amine, aldehyde and thiol couplings . 

The process of immobilizing a protein covalently usually occurs in a buffer below the 

isoelectric point of the proteins (which now have an overall positive charge) to take advantage 

the inherent electrostatic attraction that can be realized to enhance attachment because the 

electrostatic field of the dextran surface present on top of the gold layer carries an overall 

negative charge. This process called a pre-concentration step enhances the immobilization 

efficiency on the surface. The use of a low ionic buffer to maintain the charge state of the protein 

is extremely important during this step. One general problem with covalent coupling is that it is 
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non-specific and the proteins are coupled in heterogeneous orientations (i.e. active site or binding 

site not optimally place to face flow channel). For instance, in certain cases, improper attachment 

might obscure the binding site, reducing the analyte affinity for the ligand (236). Efforts to 

achieve a more homogenous, defined orientation will prevent this reduction in affinity and the 

number of titratable binding sites. An example of homogenous orientation has been discussed in 

detail in chapters 5 and 6. In certain instances, when covalent coupling is unsuitable, the ligand 

can also be coupled through tight affinity binding where the ligand is bound to a secondary 

molecule that can be easily coupled to the surface of the biosensor. Examples of affinity binding 

include using antibody-antigen interactions, proteins that are biotinylated-streptavidin and his 

tagged proteins interacting with Ni-NTA systems (237). In some cases, affinity coupling may 

require modification or in the case of proteins, genetic engineering of the ligand. 
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Figure 4.4: An SPR sensorgram is the plot of signal change as a function of time and 

provides real-time quantitative information on the analyte concentration, and specificity of 

binding as well as the kinetics and affinity of binding. Figure adapted from (234) 

 

After immobilizing the ligand, the analyte is usually injected into the sensor flow 

channels. Prior to injecting the analyte, the baseline is determined by washing the sensor surface 

with a suitable buffer known as the running buffer. This period of the analyte being injected is 

termed as the association phase (Figure 4.4). During the association phase there is both binding 

as well as dissociation of the analyte from the sensor bound ligand. The association rate, 

therefore, depends on the concentration of the analyte, the concentration of the ligand and the 

intrinsic association rate constant (kon). As the concentration of the analyte bound to the ligand 

increases, it approaches steady state conditions where the rate of association and dissociation of 

the analyte is equal. The dissociation of the analyte can be observed by reintroducing the running 

buffer without the analyte to the flow channel above sensor surface, as the analyte now 
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dissociates from it ligand bound state. This phase is termed as the dissociation phase and is 

independent of the analyte concentration. If the analyte does not completely dissociate from the 

ligand, sometimes an appropriate regeneration method can be used to regenerate the sensor 

surface. The changes in refractive index during the regeneration phase may cause the signal to 

drop below the baseline, but if regeneration is achieved and no ligand is lost, then the 

introduction of the starting buffer should result in the return to the original baseline. The 

advantage of utilizing SPR is that it is a powerful tool to monitor biological interactions that 

require very low amounts of non–labeled proteins to get data over a wide range of concentrations. 

Additionally, despite the low volume and the concentrations that are used, the system is very 

sensitive (picogram detection levels). This high sensitivity at low protein concentration is an 

advantageous parameter utilizing the chaperonin–misfolding protein substrate complex 

formation and achieves a necessary prerequisite for establishing a viable HTS assay using this 

platform. The following sections will highlight the SPR dependent interactions between GroEL 

and an immobilized substrate to determine the feasibility using a label-free platform system to 

carry out partitioning and ligand based stabilization of unfolded proteins. 

4.3 Materials and methods. 

a Materials. 

The SPR interaction of GroEL with various substrate proteins was analyzed by Biacore 

3000 (GE Healthcare) at KU Lawrence in the Protein Production Core laboratories. CM5 sensor 

chips, which are the most common and versatile sensor chips, were purchased from GE 

Healthcare. The high affinity form of extremely pure GroEL was purified in the lab using 

established purification protocols (134). Dihydrofolate reductase (DHFR) and α-lactalbumin 
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were purchased from Sigma. Purified ATP stabilized CFTR NBD1 (~30 kDa) was a kind gift 

from Dr. Phil Thomas (UT Southwestern). 

 

Figure 4.5: Chemistry of EDC and NHS binding for amine coupling of amine 

containing macromolecules to the carboxyl coating on the dextran surface of a CM5 chip 

b Coupling of the protein to surface. 

The SPR signal is easily disrupted by small air bubbles or any particulates that pass 

through the flow channel. To prevent this interference, all solutions used in the system were 

degassed and filtered through a 0.22 µm filter prior to use. The native form of the substrate 

protein was immobilized onto the dextran surface of a Biacore CM5 chip by amine coupling 

(Figure 4.5). While HEPES buffered saline (HBS) buffer (10 mM HEPES (pH7.4), 150 mM 

NaCl, 3.4 mM EDTA) was utilized for α lactalbumin, refolding buffer (50 mM TRIS (pH 7.5), 

50 mM KCl, 10 mM MgCl2, 0.5 mM EDTA) was used as the running buffer for the studies 

involving CFTR NBD1 and DHFR. The dextran matrix of the CM5 sensor chip was initially 

activated with a 1:1 mixture of N-ethyl-N'-(dimethylaminopropyl) carbodiimidehydrochloride 

(EDC) and NHS with a flow rate of 5 µl/min for 10 min. (Figure 4.3). The protein to be 
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immobilized was then applied to the CM5 chip at a flow rate of 5 µl/min in 10 mM sodium 

acetate buffer for 10 min. The pH of the acetate buffer was adjusted according to the pI of the 

protein that was to be immobilized. Once the protein becomes attached to the sensor chip surface 

(as determined by a large increase in the SPR signal), any unreacted carboxyl groups were 

quenched by treating the sensor surface with 1 M ethanolamine (pH 8.5) for 5 minutes at a flow 

rate of 5 µl/min. The amount of protein that was immobilized was measured by the difference in 

the RUs after the EDC/NHS activation and the final signal. 

c Measuring GroEL interactions and its kinetics with the immobilized proteins. 

500nM of GroEL oligomer in refolding buffer was injected at a temperature of 25oC onto 

the substrate protein immobilized sensor surface at a rate of 30 µl/min for 5 minutes to obtain the 

association phase of the sensorgram (refer to Figure 4.2, curve between time 0-660s for 

illustration). After 5 minutes, the running buffer was flowed over the sensor chip and the 

resulting dissociation trace is recorded. The traces of the association and the dissociation are both 

analyzed to determine the binding kinetics. To measure the concentration dependent relationship 

of the kinetics of the interaction, different concentrations of GroEL were injected and the 

resulting traces analyzed using the Biacore kinetics software to obtain the binding constants and 

other kinetic parameters. 

4.4 Results and discussion. 

As stated in the previous chapter, the bead-based assay that was developed in chapter 3 

was a robust assay. Robustness of an assay has been defined by the US Pharmacopoeia and the 

International Conference on Harmonization (ICH) as a measure of its capacity to remain 

unaffected by small, but deliberate variations in method parameters and provides an indication of 

its reliability during normal usage (238). In case of the bead assay, this robustness was 
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demonstrated by its reproducibility under test conditions at different locations, times, reagents 

and instruments. However, it was slightly cumbersome to utilize for HTS due to the necessity of 

maintaining the beads in constant suspension as well as the need to separate the beads prior to 

carrying out the protein assay. Another factor that hindered efficient HTS was the formation of 

inactive aggregates in solution prior to binding onto the immobilized chaperonin GroEL. As 

observed with the frataxin mutants and perhaps even with DHFR, any preformed aggregates did 

not easily partition onto the GroEL beads and remained in solution along with the native proteins. 

Since the readout of the assay is free protein concentration in solution, the formation of such 

aggregates will lead to false positive results, decreasing assay reliability. 

One method of decreasing the protein aggregation is to immobilize the substrate protein 

that tends to misfold and aggregate, thus preventing self-association. In our case, this can include 

proteins such as CFTR and the frataxin mutants that were discussed in chapter 2. Such proteins 

could potentially be immobilized and the interaction of this immobilized protein with GroEL 

could be then probed utilizing non-labeled techniques. SPR is one such non-labeled analytical 

technique that utilizes immobilized molecule (ligands) and analyzes its binding to another 

molecule (analyte) in real-time. It was predicted that one could utilize SPR to study the 

interactions between GroEL and an immobilized substrate (116, 239). This strategy eliminates 

the aggregation reactions that are observed with the substrate in solution and will yield kinetic 

parameters of the GroEL–substrate interactions. In addition, it was also predicted that this set-up 

could be used to rule out false positive hits (molecules leading to direct inhibition of the 

chaperonin) by using a known chaperonin substrate (control) and examining if the test ligand 

candidate still interferes with chaperonin binding with the control chaperonin substrate. With the 

SPR system, once a potential small molecule ligand is identified, one can also examine small 
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stabilizer compound interactions directly with the immobilized substrate protein. SPR also makes 

it possible to measure the binding and kinetics of binding of small analytes (in this case the small 

molecule ligand that stabilizes any given substrate). 

a Initial proof-of principle SPR studies demonstrating chaperonin interactions with α-

lactalbumin. 

Previous data from Murai et al., (239) indicates that one can follow the extent of GroEL 

binding that distinguishes between folded (S-S oxidized) and a molten globular state (SH 

reduced forms) of an immobilized small protein α-lactalbumin using SPR. In control experiments, 

GroEL binding and ATP dependent release from the immobilized unfolded α-lactalbumin was 

easily observed (Figure 4.6). Initially, α-lactalbumin was immobilized via amine coupling on the 

sensor chip to a RU of about 2500 by flowing native LA in a pH 4.5 acetate buffer. Its reduced 

unfolded form was obtained by reducing the S-S bonds present by flowing 2mM DTT in the 

running buffer after immobilizing the protein. As predicted, it was observed that the chaperonin 

readily associates with the partially unfolded reduced form of α-lactalbumin; while the folded 

oxidized form shows no apparent GroEL association (Figure 4.6). 
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Figure 4.6: Demonstrating that SPR can be used with the chaperonin to distinguish 

between folded and partially folded species of a protein. The oxidized (solid traces) α-

lactalbumin exists in a partially folded form and demonstrates binding to the chaperonin 

while the reduced (dashed traces) form is in a folded state and does not partition indicating 

that SPR can distinguish between a folded and an unfolded/partially states of a protein. 

The rapid decline in signal on addition of ATP and the signal subsequently returning to 

baseline thus indicating substrate release also confirms the partitioning. 

b SPR studies demonstrating DHFR interaction with the chaperonin. 

The validation of the previously discussed proof-of-principle experiments was followed 

by studying the interaction of GroEL with several GroEL binding protein substrate proteins in 

the absence and presence of stabilizing small molecule ligands. One such substrate was DHFR, 

whose interaction with the chaperonin in solution was first studied by Lorimer’s group (128). 
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The present study is the first instance of SPR based verification that ligand stabilization of a 

protein can prevent or diminish GroEL binding. Accordingly, DHFR was immobilized onto the 

sensor chip via amine coupling and its interaction with GroEL in solution observed. Prior to 

carrying out the study, it was essential to identify the optimum buffer conditions for the efficient 

and maximal immobilization of DHFR. To identify these conditions, the substrate protein (1 

µg/ml) was diluted in acetate buffers with pH varying by half units (4.0-5.5). These buffers were 

then injected over the sensor surface and the signal (RU) noted. This interaction of the protein 

with the dextran surface is via weak hydrophobic linkages and can be easily washed away with 

buffer. The pH of the acetate buffer that gives the highest signal was chosen for further covalent 

immobilization of the substrate. With DHFR, it was observed that a pH 4 sodium acetate buffer 

(10mM) gave the highest immobilization signals of DHFR attaching onto the sensor surface 

yielding a signal of about 150 RU. 

Once the substrate protein was immobilized, the analyte (GroEL) was injected and the 

interactions observed as a change in the sensorgram. The signal was observed to increase to 

about 1100 RU indicating the binding of analyte (GroEL) to the ligand (DHFR). We injected the 

GroEL with a high flow rate to decrease the diffusion effects and increase the mass transfer (240). 

Thus, when running buffer was allowed to flow over the GroEL-DHFR complex during the 

dissociation phase, the signal showed a very slow decline. This slow dissociation trace indicates 

support for previously observed studies where the affinity of GroEL-DHFR interaction complex 

was found to be very strong (kon = 107 M-1 s-1 and KD= ~ 85nM ± 20nM). It is also possible that 

the chaperonin can interact non-specifically with the sensor surface. If the interactions are weak 

non-specific interactions, the high flow rate of the running buffer leads to a rapid dissociation of 

the analyte from the immobilized ligand. The observation that the chaperonin remains bound to 
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the ligand and shows very little dissociation indicates that the binding was likely due to specific 

binding of the chaperonin to the substrate and not due to non-specific interaction with the sensor 

surface. During the dissociation phase, there should ideally be only dissociation of the bound 

analyte and the dissociation rate should therefore depend only on the concentration of the analyte 

(chaperonin). However, a part of the dissociated analyte may rebind and lead to misleading 

kinetics. This can be reduced by decreasing the levels of ligand immobilized on the sensor 

surface, increasing the flow rate or by blocking the ligand with a competing molecule. In our 

case however, the slow dissociation of the analyte decreased the problems of rebinding. It can 

also be predicted that if rebinding were to be a problem, different dissociation kinetics that 

depended on the analyte concentration (in this case GroEL) would be observed. The dissociation 

kinetics were observed to be the same regardless of GroEL concentration supporting the 

hypothesis that GroEL binds very tightly and undergoes very slow dissociation. 

This high affinity of the chaperonin for unfolded/partially folded proteins is specific to 

the nucleotide free form of GroEL. ATP binds to GroEL, and diminishes the binding interaction 

between partially folded proteins and the GroEL active site, resulting in a release of folded 

DHFR. To verify the reversibility of GroEL binding, a large concentration (25mM) ATP was 

added to the flow buffer. We observed that the ATP induced a very rapid dissociation of the 

GroEL (data not shown), thus confirming that GroEL binding was indeed specific. The ATP 

addition also provides one with a method for regenerating the surface. During regeneration, the 

analyte must be completely removed from the sensor surface while retaining the activity of the 

surface. An ideal regeneration thus allows one to obtain consistent responses even after repeated 

injections with the response curves being within 10% of the initial injection. Thus, regeneration 

of the sensor allows carrying out multiple rounds of binding with the same surface. Here, it was 
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observed that the ATP based regeneration protocol gives sensorgram curves that overlapped with 

each other even after repeated injections. Another factor encountered in SPR studies is an 

apparent increase in the signal (RU) due to changes in the dielectric constant/refractive index of 

the buffer by means of changes in viscosity, pH or solution components. This buffer induced 

perturbation in the SPR signal is referred to as the “bulk effect” and is generally subtracted form 

the signal output by using a reference surface (241). For these experiments, the bulk effects were 

observed to be negligible. We repeated the study utilizing the regenerated DHFR surface and 

found that the results were comparable with GroEL again binding to DHFR with the same 

amplitude (Figure 4.7). 

It has been previously demonstrated by bead-based experiments (Chapter 3.3.1) that 

NADPH is a small molecule ligand that binds and stabilizes DHFR. It was also predicted that 

such NADPH based stabilization of the immobilized DHFR should be detected utilizing 

chaperonin based SPR measurements. Accordingly, DHFR was immobilized onto a sensor 

surface by the same procedure described previously. A solution of 500 nM GroEL mixed with 2 

µM NADPH was injected and allowed to flow over the sensor surface. A buffer containing 500 

nM GroEL without the DHFR was used as a control. It was observed that the amplitude of 

binding during the association phase for the NADPH containing sample was much lower than 

what had been observed with the control (GroEL by itself). It was inferred that this decrease in 

amplitude was due to the stabilization of the native state of DHFR thus leading to its decreased 

association with the chaperonin. The slow dissociation rate encountered even in the lower GroEL 

association with DHFR also indicated that the chaperonin was binding specifically to DHFR. 
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Figure 4.7: Ligand based stabilization of the model substrate DHFR could be 

followed utilizing SPR. DHFR was immobilized onto the sensor surface through amine 

coupling. 2 mM NADPH (dashed trace) stabilizes the native state of DHFR and decreases 

the binding of 500nM GroEL (solid trace) while 10mM NADPH (dotted trace) abolishes 

GroEL binding completely indicating ligand based stabilization of DHFR. The experiments 

were carried out in duplicates on the same sensor surface. 

To demonstrate that the observed decreased amplitude was a function of DHFR stability, 

it was predicted that a further increase in NADPH concentration would lead to a higher stability. 

Since chaperonin binding is inversely proportional to stability, it was also predicted that this 

increased NADPH would ultimately decrease GroEL binding. To support this hypothesis, 10mM 
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NADPH with 500nM GroEL was injected over the DHFR surface. It was observed that at this 

increased concentration of the ligand the binding of GroEL with the fully saturated DHFR 

NADPH complex (Figure 4.7) is no longer observed. All these studies were performed in 

duplicates on the same sensor surface. 

	
  

c SPR studies on the interaction between CFTR NBD1 and GroEL. 

Once it was established that GroEL can bind to immobilized DHFR and α-lactalbumin 

when these proteins exist as part of an partially folded population using SPR as a detection 

method, the interaction between the chaperonin and a potential model disease protein CFTR 

NBD1 was studied. As observed in chapter 2, CFTR NBD1 rapidly partitions onto GroEL. It was 

also established that GTP stabilizes CFTR NBD1and decreases GroEL partitioning onto this 

target protein. Accordingly, it was predicted that these observations could be recapitulated 

utilizing the SPR platform. Here, CFTR NBD1 was immobilized on the biosensor surface by 

amine coupling. Again as carried out with DHFR, by varying the pH of the 10mM sodium 

acetate coupling buffer (a process known as pH scouting), it was observed that the best 

immobilization occurred at pH 4.5. Accordingly, CFTR NBD1 was immobilized on the surface 

to obtain a signal of approximately 2700 RU. 500nM GroEL was then injected and allowed to 

interact with the immobilized CFTR NBD1. GroEL bound to the immobilized CFTR NBD1 with 

a signal of about 1000 RU in the association phase (see Figure 4.8). Again this binding was 

characterized by a slow dissociation phase suggesting that the affinity of GroEL for partially 

folded CFTR NBD1 was high. 
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Figure 4.8: Ligand based stabilization of a disease protein CFTR NBD1 could be 

followed utilizing SPR. CFTR NBD1 was immobilized onto the sensor surface through 

amine coupling. 10 mM GTP (solid trace) was observed to completely abolish the binding 

of 500 nM GroEL (dashed trace) to immobilized CFTR NBD1 demonstrating ligand-based 

stabilization of CFTR NBD1. 

As discussed in earlier sections (Chapter 2), GTP acts as a stabilizer for CFTR NBD1 

without having any effect on GroEL partitioning. Here it was predicted that the experiment could 

be recapitulated with the immobilized CFTR NBD1 and GroEL by SPR. On addition of 10 mM 

GTP along with GroEL into the flow cell, the binding of GroEL to the GTP bound immobilized 

CFTR is abolished (Figure 4.8). Again, ATP addition was found to bring about dissociation of 

Decreased amplitude due to 
stabilization of CFTR NBD1 
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GroEL leaving the sensor free to be reused for another binding study. In summary, these results 

indicate that SPR can be utilized to develop an assay platform that can be used to screen for 

potential ligand stabilizers of CFTR NBD1. This assay platform can also be used to carry out 

secondary screening and validate any hits obtained during the primary screen. 

Unlike other physical techniques utilized previously in this dissertation that required us to 

measure protein quantities at specific time points, SPR reports the real-time binding of molecules. 

SPR is an extremely powerful and facile method of studying interaction kinetics. It was predicted 

that the Kd values obtained by this method should be similar to the affinity parameters (Kd) 

obtained in solution studies (133). Briefly, various GroEL concentrations ranging from 0-500 nM 

were injected into the biosensor to interact with the immobilized CFTR at a flow rate of 20 

µl/min for 5 minutes. This was followed by introducing refolding buffer into the flow cell to 

follow any dissociation of GroEL from immobilized CFTR. The sensor chip regeneration was 

carried out by injecting three separate washes of 25 mM ATP to ensure complete removal of 

GroEL. This was determined by the sensorgram attaining the initial baseline recorded prior to 

injecting GroEL. 
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Figure 4.9: SPR could be utilized to determine the kinetics of CFTR-GroEL binding. 

Different concentrations of GroEL (0-500nM) were allowed to flow over the CFTR 

immobilized surface. The binding traces were fitted to obtain the kinetic constants. 

As shown in Figure 4.9 several sensorgrams were obtained for the different 

concentrations of the chaperonin and they were simultaneously fitted to obtain the kinetic and 

equilibrium constants. The equilibrium constants could be determined either by ratios of rate 

constants or by fitting the steady state amplitude response as a function of the concentration of 

the binding molecule over a range of concentrations. Here the signal traces were analyzed by the 

Biacore kinetics software while applying a 1:1 Langmuir binding isotherm. This type of a 

binding model assumes that both the analyte and the ligand are homogeneous, and that all 

binding events are independent. The curves were then fitted with a non-linear fitting to obtain the 



	
   147	
  

kon, koff and the Kd values. They were calculated to be 9.81x103, 2.54 x10-4 and 27 nM ± 10 nM 

respectively. This high affinity between nucleotide free GroEL and protein substrate is similar to 

what has been observed with antigen-antibody reactions (also approaching nanomolar to 

picomolar dissociation constants). These kinetic series were performed in duplicate and the 

values were observed to be nearly identical for both replicates. 

4.5 Conclusions. 

Utilizing label-free systems is an excellent method of investigating protein-protein 

interactions in real-time. Compared to the classical endpoint assays that are mainly based on 

competition or inhibition, SPR provides kinetic and binding information simultaneously. At the 

same time, this method uses very little protein. The protein can be easily attached to the surface 

and the GroEL binding can be reversed by treating the complex with ATP. This particular set-up 

makes SPR an ideal method for screening for protein stabilizers of potential missense disease 

proteins that are difficult to purify. Most importantly, the immobilization of the ligand protein = 

avoids protein aggregation. The aggregation of proteins that are inherently unstable was a serious 

drawback with the bead-based system. The experiments presented here indicate that the real-time 

measurements of chaperonin binding to transiently stable proteins immobilized on SPR chips 

provides a viable platform system to rapidly screen and identify potential protein stabilizers that 

exist within large chemical compound arrays. In addition, this assay is not limited to evaluating 

well behaved single domain proteins. The CFTR-NBD1 protein used in the above experiments 

readily aggregated at physiological pH values and moderate temperatures in the absence of its 

nucleotide stabilizer. It is also probable that this SPR attachment method will be useful in 

evaluating the stabilities of oligomeric proteins as well as monomeric proteins, provided that the 

oligomers also expose hydrophobic surfaces during transient unfolding reactions. In this latter 
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situation, one may need to develop more specific immobilization procedures of oligomers to 

create homogenous target protein populations with defined orientations. 

For effective drug discovery utilizing SPR technology, the SPR assay platform must be 

fast, cost effective, and amenable to high throughput. The typical SPR set-up that is currently 

commercially available predominantly screens for four interactions at once. However, there are 

other systems that can achieve comparatively higher throughput. One such system is the ProteOn 

XPR36 system that can inject six ligands or analytes in a single injection, creating a 6 x 6 

interaction array for simultaneous parallel analysis. Array based systems such as the ProtoArray 

(Invitrogen) and plexarray (plexera) systems can immobilize and follow the interactions of more 

than 1000 different macromolecules on a single chip. However, it has certain shortcomings that 

prevent its efficient utilization with the chaperonin assay. Since it is a microfluidics based flow 

system, slow flow rates might also introduce mass transfer and operational problems. The 

surface of the sensor chip onto which the ligand is bound also deteriorates over time 

necessitating ligand re-immobilization onto new sensor chips. The high cost associated with the 

proprietary commercial sensor chips ($120/unit) correspondingly increases the overall cost of 

SPR studies. The gold coating and the optical prism require a high degree of engineering 

sophistication resulting in the high costs. Moreover, SPR is extremely inconvenient for solutions 

containing DMSO, which is the common solvent used in many HTS studies. 
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CHAPTER 5: USING LABEL-FREE METHODS TO IDENTIFY PROTEIN 

STABILIZER (PART 2 – BIO-LAYER INTERFEROMETRY). 

 

5.1 Introduction to bio-layer interferometry. 

Although SPR has provided a useful tool for examining protein-protein interactions, there 

are limitations to its use particularly for HTS methods to identify lead compounds that target 

mutant folds involved in protein folding diseases. Difficulties with microfluidic flow with 

protein aggregates, cost of materials, low throughput and solvent interferences (e.g. screening 

molecules dissolved in DMSO) limit SPR with respect to its ease of use. To this end, several 

biosensing instruments with varying detection techniques have been introduced (227). Some of 

these achieve an increased throughput by using the standard microplate based systems that are 

fluidics free. One such alternative optical biosensing technique that complements SPR and 

addresses some of the limits listed above is bio-layer interferometry (BLI). BLI is a dip and read 

system used to study analyte-ligand interactions. BLI has several advantages over SPR that make 

it an attractive option to carry out real-time interaction studies. Primarily, it is not a microfluidics 

based system and does not have problems due to clogging (protein aggregates) and dissolved 

gases. BLI platforms are available that have a higher throughput design than one can accomplish 

with the standard SPR system (e.g. BiaCore 3000 described in chapter 4). It is easy to use with 

short set-up and run times. Most importantly, interferences from aggregation and solvent effects 

(DMSO) do not readily interfere with BLI signals. 
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a BLI principle. 

BLI is a simple dip and read system that analyzes the interference pattern of white light 

reflected from two surfaces to study analyte-ligand interactions. It utilizes a relatively 

inexpensive ($2-5 per BLI biosensor vs. ~$200 per SPR microfluidic lane) disposable polished 

fiber optic biosensor (Figure 5.1 left panel) that is embedded into a polypropylene hub. The 

biosensor has proximal and distal reflecting surfaces that are separated by at least 50 nm. The 

proximal optical layer acts as the reference layer and is composed of a material with refractive 

index greater than that of the fiber optic glass. This material is usually Ta2O5 and has a 

thickness of 5-50 nm. This is followed by the distal biocompatible layer onto which different 

molecules can be immobilized through various chemistries or by affinity interactions. Such 

immobilized molecules are known as “ligand”. This nomenclature is the same as with the SPR 

technique. The detection system depends on a light source to direct a beam of light onto the two 

reflecting surfaces. For the instruments presented in this chapter, polychromatic white light with 

wavelength range between 400-700 nm is utilized. When this light is directed through the fiber 

optic element, a portion (~4%) is initially reflected from the proximal surface. Some of the light 

that passes through is also reflected from the distal bio-layer surface containing the immobilized 

ligand. The two beams of reflected light (one from the proximal reference tip, the other from the 

distal end containing the immobilized ligand) are slightly out of phase. The out of phase light 

beams interfere with each other causing a characteristic interference profile with variation in the 

intensity across the wavelengths with different peaks and troughs. This interference pattern is 

captured by the CCD spectrophotometer on the opposite end of the fiber optic cable as an 

interference pattern (Figure 5.1 right panel grey curve). The biosensor is usually dipped into the 

“analyte” to measure interactions. When the analyte binds to the ligand, it leads to an increase in 
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the optical thickness of the whole bio-layer complex as well as small changes in the refractive 

index near the surface. This optical thickness depends on the size and shape of the analyte, the 

number of analyte molecules that bind to the biosensor as well as the refractive index of the 

buffer containing the analyte. It has been observed that an increase in the refractive index of the 

buffer does lead to an increase in the signal amplitude but is nowhere near the changes that are 

encountered with the SPR system. The overall increase in the optical thickness on the ligand-

analyte interaction leads to a change in the interference pattern and is captured by the 

spectrophotometer (Figure 5.1 right panel orange curve). This change in the interference pattern 

is measured and given as the wavelength shift output (in nm). The changes in the wavelength 

shift can be followed as a function of time and gives a binding profile called a BLI sensorgram. 

 

Figure 5.1: BLI utilizes a fiber optic biosensor (left panel) containing an optical 

reference surface and a biocompatible surface for immobilizing biomolecules. The BLI 

signal is generated by differences in the interference pattern generated by light reflected 

from two difference surfaces (right panel). Figure modified from (242) 
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b BLI instrumentation. 

BLI instrumentation systems are designed to perform rapid sample analysis in 96- and 

384-well format and can process up to 8 and 16 samples in parallel respectively. The Octet 

RED96 8-channel instrument was utilized with a collaborative effort with ForteBio Inc. (Menlo 

Park, CA; now owned by Pall) to perform most of the experiments detailed in this chapter. A 

single-channel BLI system called the BLItz was purchased later and used in the Fisher 

laboratory. The 96 well platform (Octet RED96) has a deck onto which a microplate can be 

accommodated (Figure 5.2). The deck can be heated up to 40oC and also acts an orbital shaker 

(~1000-2000 rpm to decrease mass transport effects) adequately mixing the analyte samples. 

The biosensors are supplied in an 8 x 12 format tray that can be placed directly onto a stage 

inside the instrument. A mobile manifold can pick up to eight tips from the tray and dip them 

directly into the sample containing microplate. With the BLI instrumentation, the sensors are 

mechanically removed from one solution to the next, avoiding the problems associated with 

SPR microfluidic systems used to traditionally deliver samples to the stationary gold layered 

SPR sensor. The order in which the manifold dips into the various wells can be programmed. 

The manifold also consists of the light source and the spectrophotometer. For the 96 well plate 

format, there are eight separate light sources and eight CCD detectors (one for each biosensor). 
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Figure 5.2: The Octet Red system consists of an automated manifold (that also doubles as 

the detector), which picks up the biosensors and cycles them through various steps as 

required. 

c Experimental set-up. 

The microplates used in the Octet are usually filled with 200 µl of sample or buffer per 

well and are agitated at 1000-2000 rpm. Sensor tips are pre-wetted in buffer immediately before 

use within the biosensor tray itself. The manifold can then select the biosensors required for an 

experiment as indicated and move them through the various rows (Figure 5.3 left panel). All 

these steps are programmable using an easy, well-designed and user-friendly software prior to 

starting the experiment. A BLI experiments consists of three different steps- 1) loading of 

ligand, 2) measuring analyte association with ligand and 3) monitoring dissociation from ligand 

(biosensor tip bound protein or small molecule). A regeneration step is optional as the 

biosensors are cheap and can be discarded but one can decrease costs if one regenerates the 

biosensor surface. Depending on the ligand and the biosensor used, the loading step can take 

several forms. The availability of a wide range of biosensors makes the loading of several 
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different types of molecules relatively easy. The protein can be immobilized through covalent 

linkage (Figure 4.3) or through specific affinity linking. As with the SPR system, a blocking 

step is also used to quench any active functional groups that still may exist after the loading step. 

Before carrying out the association studies, a brief equilibration step with the buffer is essential 

to help determine a common baseline value for the different samples. A typical association step 

is characterized by an increase in the sensorgram signal (Figure 5.3 right panel). The association 

is usually followed by a dissociation step to measure the dissociation of the analyte from the 

ligand. 

 

 

Figure 5.3: A typical experimental setup involves the reagents in specific rows in a 

96 well plate (left panel) through which the manifold containing the biosensors can cycle. 

Right panel: The BLI sensorgram demonstrating various cycles involved in a typical 

binding experiment. Eight samples can be analyzed at a single time as seen in the 

sensorgram. 
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With their real-time analysis and low protein requirement, SPR and BLI are 

complimentary to each other. However in certain instances, BLI is superior to SPR because there 

is less prep time involved, lower volumes can be used and whole cell extracts or concentrated 

solutions (300 mg/ml protein for example) can be used with the BLI. Similar attempts to use the 

above mentioned solutions will invariably fail with the standard SPR systems. The problems 

associated with SPR microfluidics such as clogging and degassing do not arise with the BLI. 

Consequently, particulate molecules, refractive index changes in the surrounding medium, or 

flow rate changes does not severely affect the interference pattern of BLI allowing it to be an 

excellent resource for analyzing crude samples in various protein-protein binding, quantitation, 

affinity, and kinetic interactions. In addition, the biosensors can be preprepared before assay 

because these systems that can be loaded with the ligand molecules offline. Online loading refers 

to the ligand being immobilized on the biosensor as a part of the experiment and is monitored. 

Offline loading happens when the ligand is loaded onto the biosensor separately and then used as 

required for the experiment. Although offline loading cannot be directly monitored this 

procedure can be optimized in advance. Offline loading in turn decreases the assay time and the 

turnaround time as well leading to an increased throughput. Additionally, since it uses the 

microplate format it can be easily used with HTS robotics to carry out medium throughput assays. 

5.2 Materials and methods. 

a Materials. 

The interaction of GroEL with various substrate proteins was analyzed utilizing an Octet 

RED BLI instrument (ForteBio Inc., Menlo park). The various biosensors required for this study 

were initially provided by ForteBio Inc. The high affinity form of extremely pure GroEL was 

purified in the lab using the purification method outlined by Voziyan and Fisher (134). 
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Dihydrofolate reductase (DHFR), NADPH, GTP and α-lactalbumin were purchased from Sigma. 

Purified CFTR NBD1 protein was kind gift from Dr. Phil Thomas (UT Southwestern) while the 

CFTR NBD1 antibodies and the mouse CFTR NBD1 ∆F508 were provided by the Cystic 

Fibrosis Folding organization (www.cffolding.org). The small molecule CFTR corrector 

compounds were also obtained from the Cystic Fibrosis Foundation. 

b Preparing the biosensor by Immobilization of proteins. 

Method 1: Both substrate protein immobilization and GroEL interactions were carried out 

in Octet RED instrument (ForteBio Inc.). The instrument uses an array of eight biosensors that 

can detect the interactions in a 96 well plate in real-time. The signal from each biosensor is 

analyzed by a separate dedicated spectrophotometer. This instrument uses a 96 well plate 

(Griener) that was incubated at 25oC with continual shaking at 1000 rpm. The volume in the 

wells was 200 µl for all samples and reagents. The substrate proteins, CFTR NBD1, α-

lactalbumin and DHFR were immobilized on the amine reactive biosensors (ForteBio Inc.) 

utilizing amine coupling. The biosensors are shipped as dry tips that need to be hydrated. Hence, 

these were initially hydrated in buffer containing 50 mM TRIS, 50 mM KCl, 10 mM MgCl2, 0.5 

mM EDTA (pH 7.5). This buffer is optimized for GroEL function. The hydrated biosensors were 

then activated by dipping them in a 1:1 mixture of sulfo-NHS and EDC for 5 min. These 

activated tips were further incubated with various protein solutions (CFTR NBD1, DHFR, etc.) 

for 10 min. The protein solution was prepared by diluting the stock protein in to 10 mM sodium 

acetate buffer to obtain a final concentration of ~50 µg/ml. the pH of the selected acetate buffer 

was adjusted to a pH lower than the pI of the protein to obtain maximum immobilization. At this 

pH, the positively charged protein will be electrostatically attracted to the carboxyl terminated 

biosensor surface, thus enhancing the efficiency of the immobilization. This process is termed 
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pre-concentration. To determine the optimal loading concentration to be used in the 

immobilization, a range of concentrations were tested. The lowest concentration that showed 

saturation of protein immobilization was chosen for further studies. The saturation is essential to 

decrease any concentration based variations and artifacts in the different biosensors used in the 

study. For the amine reactive surface, any portion of the activated surface on the biosensor that 

was not protein bound was then quenched utilizing 1 M ethanolamine (pH 8.5). These protein-

coated tips were then used for investigating interactions with GroEL in solution. 

Method 2: An alternative method of loading CFTR NBD1 onto the biosensors was 

utilized to decrease non-specific binding. This method of loading involved the use of 

commercially available anti-mouse Fc biosensors. These biosensors were initially hydrated and 

dipped in 50 µg/ml CFTR NBD1 mouse monoclonal antibody solution for 5 min. The loading of 

the antibody could be followed online in real-time. The antibody-loaded biosensor was then 

incubated with CFTR NBD1 for further five min. to obtain the CFTR biosensors. The CFTR 

loaded biosensors were washed for 5 min. with refolding buffer to remove any non-specifically 

bound protein. No dissociation of the CFTR NBD1 bound to the antibody was observed over the 

washing period. 

Method 3: For immobilizing GroEL, the chaperonin was initially biotinylated utilizing 

EZ-link biotin reagent (Pierce). The biotinylated GroEL remained active as confirmed using 

DHFR assay that measures the partitioning and refolding of DHFR described previously 

(Chapter 2, section 2.1.2). The biotinylated GroEL samples can be loaded onto the biosensors 

utilizing the commercially available streptavidin BLI biosensors. The streptavidin biosensors 

were hydrated with refolding buffer. As a note of caution, the streptavidin tips are notorious for 

non-specific binding. One way to decrease this binding is to increase the GroEL binding onto the 
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tips. Hence the hydrated biosensor was then incubated with biotinylated GroEL (100 µg/ml) for 

5 minutes (where the tip shows saturated binding) to load the chaperonin. The tips were finally 

washed with refolding buffer to remove any GroEL that was non-specifically bound. These 

chaperonin loaded tips could be utilized for further partitioning studies. Non-specific binding 

was tested with BSA. BSA does not bind to GroEL and can readily bind to free surface areas on 

the streptavidin tips. Optimal GroEL binding was determined to result in a phase shift Δ ~ 6 nm. 

At this loading concentration, BSA binding was virtually nonexistent. 

c Studying the interaction of GroEL with substrate proteins immobilized on the 

biosensor. 

Figure 5.4 demonstrates the stepwise protocol to study the interaction of the chaperonin 

in solution with the substrate protein immobilized onto biosensors. The interaction studies 

between the chaperonin and the substrate proteins (CFTR, α-lactalbumin and DHFR) were 

carried out as soon as the substrate protein was immobilized on the biosensors (using the 

techniques discussed in the previous section). This was to ensure that the substrate proteins 

loaded on the biosensor did not have a chance to undergo any global unfolding reactions due to 

long-term storage. The substrate protein-loaded biosensors were initially incubated in wells 

containing 200 µl buffer (5 min.) to establish a baseline. The tips were then dipped and incubated 

(5 min) into the wells containing either 500nM GroEL or 500nM GroEL with stabilizer to 

observe any association with the immobilized ligand protein. This was followed by incubating 

the biosensors in wells containing refolding buffer (5 min.) to observe dissociation between the 

immobilized ligand and the analyte. In certain instances, the biosensor was regenerated by 

treating it with a mixture of 25mM ATP and 4M Glycerol to dissociate bound GroEL or to 

enable bound GroEL to release protein substrates. The regeneration step was repeated three times 
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to ensure complete removal of the bound analyte. All these studies were carried out at a 

temperature of 25oC with the plate being stirred at 1000 rpm and were carried out in duplicate. 

 

 

Figure 5.4: Protocol involved in generating and carrying out studies with the 

substrate bound biosensor. Substrate proteins were covalently immobilized onto the 

biosensors through amine coupling. The substrate-loaded biosensors were initially 

incubated with the chaperonin to observe any association followed by incubation with 

refolding buffer to observe dissociation. The regeneration of the tips was carried out by 

incubating the tip in a 4M Glycerol-10mM ATP mixture to cause dissociation of the GroEL 

bound to the immobilized substrate. 

d Studying the interaction of GroEL immobilized on biosensors with various substrate 

proteins in solution. 

Figure 5.5 demonstrates the stepwise protocol to study the interaction of the chaperonin 

immobilized onto biosensors with the substrate protein in solution. The biotinylated chaperonin 

was loaded onto commercially available streptavidin biosensors (ForteBio Inc.,) as discussed in 

section b. The GroEL biosensors were initially incubated in wells containing 200 µl buffer (5 

min) to establish a baseline. The tips were then dipped and incubated (5 min) into the wells 

containing either the substrate proteins (CFTR, reduced (unfolded) α-lactalbumin or DHFR) or 

the substrate proteins and the appropriate stabilizer (GTP, oxidized (folded) α-lactalbumin or 
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NADPH respectively) to observe any association. This association step was followed by 

incubating the biosensors into wells containing refolding buffer (5 min) to observe dissociation 

between the immobilized ligand and the analyte. The biosensors were regenerated by treating 

them with a mixture of 25 mM ATP and 4 M glycerol. The regeneration step was repeated three 

times to ensure complete removal of the bound analyte. All the studies were carried out at a 

temperature of 25oC with the plate shaking at 1000 rpm. All assays were carried out as duplicates 

(all assays show two traces) runs to compare reproducibility of the biosensors. 

 

 

Figure 5.5: Protocol involved in generating and carrying out studies with GroEL 

biosensors. Biotinylated GroEL (20 µg/ml) was immobilized onto the streptavidin 

biosensors. The GroEL biosensors were initially incubated with the substrate proteins to 

observe association followed by incubating in refolding buffer to observe any dissociation. 

The regeneration of the tips was carried out by incubating the tips in a 4 M glycerol and 

10mM ATP mixture to cause dissociation of the GroEL bound substrate. 

e Screening of correctors utilizing CFTR NBD1 biosensors. 

A black 96 well multiwall plate (Griener) was utilized for these studies and the volume 

used in the wells was maintained at 200 µl for all samples and controls. The CFTR NBD1 

biosensors were generated by the method discussed in section d, method 2. Seven CFTR NBD1 
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biosensors were utilized for screening each batch of correctors. In addition to these, a blank 

biosensor was used as a control for non-specific binding of proteins to the biosensor. This 

biosensor was dipped in a well containing 200 µl of the chaperonin. Each batch of correctors 

consisted of five correctors, one negative control (GroEL) and one positive control (GroEL + 

GTP) into which the seven CFTR NBD1 biosensors were dipped. 

 

 

Figure 5.6: The experimental set-up involved in carrying out a CFTR screening. 

Steps involved in generating the biosensors involved immobilizing CFTR NBD1 on the tips 

using antibodies. These CFTR NBD1 tips were then utilized to study GroEL binding in the 

presence/absence of the correctors. 

The CFTR NBD1 correctors were obtained as a stock of 4 mg/ml in DMSO. These were 

diluted to 200 µM in refolding buffer (standard concentrations for HTS systems). The screening 

process consisted of three separate stages. In the first stage, the CFTR NBD1 loaded biosensors 

were dipped into either the buffer itself or buffer containing 200 µM of the correctors to establish 

a baseline. In the second stage, the association of the CFTR NBD1 biosensors with the samples 

and the control was measured. Here, the tips were incubated into wells containing GroEL with 

the correctors or GroEL itself for 5 min. to measure the association. One well for the negative 
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control had buffer instead of GroEL. The association phase was followed by dissociation in the 

same wells utilized for the baseline step. The studies were repeated for the second set of 

correctors. 

5.3 Results and discussion. 

Before screening for CFTR NBD1 stabilizers, it was necessary to optimize the 

chaperonin assay to be utilized with the BLI system. BLI and SPR are competing but 

complimentary techniques that helps to obtain similar data using two different principles. A 

number of publications have indicated that the BLI data is in close agreement with the data 

obtained from SPR (243, 244). It was predicted that the data obtained from the BLI should be in 

agreement with the SPR data discussed in chapter 4. To support this prediction, the BLI 

experiments were designed to be as close as possible with the experiments previously carried out 

with SPR and experiments carried out in a similar manner. In SPR, DHFR was initially utilized 

as a substrate for the chaperonin to determine if partitioning could be detected. Hence, during 

BLI optimization, the initial parameters required to carry out the assay were established 

employing DHFR. This also makes it easier to compare the BLI results with the previous 

observations and determine its effectiveness in searching for small molecule stabilizers of 

proteins that tend to misfold. If the chaperonin assay can be utilized with BLI, as discussed 

before, the ease of use, higher throughput and the compatibility with DMSO will make it the 

screening method of choice. 

Prior to carrying out these studies, it was necessary to investigate the feasibility of using 

the large molecular mass of the chaperonin with the BLI platform to enable one to distinguish 

between native and partially unfolded proteins that are attached to the tips or exist in solution. As 

before, it was predicted that the large mass of GroEL binding to the immobilized protein 
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substrates would generate a large signal when it binds to a partially folded form of α-lactalbumin 

whereas GroEL will not bind to the natively folded form. This prediction was based on previous 

studies where the reduced form of the protein that is partially folded has been shown to bind to 

GroEL by SPR (239, 245). As discussed previously, DTT was used as a reducing agent to reduce 

the disulfide linkages in α-lactalbumin and partially unfold the protein. Initial immobilization of 

folded or disulfide reduced (partially unfolded) α-lactalbumin was accomplished with amine 

coupling (239) similar to the approach used with SPR (Section 4.2.1). Once the α-lactalbumin 

was immobilized, the protein-loaded biosensor was incubated into a GroEL solution with and 

without DTT to measure the chaperonin binding. This was followed by incubating the biosensors 

into a refolding buffer solution to measure the dissociation of any bound GroEL. We observed 

that the biosensor with reduced α-lactalbumin (dipped into GroEL containing the reducing agent 

DTT) showed higher signal amplitude than the biosensor that contained the native protein. Here, 

the signal amplitude was a function of the optical thickness around the biosensor. As the signal 

(optical thickness) is higher with the reduced α-lactalbumin, it can be inferred that GroEL 

binding to the partially folded α-lactalbumin. On the other hand, ideally no binding should occur 

with the oxidized α-lactalbumin if all of the protein was properly folded. However, a 

comparatively lower signal observed with the native alpha lactalbumin indicates that GroEL 

might be binding to any unfolded species that exists within the native population or might be 

binding non-specifically to the biosensors themselves. In addition, Sigma α-lactalbumin (80% 

purity) may have some contaminating proteins that remain unfolded. Addition of BSA was also 

utilized to decrease the non-specific binding. However this approach did not work. The 

experiments were carried out in duplicate and the signal traces were observed to overlap (Figure 

5.7). 



	
   164	
  

 

Figure 5.7: BLI can be utilized with GroEL to distinguish between folded and 

partially unfolded protein. The reduction of α-lactalbumin causes a partial unfolding due 

to reduction of a disulfide bond. Reduced (partially unfolded state) and oxidized (folded 

state) α-lactalbumin were covalently immobilized onto the biosensor through amine linkage 

and incubated with 500nM of GroEL. The chaperonin binds with higher amplitude to the 

disulfide reduced α-lactalbumin that contains a higher population of partially unfolded 

species. 

It was also predicted that one could utilize the BLI to study ligand stabilization effects. 

As discussed in chapter 1, such ligands would bind to the native state of the protein and decrease 
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the free energy state of the ligand bound state thus prevent its unfolding. Similar studies to 

follow the binding of the chaperonin to immobilized DHFR, which exists in a dynamic 

equilibrium between a folded and a partially unfolded state, had been previously carried out with 

SPR (Chapter 4, Section 4.3.2). GroEL can be predicted to partition onto DHFR that exhibits 

dynamic equilibrium between its folded and unfolded states. This would result in GroEL binding 

with a rising GroEL dependent signal amplitude while a ligand stabilized predominantly folded 

DHFR would show no or low signal. Accordingly, DHFR was immobilized on the biosensor by 

amine coupling and the DHFR immobilized biosensor dipped into a solution of either GroEL 

alone or GroEL with 10 mM NADPH. As discussed earlier, NADPH is a natural ligand that 

binds to DHFR native state, shifting the population away from a dynamic unfolded state, thus 

stabilizing the native fold. It has also been previously demonstrated through microtube/plate 

experiments (Chapter 2 and 3) and SPR studies (Chapter 4) that this shift in the equilibrium to 

the NADPH stabilized DHFR native state reduces binding to the chaperonin. A jump in the 

signal amplitude during the association phase was observed indicating that the chaperonin is 

binding to DHFR. As predicted in the presence of the small molecule ligand NADPH, there is a 

lower GroEL binding signal (Figure 5.8), indicating stabilizing of DHFR native state by NADPH 

(NADPH does not interact with GroEL). These studies were carried out in duplicate and it was 

observed that the signals were reproducible and overlapped. 



	
   166	
  

 

Figure 5.8: BLI can be utilized to follow the small molecule ligand based 

stabilization of immobilized DHFR in real time. DHFR was immobilized onto amine 

reactive tips through covalent coupling and incubated with GroEL alone or with 10mM 

NADPH. NADPH was observed to decrease the amplitude of GroEL binding due to 

stabilization of the DHFR native state. 

Once the DHFR and α-lactalbumin proteins were examined, the stabilization of the CFTR 

NBD1 protein folding fragment was examined. CFTR NBD1 in the presence of its known 

stabilizer, 10 mM ATP was immobilized onto the amine reactive biosensors using amine 

coupling. The presence of the stabilizer was necessary, as the protein in the absence of ATP has 

been demonstrated to unfold and undergo slow aggregation. This can be counterproductive for 
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the chaperonin assay, as GroEL does not bind to larger aggregates as well due to burial of the 

extensive hydrophobic interface. Fortunately the stabilizing ligand ATP binds to NBD1 with 

weak affinity (µM affinity) and it is easy to wash out the bound ATP from the immobilized 

protein during the baseline step where the biosensor is incubated with the buffer. This procedure 

illustrates the utility of examining aggregation prone proteins because if they are initially 

immobilized, the large-scale aggregation observed in solution is avoided. Thus it was predicted 

that ligand free CFTR NBD1 that interacts with GroEL will most likely exist as a partially 

unfolded form that can now bind to the chaperonin. This prediction was supported by the 

observation that the BLI signal shows a jump in the association phase. Likewise, in the presence 

of another stabilizing molecule GTP, GroEL binding to CFTR NBD1 results in a much lower 

signal amplitude (Figure 5.9). These results suggest that GTP binding stabilizes CFTR NBD1 

bound on the BLI surface resulting in a stable fold that results in a decreased interaction with the 

GroEL in solution. This stabilized form of the protein thus requires a higher energy to unfold as 

compared to the nucleotide free CFTR NBD1 and consequently has fewer hydrophobic residues 

being exposed. This in turn decreases its interaction with GroEL as has been observed. As found 

previously, GTP does not bind to GroEL and as predicted, GTP does not interfere with the 

partitioning of unliganded DHFR onto GroEL. All these observations thus indicate that the 

GroEL chaperonin based BLI experiments can be used to probe the folded state of protein 

substrates, helping us to identify potential protein stabilizers. 
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Figure 5.9: Stabilization of CFTR NBD1 as demonstrated by BLI. CFTR NBD1 was 

immobilized onto amine reactive tips through covalent coupling and incubated with GroEL 

alone or with 10 mM GTP. GTP stabilizes the immobilized CFTR NBD1 leading to a 

decreased GroEL binding that can be followed by BLI in real time. 

An advantage of the SPR system is that it offers a facile way of evaluating the kinetic 

parameters that define a ligand-analyte interaction. Several studies have shown that the binding 

measurements obtained through BLI are comparable to those obtained by SPR (243). The data 

has also been found to be in excellent agreement with isothermal calorimetry data (246). Here it 

was predicted that BLI could be used to examine the kinetic dependence of the binding reaction 

between the chaperone and CFTR NBD1. To examine this dependence, different concentrations 
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of GroEL (0-4 µM) were pipetted into one row of a 96 well plate. Eight separate CFTR NBD1 

biosensor tips were generated by amine coupling. These biosensors were incubated with the 

different GroEL concentrations for 5 minutes to measure the association traces, followed by 

incubating the GroEL bound biosensor in buffer to observe the dissociation phases. The data 

obtained were analyzed using the BLI analysis software. It was observed as predicted that the 

signal amplitude increases as a function of the concentration (Figure 5.10). The signal curves 

obtained were fitted globally to a 1:1 Langmuir’s model. The curves were then fitted with a non-

linear fitting program in the Octet RED96 system to obtain the kon, koff and the Kd values. The 

dissociation constant was estimated to be about 78 nM ± 14nM (Figure 5.10). 

 

 

Figure 5.10: Determination of the kinetic parameters of CFTR NBD1-GroEL 

binding utilizing BLI. This involved immobilizing of CFTR NBD1 onto the biosensor and 

KD = 78nM 
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incubating with increasing concentrations (0-4 µM) of GroEL. It can be observed that the 

binding amplitude increases with concentration. Inset: The partitioning rates for each 

concentration trace were calculated and plotted as a function of GroEL concentration. The 

KD for the CFTR NBD1-Groel binding was estimated to be approximately 78 nM ± 14nM. 

While carrying out these experiments, it was observed that in the dissociation phase, the 

chaperonin was undergoing dissociation from the bound ligand. However, GroEL binding to the 

substrate is usually a high affinity reaction with Kd values that approach nanomolar affinities 

(247). It was therefore expected that a minimal dissociation of GroEL would occur in the 

dissociation phase during the BLI studies. To explain this increased dissociation, one can 

hypothesize that it might be due to the high concentration of protein that is immobilized on the 

biosensor surface. This might sterically prevent the substrate from interacting with the GroEL 

binding sites that are present in the inner rim of the central cavity (Figure 5.11 A). Alternatively, 

GroEL might also be binding non-specifically to the biosensor with low affinity. This non-

specific binding was confirmed by incubating the chaperonin with the unloaded biosensors 

where it was observed that the chaperonin binds to the biosensors non-specifically. Thus, the 

binding constant obtained in Figure 5.10 is not valid due to steric hindrance of the binding 

reaction and non-specific GroEL binding. 

To avoid these interaction artifacts, it was surmised that if one were to optimize the 

orientation of the BLI attached protein substrate while avoiding non-specific binding, that the 

binding reaction under these conditions would be more realistic. To achieve this goal, a novel 

method of immobilizing the substrate protein was utilized. Anti-mouse Fc biosensors were 

utilized to immobilize a monoclonal CFTR NBD1 antibodies and then the CFTR NBD1 was 

bound to the immobilized monoclonal antibody (Figure 5.12). Intact antibodies can still bind to 
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substrates that are bound to the GroEL chaperonin (248). Thus, if a protein is partially unfolded 

and binds specifically to a monoclonal antibody, then GroEL should easily bind to this Ab-CFTR 

NBD1 complex. In addition, the tips used for the Fc immobilization show little background (non-

specific) GroEL binding. The rationale behind this method was that the antibody would act as a 

protein linker and keep the protein away from the BLI surface allowing GroEL better access to 

the partially folded CFTR NBD1 to allow this substrate easy access to interact with the interior 

GroEL binding sites (Figure 5.11 B). 

 

Figure 5.11: Rationale behind using a linker between the biosensor and the ligand. 

(A) Crowding of CFTR NBD1 on the biosensor surface prevents its interaction with GroEL 

binding sites (B) Introducing an extended antibody linker between CFTR NBD1 and the 

biosensor would increase the distance and allow better interaction with GroEL. A flexible 

linker might however lead to the molecules interacting with each other and aggregate on 

the surface. (C) A rigid scaffold like an antibody however reduces the possibility of 

interaction while increasing the distance between CFTR NBD1 and surface 
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It was observed that with this antibody extension approach, the stabilized and the 

partially unfolded states of CFTR NBD1 could be distinguished. The amplitude of chaperonin 

binding to the stabilized form (Figure 5.13 green and yellow traces) was lower than that without 

any stabilizing ligand. In the previous study that utilized amine coupling and amine reactive tips, 

GroEL was observed to show biphasic dissociation from the immobilized substrate (Figure 5.4) 

and GroEL could bind non-specifically to the tips. With the antibody protein substrate extension, 

a rapid dissociation of the chaperonin from the antibody immobilized CFTR NBD1 was not 

observed (Figure 5.13). The arrangement also diminishes non-specific binding of the chaperonin 

to the Fc antibody biosensor. Most importantly, GroEL does not bind to the CFTR NBD1 

monoclonal antibody. This supports our hypothesis that increasing the distance between the 

biosensor surface and the immobilized protein via any suitable linker makes it easier for the 

chaperonin to bind to the protein. It was also predicted that the bound GroEL could be 

dissociated from the biosensor by the addition of ATP and glycerol. When the biosensor was 

incubated with a mixture of ATP and glycerol, it was observed that as predicted, the chaperonin 

undergoes dissociation (data not shown). The signal amplitude reaches the baseline indicating 

complete removal of the chaperonin and that the binding of the chaperonin was specific to the 

immobilized substrate on the biosensor. 
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Figure 5.12: Protocol for immobilizing CFTR NBD1 through an antibody linker. A 

novel approach was utilized to decrease steric hindrance and non-specific binding by 

increasing the distance between the substrate protein and the biosensor. This was achieved 

through an antibody linker and an antibody binding biosensor. This configuration was 

observed to be stable with virtually no CFTR NBD1 dissociation and no non-specific 

binding to the chaperonin. 

The chaperonin immobilized on the biosensor tip was also predicted to be useful to detect 

ligand based stabilization of substrate proteins. An advantage with this set-up is that the tips 

could be regenerated by an ATP wash to remove any bound substrate. The regenerated tips could 

then be re-utilized. In these sets of studies, GroEL was immobilized on the surface of the 

biosensors while the substrate protein was incubated with the stabilizer. However with GroEL, 

one cannot utilize amine coupling as the GroEL dodecamer falls apart at the low pH used for the 

amine coupling reaction. One alternative strategy for immobilizing GroEL is to utilize affinity 

coupling. Using a biotin–streptavidin complex is one such affinity coupling method. The 
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availability of commercial streptavidin biosensors makes this strategy particularly attractive and 

facile. Hence, the GroEL molecule was biotinylated using an EZ-Link Sulfo-NHS-LC-Biotin 

reagent (Pierce). This is a water soluble biotinylation reagent with an intermediate linker for 

labeling proteins and other molecules that have primary amines. Although this leads to the non-

specific labeling of the GroEL molecule, the architecture of the chaperonin makes this problem 

superfluous. This is because the chaperonin has two barrels on either side with two different 

binding sites. Thus, regardless of the way it is immobilized there always exists one binding site 

that is open. The biotinylated GroEL biosensor was then incubated with either the substrate 

protein alone or the substrate protein in the presence of the stabilizer. 

 

Figure 5.13: Utilizing an antibody based scaffold reduced the non-specific binding of 

the chaperonin to the biosensors. Here GTP based stabilization of CFTR NBD1 is 

demonstrated with the antibody based scaffold used to immobilize CFTR NBD1. The 
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antibody-based scaffold was generated by incubating CFTR NBD1 monoclonal antibodies 

with the commercially available anti-mouse Fc biosensors. The antibody loaded biosensors 

were then further incubation with the CFTR NBD1. The immobilized CFTR NBD1 

biosensors were then incubated with GroEL alone (red trace) as control or in the presence 

of GTP (green trace). The GTP stabilized CFTR NBD1 showed decreased binding to 

GroEL as compared to the control (black trace, CFTR NBD1 antibody on anti-mouse Fc 

biosensors). 

 

Figure 5.14: Utilizing BLI to follow ligand based stabilization of CFTR NBD1 with 

immobilized chaperonin biosensors. GroEL biosensors incubated with CFTR NBD1 in the 

presence of GTP shows lower binding amplitudes than those in the absence of GTP 

indicating stabilization of CFTR NBD1. The low signal obtained with the smaller CFTR 
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molecule was amplified using CFTR NBD1 monoclonal antibodies (having a larger mass) 

that bind to the CFTR NBD1–GroEL complex. 

Predictably, the reverse configuration should give the same response that was previously 

observed with the CFTR NBD1 immobilized biosensors, but at lower amplitude. The lower 

amplitude is expected since CFTR NBD1 (23 kDa) is substantially smaller than GroEL (802 

kDa). This is because the signal amplitude is a function of the optical thickness of the analyte, 

which in this case (both DHFR and CFTR NBD1) is much smaller than the dodecameric GroEL 

(800 kDa). Since the signal should be smaller, one can enhance the signal as follows. As stated 

previously, proteins that bind to GroEL are exposed to solution and antibodies are still able to 

bind to the protein substrate even when it is bound to GroEL. Therefore, the initial protein 

substrate binding signal should be enhanced if one adds a specific antibody (in the case of CFTR 

NBD1, a monoclonal Ab) to change the optical thickness and hence increase the phase shift of 

the BLI signal. As predicted, the CFTR NBD1 bound to the immobilized GroEL with 

substantially lower amplitude as compared to the studies where the chaperonin was in solution. It 

was also observed that on addition of an antibody the difference between the stabilized and non-

stabilized forms was magnified. This occurs as the antibody binds as a function of concentration 

to the CFTR NBD1 that has partitioned onto the GroEL tips. As a higher percentage of the non-

stabilized CFTR NBD1 partitions onto the GroEL tips, consequently more antibodies bound to 

these tips (in contrast with those tips incubated with the stabilized CFTR NBD1) (Figure 5.14). 
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Figure 5.15: Amplification of BLI signal by addition of CFTR NBD1 antibodies. 

CFTR NBD1 is a small protein with a mass of 23kDa. As the BLI signal is partly dependent 

on the size of a protein, this signal is predicted to be very small. However, one method of 

increasing this signal is to utilize monoclonal antibodies against CFTR NBD1 that have a 

higher molecular mass and would effectively lead to amplification of the signal. 

Once the assay was developed and the utility of BLI as a label-free detection method for the 

chaperonin sink assay was demonstrated, a limited screening to demonstrate the feasibility of the 

method in conducting high throughput assays was carried out. To carry out these studies 10 

CFTR NBD1 “correctors” from the Cystic Fibrosis Foundation Therapeutics were obtained. 

Correctors are small molecule ligands that somehow restore its biosynthesis and functional 

expression on the cell surface (236, 249). These compounds are a part of a modulator compounds 

panel that includes human CFTR NBD1 inhibitors, potentiators and correctors. These modulator 

compounds have been shown to increase CFTR NBD1 expression or activity in various studies. 

Even amongst the compounds that were obtained, the mode of action was not clear. In these 

studies, the possibility that these correctors may directly bind to and stabilize the CFTR NBD1 

protein needs to be determined. Thus using the BLI system, a corrector that directly interacts 

with the CFTR NBD1 native state should stabilize the protein and prevent or decrease its 
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interaction with the GroEL chaperonin. On the other hand the correctors that do not bind to 

CFTR NBD1 and increase CFTR NBD1 expression and export via a different indirect 

mechanism should not interfere with the chaperonin binding. The screening was carried out in 

two separate runs to make it easier to analyze the data since only five correctors at a time could 

be evaluated using the eight biosensor Octet RED96. Two different configurations of the GroEL 

and CFTR NBD1 were also utilized to validate the results. In the first configuration, CFTR 

NBD1 was immobilized utilizing antibodies on the biosensors as described in the methods 

section while in the second configuration, the chaperonin was immobilized onto the biosensors. 

 

Configuration 1: In this configuration, immobilized CFTR NBD1 biosensors were 

generated by utilizing CFTR NBD1 antibodies and anti-mouse Fc biosensors as described in 

Figure 5.12. These biosensors were initially incubated in a buffer containing the correctors for 

establishing a baseline followed by incubation with the mixture of CFTR NBD1 and the 

correctors to measure the association. The dissociation buffer also contained the correctors to 

prevent dilution of the correctors that was already bound to the CFTR NBD1 during the 

association and thus preventing any artifacts in the output. The correctors were screened at an 

initial concentration of 200 µM (standard concentration for HTS). During the screening, CFTR 

NBD1 without any stabilizer served as a negative control while CFTR NBD1 that was stabilized 

with GTP served as the positive control. Since this is a qualitative assay, one needs a range to 

determine potential hits and eliminate those compounds that do not stabilize CFTR NBD1. The 

CFTR NBD1 positive control was used as a standard for determining the effectiveness of the 

stabilizers in binding to CFTR NBD1. Since the assay depends on the association of the 

chaperonin to the CFTR NBD1, only the association phase was considered during the data 
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analysis. Any compound with its binding amplitude lower than the positive control (GroEL 

binding to CFTR NBD1 alone) was considered as a hit, while compunds having higher binding 

amplitude than the control trace was discarded. Thus, any compund that decreases GroEL 

binding to CFTR NBD1 resulting in a low signal output might indicate a potential CFTR NBD1 

stabilizeer 

 

Figure 5.16: Screening CFTR NBD1 correctors utilizing BLI. CFTR NBD1 without 

any stabilizer (red trace) was the negative control while CFTR NBD1 stabilized with GTP 

was the positive control (green trace). The hits C1 (blue trace) and C7 (brown trace) that 

demonstrated decreased amplitude of GroEL binding are marked with a star while others 

C4 (light blue), C6 (dark green) and C9 (purple) that did not show a decreased amplitude 

were discarded and are marked with a X in the Figure. The noisy signal observed with C9 
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is usually associated with the aggregation of the small molecule compounds in aqueous 

buffers. 

 

Figure 5.17: Screening a second set of CFTR NBD1 correctors utilizing BLI. CFTR 

NBD1 without any stabilizer (red) was the negative control while CFTR NBD1 stabilized 

with GTP (green) was the positive control. The binding of the chaperonin to CFTR NBD1 

on the tips was lower for the hits C12 (brown), C16 (dark green), C15 (light blue) and C17 

(dashed green) than the CFTR NBD1 without any stabilizer (red trace). In the Figure, the 

hits are marked with a star while other one that was discarded was marked with an X. 

It was observed after screening both the batches that 5 of the 10 correctors (C1, C7, C12, 

C15 and C16) showed decreased amplitude of binding in the association phase indicating that 

these might be potential stabilizers of CFTR NBD1. One of the correctors demonstrated a noisy 
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signal, characteristic of compounds that are insoluble and lead to formation of colloids in the 

solution that bind to the biosensor non-specifically. To reaffirm this data set, the hits were 

retested. The second screen revealed that the five compounds that were considered hits all 

resulted in a decrease in GroEL binding to CFTR NBD1. This second screen also helped to 

measure the relative efficiency of the stabilizers and rank them in order of their effectiveness in 

stabilizing the compounds. This process of ranking the compounds is an important aspect of HTS 

where only the top 1% or fewer of compounds are chosen for secondary screening. Preliminary 

results indicate that the compounds are ranked as C7>C15> C 16> C1> C12 in their 

effectiveness of preventing GroEL binding to CFTR. 

 

Figure 5.18: Ranking hits obtained through primary screening of CFTR NBD1 

correctors utilizing BLI. The hits (stars) obtained by BLI were ranked on the basis of their 

effectiveness in stabilizing CFTR NBD1. CFTR NBD1 without any stabilizer (green trace) 

was the negative control while that stabilized with GTP (blue trace) was the positive control. 
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Configuration 2: BLI also gives another method of validating the results obtained in the 

primary screen. As demonstrated previously, one can utilize a reverse configuration of 

immobilizing GroEL on the biosensors and then probing the stability of CFTR NBD1. 

Accordingly, the GroEL biosensors were generated and incubated in a mixture of CFTR NBD1 

alone and CFTR NBD1 with each of the five corrector compounds during association and the 

compounds in the buffer during dissociation. As the signals obtained during this study were very 

low, the signals could be amplified utilizing CFTR NBD1 monoclonal antibodies. Again, the 

CFTR NBD1 was used as a positive control and its amplitude used as the criterion for assigning 

hits, while buffer was the negative control. It was observed that even with the inverted set-up, the 

compounds still exhibited stabilizing of CFTR NBD1 (Figure 5.19). 

 

 

Figure 5.19: A reverse configuration with GroEL immobilized on the tips was 

utilized to screen for hits. Here the CFTR NBD1 was incubated with the correctors and 
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GroEL tips (containing biotinylated GroEL immobilized on streptavidin tips) were dipped 

into the CFTR NBD1 containing buffers. CFTR NBD1 without any stabilizer (GroEL, dark 

green trace) was the negative control while CFTR NBD1 stabilized with GTP (GroEL + 

GTP, purple trace) was the positive control. All the hits obtained from the previous screen 

were observed to demonstrate stabilization of CFTR NBD1 as shown by a decrease in 

binding of GroEL as compared to CFTR NBD1 without any stabilizer (dark green trace). 

The small molecules utilized in screening were dissolved in DMSO. Due to its high 

solvent power, low chemical reactivity and relatively low toxicity, DMSO has become the 

solvent of choice for small molecule storage and handling. However, a possible concern is the 

effect of DMSO both on the proteins as well as with the instrumentation. It has been shown to 

change the properties of proteins in solution, leading to protein denaturation, aggregation, or 

degradation and can also change protein binding properties (250). Additionally, DMSO has a 

much higher RI than common buffer solutions, which can make it difficult to produce reliable 

readings from DMSO-containing samples using optical biosensor technologies. The combination 

of density changes and DMSO effects on the protein makes experimental design and 

interpretation of results rather complex with SPR. Small differences in concentration of DMSO 

lead to large changes in SPR responses (100 RU for a 0.1% change). However, unlike SPR, BLI 

has the advantage that it is not as sensitive to fluctuations in refractive indices and hence is more 

forgiving of DMSO effects. This makes it much easier to carry out screening of small molecules 

using BLI as compared to SPR and other optical techniques. 

In these previous studies, human wild type CFTR NBD1 was utilized as a substrate 

protein. However, although the correctors might be effective against the wild type CFTR, they 

might not show similar effectiveness against mutant proteins that are the cause of CF. One of the 
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most common CF mutations is the ∆F508 mutant that is also the most severe and clinically 

relevant mutation. Since the human mutant was not available, it was decided to utilize the mouse 

mutant for further studies. However, since these are mouse proteins one cannot utilize the human 

antibody based capture method to generate mCFTR biosensors. The alternative was to generate 

GroEL biosensors and utilize them to carry out screening. Prior to that, it needs to confirm that 

the differences between the stabilized and the non-stabilized forms of the mouse protein could be 

distinguished. It is known that GTP also binds and stabilizes mouse CFTR NBD1. As determined 

previously, the mutant mouse ΔF508 mouse protein showed the same signal responses to GroEL 

in the absence and presence of GTP (Figure 5.20). 

 

Figure 5.20: GTP stabilizes the murine ΔF508 CFTR NBD1 mutant. To observe if 

one could follow the stabilization of the mouse ΔF508 mutant, the protein was incubated 
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with biotinylated GroEL on tips in the presence (brown trace) or absence (yellow trace) of 

the stabilizer GTP. Human wt NBD1 was also incubated with (green trace) and without 

(red trace) GTP as additional controls. 

For any potential CFTR corrector, one needs to determine if the candidates identified 

previously would also stabilize the mouse ΔF508 CFTR NBD1 mutants. The GroEL biosensors 

were therefore incubated with the mouse ΔF508 CFTR and the correctors. The ΔF508 mutant 

alone was used as the positive control against which the response of the other correctors was 

measured. Unfortunately, one cannot use the monoclonal anti-human CFTR NBD1 antibody to 

enhance the signal for GroEL bound CFTR because this antibody does not interact very strongly 

with the mouse Δ508 mutant CFTR-NBD1. However even with the low signal amplitudes from 

the mouse CFTR NBD1 binding to GroEL biosensors, one can observe (Figure 5.21) that the 

amplitude of the signals for all five correctors was lower than that of the positive control. This 

indicated that the potential positive “hit” correctors that worked with the wild type human CFTR 

NBD1 also diminished mouse ΔF508 CFTR NBD1 partitioning onto GroEL. In this instance, it 

may be valid to suggest that, at least with CFTR NBD1, that small molecule stabilizers identified 

for the native form of the protein may also stabilize some mutants (particularly the ΔF508 CFTR 

NDB1 mutant). However, this approach might not work with all misfolding proteins and as 

demonstrated with the frataxin mutants I154F and D122Y (Chapter 2, Section 2.3.3), each 

mutant might have to be screened separately. 
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Figure 5.21: The CFTR NBD1 correctors that demonstrate “potential” stabilization 

of the native human CFTR NBD1 also appear to stabilize the mouse CFTR NBD1 ΔF508 

mutants. The CFTR ΔF508 mouse mutant was treated with biotinylated GroEL 

immobilized on streptavidin biosensors. The binding amplitudes of the mutant protein in 

the presence of the previously identified potential “hit” correctors, C1 (pink), C7 (light 

blue), C15 (yellow) and C16 (brown) were observed to be lower than the CFTR NBD1 

ΔF508 mutant without any corrector which is the positive control (red trace). 

The objective of a HTS is to screen as many compounds as possible in the shortest 

possible time. The necessity to maintain a balance between the output and the robustness must 

also address instances where false positives may arise. It is necessary to carry out secondary 

assays to identify the false positives. For this particular screening set-up, a false positive result 
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may arise in instances where the lead compound (corrector) in question would bind and interact 

with the GroEL substrate binding site, thereby inhibiting the partially folded protein substrate in 

question from binding/partitioning onto GroEL. This event would also lead to a decreased signal. 

An alternative instance would be where the small molecule may adsorb onto the substrate protein 

to cover available GroEL binding sites. This would also give rise to false positives. However the 

probability of this happening would be is very rare and can be safely discarded. One way of 

identifying false positive results is to check if the partitioning of another substrate protein 

(control substrate like DHFR) onto GroEL is also affected by the potential “hit” correctors. 

 

 

Figure 5.22: Secondary screening of the CFTR hits utilizing DHFR helped to 

identify any false positives and to isolate the stabilizers. The hits should not affect or 

Association Dissociation 

All traces below this 
were discarded 
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decrease DHFR binding to the chaperonin (red trace and red arrow). Any trace that shows 

association below the red arrow is discarded. In this assay, three of the potential “hits”, C1 

(black trace), C12 (light blue trace) and C7 (brown trace) were observed to decrease DHFR 

partitioning onto GroEL, strongly suggesting that they interfered with chaperonin binding 

and must be ruled as false positives. C15 (pink trace) and C16 (blue trace) (shown by stars) 

increases do not affect the chaperonin partitioning thus leading us to conclude that these 

may be valid “hits” that need to be tested further to identify direct binding. 

Here one utilized DHFR as the alternative substrate protein. GroEL was immobilized 

onto the biosensors using streptavidin biosensors and incubated with the DHFR in solution. 

DHFR without any corrector (red trace Figure 5.21) was the positive control. Ideally, the 

correctors should not interfere with DHFR partitioning onto GroEL. The prediction was that in 

case of false positives, one would observe a decrease in binding of DHFR to GroEL. It was 

observed (Figure 5.21) that there is a decrease in the binding to DHFR in presence of the 

correctors C1, C7 and C12. Thus, it was inferred that these compounds might be false positives 

that could possibly be affecting the partitioning of the control protein substrate onto GroEL by 

directly interacting with GroEL (as an example). Two of the hits C15 and C16 however, did not 

prevent DHFR partitioning and binding, indicating that these two candidates could be potential 

CFTR NBD1 stabilizers that bind to the CFTR NBD1 native state and prevent its aggregation. 

As with all drug protein interactions, this direct interaction would need to be confirmed using 

other direct binding measurement techniques (spectroscopic, stability shifts). 

5.4 Conclusions. 

In this chapter, the feasibility of utilizing the chaperonin based BLI system to screen for 

small molecule stabilizers was demonstrated. This technique is similar to SPR in terms of the 
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data obtained but without the problems associated with the microfluidics based system of SPR. 

Comparison studies have established that data obtained from SPR is replicated with the BLI 

based platforms. Unlike SPR, BLI utilizes the shifts in interference pattern of light caused by 

changes in thickness of molecules bound to the sensor. The compatibility of using the BLI with 

existing HTS systems utilizing 96 and 384 well plates make it an excellent choice for high 

throughput studies. Furthermore one is able to rapidly assess the binding kinetic data parameters 

of the substrate protein-chaperonin partitioning amplitudes allowing researchers to identify 

potential “hits” that can be further characterized. BLI biosensors are available in a number of 

chemistries that make it easier to conjugate various types of proteins. In addition these 

biosensors are comparatively cheap ranging from $2-$10/unit. Furthermore, these tips can be 

regenerated by reversing the bound chaperonin with ATP. Thus increases in assay speed (turn 

around), avoidance of aggregation interferences, reproducibility, along with low cost are all 

factors that makes the BLI platform an excellent alternative for SPR. In this chapter, the 

technique was initially used to demonstrate the proof-of-principle of following in real-time the 

partitioning with several substrate proteins like DHFR and CFTR NBD1. The limited screening 

to validate potential stabilizers for both human and murine CFTR NBD1, and ruling out false 

positives through secondary screening allowed us carry out a screening set and validation within 

as little as 20 min. for ten compounds. With a 16-channel system, the assay sets can be doubled. 

However, as with all label-free technologies, one has to search for optimal biosensor surfaces or 

constructions to rule out possible non-specific binding effects with some of the biosensor 

platforms. Non-specific binding can be reduced by increasing the ligand concentration and 

immobilization density or utilizing low levels of non-ionic detergents (tween 20) or using non-

specific carrier proteins like BSA to block non-specific sites. In this vein, blocking non-specific 
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interactions resembles common blocking reactions used for western blot analysis. Rebinding of 

the analyte during dissociation as well as evaporation of the analyte solution in wells over long 

incubation period may lead to skewed kinetics. Compared with current state of the art uHTS 

systems, BLI is a medium throughput instrument at best and currently cannot reach true HTS or 

uHTS output levels. However, in case of the chaperonin assay with transiently stable protein 

substrates, the benefits overweigh any associated problems and make it an instrument of choice. 



	
   191	
  

CHAPTER 6: TOWARD DEVELOPING A HTS ASSAY TO INHIBIT BACTERIAL 

TOXIN TRANSITIONS 

 

6.1 On the development of a high throughput assay to inhibit anthrax toxin transitions. 

6.1.1 Rationale: Bacterial toxin transitioning as unfolding events and utilizing GroEL to 

detect these unfolding events. 

Several bacterial toxins such as the pseudomonas endotoxin, anthrax toxin and the 

clostridium toxin undergo conformational changes during their activation. These conformational 

changes are often associated with the transient exposure of hydrophobic residues before 

undergoing an irreversible conformational rearrangement. This transient exposure of 

hydrophobic residues frequently leads to an increased hydrophobic character of the protein. In 

the absence of a membrane or a lipid component that buries the exposed hydrophobic residues, 

the toxins undergo aggregation in solution. This tendency of the toxins to undergo aggregation 

makes solution based studies of the toxins and thus drug discovery efforts difficult. The 

predisposition of the toxins to expose hydrophobic residues and undergo aggregation is similar to 

what has been observed with misfolding proteins such as CFTR. Therefore, a possibility exists 

that one can immobilize the bacterial toxins onto a solid surface to prevent aggregation and can 

be used as a platform to develop novel antimicrobial agents aimed at inhibiting toxin transitions. 

One such bacterial toxin that exhibits an irreversible conformational rearrangement 

during its activation is the anthrax protective antigen (PA). During this conformational 

rearrangement, PA undergoes transitioning from a soluble form (PA prepore) to a membrane 

insertable pore form (PA pore). In vitro, the addition of detergents, 1M urea or adjusting the 
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solution pH towards a mild acidic nature (~ pH 5.0) at a temperature of 37ºC are sufficient 

solution conditions that allow the initial soluble prepore protein to transition to the pore 

insertable state (251). This pore form of the PA results in the formation of a long hydrophobic 

beta barrel (100 Å) with a hydrophobic tip. In the absence of lipids or detergents, PA prepore 

fails to transition to the pore, and the resulting intermediates aggregate in solution. If the pore is 

allowed to somehow transition to the pore without extensive aggregation (very low 

concentrations), the pore itself will aggregate via the exposed hydrophobic tips. Immobilizing the 

PA prepore onto a solid surface would thus be predicted to prevent aggregation after 

transitioning. It is also possible to easily direct the immobilization to occur in a homogenous 

manner on the immobilized surface using the truncated (1-288 residues) lethal factor N-terminal 

domain (LFN) as an affinity based binding orientation platform (252). This directed 

immobilization positions the PA pore such that the unfolding and refolding of beta barrel and the 

hydrophobic tip extend away from the immobilized surface (Figure 6.1). This approach also 

allows us to carry out proof-of-principle studies to determine whether the chaperonin assay 

platform could be also be used to detect these soluble to membrane insertion transitions that 

result from extensive refolding conformational changes. Since the chaperonin protein recognizes 

hydrophobic regions, it is reasonable to test if GroEL can also bind to the exposed hydrophobic 

tip of the pore. The binding of GroEL to PA pore can be detected using BLI or SPR. This can 

now be utilized as the basis for an assay to screen for small molecule inhibitor of the PA prepore 

to pore transitioning. Potentially novel small molecule antibacterials can be screened that prevent 

the transitioning which in turn would inhibit the exposure of the hydrophobic regions, detected 

by a decreased GroEL binding signal. Such an approach that utilizes the chaperonin for probing 

the transitioned state of the toxin is an extension of the chaperonin assay platform discussed 
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previously. Here, the anthrax pore toxin is utilized as a test substrate to carry out the initial 

proof-of-principle studies. 

 

Figure 6.1: Strategy to identify inhibitors of bacterial toxin transitions using GroEL as a 

general detector of bacterial transitions. The PA prepore undergoes transitioning to its 

pore form by acidification of pH or by treatment with urea at 37ºC. The binding of the 

prepore to a solid surface prevents the aggregation of the pore. GroEL binding to the 

exposed hydrophobic tip of the PA pore after transitioning could then be followed using 

SPR/BLI. 

6.1.2 The anthrax pore toxin. 

a The anthrax toxin components. 

Several bacteria secrete proteinaceous toxins in order to evade the host's immune 

response. One such organism is the anthrax causing Bacillus anthracis, a gram-positive spore 

forming bacteria. Inhalation of the anthrax spores can lead to a fatal hemorrhagic disease (253). 

The cell injury and death associated with anthrax is due to a virulence toxin that leads to 

pathogenesis. The anthrax toxin is an A/B binary bacterial toxin (254) with two different 
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proteinaceous components. The A component leads to disruption of cellular processes to produce 

the clinical symptoms of the disease while the B component is involved in delivering the A 

component to the cytosol. The toxin consists of three proteins, namely protective antigen (PA), 

lethal factor (LF), and edema factor (EF). LF and EF are cytosolic enzymes that form the 

component A while the translocon PA that aids in the transport of these enzymes is component B. 

LF is a 90 kDa Zn+2 organometallic protease that inactivates MAP kinase kinases (255) while EF 

is a 89 kDa Ca+2 dependent adenyl cyclase (256). The LF and EF together in association with PA 

forms the lethal toxin that leads to macrophage lysis, immune-system suppression and death 

(257). 

PA is an 83 kDa protein that binds to the two known anthrax receptors ANTXR1/2 (258, 

259) in a 1:1 ratio. On binding to the receptor, PA is cleaved by a membrane protease furin into 

two fragments, a 20 kDa N-terminal fragment and a 63 kDa C-terminal fragment (PA63) that 

remains bound to the receptor. As shown in Figure 6.2, the PA bound to the receptor 

oligomerizes into a heptamer (260). This complex binds with very high affinity to the EF/LF. 

The toxin complex then undergoes internalization to form an endosome. As the pH of the 

endosome decreases, the PA prepore undergoes a conformational shift leading to the formation 

of a beta barreled pore. This membrane insertable hydrophobic pore complex forms a new 

protein translocon that allows the other toxins to transverse the endosomal membrane. The 

enzymes EF/LF that partially unfold in the acidic endosomal environment (261) allowing these 

proteins to undergo translocation through the PA by a pH dependent mechanism. On 

translocation, the emerging toxin enzymes undergo refolding in the cytoplasm (262). A narrow 

phenylalanine flexible clamp that is only found within the lumen of the newly formed PA pore 
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channel is thought to be the crucial molecular element that controls the translocation of unfolded 

polypeptides (263). 

 

Figure 6.2: Mechanism of cell entry by the anthrax toxin. The anthrax toxin enters 

the host cell by binding to the anthrax receptors and undergoing endocytosis. Subsequent 

acidification of the endosome leads to pore formation and translocation of lethal factor. 

Figure sourced from (264) 

b Structure. 

Structurally, the water soluble PA prepore heptamer is a hollow ring, 160 Å in diameter 

and 85 Å high and each subunit consists of four domains (refer to Figure 6.3) (265). Most of the 
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domain 1 is cleaved by furin (domain highlighted in grey, Figure 6.3) after the 83 kDa PA 

monomer (PA83) binds to specific cell receptors. This cleavage is essential as the N-terminal 

region of the PA83 sterically hinders the premature toxin oligomerization. Domains 2 (blue) and 

4 (green) are not only involved in interaction with the ANTXR2 (pink) but also in the formation 

of the pore stem. Two β-strands (β2 and β3) from each domain of the heptamer are involved in 

forming the 14 strand transmembrane barrel (266). Four histidines (His 299, His 304, His 310, 

and His 336) in the loop region are protonated at endosomal pH values and are thought to be 

responsible for triggering pore formation (267). Domain 3 (purple) is involved in 

oligomerization while domain 4 binds to the cellular receptors (268). 

c Anthrax therapeutics. 

The Centers for Disease Control and Prevention (CDC) recommends treating anthrax infections 

by combining oral antibiotics such as ciprofloxacin and doxycycline with anthrax vaccine (269). 

The antibiotics are effective against the bacteria but cannot clear the protein toxins that have 

been already released in the body. In addition, the vaccine requires four weeks to be effective 

and is unlikely to be effective immediately after infection. Thus, there exists a need for rapid 

post-infective treatment options. Such therapeutic options that are currently under development 

include antibodies, toxin fragments, receptor decoys, etc. Antibodies such as Abthrax 

(Raxibacumab® from Human Genome Sciences Inc) (270) and Anthim (Elusys Therapeutics) 

bind to PA domain 4 with high affinity thus preventing PA interaction with the anthrax receptor. 

Decoys include peptides that mimic either regions of the receptor extracellular domain or 

fragments of PA domain 4. These act as competitive inhibitors and block toxin-receptor 

interactions. However, both these experimental approaches are protein therapeutics that are 

known in some cases to induce immune responses if these protein drugs aggregate prior to or 
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during administration, rendering the potential drugs ineffective. An alternative therapeutic option 

is to develop small molecule drugs to prevent/treat anthrax infection that can be administered 

orally and are easily absorbed within the blood stream. A HTS method to identify such small 

molecules targeting PA internalization has been reported (271). Another HTS assay uses Förster 

(Fluorescence) resonance energy transfer (FRET) to identify molecules that inhibit binding of 

PA to CMG2 (272). One target that has not been explored is to develop inhibitors that 

specifically target the PA prepore to pore conversion at both neutral and endosomal pH 

conditions. 

In our case, the key issue in developing a unique anthrax toxin antimicrobial assay 

requires that one can detect the prepore to pore transition directly. Here the ability of GroEL to 

detect the prepore to pore transition of the anthrax PA shall be examined. Specifically, it shall 

also be determined if a GroEL binding signal to the transitioned PA pore can be used to 

potentially screen for inhibitors of bacterial toxin transitions. GroEL binding could thus be 

utilized as the basis for a HTS assay for rapidly screening novel antibacterials. This assay could 

also be used as a broad based platform to identify inhibitors for other bacterial toxins that 

demonstrate a typical soluble to membrane insertion transitions reactions (similar to the anthrax 

toxin prepore to pore transition). In the course of this study, it was found that although GroEL 

did not bind to the pore, fortuitously, the transition (from PA prepore to pore) itself could be 

followed using SPR and BLI label-free methods. It was also observed that the PA binding and 

transitioning reactions on the surface were similar to the ones occurring in the endosomal 

complex in real-time. One could therefore, potentially utilize this fortuitous observation to design 

an assay to screen for the transition inhibitors. This modified assay could also allow one to 
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rapidly search for novel small molecule ligands that prevent binding of the toxin to CMG2 as 

well as those that prevent binding of the LF to PA. 

 

Figure 6.3: Structure of monomeric PA interacting with the anthrax receptor capillary 

morphogenesis gene 2 (CMG2) and showing various domains. Figure sourced from (264). 

 

6.2 Materials and methods. 

6.2.1 Materials. 

The high affinity form of GroEL was purified in the lab using a published protocol (134). 

The SPR measurements were carried out on a commercially available CM5 chip (GE healthcare) 

using a Biacore 3000 (GE healthcare). CM5 is a general-purpose chip that is designed to allow 
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detailed quantitative interaction studies for analyzing interaction kinetics, affinity, concentration 

and binding between various biomolecules such as small organic molecules, proteins, lipids, 

carbohydrates, and nucleic acids. The BLI measurements were carried out on an Octet (multi-

channel) or a BLItz (single-channel) instrument (ForteBio Inc.). PA, LFN (A Cys mutant of N-

terminal truncated lethal factor) and CMG2 were kind gifts from R. John Collier (Harvard). All 

other chemicals were of the highest purity and obtained from standard vendors. 

6.2.2 Methods. 

a Immobilization and specific orientation of the PA prepore state. 

The immobilization of PA onto the biosensors for both BLI and SPR was achieved via 

non-covalent binding using a single cysteine containing LFN E126C mutant that had been 

covalently linked to the biosensor. For both SPR and BLI, a thiol surface utilizing EDC/NHS and 

2-(2-pyridinyldithio)ethaneamine hydrochloride (PDEA) (Figure 6.4) was initially generated. 

Briefly, EDC/NHS were mixed in a 1:1 ratio and allowed to incubate with the biosensor surface 

for 7 min. to activate the surface. PDEA dissolved in 0.1 M borate buffer (pH 8.3) was then 

allowed to interact with the activated surface for 5 min. to generate the activated thiol surface. 

The thiol surface was then incubated with 100 nM LFN in 10mM acetate buffer to allow the 

cysteine linkage to occur. Excess reactive thiol linkages were then quenched using a solution of 

50mM cysteine in a 1 M sodium chloride, 10 mM sodium acetate buffer. This protocol results in 

the formation of biosensors with immobilized LFN. Increasing concentrations of PA were then 

incubated with the immobilized LFN for 10 min (At this point the curve shows saturated 

response) to obtain the immobilized PA. The binding of PA to LFN is high affinity binding with 

Kd of ~ 1 nM (273) and the off rate is negligible within the time-frame of the experiment, 

indicating that PA will most likely remain tightly bound to the sensor surface during the response 
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measurements. The immobilized PA biosensor was then utilized for further experiments. For 

obtaining a transitioned and immobilized PA pore, the previously generated biosensor was 

further treated with refolding buffer pH 6 for 5-10 min. to generate clean baseline controls. 

 

Figure 6.4: Immobilization of PA onto the sensor surface. EDC and NHS (1:1 ratio) were 

used to activate the sensor surface on the BLI tip or the SPR chip. This activated surface 

was then treated with PDEA to obtain a thiol-binding surface. A cysteine mutant of the N-

terminal fragment of the Lethal factor (LFN) could then be covalently attached to the 

sensor using thiol linkage. PA which binds to LFN with nanomolar affinity was then 

immobilized through affinity linkage to the covalently LFN to obtain the PA immobilized 

biosensors. 

b Measuring the binding of GroEL to PA using BLI. 

The binding of GroEL to PA pore was also investigated using BLI. PA prepore at a 

concentration of 20 µg/ml was immobilized onto the BLI sensor surface as described in section b 

above. The newly immobilized prepore was initially dipped into refolding buffer at pH 6.5 to 
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induce prepore to pore transitioning and obtain the pore form of the toxin. The immobilized PA 

pore was then incubated with 500nM GroEL in refolding buffer, pH 7.5 for 5 min. to record any 

possible association between GroEL and PA pore. 

c Measuring the formation and the kinetics of the pore translocon using SPR. 

The PA was immobilized by the method described previously in section b. All the studies 

were carried out at room temperature. The formation of the pore translocon was initiated by 

acidification of the immobilized PA. In SPR, this was carried out by flowing acidified buffers 

over the biosensor surface for 8 min. The experimental kinetic time course included a phase 

where the immobilized PA was incubated with refolding buffer of pH 6.5 or lower for 5 min. 

followed by increasing the pH back to 7.5 through incubation with pH 7.5 refolding buffer (50 

mM TRIS, 50 mM KCl, 10 mM MgCl2, 0.5 mM EDTA, pH 7.5) for 5 min. A flow rate of 5 

µl/min for both the acidic buffer and refolding buffer was utilized for the SPR studies. 

Since SPR signal traces are usually affected by changes in pH and buffer composition 

(bulk effects), the signal trace obtained during this study was due to an additive effect of the 

transitioning signal and the bulk effects signal. To obtain the transitioning signal alone, the 

solvent bulk effect signal (change in refractive index) was subtracted from the initially recorded 

signal. One way of recording the bulk effect contributions was to repeat the experiment with the 

same sensor surface and the same experimental parameters. In this case, since the PA has already 

undergone irreversible transitioning to the pore form, any further changes due to transitioning 

alone are not being observed. Any SPR signal changes would be the background signal that is 

solely due to the contributions of bulk effects and is predicted to be lower than the previously 

recorded signal trace. When such an experiment was carried out, it was observed that the change 

in amplitude was much lower than previously obtained with the PA prepore. In addition to this 
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change, no kinetic effects (slow transitions) were observed. The changes resemble step function 

responses. These repeated experiments with the same sensor containing the irreversible 

transitioned PA pore were designated as controls for the bulk effects. The control signal was 

subtracted from the previously obtained larger transition signal to obtain a signal trace that was 

solely due to PA transitioning. The studies were repeated twice for each pH. Since the 

transitioning was irreversible, a new immobilized PA chip had to be generated for each replicate. 

d Measuring the formation and kinetics of the pore translocon using BLI. 

The PA was initially immobilized on the BLI biosensor by the method described 

previously in section b. All studies were carried out at room temperature. The formation of the 

pore translocon was initiated by acidification of the immobilized PA. This was carried out by 

dipping the PA immobilized biosensor in an acidified refolding buffer (50 mM TRIS, 50 mM 

KCl, 10 mM MgCl2, 0.5 mM EDTA, pH 7.0 or lower) for 5 min. This was followed by 

increasing the pH back to 7.5 through incubation with pH 7.5 refolding buffer (50 mM TRIS, 50 

mM KCl, 10 mM MgCl2, 0.5 mM EDTA, pH 7.5). The studies were repeated twice for each pH. 

Since the transitioning was irreversible, a new tip was generated for each replicate. 

e Measuring the transitioning of the pore translocon in the presence of the receptor 

CMG2. 

The PA was immobilized by the method described previously in section b. 500 nM of 

CMG2 was then injected and allowed to bind to the immobilized PA to obtain a saturated 

response. The formation of the pore translocon was initiated by acidification of the immobilized 

PA using an acidified refolding buffer (50 mM TRIS, 50 mM KCl, 10 mM MgCl2, 0.5 mM 

EDTA, pH 7.0 or lower) for 5 min. In BLI, this was carried out by dipping the PA immobilized 

biosensor in an acidic buffer, while in SPR, the acidic buffer was allowed to flow over the 
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biosensor surface for 8 min. This was followed by reexposing the biosensor surface (tip/chip) to 

a pH 7.5 refolding buffer to return to neutral pH. A flow rate of 5 µl/min for both the acidic 

refolding buffer and the neutral refolding buffer was utilized for the SPR studies. In SPR, care 

was taken to account for the bulk effect signal traces (signal change due to change in buffer 

composition and pH) as described in section c. All studies were carried out at room temperature 

and were repeated twice for both SPR and BLI. 

f Electron microscopy. 

The following section describes electron microscopy experiments that were performed by 

Dr. Narahari Akkaladevi. I provided Dr. Akkaladevi with the transitioned PA pore on the BLI 

biosensor tips. These BLI tips containing PDEA immobilized LFN-PA prepore (incubated at 30 

mM MES, 30 mM CHES, 30 mM phosphate buffer, pH 8.0) and pore complexes (incubated at 

30 mM MES, 30 mM CHES, 30 mM phosphate buffer pH 5.0) were used as the source of the 

EM analysis. Briefly, the PA prepore or PA pore complexes were removed from the BLI tip by 

immersing the tip directly into a 2 µL solution of 50 mM DTT buffered at pH 8.0. The elution 

drops were spotted on a clear parafilm surface. Once the disulfide linked complexes were 

reduced and the pores or prepores were released from the tips, the 2 µL solution was wicked onto 

a carbon coated Cu 300 mesh EM grid (Electron Microscopy Science) that was glow discharged 

just before use. 

Grids containing either untransitioned PA prepore and pH transitioned pore complexes 

were allowed to stand for 1 min. The grids were briefly dipped in three water droplets and 

subsequently negative stained using 1% methylamine tungstate in water (pH 7). Samples were 

viewed on a JEOL-1200 EXII Transmission Electron Microscope at 100 kV and images were 

recorded on film (Kodak SO163) by using a minimal-dose procedure at a defocus values 
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between 0.6–0.7 µm. The micrographs were digitized using a Microtek ScanMaker i900 scanner 

at a pixel size of 5.0 Å on the specimen. 

In a second experiment, after pore formation on the BLI tip at pH 5.0, the pH was 

returned to pH 8.0 and followed by dipping the tip into a solution containing the micelle mixture 

(20 µM membrane scaffold protein, 1.3 mM POPC, 25 mM sodium cholate). Binding of the 

micelle to the transitioned pore was recorded and after removal from the tip, the newly formed 

LFN-PA pore-micelle complexes were visualized using electron microscopy. Control 

experiments were done by dipping prepore containing BLI tip in to micelle mixture. It is 

important to note that once the prepore transitions to its pore state, this pore state does not revert 

to the prepore state. 

 

6.3 Results and discussions. 

6.3.1  Detecting PA transitions using GroEL binding (BLI format). 

Label-free technologies had been previously utilized (Chapter 4 and 5) to decrease the 

aggregation of proteins prone to misfolding and measure its interaction with GroEL. Since PA 

exposes new hydrophobic regions that lead to aggregation, immobilizing PA on a solid surface is 

predicted to decrease aggregation. It was also decided to investigate the possibility of using 

GroEL binding as a detection signal for the prepore to pore transitions and associated 

conformation change. Based on a preferred immobilization of the prepore (transition 

perpendicular to biosensor surface) the transitioned pore form exposing hydrophobic residues 

was predicted to show GroEL binding while the non-transitioned form would not. To determine 

the feasibility of this hypothesis, the binding of GroEL to both the PA prepore as well as the pore 

translocon was studied utilizing BLI. 
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A crucial element for these experiments is to achieve a specific immobilization and 

orientation of the PA prepore on the sensor surfaces during these studies. This specific 

orientation was achieved by using a specific engineered cysteine containing N-terminal 

truncation domain of the lethal factor (E126C LFN) (refer to section 6.2.2 a). LFN was covalently 

attached on both SPR and BLI biosensor surfaces via a disulfide linkage to orientate the lethal 

factor so it can effectively bind to the prepore cap region, positioning the bound prepore on the 

biosensor surfaces. With this oriented set-up, the pore was predicted to interact with GroEL and 

show a higher binding signal as compared to the prepore. However, as observed in Figure 6.5, 

the transitioned PA pore did not show any binding (large positive deflection in GroEL binding 

signal) and there was little difference between the addition of GroEL to both the pore and the 

prepore. Usually GroEL binding results in a large upward positive deflection signal (anywhere 

from 0.5 to 4 nm phase shift). 

 

Figure 6.5: 500 nM GroEL was incubated with either the PA prepore (blue trace) or 

acid transitioned PA pore (red trace). It was expected that there would be a large 
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difference in amplitude between the two traces due to predicted GroEL binding to the PA 

pore. However, the kinetic traces do not demonstrate any large upward deflections that 

would indicate GroEL binding to either the PA pore or the prepore when PA was 

immobilized onto BLI biosensor tips. 

Interestingly, before GroEL addition, the acidification treatments of the immobilized 

prepore consistently showed that there was an upward deflection in the sensorgram signal. 

Furthermore, these changes in the BLI and SPR signal trace remain at their elevated levels when 

the pH was returned to a neutral pH of 7.5 (Figure 6.6 A). These observed signal changes were 

not pH and buffer related as described in section 4.2.2 c. It can also be observed that this signal 

increase was specific in the case of PA immobilized sensor surface (Figure 6.6 A, B inset). 

Control experiments with the same buffer and using LFN alone showed negligible changes in 

signal as compared to those observed without PA attached. Once the pore is formed, it no longer 

transitions back to its original prepore state. It is apparent that the acidification of the 

immobilized PA prepore leads to an irreversible conformational shift that results in an upward 

deflection in both SPR and BLI sensorgrams. It was therefore hypothesized that the increase in 

the SPR and BLI signals was associated with the PA prepore to pore conformational change. 

There have been numerous instances where large-scale protein conformational changes 

have been observed using SPR (274, 275). SPR was previously utilized to observe large-scale 

conformational changes resulting from urea induced unfolding of immobilized luciferase, 

lysozyme and RNase proteins (276, 277) and DHFR (278). As discussed in chapter 5, the SPR 

signal is dependent on the refractive index in the immediate vicinity of the protein bound to the 

sensor surface. Large-scale protein unfolding leads to an exposure of buried hydrophobic 

residues. This leads to changes in the local water structure around the exposed hydrophobic sites, 
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thus affecting the refractive index. Here, PA prepore undergoes a large-scale conformational 

shift to the PA pore state leading to exposure of hydrophobic residues. This can lead to a large 

change in refractive index, which in turn would be reflected as a change in the SPR signal. These 

changes generate signals that are much lower than what is observed for the specific protein-

protein interactions (e.g. LFN-PA interactions). 

BLI examines changes in thickness that consequently results in changes in the reflectance 

properties on the sensor surface relative to an internal reference reflectance layer. Any changes 

in the interference pattern results in a phase shift (Δ nm) and these changes can be followed in 

kinetic and quantitative modes. The PA prepore undergoes a major unfolding refolding transition 

(or in other words a conformational change) during acidification that results in the formation of a 

membrane insertable beta barreled pore. These large conformational rearrangements increase the 

length of the protein from 85 to 170 Å. For a PA immobilized on a BLI biosensor this would 

potentially result in a change in the reflective wave resulting in a phase shift in the interference 

pattern, leading to a signal increase. Thus, the PA transitioning leads to a change in the protein 

thickness and its change in hydrophobic character allows us to detect this transition using two 

different biophysical techniques. What makes this hypothesis more compelling is the prediction 

that the observed deflection in signal would not return to the original baseline position of the 

prepore state due to the prepore to pore transition being irreversible. Here the observed 

deflection was found to be irreversible in both the detection methods. 
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Figure 6.6: Increase in signal observed during pore formation with SPR (A) and BLI (B). 

To achieve a PA pore immobilized on the sensor surface the PA was immobilized through 
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LFN and treated with an acidic buffer to induce transitioning. During this step, an 

increased signal was observed with both SPR (A) and BLI (B). It was observed that this 

signal was generated only with PA immobilized sensor surface. It was also observed that 

the signal did not go back to the baseline after the pH was increased back to 7.5 (A and B 

inset). This irreversible signal change coincides with an irreversible conformational change 

that occurs in PA during after acidification thus giving rise to the notion that PA prepore 

to pore conversion can be followed using BLI and SPR. 

 

6.3.2  Monitoring PA conformational transitions using label-free methods: 

The introduction of an acidic buffer (mimicking endosomal acidification) to the 

orientated prepore arrays on the biosensor results in a readily observable increase in signal in 

resonance units (SPR) and phase shifts (BLI) using both label-free instrument platforms (Figure 

6.6 A, B). The specific affinity based immobilization that enables the 100Å PA pore beta barrel 

extension to occur in a direction pointing away from the biosensor surface (Figure 6.4) to 

generate an observable signal is an important aspect in these studies. Without this homogenous 

immobilization, the consistent small signal obtained during both the BLI and SPR studies may 

not have been observed. 

The transitioning of PA from prepore to pore that occurs at acidic pH is apparently 

dependent on the protonation of histidine residues in the PA domain 2. The extent of unfolding 

and refolding of domain 2 could therefore be predicted to be dependent on the pH of the solution. 

To test this prediction, the PA prepore was immobilized on the sensor surface (both BLI and 

SPR) and incubated with buffer of varying acidic pH followed by incubating with a pH 7.5 

buffer to increase the pH of the complex back to neutral pH. As predicted, in both SPR and BLI 
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label-free systems, the kinetics of the proposed pore transition was observed to depend on the pH 

of the final buffer. In Figure 6.7 B, pH transitions from 7.5 to 6.75 or 6.5 resulted in distinct and 

easily observable kinetic traces using BLI. A negative baseline drift was also observed with the 

control pH 7.5 buffer. As the acidic pH environments was decreased to pH 5.5 or pH 5.0, the 

kinetic traces corresponding to the pore transitions were more rapid. In some cases, the initial 

kinetics were too rapid to be followed by either label-free method. Curiously with SPR, a distinct 

and reproducible overshoot of the signal was observed as the pH of the flow buffer was 

decreased to 5.5 or 5.0. The PA prepore undergoes partial unfolding of the domain 2 loop under 

acidic conditions. This unfolded loop then undergoes refolding followed by folding into the beta 

barrel. It is not known if this initial unfolding and refolding event might be responsible for the 

overshoot signal. 

 

 

 Figure 6.7: Following the PA prepore to pore transition in real time by SPR (A) and 

BLI (B). The PA was immobilized on the biosensors and initially treated with buffers of 

varying acidic pH followed by increasing the pH back to neutral. The transitioning of the 

prepore to pore was observed as a jump in signal. This change in signal was observed to 
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remain even after changing the buffer back to a neutral pH, indicating a non-reversible 

reaction occuring at the sensor interface. As the pH becomes more acidic, the transition 

occurs more rapidly thus confirming the real time observation of PA transitioning. 

To further support our hypothesis that the observed increase in signal after pH change is 

due to the transitioning of PA from prepore to pore, the effect of PA concentration on the PA 

transition was examined. The SPR signal in this case is dependent on the exposed hydrophobic 

resdidues of the PA pore. Assuming that all the immobilized PA undergoes transitioning, it can 

be predicted that as the PA concentration increases the exposed hydrophobic surface will 

increase proportionally. This would in turn predictably lead to a SPR transitioning signal to 

increase proprtionally after transitioning to the immobilized PA concentration. To test this, 

increasing concentrations of the PA prepore (0-250 nM) were allowed to bind onto a fixed 

concentration of bound LFN (100 nM). The increasing concentration of PA immobilized on the 

sensor surface results in an increase in the the observed sensorgram (Figure 6.8 A) (is linearly 

related to the pore transition signal (Figure 6.8 C) At the highest concentration used the response 

flattens out (Figure 6.8 B) consistant with the saturation of the PA that is affinity bound to the 

immobilized LFN. Thus, as the LFN-PA complex saturates, the transition response also shows a 

saturation. Thus the PA transition response was found to be a function of the concentration of the 

protein immobilized on the biosensor, further supporting the fact that one is observing the PA 

transition in real-time. 
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Figure 6.8: When an increasing concentration of immobilized PA prepore was 

treated with the acidic buffer, a linear correlation between the concentration of 

immobilized PA prepore on the sensor surface and the amplitude of transitioning was 

predicted (A, B). As predicted, the SPR derived signal amplitide of the conformational 

change of PA prepore to pore transition depends on the amount of the PA immobilized on 

the sensor surface as shown by the linear relationship between the PA loading response and 

PA binding amplitudes (C) 
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6.3.3  Visualization of the PA pore by electron microscopy 

The most conclusive demonstration of observing the PA transitioning form prepore to 

pore is to examine these changes using electron microscopy. Previous experiments by Katayama 

et al., have demonstrated that PA pores could be easily observed using standard negative stained 

electron microscopy. Here the immobilized LFN-PA prepore complex was generated on the tips 

as previously described. When the immobilized prepore was treated with pH 7.5 buffer, as 

expected, no increase in BLI signal was observed (Figure 6.9). This sample of PA was then 

released from the BLI biosensor tips using DTT. Since the LFN-PA complex was immobilized on 

the sensor surface via a thiol linkage, one could easily break the linkage using a reducing agent 

such as 1 M DTT at pH 8.0. The higher pH value of the DTT was used to ensure that no PA 

prepore transitioned to pore during transfer onto the EM grid. The extracted samples were loaded 

onto an EM grid and the deposited protein was subjected to negative stain with methylamine 

tungsten. The stained grid was then observed with EM at 60,000X magnefication. The EM 

pictures show the presence of donut shaped structures that resemble the PA prepore. The PA 

prepore structure deposits onto EM grids in a facedown orientation and indicates that the PA 

prepore from the tip is indeed being observed. 
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Figure 6.9: The immobilized PA prepore on the biosensors was treated with POPC 

micelles. The PA prepore was removed by using a reducing agent DTT, loaded onto an EM 

grid, negatively stained and observed at 60,000X magnification. Electromicrographs 

demonstrate that the immobilized PA prepore not treated with the acidic buffer does not 

show interactions with the micelle and under EM demonstrates a globular structure that 

closely resembles the prepore. 
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Figure 6.10: The immobilized PA pore on the biosensors was treated with POPC micelles 

following acidification. The PA was removed by using a reducing agent DTT, loaded onto 

an EM grid, negatively stained and obsevred at 60,000X magnification. On the left- hand 

side of the sensorgram, PA pores deposited on the EM grid showed that the pore had 

transitioned but these pores aggregated via their hydrophobic tips. On the right hand side, 

if the pore was transitioned and then POPC was added, the Electromicrographs 

demonstrate that the immobilized PA treated and transitioned with the acidified buffer 

binds to the POPC micelles and under EM shows a now solubilized conical pore structures 

that no longer aggregate and their structure are consistent with the transitioned micelle 

inserted PA pore structure 

 

 The immobilized LFN-PA pore complex was generated on the tip by incubating the PA 

prepore with an acidified buffer (pH 5.5) followed by increasing the pH back to neutral (7.5). As 
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discussed previously, the increase in signal during acidification is presumed to occur due to the 

formation of the PA pore (Figure 6.10). However to confirm this observation, the acidified 

sample from the tip was extracted using 1 M DTT (pH 8.0) and observed under EM as described 

in the previous paragraph. These electron micrographs show the characteristic Y shaped features 

(Figure 6.10) of the PA pore lying on its side throughout the EM grid (279). This characteristic Y 

shape structural features shows both the cap and the extended beta barrel and are only observed 

when the anthrax toxin pore is present in its transitioned form (251, 279). The clumping of these 

Y shaped structures is due to a tendency of the PA pore to self aggregate through protein-protein 

interactions with the hydrophobic tip (251) (Figure 6.10B left EM panel). This aggregation 

tendency is usually reduced in the presence of a lipid environment. One method of generating 

such a lipid environment is through the use of lipid micelles. Here, it was predicted that one may 

even be able to monitor the pore insertion into the cholate-POPC-matrix scaffold protein 

micelles on BLI tip and this LFN-PA pore-micelle complex could be visualized by negative stain 

electron microscopy (Figure 6.9). The slight decline in signal is apparently due to PA 

dissociating from LFn at pH 8.0. This dissociation is not observed when the buffer is maintained 

at pH 7.5. The PA immobilized on the BLI tip was allowed to incubate with these complex 

micelles before and after transitioning. Micelle binding was observed only when PA undergoes 

transition to its membrane insertable pore form (Figure 6.10 top panel). No binding was observed 

in the absence of a pore transition signal (Figure 6.9 top panel). The LFN-PA pore-micelle 

complex was extracted, loaded onto an EM grid and negatively stained. The images indicate that 

micelle bound PA pore does not aggregate and rather than aggregating, the pore-micelle complex 

appears as individual soluble entities (compare left and right hand side attached EM micrographs 

in Figure 6.10). These EM images verified that the transitions observed on the BLI biosensor tips 
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are consistent with the prepore to pore transitions and provides conclusive evidence that one is 

indeed looking at the transitioning of PA in real-time on both BLI as well as by SPR 

measurements. 

 

6.3.4 Investigating the effect of the anthrax receptor (ANTXR2/CMG2) binding on PA 

transitioning. 

The PA transition was observed to occur as soon as the pH was slightly acidifed (Figure 

6.7 B). Transitions near neutral pH have been previously observed both in lipid bilayers as well 

as in solution (280, 281), but as expected these transitions are slow and just a portion of the 

prepore population undergoes the transition. These slow transitions occur as histidine residues 

(pKa ~ 6.0) become protonated. Apparently, these histidines are not efficiently protonated at near 

neutral pH values. This low protonation population apparently leads to a slow transitioning to the 

PA pore state. However, in vivo, the transitioning does not occur until the endosome is acidified 

(260) to pH values around 5.5 to 5.0 that occur during late stage endosome maturation. The 

threshold for pore formation has also been observed to differ in kinetics depending on the type of 

receptor that the prepore binds to. For example, the PA prepore transitions to the pore at pH 6.2 

when bound to a weaker binding ANTXR1 receptor whereas the transition occurs at a lower pH 

(pH 5.2) when the prepore is bound to the tighter binding ANTXR2 (CMG2) receptor. This 

change in the pH required for the pore formation is most likely due to the differences in the 

receptor prepore interaction of the domain 4 with the receptor. As the strength of the receptor 

binding interactions increase, this binding reaction in turn hinders the movement of the D2L2 

loop (Figure 6.3), which is responsible for the unfolding and refolding into the beta barrel stem 

(281). For both the weak and strong binding receptors we predict that this binding interaction 
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stabilizes domain 2 against pH dependent unfolding, thereby inhibiting the PA prepore from 

transitioning to the pore at near neutral pH values (pH 6.5 and up). 

Since the binding of CMG2 bound complex is more biologically relevent, the 

transitioning was studied in the presence of tighter binding soluble CMG2 (gift from J Collier). 

We predicted that the presence of the receptor should substantially inhibit the transitioning at 

near neutral pH values with either SPR and BLI platforms. Accordingly, PA was immobilized on 

the biosensor utilizing LFN and then incubated with 500nM of the soluble CMG2 to form LFn-

PA-CMG2 complex. The complex was observed to form easily and did not show any 

dissociation (Biosensogram data not shown). The lack of observable dissociation agrees with the 

extremely tight measured binding affinities of the CMG2/ANTXR2 interactions with the PA 

prepore (Kd ~ 170 pM ± 0.9 pM) (282). The LFN-PA-CMG2 complex was initially generated on 

a BLI biosensor and then treated with buffers of various acidic pH to observe the effects on this 

complete complex on the PA pore transitions. As a control, a LFN-PA complex without CMG2 

was also treated with the acidified buffers and compared to the receptor PA complexes. As 

predicted, results indicate that the amplitude of signal associated with transitioning is almost 

completely inhibited that in the presence of the receptor CMG2 (Figure 6.11). This indicates that 

in the presence of CMG2, PA undergoes transitioning with a slower kinetics. This slow kinetics 

was observed with all pH values other than pH 5. At this pH, the transitioning trace shows a 

sharp increase followed by a rapid decrease in the signal amplitude. 
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Figure 6.11: Effect of CMG2 on transition kinetics as observed with BLI. LFN-PA-CMG2 

complex was generated on the BLI biosensor and acidified to induce PA transitioning. In 

the presence of the receptor CMG2, the transitioning kinetics at pH 6.75 (green trace) were 

almost nonexistent as compared to the control without CMG2 (Bue trace). At pH 5 

(endosomal pH), the transitioning shows a rapid increase indicating fast transitioning 

kinetics followed by a decrease in the signal (Black trace). This decreased signal in signal 

might be due to dissociation of CMG2 from the complex. 
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Figure 6.12: Effect of CMG2 on transition kinetics as observed with SPR. PA was 

immobilized onto the biosensors through affinity coupling with LFN and susequently bound 

with 500 nM of the anthrax receptor CMG2. The complex was treated with buffers of 

varying acidic pH and followed by increasing the pH back to 7.5. The pH at which 

transition occurs was observed to decrease in the presence of the CMG2 receptor. At pH 

6.5 (blue trace), the transitioning is negligible while at pH 5.5 (green trace), transition 

occurs at a slow rate. However at pH 5.0 (pink trace), the PA shows a large transitioning 

signal and rapid transitioning followed by a decrease in signal that is presumably due to 

receptor disscoiation from the PA pore. 

Similar experiments were also carried out with SPR. Here it was observed that, with the 

LFN-PA-CMG2 complex, the signal associated with pore transition at pH 6.5 was negligible 

(Figure 6.12 blue trace) as compared to previously observed signal amplitudes without the 

recptor (Figure 6.7 A). When the buffer was further acidified to a pH of 5.5, the amplitude of the 
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transition showed a slight increase with slow kinetics of transitioning. As observed with BLI, 

only when the pH was lowered to 5.0 does one observe a large change in the signal amplitude. 

The initially large upward deflection is presumably associated with extremely rapid transition 

kinetics. Again, as with the BLI signal at pH 5.0, the increase in the signal amplitude was 

followed by a decrease in signal. Since the receptor is known to dissociate from PA under 

endosomal acidification and the associated conformational change, the large decrease in signal 

appears to be consistent with the fact that the CMG2 soluble receptors undergo dissociation from 

the PA pore after the transition occurs at pH 5.0. This dramatic decrease in the signal is much 

larger than the pore transition signal amplitude. This large decrease in signal agrees with the 

increase in signal due to receptor binding to the PA prepore state (Figure 6.13). 

 

 

Figure 6.13: Loading curves for PA prepore and CMG2 followed by a slight to negligible 

transition at pH 5.9. This is confirmed by the return to the original CMG2 baseline 

PA prepore 
loading 

CMG2 loading 
PA-CMG2 
complex 
acidification 

pH return to 7.5 

Time 

R
es

po
ns

e 
(R

U
) 



	
   222	
  

following the return to pH 7.5. The loading of CMG2 leads to a large increase in the SPR 

signal. This large increase in signal is only reversed during the dissociation of CMG2 that 

occurs after a pH 5.0 induced transitioning of PA prepore to pore as observed in Figure 

6.12. 

Ultimately, the ability to monitor the complete endosomal transition is useful if one wants 

to screen for global inhibitors of the pH induced endosomal transition. In addition to this 

transition, one may also be able to screen for small molecule inhibitor candidates that directly 

inhibit the binding of the receptor to the PA prepore. Thus, using these label-free BLI and SPR 

platforms allows one to effectively screen for inhibitors that target the PA-receptor complex 

itself as well as inhibitors of the pore transition in an endosomal environment (pH 5.5 to pH 5.0). 

This particular assay platform provides a very unique multiple targets to identify potential 

prophylactic agents that would bind to the PA prepore and prevent its transition to the pore in the 

absence and presence of the receptor. This is a truly novel screening method for potentially 

inhibiting anthrax pathogenesis at the molecular level under numerous conditions. 

6.4 Conclusions. 

As stated earlier, the purpose of these experiments was to determine if the chaperonin 

could be used to monitor a toxin soluble to membrane insertion transition. We suspect that we 

were unable to observe this transition because GroEL contains a ring of negative charge around 

the polypeptide binding site and preferentially interacts with the opposite face of the toxin 

(instead of the transitioned hydrophobic tip) (251). This orientation was observed in the initial 

EM micrographs of the GroEL-PA pore complexes. Even though this occurred in solution, we 

felt that this interaction between GroEL and the hydrophobic tip could be observed if the PA 

pore was initially immobilized. However, as was observed in solution, GroEL was unable to 
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interact with the exposed pore hydrophobic tip. Apparently, this accumulation of interior 

negative charge for the PA pore tip is vital to insuring the directional translocation of the other 

enzyme toxin components. However, it was found that the pH dependent conformational 

unfolding and refolding transition of the PA prepore to pore transition results in a large enough 

change in both the refractive index and change in protein thickness can be easily observed using 

SPR and BLI respectively. This transition nearly recapitulates what one would observe in the 

endosomal complex, because as in the endosome, the PA prepore is initially bound to the 

receptor and is orientated to form the beta barrel in a unidirectional manner to form a pore in the 

endosomal membrane allowing the other protein toxins to transit from the endosome to the 

cytoplasm. The platform that was constructed to observe this transition using the label-free 

methods also occurs from an immobilized and constrained orientation. The platform thus 

provides one with a novel and facile method to observe the transitioning of a bacterial toxin in 

real-time. This platform can be used to develop screens for small molecule inhibitors that prevent 

the both the binding of prepore to receptor complexes or prevent transitioning of bacterial toxins 

once the prepore is bound. Additionally, the ability to utilize at least two additional steps in the 

binding and transitioning cycle as potential targets, making this LFN immobilization foundation a 

versatile platform for discovering novel small molecule antibacterials. 

 

 

 

 

 

 



	
  

CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS 

 

Protein misfolding and aggregation caused by loss of cellular proteostasis capacity 

frequently leads to disease states. Such diseases are frequently termed protein misfolding 

diseases and are an important class of diseases that do not have a wide variety of treatment 

strategies. Using small molecule ligands that stabilize the native state of the protein that tends to 

undergo misfolding is a facile way to increase ER processing and cellular expression of that 

protein. We have discussed the various methods utilized to search for such pharmacological 

chaperones and realized that there is a need for an assay methodology to rapidly screen the huge 

chemical libraries that have been generated through combinatorial chemistry. 

 

 

Figure 7.1: The disease proteins have a wide variety of conformational states (or in 

other words are moving targets) which the chaperonin can easily bind to and could be used 

to rapidly identify small molecule stabilizer compounds. 
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In this dissertation, experimental support is provided for the hypothesis that the high 

affinity nucleotide free form of the GroEL chaperonin can be used to detect partially folded 

proteins of virtually any protein that transitions to a partially folded hydrophobic form. The 

natural affinity of the chaperonin for partially folded proteins was utilized to rapidly sequester 

partially folded species (Figure 7.1). The chaperonin was thus successfully utilized to develop an 

assay platform to probe the folding state of a protein and also utilize the assay to screen chemical 

libraries for stabilizers of proteins prone to misfolding. It was also demonstrated that the kinetics 

of protein unfolding could be easily manipulated utilizing denaturants to increase the rate of 

formation of the transient unstable species. The fact that the chaperonin binds to these partially 

unfolded species as soon as they are formed drastically decreases the assay time thus giving an 

advantage over any other existing assay methodology. Instead of hours necessary for waiting for 

the emergence of aggregated species, one can determine the formation of preaggregates in less 

than an hour and for certain proteins such as CFTR in less than a minute (Figure 7.2). This 

decrease in time required to interrogate the folding state of a protein is an advantage as it allows 

one to carry out several such assays in a day. Additionally, one could also easily scale-up the 

assay to an HTS format that could potentially be utilized with existing HTS robotics to screen 

thousands of compounds per day. Initially, small scale studies were carried out using bead-based 

immobilized chaperonin in microtubes and utilized centrifugal separation to separate the 

partitioned protein from stable folded species. Through these experiments, proof-of-principle 

with several proteins including CFTR NBD1, DHFR, MDH, and frataxin was demonstrated. It 

was also demonstrated that the chaperonin has the potential to readily detect the kinetically 

transient partially folded states of any protein. 
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The bead-based nature of the assay however, made the HTS format slightly cumbersome. 

This is because most of the existing HTS instrumentation is not geared towards use of beads, 

thus leading to blockage of liquid handling and dispensing systems. Also, the bead separation 

required for protein assays introduced additional steps into the assay increasing the turnaround 

time and associated cost/assay. Another factor was the decrease in binding of partially folded 

proteins to the bead-based system leading to the false positive result of a decrease in partitioning 

onto GroEL because of increases in substrate protein self-association (blocking potential 

chaperonin binding sites) and larger aggregation. Aggregated proteins (dimers or higher 

oligomers) do not easily bind to the chaperonin. All these factors made it necessary to look for 

other detection platforms to take advantage of the unique binding and capture properties of the 

chaperonin that could be miniaturized and would be easy to use while retaining its advantages. 

 

 

Figure 7.2: The protein exists in a dynamic equilibrium between its natively folded 

and the unfolded non-native form. This non-native unfolded protein might undergo 

aggregation. However, the chaperonin binds to partially folded species thus decreasing 

aggregation. 

One way of preventing aggregation of substrate protein is to immobilize them to decrease 

intermolecular interactions. Such immobilization was the advantageous prerequisite for studying 

chaperonin protein substrate interactions via label-free interaction techniques such as SPR (283) 

and BLI. Since, chaperonin binding to protein substrates generated large signals, we were able to 
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successfully demonstrate that label-free methods can be utilized to observe the chaperonin 

interacting with partially unfolded species, and to demonstrate that ligand stabilization decreases 

chaperonin interactions. These methods are far superior to our bead-based plate based systems 

because they 1) utilize low concentrations of the substrate protein and 2) allow one the ability to 

observe interactions in real-time. It was observed that the assay could be carried out with a 

higher throughput utilizing BLI systems such as the ForteBio Inc. Octet system as compared to 

SPR Biacore 3000. Additionally, the BLI system decreases the total length of the assay and has a 

very high turnaround time. This in combination with the fact that BLI can be utilized with 

existing robotic HTS set-up gives one a medium throughput assay that can screen tens of 

thousands of compounds per week. Since the immobilization of the substrate/chaperonin onto the 

BLI biosensors is the step that takes the most time during the assay, one could carry out these 

preparations offline to generate biosensors that could then be utilized to carry out the assay in a 

high throughput manner. 

The broad based binding affinity of a chaperonin platform system should allow us to 

rapidly identify potential pharmacological chaperones that display various modes of stabilization 

and to validate candidates generated through in silico computer docking programs. It is highly 

conceivable for example, that one does not have to be constrained with identifying potential 

small molecule pharmacological chaperones that only bind to protein active sites to stabilize the 

protein. The chaperonin detection system can potentially identify small molecule stabilizers that 

bind transiently at distant sites (resembling allosteric modulators) that facilitate specific folding 

nucleation events or stabilize dimer interfaces. 

Apart from its use as a rapid assay platform to screen for pharmacological chaperones, 

the chaperonin assay can also be used for other applications. One such application is the 



	
   228	
  

utilization to follow the transitioning of bacterial toxins in vitro. The proof-of-principle 

experiments with the anthrax pore translocon demonstrated in chapter 6 that one could utilize 

BLI to follow the conformational change of the anthrax prepore to the membrane insertable pore 

translocon (which is responsible for the disease) in real-time. This gives one a novel method to 

screen for inhibitors of other similar bacterial toxin transitions that are characterized by 

conformational changes. The immobilization of the toxin prevents their aggregation, which is a 

major hindrance to carry out solution based studies. Here, one can easily search for small 

molecules that prevent the transitioning, without worrying about the aggregation of the proteins. 

Additionally, this method also gives one a way to disrupt toxin-cellular receptor complexes. One 

can easily follow receptor – toxin interaction utilizing both SPR and BLI (as demonstrated in 

chapter 6). Thus, it would be possible to potentially search for inhibitors for small molecules that 

are potential antimicrobial compounds. 

 

Figure 7.3: The chaperonin sink platform has been developed and validated both in 

bead based form and with label free techniques to search for stabilizers for a wide range of 

proteins. 
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Thus during the course of this dissertation, I have 

1. Developed a novel screening system for stabilizing misfolding proteins utilizing 

the ability of GroEL to distinguish between folded and partially folded proteins 

2.  Demonstrated that GroEL can be utilized to distinguish between proteins with 

similar chemical/thermal stabilities but varying kinetic stabilities 

3.  Demonstrated that different mutants of the same proteins might need different 

stabilizers 

4.  Demonstrated that one can follow the transition kinetics of the anthrax PA 

prepore to pore transitions in an endosome like environment (pH drop of 7 to 5), allowing 

one to screen for new and novel antibacterials (284) 

However, as shown in Figure 7.4, the applications developed so far are just the tip of the 

chaperonin platform iceberg. The chaperonin can be thought of as a promiscuous antibody 

towards all partially folded proteins, allowing for the development of a versatile system to study 

a wide range of protein misfolding diseases. Examples of proteins that can be examined in the 

near future include ß-microglobulin (that causes dialysis related amyloidosis) and α-synuclein 

(responsible for Parkinson’s disease). Such studies should potentially provide possible lead 

molecules for treating these misfolding diseases. It is also probable that the assay would be 

useful in evaluating the stabilities of oligomeric proteins or intrinsically stable therapeutic 

proteins. 
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Figure 7.4: Potential unexplored uses of the chaperonin assay make it a versatile 

platform. Apart from being used to search for novel chemical chaperones, the assay can 

also b used to search for therapeutic antibody stabilizers. The platform has the potential of 

being developed to be used in detection of diagnostics, drug targets, novel anti-cancer 

agents and anti-bacterials. 

The chaperonin sink assay platform can also be used to search for stabilizers for proteins 

that are usually stable but undergo aggregation over a long time. Such proteins include 

therapeutic antibodies that need to be highly pure and are administered as a concentrated bolus. 

The emergence of aggregates not only decreases the shelf life of protein pharmaceuticals but 

might also lead to immune responses. Such proteins usually do not show the emergence of 

dimers/multimers unless stress tested. These stress tests and formulation analysis requires 

lengthy HPLC studies to identify their presence. Preliminary experiments that were run at 

ForteBio Inc. under my direction (but not included in this thesis) indicated that it is feasible to 

utilize the chaperonin assay to rapidly detect (within 1-5 min) preaggregation species of IgG 
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proteins prior to their large-scale aggregation. Additionally, it was also shown that relatively 

stable proteins can be momentarily destabilized utilizing denaturants such as urea or guanidium 

hydrochloride in a novel application of the chaperonin assay (Denaturant dip and read BLI 

platform) (284). This assay can detect the kinetic differences of unfolding in the absence and 

presence of a potential stabilizer. One can also envision utilizing the assay in conjunction with 

other chaperone proteins such as the oligomeric Hsp100 class. This chaperone could be useful in 

detecting small aggregates or preaggregates of proteins. Hsp100 chaperones act on aggregated 

proteins as disaggregates and transfer them to the proteasome or another chaperone system such 

as the Hsp70/90 classes. If one has a relay system of Hsp100 with GroEL, aggregated 

proteins/inclusion bodies could potentially be used instead of purified folded proteins. Here the 

Hsp100 unfolded protein binds to GroEL in absence of a stabilizer but undergoes folding in the 

presence of a stabilizer. 

The chaperonin assay can also potentially be utilized with Hsp90 to search for novel anti-

cancer agents. Hsp90 is a target for anti-cancer agents as it stabilizes oncogenic proteins and 

prevents them from being degraded. It may be possible to utilize the chaperone detection assays 

with Hsp90 instead of GroEL to follow the Hsp90 interaction with oncoproteins / model 

substrates and search for Hsp90 inhibitors. The use of chaperones to detect conformation states 

of protein in solution can potentially yield a broad based versatile platform to probe the states of 

the protein fold in real-time. 
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