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Abstract

As the Alzheimer’s disease process progresses in time measurements of cognitive

functioning exhibit nonlinearity. Multiphase models were used to quantify this non-

linearity for thirty-six well characterized individuals(∼12 observations per individual

over ∼15 years in the study) by partitioning each into a healthy aging phase and a dis-

eased phase. This enabled us to detail both the magnitude and timing that Alzheimer’s

disease alters different aspects of cognitive function. Estimation of these models was

done using Bayesian methods. Eight different outcomes representing three areas of

memory functioning(visual, verbal, working) were used to define a pattern of cog-

nitive decline. The earliest phase change was found to be visual memory(∼6 years

before diagnosis) and was followed by changes in verbal and working memory begin-

ning roughly four years later.
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Chapter 1

Introduction

1.1 Disease Processes

age
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Figure 1.1: Individual Scatterplot

Many disease processes have biomarkers that

develop over time in a nonlinear fashion

- in healthy and diseased phases. T4

counts show a rapid decline close to devel-

opment of AIDS [Kiuchi et al., 1995], prostate

specific antigen spikes before development

of prostate cancer [Slate & Turnbull, 2000],

and adenosine deaminase exhibits a rapid

change in chronic myelogenous leukaemia

[Klein JP, 1984]. Alzheimer’s disease (AD) is

not an exception. In Figure 1.1 an individ-

ual’s trajectory of measurements on a visuospa-

tial memory test (top) and a working memory

test (bottom) are plotted. For this individual the

time that they were clinically healthy is marked
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as the white portion and the time that they spent diagnosed with AD is the grey portion. Confirma-

tion of the clinical AD diagnosis was post-mortem. As shown in the figure, this person undergoes

a change in both visuospatial and working memory abilities at some points prior to clinical diag-

nosis.

1.2 Purpose

As the biological process of AD progresses in time different cognitive abilities decline. This thesis

focuses on the determination of how these disparate processes change over time in AD to define a

pattern of cognitive decline. Multiphase models are a class of models that can be used to quantify

both the magnitude in which AD alters different cognitive faculties and the timing at which this

alteration begins as the disease process evolves. In this thesis the cognitive processes in AD are

modeled with two phases - one phase demarcating healthy cognition and the other diseased cogni-

tion. The changepoint, the parameter of most interest, is the time of the switch between these two

phases. Hierarchical Bayesian techniques are used to model both individual development and to

relate the individual to the AD population.

1.3 Organization

In section 1.4 an introduction to this methodology will characterize these phase parameters for the

visuospatial abilities of the individual in Figure 1.1. Chapter 3 will explain how to extend this

individual model to a hierarchical model to characterize the AD population. Chapter 2 borrows

methods from misclassified multistate models to define a stringent procedure for identifying a

non-diluted AD population - addressing a weakness in prior research. Both chapters 4 and 5 will

discuss the parameter estimates and delineate the pattern of cognitive decline in AD.

2



1.4 Primer: Modeling a Single Individual

1.4.1 A Model with Linear Phases

Although the full strength of this thesis is seen in the hierarchical models developed in Chapter 3

it is informative to describe the model as fit to a single individual. To do this, we will use the data

from the single individuals measurements on the visual memory test shown in Figure 1.1. Assume

that the individuals jth measurement Y j is distributed normally with expectation µ j and precision

τ1, Yj ∼ N(µ j,τ). A multiphase model that is continuous at the changepoint and with two linear

phases surrounding the changepoint is given by

µ j =

 α0 +α1t j t j < δ

α0 +α1δ +α2(t j−δ ) t j ≥ δ

(1.1)

time

Y

δ

α0 α1

α2

Figure 1.2: Multiphase Model

The parameters in the model are shown in Fig-

ure 1.2. α0 is the level of Y at the beginning

of the first phase. α1 is the slope of the first

linear phase and α2 is the slope of the second

linear phase. δ , the changepoint, is the time of

the switch between α1 and α2. In this individ-

ual analysis the time scale was age. Note that

the intercept of the second phase(call it α3) is a

redundant parameter. If the segments are continuous

at δ then α0 +α1δ = α3 + α2δ and α3 can be determined from the others, i.e. α3 =α0+α1δ−α2δ .

1τ = 1
σ2

3



1.4.2 Bayesian Estimation

The models developed later in this thesis become more highly parameterized than in Equation 1.1,

but the nature of parameter estimation does not change. The scheme is explained generally in this

section. Let θ denote our parameter vector. Bayesian estimation is concerned with modifying

prior knowledge π(θ) of the parameters through the likelihood of the observed data f (y|θ) to

characterize posterior densities π(θ |y)

π(θ |y) = f (y|θ)π(θ)´
f (y|θ)π(θ)dθ

(1.2)

For our simple example, the likelihood f (y|θ) can be derived from equation 1.1. The elements of

the prior vector π(θ) were assigned diffuse conjugate distributions - specifics are not needed at this

juncture. That leaves the normalization constant
´

f (y|θ)π(θ)dθ ; an integration over all possible

values of θ that guarantees the posterior is a probability distribution (and complicates estimation).

Obtaining any specific marginal posterior θ j from the joint density π(θ |y) involves integrating

out all other ’nuisance’ parameters

P(θ j|y) =
ˆ

P(θ1...θ j−1,θ j+1...θk|y)dθ1...dθ j−1,dθ j+1...dθk (1.3)

The most straightforward approach would be to calculate P(θ j|y) analytically or numerically.

This is intractable in the case of the high-dimensional integrals in this thesis. Gibbs sampling

[Geman & Geman, 1984] provides an alternative to direct computation. A Gibbs sampler allows

us to set up a Markov Chain Monte Carlo (MCMC) algorithm to generate a sample Θ j1, ...,Θ jm ∼

P(θ j|y) without requiring P(θ j|y) - given that we can state the complete conditional densities

P(θ j|y,θ1...θ j−1,θ j+1...θk). That is, we can obtain a posterior density to a desired accuracy (deter-

mined by the length of m) if we can specify all the conditional densities. Implementation of Gibbs

sampling using directed acyclic graphs in JAGS [Plummer & Plummer, 2003] will be discussed in

Chapter 3.
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1.4.3 Parameter Estimates
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Figure 1.3: Individual Fit

The individuals estimated multiphase struc-

ture has been plotted in Figure 1.3. The

mean estimates and 95% credible intervals

of the posterior distributions of interest are

as follows; α0 = 38.37(31.82,44.03), α1 =

−0.26(−1.17,1.16), α2 = 5.28(4.01,6.25),

δ = 81.68(79.75,83.67). A credible interval

is simply an area where some percentage of

the posterior simulation is contained. Look-

ing at the graphic we see that for this individual their performance on the Trailmaking-A test stays

roughly constant until they hit the estimated changepoint at 81.68 years of age and then their

performance quickly becomes worse - approximately 8 years before clinical diagnosis (the grey

region).

1.5 Long Term Efforts

This thesis lays the foundation for a larger research program aimed at finding the timing of phase

change prospectively in Alzheimer’s dementia (i.e. a quantitative diagnostic based on longitudinal

measurement). As can be seen in Figure 1.3 and will be evidenced in this thesis there is a sub-

stantial period of time between the onset of cognitive decline and clinical diagnosis. By updating

our posterior estimates as an individuals data arrives we can characterize the distribution of their

changepoint in real time. This distribution can then be used for calculating the probability that an

individual has transitioned into the disease phase (after the construction of decision rules). This is

extremely important because recent research has shown that it may be possible to push back the

symptoms of Alzheimer’s with early interventions. A few promising interventions include exercise

therapy [Erickson et al., 2011], deep brain stimulation [Laxton et al., 2010], and possibly an appli-

5



cation utilizing stem cells [Blurton-Jones et al., 2009]. For any of these treatments to be of use it

would be optimal or necessary to intervene at a point in time before neuron death accumulates to

cause massive cognitive and functional problems in the later stages of the disease.
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Chapter 2

Data Description

2.1 Introduction

The final analysis consisted of 36 individuals with Alzheimer’s Dementia and measurements on at

least 9 occasions from archival data in a study of healthy aging and dementia. Positive neuropathol-

ogy at autopsy or sustained occupancy in non-zero Clinical Dementia Ratings (CDR) were used to

determine disease presence (Section 2.2). A summary of the population and the specific measure-

ments used in the analysis are discussed in Section 2.3.

2.2 Determination of Disease Presence

2.2.1 Neuropathology

31% of the individuals used in the analysis had a positive AD neuropathology at postmortem ex-

amination. The remaining 69% either did not consent to autopsy or are still alive. All brains were

examined with standard protocol[McKeel DW, 1993]. Following fixation in neutral buffered 10%

formalin, tissue blocks were taken from 30 brain regions. Sections (6 µm) from paraffin-embedded

tissue block were stained with hematoxylin-eosin, and modified silver stains, and immunohisto-

chemical methods[McKeel DW, 1993]. Histologic criteria for AD were based on quantification of
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diffuse and neuritic amyloid deposition in five cortical regions with 10mm2 microscopic fields in

each region as well as National Institute on Aging (NIA) neuropathologic probability estimates of

AD. Cases were screened for Lewy bodies with antibodies to alphasynuclein and were also exam-

ined for the presence of cortical and subcortical infarcts and hemorrhages to exclude confounding

dementia diagnosis.

2.2.2 Clinical Dementia Rating
(a) Misclassified Data

7→ 0.0 0.5 1.0 2.0 3.0

0.0 518 123 4 0 1

0.5 82 285 62 3 0

1.0 0 19 102 34 2

2.0 0 0 5 41 7

3.0 0 0 0 0 3

(b) Reclassified Data

7→ 0.0 0.5 1.0 2.0 3.0

0.0 283 33 2 0 0

0.5 0 56 10 2 0

1.0 0 0 16 4 0

2.0 0 0 0 2 1

3.0 0 0 0 0 1

Table 2.1: CDR Transition Tables

To determine the presence and severity of dementia

the research program staged dementia using the CDR.

The CDR evaluates cognitive function in six categories

(memory, orientation, judgment and problem solving,

performance in community affairs, home and hobbies,

and personal care) without reference to psychometric

performance or results of previous evaluations. CDR 0

indicates no dementia, and CDR 0.5, 1, 2, or 3 corre-

spond to very mild, mild, moderate, and severe dementia.

In Table 2.1(a) the number of adjacent CDR tran-

sition of 115 people with at least 2 non-zero CDR and

more than 9 measurements are described. This matrix de-

scribes how the population transitions through the states

(0,0.5,1,2,3) of the CDR. Interpretation is straightfor-

ward ( f rom CDR 7→ to CDR), the number of times that a

CDR 0 precedes a CDR 0.5 is 123 [1, 2] and the number

of times this relationship is reversed is 82 [2, 1].

The concern is that in Table 2.1(a) individuals transition from a higher to lower severity at a

high rate (without intervention). Alzheimer’s dementia is a progressive dementia thus transitions

from higher to lower severity are not realistic. To remedy this these backwards transitions were

8



treated as misclassification of the true states. For concreteness, an individual in the data has a CDR

profile (0,0,0,0.5,0,0,0,0,0,0.5,0,0,0) over a roughly 14 year span. This individuals two CDR

0.5 are treated as misclassifications due to the sparsity of non-zero CDR, i.e. they are considered

non-demented and excluded from the AD analysis. This reclassification procedure trimmed the

data to 35 individuals. Each person had at least 2 successive non-zero CDR (median = 4) without

regression and started the study with a CDR 0. The transition matrix for the reclassified data can be

seen in Table 2.1(b) . Note that the left diagonal is filled with zeros which indicates forward-only

progression. The total number of individuals after this procedure was 35.

To be absolutely clear, there were 115 people in the research program that started as CDR 0, had

more than 2 non-zero CDR throughout the duration of the study, and had 9 or more observations.

Only 35 of these people fit the AD classification criteria. This procedure independently included

all but one of the individuals that showed positive neuropathology at autopsy - the lone individual

was never assigned a non-zero CDR(this individual brings N=36)

2.3 Summary of Population and Measurements
Mean (SD)

Age at First Measurement 72.68 (7.03)

Age at Non-Zero CDR 83.18 (6.88)

Age at Last Measurement 87.51 (6.97)

Number of Observations 12.33 (4.34)

Table 2.2: Summary Statistics

Table 2.2 shows the ages of the population at impor-

tant points in the research program. Of importance

is that with the reclassified data there is roughly 11

years of data before the first non-zero CDR and thus

the data is well equipped to define changes in pre-

clinical AD.

A 90 minute test battery was administered annu-

ally to all participants approximately 2 weeks after clinical evaluation. This battery tests across

multiple cognitive domains (i.e. semantic memory, episodic memory, working memory, and visu-

ospatial memory). Tests included in the analysis are Associate Learning, Boston Naming, Logical

Memory, Benton Visual Retention Test: Form D-Delayed, Digit Symbol, Trailmaking-A, Block

9



Design and Word Fluency for S and P. Multiple other tests were included in the battery but not in

the analysis due to their scale. Psychometricians were not informed of the results of the clinical

evaluation.

Each of the tests are shown relative to clinical diagnosis for the population of 36 AD individuals

in Figure 2.1. These loess curves should not be taken as a literal description of the data. Loess

estimation is extremely sensitive to outliers, the curves don’t have a known functional form, and

the data is aligned at CDR - which is suboptimal. Furthermore, loess curves are not appropriate

for effectively modeling individual differences. Alignment at CDR and loess were used as an

approximation to present the nonlinear nature of the data in a compact manner.

Figure 2.1: with Time Relative to Clinical Diagnosis (Dashed Line)

10



Chapter 3

Methodology

3.1 Model Specification

It is straightforward to extend Equation 1.1 to incorporate hierarchical dependencies. It first in-

volves adding random effects to the model to account for multiple individuals. Then the hierarchi-

cal structure is incorporated by modeling the relationships between the random effects parameters.

In Bayesian statistics this is accomplished by considering prior distributions of the random effects

parameters themselves to be generated from shared parameters known as hyperparameters(also re-

ferred to as population parameters). This process is shown for two classes of multiphase models;

an abrupt change process and a smoothed change process.

3.1.1 Abrupt Hierarchical Model

3.1.1.1 Random Effects

To begin we will respecify Equation 1.1 to account for i individuals. Let Yi j be the response vector

of outcomes of the jth measurement time of the ith individual and ti j be a corresponding vector of

observation times. Assume that Yi j are distributed normally with expectation µi j and precision τ ,

Yi j ∼ N(µi j,τ). Our equation becomes

11



µi j =

 αi0 +αi1ti j ti j < δi

αi0 +αi1δi +αi2(ti j−δi) ti j ≥ δi

(3.1)

The parameters in this model can be interpreted in the same manner as Equation 1.1 with the

exception that there are i individuals. That is, for the ith individual, αi0 is the level of Y at the

beginning of the the phase before the changepoint δi, with αi1 and αi2 being the first and second

phase slopes, respectively.

3.1.1.2 Dependencies

Yi j

µi j ti j

αi0,i1 δi

τ

τα2µα2 µδ τδ

αi2

µα0,1 Ωα0,1

jth observation
ith individual

Figure 3.1: Directed Acyclic Graph: Abrupt
Model

The DAG for the model is illustrated in Fig-

ure 3.1. It shows the hierarchical dependen-

cies of individual i’s parameters to the entire

AD population. The point is that an individuals

vector of data are generated by a normal distri-

bution determined (dotted lines) by parameters

αi0,1,2, and δi (line 1 in Equation 3.2). These in-

dividual level parameters are in turn generated

from higher level normal or multivariate nor-

mal distributions with hyperparameters µα0,1 ,

Ωα0,1 , µα2 , τα2 , µδ and τδ . (lines 2-4 in Equa-

tion 3.2). This indicates that each individuals

parameters come from common population dis-

tributions. Given that we want to estimate the

parameters of the AD population, these higher level hyperparameters are given hyperpriors (lines

5-9 in Equation 3.2). Line 10 is simply the prior assigned to τ , the precision of Yi j. The full

specification is given by

12



Yi j|αi0,1,2,δi, ti j,τ ∼ N((αi0,1,2,δi, ti j),τ) (3.2)

αi0,1|µα0,1,Ω ∼ MV N((µα0,1),Ωα0,1)

αi2|µα2,σα2 ∼ N(µα2,τα2)

δi|µδ ,σδ ∼ N(µδ ,τδ )

Ωα0,1 ∼ Wishart


1 0

0 1

 ,2


µα0,1,2 ∼ N(0,0.001)

τα2 ∼ G(0.001,0.001)

µδ ∼ N(0,0.001)

τδ ∼ G(0.001,0.001)

τ ∼ G(0.001,0.001)

3.1.1.3 Discussion of Prior Choices

αi0 and αi1 were modeled as being generated from a multivariate normal distribution with hyper-

parameters µα0 and µα1 and Ω. The multivariate normal was used because it is common for these

two parameters to be correlated and thus to complicate convergence (it makes large jumps difficult

in an MCMC chain). Ω was given a conjugate prior to the multivariate normal, namely the inverse

Wishart(R,ρ). To represent vague prior knowledge the degrees of freedom were as small as possi-

ble ρ = 2. The scale matrix R =
(

1 0
0 1

)
is a guess at the magnitude of the covariance matrix of α0,1.

Lindley [Lindley, 1970] showed that the choice of R had little effect on the posterior estimates.

G.(shape ,scale) represents the gamma distribution and N represents the normal with N(mean, pre-

cision). The use of precision is just an artifact of the Gibbs sampler. These are commonly used

diffuse or non-informative priors for regression and variance parameters.

13



3.1.2 A Smoothed Model

A second type of multiphase model put forth by Bacon and Watts [Bacon & Watts, 1971] was

estimated for purposes of model comparison. This model used a hyperbolic tangent function to

smooth the transition between the two phases. It is often a more appropriate model if an abrupt

transition, as in Equation 3.1, does not take place.The DAG is shown in Figure 3.2 - note that the

difference between the two models is the new parameter γ . The smoothed model is given by

µi j = αi0 +αi1(ti j−δi)+αi2(ti j−δi)tanh((ti j−δi)/γ) (3.3)

Yi j

µi j ti j

αi0,i1 δi

τ

τα2µα2 µδ τδ

αi2

µα0,1 Ωα0,1

γ

jth observation
ith individual

Figure 3.2: Directed Acyclic Graph: Smooth
Model

Following the specification that was given in

[van den Hout et al., 2011] γ was assigned a

uniform prior with bounds 0 and 10. The im-

portant point to note is that as γ approaches

zero a more abrupt transition occurs and as it

grows larger a smoother transition occurs. This

will become important in the comparison of the

models in the next chapter. The rest of the pa-

rameters were assigned the same priors as in

the abrupt model. A difficulty with this model

is in the interpretation of α1 and α2, in that

these are not the same as in Equation 3.1 but

are tied into the estimate of γ .

3.2 Alignment Procedure

There is a caveat to the model specification as described thus far. The central idea behind the mod-

eling in this analysis is to define patterns of cognitive decline in AD. To this end a procedure was

defined to anchor each of the individual’s 8 outcomes (Section 2.3) to their changepoint estimate

14



of Logical Memory (LM), estimated at the scale of age. This redefines the time of each of the

measurements as a difference, ṫi j = ti j - δi(LM). Logical Memory was chosen because it is a well

understood outcome in AD. The flexibility of the Bayesian framework allows the estimation of all

the parameters in concert and thus to use the distribution δi(LM) in the calculation of ṫi j. This spec-

ification means that ṫi j is dependent on the precision of the δi(LM) and thus carries the uncertainty

associated with it.

The caveat being that the prior specification in Equation 3.2 should be made more appropriate

for the initial estimation of age at δi(LM). To do this we placed a normal distribution on the location

hyperparameter N(75,0.001) and the usual gamma on the precision. The aforementioned priors

in Equation 3.2 stay the same for the other 7 outcomes, and then the re-estimation of Logical

Memory on ṫi j. As a check, for the procedure to be reasonable the re-estimation of Logical Memory

should be centered very close to 0 (actual estimate of the mean is 0.003). To be clear, all of the

outcomes were modeled simultaneously, using each individuals changepoint estimate of LM over

age to define a new time scale which aligns everybody at their LM changepoint (the exact same

changepoint/time scale for each outcome).

3.3 Bayesian Estimation in Practice

The estimation of our hierarchical models follows the same scheme as was shown in the introduc-

tory chapter - simulation of posteriors using Gibbs sampling. JAGS [Plummer & Plummer, 2003]

was the Gibbs sampler used to simulate posterior densities. JAGS works by constructing a DAG,

similar to the graphs in this chapter, that represents the parameters and conditional independencies

of a model. Because of its factorization (see: [Lauritzen & Spiegelhalter, 1990]) a DAG permits a

complex full joint distribution to be specified in terms of its local components(conditional distri-

butions). It is then possible to set up an MCMC algorithm to sample marginal distributions using

these conditional distributions. Code is given in the appendix. There are two practical issues that

need to be addressed; the first is how to determine when an MCMC chain has converged to the
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target distribution, and the second is model selection with Deviance Information Criterion (DIC).

3.3.1 Convergence of Simulation

The use of multiple MCMC chains (2-5) with lengths between 10,000 and 50,000 were used to

summarize the marginal posteriors of interest. The Gelman-Rubin convergence statistic was used

to detect convergence of parameters [Gelman & Rubin, 1992]. The Gelman-Rubin statistic quan-

tifies the difference in the variance within a chain (W ) and between all chains (B) to detect con-

vergence. It is based on the basic analysis of variance. When the between chain variance is no

larger than the within chain variance then it has probably converged on a solution. As a sim-

ulation converges the statistic r̂ = B/W approaches 1.0. A general rule of thumb set forth in

[Gelman et al., 2003] is that r̂ be less than 1.2 to be considered a stable estimate. This diagnostic

was monitored for all parameters and kept below the conservative value of 1.05 - well below the

rule of thumb. That is, if an estimate was above 1.05 more chains or iterations were run. Trace

plots were also examined to ensure proper mixing of the chains as to not take a simulation that

gave a false positive on the Gelman-Rubin diagnostic.

3.3.2 Deviance Information Criterion

Ultimately, the parameter estimates shown in the next chapter come from simultaneous estimation

of all the outcomes. However, each outcome was modeled separately to get unique Deviance

Information Criterion(DIC) [Spiegelhalter et al., 2002] values because some of the outcomes might

follow a smoothed transition and some an abrupt. DIC is a hierarchical generalization of Akaike’s

Information Criterion(AIC). It can be used to test the fit of different prior specifications and non-

nested models. Similar to AIC, a model with lower DIC has a higher chance of predicting a

replicate data set. A difference more than 5 is generally considered to be substantial and more then

10 should definitely rule out the model with the higher DIC.
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Chapter 4

Model Selection and Estimates

4.1 Model Selection
DIC

Abrupt Smoothed

Block Design 4306 4314

BVRT-Delayed 3163 3168

Trailmaking A 5456 5463

Word Fluency 4415 4421

Logical Memory 3439 3452

Assc. Memory 3712 3720

Boston Naming 3671 3682

Digit Symbol 4510 4519

Table 4.1: DIC for Abrupt and Smooth
Models

Estimates of DIC are given in Table 4.1. It can be

seen that the abrupt model outperforms the smooth

model in all instances (lower DIC being desir-

able). The difference in DIC between the abrupt

and smoothed models can be explained in two in-

terrelated parts. First, the estimates of the popu-

lation changepoint are similar between the smooth

and the abrupt models and the γ estimates of the

smoothed model are sufficiently close to zero to sig-

nal an abrupt change process. Given DIC penalizes

for the effective number of parameters, the more

simplistic abrupt model is favored. Second, and re-

lated to the first, is that, while the parameter estimates are similar, they are not exactly the same

and simply do not replicate the data as well (i.e. DIC difference is not only a function of effective

parameters). The general tendency is for the smoothed model to estimate µδ to be a little further
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away from Logical Memory and for µα2 to be a little less graded than in the abrupt model.

While the smoothed model is a more general model (allowing more types of change) there is

no reason to favor it if the process being studied is, in fact, an abrupt change process. It appears

that cognitive decline in AD is one such process. The parameter estimates in the rest of this section

are devoted to the abrupt model.

4.2 Population Estimates

4.2.1 Estimates of the Changepoint

95% Highest Density Interval

µδ µτ δ (σ)

Block Design (-5.81, -2.19) (0.16, 6.88) -3.97 (0.63)

BVRT-Delayed (-5.20, -1.99) (0.12, 5.69) -3.55 (0.71)

Trailmaking A (-3.53, -1.51) (2.99, 17.79) -2.76 (0.30)

Word Fluency (-1.56, 0.97) (0.04, 5.73) -0.42 (0.84)

Logical Memory (-1.01, 1.12) (0.66, 8.97) -0.00 (0.48)

Assc. Memory (-0.92, 2.23) (0.16, 6.53) 0.72 (0.67)

Boston Naming (0.46, 2.51) (0.40, 7.88) 1.52 (0.61)

Digit Symbol (0.49, 2.50) (0.04, 4.68) 1.45 (0.96)

Table 4.2: 95% Highest Density Interval for µδ and µτ with Mean
and Standard Deviation Calculated.

Estimates of δ for each of

the measurements are in-

cluded in Table 4.2. The

mean and standard devi-

ation of the population

changepoint (far right col-

umn) are calculated from

the hyperparameters µδ and

µτ . The mean is simply

the peak of µδ and the stan-

dard deviation is calculated

while sampling µτ in JAGS

as σ = 1√
τ
. That is to say

the most probable distribution to describe the population δ is a normal distribution with mean be-

ing the peak of µδ and precision as the peak of µτ . For example, the most probable changepoint

distribution for Block Design is a normal distribution located 3.97 years before Logical Memory

and with a standard deviation of .63.

The simulated distribution for µδ can be seen in Figure 4.1, grouped according to a previous
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confirmatory factor analysis of the data [Johnson et al., 2008]. This figure describes the sampled

posterior mean (with the ticks at the bottom being draws from the posterior) of the changepoint

estimated pattern of cognitive decline. The three memory types shown in our previous research

were visuospatial, verbal, and working memory.

4.2.2 Estimates of the Regression Parameters

Parameter

α0 α1 α2

Block Design 28.60 (1.19) -0.15 (0.09) -2.37 (0.46)

BVRT-Delayed 5.49 (0.25) -0.05 (0.02) -0.37 (0.11)

Trailmaking A 51.83 (1.36) 0.99 (0.17) 10.95 (1.33)

Word Fluency 31.57 (1.70) 0.01 (0.13) -2.12 (0.51)

Logical Memory 8.52 (0.52) -0.04 (0.03) -0.89 (0.18)

Assc. Memory 14.39 (0.80) -0.05 (0.04) -1.90 (0.70)

Boston Naming 52.66 (0.74) -0.19 (0.05) -8.73 (1.15)

Digit Symbol 37.47 (1.66) -0.69 (0.12) -5.85 (1.06))

Table 4.3: Population Estimates of Intercept, Phase 1, and Phase 2
Slopes

The population estimates

of α0, α1, and α2 are

given in Table 4.3. These

were calculated in the same

manner as were the δ esti-

mates in the preceding sec-

tion. All of these param-

eters behave as would be

expected. With the ex-

ception of Trailmaking-A

and Word Fluency all of

the first phase slopes are

slightly declining - relative

to the second phase. Word Fluency can be considered to stay flat and Trailmaking-A is on a scale

in the opposite direction of the rest of the measurements. All of these demarcate a slightly wors-

ening or non-changing process consistent with healthy normal aging (detailed later and shown in

Appendix B) and then a change in phase that marks the onset of the disease process as measured

by each test. It is important to note that none of the α1 and their respective α2 distributions contain

each other. This indicates a meaningful switch from the first to the second phase.
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4.3 Individual Estimates of the Changepoint

Previous studies of phase change in Alzheimer’s disease have adopted the method of alignment

of individuals onto their first non-zero CDR. This analysis did not use this method because of

variability in the assignment of CDR. This will possibly lead to incorrect inferences in the models

parameters and hyperparameters and give false patterns of the changepoints or distort the timing

relationships between them. That said, it is still possible to calculate the difference between any

of the measurements and the individuals first non-zero CDR. A posterior distribution of the time

between an individuals changepoint on Block Design and the first non-zero CDR was sampled -

the mean of this distribution is -6.05 (1.32) years prior to CDR. This was calculated by taking the

time between the Logical Memory changepoint and their CDR and then adding the time between

Logical Memory and Block Design.

The calculated mean of the Logical Memory changepoint on the age scale was 80.89 years of

age. The average age of first non-zero CDR was 83.18 years - a difference of 2.29 years(roughly

what should be expected, given the mean δ of Block Design is -3.97 years relative to Logical

Memory). A plot of the individual changepoint estimates of Logical Memory on the age scale are

shown in Figure 4.2. As evidenced in this plot, for all but the second and fifteenth individual, the

CDR comes after or within the bounds of the estimated changepoint (not counting the individual

who had no non-zero CDR but showed positive neuropathology).
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Figure 4.1: Simulated Distributions of µδ Ordered by Memory Type.
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Figure 4.2: 68% and 95% Credible Intervals for Individual δ Estimates of Logical Memory. Each
Individuals Age of First Non-Zero CDR is marked with a white circle. NA is for the individual
without a non-zero CDR score.
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Chapter 5

Discussion

5.1 Overview

In this thesis we demonstrated the use of Bayesian estimation for two classes of multiphase models

- an abrupt change process and a smoothed process. Due to the similarity in the parameter estimates

(and differences in DIC) between the abrupt and smoothed model the more sparsely paramaterized

abrupt model was chosen for the full analysis. That means, in either instantiation of a phase change

model the interpretation that cognitive decline in AD is an abrupt process is supported.

If we calculate through Block Design we see that by the time an individual is diagnosed the level

of the outcome has dropped by 14.34 points on average. This drop in level comes after the first

phase that starts at a level of 28.60(1.19) which is similar to the intercept estimate of 28.36(1.49)

for a linear hierarchical model of healthy older adults(shown in Appendix B). Furthermore the

corresponding slopes are within each others bounds. Given this, we argue that where this decline

starts can be considered a significant milestone of AD - the transition time from healthy to diseased

cognition. By comparing Appendix B with the mean estimates of α0 and α1 in Table 4.3 we

can see that this holds across all the measurements. The first phase in AD simply cannot be

differentiated from the healthy older adults.

The mean pattern of cognitive decline in AD can be seen in Figure 4.1. By using a method
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that anchored the changepoints relative to Logical Memory we have defined a pattern that holds

irrespective of age and clinical status (the method used in most analysis). That is, at any point in

time that someone develops (late onset) AD the most probable pattern that their cognitive decline

will follow is the pattern that we have produced. It shows that there are definite cognitive ’clusters’

of decline. The first cluster is the visuospatial domain that begins on average 3.97(.63) years before

Logical Memory. The next cluster is the verbal memory domain, all of these verbal memory tests

begin there phase change at roughly the same time as Logical Memory. Working memory abilities,

as indicated by Digit Symbol, appear to come at the tail end of verbal memory. More evidence by

way of more outcomes is needed to make strong remarks about the working memory domain.

5.2 Relationship to Past Research

This pattern is mostly in agreeance with a previous publication [Johnson et al., 2009] that used a

fixed effects method to estimate the most likely location of a pre-specified changepoint by profiling

the likelihood. The profile-likelihood method reported that visuospatial abilities started to decline

3 years before CDR, and both verbal and working memory abilities declined 1 year before CDR.

It is a similar pattern in which visuospatial memory is the first to decline. But, the current method,

as was shown in the last chapter puts the time of change in Block design 6.05(1.32) years before

CDR. There are numerous reasons that could explain these differences; the criteria used to define

a non-diluted sample, the method of alignment, or the ability to account for individual differences

are the most plausible.

5.3 Future Efforts

As was detailed in this thesis visuospatial tests begin to decline numerous years prior to clinical

diagnosis. This is a significant amount of time between, what has been argued is, the cognitive on-

set of the disease and the formal diagnosis by a clinician. In the prostate specific antigen literature

[Slate & Turnbull, 2000] similar models have been used to quantify the changepoint prospectively
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in prostate cancer. The idea being to develop an algorithm that monitors the posterior distribution

of the changepoint as an individuals data is captured in a manner that classifies AD early and cor-

rectly. The models could prove useful because they not only take into account where an individual

is located at the current moment, but also where they were at times prior. There is another method

that could possibly accomplish this same goal - the Viterbi algorithm in hidden markov models.

Future work will be aimed at developing these multiphase and hidden markov models for prospec-

tive detection of AD. From this thesis it is understood that an intelligent starting point would be

visuospatial memory - though the methods are not constrained to a single test (in fact, detection

should be better by using multiple tests).
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Appendix A

JAGS Code

This is code for a simple univariate linear-linear model. Multiple outcomes can be easily aligned

by creating an alignment time scale as discussed in Chapter 3.

model {

for (j in 1:N){

for (k in ind[j]:(ind[j+1]-1)){

Y[k]~dnorm(mu[k],tau)

mu[k]<-(b[j,1]+b[j,2]*t[k])*(1-step(t[k]-b[j,4])) //

+ (b[j,1]+b[j,2]*b[j,4]+b[j,3]*(t[k]-b[j,4]))*step(t[k]-b[j,4])

#step() returns 1 if argument is >= 0, 0 otherwise

}}

for(j in 1:N){

b[j,1:2]~dmnorm(mu.b[1:2],T.b[1:2,1:2])

b[j,3]~dnorm(mu.b[3],tau.b[3])

b[j,4]~dnorm(mu.b[4],tau.b[4])

}

# variance parameters
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tau~dgamma(.001,.001)

tau.b[3]~dgamma(.001,.001)

tau.b[4]~dgamma(.001,.001)

Sigma1[1:2,1:2] <- inverse(T.b[,])

sigma[1]<-sqrt(Sigma1[1,1])

sigma[2]<-sqrt(Sigma1[2,2])

sigma[3]<-1/sqrt(tau.b[3])

sigma[4]<-1/sqrt(tau.b[4])

# location parameters

for(j in 1:4){ mu.b[j]~dnorm(0,.001) }

# or mu.b[4]~dnorm(75,0.001)

# Wishart

R[1,1] <- 1; R[1,2] <- 0;

R[2,1] <- 0; R[2,2] <- 1;

T.b[1:2,1:2] ~ dwish(R[,], 2)

}
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Appendix B

Healthy Older Adults

Below is a table for the intercept and slope of a hierarchical linear model for 23 individuals with

non-positive neuropathology at autopsy. These are the population estimates, similar to the rest of

the models in the thesis.

Parameter

α0 α1

Block Design 28.36 (1.49) -0.21 (0.12)

BVRT-Delayed 5.12 (0.62) -0.07 (0.09)

Trailmaking A 54.30 (1.78) 1.23 (0.27)

Word Fluency 32.82 (2.10) -0.10 (0.22)

Logical Memory 9.01 (0.88) -0.00 (0.16)

Assc. Memory 13.58 (1.01) -0.06 (0.17)

Boston Naming 53.92 (0.85) -0.17 (0.22)

Digit Symbol 39.11 (2.03) -0.61 (0.33)
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