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Abstract

Reorientation and solvation dynamics play a central role in chemistry in the

liquid phase. In this work, molecular dynamics simulations are used to study

hydroxyl group reorientation dynamics for a series of neat linear alcohols. The

recently developed extended jump model satisfactorily explains reorientational

slowing with increasing chain length for the water/methanol/ethanol series. The

analysis indicates that hydrogen bond strength and exchange geometries are simi-

lar across the series, and that the dynamic retardation originates with decreased

hydrogen bond exchange due to the increased excluded volume associated with

longer alkyl chains. The reorientation of intact hydrogen bonds is thus the domi-

nant reorientation pathway in lower alcohols, while hydrogen bond exchange is

dominant in water. Simulation data for higher alcohols show emergent timescales

and increased ordering in the liquid, which can also be interpreted within the

extended jump model. While new barriers, which are the origin of the additional

timescales, appear in free energy profiles for reorientation, solvent viscosity must

also be considered. Ethanol and a Stockmayer model solute were confined within a

roughly cylindrical silica pore to investigate the effect of confinement on solvation

dynamics. The results of solute free energy calculations along a one-dimensional

cut through the pore indicate that the charge distribution of the solute controls its

location within the pore. Furthermore, the fluorescence energy is a function of

solute position in a hydrophilic (but not hydrophobic) pore. These effects originate

from silica surface roughness and chemistry, which also strongly alter solvent
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behavior in the pore. The results indicate that solute motion contributes to the

time-dependent fluorescence (TDF) spectrum, but the extent to which this can

be observed is still under investigation. A comparison of TDF spectra and other

solute properties in the pore for the Stockmayer solute and coumarin 153 dye

model indicate that identifying how specific solute and silica properties combine

to change spectral properties will require systematic testing of a series of dye and

confinement models.
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Chapter 1

Introduction

The dynamics of molecules in the liquid state is relevant to a broad range of

chemistry. Of the various kinds of motions that molecules undergo—translation,

vibration, and rotation or reorientation—the last of these has received special

attention because of the role reorientation of common liquid solvents plays in

chemistry. A chemical solute is solvated when surrounding solvent molecules

are organized to provide the most favorable solute-solvent interactions. During

chemical reactions and transformations, the charge distributions of solute molecules

and their reaction intermediates change. Solvation effects then depend on the ability

of the surrounding liquid to reorganize—that is, reorient—such that the solvent

stabilizes the new charge distribution of the solute, reaction complex, or transition

state. The relative timescales of the solute and solvent motions can have a dramatic

impact on the reaction mechanisms and kinetics.

A particularly illustrative example can be found in charge transfer reactions.

The movement of charge between reactant molecules or sites within the same

1



Figure 1.1: A schematic charge transfer reaction is presented. On the left is a neutral
diatomic reactant molecule (purple), and the dipole moments of the surrounding
solvent (green) are randomly oriented. On the right, the charge transfer product,
a dipolar solute with positive (red) and negative (blue) ends, is stabilized by the
solvent. In this case, the solvent dipoles are organized so as to favorably interact
with the solute charges.

molecule can be facilitated in several ways, for example photoexcitation, chemical

modification, temperature, or solvent rearrangements. In the last, dipolar solvents

(e.g., dioxane, acetonitrile, methanol) stabilize charge redistribution through reori-

entation of their dipoles, as depicted schematically in Figure 1.1. On the left side

of Figure 1.1 the solvent dipole moments (green) are randomly distributed around

the neutral solute (purple). Upon reaction, charge within the neutral molecule is

redistributed so as to form positive (red) and negative (blue) ends. On the right side

of Figure 1.1, the solvent dipole moments are organized so as to stabilize this new

charge distribution. The rate at which the charge redistribution can be stabilized

depends upon the ability of the solvent dipole to reorient. That is, charge transfer
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reaction dynamics and reorientation dynamics are inextricably related. Inasmuch

as the solvent responds to charge transfer, solvent fluctuations can drive charge

transfer.

Notably, the solvent response has several components. For neutral solutes,

the largest electrostatic interactions between solute and solvent involve molecular

dipole moments. Because the solvent response involves charge redistribution,

both electronic and nuclear motions contribute, but these can be treated separately

within the Born-Oppenheimer approximation. The electronic response comes

largely from the polarizability of the electron cloud, changing the dipole moment

of the solvent. Because of the fast timescale on which this electronic response

occurs, it is frequently averaged over or neglected in measurements of reorientation.

The remainder of the solvent reorganization is achieved through nuclear motions.

The fast translational and vibrational contributions can be captured in experiments

that are sensitive to these motions and have sufficiently high temporal resolution.

However, almost all experiments (generally picosecond resolution or better) report

on the slow molecular reorientation component. To understand these solvation

processes, including those relevant to chemical reactions such as electron or proton

transfer (Figure 1.1), one must study reorientation dynamics.

Interestingly, experimental studies using methods that report on reorientation

also show that the environment in which molecules are allowed to move dramati-

cally impacts the timescales on which they do so. In a bulk liquid, molecular reori-

entation is generally observed on the picosecond timescale. In contrast, molecules

within a confining framework that spans a handful of molecular diameters (or
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“nanoconfined”) show dramatically slowed reorientation [1–12], often orders of

magnitude slower than in the corresponding bulk solvent. Additionally, timescales

that have no bulk counterpart often emerge as a result of nanoconfinement—an

effect with a debated origin[13].

While water has been thoroughly studied due to its strong solvation properties

and relevance to myriad chemistries, the alcohols are less understood and far

less studied. The chemical similarity of alcohols to water due to the presence of

hydrogen bonding hydroxyl groups and their similar significance in a broad range of

chemistries make alcohols an interesting subject for study. Notably, the linear chain

alcohols show the trend that hydroxyl reorientation timescales increase (i.e., slow)

with increasing alkyl chain length. Additionally, experiments on nanoconfined

alcohol systems show both slowed and additional timescales compared to the bulk

liquid. Thus, it appears that hydroxyl reorientation is a function of its environment,

but how the environment gives rise to these effects is not understood.

The aim of this work is to explore the reorientational motions of small linear

alcohols in both bulk and nanoconfined systems. The remainder of the present

Chapter describes some of the theoretical and experimental methods used to study

molecular alcohol reorientation and also provides some experimental results on

alcohol reorientation dynamics. Chapter 2 describes theoretical investigations

of alcohol reorientation in the lower alcohols—methanol and ethanol—using

equilibrium molecular dynamics simulations and attempts to explain the trend of

slowed reorientation with increasing alkyl chain length. The molecular picture of

reorientation developed in Chapter 2 is then applied to higher linear chain alcohols,
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through n-hexanol, in Chapter 3. It is found that new reorientation dynamics emerge

in simulation models of higher alcohols, and several hypotheses are tested to explain

these dynamics. The emergence of new timescales in nanoconfined systems is

addressed in Chapter 4 by considering the possible role of solute motion. Chapter

5 then provides preliminary results from non-equilibrium molecular dynamics

in studying the role of the solute molecule motion in emergent timescales. The

results presented in this work are summarized in Chapter 6, and ongoing and future

directions for continued research are discussed.

1.1 Theory of Molecular Reorientation

To describe the dynamics of molecules in a liquid, one frequently invokes the Born-

Oppenheimer approximation, in which electronic motions are assumed to be fast

relative to the motions of heavier particles such as nuclei. In this spirit, electronic

degrees of freedom are averaged, and in this way contribute to the force field, i.e.,

the set of parameters used to describe the interactions among atoms comprising

the liquid. The nuclear degrees of freedom, on the other hand, represent the atoms

comprising the liquid. As an example, consider a methanol molecule. Each atom

at some instant, t, has associated with it positions, velocities, and forces acting at

the center of the atom—the nucleus. How this methanol molecule interacts with

another molecule—and thus what its coordinates, velocities, and forces will be

at a later time t ′—is determined by the force field of the interacting atoms. In a

classical view, the propagation of the system in time is thus achieved by calculating
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the forces acting on each atom, integrating the equations of motion (by one of a

number of methods), and updating positions and velocities. In this way, a classical

molecular dynamics (MD) trajectory is constructed. The trajectory output, which

includes positions as a function of time, can then be analyzed for quantities of

interest, including molecular orientation in time for each molecule.

For an alcohol molecule at a given time, the vector rOH = rH − rO describes

the orientation of the hydroxyl group of the molecule. Normalizing by the vector

magnitude |rOH |, one obtains eOH , a unit vector in the direction of the hydroxyl

group. This quantity is calculated at some initial time, denoted eOH(0), and at

later times, t, as eOH(t). The projection of the vector at time t onto its initial

orientation at time zero (t = 0) can be calculated using the vector dot product,

eOH(0) · eOH(t). When t = 0, this expression is equal to unity, and the "overlap"

of the two vectors is complete. As the the hydroxyl group reorients in space over

time, the dot product becomes less than unity, as it has the geometric interpretation

that cosθ(t) = eOH(0) · eOH(t), where θ(t) is the angle the OH vector has rotated

through in time t. Thus, one can relate the vector dot product to the angle through

which the vector rotates in time t. This is represented in Figure 1.2.

The vector dot product eOH(0) · eOH(t) = cosθ(t) thus represents an orienta-

tional self-similarity—or autocorrelation—in time for some molecule. Experiments

sensitive to molecular orientation measure the correlation function,

Cl(t) = 〈Pl[eOH(0) · eOH(t)]〉. (1.1)

6



Figure 1.2: Schematic representation of the calculation of hydroxyl reorientation.
A single methanol molecule is depicted at three times. Hydrogen is silver, oxygen
is red, and the united atom carbon is blue. The eOH(0) vector is shown to the
left. The projections of this vector at later times, t ′ > 0 and t ′′ > t ′ onto the vector
at t0 are also depicted, along with the corresponding angles, the key quantity in
reorientation.

The brackets, 〈−〉, indicate averaging over the collection of time origins for all

molecules (thermal averaging), and Pl is the lth Legendre polynomial. Notably,

different experiments measure different Legendre polynomials of the autocorre-

lation function (primarily the 1st and 2nd . For example, NMR and IR anisotropy

experiments are both related to the second Legendre polynomial, P2 =
1
2(3x2−1),

as discussed in Sections 1.2.1 and 1.2.4.

The key reorientational information about a system is contained in Equation

1.1. That information is frequently extracted by approximating Cn(t) as a sum of

exponential functions, as shown in Equation 1.2.

C2(t)≈
n

∑
i=1

Aie−t/τi (1.2)
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The interpretation of Equation 1.2 is that a process i that contributes to reorientation

occurs with amplitude Ai with characteristic timescale τi. Thus each distinct process

i, e.g. libration (see Section 1.1), is assigned a timescale. As usual, the physical

interpretation of fitting to such functions is that at time t = τi, an average of 1
e of

the process i has yet to happen.

In the liquid state, the “collisions” of molecules constitute the fastest of such

molecular motions. The condensed nature of the liquid state means that there is

always another molecule nearby. Consequently, the mean-free path length is on

the order of an Ångstrom or less, and the “collision frequency” in liquids is high.

Because this motion is always occurring in a liquid, any experiment of sufficient

temporal resolution reporting on molecular orientation beginning at times t = 0 and

later will always capture a large population of molecules reorienting between their

previous collisions and their next. Thus, the fastest-time component of molecular

reorientation is always ascribed to this "inertial" component. While formally the

inertial response is Gaussian, the averaged response it can be reasonably fit with

an exponential function as in Equation 1.2.

Just after a collision, a molecule undergoes a rebounding motion. In terms

of reorientation, the effect is to partially realign the vector of interest with its

initial orientation vector. The partially restorative dynamics can be seen as small

increases in C(t) measurements and are often interpreted as the molecule “rattling

around in a solvent cage.” This type of librational motion is observed in all weakly

interacting liquids and constitutes part of their reorientation response.
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In networked liquids, where a directionality is imposed by specific interactions

(e.g., hydrogen bonds), librational motion takes on a qualitatively different character.

In hydroxyl-bearing hydrogen bonded liquids, such as water and alcohols, the

hydrogen bond donor (D) hydroxyl group on average is directed toward the oxygen

atom of the hydrogen bond acceptor (A). Thermal motion allows displacement of

the donor hydroxyl group away from the OD−OA axis. Importantly, the oxygen

and hydrogen atoms in this context can be viewed as having a partial negative

and positive charges, respectively. Thus, displacements of the hydroxyl group are

countered by a restoring force due to the hydrogen bond. The hydroxyl group,

while participating in a hydrogen bond, therefore exhibits a wobbling motion within

a cone, the geometry of which is dictated by the hydrogen bond strength[14]. This

"librational" motion–including the restorative dynamics induced by the hydrogen

bond–can be seen in sub-picosecond measurements of water reorientation.

The longest timescales—those observed after inertial and librational contributions—

are traditionally associated with “diffusive” reorientational motion. However, the

nature of this gross molecular reorientation is not well characterized, particularly in

the case of networked liquids, for which theoretical and experimental descriptions

have generally failed to agree. Common molecular-level theoretical models for

long-time reorientation—and their failures and successes—are described in the

next Section.
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1.1.1 Debye Model of Reorientational Diffusion

The longest reorientation timescale has traditionally been associated with the Debye

mechanism of reorientation. As applied to hydroxyl-bearing hydrogen bonded

liquids, the Debye model [15] indicates that after a hydrogen bond breaks, the

unnassociated hydroxyl group executes a series of random, small amplitude angular

displacements until it achieves a hydrogen bond geometry with a new acceptor

oxygen. That is, the long timescale comes from diffusive motion of free hydroxyl

groups between hydrogen bond acceptors. The diffusive reorientation time can be

described[15] by

τn =
1

n(n+1)DR
, (1.3)

where n indicates the rank of the Legendre Polynomial, and DR is the rotational

diffusion constant. Importantly, one can calculate from simulation data ratios of

nth-order time constants as tests of the Debye model. Where the Debye model

holds, τ1/τ2 = 3 and τ1/τ3 = 6.

1.1.2 Jump Model

In the jump model for reorientation first developed by Ivanov [16], this diffusive

behavior is replaced by large amplitude angular jumps that occur as a conse-

quence of a hydroxyl group switching between two hydrogen bond acceptors. The

nth-order timescale of this jumping motion can be described through geometric

10



considerations by

τ
jump

n = τ0

[
1− 1

2n+1
sin[(n+1/2)∆θ ]

sin(∆θ/2)

]−1

. (1.4)

In Equation 1.4, τ0 represents the time characteristic of hydrogen bond jumping,

where τ0 = k−1
jump and k jump is the rate constant for switching hydrogen bond

acceptors. As will be discussed later, of particular interest is the second-order

reorientation time,

τ
jump

2 = τ0

[
1− sin(5∆θ/2)

5sin(∆θ/2)

]−1

(1.5)

These equations suggest that the time it takes a hydrogen bond switching event to

occur depends on both the microscopic switch time and the geometry of the switch

event. In the Ivanov jump model, the description of dynamics stops here. This

suggests reorientation occurs only during hydrogen bond switches, while intact

hydrogen bonds in water remain locked in place.

1.1.3 Extended Jump Model

In contrast to the Ivanov jump model [16], recent theoretical studies by Laage

and Hynes[17–19] have indicated that the long timescale for water reorientation

arises from a combination of two effects: a fast, large-amplitude switch between

hydrogen bond acceptors and the tumbling motion of an intact hydrogen bond

between these switches. In this extended jump model, depicted in Figure 1.3, the

overall long timescale associated with water reorientation is then described by

11



Figure 1.3: Two mechanisms account for longtime reorientation in water in the
extended jump model. During hydrogen bond “jumps” (Left), the orientation of
a hydroxyl group changes in time as a consequence of switching hydrogen bond
acceptors. During “frame” reorientation (Right), the hydroxyl group reorients
in-frame with its hydrogen bond acceptor. For the jump and frame mechanism,
the eOH and eOO vectors are shown at t = 0 and t = t ′ to highlight the angular
displacement for each type of motion.
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1
τ2

=
1

τ
jump

2

+
1

τ
f rame

2

. (1.6)

The right side of Figure 1.3 indicates that the frame time is calculated using the

reorientation of the eOO vector, rather than the eOH vector. The inclusion of the

librational motion of the OH group wobbling around the eOO vector has little effect

on τ
f rame

2 , and the motion of the eOO vector is tracked instead.

In the extended jump model, the transition state for a water molecule reorienting

between an old and a new hydrogen bond acceptor (shown in Figure 1.4) is

symmetric in the coordinates R‡
OD−OA

and R‡
OD−OB

. Similarly, for the hydrogen

bond jump, the vector eOD−HD
bisects the OB−OD−OA angle. Thus, as the

current acceptor molecule A moves away from the donor D and the new acceptor

B approaches, the identity of the hydrogen bond acceptor is lost and A and B

are equally plausible hydrogen bond partners. Importantly, in water the future

acceptor B generally approaches from the second solvation shell, which is a slightly

activated process.

The extended jump model has been further developed to provide simple expla-

nations for changes to water reorientation rates through both entropic and enthaplic

considerations, which have been applied successfully to a number of situations

showing aberrant reorientation dynamics, including reorientation about hydropho-

bic solutes[20], emergent reorientation timescales in supercooled water[21], and

increased reorientation around certain hydrophilic and amphipathic solutes[22–24].
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Figure 1.4: The transition state for water hydrogen bond switching in the extended
jump model is symmetric. Oxygen atoms (red) and hydrogen atoms (silver) are
shown for the hydrogen bond donor (D), the previous acceptor (A), and the future
acceptor (B). At the transition state, the R‡

OD−OA
and R‡

OD−OB
distances are the

same, and the donor hydroxyl bisects the ∆θ
‡
OB−OD−OA

transition state angle.
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1.2 Experimental Measurements of Reorientation

Several experimental methods can be used to measure reorientation in alcohols.

In the case of NMR, the results indicate slower reorientation with longer alkyl

chain length. Other techniques measuring dynamics in liquids have only been

sparsely applied to alcohols, but deserve mention for their potential utility in future

experimental investigations.

1.2.1 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) has been used to measure the O-H intramolec-

ular reorientation for water [25] and linear chain alcohols [26–29]. By titration

of CD3(CD2)17
n OH in CD3(CD2)16

n OH, one can obtain a reliable estimate of the

hydroxyl proton relaxation rate in CD3(CD2)16
n OH. In essence, the 17O magnet-

ically active nucleus provides an additional relaxation pathway for the proton.

Measurement of relaxation over the isotopic mole fraction series allows one to

extrapolate the longitudinal relaxation (T1) time back to that for the pure, unlabeled

alcohol. The results of such an experiment across a series of short chain linear

alcohols at 298 K are provided in Table 1.1.

The NMR approach has the advantage that the reorientation of specific bonds

can be measured. However, because the NMR measurement is slow, it reports only

the average or integrated timescale,

〈τ〉=
∫

∞

0
C2(t)dt. (1.7)
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Table 1.1: NMR hydroxyl reorientation times (in ps), Eq. 1.7
Molecule 〈τ〉
Water 2
Methanol 5
Ethanol 18
n-Propanol 33
n-Butanol 51
n-Pentanol 72
n-Hexanol 89

Notably, Equation 1.7 also indicates that NMR is sensitive to the second-order

Legendre polynomial in the reorientation correlation function, as in Equation 1.1.

Accordingly, the C2(t) correlation function of the eOH bond vector (described

in Section 1.1) can be calculated and integrated to compare directly with these

experiments. Importantly, while the trend that hydroxyl reorientation is a function

of the length of the rest of the molecule is both immediately obvious (Table 1.1)

and fundamentally interesting, no mechanistic explanation for this trend has been

pursued previously.

1.2.2 Optical Kerr Effect Spectroscopy

Among non-linear spectroscopic methods, optical Kerr effect (OKE) spectroscopy

is particularly well-suited to studying molecular reorientation and has the advantage

that no labeling of the molecule of interest is required. In OKE spectroscopy

(reviewed in [30]), a strong laser field induces a partial alignment of molecular

dipoles in an otherwise isotropic medium. This anisotropic ordering results in

an optical birefringence, which can be measured with another laser pulse. The
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inducing field is eliminated, and the birefringence is monitored. The decay of

the birefringence is then a measure of reorientation of the liquid molecules—it

disappears as the molecular orientations randomize. Thus, OKE spectroscopy

reports on librational and diffusive motions.

While the decay in induced birefringence would provide valuable information

about reorientation dynamics in alcohols, no studies focused on reorientation

dynamics have been conducted. Instead, several OKE spectroscopic studies of

alcohols have focused instead on molecular structure, rather than dynamics. The

optical Kerr constant, B0, is related to the applied electric field, 〈E〉, the probe

wavelength, λp, and the change in index of refraction, δn, through the expression

B0 =
δn

λp〈E〉2
(1.8)

Accordingly, B0 is taken as a measure of the field-induced collective molecular

ordering in the liquid.

In studies of n-alcohols, the Kerr constant, B0, increases for increasing alkyl

chain length, which has been interpreted as the growth of greater structural order

in longer alcohols [31, 32]. Notably, in lower alcohols (methanol, ethanol), linear

relationships between the number of alkyl carbons and the Kerr constant are

observed, while for higher alcohols (n-propanol and longer), relationships become

nonlinear[31,32]. Theoretical studies aimed at direct comparison with OKE results

for linear chain liquid alcohols are, at this time, absent from the literature. Similarly,

OKE experiments reporting reorientation dynamics in alcohols are lacking.
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1.2.3 Two-dimensional Infrared Spectroscopy

Two-dimensional infrared (2D-IR) spectroscopy is an extension of more common

infrared spectroscopy, in which light in the IR region of the spectrum excites molec-

ular vibrational modes. While the technique is not specific to reorientation, per se,

it can be used to infer local dynamics and also monitor hydrogen bond switching.

In 2D-IR, a pump pulse excites a vibrational mode in a reporter molecule (e.g.,

dilute ROD in ROH). A second probe pulse is then introduced at some variable

time delay. When the time delay is short, stimulated emission to the vibrational

ground state as well as excitation to the second vibrational excited state are ob-

served as narrow peaks. When the time delay is increased, the environment around

the reporter molecule has time to change, which results in a distribution of frequen-

cies for both stimulated emission and second excitation for the reporter molecule

(spectral diffusion). Thus, the 2D-IR lineshape as a function of time reports on

local rearrangements, including contributions from molecular reorientation.

Additionally, hydrogen bonding can be monitored directly as a function of

time using 2D-IR spectroscopy. Hydrogen bonded ROD and non-hydrogen bonded

ROD comprise a simple two state system. For a pump probe peak specific to one of

these—hydrogen bonded ROD, say—a pulse at a later time will result in the simple

stimulated emission / second excitation pair if the hydrogen bond remains intact.

If, however, between the pump and the probe, the hydrogen bond is broken, a cross

peak results due to the frequency change in the OH stretch. Thus, with proper

peak assignment, one can monitor the chemical exchange dynamics of hydrogen

bonding.

18



Several IR and multidimensional-IR studies of alcohol dynamics have been

performed[33–41]. However, the alcohol is frequently dissolved in solvent (carbon

tetrachloride), and the vibrational lifetime is monitored as a function of alcohol

concentration. The focus of these studies, then, is on non-networked monomers or

small oligomers, rather than the neat liquid. While in some cases useful vibrational

lifetime information can be derived, a comprehensive set of data for a series of

alcohols is lacking.

1.2.4 Infrared Pump-probe Anisotropy Measurements

Information concerning the motion and local environment of specific bonds can

also be obtained from vibrational pump-probe anisotropy experiments. A infrared

pump pulse excites a vibration from the ground state, ν0, to its first excited state,

ν1. Then, a time-delayed probe pulse polarized parallel or perpendicular to the

pump pulse is used either to further excite the vibrational mode (ν1 → ν2) or

stimulate it back to the ground state (ν1→ ν0). The parallel and perpendicular

absorption changes associated with the probe pulses can be monitored as a function

of time. If the molecule has not rotated, the parallel intensity is maximal, while the

perpendicular signal is zero. The perpendicular signal grows in as the molecule

rotates in time. This information can be recast as the anisotropy decay

r(t) =
I‖(t)− I⊥(t)

I‖(t)+2I⊥(t)
≈ 2

5
C2(t), (1.9)
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which therefore provides rotational information about specific bonds, including

hydroxyl groups. In most cases, r(t) = 2
5C2(t), although theoretical studies indicate

that other factors, such as non-Condon effects, may change the exact form of r(t)

[42].

While anisotropy decay experiments on dilute HOD in H2O have provided

valuable information about reorientation and vibrational energy transfer dynamics

in liquid water[43, 44], analogous pump-probe anisotropy studies of alcohols have

not been pursued.

1.3 Time-dependent Fluorescence Spectroscopy

Another widely employed technique for reporting dynamics in liquids is time-

dependent fluorescence (TDF) spectroscopy. In contrast to the methods previously

described, in which the dynamics of molecules comprising a liquid are probed

directly, TDF employs a reporter dye or solute dissolved in the liquid under

investigation.

The TDF process is shown schematically in Figure 1.5. At times t < 0, the

solvent molecules interact with the ground-state charge distribution of the solute

molecule. At some time t = 0, a high energy photon promotes the dye molecule to

its excited state (upward, purple arrow in Figure 1.5). In the Franck-Condon approx-

imation, the electronic charge redistribution of the solute occurs instantaneously

with respect to the nuclear coordinates of both the solute and the surrounding

solvent. (The upward, purple arrow is vertical, reflecting the fact that no change
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Figure 1.5: Time-dependent fluorescence is generally described by the difference
in energy between the ground and excited state of a dye molecule as a function of
the solvent coordinate over time. In the Figure, a ground state dye molecule (bold
colors) is solvated by methanol molecules with little to no preferred orientation
around it. At time t = 0 (purple arrow), absorption of a photon results in an excited
dye molecule (pastel colors). The solvent gradually reorganizes to stabilize the
new charge distribution of the excited state dye molecule. Therefore, at later times,
energy lost from the dye as a photon (colored arrows) is red-shifted relative to the
photon involved in excitation.
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has occurred in the generalized solvent coordinate, Q.) This implies that the sol-

vent is now in a non-equilibrium configuration with respect to the new charge

distribution of the solute. The excited state charge distribution is subsequently

stabilized by reorientation (and translation) of the surrounding solvent molecules.

(This is depicted by the sequence of excited state solute/solvent configurations

that decrease in energy for subsequent solvent coordinates, Q.) After excitation,

the solute molecule can return to its electronic ground state by emitting a photon.

The fluorescence wavelength of the emitted photon is therefore a function of the

response time of the medium and is longer than the wavelength of the absorbed

photon. (This is depicted by the sequence of downward arrows of different colors.

The magnitudes of the arrows representing emission are decreased relative to that

of the excitation, and the colors schematically reflect the extent of red-shifting.)

The dynamics in the general solvent coordinate Q are thus frequently quantified

as changes to the fluorescence energy over time. Importantly, ∆E f l(0) (purple

curve) and ∆E f l(∞) are constant values, and as such, do not contribute to the

response. The change in the fluorescence energy can then be taken as the difference

between its value at some time t after excitation and t→ ∞, when the value is no

longer changing. This difference can also be normalized according to,

S(t) =
∆E f l(t)−∆E f l(∞)

∆E f l(0)−∆E f l(∞)
, (1.10)

by dividing by the largest difference in the fluorescence energy (between time t0

and t → ∞). The normalized time-dependent Stokes shift, Equation 1.10, thus
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starts at 1 at t = 0 and decays over time to 0 at t→ ∞. In this sense, timescales in

S(t) are taken to report on the molecular motions that stabilize the excited-state

charge distribution.

1.4 Reorientation in Confined Systems

All of the preceding descriptions of experiments on liquid systems have been

restricted to bulk systems. In bulk systems, the medium extends sufficiently far

in each direction that any effects from interactions with the containing vessel

(e.g., cuvette, beaker, etc.) contribute negligibly to any measured signal. That

is, the surface area-to-volume ratio is typically very low. In contrast to this,

confining frameworks with dimensions on the order of only a few molecular

diameters have a much larger surface area-to-volume ratio, and experimental

signals comprise contributions from molecules interacting with the vessel interface

as well as molecules interacting directly only with other liquid molecules in the

vessel interior. Examples of such nanoconfining frameworks include sol-gels,

micelles, reverse-micelles, and carbon nanotubes, among others.

One consequence of the nanoconfinement of liquids is a general retardation of

their dynamic properties. The methods previously described and applied to bulk

systems—NMR, OKE spectroscopy, and 2D-IR spectroscopy—all show generally

increased reorientational timescales. However, the most interesting results for

dynamics in confined systems come from time-dependent fluorescence (TDF)

measurements, in which the number of observed timescales exceeds that in the
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corresponding bulk case. That is, the functions S(t) for a given solute and solvent

are often fit to a larger number of exponential functions in confined systems than in

bulk systems, and these emergent timescales—those with no bulk counterpart—are

observed more commonly than not.

In general, models to explain these emergent timescales in nanoconfined sys-

tems have been directed toward changes in solvent motions. As it is unlikely that

confinement induces some new type of solvent motion, it has been suggested that

additional timescales results from the partitioning of solvent dynamics between

those at the interface and those in the confining framework interior. However, such

a two-state model [45–50] cannot account for the emergence of multiple additional

timescales, which has been experimentally observed[1, 51–64]. Similarly, in the

dynamic exchange model [65–70], in which bound interfacial solvent does not con-

tribute to reorientation, the exchange between bound and bulk-like molecules (in the

interior) is suggested to contribute a new reorientation timescale. However, experi-

ments and simulations[71–81] both indicate that molecular processes—including

reorientation— occur at the framework interface, but on slower timescales than

bulk-like molecules.

The emergent dynamics often observed in nanoconfined systems may originate

with motion of the solute itself. Whereas bulk systems are isotropic, in nanocon-

fined systems, the framework introduces anisotropy, and molecular properties

along directions normal and tangential to the confining interface are often different.

For example, in a cylindrical silica pore, the rate of solute diffusion toward the

interface may be different than the rate of diffusion along the pore axis. Thus, it is
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plausible that spectral properties of a solute may also change in confinement, and

that new timescales in TDF experiments in nanoconfined systems are associated

with solute motions. Such a hypothesis has been proposed[68, 73, 75, 78], although

no definitive tests, experimental or theoretical, have been conducted. Thus, the

origin of emergent timescales in TDF spectra of nanoconfined systems is still not

understood, but is required for proper interpretation of TDF spectra and solvent

(and possibly solute) dynamics.

1.5 Goals of the Present Work

Several phenomena with regard to reorientation dynamics remain unexplained. The

trend that alcohol reorientation timescales increase with increasing chain length has

been experimentally observed, although no mechanism for this has been proposed

and tested. New timescales emerge in TDF spectra. Both the extended jump model

for supercooled water and the solute diffusion hypothesis predict the emergence of

new timescales, but neither hypothesis has been theoretically investigated. The goal

of the present work is to explore using MD simulations the origins of trends and

new timescales that appear experimentally in bulk and confined alcohol systems.

While this work is not exhaustive, it is hoped that it represents a small but strong

foundation on which subsequent studies can build.
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Chapter 2

Lower Alcohol Reorientation Dynamics

Alcohols are frequently employed as solvents for their cost effectiveness, simple

synthesis, low toxicity, and modest environmental impact. Of these, the better-

studied [25–29, 33–41, 82–119] lower alcohols—methanol and ethanol—are often

chosen. As discussed in Section 1.2, the timescale on which the hydroxyl group

in alcohols reorients is a function of the alkyl chain length. Thus, processes in

which solvent reorientation is key can, in principle, be better controlled through an

informed choice of solvent. A particularly important example of this is reaction

dynamics, and specifically nucleophilic substitution and elimination reactions, in

which charge stabilization of transition states and/or intermediates through solvent

reorganization is critical. The reaction rate constants are thus, in principle, control-

lable through fine-tuning of the reaction medium, and a fundamental understanding

of alcohol reorientation can facilitate rational design in reaction chemistry.

Recently, the extended jump model has received attention for its ability to theo-

retically explain experimental measurements on water reorientation [14, 17–24]–
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particularly in cases where previous models have failed. The structural similarity

between water, H−O−H, and alcohols, R−O−H, suggests that alcohol OH

reorientation may occur by mechanisms similar to that of water due to the central

role of hydrogen bonding. Accordingly, in this Chapter the analysis of molecular

dynamics (MD) simulation trajectories to explore hydroxyl group reorientation

mechanisms in lower alcohols is discussed.

2.1 Simulation Methods

Water reorientation has been successfully investigated using classical MD and in-

teraction models using fixed charges. Here, a similar approach has been taken with

water and the lower alcohols—methanol and ethanol. Water was described using

the Simple Point Charge Extended (SPC/E) model [120]. Methanol and ethanol

were modeled based on the Optimized Potentials for Liquid Simulation United

Atom (OPLS-UA) potential of Jorgensen [121,122]. The force field parameters for

water and the lower alcohols are listed in Table 2.1. In addition to fixed charges,

the models use fixed bond lengths and fixed bond angles; accordingly, no force

constants for bond stretching or bending are provided. The torsional potential of

ethanol is handled by a Fourier series of the form

V (φ) =V0 +
1
2

V1(1+ cos φ)+
1
2

V2(1− cos 2φ)+
1
2

V3(1+ cos 3φ) (2.1)
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Table 2.1: Force field parameters for water and lower alcohols
Atom m (g mol−1) q (e) σ (Å) ε (kJ mol−1)
Hwater 1.0079 0.4238 0.0000 0.00000
Owater 15.999 0.8476 3.1660 0.65000
Halkanol 1.01 0.435 0.0000 0.00000
Oalkanol 16.00 -0.700 3.0700 0.71128
C1 14.03 0.265 3.9050 0.49371
C2 15.04 0.000 3.7750 0.86609
Atoms AB HOwater HOalkanol OC CC
RAB (Å) 1.0 0.945 1.430 1.530
Atoms ABC HOH HOC OCC
ΘABC (◦) 109.47 108.5 108.0

φHOCC V †
0 V1 V2 V3

0.000 3.48947 -0.48535 3.12546
† All torsional parameters are provided in kJ mol−1.

Intermolecular interactions between two sites A and B are described by Coulom-

bic and van der Waals terms (represented by a Lennard-Jones potential), which are

provided in Equations 2.2 and 2.3.

VCoul(rAB) =
1

4πε0

qAqB

rAB
(2.2)

VLJ(rAB) = 4εAB

[(
σAB

rAB

)12

−
(

σAB

rAB

)6
]

(2.3)

In these equations, A and B represent the identities of the interacting sites, rAB

is the distance between them, qα represents the electrostatic charge of site α ,

σAB represents the AB distance at which the interaction energy is zero, and εAB

represents the strength of interaction. Values for σAB and εAB, where A 6= B, for the
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lower alcohols have been calculated according to the standard Lorentz-Berthelot

combining rules.

σAB =
σAA +σBB

2
(2.4)

εAB =
√

εAAεBB. (2.5)

Force field parameters for these intermolecular interactions are also provided in

Table 2.1.

Classical MD simulations were performed using the DL_POLY_2 software

package[123]. Water, methanol, and ethanol simulations contained 343, 385,

264 molecules in cubic boxes of lengths 21.725311, 30, and 30 Å, respectively.

The resulting liquid densities were 1.00, 0.759, and 0.748 g cm−3. Lennard-

Jones interactions (Equation 2.3) and Coulombic interactions (Equation 2.2), were

applied with a cut-off distance of 10.5 Å and 15 Å for water and the alcohols,

respectively. Long-range electrostatics were handled using an Ewald sum, with α

= 0.25 and a 10×10×10 k-point grid for fast Fourier transformation. Simulations

were run in the NVT ensemble, using a Nosé-Hoover thermostat[124,125] with a 1

ps time constant. With the exception of the calculation of the activation energy of

hydrogen bond switching, all calculations and analyses use simulation trajectories

collected at 298 K. For water, methanol, and ethanol, simulations were performed

for a range of temperatures to determine the activation energy of hydrogen bond

switching. The trajectory lengths for all temperature simulations are provided in

Table 2.2. In each case, a 500 ps equilibration was followed by the data collection

stages presented in Table 2.2. For all simulations, a 1 fs time step was used,
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Table 2.2: Trajectory lengths (in ns) of the simulations
280 K 298 K 320 K 340 K 360 K

H2O 2 2 1 1 1
CH3OH 5 2 1 1 1
CH3CH2OH 4 10 4 4 4

and configurations were written every 8 fs. Uncertainties were calculated at a

95% confidence interval using the Student’s t-test[126] and 10 blocks for block

averaging.

2.2 Applicability of the Extended Jump Model

The extended jump model developed by Laage and Hynes[17, 18] and applied

to liquid water has excellent theoretical and experimental support. (See Section

1.1.3.) This is not the case for the Debye mechanism for water reorientation. That

is, the slow angular diffusion of hydroxyl groups is suggested not to occur in water.

Instead, the extended jump model posits that hydroxyl groups reorient quickly and

with large amplitude during the switching of hydrogen bonding partners as well

as more slowly during the tumbling of an intact hydrogen bond. Thus, a natural

initial test of the applicability of the extended jump model to liquid alcohols is to

determine if free hydroxyl groups persist in the bulk liquid. Persistent and slow

reorientation of non-hydrogen bonded hydroxyl groups would support the Debye

mechanism, while an absence of such behavior would instead favor the extended

jump model.
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To this end, one can define a hydrogen bond in a classical MD simulation in

several ways. The simplest among these uses purely geometric criteria involving

interatomic distances and angles [127]. For example, the definition used in the

present studies is that a pair of molecules, labeled D (donor) and A (acceptor),

are considered hydrogen bonded if RHD−OA < 2.15 Å, ROD−OA < 3.10 Å, and

ΘHD−OD−OA < 20◦. One can thereby calculate the time for which a “free” hydroxyl

group remains non-hydrogen bonded. Mathematically, this can be calculated using

a side-side correlation function,

CNHB(t) = 〈θNHB(0)θHB(t)〉 (2.6)

Here, θNHB is a binary function that a molecule donates No Hydrogen Bond.

Similarly, θHB is a binary function that a molecule donates a Hydrogen Bond. This

is better illustrated as

θNHB(t) =



1 when the selected molecule has no

hydrogen bond (NHB) acceptor at t

0 when the selected molecule has at

hydrogen bond acceptor at t
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θHB(t) =



0 when the selected molecule has no

hydrogen bond acceptor at time t

1 when the selected molecule has

a hydrorgen bond at time t

Note that θNHB(t) = 1− θHB(t). Thus, at t = 0, the product θNHB(0)θHB(0) is

always zero. When a hydrogen bond acceptor for the selected molecule is found

at some later time, t, θHB(t) = 1. The, the product θNHB(0)θHB(t) = 1, and

remains so for all later times when absorbing boundary conditions are applied.

The imposition of absorbing boundary conditions means the correlation function

reports only on the dynamics of the direct formation of a hydrogen bond. This

is a simple step function in time, in which the step represents the switch from

non-hydrogen bonded to hydrogen bonded for a single molecule. Averaging over

all molecules and time origins results in a smooth curve, CNHB(t), which is related

to the dangling hydroxyl survival time, SNHB(t), by the simple equation

SNHB(t) = 1−CNHB(t). (2.7)

The results of this calculation for methanol and ethanol are presented in Figure 2.1.

Notably, the curves in Figure 2.1 were generated using the force field described

in Section 3.1. Both curves can be well fit (to C2(t)≈ 1%) using a 2-exponential

function. For methanol, the two time constants are 0.34 and 1.01 ps, while for
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Figure 2.1: The timescales for free hydroxyl groups to find a hydrogen bond partner
are reflected in the free hydroxyl survival probability as a function of time, SNHB(t),
for both methanol (red) and ethanol (blue).
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Figure 2.2: The distributions of waiting times for a free hydroxyl group to find an
acceptor molecule are plotted for water (black), methanol (red), and ethanol (blue).

ethanol, these are 0.39 and 1.12 ps. That is, the lifetime of a non-hydrogen bonded

hydroxyl group is short for the lower alcohols.

Alternatively, one may examine the distribution of the time a free hydroxyl

group persists, i.e., how long it takes a non-hydrogen bonded hydroxyl group to find

a new acceptor molecule. The result of such a calculation is presented in Figure

2.2. The results show clearly that few “dangling” hydroxyl groups persist beyond

1 ps, and the curves for water, methanol, and ethanol overlap one another almost

completely. Together, Figures 2.1 and 2.2 indicate that there are not long-lived

dangling OH groups, and therefore alcohol reorientation does not occur by a slow
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diffusive mechanism like that proposed by Debye. Thus, alternative reorientation

mechanisms such as the extended jump model must be investigated.

2.3 Hydroxyl Reorientation Times

To investigate the mechanism by which alcohols reorient, the employed mod-

els must capture the experimentally observed trend in reorientation times, i.e.,

that hydroxyl reorientation slows with increasing alkyl chain length. To validate

the models used here, the simulation trajectories have been mined for the hy-

droxyl reorientation times. The correlation functions, C2(t) (Equation 1.1), for

water, methanol, and ethanol have been calculated and are presented in Figure

2.3. Assuming that the processes that contribute to hydroxyl reorientation occur

on distinct timescales, the expression for C2(t) can be fit as a sum of exponential

functions, each of which corresponds to a process with its own timescale. (See

Section 1.1.) The curves in Figure 2.3 can be well-fit (to C2(t) ≈ 1%) using a

3-exponential function of the form Eq. 1.2. The longest of these timescales, tradi-

tionally denoted τ2 when considering C2(t), is of particular interest, as it represents

the timescale of the diffusive reorientational motion. The values of τ2 for water,

methanol, and ethanol are 2.6± 0.1, 5.5± 0.3, and 12.1± 1.7 ps, respectively.

Thus, the reorientation time increases with increasing alkyl chain length. The aver-

age time constants for water, methanol, and ethanol are 〈τ〉= 1.7±0.1,3.3±0.3,

and 6.3±1.8 ps, respectively, which are shorter than then NMR-measured values

of 1.7−2.6[25, 27, 128] for water, 5[26, 29, 129] for methanol, and 12.7 and 18
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Figure 2.3: Reorientational correlation functions for water (black), methanol (red),
and ethanol (blue). Three-exponential fits to each function are represented by
dashed lines of the corresponding color.
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ps[28, 118] for ethanol, but gives the same trend for the series. The fact that this

trend in theoretical models follows those derived from experimental results (see

Table 1.1) indicates that these models can be used to examine the origin of the

trend.

In the extended jump model, hydroxyl reorientation of water is viewed within

the context of hydrogen bonding; a hydroxyl group is either in the midst of a fast,

large angle switch or “jump” between hydrogen bond partners or is tumbling in

solution with its hydrogen bond partner. Each of these rate processes (See Section

1.1) has associated with it a rate constant, such that

k2 = k jump
2 + k f rame

2 .

Thus, the two timescales involved, τ
jump

2 and τ
f rame

2 , respectively, are related to

the reorientation time τ2 by

1
τ2

=
1

τ
jump

2

+
1

τ
f rame

2

. (2.8)

The jump time contribution and frame time contribution are now examined in turn

for water, methanol, and ethanol.

2.4 Lower Alcohol Jump Times

The timescale for a hydroxyl group to reorient from one acceptor to another is a

function of the rate constant for hydrogen bond exchange and the angle traversed
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in the exchange. The jump time contribution, τ
jump

2 , to the full reorientational

timescale, τ2, is therefore described mathematically by the equation []

τ
jump

2 = τ0

[
1− sin(5∆θ/2)

5sin(∆θ/2)

]−1

. (2.9)

Here, τ0 is the characteristic hydrogen bond jump time and ∆θ is the jump angle.

(Note that to distinguish between these timescales, τ
jump

2 is called “the jump time

contribution to τ2” and τ0 is called simply “the jump time.”) From Equation

2.9, it is clear that both the hydrogen bond jump time and the jump angle can

change the τ
jump

2 contribution. After constructing from the trajectory a list of

the hydrogen bond switch times and the molecules participating in each switch,

it is possible to calculate the jump angle, ∆θ or the OA-OD-OB angle, for each

switching event. Here, A is the previous hydrogen bond acceptor molecule, D

is the hydrogen bond donor molecule, and B is the new hydrogen bond acceptor

molecule. The distribution of jump angles calculated this way is shown in Figure

2.4. Notably, for all species, the jump angle distributions are qualitatively similar.

Water, methanol, and ethanol each display a global probability maximum near

∆θ = 50◦, a broad shoulder that begins near 60◦, and a decay in probability that

gradually decreases to 0 at 180◦. The global maximum is smallest for water, which

also has the correspondingly largest shoulder. The maximum is largest for ethanol,

which has the correspondingly smallest shoulder. That is, the major differences in

P(∆θ) across the series are in the relative weighting of the sharp peaks and broad

shoulders. The asymmetry of these distributions leads to slightly different average
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Figure 2.4: Distribution of hydrogen bond jump angles for water (black), methanol
(red), and ethanol (blue).
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jump angles across the series calculated as

〈∆θ〉=
∫

π

0
∆θ P(∆θ) sin(∆θ)d∆θ , (2.10)

where ∫
π

0
P(∆θ) sin(∆θ)d∆θ = 1. (2.11)

These averages for water, methanol, and ethanol are 〈∆θ〉 = 68◦, 71◦, and 68◦,

respectively. This implies that the average hydrogen bond exchange mechanisms

for water, methanol, and ethanol involve approximately the same angular geometry.

The origin of the differences among angular distributions for water, methanol, and

ethanol is discussed in Section 2.4.2.

Because there is little change in the average jump transition state geometry

between the lower alcohols and water, any change in the jump contribution to τ2

must come from the hydrogen bond jump time, τ0. The hydrogen bond jump times

can also be calculated using a side-side correlation function, of the form

CAB(t) = 〈θDA(0)θDB(t)〉. (2.12)

This is similar to the correlation function in Equation 2.6. Here, if at time t = 0,

a molecule, D, donates a hydrogen bond to an acceptor molecule, A, θDA(0) = 1.

The donation by molecule D at t = 0 to another molecule B is then zero, because

a single hydroxyl group donates to only one acceptor. (While double donation in

these systems according to the geometric criteria has been observed, it is exceed-
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Figure 2.5: The hydrogen bond survival probability as a function of time for water
(black), methanol (red), and ethanol (blue). The single-exponential fit to each
function is represented by a dashed line of the same color.

ingly rare.) At a later time t, D changes its donation to B, and θDB(t) = 1. The

product θDA(0)θDB(t) then becomes unity at time t and remains so when absorbing

boundary conditions are applied. Thus, the hydrogen bond survival probability

function SAB(t) = 1−CAB(t) represents the rate constant for hydrogen bond jumps,

specifically 1−CAB(t) = e−k0t = e−t/τ0 . The results of this calculation are pre-

sented in Figure 2.5. Single-exponential fits to these curves result in hydrogen

bond jump times, τ0, of 3.1, 14.3, and 29.7 ps for water, methanol, and ethanol,

respectively. Inclusion of the angular factors evaluated at the average jump angle

for each alcohol results in corresponding τ
jump

2 times of 3.2, 14.5, and 31.7 ps.
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Figure 2.6: The waiting time distribution for hydrogen bond switching as a func-
tion of time for water (black), methanol (red), and ethanol (blue). The inset
comprises single-exponential fits (dashed lines) to the long-time component of
each distribution (solid lines).

A simple check of these results can be obtained using the hydrogen bond

waiting time distributions, i.e., the distribution of times a molecule must wait to

switch from its current acceptor to a new acceptor. The tail of such a distribution

should also represent the time for hydrogen bond switching, i.e., decay as e−t/τ0 .

For water and each lower alcohol, the waiting time distributions are shown in

Figure 2.6, with single-exponential fits to the long-time component shown in the

figure inset. Similarly to the hydrogen bond survival probability distribution, the

tails of the waiting time distribution are well-fit by a single-exponential function,

and thus capture the dynamics of the rate process of hydrogen bond switching.
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Correlation times calculated from the waiting time distributions are 3.2, 14.5, and

31.7 ps for water, methanol, and ethanol; the agreement with the hydrogen bond

survival probability is excellent. The results are collected in Table 2.3.

Table 2.3: Jump time contributions (in ps) for lower alcohols
species τ2 τ0,SSPa τ

jump
2,SSP τ0,WT D b τ

jump
2,WT D τ

jump
2, f (〈∆θ〉) c τ

jump
2,〈 f 〉d

H2O 2.6 3.1 3.2 3.1 3.2 — —
MeOH 5.5 14.3 14.5 14.1 14.3 17.3 21.7
EtOH 12.1 29.7 31.7 28.4 30.3 23.6 28.9

a Calculated from the stable-states picture (SSP) correlation function, 1−CAB(t),
corresponding to Figure 2.5.
b Calculated from the waiting time distribution (WTD) long-time decay, corre-
sponding to Figure 2.6.
c Estimated using excluded volume fraction at the average jump angle, f (〈∆θ〉)
and Equation 2.8. (See Section 2.4.2.)
d Estimated using average excluded volume fraction, 〈 f 〉, and 2.8. (See Section
2.4.2.)

Both the hydrogen bond survival probability and the waiting time distributions

show that τ0 increases with increasing alkyl chain length. This implies that the

increase in τ
jump

2 is at least partly responsible for the mirrored trend in τ2. This

does not, however, address the fundamental cause of the change in the jump time,

τ0. Both enthalpic and entropic factors may change the hydrogen bond jump time,

and each possibility has been investigated.

2.4.1 Enthalpy and Hydrogen Bond Jump Times

If the slowdown in jump times for increasing alkyl chain length is due to changes in

the hydrogen bond enthalpy, it should manifest as changes in the activation energy
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for hydrogen bond switching. For water, methanol, and ethanol, simulations were

performed for a range of temperatures, and simulations details can be found in

Section 2.1. From the Arrhenius equation,

k2 =
1
τ2

= Ae−Ea/RT , (2.13)

one can determine the activation energies. Taking the natural logarithm of each

side of Equation 2.13, one obtains

ln
(

1
τ2

)
=

(
−Ea

RT

)
+ lnA,

which is in slope-intercept form. Thus, the activation energy is obtained from

the slope of the line on an Arrhenius plot, −Ea/R. The results are presented

in Figure 2.7. The calculated activation energies, Ea, for water, methanol, and

ethanol are 3.50± 0.07, 3.10± 0.09, and 3.73± 0.59 kcal mol−1, respectively.

The activation energies for water and ethanol are the same within error bars. The

value for methanol is close to these values; the difference in the methanol value is

too small to account fully for the change in reorientation time. Additionally, the

decrease and subsequent rise in activation energy for water to methanol to ethanol

does not follow the trend of strictly increasing reorientation time. Thus, the change

in reorientation time in the series of liquids cannot be enthalpic in nature.
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Figure 2.7: The Arrhenius plot of k2 = 1/τ2 for water (black), methanol (red), and
ethanol (blue). The dashed lines are linear fits to the data.

45



Figure 2.8: Left: A potential new acceptor molecule is positioned on a ring of
equally plausible transition state geometries, shown as a blue ring. Right: The
donor molecule is now near a hydrophobic solute (black), and much of the ring
of transition states is inaccessible (purple) to incoming hydrogen bond exchange
partners.

2.4.2 Entropy and Hydrogen Bond Jump Times

Hydrogen bond jumps occur in a symmetric fashion, with the outgoing oxygen

(OA) and the incoming oxygen (OB) equidistant to the donor oxygen (OD). That

is, ROD−OA = ROD−OB = R‡ = 3.5 Å. Additionally, the transition state angle is

∆θ
‡
OB−OD−OA

≈ 68◦, with the donor hydrogen HD bisecting this angle. The dis-

tance and angle together imply that the incoming exchange partner (molecule B)

approaches the donor D anywhere on a ring, as shown in Figure 2.8, left. The ring

comprises all equivalent transition states.

With a well-defined transition state geometry, it was possible for Laage et

al.[130] to explain the reorientation of water next to hydrophobic solutes. The

central idea was that a hydrophobic solute blocks molecules B from attaining the
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transition-state geometry that induces the reorientation of D from hydrogen bonding

with A to hydrogen bonding with B. That is, a smaller fraction of hydrogen bond

exchanges occur next to the hydrophobic solute. This picture can be quantified

by considering the D−A hydrogen bond. For a hydrogen bond switch to occur, a

molecule B must be present at the transition-state length and angle. Accordingly,

these geometric parameters can be used to construct the ring of points where a

molecule B would need to be located. In other words, a ring of possible transition

states is constructed. Then the fraction of points on the ring that fall within the

van der Waals radius of a hydrophobic group are considered excluded. The ratio

of excluded points to all the points on the ring is the excluded volume fraction, f .

This is shown schematically in Figure 2.8, right. The excluded volume fraction, f ,

can then be related to the jump time, τ0, through Equation 2.14,

τ
jump

2 (H2O/solute)

τ
jump

2 (H2O/bulk)
=

1
1− f

. (2.14)

The quantitative agreement between the excluded volume fraction and the relative

jump time for water molecules near a hydrophobic solute was found by Laage, et

al. to be excellent.

One can adapt this excluded volume picture to the reorientation of alcohols—

and calculate f from the simulation trajectory—by assuming the hydrophobic

alkyl groups of the alcohols play the same role as the hydrophobic solute in

the water study of Laage et al. In the case of alcohols, the excluded volume

fraction is anticipated to be high, as each alcohol molecule has a hydrophobic

47



Figure 2.9: Two ethanol molecules are engaged in a hydrogen bond. Hydrogen
(silver), oxygen (red), and united-atom carbon groups (black) are shown. A ring
(cyan) of possible transition states is constructed based on the ROD−OA

axis, the
average jump angle of ≈ 70◦, and an assumed transition state distance of R‡ = 3.5
Å. The distance from the methyl site to each site on the ring is calculated. If the
distance is less than the first non-zero value in the calculated g(RO−CH3) function,
the point on the ring is considered excluded (highlighted in purple).

group. Indeed, by replacing (H2O/solute) with (ROH) in Equation 2.14, one

can calculate anticipated excluded volume fractions for methanol and ethanol

using their calculated jump time contributions. This yields fMeOH = 0.78 and

fEtOH = 0.89.

The excluded volume fraction, f , can be calculated directly from the simula-

tion, as shown in Figure 2.9, similarly to the calculations performed by Laage et

al. The details of the calculation are presented in Appendix A. The results are

f (〈∆θ〉)MeOH = 0.855±0.005 and f (〈∆θ〉)EtOH = 0.895±0.005.
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While the anticipated and calculated excluded volume fraction values for

ethanol are in good agreement, the values for methanol—0.78 and 0.85—are

slightly different from one another. The reciprocal relationship between the slow-

down factor and the excluded volume fraction means that as f approaches 1, the

slowdown factor approaches infinity. Accordingly, while the predicted and calcu-

lated f values for methanol are close to one another, the difference translates to

slowdown factors of ≈ 4.5-6.7. The ≈ 10% difference in f results in a 50% error

in the slowdown factor. In this case, the slowdown factors are within a factor of

two of one another and are in reasonable agreement, given the geometric approxi-

mations involved. However, because of the large amplification of uncertainty in

the slowdown factor, comparison among values is more reasonably made using

the excluded volume fraction. f . Despite the small differences between fMeOH

and f (〈∆θ〉)MeOH from estimates based on τ2 and direct calculation from the sim-

ulation, respectively, the overall trend across the water/methanol/ethanol series is

preserved in both the estimated and calculated cases.

The jump mechanism occurs over a distribution of angles, as shown in Figure

2.4. A more accurate measure of f might be obtained by calculating f at each

angle and then averaging over the angular distribution, as

〈 f 〉=
∫

π

0
f (∆θ)P(∆θ) sin(∆θ)d∆θ . (2.15)

Such a calculation is depicted in Figure 2.10, in which the transition state jump an-

gle ∆θ
‡
OB−OD−OA

is varied in 15◦ increments. For the actual calculations, ∆θ
‡
OB−OD−OA
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Figure 2.10: The transition state angle, ∆θ
‡
OB−OD−OA

, can be varied to examine the
dependence of the excluded volume fraction, f , on it. A hydroxyl group (oxygen,
red; hydrogen, silver) is shown donating a hydrogen bond to an acceptor oxygen.
The ring of possible transition states are shown in cyan, and each ring is staggered
by 15◦ from 0◦ to 180◦. Notably, the acceptor oxygen precludes transition states at
low angles.

was varied by at most 5◦. Each ring represents a separate calculation over many

configurations and all molecules. Notably, 〈 f 〉 values obtained this way are still

approximate, as they do not reflect possible changes in the distance coordinate,

R‡
OD−OB

, which is held fixed at 3.5 Å. Consideration of the jump angle distribution

leads to 〈 f 〉MeOH = 0.88 and 〈 f 〉EtOH = 0.91. These are slightly larger than the

f (〈∆θ〉) values calculated using the average jump angle, 〈∆θ〉.
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The slowing of hydrogen bond jumps for ethanol is thus well-explained by the

excluded volume effect. For methanol, however, the excluded volume effect still

predicts that the jump contribution to reorientation is ∼ 8 times slower than for

water reorientation. As previously noted in Figure 2.7, the activation energy for

methanol hydrogen bond jumps is slightly less than that for water and ethanol. A

decrease in this enthalpic contribution corresponds to an increase in the hydrogen

bond switching rate constant, and thus a faster (lower) jump time contribution,

τ
jump

2 . This effect may partially compensate for the jump time contribution over-

estimated by the excluded volume. Despite such details, the overall trend across

the series is maintained. Data concerning the excluded volume fractions and their

effects on reorientation times are provided in Tables 2.4 and 2.3, respectively.

Table 2.4: Excluded volume fractions by various estimates
f a
τ2

f (〈∆θ〉)b 〈 f 〉c
MeOH 0.78 0.85 0.88
EtOH 0.89 0.89 0.91

a Estimated using Equation 2.14 and calculated τ2 values.
b Calculated from simulation by constructing a transition state ring at the angle
〈∆θ〉
c Calculated over a distribution of angles according to Equation 2.15

The calculation of the excluded volume fraction f as a function of angle can be

decomposed to provide insight to the roles different molecules and atoms play in

the access the donor molecule has to new hydrogen bond acceptors, and thus the

hydrogen bond jump time. Figure 2.11 shows the excluded volume decomposition

for methanol. The total excluded volume fraction (black, solid line) shows that
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Figure 2.11: The figure shows the excluded volume fraction, f , as a function of
jump angle, ∆θ for methanol. Calculations are performed in increments of 5◦.
The solid black line represents the total excluded volume. Molecule types have
been partitioned into hydrogen bond acceptor (blue), hydrogen bond donor (red),
and all other molecules (purple). The dotted and dot-dashed blue lines represent
the volume excluded by acceptor oxygen atoms and methyl groups, respectively.
Uncertainties are approximately the size of the line thickness.

52



at small angles (< 40◦), no transition state is possible, as f = 1. At angles larger

than 40◦, the excluded volume profile decreases to about 0.8, with a broad peak of

f ≈ 0.9 from 65◦ to 160◦.

Decomposition by molecule and atom type readily explains these features.

Examining the acceptor molecule (blue, solid line), it becomes clear that no

transition state is possible below 40◦ because such transitions are fully blocked by

the acceptor oxygen atom (blue, dotted line) and to a lesser extent, the acceptor

methyl group. Also, some transition states from 40◦ to 60◦ are blocked also by

the acceptor methyl group for certain donor/acceptor configurations. At larger

transition angles, the donor molecule itself can exclude possible transition states.

The red solid line of Figure 2.11 is the donor methyl profile. (The donor oxygen,

by definition, cannot contribute to the excluded volume for its own hydrogen

bond switching.) This is mostly responsible for the distribution of larger excluded

volume fractions at large angles. Lastly, the majority of the excluded volume

comes from the methyl groups of “other” molecules (purple, solid lines)–molecules

that are neither the donor nor the acceptor. (The methyl and full contributions

from other molecules are the same. The oxygen atoms of other molecules are

considered possible new acceptors, and they do not contribute to the excluded

volume.) This can be anticipated from the fact that around the two molecules, D

and A, participating in a hydrogen bond should be a large collection of surrounding

molecules.

The ethanol excluded volume fraction as a function of angle shown in Figure

2.12 is qualitatively similar to the methanol case, with additional contributions
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Figure 2.12: Same as for Figure 2.11 but for ethanol. Dotted lines, dashed lines,
and dot-dashed lines represent the excluded volume fractions from oxygen atoms,
methylene groups, and methyl groups, respectively. Uncertainties are approxi-
mately the size of the line thickness.

from the extended alkyl chain. The profile of the full excluded volume fraction

indicates that all transitions at low angle are excluded by the acceptor oxygen,

as in the case for methanol. The excluded volume fraction profile at transition-

state angles greater than 40◦ is closer to 0.90. There is also a broad peak in the

profile at higher angles, and it is less pronounced than it is in the case of methanol,

presumably due to the higher overall value of f at large angles for ethanol relative

to methanol. The roles of ethanol acceptor, donor and other molecules readily

explain these differences. Specifically, Figure 2.12 shows that the acceptor oxygen

(blue, dotted line), acceptor methylene group (blue, dashed line), and acceptor
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methyl group (blue, dot-dashed line) can all prevent incoming acceptor molecules

at small jump angles, in order of decreasing effectiveness. At larger jump angles,

these curves indicate that the methylene group blocks incoming acceptors to about

70◦, while the terminal methyl group can block incoming acceptor molecules up

to ≈ 90◦. This is easily interpreted as a consequence of connectivity, distance,

and possible molecular conformations. The net result is that the ethanol acceptor

molecules can block incoming acceptors at larger angles than in the methanol case.

For similar reasons, the ethanol donor molecule methylene group (red, dot-dashed

line) plays a similar role as the methanol donor methyl group, as they occupy the

same alpha position with respect to the oxygen. The ethanol donor methyl group

(red, dot-dashed line) can block possible acceptors at lower and higher angles. The

net result (red, solid line) is that the donor molecule excludes transition states at

higher angles more effectively for ethanol than for methanol. Notably, this is in

excellent agreement with the jump angle distributions of Figure 2.4. It can be

reasoned that the decreased probability in the distribution at large jump angles is,

at least in part, due to the increased space occupied by the donor molecule itself

at those angles. Lastly, the contribution to f from other molecules is qualitatively

similar between ethanol and methanol. However, relative to methanol, the effect

from other molecules is diminished in ethanol at angles where donor and acceptor

molecules become more effective at blocking incoming molecules, which is directly

attributable to the longer alkyl chain.

An important feature of these decompositions is that the components are

non-additive. In ethanol, for example, f f ull(∆θ) 6= f donor(∆θ)+ f other(∆θ) and
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f donor
mol (∆θ) 6= f donor

CH2
(∆θ)+ f donor

CH3
(∆θ). Such inequalities can be anticipated from

the fact that the soft potentials of Equation 2.3 and the bond lengths and σ values

in Table 2.1 allow more than one site to simultaneously block a potential accep-

tor. In contrast, the roles some sites play are certain and are a function of their

position in the molecule, as depicted in Figure 2.13. From Figure 2.13, it can

Figure 2.13: Excluded volume as a function of angle, f (∆θ), is shown for methanol
(black lines) and ethanol (red lines) for the acceptor oxygen (solid lines), acceptor
α position (dashed lines), and donor α position (dotted lines). In each case the
curves for a given site are identical or nearly identical for the two alcohols. For
reference, the site of interest in each case is highlighted in purple for both methanol
and ethanol.

be anticipated that the acceptor oxygen in any alcohol should preclude incoming

exchange partners at angles < 40◦. Similarly, the α position for both donor and

acceptor molecules in any alcohol molecule should block transition states at the
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same angles. The tantalizing possibility of developing a predictive model for

alcohol reorientation would require knowledge of how different excluded volume

effects add. The two lower alcohols presented here do not constitute a series large

enough to develop such a model. In part, this motivates the study of dynamics of

higher alcohols found in Chaper 3. Nevertheless, they provide the starting point

for such a predictive approach.

These results provide a mechanistic picture for the slowdown in jump contribu-

tion reorientation timescales in the series water, methanol, ethanol. The increased

steric bulk of the alkyl groups prevents incoming molecules from inducing a hy-

drogen bond switch–an important part of overall hydroxyl reorientation. The other

component of reorientation—the frame reorientation of intact hydrogen bonds—is

now examined.

2.5 Lower Alcohol Frame Times

The time for reorientation of intact hydrogen bonds—the frame time, τ
f rame

2 —

also contributes to the overall hydroxyl reorientation time τ2, as indicated in

Equation 2.8. A C2(t) reorientational correlation function can be calculated for

intact hydrogen bonds tumbling in solution. The “frame” in which the intact

hydroxyl reorients is the relative OD −OA motion, as depicted in Figure 1.3.

To calculate the correlation function, at a given time t = 0, a hydrogen bond is

identified. The reorientation of the normalized eOD−OA
vector is then monitored as

a function of time, as described in Chapter 1, until the hydrogen bond breaks for the
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donor to switch acceptors. Because of the distribution of hydrogen bond lifetimes,

there are a greater number of contributors to the correlation function at short times

than at long times. Accordingly, each bin in time is independently normalized. The

independent normalization together with the low number of long-lived hydrogen

bonds means that the curves fail to become smooth at long times. The results of

this calculation are presented in Figure 2.14. Exponential fits to the smooth parts of
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Figure 2.14: The C f rame
2 (t) = 〈P2[eOO(0) · eOO(t)]〉 correlation functions for reori-

entation of intact hydrogen bonds are shown for water (black), methanol (red), and
ethanol (blue) Dashed lines represent fits to the curves over the ranges 5 to 20 ps
for water and 10 to 20 ps for methanol and ethanol.

the long-time tails can then be used as an estimate for the frame time contribution,

and the differences in decay behavior suggest that fits be performed from 5 to 20

ps for water and from 10 to 20 ps for the alcohols. Estimates obtained this way
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(τ f rame
2,calc ) are 5.6, 7.3, and 15.5 ps for water, methanol, and ethanol, respectively.

Using these values for τ
f rame

2,calc and jump time contributions also calculated from

correlation functions (τ jump
2,SSP in Table 2.3) in Equation 2.8 results in values for the

overall τ2 of 2.0, 4.9, and 10.4 ps for water, methanol, and ethanol, respectively.

Notably, these values for τ2 are in very good agreement with those calculated from

the full correlation function, C2(t), in Figure 2.3 and are 2.6±0.1, 5.5±0.3, and

12.1±1.7 ps.

The frame times for water, methanol, and ethanol also have been calculated

using Equation 2.8 and the values of τ
jump

2 calculated by various methods. These

estimates for τ
f rame

2 are compared in Table 2.5. For each value of τ
f rame

2 , the

overall reorientation timescale, τ2, was used in the calculation, as in Equation

2.8, and τ2 is therefore is provided in Table 2.5 as a reference. The frame time

calculated using Equation 2.8 and the calculated value of τ
jump

2 is τ
f rame

2,calc .

Table 2.5: Frame times (in ps) for lower alcohols

species τ2 τ
f rame

2,calc τ
f rame a

2,SSP τ
f rame b

2,WT D τ
f rame c

2, f (〈∆θ〉) τ
f rame d

2,〈 f 〉
H2O 2.6 5.6 13.9 13.9 — —
MeOH 5.5 7.3 8.7 8.9 8.1 7.4
EtOH 12.1 15.5 19.7 20.1 24.8 20.8

a Calculated using Equation 2.8 and τ
jump

2 value derived from the stable-states
picture in Figure 2.5
b Calculated using Equation 2.8 and τ

jump
2 value derived from the waiting time

distribution in Figure 2.6
c Calculated using Equation 2.8 and the τ

jump
2 value derived from Equation 2.14

and f calculated using the average jump angle from Equation 2.10.
d Calculated using Equation 2.8 and the τ

jump
2 value derived from Equation 2.14

and 〈 f 〉 calculated from Equation 2.15.
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Figure 2.15: The jump time contribution (τ jump
2 , red) and frame time contribution

(τ f rame
2 , blue) to the longest reorientation timescale (τ2, black) are a function of

the number of carbon units in the molecule. For both jump time and frame time
contributions, time constants derived using the stable states picture of Figure 2.5
(solid line) and the waiting time distribution of Figure 2.6 and Equation 2.8 are
shown. For the frame time contribution, the results from the direct calculation of
the τ

f rame
2 correlation function are also provided (dot-dashed line.)

Interestingly, mechanistic differences appear when the jump time contributions

of Table 2.3 and the frame time contributions of Table 2.5 are compared. A visual

comparison is provided in Figure 2.15. For water, τ
f rame

2 > τ
jump

2 , which indicates

that reorientation proceeds dominantly via mechanisms involving hydrogen bond

exchange. (That is, in Figure 2.15, for nC = 0, values corresponding to points

in blue are larger than those in red.) In methanol, τ
f rame

2 < τ
jump

2 , which sug-

gests that tumbling of intact hydrogen bonds becomes the dominant pathway for
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reorientation. The ethanol case is similar to methanol. More quantitatively, for

methanol τ
jump

2,SSP/τ
f rame

2,SSP ≈ 1.67 while for ethanol, τ
jump

2,SSP/τ
f rame

2,SSP ≈ 1.60. As τ
jump

2,SSP

and τ
f rame

2,SSP are related through Equation 2.8, it may be more instructive to make

comparisons using the independently calculated frame time contribution, τ
f rame

2,calc .

Doing so yields τ
jump

2,SSP/τ
f rame

2,calc ≈ 1.99 for methanol and τ
jump

2,SSP/τ
f rame

2,calc ≈ 2.04 for

ethanol. These results indicate that for both methanol and ethanol, the jump time

contribution is generally between 1.5 and 2 times longer‘ than the frame time

contribution, and reorientation in both is dominated by the frame time contribution.

2.6 Lower Alcohol Reorientation Summary

In this chapter, the reorientation across the series water, methanol, ethanol was

examined. The reorientation timescales lengthen with increasing number of carbon

sites. Notably, for each molecule, the duration a free hydroxyl persists in solution is

sub-picosecond. Thus, the Debye model, in which reorientation proceeds through

low-amplitude angular diffusion between hydrogen bond events, cannot explain

reorientation dynamics. The extended jump model, recently developed for water,

was applied to each molecule. In the extended jump model, both large-amplitude

angular jumps during switching of hydrogen bond partners as well as diffusive

tumbling with intact hydrogen bond partners contribute to the reorientation. The

results here indicate that both jump time contributions, τ
jump

2 , and frame time

contributions, τ
f rame

2 , to overall reorientation slow with increasing alkyl chain

length. The slowing trend originates from entropic, rather than enthalpic, consid-
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erations. Because the hydrogen bond exchange angle is very similar across the

series, the entropic effect enters through a change in the fundamental hydrogen

bond jump time. The increasing bulk of the alkyl group increasingly precludes

potential new acceptor molecules from achieving or participating in a transition

state geometry. That is, the increased bulk decreases the probability of hydrogen

bond exchange, thereby increasing the time. Notably, for the same position along

the alkyl chain and for the same transition angle, approximately the same fraction

of possible transition states is blocked, leading to the notion that a predictive model

for reorientation dynamics might be developed. Additionally, the change in steric

bulk also has the important consequence of changing the reorientation mechanism.

For water, reorientation occurs mainly through hydrogen bond exchange. For lower

alcohols, tumbling of intact hydrogen bonds becomes the dominant reorientation

pathway.

Two fundamental questions have been raised in this chapter. The first, raised in

Section 2.4.2, is: Can one develop a predictive model of reorientation dynamics

in alcohols based on excluded volume? The second, raised in Section 2.5, is: To

what degree is either hydrogen bond jumping or hydrogen bond tumbling dominant

in hydroxyl reorientation as a function of alkyl chain length, and for what alkyl

chain length, if any, does a change in mechanism occur? At the heart of these

questions is the extension of the present study to higher alcohols, which serves as

the motivation of the next chapter.
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Chapter 3

Reorientation in Higher Alcohols

The results of the previous Chapter show that the mechanism for alcohol reorien-

tation is dependent on the alkyl chain length for the lower alcohols. Within the

extended jump model, water reorients dominantly through hydrogen bond exchange

(τ f rame
2 > τ

jump
2 ), while reorientation in methanol and ethanol is dominated by tum-

bling of intact hydrogen bonds (τ jump
2 > τ

f rame
2 ). Notably, the relative contribution

from hydrogen bond exchange is diminished in ethanol compared to methanol.

This suggests that the reorientation mechanism may revert to a dominant jump

contribution for some alkyl chain longer than the ethyl group. The determination

of such mechanistic trends clearly necessitates study of longer chain (“higher”)

alcohols.

Additionally, it was determined that the hydrogen bond exchange frequency

is related to the volume excluded by the surrounding alkyl groups. For a given

hydrogen bond exchange angle, the excluded volume associated with specific

positions within the alkyl chain (relative to the hydroxyl group) is constant. For
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example, the same volume is excluded by the α-carbon group of the hydrogen

bond donor, regardless of the length of the identity of the alcohol. However, for a

given exchange angle, the way in which the excluded volume contributions from

different positions along the chains of various molecules (donor, acceptor, other)

add is unclear. Empirical relationships may be derived, but their determination

requires studying higher alcohols.

In addition to the interest in fundamental chemistry, higher alcohols are key

solvents and commodity chemicals. As such, they also enjoy wide use as flavor

and fragrance agents, general reaction media, alkylating agents, extraction solvents.

Understanding general principles behind reorientation dynamics across a range of

alcohols therefore facilitates rational design in manufacturing products ranging

from pesticides to pharmaceuticals. The trends in reorientation across higher

alcohols and the origins of these trends are the subject of the present Chapter.

3.1 Simulation Details for Higher Alcohols

To examine trends in alcohol reorientation dynamics with greater clarity, the

study of reorientation in lower alcohols (methanol and ethanol) was extended to

n-alcohols through hexanol. All alcohols in the series were modeled using the

OPLS-UA force field [121,122] modified to include flexibility (bond stretching and

bending as well as torsional motion) [131]. Because of the force-field modification,

methanol and ethanol were re-examined; this allows for comparison among force

fields and also increases reliability in examining trends across the alcohols. The
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force field parameters are provided in Table 3.1. Each alcohol molecule was

Table 3.1: Force field parameters for higher alcohols
Atom m (g mol−1) q (e) σ (Å) ε (kcal mol−1)
H 1.00790 0.435 0.00000 0.00000
O 16.00000 -0.700 3.07000 0.17000
CCH2 14.03000 † 3.90500 0.11800
CCH3 15.04000 † 3.90500 0.20700
Atoms AB Req,AB kAB (kcal mol−1)
HO 0.94500 553.00
OC 1.43000 386.00
CC 1.53000 260.00
Atoms ABC θeq,ABC (◦) kθ (kcal mol−1)
HOC 108.5 55.00
OCC 109.5 80.00
CCC 112.4 63.0

Atoms ABCD V ‡
0 V1 V2 V3

HOCC 0.000 0.834 -0.116 0.747
OCCC 0.000 0.702 -0.212 3.060
CCCC 0.000 1.522 -0.315 3.207

† The charge on a united atom carbon unit is +0.265 e if occupies the α position
and is 0 otherwise.
‡ Units for all torsional parameters are kcal mol−1.

constructed in Molden [132] using equilibrium bond lengths and angles as well as

torsional minima. The center of mass of the molecule was placed at each of the 4

sites of a face-centered cubic lattice. The dimensions of the lattice were chosen

to reproduce the experimental density of the liquid alcohol near 298 K. Each of

the four molecules was then rotated into a unique orientation to prevent a large

dipole moment in the resulting initial configuration for the system. The group of 4

molecules was then replicated 4 times along each Cartesian x, y, and z axis to form
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the initial system configuration comprising 256 molecules. Alcohol molar masses,

densities, and simulation box lengths are provided in Table 3.2.

Table 3.2: Simulation box details for higher alcohols
Molecule M (g mol−1) ρ (g cm−3) † Lbox (Å)
MeOH 32.0423 0.7914 25.90
EtOH 46.0688 0.7893 29.25
n-PrOH 60.0953 0.7997 31.70
n-BuOH 74.1218 0.8095 33.95
n-PnOH 88.1483 0.8144 35.85
n-HaOH 102.1748 0.8136 37.70

† Density values are taken from [133] at a temperature of 293 K for alcohols except
n-propanol, which was measured at 298 K.

Classical MD simulations were run using the LAMMPS software package

[134]. For each alcohol, an initial 1 ps trajectory was run in the NVE ensemble

to relax the initial structure. Then, a 1 ns equilibration phase preceded a 40 ns

trajectory (2 fs time step) run in the NVT ensemble at 298 K using a Nosé-Hoover

thermostat with a 0.1 ps time constant. A second trajectory was initiated from

the final configuration of the first by first running 250 ps in the NVE ensemble,

equilibrating for 1 ns in the NVT ensemble, and then running a 40 ns trajectory.

Similarly, a third 40 ns trajectory was initiated from the final configuration of the

second trajectory by running a 500 ps relaxation trajectory in the NVE ensemble,

a 1 ns equilibration in the NVT ensemble, and a final collection stage of 40 ns

in the NVT ensemble. The method thereby ensures that three independent 40 ns

trajectories were collected, for a total trajectory time of 120 ns. Configurations in

all cases were written every 200 fs.
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Figure 3.1: The C2(t) correlation functions for methanol (black), ethanol (red),
n-propanol (blue), n-butanol (purple), n-pentanol (green), and n-hexanol (brown)
are shown. Dashed lines indicate fits to the data using a sum of 4 exponential
functions.

3.2 Reorientation Trends and Emergent Dynamics

3.2.1 Results for Reorientation

The C2(t) correlation functions have been calculated across this series of alcohols

and are presented in Figure 3.1. In contrast to the lower alcohols, the higher

alcohols require 4-exponential functions to fit C2(t) down to approximately ≈ 1%

of the initial magnitude. The amplitudes and timescales for each alcohol are

reported in Table 3.3. The data in Table 3.3 indicate that the inertial timescales (τa)

and amplitudes (Aa) increase only very slightly for increasing alkyl chain length.
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Table 3.3: Timescales (in ps) and amplitudes in higher alcohols.
Molecule Aa τa (ps) Ab τb (ps) Ac τc (ps) Ad τd (ps)
MeOH 0.282 0.126 0.219 1.8 0.499 6.0 - -
EtOH† 0.249 0.123 0.120 1.2 0.322 8.6 0.309 18.7
n-PrOH 0.268 0.160 0.116 1.9 0.222 14.9 0.394 38.0
n-BuOH 0.272 0.181 0.148 2.9 0.244 22.6 0.336 59.3
n-PnOH 0.284 0.213 0.153 4.5 0.242 35.0 0.321 101.8
n-HaOH 0.290 0.236 0.160 6.1 0.264 46.0 0.286 147.4

† Ethanol can be also well-fit by a 3-exponential function,
C2(t) = 0.36e−t/0.66 +0.327e−t/8.3 +0.313e−t/18.7.

(These timescales are not well resolved due to the 200 fs interval between stored

configurations.) With the exception of methanol, the librational motion amplitude

(Ab) also increases across the series. While the timescale generally increases with

chain length, methanol is well-fit by a 3-exponential function; ethanol can also

be fit this way, but a slightly better fit is obtained using 4 exponentials. However,

for n-propanol through n-hexanol, the long timescale is split into 2 parts, (τc and

τd). While both τc and τd increase with increasing alkyl chain length, the faster of

these two (τc) grows in (i.e., increases in amplitude) at the expense of the longer

timescale. This emergent timescale, which increases in τd while decreasing in

Ad , clearly complicates attempts at developing a predictive model for alcohol

reorientation dynamics, as proposed in Chapter 2. The origin of these emergent

timescales is now investigated.

Within the extended jump model, the long timescales observed in reorienta-

tional correlation functions are ascribed to contributions from the hydrogen bond

exchanges and hydrogen bond tumbling. Thus, it is possible that the additional
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timescales appear in either the jump time or the frame time, respectively. To

address these possibilities, both the jump time and frame time contributions were

calculated for each alcohol.

The jump times for the alcohol series were calculated as before (see Section

2.4 and Equation 2.12.) Curves for methanol can be fit to bi-exponential func-

tions, while the curves for ethanol and longer-chain alcohols can be fit using a

3-exponential function. The resulting amplitudes and timescales are tabulated in

Table 3.4. Note that for higher alcohols, this differs from the two-exponential fits

Table 3.4: Jump times (in ps) and amplitudes in higher alcohols.
Molecule Aa τa Ab τb Ac τc
MeOH 0.140 1.922 0.860 15.4 - -
EtOH 0.113 2.659 0.0311 10.4 0.856 35.7
n-PrOH 0.110 2.942 0.0790 14.5 0.811 54.3
n-BuOH 0.117 3.448 0.114 21.9 0.769 70.2
n-PnOH 0.125 3.945 0.169 29.0 0.706 92.0
n-HaOH 0.134 4.312 0.225 36.2 0.641 109.2

for the jump time correlation functions in Chapter 2. (Here, the results for ethanol

are nearly bi-exponential.) A bi-exponential behavior is generally expected with

a fast time, τa, corresponding to non-barrier crossing fluctuations and the slower

time giving 1/k jump where k jump is the rate constant for hydrogen bond exchange.

The frame contribution was also examined for additional dynamics. The frame

time was calculated as previously discussed (see Section 2.5).The results of the

frame reorientation correlation function calculation are presented in Figure 3.2. A

3-exponential function also is sufficient to fit the frame time correlation functions
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Figure 3.2: The C2(t) frame reorientation correlation functions for methanol
(black), ethanol (red), n-propanol (blue), n-butanol (purple), n-pentanol (green),
and n-hexanol (brown) are shown. Dashed lines indicate fits to the data using a
sum of 3 exponential functions.
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to about 1%, as indicated by the dahsed lines in Figure 3.2. The long time constants

τ
f rame

2 increase for increasing alkyl chain length, as is clear in Table 3.5.

Table 3.5: Frame times (in ps) and amplitudes in higher alcohols.
Molecule Aa τa Ab τb Ac τc
MeOH 0.216 0.287 0.310 3.1 0.474 9.4
EtOH 0.257 0.402 0.295 7.2 0.449 24.6
n-PrOH 0.294 0.543 0.217 13.6 0.489 60.9
n-BuOH 0.334 0.880 0.263 23.6 0.403 106.7
n-PnOH 0.345 1.163 0.235 34.2 0.420 210.2
n-HaOH 0.342 1.296 0.249 41.5 0.408 349.8

Because the frame times do not show additional timescales, the additional

timescales in C2(t) are reasonably attributed to the jump dynamics. In further

support of this, the longest timescales in the jump dynamics decrease in ampli-

tude with increasing alkyl chain length, the same trend observed for the longest

timescales amplitudes in C2(t) (Table 3.3.) The frame time amplitudes do not show

this correspondence. To investigate further the jump dynamics in higher alcohols,

an analysis of local hydrogen bond relationships, free energy surfaces, and general

time-dependent reaction geometries was performed.

3.2.2 Local Hydrogen Bond Relationships

Because of the central role hydrogen bonding plays in alcohol reorientation dy-

namics, it is possible that differences in timescales originate from differences

in hydrogen bonding relationships. Of particular interest are the relationships

among the donor (D), current acceptor (A), and future acceptor (B) molecules. As
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an example consider the case in which A is a hydrogen bond donor to B. This

implies that B is already within approximately two molecular diameters of D,

and therefore may be more likely to form a hydrogen bond with D than, say, if

B were unassociated with A. Such proximity also suggests that B in this case is

more accessible to D, and the hydrogen bond jump may occur quickly relative

to cases where B is unassociated with A. Similarly, one might anticipate that the

jump angle would be small. This example illustrates the following hypothesis:

The hydrogen bond relationships among molecules D, A, and B result in different

geometries that have associated with them different jump time contributions to the

reorientation correlation function. Because it is the contribution to the jump time

that is of interest, the hydrogen bond relationships at the switching time t0 have

been examined. To simplify the classification of hydrogen bond relationships, the

molecule A, the acceptor of a hydrogen bond from the OH group in question (D),

has been selected as a reference. One can then imagine three hydrogen bond cases

at t0 for the relationship between molecules A and B, as depicted in Figure 3.3. In

the first, labeled DBA, B and D both donate a hydrogen bond to A. In the second,

labeled DAB, B accepts a hydrogen bond from A, which accepts a hydrogen bond

from D. In the last, labeled other, A and B have no hydrogen bonding relationship.

The relationships shown in Figure 3.3 have been taken directly from the simulation

trajectory and provide snapshots shortly before (tswitch−3) and after (tswitch+3) the

jump event DA+B→ DB+A at time tswitch.

Each hydrogen bond switch event in the trajectory is classified as falling into

one of these three cases. Then the simulation can be mined for the jump angle, ∆θ ,
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Figure 3.3: Three possible relationships exist between the current hydrogen bond
acceptor molecule, A, and the future hydrogen bond acceptor molecule, B at the
time of hydrogen bond switching, tswitch. Methanol hydrogen (silver), oxygen (red),
and methyl (black) sites are shown for a hydrogen bond donor (D), current acceptor
(A), and next acceptor (B) molecules both before (tswitch−3) and after (tswitch+3)
a switch. In the first (upper left, “DBA”) arrangement, B donates a hydrogen
bond to A during the hydrogen bond switch event (at time tswitch). In the second
(‘DAB”) arrangement, B accepts a hydrogen bond from A. In the final (“other”)
arrangement, B and A are not related through hydrogen bonding.
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Figure 3.4: The distribution of jump angles is a function of the hydrogen bond
relationships between the current (A) and future (B) acceptor. The solid black
curve is the full jump angle distribution for methanol. The solid red and blue
lines represents the jump angle distributions for cases in which hydrogen bond
relationships do and do not exist, respectively, between the molecules A and B.
Notably, when A and B are related through hydrogen bonding, the relationship can
be further decomposed to cases where B donates to A (case “DBA”, dashed red
line) and B accepts from A (case “DAB”, dot-dashed red line).

for each switch case. The results for methanol are presented in Figure 3.4. For

nearly all hydrogen bond switches that occur at small jump angles, A and B are

related through hydrogen bonding, as indicated by the solid red line. The relative

magnitudes and positions of the curves for DBA (dashed lines) and DAB (dot-

dashed lines) are very similar, which suggests that the nature (i.e., directionality)

of the relationship between A and B (i.e., DBA or DAB) appears to matter little. In
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contrast, for hydrogen bond switch cases in which A and B have no hydrogen bond

relationship, the switches occur at large jump angles. Geometrically, this would

imply that the molecule B can be regarded as “behind” D (if the hydroxyl group

is regarded as pointing “forward”). Thus, for the other case, it is possible that B

is the hydrogen bond donor to D. However, a simple analysis of hydrogen bond

switches indicates that this is so for < 1% of all hydrogen bond switches, and thus

the other case results from B having no direct association with D.

Importantly, calculations for each alcohol, methanol through n-hexanol, show

qualitatively the same decomposition of jump angles as shown in Figure 3.4. That

is, when A and B are hydrogen bonded, hydrogen bond switching of D occurs

at small jump angles; when A and B are not hydrogen bonded, hydrogen bond

switching of D occurs at larger jump angles. Thus, while the increased excluded

volume appears to change the relative intensities of each peak in the distribution,

the positions of the peaks are associated with the local hydrogen bonding structure

at the time of hydrogen bond switching.

3.2.3 Alcohol Free Energy Profiles

In the extended jump model, the hydrogen bond exchanges are viewed as chemical

reactions. In this context, timescales are related to free energy barriers, which in

turn are relatable to the liquid structure. The first step in hydrogen bond switching

in water comes from the molecule B moving from the second to the first solvation

shell of the donor molecule D. A reasonable hypothesis, then, is that in alcohols,
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the energetic barrier for moving from the second to first solvation shell changes as

a function of alkyl chain length, thereby resulting in different timescales.

The quantity g(ROO) (see Section 3.3.2) can be used to calculated the Helmholtz

free energy, as

∆A(ROO) =−kBT lng(ROO). (3.1)

The results are shown in Figure 3.5. From the free energy curves ∆A(ROO) pre-

sented in Figure 3.5, trends related to alkyl chain length are evident. To determine

if these differences are statistically meaningful, for each alcohol, the trajectory

is parsed into 10 blocks. The average ∆A(ROO) for each block was the used to

calculate uncertainties according to Student’s t-test[126]. The results of calculating

the free energy barriers this way as a function of alkyl chain length, nC, are shown

on the right of Figure 3.5. From Figure 3.5, it is clear that the free energy associ-

ated with moving an oxygen atom from the second to first solvation shell (black

curve) decreases with increasing alkyl chain length. Also, the curve for n-propanol

through n-hexanol becomes level; relative free energy values are equivalent within

statistically uncertainty. The relative free energy barriers are better resolved for

oxygen atoms moving from the second to third solvation shells, as indicated by

the red curve of Figure 3.5, right. Excepting methanol, it becomes increasingly

difficult for oxygen atoms to move from the second to third solvation shell. Taken

together with the deep first shell minima in Figure 3.5, the hydroxyl groups are

strongly associating, as one would anticipate for a networked liquid.
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Figure 3.5: Top: Helmholtz free energies, ∆A(ROO) calculated from g(ROO) are
presented for methanol (black), ethanol (red), n-propanol (blue), n-butanol (purple),
n-pentanol (green), and n-hexanol (brown). The curves have been shifted so that
the second minimum is zero for each curve. This facilitates comparison of barrier
heights in moving from the 2nd to 1st and 2nd to 3rd solvation shells across the
alcohol series. Bottom: Relative barrier heights, ∆∆A(nC) are a function of alkyl
chain length, nC, as shown in the figure. The free energy barrier for an oxygen
atom moving from the second to first solvation shell (black) and the second to third
solvation shell (red) are provided for each alcohol.
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However, Figure 3.5 fails to explain the timescales observed across the series of

alcohols. The thermal energy available at 298 K, kBT ≈ 2.5 kJ mol−1, is larger than

the barrier heights in moving from the second to third solvation shells, and is only

slightly smaller than the barrier heights in moving from the second to first solvation

shells. One can also examine the relative barrier heights and recognize that their

ratios are not large enough to account for the changes in observed timescales. In the

simplest analysis, a doubling in rate constant requires a relative energy difference of

≈ 1.7 kJ mol−1, as per −kBT ln2≈ ∆∆A(R). This fails to described the observed

dynamics, as τn−HaOH
c /τn−PrOH

c ≈ 3 and τ
n−HaOH
d /τ

n−PrOH
d ≈ 3.9. That is, the

calculated free energy differences are always too small to account for the large

relative changes in timescales. Also, the emergence of a new timescales τd requires

the appearance of an alternative reaction pathway. While increased barriers are

observed in ∆A(ROO) (i.e., the 2nd → 3rd shell barriers), their magnitudes are also

too small, as τ
n−PrOH
d /τn−PrOH

c ≈ 2.6 and τ
n−HaOH
d /τn−HaOH

c ≈ 3.2.

3.2.4 Alcohol Free Energy Landscapes

The free energy analysis in the coordinate ROO is insufficient to capture the relevant

free energy barriers to hydrogen bond switching in higher alcohols. That is,

the angular coordinates may be of consequence, but are averaged over in an

analysis of ∆A(ROO) only. To this end, oxygen-oxygen pair distribution functions

in the coordinates ∆R‡ = ROA−HD−ROX−HD and cosθHD−OD−OX , where X is any

non-A/non-D atom, were constructed. The use of the cosine function means

there is no Jacobian (sinθ factor) in the angular coordinate. The resulting pair
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distribution functions, g(∆R, cosθ) can be similarly translated to Helmholtz free

energy profiles, ∆A(∆R, cosθ), by straightforward analogy to Equation 3.1.

The results of this analysis are shown in Figures 3.6, 3.7, and 3.8, where higher

free energies are bluer and lower free energies are redder. Notably, the energy scale

runs from ∆E ≈−15 to −30 kcal mol−1 in all cases. It is therefore immediately

evident that the free energy changes cannot quantitatively explain the trends in the

reorientation dynamics. However, Figures 3.6-3.8 show features that qualitatively

agree with both the trend across the alcohol series as well as the emergence of

new reorientation timescales. In the extended jump model, the transition state

distance, ∆R‡, is symmetric with respect to hydrogen bond acceptor oxygens OA

and OB, and thus the transition state lies along the line ∆R‡ = 0 Å, and can be

identified by the saddle point near cosθ ≈ 0.6−0.7. (Notably, this is in agreement

with the jump angle distribution, as the most probable jump angle is about 50◦,

and cos50◦ ≈ 0.64.) More generally, the cut through this free energy surface at

∆R‡ = 0 Å gives the ensemble of hydrogen bond exchange transition states and

is consistent with the jump angle distributions. (See, for example, Figure 3.4.)

For ∆R‡ = 0 Å, at cosθ = 1 (i.e., θ = 0◦) white spots are observed. This region

is inaccessible, as it would represent an oxygen overlapping the oxygen of the

current hydrogen bond acceptor. There is a free energy minimum (∆R‡≈ 2.5 Å and

cosθ ≈ 0.8 or θ ≈ 40◦), which grows deeper with increasing alkyl chain length and

represents the global minimum. Also at low angles (near cosθ = 0.9 or θ ≈ 25◦)

but at large distances, a new free energy minimum grows in with lengthening

alkyl chain. A similar trend can be observed for larger angles (cosθ ≈−0.75−0
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Figure 3.6: Two dimensional free energy profiles are shown for methanol (top)
and ethanol (bottom). In each each case the ordinate is ∆R = ROA−HD−ROX−HD ,
where HD is the donor hydrogen atom, OA is the acceptor oxygen, and OX is any
non-donor/non-acceptor oxygen. The abscissae are cosθ , where θ is the HDODOX
angle.

80



Figure 3.7: Two dimensional free energy profiles are shown for n-propanol (top)
and n-butanol (bottom). In each each case the ordinate is ∆R = ROA−HD−ROX−HD ,
where HD is the donor hydrogen atom, OA is the acceptor oxygen, and OX is any
non-donor/non-acceptor oxygen. The abscissae are cosθ , where θ is the HDODOX
angle.
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Figure 3.8: Two dimensional free energy profiles are shown for n-pentanol (top)
and n-hexanol (bottom). In each each case the ordinate is ∆R = ROA−HD−ROX−HD ,
where HD is the donor hydrogen atom, OA is the acceptor oxygen, and OX is any
non-donor/non-acceptor oxygen. The abscissae are cosθ , where θ is the HDODOX
angle.
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or θ ≈ 140− 180◦), where a broad free energy well is observed. This deepens

as a function of hydrophobic bulk, and close to ∆R‡ = 5 Å and cosθ = −0.9

(θ ≈ 155◦), a new free energy minimum can be seen appearing.

On a molecular level, Figures 3.6, 3.7, and 3.8 indicate an overall increased

ordering in the liquid as a function of alkyl chain length. Specifically, free energy

minima near ∆R≈ 4−4.5 Å and cosθ ≈ 0.9 are absent for methanol and ethanol.

This minimum appears for n-propanol and continues to grow through n-hexanol.

Thus, second coordination shell occupancy becomes better defined (more directed

in the angular coordinate) with increasing alkyl chain length. The increased steric

bulk of the alkyl chains results in more isolated chains of hydroxyl groups, and thus

higher shell occupancy in the angular coordinate becomes better resolved. This

increased ordering is consistent with interpretations from OKE spectroscopy studies

[31, 32], in which alignment of longer-chain alcohols is increasingly difficult, as

reflected in increasing B values. The enhanced ordering also suggests a way

that additional timescales may arise. That is, molecules participating in certain

structural elements such as chains may reorient differently than those participating

in other structures found in solution. This idea is explored further in Section 3.3.3.

From a kinetic view, the appearance of new timescales in C2(t) requires that new

hydrogen bond exchange pathways emerge. Assuming DA represents a “reactant”

hydrogen bond and DB represents a “product” hydrogen bond, a kinetic scheme

such as that shown on the right side of Figure 3.9 must be favored over a reaction

scheme such as that shown on the left side of Figure 3.9 for bi-exponential behavior

in the long-time component to be observed. The alcohols show an increasingly deep
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Figure 3.9: Left: New free energy minima result in a new population of molecules,
R1, that primarily interconverts with reactants R2. It is R2 that leads to the formation
of products P. Right: For new timescales to emerge, a direct path from both R1 and
R2 would lead to products P.

free energy minimum at large jump angles (cosθ ≈−0.7-−0.4 or θ ≈ 153−115◦)

and short distances (∆R ≈ 2 Å). However, for methanol and ethanol, a single

free energy minimum near cosθ ≈ 0.9 (θ ≈ 25◦) exists. For n-propanol through

n-hexanol, two free energy minima are present near cosθ ≈ 0.9, with the emergent

well located at ∆R≈ 4.5−5 Å. This is consistent with a single-exponential long-

time component to reorientation for methanol and ethanol and bi-exponential

long-time reorientation for higher alcohols. Thus, the free energy landscapes of

Figure 3.6, 3.7, and 3.8 are qualitatively consistent with the right side of Figure

3.9.

The free energy minima and associated barrier heights in Figure 3.6-3.8 are

small, and the corresponding simple transition state theory rate constants do not

quantitatively reproduce the timescales calculated for the jump times in Table

3.4. It is likely that one must include the liquid viscosity in the estimates of

the rate constants to obtain quantitative agreement with the observed jump times.

This can be accomplished using Kramers’ theory, in which simple transition state
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theory is modified to include effects from a generalized friction term [135]. In the

high-viscosity limit,

k = kT ST
κ

KR = kT ST
(

ω‡

β

)
, (3.2)

where κKR is a Kramers’ theory transmission coefficient, which is related to ω‡, the

transition state frequency (which can be obtained directly from the simulation), and

β , a generalized friction term. Using the Einstein diffusion equation and assuming

the diffusion coefficient, D, can be related to the generalized friction, β , through

D = kBT/β , Equation 3.2 becomes

k =
kBT

h

(
ω‡

6πrη(T )

)
e−Ea/kBT . (3.3)

The use of the Einstein equation assumes the particle in question has a spherical

hydrodynamic radius, r, an assumption that becomes more severe with longer

alkyl chain. Notably, Equation 3.3 also includes η(T ), the temperature-dependent

viscosity, which can be obtained directly from the simulation using Green-Kubo

relations. Experimentally, alcohol viscosity increases for increasing alkyl chain

length. Consequently, as η(T ) increases, the rate constant decreases, and the

corresponding timescale increases. Thus, including viscosity effects in the rate

constant description should result in better agreement between timescales calcu-

lated directly from jump time correlation functions and those derived from free

energy landscapes.
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3.3 Alternative Hypotheses for Emergent Timescales

While the above analysis appears to satisfactorily explain the origin of new longtime

reorientational contributions in longer chain alcohols, several alternative hypotheses

for the origin of the emergent timescales in higher alcohols were also proposed and

tested. While none have proven successful in explaining the emergent dynamics

observed here, they have nevertheless been useful in further developing a molecular-

level picture of structure and dynamics in liquid alcohols.

3.3.1 Excluded Volume Fluctuations

The excluded volume fraction, f , averaged over all molecules at many times, has

been shown to provide a good description of the slow timescale for reorientation

in lower alcohols. However, the excluded volume fraction represents a simplified

measure of what occurs in solution. Studies indicate that dynamic heterogeneity

plays a significant role in the slowed dynamics observed in supercooled water [21].

There, a large distribution of hydrogen bond switching rate constants, k jump = 1/τ0,

is observed as a consequence of local order fluctuations, and a cumulant expansion

analysis [136] results in two timescales—kshort and klong—for cooled water. (The

details of this calculation can be found in [21].) Because of the reasonable success

of the excluded volume fraction in predicting the slowing of lower alcohol jump

dynamics with increasing alkyl chain length, it is reasonable to speculate that an

explanation similar to the supercooled water case applies to the alcohols. That is,

perhaps time-dependent fluctuations in the excluded volume fraction, f , provide
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a mechanism for the emergence of an additional long reorientational timescales

observed in the simulation data.

To extract kshort and klong values for alcohols, the excluded volume fraction

was calculated for each molecule at each timestep over 8 ns using a transition

state ring of 200 points (thereby limiting resolution to ∆ f = 0.005.) Assuming

a distribution of time-dependent rate constants, the hydrogen bond switching

rate constant at a time t, k jump(t) is related to the hydrogen bond switching rate

constant for water, kw ≈ 0.3 ps−1, modulated by the excluded volume fraction, and

k jump(t) = kw [1− f (t)]. Fluctuations in the rate constant over time are related to

fluctuations in the excluded volume, and δk(t) = kw δ [1− f (t)]. Thus, a correlation

function in the rate constant fluctuations,

C(t) = 〈δk jump(0)δk jump(t)〉, (3.4)

can be recast in terms of the excluded volume fraction as a function of time, f (t).

The result is

C(t) =

〈
f (0) f (t)−〈 f 〉2

〉
〈 f 2〉−〈 f 〉2

. (3.5)

The correlation function (Equation 3.5) was calculated for each alcohol, and the

results are presented in Figure 3.10.

The results of the calculation are presented in Figure 3.10. In Figure 3.10, the

typical trend for linear alcohols is not preserved, as the positions for n-pentanol

(green) and n-hexanol (brown) appear switched. Accordingly, this cannot explain

the trend in reorientation timescales in higher alcohols. Also notable is that the
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Figure 3.10: The excluded volume correlation functions are presented for methanol
(black), ethanol (red), n-propanol (blue), n-butanol (purple), n-pentanol (green),
and n-hexanol (brown).
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correlation functions presented here do not decay to zero in the time interval

shown (16 ps). Extension of the correlation function to long times (> 30 ps) still

shows non-zero values for 〈 f (0) f (t)〉, and the uncertainties associated with the

curves become large. This is to say, the results here are data-limited. A more

meaningful calculation of 〈 f (0) f (t)〉 would require calculation of the excluded

volume fraction over longer times.

The preceding approach was pursued because it leads directly to two long-time

components in the reorientation of supercooled water—an effect similar to the

two long-time components in higher alcohol reorientation. However, timescales

can also be derived in a more direct fashion, by assuming that a distribution of

rate constants are a function of time (see [21]). Briefly, the relevant timescales

are fits to the function S(t) = 〈e−
∫ t

0 k(τ)dτ〉, which can be calculated directly from

the simulation by assuming that kwater ≈ 0.3 ps−1 and that k(τ) = kwater [1− f (τ)].

The integration over the distribution of time constants from 0 to t then provides an

average value for k at the time t. The results of this analysis are presented in Figure

3.11. In Figure 3.11, each curve is reasonably well-fit to a single exponential

function. Additionally, the results are not sensitive to the method of integration.

The timescales for linear alcohols with 1, 2, 3, 4, 5, and 6 carbon units are 25.5,

37.1, 43.1, 44.0, 44.9, and 84.4 ps, respectively. For methanol, the value of 25 ps is

too large, as the single jump time is ≈ 15 ps. For n-hexanol, the value of 84.4 ps

fails to match either the faster (36.2 ps) or slower (109.2 ps) timescales. (See Table

3.4.) Additionally, the values for n-propanol, n-butanol, and n-pentanol are very

closely clustered. Accordingly, the results from this analysis fail to provide insight
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Figure 3.11: The functions S(t) calculated from time-dependent rate constants,
k(τ), are presented for methanol (black), ethanol (red), n-propanol (blue), n-butanol
(purple), n-pentanol (green), and n-hexanol (brown).

90



about the trend in reorientation across the alcohol series, let alone the origin of new

timescales.

3.3.2 Hydroxyl Coordination Number

A particularly useful quantity for studying liquids is the radial distribution function,

g(R), a quantity which reflects the local density. The function can be calculated

according to Equation 3.6 as described by Allen and Tildesley [137]:

g(R) =
V
N2

〈
N

∑
i

N

∑
j 6=i

δ (R−Ri j)

〉
. (3.6)

In the simulation, a site i is chosen, and the distances to all other sites j are

calculated. For practical purposes, the δ function is assumed to have some small,

finite width, and the distances Ri j are histogrammed. This is performed over all N

sites and over many configurations. Lastly, the resulting function is compared at

each R to the number of sites in a system of bulk density of the same volume,

Nid =
4πρ

3
[
(R+δR)3−R3]= 4πN

3V

[
(R+δR)3−R3]

The results are shown in Figure 3.12.

The intensity in the first g(ROO) peak for each alcohol increases with increasing

alkyl chain length (Figure 3.12, top). As shown in the bottom of Figure 3.12, with

the exception of methanol, the trend is preserved in the second maximum. However,
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Figure 3.12: The radial distribution functions g(ROO) are shown for methanol
(black), ethanol (red), n-propanol (blue), n-butanol (purple), n-pentanol (green),
and n-hexanol (brown). The largest, initial peak in each curve (shown top) repre-
sents the first coordination shell. The second coordination shell is represented by a
smaller secondary peak (shown bottom).
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the nature of the curves g(ROO) quickly changes, and any easily described trend is

lost by the second minimum.

A more intuitive measure of what occurs in solution might be obtained by

calculating the coordination number n from g(ROO). The minima in curves g(R)

are often used as a convenient demarcation of coordination shell boundaries. Thus,

the limits of the first coordination shell would fall between zero and the first non-

zero minimum in g(R). The coordination number, n, is then the integral of g(R)

over this region, viz. the equations

n1 =
∫ ROO,min1

0
4πr2g(ROO)dr (3.7)

and

n2 =
∫ ROO,min2

ROO,min1

4πr2g(ROO)dr =
(∫ ROO,min2

0
4πr2g(ROO)dr

)
−n1 (3.8)

Because the average jump mechanism in water begins with a new acceptor leaving

the second solvation shell and entering the first, it is reasonable to suspect that

changes in dynamics may relate to the number of available acceptors within the

solvation shells or the relative mobility of acceptors moving between solvation

shells. Figure 3.13 indicates that the numbers of members in the first and second

coordination shells change very little as a function of alkyl chain length for ethanol

to n-hexanol, and the methanol case is an outlier. Accordingly, changes in available

local population of acceptor molecules cannot explain the trend in—let alone

emergence of—timescales across the alcohol series. However, the information
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Figure 3.13: The number of molecules residing in coordination shells 1 (black)
and 2 (red) is shown as a function of alkyl chain length. Error bars are similar in
size to the line thickness.
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in Figure 3.13 is consistent with Figure 3.6-3.8, which show increased chain

formation across the alcohol series. The small steric bulk associated with the

methyl group of methanol allows densely packed hydrogen bond chains, and a

large second coordination sphere population (reminiscent of networked water)

results. Longer alkyl groups better separate chains of hydrogen bonded hydroxyl

groups. The second coordination sphere therefore consists primarily of hydroxyl

oxygens within the hydrogen bond chain containing the central (reference) oxygen.

Such an effect which should plateau quickly, which is shown by the red curve of

Figure 3.13.

In the case of water, the incoming hydrogen bond exchange partner moves from

the second to the first solvation shell as an initiating step in the jump mechanism.

While the results in Figure 3.13 show that there is no general change in the

coordination numbers results across the alcohol series, they do not provide a

dynamic picture of the rates of exchange between first and second coordination

shells. For a hydrogen bond, it is possible that the time for hydrogen bond switching

is related to whether or not the future acceptor is in the first solvation shell at time

t0 or if the future acceptor must move from the second to first solvation shells.

To address this, the side-side correlation functions for future acceptor (molecule

B) residence or non-residence within the first coordination shell were calculated

according to Equations 3.9 and 3.10, respectively.

Cn1(t) = 〈θn1(0)θn1(t)〉 (3.9)
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C6n1(t) = 〈θ6n1(0)θn1(t)〉 (3.10)

For each molecule, lists of first and second shell neighbors are constructed for each

time in the simulation. The time for a hydrogen bond to switch is calculated as

before (see Equation 2.12). Here, however, the correlation functions are decom-

posed by the location of the future acceptor relative (B) to current donor (D)—i.e.,

whether or not B was within the first solvation shell of D at time t0. As usual,

the time constants can then be found by multi-exponential fitting of the curves

Sn1(t) = 1−Cn1(t) and S 6n1(t) = 1−C6n1(t). These curves are presented in Figure

3.14. For each alcohol represented in Figure 3.14, the timescale associated with B

not in the first coordination shell at t0 (dashed lines) is always longer than the case

in which B is in the first coordination shell at t0. If B is within the first solvation

shell at t0, it implies proximity to D and more facile hydrogen bond switching.

Similarly, if B is not within the first solvation shell of D at time t0, it implies that B

must move from the second to first solvation shell to accept a hydrogen bond from

D, a process that takes more time. Also apparent from Figure 3.14 is that the trend

for both cases is preserved across the alcohol series. That is, timescales shortest to

longest always fall in order of increasing alkyl chain length.

Table 3.6 provides tri-exponential fit data for B within the first solvation shell at

t0, while the same information for B not in the first solvation shell at t0 is provided

in 3.7. The results in Table 3.6 do not correspond well to either jump (Table 3.4)

or frame (Table 3.5) times. However, for the longer- and longest-time components

(τb and τc, respectively) in Table 3.7, there is striking similarity to the longer- and
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Figure 3.14: Correlations for hydrogen bond switching are shown for cases in
which the future acceptor (molecule B) is (solid lines) and is not (dashed lines)
in the first coordination shell at time t0 (solid lines) for methanol (black), ethanol
(red), n-propanol (blue), n-butanol (purple), n-pentanol (green), and n-hexanol
(brown).
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Table 3.6: Correlation times (in ps) for first coordination shell occupancy
Molecule Aa τa Ab τb Ac τc
MeOH 0.287 1.7 0.713 11.5 - -
EtOH 0.176 2.1 0.076 8.9 0.748 29.6
n-PrOH 0.164 2.3 0.099 13.8 0.767 43.7
n-BuOH 0.164 2.6 0.210 25.4 0.626 61.6
n-PnOH 0.143 2.6 0.153 19.9 0.704 77.0
n-HaOH 0.178 3.0 0.278 33.6 0.544 101

Table 3.7: Correlation times (in ps) for first coordination shell non-occupancy
Molecule Aa τa (ps) Ab τb (ps) Ac τc (ps)
MeOH 0.122 1.9 0.878 15.6 - -
EtOH 0.106 2.7 0.034 8.7 0.860 37.7
n-PrOH 0.103 3.0 0.073 14.5 0.824 54.2
n-BuOH 0.118 3.8 0.114 25.2 0.768 70.9
n-PnOH 0.119 4.1 0.162 28.7 0.719 92.6
n-HaOH 0.133 4.8 0.239 40.0 0.628 112

longest-time components in the jump times reported in Table 3.4. Importantly, the

results in Table 3.7 reflect times for hydrogen bond switching for the molecule B

not in the first solvation shell. That is, similar to the average water mechanism,

the future hydrogen bond acceptor molecule B in linear alcohols is, on average,

removed from direct contact with D. The hydrogen bond jump from A to B thus

requires movement of B into the first solvation shell of D, and this is reflected

in the dynamics in Table 3.7. While the information is relevant to developing a

molecular-level picture of hydrogen bond switching, it does not address, per se,

the origin of the new timescales.
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3.3.3 Structural Characterization

While changes in the local coordination shells fail to explain the longer and emer-

gent timescales observed for higher alcohols, it is clear that the alcohols have

different local coordination environments. This naturally leads to the question of

altered solution structure. That is, another hypothesis is that the emergence of new

timescales arises from changes in the larger-scale liquid structure. For example, do

rings of hydrogen bonded molecules increase with increasing alkyl chain length at

the expense of some other structural form, such as linear chains? Do the hydrogen

bonds within these structures have associated with them different dynamics?

To address this possibility, a systematic way of identifying and assigning various

structures anticipated to exist in solution was devised. Structural determination and

assignment effectively reduces to determining differences in connectivity. It was

previously discussed that lists of hydrogen bond donors and acceptors at each time

can be constructed. Molecules with no acceptor are considered “lone” molecules.

Additional structural determination amounts to recursively finding a donor-acceptor

pair, assigning the acceptor a donor status, and interrogating the lists for its acceptor.

This process is repeated until either no acceptor is found (chain termination) or

the next acceptor is a molecule already participating in the chain. In the first case,

termination at the first step indicates a “pair”. If additional processing occurs with

chain termination, the series of molecules are participating in a “chain.” If the

next acceptor is a molecule already participating in the chain, it is a “ring” if the

molecule is the initiating donor and is a “lariat” if the molecule is not the initiating

donor. This approach does not account for branching, however. In alcohols, a
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single molecule very rarely serves to donate a hydrogen bond simultaneously to two

donors. However, it often occurs that a hydroxyl group can accept two hydrogen

bonds (and very rarely 3). Thus, the structures determined above, may individually

be part of larger structures, which all share a common terminus.

Thus, the complete structural assignment involves identifying common termini

and eliminating redundancy. When this approach is taken, molecules can be

structurally assigned as “lone,” “pair,” “v-shaped structure,” “chain,” “lariat,” or

“ring.” Chain and lariat structures can be further characterized by the number of

branch points, if desired. Each molecule at each time is assigned a number (1-6,

respectively), corresponding to the structure in which it belongs. An example

of this process taken from the methanol simulation is presented in Figure 3.15.

In Figure 3.15, the hydroxyl groups of 22 hydrogen bonded methanol molecules

are shown. The common terminus is indicated in carmine. Importantly, 4 chains

converge to this point, and thus there are 4 origins, indicated in pink. All molecules

participating in the chain are assigned the number 4.

The side-side correlation function approach can be adapted to determine the

lifetime of a molecule within a given structural type. Additionally, the parsing can

be done such that molecule types can be combined. For example, if a molecule

is part of a pair and in the next step is part of a chain, it is likely that the acceptor

molecule was in proximity to a third (or several) molecule(s) and the overall

structure did not change much. The function can be modified so that molecules

tagged as 5 at t = 0 and then 2 at time t = t ′ (or similarly, 2 at t = 0 and 5 at t = t ′)

are considered as not changing structural type at time t ′.
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Figure 3.15: Branchings chain are present in simulations of methanol. Only
oxygens (red) and hydrogens (silver) are shown for hydrogen bonding hydroxyl
groups. To identify this chain structure, a molecule acting as a hydrogen bond
donor but not an acceptor is considered as an origin (highlighted in pink). The
donor-acceptor relationship is then shifted pairwise along the chain recursively.
A molecule identified as an acceptor but not a donor is considered the terminus
(highlighted in carmine). Here, four chains of varying length (7, 4, 9, and16
molecules) have been identified with a common terminus (molecule number 179).
Redundancies among the chains can be identified and eliminated by working
backward from their common terminus. The remaining 22 unique molecules
comprise a chain with 3 branch points. Each of these 22 molecules is thus assigned
a structural identification number of 4 for this configuration.
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Preliminary data for structure-associated dynamics calculated in this way sug-

gest that structural dynamics fail to correspond to the timescales observed in either

the frame time contributions or jump time contributions to C2(t). However, chain

structures such as the one represented in Figure 3.15 are found in all the alcohols,

and the chains lengthen for longer alkyl chains. Accordingly, the structural ap-

proach taken here can be used in studies focused on the increased ordering with

increased alkyl chain length.

3.4 Higher Alcohol Reorientation Summary

The series of linear alcohols of increasing chain length, from methanol to n-hexanol,

were investigated by MD to investigate their reorientation dynamics within the

context of the extended jump model. The long-time reorientation occurs on two

timescales for longer alcohols, an effect that can be traced to the hydrogen bond

switching dynamics. The distribution of jump angles for hydrogen bond switching

can be traced to local hydrogen bonding relationships among hydrogen bond

donor, current acceptor, and future acceptor. Free energy decompositions show

increased molecular ordering in the liquid and the emergence of new free energy

barriers. These barriers result in multi-exponential timescales, but to make the

results quantitative, additional effects, such as viscosity, should be considered.

During investigation of the origin of emergent timescales in higher alcohols,

several alternative hypotheses were proposed and tested. Excluded volume fluctua-

tions in the alcohols were investigated as these fluctuations in supercooled water
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were able to explain emergent timescales in supercooled water. The hydroxyl coor-

dination number was investigated, as changes in the number of locally available

hydrogen bond exchange partners were hypothesized to change the reorientational

timescales. Lastly, it was hypothesized that the larger scale structures in which a

hydroxyl group participates could have associated with them distinct timescales.

While none of these hypotheses satisfactorily explain the emergent timescales in

Äreorientation dynamics in linear alcohols, their pursuit has resulted in additional

dynamic and structural information about the bulk liquids.
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Chapter 4

Solvation Dynamics in Confined Systems

Time-dependent fluorescence (TDF) has been used extensively to measure solvation

dynamics, and has been nearly exclusively used to study changes in dynamics in

nanoconfined systems, as discussed in Chapter 1. However, the reported timescales

for a given solvent can depend strongly on the properties of the reporter dye.

As discussed in Section 1.4, the TDF signal in confinement generally shows

elongated timescales and often shows new or emergent timescales that have no bulk

counterpart. The origins of these emergent timescales is still unclear, and several

hypotheses have been proposed to explain them. In the solute diffusion hypothesis,

the motion of the dye itself manifests in the TDF signal and thereby contributes

new timescales. The present Chapter uses equilibrium molecular dynamics (MD)

simulations of a model solute to test this hypothesis and provide insight about

nanoconfined systems in general.
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4.1 Model Systems for Nanoconfined Ethanol

A spherical, dipolar model solute molecule used in this work consists of three

approximately collinear sites—one of center of positive charge (P), center of mass

(COM), and center of negative charge (N)—placed in the sphere, with the COM at

the center. The P-N distance was maintained at RP−N = 3.2 Å so that the change in

dipole moment is fully attributable to changes in the electrostatic charges assigned

to the P and N sites. In this way, the dipole moments, given in Table 4.1, arise from

Table 4.1: Stockmayer solute charges and dipole moments
q (e) µ (Debye)
0.32532 5
0.65064 10
0.97596 15

equal positive and negative charges (also listed). Masses of 50 u were assigned

to each charge site. All three sites are contained within a Lennard-Jones sphere

centered on the COM site. Values of σ = 7.5 Å and ε = 0.500 kJ mol−1 were

maintained for all dipole moments of the solute. Within the confined solvent

systems, the COM site was also used to fix the solute in position. Thus, the model

solute comprises a dipole that rotates within an approximately spherical bubble

that interacts with both the solvent and the confining interface, and how the solute

interacts with solvent and confining framework can be studied as a function of the

solute location within the confining framework.

The dipole moments in Table 4.1 also allow different transitions to be studied.

That is, transitions from ground state to excited state corresponding to either
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5D→ 10D, or 5D→ 15D, or 10D→ 15D can be used to model absorption, while

the corresponding transitions 10D→ 5D, 15D→ 5D, and 15D→ 10D can be used

to model fluorescence.

To confine ethanol and the model Stockmayer solute, the mesoporous amor-

phous silica models developed by Gulmen et al. [?] were used. Specifically, the

pore is approximately cylindrical in shape with radius ∼ 12 Å and axis length 30

Å. The small size was chosen because the effects of confinement typically increase

with decreasing size of the confining framework. The pore contains 36 silanol

groups and 6 geminal silanol groups, which facilitate study of specific chemistry

within the pore. The same pore is rendered hydrophobic by setting the charges of

all pore atoms to zero. Parameters describing the pore atoms are provided in Table

4.2 with any cross-term parameters calculated as before (Equations 2.4 and 2.5).

Table 4.2: Force field parameters for the silica pore
Atom m (g mol−1) q (e) σ (Å) ε (kJ mol−1)
Hsilanol 1.00 0.420 1.295 0.00153
Osilanol 16.00 -0.740 3.070 0.71107
OSiO2 16.00 -0.640 2.700 1.91151
SiSiO2 28.00 1.280 2.500 0.00042

The bulk ethanol system described in Section 2.1 with the solute at the center

of the box was confined in a silica nanopore by overlapping the bulk system and

silica pore and subsequently eliminating molecules that had sites that overlapped

with the silica framework. A total of 121 ethanol molecules remained, which is

in quantitative agreement with grand canonical Monte Carlo simulations on neat

ethanol. A cutaway of the resulting system is shown in Figure 4.1. Notably, the

106



Figure 4.1: The model solute (centered, translucent sphere) dissolved in ethanol
(space-filling, colored), and confined within a silica pore (licorice, colored) is
shown. The hydrogen (white), oxygen (red), and methylene and methyl groups
(cyan) of ethanol can be seen surrounding the solute and interacting with the silica
surface. The silanol hydrogen (white) and oxygen (red) atoms can be seen near the
interface. Notably, the silicon (yellow) and oxygen (red) density at the interface
and in the framework is nonuniform, i.e., it creates irregular recesses and voids that
molecules can occupy.
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ethanol Lennard-Jones parameters were changed from zero to σ = 1.295 Å and

ε = 0.00153 kJ mol−1 to avoid spurious interactions with the silica pore. The

introduced parameters showed no effect on the bulk ethanol structure. Classical

MD simulations were run using the DL_POLY_2 [123] software package. Each

system was run in the NVT ensemble and equilibrated for 200 ps, followed by a 2 ns

collection stage using a 1 fs time step. Configurations were recorded every 100 fs

except for calculation of solute position-dependent spectra, for which information

was collected every 20 fs. Uncertainties were calculated at the 95% confidence

level using Student’s t-test and 5 blocks.

4.2 The Solute Diffusion Hypothesis

As described in Chapter 1, time-dependent fluorescence (TDF) measurements on

nanoconfined systems frequently report the emergence of new timescales. All

timescales are customarily attributed to motion of the solvent, as they are in the

corresponding bulk cases. However, the nanoconfining framework introduces an

anisotropy in the system. Both solvent and solute can interact with the confining

framework near the framework interface, and may thus interact differently with

one another near and away from the interface. This spatially-dependent interplay

among system components can clearly complicate the TDF signal. Thus, the

interpretation that the TDF signal carries information only about altered solvent

dynamics in nanoconfined systems is incomplete at best. To better understand the
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information content of the TDF signal, it is necessary to examine how the solute

itself is affected by nanoconfinement.

If the TDF signal in nanoconfined systems is sensitive to solute motion, three

requirements must be satisfied: 1) The solute must move within the confining

framework during the experiment, and the solute must show a preferential residence

in the confined system based on charge distribution. That is, the excitation must

drive the motion of the solute within the confining framework. 2) The fluorescence

energy must change with solute position in the confining framework. These two

requirements imply that upon excitation, the solute moves across the confining

framework and changes its fluorescence signal as it does so. The TDF signal would

therefore also change. To what extent is this observable? The third requirement,

which addresses this question, is that 3) this change in the TDF signal must occur

on the experimental timescale and with measurable amplitude.

With a model confined system already in place (Section 4.1), the remainder

of the present chapter outlines results from equilibrium (MD) simulations that

test requirements 1 and 2. Addressing requirement 3) requires non-equilibrium

simulations and forms the majority of Chapter 5.

4.3 Free Energy and Position Distributions

To address the possibility that the model solute exhibits a position preference within

the pore based on charge distribution, a thermodynamic approach was taken. That

is, Helmholtz free energies were calculated as function of solute position across
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the pore, and the resulting free energy profiles were used to calculate position

probability distributions.

The pore is centered on the origin with its axis along the z direction. Keeping

in mind the periodic boundary conditions, the z =−10 Å, 0 Å, and +10 Å planes

are evenly spaced along the pore axis. To explore these "cuts" across the pore more

efficiently, the line y = 0 Å (i.e., x axis) was used to move the solute across the

pore at regularly spaced intervals, ∆x = 0.2 Å. For each cut in z, a starting x0 value

was chosen to reflect strong repulsion of the solute by the pore wall. That each

cut has a different x0 position is a reflection of the surface heterogeneity of the

pore. All thermodynamic integration calculations for a given cut always start at the

associated x0 value.

The potential on the solute COM site was calculated according to the equation

U =
Ncut

∑
i=1

{
4ε

[(
σ

riCOM

)12

−
(

σ

riCOM

)6
]
+

P

∑
α=N

[
qiqα

4πε0riα

]}
(4.1)

The index i runs over all Ncut solvent and pore sites that fall within a cutoff distance

to the solute COM site, rcut = 15 Å, and applying period boundary conditions. The

index α runs over the charged solute sites P and N. Thus, riCOM = |ri− rCOM| and

riα = |ri− rα | represent distances between solvent and pore sites i and the solute

sites. The potential on the solute, U , was then used to calculate the force acting on

the solute in the direction x̂, according to

Fx′(~r) =−~∇rU(~r) · ∂ r
∂x

x̂ (4.2)

110



Here, x and r refer to the solute COM only. Importantly, the position of the solute

COM, indicated as x′, was held fixed while the P and N sites were allowed to rotate.

The forces acting on the solute at x′ were then averaged over time. Performing this

for solute positions in the pore beginning at x0 and running to x′ by increments of

∆x results in a profile of average forces at each position in the pore. Integration of

these average forces leads to the Helmhotz free energy, as per

∆A(x)≡ A(x)−A(x0) =−
∫ x

x0

〈Fx(x′; y, z)〉dx′. (4.3)

This process was repeated for 5, 10, and 15 Debye solute models in hydrophilic

and hydrophobic pores at z = 0 Å, and for the 5 and 10 Debye solute models in the

hydrophilic pore at z =−10 Å and z =+10 Å. Notably, the resulting curves can

be translated into the position probability distributions using the relationship

P(x) =
e−β∆A(x)∫

e−β∆A(x′)dx′
. (4.4)

The results from the calculation of ∆A(x) and P(x) for the model solute along

x for the z = 0 Å cut across the hydrophilic pore are presented in Figure 4.2. For

the free energies shown in the lower panel, the minimum for each ∆A(x) curve

has been set to zero. The 5 D solute (black curve) shows a free energy profile

that rises dramatically at x = −9 Å and x = +7 Å. The profile between these

points shows very small undulations on an otherwise flat profile. The associated

P(x) profile shown in the upper panel indicates that the solute can sample most

of the hydrophilic pore for this cut. A notable exception is the left side (x < 0 Å)
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Figure 4.2: The lower panel shows the Helmholtz free energy as a function of
the solute COM position, x, for the z = 0 cut across the hydrophilic pore for
the 5 (black), 10 (blue), and 15 (green) Debye solute models. The free energy
global minimum has been set to zero for each curve. The upper panel shows the
corresponding position probability distribution P(x) of the solute, as determined
by Equation 4.4. The P(x) curves for the 5 D and 15 D solute have been scaled by
5 and 1/2, respectively.

112



of the pore, where a shoulder in the free energy profile exists. The 10 D solute

(blue curve) is qualitatively similar to the 5 D case, although a defined free energy

minimum appears on the right side (x > 0 Å) of the pore. Other features in the 5 D

case, such as the free energy undulations and shoulder, are present for the 10 D

case, but are magnified. The 10 D position probability distribution indicates that the

solute is most likely found on the right side of the pore, near the interface. These

trends continue for the 15 D solute (green line), and importantly, the free energy

minimum becomes deeper and shifts slightly to the right. Notably, the P(x) curves

have been scaled by 5 and 1/2 for the 5 D and 15 D solutes, respectively. Thus,

it is clear that modest changes in charge distribution can result in large changes

to the location of the solute within the pore. Importantly, the locations in the pore

accessed by the 10 D and 15 D solute are not accessible to the 5 D solute. Thus, in

the hydrophilic pore for z = 0 Å, it is clear that a change in charge distribution can

result in a dramatic change in the solute location in the pore.

This appears to be a general phenomenon, as shown in Figure 4.3 and Figure 4.4,

which show the free energy profiles (∆A(x), lower panels) and position probability

distributions (P(x), upper panels) for 5 D (black) and 10 D (blue) solutes for the

cuts at z =−10 Å and z =+10 Å in the hydrophilic pore. In each case, the 5 D

free energy profile is mostly flat, and the solute can sample the pore interior. The

free energies and distributions differ between the two cuts. Of the two, the z =+10

Å case is the more interesting. In Figure 4.4, a minimum in the free energy appears

on the right side of the pore (x > 0 Å), the same location a shoulder exists for the 5

D solute. Thus, the corresponding position probability distributions show that the
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Figure 4.3: The Helmholtz free energy as a function of solute COM position,
x, along the cut z = −10 Å within a hydrophilic pore are shown in the lower
panel for the 5 (black) and 10 (blue) Debye solute. The upper panel displays the
corresponding position probability distributions, P(x).

10 D solute can sample regions near the pore interface where the 5 D solute does

not. This is similar to observations made in the z = 0 Å case. The pore features

that give rise to this behavior are explored in Section 4.3.2.

The free energy profiles for solutes of various dipole moment in the hydrophobic

pore along the z = 0 Å cut are shown in Figure 4.5 and can be compared to the

hydrophilic case in Figure 4.2. The overall shape of the free energy profiles shown

in the bottom panel are similar to those in the hydrophilic pore case. Large free

energy values are found near x = −9 Å and x = +7 Å; a shoulder and small

undulations are present in the region between these values. Note that in the
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Figure 4.4: The Helmholtz free energy as a function of solute COM position,
x, along the cut z = +10 Å within a hydrophilic pore are shown in the lower
panel for the 5 (black) and 10 (red) Debye solute. The upper panel displays the
corresponding position probability distributions, P(x).
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Figure 4.5: The Helmholtz free energy as a function of solute COM position, x,
within a hydrophobic pore are shown in the lower panel for the 5 (purple), 10 (red),
and 15 (brown) Debye solute. The upper panel displays the corresponding position
probability distributions, P(x). Notably, the scale of the free energy is markedly
decreased from the corresponding curves in Figure 4.2.
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hydrophobic case, too, small effects in the free energy profile for the 5 D solute are

amplified for larger solute dipole moments. Taken together, these effects mean that

the 5 D solute shows little bias in x position for the z = 0 Å cut. The 10 D and 15

D solute show some localization, but in a location that can be accessed by the 5 D

solute.

Previous theoretical investigations have also found state-dependent solute posi-

tions in nanoconfined systems. The key differences with the present study are the

solute size, confining framework chemistry, and pore roughness. A Monte Carlo

study using a smooth, spherical confining surface and a small dye model dissolved

in methyl iodide or acetonitrile found that the ground-state solute preferentially

resides at the interface while the the most likely position for the excited-state

solute is the pore interior[73]. Subsequent nonequilibrium MD simulations of

S(t) for the same system found a contribution of solute diffusion to the solvation

dynamics resulting from this difference in ground- and excited-state equilibrium

positions[78]. These position biases are reversed from those found in this work,

in which the excitation of the solute drives it to the pore interface. The difference

is likely attributable to the favorable solute-pore interactions, absent in the pre-

vious study, and the solute size, which allows the present model to span several

layers of varying solvent polarity. Additionally, the simple nature of the confining

frameworks used in this earlier work[73, 78, 80] eliminated any effects of surface

roughness and chemistry.

A state-dependent solute position was also observed in MD simulations of

reverse micelles (RM).[138] Using I+2 and I−2 models of solute “excited states"
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of I2, Faeder and Ladanyi showed that each excited state exhibited a distinct

location preference within the RM, which they used to explain differences in the

nonequilibrium behavior of the two excited-state models.[138]

Summarily, the position distribution, P(x), is always a function of dipole

moment for both hydrophilic and hydrophobic pores; the results are most dramatic

in the hydrophilic pore. (For this reason, expensive calculations at z =±10 Å for

the hydrophobic case were not performed.) Additionally, some locations within

the pore strongly attract 10 D and 15 D solutes, which implies that heterogeneity

influences solute location.

4.3.1 Free Energy Decompositions

The factors that dictate the forms of the ∆A(x) curves can be explored by decompos-

ing them into contributions from the silica pore and the solvent. Each of these con-

tributions, in turn, can be decomposed into Lennard-Jones interactions and Coulom-

bic interactions. In other words, ∆A(x) = ∆Apore(x)+∆Asolv(x), with ∆Apore(x) =

∆Apore,LJ(x)+∆Apore,C(x) and ∆Asolv(x) = ∆Asolv,LJ(x)+∆Asolv,C(x).

The results of this decomposition of the free energy profile, ∆A(x), for the z = 0

Å cut across the hydrophilic pore are shown for the solvent in Figure 4.6. The top,

middle and bottom panels show ∆Asolv(x) (solid lines), ∆Asolv,LJ(x) (dot-dashed

lines), and ∆Asolv,C(x) (dashed lines) for the 5 D (black), 10 D (blue), and 15

D (green) solute models. The energy scale for each panel is different. Though

difficult to discern due to the scaling, the shape of each ∆Asolv(x) curve is similar.

Each curve shows a shoulder in the free energy near the pore interface, and small
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Figure 4.6: The figure shows the solvent contribution to the Helmholtz Free Energy
as a function of solute COM x position within the hydrophilic pore at z = 0 Å
for the 5 (black), 10 (blue), and 15 (green) Debye solute. Notably, the energy
scale, in kJ mol−1, differs for each dipole moment of the solute. The solid lines
represent the total free energy contributions from the solvent, ∆Asolv. These are
further decomposed into solvent Lennard-Jones (∆Asolv,LJ , dot-dashed lines) and
solvent Coulombic (∆Asolve,C, dashed lines) contributions.
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undulations are present in the pore interior. In the profile for the 5 D solute, it is

evident that ∆Asolv,LJ contributes the shoulders near the pore interface. Elsewhere

in the pore, the Lennard-Jones and Coulombic contributions are offset by a nearly

constant amount, but near the interface these contributions nearly cancel. The net

effect is an increase in free energy due to the solvent near the interface, which

indicates that the 5 D solute is better solvated in the pore interior. For the 10 D

(and less clearly, the 15 D) solute, the shoulder in the total solvent contribution to

the free energy (∆Asolv(x)) on the right side (x > 0 Å) of the pore disappears. The

value there becomes negative, as the Lennard-Jones and Coulombic contributions

fail to cancel in this region. Thus, the 10 D and 15 D solutes are better solvated

near the hydrophilic pore interface for the z = 0 Å cut. Interestingly, the roles of

the Lennard-Jones and Coulombic contributions are reversed from their roles in the

5 D solute case. That is, the Lennard-Jones component is generally positive in the

pore interior, while the Coulombic contribution is negative. It is the Lennard-Jones

contribution that stabilizes the solute near the pore interface. Similarly, this result

implies that electrostatic interactions pull solvent molecules toward the solute in

the pore interior, where the solute access to the solvent is greatest. This will be

examined further in Section 4.3.2.

Examining in Figure 4.7 the pore contribution to the free energy, ∆Apore(x)

(solid lines), for the z = 0 Å cut across the hydrophilic pore, it is clear that the steep

rise in free energy away from the pore interior in all total free energy profiles comes

from interactions with the silica pore. Moreover, this behavior can be attributed

to the Lennard-Jones contribution (∆Apore,LJ(x), dot-dashed lines), indicating that
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the strong repulsion comes from pushing the solute against the pore interface.

Switching focus to the Coulombic contributions (∆Apore,C(x), dashed lines), it is

clear that on the left side of the pore (x< 0 Å), the electrostatic interactions between

the solute and the interface are not strong. In contrast, on the right side of the pore,

the Coulombic contribution from the pore wall becomes increasingly negative with

increasing dipole moment. The decreasing Coulombic energy near the interface

added to the typical Lennard-Jones interaction energy result in a curve with a strong

minimum near the interface. Thus, the interaction primarily responsible for the

increased localization near the pore interface for increasing solute dipole moment

comes from Coulombic interactions with the confining framework. As discussed

in Section 4.4, this interaction with the interface has consequences beyond solute

localization.

Turning attention to the same cut across the pore (z = 0 Å) but for the hydropho-

bic case, Figure 4.8 shows that interactions of the solute with the solvent are largely

the same in the hydrophobic pore as they are in the hydrophilic pore. The solute is

better solvated by the solvent in the pore interior, where the solvent access to the

solute is maximal. It is also clear that the role that Lennard-Jones and Coulombic

interactions play depends upon the solute dipole moment. As before, for the 5 D

solute, the Lennard-Jones interactions with the solvent stabilize the solute. For the

15 D solute, the Coulombic interactions are stabilizing. Interestingly, the 10 D case

in the hydrophobic pore appears to capture, in part, this role reversal.

The silica contribution to the solute free energy in the hydrophobic pore for

z = 0 Å is shown in Figure 4.9. The fact that the hydrophobic pore is generated
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Figure 4.7: The silica contributions to the free energy are shown as a function
of position is shown for the 5 (black), 10 (blue), and 15 (green) Debye solute
in the hydrophilic pore. The ordinate unit of energy is kJ mol−1 for all three
panels. In contrast to the solvent decomposition of Figure 4.6, the energy scale
for each panel is the same. Similarly to Figure 4.6, the solid lines present the total
contributions from the silica pore, ∆Apore. These have been further decomposed
into contributions from the silica Lennard-Jones interactions (∆Apore,LJ , dot-dashed
lines) and silica Coulombic interactions (∆Apore,C, dashed lines).
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Figure 4.8: The solvent contribution to the free energy is shown as a function
of position, x, within the hydrophobic pore for the 5 (purple), 10 (red), and 15
(brown) Debye solute models. As for the solvent contribution in the hydrophilic
pore (Figure 4.6), the energy scale (in kJ mol−1) differs for each solute dipole mo-
ment. The magnitudes, however, are different from those of hydrophilic pore case.
Solid lines indicate the total solvent contribution (∆Asolv), dashed lines indicate
the solvent Coulombic contribution (∆Asolv,C), and dot-dashed lines indicate the
solvent Lennard-Jones contribution (∆Asolv,LJ). Notably, the energies for ∆Asolv
and ∆Asolve,LJ have been shifted by 400 kJ mol−1 for plotting purposes.
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by setting the pore charges to zero is reflected in the dashed line (∆Apore,C) at

zero. Thus, the total contribution from the silica pore (∆Apore, solid line) and

the Lennard-Jones contribution from the silica pore (∆Apore,LJ , dot-dashed line)

coincide. Additionally, the pore structure is unchanged, so that the 5 D (purple, top

panel), 10 D (red, middle panel), and 15 D (brown, bottom panel) solute results

are the same; each case is included for completeness and to facilitate comparison

to other figures. The Lennard-Jones interactions are stronger on the left (x < 0 Å)

side of the pore than the right (x > 0 Å) side of the pore. That is, Lennard-Jones

interactions alone would favor the solute on the left side of the pore and only by a

few kJ mol−1.

For z = 0 Å, it is clear that Coulombic interactions with a heterogeneous silica

surface control solute position within the pore. Free energy decompositions for the

z =−10 Å and z =+10 Å cuts across the hydrophilic pore support this (data not

shown). The right (x > 0 Å) side of the pore for the z=+10 Å cut shows a decrease

in ∆Apore,C(x) near the silica interface, although this decrease is not as pronounced

as the z = 0 Å case. For the z =−10 Å cut, the Coulombic contributions from the

silica pore are weak. The result is that both sides of the pore show profiles similar

to the left (x < 0 Å) side of the z = 0 Å profile. These effects show up clearly in

the position probability distributions, P(x) in the top panels of Figures 4.2, 4.3, and

4.4.
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Figure 4.9: The hydrophobic pore silica contributions to the free energy as a
function of solute position, x, for 5 (purple), 10 (red), and 15 (brown) Debye
solute molecules. The ordinate axes indicating energy (in kJ mol−1 ) are scaled
the same for all dipole moments, in contrast to the solvent contributions in Figure
4.8. Because the Coulombic contributions (∆Apore,C, dashed lines) are zero, the
dot-dashed lines indicating the silica Lennard-Jones contributions (∆Apore,LJ) and
solid lines indicating the total (∆Apore) are coincident.
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4.3.2 Structural Relationships

To explain the shapes of the decomposed curves, it is instructive to examine

structural relationships among the silica pore, the solvent, and the solute.

The pair distribution function for the solute COM and solvent COM is shown

in Figure 4.10. The function is shown for the 5 D (black), 10 D (blue), and 15 D

(green) solute in bulk ethanol (top panel), in the hydrophilic pore (middle panel),

and in the hydrophobic pore (bottom panel). The abscissae start at Rsolute−solvent =

3.0 Å, reflecting the large size of the solute molecule. In each case, increasing the

solute dipole moment decreases the solute-solvent separation. The g(R) curves for

hydrophilic and hydrophobic confinement agree well with one another, and in both

confined systems, the solvent tends to be closer to the solute than for the bulk case.

Clearly, confinement alters the degree to which the solute and solvent interact, as

the curves g(R) for higher solute dipole moments in confined systems begin at

shorter distances than those of the corresponding bulk cases. Importantly, because

the g(R) calculation in the confined systems was performed with the solute in the

center of the pore, these results do not reflect directly how solvent organization

about the solute might change near the pore interface.

From Figure 4.2, it is clear that the pore influences the behavior of the solute.

The TDF signal, which comes from the solute, may be influenced by the solute’s

location in the pore. The anisotropy imposed by the confining framework has

clear consequences for the behavior of the solute in the confining framework. It

is also important to understand the consequences of confinement for the solvent,

particularly because the TDF signal is largely attributed to solvent dynamics.
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Figure 4.10: The pair distribution function between the solute center of mass
(COM) and solvent COM is shown for bulk (top panel), the hydrophilic pore
(middle panel), and the hydrophobic pore (bottom panel.) Each panel shows curves
for the 5 (black), 10 (blue), and 15 (green) Debye solute.
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Specifically, solvent dynamics are slowed near the confining interface; this is

supported by both theoretical and experimental observations.

Previous theoretical investigations of solvents in hydrophobic confinement

show solvent layering to be an important phenomenon when describing dynamics

in confined systems [73,80]. To investigate solvent layering within the hydrophobic

and hydrophilic pores employed here, solvent density profiles were constructed

along the same x direction (y = 0 Å) for the cut z = 0 Å, where the influence of the

pore on the solute appears to be strongest. A 4×4 Å2 box in the y− z plane was

constructed and extended along the x direction. Solvent density profiles along the

x direction were constructed by histogramming the solvent sites falling within the

box. (Notably, solvent perturbations by the solute were avoided by using the 5 D

system with the solute in the z =+10 Å plane. This approach is reasonable, given

the solute-solvent pair distributions in Figure 4.10.) The results of this calculation

are presented in the lower panel of Figure 4.11. For comparison, the upper panel

shows the (total) solute free energy profiles with definite local maxima highlighted

by arrows. In the bottom panel, the ethanol COM site shows large peaks near the

pore interface. Moving away from the pore interface, the COM density peaks are

broadened and diminished in intensity. A very broad, low-intensity distribution sits

over the center of the pore. The COM density profile is roughly symmetric about

the center of the pore. Decomposing the solvent density profile into atomic and

group sites provides a very different picture. The density profiles of the methylene

(purple) and methyl (brown) groups are similar to that of the COM site. The

density profiles for hydrogen (red) and oxygen (blue) are remarkably different

128



for the two sides of the pore. On the left (x < 0 Å) side, any maximum is likely

a consequence of the methylene and methyl packing against the interface; the

hydrogen and oxygen maxima on the left side of the pore point toward the pore

interior. On the right (x > 0 Å) side of the pore, the density profile for hydrogen is

very sharply peaked and is positioned closer to the pore interface than the nearest

methylene and methyl peaks. The peak in the oxygen density is also prominent,

but less sharply distributed than that of hydrogen. Additionally, it resides between

the methylene/methyl and hydrogen peaks. This suggests that the solvent on the

right side of the pore is both strongly associated with and strongly oriented by the

silica interface.

Several factors may contribute to the weaker correspondence between solvent

layering and free energy seen here compared to previous reports. In those stud-

ies, the solute models were comparable in size to the solvent, leading to solutes

lying within a solvent layer or spanning across two layers[73, 78, 80]. Here, the

influence of the solvent on the solute free energy is complicated by the fact that

the solute spans several solvent layers of differing effective polarity. In addition,

the heterogeneous chemistry (placement of silanol groups) and roughness of the

pore surface also influences the solvent layering, as discussed below. Finally, the

correlation between solvent layering and solute free energy appears to be stronger

for linear solvents (e.g., CH3I, CH3CN) than for nonlinear solvents like methanol

or ethanol,[80] presumably due to packing effects.

Particularly strong evidence supporting the idea that the two sides of the pore

present different environments comes from probing the local pore environments
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Figure 4.11: Solvent density profiles along the z = 0 Å cut across the hydrophilic
pore are shown in the lower panel. Ethanol COM (black), hydrogen (red), oxygen
(blue), methylene (purple), and methyl (brown) densities are provided. The upper
panel shows the solvent contribution to the free energy profile. Arrows indicate
where the free energy local minima occur in the total free energy profile.
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Figure 4.12: The figure shows the left (x < 0 Å) and right (x > 0 Å) silica interfaces
for the z = 0 Å cut across the pore. The silica framework is shown in licorice
representaiton, while silanol groups are shown in space-filling representation.
Silicon atoms are shown in yellow, oxygen atoms are red, and hydrogens atoms
are white. The solute is included in the center of the pore and is shown as a large,
translucent sphere with the P and N sites enclosed. Clearly, the two sides of the
pore present distinct chemical environments to the solute.

directly. Figure 4.12 shows the left (x < 0 Å) and right (x > 0 Å) pore interfacial

regions for the z = 0 Å cut across the pore. The model solute is shown in the center,

and the solvent has been eliminated. The silicon (yellow) and oxygen (red) atoms

of the silica framework are shown in licorice representation. The silicon, oxygen

and hydrogen (white) atoms comprising silanol groups are shown in space-filling

representation. Clearly, the two sides of the pore present different environments to

both solute and solvent. The left side offers only a small cavity composed of the

framework. The right side provides several silanol groups for hydrogen bonding.

Thus the results for the solute position probability distributions, P(x), of Figure 4.2,

the pore electrostatic contribution to the free energy, ∆Apore,C(x), of Figure 4.7,

and the solvent density profiles of Figure 4.11 might be rationalized by considering

the differential silanol coverage with the pore, i.e., pore heterogeneity.

The same solvent density calculation performed for the hydrophobic pore for

the same z = 0 Å cut shows density profiles that are approximately symmetric
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Figure 4.13: Solvent density profiles are shown in the bottom panel for z = 0 Å in
the hydrophobic pore. Color coding of the bottom panel curves and the explanation
of the upper panel are as in Figure 4.11

.

for COM, hydrogen, oxygen, methylene, and methyl sites. Moreover, the profiles

resemble those found on the left side of the hydrophilic pore. That is, the bulky

methylene and methyl groups (and hence COM sites) pack strongly against the

silica interface. The oxygen and hydrogen atoms point inward. Moving toward the

pore interior, the distributions of methylene and methyl groups become broader

but remain distinct. This result might also be anticipated by considering Figure

4.12. When the charges for all pore atoms are identically zero, the difference

between interaction with the pore interface on the left and right sides reduces to

the differences in the left and right sides of Figure 4.9.
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The spacing between maxima in the COM profile in the hydrophilic pore is

≈ 4−5 Å. The spacing between peaks in the free energy in the hydrophilic pore

is ≈ 3.5−4 Å. Similarly, the spacing between maxima in the COM profile in the

hydrophobic pore is ≈ 4−5 Å, and the spacing between peaks in the free energy

in the hydrophobic pore is ≈ 3−5 Å. Such a result supports the notion that the

undulations in the free energy profiles are the result of solvent packing within the

pore. However, this evidence is suggestive but not conclusive. The packing of

solvent near the pore interface, however, in both the hydrophobic and hydrophilic

pore (left sides) correlates well with the appearance of shoulders in the free energy

profiles. The shoulders in the ∆A(x) profiles can then be interpreted as the energy

required to displace the solvent molecules that are strongly associated with the

interface.

4.4 Simulated Equilibrium Spectra

The results presented above show that the solute position within the pore is clearly

a function of its charge distribution. Additionally, strong biasing of the solute

position is a consequence of pore heterogeneity, and specifically, the Coulombic

interaction between interfacial silanol groups and the solute. Thus, the solute

experiences a different electric field at different positions within the pore. Because

spectral properties depend upon the charge distribution of the solute molecule, it

is reasonable to suspect that spectral properties—fluorescence peak position, for

example—will also be a function of the solute position within the pore. This is
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requirement two in the solute diffusion hypothesis—that the solute position within

a pore controls the fluorescence energy, and its testing is of critical importance in

determining if motions of the solute molecule can contribute to TDF spectra.

Equilibrium spectra can be calculated from the MD simulation trajectories.

Additionally, whereas solute position has no meaning within the context of a bulk

solution, useful conclusions can be drawn from comparisons between spectra

recorded in bulk and confined solutions. To simulate bulk spectra, a simulation box

of 500 OPLS-UA ethanol molecules was constructed as previously described in

Section 2.1. Five ethanol molecules were removed within the center of the box to

accommodate the model solute described below, leaving 495 ethanol molecules.

To investigate the possibility that electronic spectra depend upon the position

of the solute within the pore, individual spectra were calculated for each solute

COM x position according to

Iabs(∆E;x) = 〈δ (Eex−Egr−∆E)〉gr,x (4.5)

I f l(∆E;x) = 〈δ (Eex−Egr−∆E)〉ex,x (4.6)

In Equation 4.5, the solute at position x in the pore is in its ground state, and

the solvent is equilibrated to it. In the Franck-Condon approximation, the solute

electronic redistribution is assumed to occur instantaneously with respect to the

nuclear coordinates, so that neither solute nor solvent nuclear positions are affected

by the new solute charge distribution at the time of excitation. Then, using the

solute and solvent coordinates at that instant, the ground-state energy is calculated
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using Coulomb’s law (2.2), the ground-state solute charges, and the solvent charges.

For the same system configuration, the excited state energy is calculated using the

excited state solute charges and the solvent charges. The absorption energy is taken

as the difference in these energies, Eex−Egr. As is common, in Equation 4.5, the

delta function for practical purposes is assumed to have a small, finite width, and

the absorption energy is histogrammed. This calculation is performed for many

ground state solvent configurations with fixed solute position x, and these results

are averaged, as indicated by the subscripted brackets 〈−〉gr,x. The full result is

a distribution of excitation energies or absorption spectrum. The fluorescence

spectrum is calculated in a similar way in Equation 4.6. Importantly, the averaged

subscript in Equation 4.6 indicates that the solvent is equilibrated to the solute

excited state charge distribution.

These spectra for the solute confined in hydrophilic and hydrophobic pores are

calculated for each solute position x. The total absorption or fluorescence spectrum

is then the total of each position-dependent spectrum weighted by the probability

that the solute is in that particular position x within the pore. This is described

mathematically by the equations

Itot
abs(∆E) =

∫
dx Pgr(x) Iabs(∆E;x), (4.7)

Itot
f l (∆E) =

∫
dx Pex(x) I f l(∆E;x). (4.8)

Obviously, the absorption and fluorescence spectra for the bulk system can be

obtained simply using Equations 4.5 and 4.6, and no subscript for x is necessary.
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Figure 4.14: (a) Absorption (blue) and fluorescence (red) spectra are shown for
the solute dissolved in ethanol in bulk (solid lines) and in hydrophilic confinement
(dashed lines). The upper panel shows these spectra for the 5 D / 10 D ground
state / excited state system, while in the lower panel, the excited state is 15 D. The
energy scale of the abscissa is different for the two panels. (b) Corresponding
spectra are shown for solutes confined in the hydrophobic pore.

The total spectra are considered first. Figure 4.14a shows that confinement

(dashed lines) changes the bulk (solid lines) absorption (blue) and fluorescence (red)

spectra for both the 5 D / 10 D (top panel) and the 5 D / 15 D (bottom panel) solute

systems. The energy scale of the abscissa in each panel is different. The simple

solute model captures the well-known effect of red-shifting the fluorescence energy

upon nanoconfinement for both the 5 D / 10 D and the 5 D / 15 D solute systems.

Experimentally, blue-shifted absorption spectra are also sometimes observed [].

The calculated full absorption and fluorescence spectra for the 5 D / 10 D and 5

D / 15 D solute systems in the hydrophobic pore are shown in Figure 4.14b. Again,

the energy scale differs for the 5 D / 10 D system and the 5 D / 15 D system. In

each case, the bulk and confined spectra overlay well, indicating no significant

shifting of the spectra. Together, these results indicate that only confinement in the
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hydrophilic pore results in significant shifting of the absorption and fluorescence

spectra. A more quantitative approach can be taken by calculating for each curve

the mean spectral position given by Equation 4.9.

〈∆E〉=
∫

dx
∫

d∆E ∆I(∆E;x)P(x)∆E (4.9)

Spectral shifts (in both kJ mol−1 and nm) calculated this way are provided in Table

4.3. The results indicate that results for the 5 D / 15 D system, the fluorescence

Table 4.3: Mean spectral positions*
5 D / 10 D system

bulk -philic shift -phobic shift
〈∆E〉 λ 〈∆E〉 λ ∆〈∆E〉 〈∆E〉 λ ∆〈∆E〉

abs. 288.22 415 286.61 417 -1.62 287.91 416 -0.32
flu. 237.92 503 233.51 512 -4.43 238.12 502 0.23
S. S.† 50.35 88 53.13 95 — 49.85 86 —
5 D / 15 D system

bulk -philic shift -phobic shift
〈∆E〉 λ 〈∆E〉 λ ∆〈∆E〉 〈∆E〉 λ ∆〈∆E〉

abs. 273.03 438 269.42 444 -2.65 272.12 440 -0.95
flu. 87.56 1367 80.96 1479 -6.612 88.65 1350 1.111
S. S. 185.510 929 188.59 1035 — 183.58 910 —

*∆E is in kJ mol−1, λ in nm. "Shift" indicates shift from bulk upon confinement,
∆〈∆E〉 = 〈∆E〉con f − 〈∆E〉bulk. Subscripts indicate uncertainty in the last digit.
Quantities are based on spectra calculated along the z = 0 Å cut across the pore.
† S. S. indicates the Stokes shift.

wavelengths are in the IR region of the spectrum. While this does not correspond

to experimental fluorescence wavelengths, the 5 D / 15 D system may be useful in

evaluating trends. The results in Table 4.3 indicate that in hydrophilic confinement,

the Stokes shift increases above that of the bulk system for both the 5 D / 10 D and
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the 5 D / 15 D solute system. Interestingly, for both cases the shift is approximately

3 kJ mol−1.

4.4.1 Spectral Decompositions

From Figure 4.14, it is clear that hydrophilic confinement changes the spectra

of the solute. Spectra as a function of solute position in the pore must now be

examined. Additionally, it is useful to know if the results for the z = 0 Å cut are

general or unique. To what extent the solute position in the pore influences the

fluorescence energy can be seen by examining the mean fluorescence energy as a

function of position, 〈∆E f l〉(x), which is calculated as

〈∆E f l〉(x) =
∫

∆E I f l(∆E; x)d∆E. (4.10)

This has been calculated for the hydrophilic pore (solid lines) for the cuts along

z =−10 Å (black), z = 0 Å (blue), and z =+10 Å (green) and for the hydrophobic

pore (dashed line) along the cut z = 0 Å. The results are presented in Figure

4.15. All profiles are qualitatively flat from the left (x < 0 Å) side of the pore

through the pore interior, indicating little to no movement of the spectral peak as a

function of solute position. Near the right (x > 0 Å) side of the pore, however, the

mean fluorescence energy redshifts for the solute in the hydrophilic pore. In the

hydrophobic system, no redshift is observed. To partly address if these shifts might

manifest in the TDF signal, the most probable solute positions have been indicated

with arrows for ground (g) and excited (e) solutes. A change in fluorescence signal
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Figure 4.15: Mean fluorescence energy as a function of solute position, 〈∆E f l〉(x),
is shown for the 5 D / 10 D solute system in the hydrophilic (solid lines) and
hydrophobic (dashed lines) pore for the cuts z = −10 Å (black), z = 0 Å (blue),
and z =+10 Å (green). The most likely position for the solute in its ground (g) or
excited (e) state is indicated by arrows of the corresponding line type and color.
Notably, the excited state solute can sample regions near the pore interface for the
cut z =+10 Å, as indicated by e∗.

in the z = 0 Å cut across the hydrophilic pore is anticipated, as the excited state

solute will be in a location where the fluorescence energy is redshifted. Similarly,

the excited state solute for the z = +10 Å cut can sample the region near the

interface (indicated by e∗) where some redshifting of the fluorescence energy

occurs. (The excited state also samples regions toward the interior of the pore, as

shown in Figure 4.15.)

To what extent this is a property of the 5 D / 10 D solute system, and to

what extent absorption spectra are also altered for the model solutes employed
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Figure 4.16: The figure shows the mean absorption (blue) and fluorescence (red)
energies as a function of the solute position within the hydrophilic pore for both
the 5 D / 10 D solute system (solid lines) and 5 D / 15 D solute system (dashed
lines). Arrows indicate the global maxima in the respective position probability
distributions in Figure 4.2 for reference.

here is addressed in Figure 4.16. Figure 4.16a shows both absorption (blue)

and fluorescence (red) for the 5 D / 10 D system for the z = 0 Å cut through

the hydrophilic pore. The effect of increasing the excited state dipole to 15 D

(dashed lines) results in a general shift to lower energies than are seen for the 10

D solute. Additionally, the induced shift near the pore interface is more dramatic.

The profiles for the absorption curves (blue) indicate that while changes to the

spectrum may occur near the pore interface for both the 10 D and 15 D excited

state solutes , the most probable position for the solute is in the pore interior in

both cases. Accordingly, the shift in the absorption spectrum near the interface is

not anticipated to contribute substantially to the total observed spectrum. In the

hydrophobic pore, the mean spectral position is relatively insensitive to the solute

location within the pore, as seen by the mostly flat curves in Figure 4.16b. The

140



dominant feature is the general shift that accompanies the change in solute dipole

moment.

The spectral width—and specifically the full-width-at-half-maximum (FWHM)—

is of particular interest, as it is frequently used to provide indirect information

about solute environment through inhomogeneous line broadening. Figure 4.17

shows the results of calculating the FWHM for the 5 D / 10 D solute system (solid

lines) and 5 D / 15 D solute system (dashed lines) for both absorption (blue) and

fluorescence (red) spectra for the z = 0 Å cut across the pore. The picture is qualita-

tively similar to the results for the mean spectral position, in that dramatic changes

occur near the pore interface in the hydrophilic pore (Figure 4.17a), while the

changes to spectral width near the pore interface in the hydrophobic pore (Figure

4.17b) are absent. On the right side (x > 0 Å) of the hydrophilic pore, the FWHM

is decreased, relative to those for spectra for solutes in the pore interior. That is,

the spectra for solutes near the interface are narrowed, which, within the context of

inhomogeneous broadening, suggests decreased solvent fluctuations and perhaps

decreased solvent access near the pore interface. However, additional study is

required to confirm this.

The collective results suggest that spectra for solutes in the pore interior are

generally similar, while solutes near the interface show altered spectral properties.

Accordingly, to enhance sampling while investigating in more detail the ways in

which spectra depend on solute position, the spectra for solutes residing near the

left (x < 0 Å) pore and also in the pore interior can be averaged. The spectra for

solute positions approaching the right (x > 0 Å) side of the pore are averaged over
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Figure 4.17: The full width at half maximum is presented for absorption (blue) and
fluorescence (red) spectra as a function of solute position, x, across the hydrophilic
pore for both the 5 D / 10 D solute system (solid line) and the 5 D / 15 D solute
system (dashed line).

small intervals in x. The results for position-dependent spectra calculated this way

are presented for the 5 D / 10 D solute system in the hydrophilic pore (Figure

4.18a) and hydrophobic pore (Figure 4.18b).

The resulting spectra in the hydrophobic pore overlap with one another. This

result indicates that the solvent does not appreciably change the spectra. It also

supports the notion that averaging over regions in the pore where the mean spectral

energy is mostly constant is not problematic (i.e., does not lead to artifacts in the

averaged spectra). The results for the hydrophilic pore (Figure 4.18a) indicate

that stronger redshifting occurs as the solute approaches the cluster of silanol

groups on the right (x > 0 Å) side of the pore. The solid lines represent the spectra

averaged over the pore left side and pore interior, from −6 to +5 Å for the z = 0

Å cut. The long dashed lines represent spectra for the solute at +6.4 Å, the short-

dashed lines represent spectra for the solute at +7.0 Å, and the dot-dashed lines
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Figure 4.18: (a) Absorption (blue) and fluorescence (red) spectra are shown for
the 5 D / 10 D solute system dissolved in the hydrophilic pore. Each spectrum
is the normalized average of spectra for the solute at a range of positions within
the pore. Note that both the absorption and fluorescence red shift as the solute
approaches the pore wall. (b) Spectra for the 5 D / 10 D solute system dissolved
in the hydrophobic pore show little to no shift. (c ) Absorption and fluorescence
spectra are shown for the 5 D / 15 D solute system in the hydrophilic pore. The
abscissa scale has been changed to reflect the lower energies contributed by the 15
D solute. (d) Spectra for the 5 D / 15 D solute system in the the hydrophobic pore
also exhibit little to no shift.
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represent spectra for the solute at +7.6 Å. Interestingly, new features can be seen

that are not observed in measures such as the mean spectral energy or the full-

width-at-half-maximum, such as the blue-shifted shoulders in some fluorescence

spectra.

The same calculations have been performed for the 5 D / 15 D solute system.

The results for the hydrophilic pore are presented in Figure 4.18c, and those for the

hydrophobic pore are presented in Figure 4.18d. These results are similar to the 5

D / 10 D case, although, as anticipated, changes to the spectra are amplified for the

greater difference in dipole moment, ∆µ = µex−µgr.

4.5 Solute Equilibrium Properties in Confinement

The equilibrium simulations presented in this Chapter indicate that the solute

position in a confining framework can be a function of its charge distribution, as

shown in Section 4.3. The spectral properties—fluorescence energy, absorption

energy, and spectral width—associated with the solute are, in turn, a function of

the solute position in hydrophilic (but not hydrophobic) pores, as shown in Section

4.4. Thus, requirements 1 and 2 are satisfied for the model solute in the hydrophilic

pore. Additionally, it was shown that the satisfaction of these requirements is

associated with specific chemistry at the pore interface, as indicated in Section

4.3.2.

Investigation of the extent to which the solute contributions are observable in the

TDF spectrum requires non-equilibrium simulations. If the results from equilibrium
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simulations presented in this Chapter are any indication of the challenges inherent

in proper sampling in these systems, non-equilibrium studies will likely require

alternative approaches. The initial results from non-equilibrium simulations and

the development of a number of models aimed at improving physical understanding

together constitute the bulk of the next Chapter.
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Chapter 5

Non-Equilibrium Studies of Confined Systems

The emergent timescales observed in the time-dependent fluorescence (TDF) spec-

tra of nanoconfined systems may originate with solute motions within the confining

framework. As outlined in Section 4.2, this requires that the system satisfies three

properties. First, the solute position must be a function of the charge distribution

of the solute, and, second, the fluorescence energy must in turn be a function of

the solute position within the confining framework. Using equilibrium molecular

dynamics (MD) simulations and a model Stockmayer solute, it was shown in

Chapter 4 that the solute position is a function of its charge distribution in both

hydrophilic and hydrophobic confinement. However, only for confinement in a

hydrophilic pore is the fluorescence a function of solute position. The third required

property is that the contribution to the time-dependent fluorescence spectrum must

be experimentally observable—that is, it must occur on an experimentally acces-

sible timescale with measurable amplitude. To address this third requirement,

non-equilibrium molecular dynamics (NEMD) simulations must be employed.
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The results in Chapter 4 also indicate that solute position biasing and spectral

properties within the pore depend strongly on surface chemistry. The importance

of molecular-level effects suggests that properties of both the confining framework

and solute molecule may affect the TDF signal upon nanoconfinement of the so-

lution. Ideally, combinations of confining framework and solute molecule would

be systematically tested to determine which effects are important in changing the

spectrum. For example, are changes in the spectrum observed for the Stockmayer

solute confined in an atomically smooth cylinder? Clearly, changes to the spectrum

are observed when the solute is near a cluster of silanol groups in a silica pore.

Do changes to the spectrum grow in linearly with the number of clustered silanol

groups? How does the arrangement of silanol groups alter spectral properties? Sim-

ilarly, hydrogen bonding was observed to be important. Does a change in spectral

signature occur as a consequence of the specific chemistry of the dye molecule?

For example, does the TDF signal change when a silanol group donates a hydrogen

bond to a solute carbonyl group vs. a nitro group? Such questions are of direct

chemical relevance, particularly in applications of nanoconfinement in separations,

sensing, and catalysis. Addressing these questions requires the development and

systematic testing of several models for both the confining framework and solute

molecule.

The first part of this Chapter is dedicated to nonequilibrium simulations of

time-dependent fluorescence for the Stockmayer solute. The solute biasing and

spectral changes described in the equilibrium simulations of Chapter 4 are reestab-

lished for the NEMD simulations, and TDF spectra are calculated and interpreted.
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The second part of this Chapter is dedicated to the development of models for

identification and quantification of molecular-level effects associated with TDF

signals in nanoconfined systems.

5.1 Non-equilibrium Simulation Methods

To determine if the solute movement and spectral signatures occur as predicted by

equilibrium simulations, the same confined system described in Section 4.1 was

treated using non-equilibrium molecular dynamics (NEMD). To generate initial

conditions for NEMD trajectories, an equilibrium trajectory for the 5 D solute was

equilibrated for 500 ps and followed by a 60 ns collection phase. Configurations,

velocities, and forces were recorded every 100 fs. From this output, 4000 starting

conditions were collected at evenly spaced time intervals of 1 ps (i.e., every tenth

configuration was used from the initial 4 ns of the 60 ns equilibrium trajectory).

Temperature and long-range electrostatics were handled as before (see Section

4.1).

The charge distribution for the solute was switched to that of the excited state

(10 D for the Stockmayer solute) in each of the 4000 prepared systems, which were

equilibrated in the ground state. Thus, time-dependent quantities include effects

from solvent reorganization in response to the new excited state charge distribution.

For each system, a 200 ps trajectory was collected with sampling every 0.5 ps for

a total of 401 configurations (including time t0). Time-dependent analyses were

therefore limited to 200 ps.
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Figure 5.1: Time-dependent fluorescence signal, S(t), for the Stockmayer solute
(black) and coumarin 153 (red) dissolved in ethanol and confined in the hydrophilic
pore.

5.2 Time-Dependent Fluorescence Signal

The function S(t) is discussed in Section 1.3 and calculated according to Equation

1.10. The decay of S(t) is reflective of the dynamics of the surrounding solvent.

Figure 5.1 shows S(t) for the Stockmayer solute (black curve), and the function

is well-fit by a tri-exponential function. The resulting amplitudes and timescales

for the Stockmayer solute, as well as the faster decaying coumarin 153 molecule

(c153) that is discussed below in Section 5.4.1, are provided in Table 5.1.

It is also interesting to compare the Stockmayer and c153 TDF signals. From

Table 5.1, the fast decay of the c153 dye occurs with twice the amplitude of
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Table 5.1: TDF timescales (in ps) for Stockmayer and coumarin 153 solutes in ≈
2.4 nm diameter silica pores.

Solute A1 τ1 A2 τ2 A3 τ3
Stockmayer 0.30 0.35 0.21 7.8 0.49 31.4
Coumarin 153 0.67 0.27 0.24 7.0 0.09 53.1

the corresponding timescale for the Stockmayer solute, and their intermediate

timescales are approximately the same. The long-time decay for c153 is slightly

less than twice as fast as that for the Stockmayer solute. However, the amplitude

associated with it is about 5 times smaller than that for the Stockmayer solute.

The amplitude for the short time component may have a simple explanation. The

roughly spherical nature of the Stockmayer solute means that the volume to surface

area ratio is small. Accordingly, for this volume—similar to the volume of the

atomistic coumarin 153 dye—there are a minimal number of solvent molecules

participating in the solvation response. There are correspondingly more solvent

molecules distributed around the c153 molecule, which has a larger surface area.

This may partly explain the larger short-time decay associated with the atomistic

dye molecule. Similarly, if the long timescale is interpreted as reorientational

motion of the surrounding solvent, the flat nature of the atomistic dye may lead to

slower timescales with small amplitude due to solvent packing effects against the

dye. Such packing effects would be smaller for the Stockmayer solute. Additionally,

specific solvent-solute interactions, which are absent in the Stockmayer solute, may

play a role in the differential solvation response. Such hypotheses might be better

investigated using a series of solute models, in which the effects just described

“grow in” over the series of molecules. Such a series is described in Section 5.4.
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First, the extent to which requirements 1 and 2 of the solute diffusion hypothesis

(Section 4.2) are satisfied in NEMD simulations should be investigated. Accord-

ingly, the following Section is devoted to examining solute positions within the pore

and the position-dependence of the fluorescence energy for both the Stockmayer

solute and the model c153 dye.

5.3 Non-equilibrium Solute Positions and Spectra

Results in Chapter 4 indicate that the solute position in a hydrophilic silica nanopore

is a function of its charge distribution. Additionally, the spectral characteristics

(including fluorescence wavelength) are, in turn, a function of the solute position.

This was demonstrated using equilibrium simulations along several “cuts” across

the pore. That is, the solute was studied along a single coordinate (arbitrarily

chosen as x), and this was repeated for several positions along the pore axis (in z).

Using average forces on the solute at a series of positions in the pore, the free energy

profiles and associated position probability distributions were constructed. While

this thermodynamic approach can be used to determine equilibrium properties

within the pore—for example, implied movement upon excitation—it cannot

address the timescales on which such motions occur. Because the timescales are

the key result in TDF measurements, a non-equilibrium approach must be taken.

Before examining the TDF spectra in detail, however, it is important to determine

the extent to which requirements 1 and 2 are satisfied in the NEMD simulations.
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5.3.1 Solute Position within the Pore

While the excitation-driven movement of the solute within the pore can be quanti-

fied in several ways, a particularly instructive way is to examine the time-dependent

displacement of the solute relative to the pore interface, as implied by the re-

sults in Chapter 4. In each of four thousand 200-ps NEMD simulations, the

minimum distance to the pore is determined at each time. To address period-

icity in z when determining the nearest pore atom, replicas in the −z and +z

direction were constructed. To save calculation time, the periodic images were

only considered when the solute z position in the primary image was z < −7

or z > +7 Å, respectively. Accordingly, for each configuration, the distances,

d =
√

∆x2 +∆y2 +∆z2, between each site of the Stockmayer solute and each

pore atom within (∆x, ∆y, ∆z) = (15.0, 15.0, 8.0) Å were calculated (keeping in

mind periodicity in z), and the minimum distance was determined. In addition

to determining the minimum solute-silica distance at each time, the displace-

ment relative to the pore interface was calcuated. That is, for each simulation,

∆dmin,rel(t) = dmin(t)−dmin(0) was calculated. The average over the 4000 NEMD

trajectories is presented in the top panel of Figure 5.2. The result is a small, -0.5 Å

net displacement over the course of the trajectory. Notably, the net displacement

is just outside of statistical uncertainty. Because ∆dmin,rel(t) = dmin(t)−dmin(0),

negative displacements indicate that dmin(t)< dmin(0), and on average and at long

times, the solute has moved closer to the pore wall.

The large uncertainty in the net displacement suggests that alternative ways

of thinking about the displacement should be considered. One way is to group
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Figure 5.2: The Stockmayer solute in a hydrophilic pore shows a small (0.5 Å)
net displacement toward the silica interface by 200 ps after excitation, as shown in
the top panel. This can be decomposed (bottom panel) into displacements toward
(black) or away from (red) the silica interface. Neither direction shows, on average,
displacements much more than 1.5 Å.
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dmin,rel(t) curves by the direction of their overall displacement. For example, trajec-

tories showing net solute displacements over 200 ps that are negative (i.e., toward

the pore wall) are averaged. Similarly, trajectories in which the net displacement

of the solute is away from the wall are considered together. The result of such a

calculation is shown in the bottom panel of Figure 5.2. The black curve represents

the average of all trajectories with solutes that move toward the wall. If the solute

moves toward the pore wall, on average it moves approximately 1.5 Å. Similarly,

if the solute moves away from the wall, on average it moves approximately 1 Å.

Thus net effect (shown in the top panel), can be thought of as the weighted sum

of molecules moving to and away from the interface. The result is the previously

discussed weak, but statistically significant, average displacement of approximately

0.5 Å toward the pore interface.

Because the equilibrium MD simulations discussed in Chapter 4 indicated that

spectra are a function of solute position within the pore, and because of the weak

(albeit statistically significant) post-excitation displacement observed here, it is

reasonable to speculate that displacement is also a function of position at the time

of excitation (initial position). To this end, the displacement relative to the pore

interface as a function of time has been parsed by the minimum distance to the

pore interface at t = 0 by 1 Å increments. Additionally, the minimum distance to

the pore interface averaged over the initial 10% of the trajectory (20 ps) has also

been used to parse the relative displacements. The results of the former method

are presented in Figure 5.3. The latter was motivated by noting that the solute

displacements (relative to the minimum distance to the pore wall) at early times are

154



0 50 100 150 200
Time (ps)

-4

-3

-2

-1

0

1

2

∆d
m

in
,r

el
(t

) 
(Å

)

Figure 5.3: The solute displacement as a function of time is shown for initial
minimum distances to the pore of 5 (black), 7 (red), 9 (blue), and 11 (purple) Å.
Solutes near the interface travel slightly away from it, whereas solutes in the pore
interior are strongly drawn toward the pore interface.
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often unpredictable and sometimes change sign. It was suspected that averaging

the position over the initial 10% and using that value for decomposition would

result in “proper binning,” with the result that the curves would become smoother.

This, however, was not the case. In fact, this allows curves with different t = 0

positions to be averaged together, which results in erratic displacement profiles as

a function of time.

In Figure 5.3, the minimum distance to the pore interface at t = 0 distinguishes

the curves. The black, red, blue, and purple curves represent dmin(0) =5, 7, 9,

and 11 Å from the wall, respectively. A schematic interpretation of these results

is provided in Figure 5.4. Because the solute molecule is large, dmin(0) = 5

Å is already near the pore interface. The results of Chapter 4 suggest that the

energy to displace solvent near the pore interface is large. Additionally, increased

direct contact with the interface is eventually disfavored by strong Lennard-Jones

repulsions. It is speculated that for these reasons, the black curve shows a net

displacement over 200 ps that is slightly positive or away from the pore interface.

For initial solute positions further from the interface, the net displacement is larger

and toward the wall. Notably, this is at odds with a simple physical model based

strictly on the Coulombic potential, in which the larger charges associated with

the excited state solute result in stronger attraction to the pore interface, where

movement would be most dramatic. A simple explanation (implied previously)

may be that solutes already at the interface at time t = 0 have only one direction to

move—away from the interface. Currently, the role of the solvent in displacement

of the solute after excitation is unclear. The results presented here, however,
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Figure 5.4: The curves of Figure 5.3 are schematically interpreted. For solute t0
minimum distances to the pore interface (dots) of 5 (black), 7 (red), 9 (blue), and
11 (purple) Å, displacements relative to the pore interface (arrows) over 200 ps are
shown.
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indicate that for the Stockmayer solute in the hydrophilic pore, a change in charge

distribution can lead to a net displacement–in this case toward the pore interface.

Thus, the first requirement in the solute diffusion hypothesis is satisfied in these

NEMD simulations.

5.3.2 Solute Spectra

The spectral dependence upon the solute position within the pore—requirement

two in the solute diffusion hypothesis—is now examined. At each time in a

NEMD trajectory, the Coulombic energy difference between the excited and ground

state is calculated as ∆E f l = ECoul
e.s. −ECoul

g.s. . The energy difference, ∆E f l , is then

histogrammed according to the minimum distance to the pore interface, which was

partitioned in 1 Å increments. Similarly to the displacements, spectra associated

with selected initial minimum distances to the pore are shown in Figure 5.5. In

Figure 5.5, the black curve represents spectra associated with solute molecules

with a minimum distance to the pore interface of approximately 4 Å. Comparing

the positions of peak maxima, the spectrum for solutes near 4 Å is noticeably

redshifted by about 10 kJ mol−1. Notably, the larger uncertainties associated

with the black curve are a consequence of decreased sampling of the solutes 4 Å

from the interface. The solutes toward the pore interior (red, blue, purple curves)

are similar to one another and show no shifting. These spectra, like those from

equilibrium simulations, show blue-shifted shoulders that have not been further

investigated. The results here are consistent with those of Chapter 4 and indicate

that the solutes near the interface of the hydrophilic pore show redshifted spectra.
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Figure 5.5: Fluorescence spectra are a function of the solute minimum distance to
the silica interface. Representative spectra for minimum distances of 4 (black), 6
(red), 8 (blue), and 10 (purple) Å are shown.
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Thus, requirement 2 for the solute diffusion hypothesis is satisfied in NEMD

simulations of the Stockmayer solute.

5.3.3 Relationship to Atomistic Dye Molecules

To what extent the Stockmayer solute describes dynamics in “real” systems can be

addressed by comparing results with those from simulations of an atomistic solute.

To this end, a model for the coumarin 153 (c153) fluorescent dye [139], described

in detail in Section 5.4, has been simulated and analyzed in the same manner as

the Stockmayer solute. The complex nature of the dye (36 sites, planar/non-planar

regions, decoration with functional groups) suggests that displacements relative to

the pore interface should be calculated for several sites. If net translation toward the

pore interface occurs after excitation at t = 0, the displacements at each site should

have the same sign (i.e., all selected sites show ∆dmin,rel(t)< 0 or ∆dmin,rel(t)> 0).

To this end, the displacement analysis has been performed for the center of mass

(COM, purple), nitrogen (N11, blue), trifluoromethyl carbon (C14, black), and

carbonyl oxygen (O16, red), and the results are presented in Figure 5.6. The

displacements for c153 are smaller than those for the Stockmayer solute and also

have greater uncertainty associated with them. Importantly, the selected sites

show displacements in different directions relative to the pore interface—some

toward and some away from the interface. The nitrogen atom (Figure 5.6) shows a

statistically significant but very small shift of ≈ 0.25 Å toward the pore interface.

No other sites within the molecule show a significant displacement with respect

to the pore interface. This is inconsistent with a strongly directed displacement
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Figure 5.6: The relative minimum distance to the pore wall as a function of time
for several sites on the c153 molecule. These sites are shown enlarged in the inset
model and include the carbonyl oxygen (red), nitrogen (blue), the trifluoromethyl
carbon (black), and center of mass (purple).
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after excitation. The data presented here are also consistent with net rotation of

the c153 molecule, although such an argument is speculative at best, given the

magnitudes in the uncertainties. Decomposition based on initial minimum distance

to the interface has not been performed for each of the four selected solute sites, as

it would likely require better sampling and statistics than are currently accessible.

Additionally, the extension of this analysis to longer times may be appropriate.

Spectroscopic properties can also be investigated for the c153 molecule and

compared to the results for the Stockmayer model. Several sites in the c153 model

are spectroscopically important (e.g., the nitrogen atom) or chemically important

(e.g., the carbonyl oxygen). Thus, a spectroscopic analysis similar to that for

the Stockmayer solute was conducted for multiple sites of interest on the c153

molecule. The results are presented in Figure 5.7. In each panel, the atom of

interest is enlarged in the representation of the molecule. Thus the upper left, lower

left, upper right, and lower right panels correspond to decompositions based on the

COM site (purple), nitrogen atom (blue), trifluoromethyl carbon atom (black), and

carbonyl oxygen atom (red), respectively. For each site, the fluorescence energy,

∆E, was histogrammed (using a 1 Å bin width) based on the site’s minimum

distance to the pore interface at time t = 0, dmin(0). Thus, each panel shows a

spectrum for selected dmin(0) = 4 (black), 6 (red), 8 (blue), and 10 (purple) Å from

the pore interface.

As for the relative displacements, the spectra presented in Figure 5.7 are difficult

to interpret due to the large uncertainties associated with each curve. The large

uncertainties come from two factors. Small shifts among block spectra used in
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Figure 5.7: Fluorescence spectra have been calculated as a function of minimum
distance to the pore interface at t0 for different sites on the coumarin 153 molecule.
For each panel, the c153 site of interest has been highlighted by enlargement. In
all panels, spectra for dmin(0) = 4 (black), 6 (red), 8 (blue), and 10 (purple) Å are
shown.

163



calculating the uncertainty result in larger error bars, particularly where the curve is

rapidly varying. Additionally, the solute does not sample all areas within the pore

evenly. Accordingly, there are fewer data for solute atom locations near the pore

interface, and the black curves representing dmin = 4 Å show correspondingly larger

error bars. In a few cases, statistically meaningful redshifting can be observed,

for example when N11 is around 4 Å from the pore interface. This is likely a

consequence of the fact that N11 shows the largest change in charge upon excitation

(see Table 5.4), and therefore undergoes a large change in Coulombic interactions

when it is near the pore interface. Thus, while spectroscopic differences based on

site position are difficult to discern for the c153 model, due in part to sampling

issues, the preliminary results presented here are encouraging.

The position of the Stockmayer solute in the pore is a function of its charge

distribution, and its spectral characteristics, in turn, depend on its position in the

pore. However, due to insufficient sampling, it can only be said that results for the

c153 solute are encouraging and require additional study.

5.4 Extended Dye and Confinement Descriptions

The behavior of the Stockmayer solute in confinement and how this behavior is

broadcast through the TDF signal are not readily extrapolated to more sophisticated

systems. Instead, a more systematic approach is appropriate. To deconvolute effects

from molecular shape, size, and functionality, a series of dye models and confining

frameworks have been developed. It is hoped that their systematic investigation
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Figure 5.8: The Stockmayer solute and c153 dye models can be confined in
atomically smooth cylinders or in rough, chemically heterogeneous silica pores.

can provide insight about these molecular-level effects, in the spirit of Figure 5.8.

Figure 5.8 presents two models each for solute and confining framework. The

Stockmayer solute and c153 can be confined in the same framework; differences in

the results might be attributable to molecular shape or functional group chemistry.

Similarly, the same dye can be confined in two different frameworks to investigate

effects associated with surface roughness.

Notably, this simple example uses the two dye molecules already discussed,

and comparison will still be complicated by the fact that the two dyes differ in

several respects. A more systematic approach involves use of a longer series of

dye models and confining frameworks. The development and description of these

models are the subject of Section 5.4.
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5.4.1 Atomistic Dye Models

Comparing NEMD results between the Stockmayer solute and coumarin 153, it

is clear that, whereas results for the Stockmayer solute are demonstrative, results

from the c153 model are only suggestive. To address why features that appear for

the Stockmayer solute are weak or absent in the case of the atomistic dye, it may

be useful to examine the behavior of a series of model solutes, similar in spirit to a

shorter solute series used in bulk simulations[140]. Specifically, four models have

been chosen to address effects of molecular shape and the presence of functional

groups on fulfillment of the requirements of the solute diffusion hypothesis. These

models are presented in Figure 5.9, and the advantages and limitations of each are

discussed in turn.

To examine the effects of changing the charge distribution of the Stockmayer

solute (i.e., exciting the dye), the centers of positive and negative charge were

held at a fixed length so that the dipole moment could be controlled through the

magnitudes of the charges. This can be seen in Figure 5.9a. The charge sites

(purple, gold) giving rise to the dipole are prevented from directly contacting either

solvent or pore by housing them within a Lennard-Jones sphere located at the

center of mass of the solute.

Real fluorescent dye molecules, however, are generally planar and have weakly

charged sites distributed across the molecule. As a transition to realistic, atomistic

dye models, the same dipole moments used in the Stockmayer solute (5, 10, 15

D) can be embedded in a simple benzene molecule shown in Figure 5.9b. The

benzene model is based on the Optimized Potentials for Liquid Simulation (OPLS)
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Figure 5.9: A series of dye models can be used to examine the effects of molecular
shape and functional group chemistry. (a) The Stockmayer solute is a dipole
within a spherical cavity. (b) A dipole has been embedded in a benzene ring. (c )
Para-nitroanisole is a disubstituted benzene ring capable of hydrogen bonding. (d)
Coumarin 153 has a complex shape and contains several chemically interesting
sites. Color key: dipole site of negative charge (purple), dipole site of positive
charge (gold), hydrogen (silver), carbon (black), oxygen (red), nitrogen (blue),
fluorine (green).
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force field. Centers of positive and negative charge (Figure 5.9b, gold and purple

sites) have been substituted for carbon atoms 180◦ apart. Thus the dipole moment

is directed along and controllable through the modified sites. A comparison of

results for a modified benzene model and the Stockmayer solute can be used to

determine how planarity versus sphericity influences solute position and spectral

properties. Also, the Stockmayer solute can be reduced in size through a decrease

in the Lennard-Jones σ value. Thus one can determine how the solute size and the

number of nearest solvent molecules impacts the S(t) response.

This approach can be explored further, in that the dipole moment of the modified

benzene model can be matched to that of a small, atomistic dye model. Figure

5.9c shows para-nitroanisole (pNA), a dye with both a nitro group and methoxy

group on opposite sides of a benzene ring, which has been studied experimentally

[141]. Geometric parameters, which are provided in Tables 5.2 and 5.3, have been

developed by combining parameters from several force fields [142–144].

The parameters in Table 5.2 associated with bond stretching and bending

motions are described by

Ubond = Kr(r− req)
2 (5.1)

and

Uangle = Kθ (θ −θeq)
2. (5.2)

The remaining terms in the force field are Lennard-Jones, Coulombic, and tor-

sional potentials, as described in Section 2.1. Development of the full model—and
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Table 5.2: p-Nitroanisole geometric parameters
Bonds
Sites req (Å) K†

r
N O(N) 1.225 550.00
N C(N) 1.460 400.00
C(N) C 1.400 489.00
C C 1.400 489.00
C(O) C 1.400 489.00
C(O) O(C) 1.327 214.00
O(C) CH3 1.410 320.00
C H 1.080 340.0
Angles
Sites θeq (deg) K†

θ

O(N) N O(N) 125.0 80.0
O(N) N C(N) 117.5 80.0
N(O) C(N) C 120.0 80.2
CX‡ C C 120.0 80.2
C C(O) O 120.0 85.0
C(O) O CH3 109.5 60.0
CX C H 120.0 35.0
† All force constants are reported in kcal mol−1.

‡ CX indicates any carbon atom, regardless of its bonding partners.

particularly one for use in spectroscopic studies—will require electronic structure

calculations to determine the ground- and excited-state charges.

The preliminary model proposed here may be useful in examining equilibrium

behavior, and comparison of results between modified benzene and pNA can be

used to provide insight into the role of specific functional groups in phenomena

such as position distribution within the pore, interaction with the pore interface,

and hydrogen bonding properties with both solvent and silanol groups. That is,
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Table 5.3: p-Nitroanisole torsional parameters
Torsions
Sites V†

1 V2 V3
O(N) N C(N) C 0.00000 6.835 0.00000
N C(N) C C 0.00000 7.250 0.00000
N C(N) C H 0.00000 7.250 0.00000
C(N) C C C(O) 0.00000 7.250 0.00000
C(N) C C H 0.00000 7.250 0.00000
C C(N) C C 0.00000 7.250 0.00000
C C(N) C H 0.00000 7.250 0.00000
C C C(O) C 0.00000 7.250 0.00000
C C(O) C C 0.00000 7.250 0.00000
C C(O) C H 0.00000 7.250 0.00000
H C C H 0.00000 7.250 0.00000
C C C(O) O 0.00000 7.250 0.00000
C C(O) O CH3 0.00000 2.200 0.00000
H C(O) O CH3 0.00000 2.200 0.00000
Improper Torsions
Sites V1 V2 V3
O(N) O(N) C(N) C 0.00000 21.000 0.00000
C C C(N) N 0.00000 2.200 0.00000
X C C H 0.00000 2.200 0.00000
C C C(O) O(C) 0.00000 2.200 0.00000

† All torsional parameters are reported in kcal mol−1.
‡ X indicates any atom.

differences may be attributed largely to the specific chemistry imparted by the

functional groups.

Lastly, it would be interesting to compare this small atomistic solute to a much

larger atomistic solute, such as c153, shown as Figure 5.9d. Parameters for the

model can be found in reference [139]. Modified force field parameters for the

rigid c153 model are provided in Table 5.4. The published values for the difference
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Table 5.4: Force field parameters for coumarin 153
Atom M (g mol−1) qg.s. (e) qe.s. (e) ∆q (e) σ (Å) ε (kcal mol−1)
C2 12.01 -0.03410 0.07880 0.11290 3.550 0.29284
C4 12.01 -0.31180 -0.02480 0.28700 3.550 0.29284
C6 12.01 -0.26570 -0.19860 0.06710 3.550 0.29284
N11 14.01 -0.20580 0.01280 0.21860 3.300 0.71131
C14 12.01 0.57470 0.61150 0.03680 3.500 0.27612

in excited- and ground-state charnges, ∆q, result in an excited state molecule with

a small net charge of −0.0005e. To maintain charge neutrality of the excited

state molecule, the ∆q parameters for sites C2, C4, C6, N11, and C14 were each

increased by +0.0001 e. These sites were chosen because they represent the 5

largest positive ∆q values. The small increase in magnitude of ∆q combined with

the distributed positions of these sites within the c153 model suggest that this

correction should not dramatically alter the results.

As shown previously in Sections 5.2 and 5.3.3, comparisons between simple

and atomistic models are complicated by molecular size, shape, and chemistry.

This does not, however, indicate which effects are due to the geometric restrictions

imposed by the confining framework and associated effects (such as increased

solvent layering), and which effects are due to surface roughness of silica pore and

which are due to surface chemistry.

5.4.2 Alternative Confinement Descriptions

In a spirit similar to the development of a series of solutes, a series of confining

frameworks can be used to investigate which effects are due to confining framework
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Figure 5.10: Several different confining systems can be used to investigate the
effects of the confining framework. In the simplest form of confinement (a), a
smooth potential is used to restrict molecular motion to a small cylinder. This
can be expanded to an “atomically smooth” system (b), in which a cylinder of
atoms is constructed. Lastly, the atomistic amorphous silica pore (c ) can be used
to investigate the effects of surface roughness and chemical functionality.

size, surface roughness, and surface chemistry. Such a set of models is shown in

Figure 5.10.

The simplest way to confine the solvent/solute system is to use a potential with

cylindrical symmetry (Figure 5.10a) to mimic confinement in the silica pore. No

atomistic features then contribute to the TDF signals associated with confinement

with such a potential. The confining potential approach has the added advantage

that the effective radius of the cylinder can be easily changed. This can be exploited

to study the effect of increasing solvent layering, which has been shown to influence

position within the confining framework for small diatomic solutes.
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Smooth cylindrical confinement cannot easily address effects associated with

charge. A simple cylindrical arrangement of atoms of alternating charge (Figure

5.10b) can be used to address electrostatic effects. The sizes of the atomic cylinders

can be made similar to those of the smooth cylindrical confinement to determine

how charge changes solvent packing and solute position. Additionally, small

defects at the surface can be added (two atoms at a time to maintain charge

neutrality) as a way of adding in the effects of surface roughness without specific

chemistry. Because these defects are expected to change the electric field, and

thus potential, across the pore, they are of particular relevance to both the solute

position distribution and solute fluorescence energy.

Lastly, the solvent and solute systems can be confined within amorphous silica

pores (Figure 5.10c), as has been done in this study. The pores show a large degree

of surface roughness and are chemically modified such that they present silanol

groups to the pore interior. While surface irregularity can be investigated using

modified atomically smooth cylinders, the placement of atoms in those systems

is well-ordered. In the amorphous silica pore, the atomic arrangement is glass-

like, and surface roughness may lead to slightly different effects than those in the

modified atomically smooth cylinders. Additionally, the silica pore presents silanol

and geminal silanol groups, and both solvent and solute are both strongly affected

by surface chemistry, as shown in Section 4.3.2.

These effects of both surface roughness and surface chemistry can be quantified

within the context of the extended jump model, which has been modified to account

for increased reorientation timescales of water. In essence, the excluded volume
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effect described in Section 2.4.2 for bulk alcohols should also apply to silica atoms

at the pore interface. That is, the pore itself slows solvent reorientation by reducing

the number of possible hydrogen bond exchange partners. Moreover, this effect will

be site-specific, since different parts of the pore interface show different geometric

arrangements of pore atoms and thus preclude hydrogen bond exchange to different

degrees. Accordingly, the solvent jump time contribution should increase in the

pore over that of the bulk solvent according to Equation 5.3,

〈τ jump
con f 〉=

∑
Nsites
i=1 ρV, iτ

jump
bulk

Nsites
=

∑
Nsites
i=1

(
1

1− fi

)
τ

jump
bulk

Nsites
, (5.3)

where the sum runs over all interfacial sites, i, and V indicates that the effect is

associated with excluded volume. Recall that fi is the excluded volume fraction

so ρV, i is the slowdown factor. Similarly, the distribution of silanol groups within

the pores will affect solvent reorientation dynamics through hydrogen bonding

strength. This effect is absent in the alcohols, where all hydrogen bonding is

roughly equivalent. In the silica pore, the dipole associated with silanol groups is

different than that for the alcohols, and a solvent molecule can interact with one or

several silanol groups. Moreover, the arrangement of silanol groups can vary. This

reorientational slowing is anticipated to follow Equation 5.4

〈τ jump
con f 〉=

∑
Nsites
i=1 ρHB, iτ

jump
bulk

Nsites
=

∑
Nsites
i=1 eβ∆∆G‡

τ
jump

bulk
Nsites

, (5.4)
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where ∆∆G‡ = ∆G‡
SiOH −∆G‡

ROH . Each ∆G term is a free energy for elongating

a hydrogen bond between an alcohol and the subscripted species.[23, 24] The

slowdown factor ρHB therefore reflects the relative free energy cost for hydrogen

bond exchange with the confining framework over that of the bulk liquid. These

two effects—entropy and enthalpy through excluded volume and hydrogen bond

strength, respectively—should combine uniquely at each site on the silica surface

[145] so that

〈τ jump
con f 〉=

∑
Nsites
i=1 ρV, iρHB, iτ

jump
bulk

Nsites
. (5.5)

The application of this model to alcohol reorientation in the silica pore will be

particularly important when assigning timescales observed in the TDF spectrum to

either solvent or solute contributions.

5.5 Time-Dependent Fluorescence Summary

The results presented in this Chapter indicate that in NEMD simulations, both the

Stockmayer solute and c153 dye model show TDF spectra that decay on three

timescales when confined in hydrophilic silica pores. The Stockmayer solute shows

a small net displacement toward the pore interface after excitation, while displace-

ments of different sites on the c153 model suggest rotational motion. Additionally,

as the Stockmayer solute moves toward the silica interface, its fluorescence energy

redshifts. An analysis of fluorescence energy as a function of position relative to

the silica interface for selected sites on the c153 model suggest similar redshifting

occurs for atomistic dye models. Thus, requirements 1) and 2) in the solute diffu-
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sion hypothesis are satisfied in NEMD simulations of simple and atomistic dyes

in confinement, a result which is consistent with the equilibrium MD results in

Chapter 4. To what extent these appear in the TDF spectrum will require enhanced

sampling.

Because chemistry happens at interfaces, which molecular-level effects lead to

the satisfaction of each requirement in the solute diffusion hypothesis is of chemical

interest beyond explaining emergent timescales in TDF spectra. A series of dye

models comprising the Stockmayer solute, modified benzene, p-nitroanisole, and

coumarin 153 can be used to determine how solute size, morphology, charge distri-

bution, and functional group chemistry affect solute diffusion, reorientation and

spectral properties, particularly at the interface. In a similar spirit, a series of con-

fining framework is offered to systematically investigate effects from confinement

size, charge distribution, surface heterogeneity and interfacial chemistry.
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Chapter 6

Conclusions and Future Outlook

The present work is aimed at investigating trends in reorientation dynamics in

bulk linear chain alcohols as well as investigating the information content in time-

dependent fluorescence experiments in confined systems, which show emergent

dynamics beyond those observed in the bulk. While the studies described here only

begin to touch upon dynamics in liquid alcohols, many important conclusions have

been drawn. Moreover, it is hoped that these results—what worked and what did

not—can find utility in the future.

6.1 Conclusions from This Work

Studies of reorientation of linear alcohols have indicated that hydroxyl reorienta-

tion slows with increased alkyl chain length[25–29, 129]. The chemical similarity

between water and alcohols (i.e., they all contain hydroxyl groups) suggests that

alcohol reorientation may be described similarly to water reorientation. Thus, to
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investigate the origin of this reorientation trend, molecular dynamics (MD) simu-

lations were performed for models of water, methanol, and ethanol. The lack of

long-lived non-hydrogen bonded hydroxyl groups eliminates alcohol reorientation

via the Debye mechanism [15]. Additionally, the Ivanov jump model[16] requires

that intact hydrogen bonds are orientationally static between hydrogen bond switch-

ing events, which is not observed. Instead, the extended jump model proposed by

Laage and Hynes[17, 18], and subsequently developed to describe water dynamics

near hydrophobic solutes[20], describes well the trend that reorientation slows with

increasing alkyl chain length.

The model consists of two contributions to reorientation—a fast, large am-

plitude reorientation during hydrogen bond switching (“jump” contribution) and

the tumbling motion of intact hydrogen bonds (“frame” contribution). The jump

time contribution follows the same trend in reorientation. Notably, the reorienta-

tion slowing is not an effect of hydrogen bond strength. Further, hydrogen bond

exchange geometries are very similar across the series, as shown by bimodal

distributions in the jump angle for each molecule. The trend in the jump time con-

tribution then originates with the characteristic hydrogen bond jump time for each,

an effect that is well-explained using excluded volume arguments. In essence, the

increased alkyl bulk results in fewer incoming hydrogen bond exchange partners,

which increases the time for a hydrogen bond switching to occur. The timescale

for reorientation of intact hydrogen bonds (“frame” contribution) also increases,

but it increases less than the increase in the jump time. Importantly, for alcohols,

the relative jump and frame contributions therefore indicate that hydrogen bond
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tumbling is the dominant reorientation pathway, whereas hydrogen bond switching

is dominant in water reorientation.

For higher alcohols through n-hexanol, reorientation timescales continue to

increase with increasing alkyl chain length, and the overall excluded volume

fraction continues to increase. However, in higher alcohols, additional timescales

are observed with the interesting trend of decreasing amplitude.

Several attempts have been made at explaining these, a number of which proved

unsuccessful. As observed for supercooled water, the extended jump model can

result in the longtime reorientation becoming split between two timescales–kshort

and klong—as a consequence of the distribution of jump rate constants, which in

alcohols can be related to the distribution of excluded volume fractions. Correlation

functions in the excluded volume fraction have been calculated in a preliminary

fashion, but their calculation is expensive. Accordingly, alternative hypotheses

were investigated. Trends in nonspecific, local coordination shells and exchange

rates between them failed to describe the dynamics. Additionally, a more global

picture that higher order structures show different dynamics also fails to describe

reorientation in higher alcohols.

A reasonable explanation for these effects was found, however, through ad-

ditional calculations. Local hydrogen bond relationships successfully explain

the bimodal distribution of hydrogen bond jump angles. Specifically, hydrogen

bond exchange occurs at low jump angle when the current and future acceptor

are hydrogen bonded to one another, while the exchange generally occurs at

higher jump angle when these molecules have no hydrogen bonding relationship.
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Two-dimensional free energy plots (in distance and angle coordinates) show the

growing-in of new free energy minima (and associated barriers) with increased

alkyl chain length, which successfully explains the emergent timescales. The

quantitative agreement between free energy barriers and reorientation timescales,

however, may require additional considerations such as solvent viscosity.

Additional timescales also emerge in the time-dependent fluorescence (TDF)

spectra of nanoconfined systems, but their origin remains similarly unclear. One

hypothesis—the solute diffusion hypothesis—is that because the confining frame-

work introduces an anisotropy in the system, solute properties, including fluores-

cence energy, change across the confining framework, and that emergent timescales

actually report on motion of the reporter dye itself. For this to be observed, the

solute position within the confining framework must depend on the solute charge

distribution, the fluorescence energy must depend on the solute position, and the

net effect—the motion across the confining framework with a change in spectrum—

must occur on experimentally accessible timescales and with measurable amplitude.

The first two qualifications were addressed using equilibrium MD simulations

of a model Stockmayer solute dissolved in ethanol and confined within a silica

pore. The results indicate that for 5, 10, and 15 D dipole moments on the solute,

the solute position within the hydrophilic pore is strongly biased, while it is more

modestly biased in the hydrophobic pore. Additionally, spectral properties, includ-

ing fluorescence energy, absorption energy, and spectral line width, all depend

upon the solute position within the hydrophilic pore, but not the hydrophobic pore.

Free energy decompositions indicate that interactions with the silica interface are
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primarily responsible, while contributions from solvent organization play a smaller

role. Investigation of several locations within the hydrophilic pore suggest that

specific chemistry, i.e., hydrogen bonding with silanol groups at the pore interface,

is primarily responsible these effects.

To determine the extent to which solute motion manifests in the TDF signal, two

different dye molecules—the simple Stockmayer solute and the more chemically

relevant and well-studied coumarin 153 (c153) dye—were dissolved in ethanol and

confined in a hydrophilic silica pore. The relevant post-excitation solute properties—

solute displacement within the pore and solute fluorescence energy—were followed

for 200 ps in non-equilibrium molecular dynamics (NEMD) trajectories. The re-

sults for the solute displacement indicate a net movement toward the pore interface

for the Stockmayer solute, while a net rotation is suggested for the c153 solute.

Additionally, the Stockmayer solute shows a redshift in fluorescence spectrum

near the pore interface, while the results for the c153 solute suggest that a similar

change can occur for certain sites on the molecule. The TDF spectrum for c153

decays much faster than that for the Stockmayer solute, an effect which may be

attributable to solute morphology. Additional timescales are not resolvable, and

confirmation that changes to the TDF signal can arise from solute motions within

the nanoconfining framework will require further investigation, preferably with the

use of enhanced sampling techniques.

From the difference in TDF spectra and static spectra as a function of their

position on the atomistic dye molecule, it is clear that both morphological and

chemical effects are important in determining the solute contribution to the TDF
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spectrum. Obviously, the two solutes provided here do not constitute a solute

series large enough to determine how shape and chemistry alter spectral properties.

To this end, two additional solute models—modified benzene (mBz) and para-

nitroanisole (pNA)—have been preliminarily constructed. The adjustability of the

dipole moment of mBz means that comparisons of results between mBz and the

Stockmayer solute can be made, with differences attributable to the shape and

size of the molecule, i.e., the distribution of surrounding solvent. Similarly the

dipole moment of mBz can be tuned to that of pNA, so that differences in the

results for each solute can be (at least in part) attributed to specific functional

group chemistry. This growing-in of effects may lead to better interpretation of

c153 spectral properties and assist in identification of which dye properties are

important if a dye molecule is to contribute to the TDF spectrum. This is of

particular importance, as no general principles have yet been identified to predict

which confined systems show emergent timescales and which do not.

6.2 Imminent Work

The results of the present work have left several open questions and, as good

science should, have raised possibilities for further study. The remainder of this

work is then oriented toward future investigations, both imminent and distant, for

which the present work serves a foundational role.
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6.2.1 Reorientation of Bulk Alcohols

Hydroxyl group reorientation times in lower alcohols can be well-explained us-

ing excluded volume arguments within the context of the extended jump model.

However, new timescales emerge in the reorientation of higher alcohols, as 4-

exponential functions are required for reasonable fitting of C2(t) for the total, jump,

and frame contributions to reorientation. Thus, assigning the additional timescale

to either the jump contribution or frame contribution is not possible. To the end

of identifying a mechanism for the emergent timescales, analysis of trends in free

energy profiles should be completed. Additionally, while the longest timescale

increases with increasing alkyl chain length, its amplitude decreases, an effect

that is not readily explained. Lastly, several properties trend with viscosity. The

calculation of viscosity for simulated alcohol systems, and its relationship to jump

and frame times and amplitudes, should be pursued.

Another direction for continued research is the development of a predictive

model for reorientation dynamics in alcohols. To this end, the effects of increasing

steric bulk at a single site (in addition to effects from increasing steric bulk in

series) should be investigated. Preliminary results for the ethanol/iso-propanol/tert-

butanol series indicate that branching dramatically increases hydroxyl reorientation

timescales. The mechanism for this is unclear, in part due to limited data. That is,

the precise calculation of long timescales requires long trajectories, and precise

values of excluded volume are required if they are to be related to these timescales,

largely as a consequence of the reciprocal relationship between excluded volume

fraction and timescale. Also, because molecular interactions are increasingly
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important for longer alcohols (that is, more intermolecular interactions contribute

to overall molecular behavior), all-atom force fields should be investigated and

their results compared with those contained herein.

6.2.2 Reorientation of Confined Alcohols

It is anticipated from preliminary results that solute motion contributes to the

TDF spectrum in nanoconfined systems. However, how different solute, solvent,

and confining framework properties combine so as to enhance or suppress this

effect in a measured spectrum remains unclear. The most relevant combinations

are anticipated to involve solute and confining framework interactions, based on

the results from the present work. Thus, while a series of solute and confining

frameworks have been developed, their systematic testing has yet to be performed.

While the role in TDF spectra played by the solute is important, the role

of the confining framework should also be investigated through simulations of

neat linear-chain alcohols in nanoconfining silica pores. Results on studies of

confined water,[145] as well as results presented in this work, suggest that pore

heterogeneity plays a large role in solvent mobility, including reorientation. Pore

heterogeneity, which includes surface topology and chemical functionality (i.e.,

silanol groups), should induce site-specific reorientation slow-down factors that

arise from both excluded volume, ρV , and hydrogen bond number and strength,

ρHB. Thus, for a particular pore site, i, a characteristic slow-down factor, ρi =

ρi,V ρi,HB,[23, 24] should give rise to a reorientation rate constant specific to the

site, τi = ρi,V ρi,HB τbulk. The long-time reorientation timescale should then be an
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Figure 6.1: The probability of finding the ethanol COM site in the xz plane increases
near the hydrophilic pore interface. Several sharp peaks are also present, indicating
particularly strong associations between solvent and silica pore. The distribution
was calculated from a 2 ns trajectory.

average over all site-specific timescales. Additional evidence for solvent slowing

based on unique pore environments has already been obtained for ethanol through

simple analysis of 2-dimensional position probability distributions within the pore,

shown in Figure 6.1. In this Figure, regions near the pore interface (≈±10 Å) show

increased probability that the solvent is found there. Peaks represented in purple

suggest limited mobility, strong association, or both. To what extent such peaks

are associated with site-specific dynamics, and how those dynamics originate, is a

direct extension of the bulk work presented here, and will be critical in determining

the information content in the TDF spectrum in confined ethanol systems.
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6.2.3 Time-dependent Fluorescence in Confined Systems

A key extension of this work will be to relate timescales for solvent and solute

motions to the timescales observed in TDF spectra in nanoconfined systems. To

determine how solvent reorientation appears in the TDF spectrum requires the

calculation of both site-specific and site-averaged timescales for confined ethanol

predicted by the extended jump model (above). The reorientation dynamics are

collective and related to interactions with the solute, and therefore, these dynamics

are different from those discussed in Section 6.2.1. Additionally, timescales for

solute diffusion (Sections 5.3.1 and 5.4.1) and reorientation within the pore should

be compared to the directly calculated timescales derived from higher resolution

TDF spectra. Lastly, the set of solute-nanoconfining framework combinations

should be simulated to determine how different solute-framework interactions give

rise to TDF-relevant phenomena, such as magnitude and direction of displacement,

spectral shifting, overall TDF spectrum contribution, and any associated TDF

amplitude.

6.3 Future Directions

6.3.1 Branched Alcohols

The previous discussion of reorientation in alcohols has focused on the effects of the

extension of linear alkyl chains. For alcohols beyond ethanol, structural isomerism

is possible. (For alcohols beyond propanol, stereoisomerism also becomes a
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Figure 6.2: Ethanol, i-propanol, and t-butanol comprise a series over which steric
bulk is increased at the β -carbon position.

consideration.) Thus, one can investigate not only the effect of linear chain length,

but also the increase of steric bulk at a particular molecular site. Experimentally,

the site of chain branch has been shown to have consequences for dynamics.[92,

114, 146, 147] Consider the series ethanol/i-propanol/t-butanol shown in Figure

6.2. Ethanol, i-propanol, and t-butanol can be viewed as methanol molecules

with 1, 2, and all 3 of the the alkyl hydrogens replaced by methyl groups. How

does the series constituted by ethanol/i-propanol/t-butanol compare to that of

ethanol/n-propanol/n-butanol? Also, if a predictive model of excluded volume

is to be developed, it is important to understand how increased substitution at a

particular site influences access to the hydroxyl group.

In the interest of addressing such questions, OPLS-UA models for i-propanol

and t-butanol were constructed. The force field parameters are the same as those

reported in Table 2.1 Notably, the OPLS-UA description of i-propanol cannot be

properly implemented in MD studies. (For a discussion of the problem, as well

as a description of the corrective measures taken, see Appendix B.) Instead, the
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torsional parameters presented in Table 6.1 are used in Equation 6.1.

V (φ)=V0+
1
2

V1(1+cos (φ−δ ))+
1
2

V2(1−cos 2(φ−δ ))+
1
2

V3(1+cos 3(φ−δ ))

(6.1)

The α carbon and two/three methyl groups were treated as a rigid body for iso-

Table 6.1: OPLS-UA torsional parameters for branched alcohols.
Molecule V †

0 V1 V2 V3 δ (◦)
i-PrOH 1.79494 3.28026 0.52300 -2.89114 -59.77
t-BuOH 0.00000 0.00000 0.00000 0.90650 0.00

† All values are reported in kJ mol−1.

propanol/tert-butanol, respectively. Notably, the i-PrOH torsional potential in

Table 6.1 was applied to a single site, while the t-BuOH torsional potential was

applied to each methyl group. The resulting dihedral angle distributions were

checked for both cases and agreed well with the results of Jorgensen[121].

The results for the calculation of C2(t) for the branched alcohols are presented

in Figure 6.3. The branched alcohols i-propanol and t-butanol show similar C2(t)

decays to about 100 ps. For both branched alcohols (solid lines), the reorientation

time is much longer than their linear chain counterparts (dashed lines). Interestingly,

it also appears that the short time behavior for t-butanol is faster than that of

i-propanol, while the long time behavior for t-butanol is slower than that for i-

propanol. However, the results presented in Figure 6.3 are only suggestive. Longer

simulation times will be required to fully describe the reorientation dynamics in

branched alcohols.
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Figure 6.3: Hydroxyl reorientational correlation functions C2(t) for the ethanol
(black)/i-propanol (red)/t-butanol (blue) series, in which steric bulk is increased
at Cβ (solid lines). For comparison, the corresponding linear series (dashed lines)
comprising ethanol/n-propanol/n-butanol is included.
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Figure 6.4: The excluded volume as a function of jump angle, f (∆θ), is shown
for i-propanol. Solid lines represent total (black), hydrogen bond donor (blue),
hydrogen bond acceptor (red), and all other (purple) contributions to f . Donor
excluded volume is further decomposed into contributions from oxygen (dotted
line), Cα (dashed line), individual Cβ methyl groups (dot-short dashed lines), and
total Cβ methyl groups (dot-long dashed line). Acceptor excluded volume is further
decomposed into Cα (dashed line), individual Cβ methyl groups (dot-short dashed
lines), and total Cβ methyl groups (dot-long dashed line).

Initial examination of excluded volume profiles for the branched alcohols

results in similar complications as for long chain alcohols: large values of f have

intrinsically larger uncertainties with their associated time constants. As shown in

Figures 6.4 and 6.5, the average excluded volume is anticipated to be large (e.g.,

f > 0.93). Figures 6.4 and 6.5 also suggest that the excluded volume at Cβ is

strongly non-additive.
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Figure 6.5: Same as Figure 6.4, except donor excluded volume is further decom-
posed into contributions from oxygen (dotted line), Cα (dashed line), individual
Cβ methyl groups (dot-short dashed lines), and total Cβ methyl groups (dot-long
dashed line). Acceptor excluded volume is further decomposed into Cα (dashed
line), individual Cβ methyl groups (dot-short dashed lines). The total contribution
from Cβ methyl groups (dot-long dashed line) is coincident with the full acceptor
contribution (solid red line).
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Figure 6.6: Left: Water molecules (oxygen, red; hydrogen, silver) are schematically
shown engaged in a hydrogen bond network. The central molecule accepts two
hydrogen bonds and donates two hydrogen bonds. Right: In ammonia (nitrogen,
purple; hydrogen, silver), the central molecule accepts one hydrogen bond and
donates one hydrogen bond. Two NH groups on the central molecule are not
participating in hydrogen bonding.

Dynamic behavior in branched alcohols departs strongly from that observed in

the series of linear chain alcohols. Explaining how the increased steric bulk at a

single site, rather than along a chain, alters hydroxyl reorientation dynamics across

a series of branched alcohols represents an additional path for future research.

6.3.2 Reorientation in Ammonia

In water, non-hydrogen bonded (or “dangling”) hydroxyl groups persist for very

short times (i.e., < 1 ps). This is largely a consequence of the match in hydrogen

bond donor and acceptor sites. In liquid ammonia, each molecule has 3 donor

NH groups and only 1 acceptor (lone pair) site. The difference in hydrogen bond

networking is depicted schematically in Figure 6.6. Because there is only one
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Figure 6.7: The three hydrogens (silver) bonded to a central nitrogen (purple) are
labeled A, B, and C. The ammonia molecule is donating a hydrogen bond to a
nearby acceptor. With rotation of 120◦, the initial hydrogen bond involving HA is
broken and replaced by an equivalent hydrogen bond involving HB.

acceptor site, each ammonia molecule can donate one hydrogen bond and accept

one hydrogen bond. Therefore, each hydrogen bonded molecule may have 2

proximal dangling NH groups. This naturally raises the question: Between a donor

and acceptor molecule, does hydrogen bond exchange occur between NH groups

on the same donor, as in Figure 6.7? Due to comparisons[91, 112, 128] of NH

dynamics in ammonia with OH dynamics in water, ammonia raises fundamentally

interesting questions in the context of the extended jump model. The equivalence

of the three NH groups suggests that hydrogen bond frustration may play a role

in NH reorientation dynamics. Hydrogen bond jumps in ammonia might then

be viewed as the change of hydrogen bond acceptor molecules for a given donor

molecule. (The frame reorientation would retain its usual meaning.) Add to this

the well-known effect that the barrier to inversion in ammonia is small. The

overall reorientation might be viewed as a sum of three or four rate constants,

e.g., ktotal
2 = k f rustr

2 +kinv
2 +k jump

2 +k f rame
2 . What is the relative importance of each
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reorientation pathway? Can the extended jump model be modified to account for

additional reorientational mechanisms beyond those observed in water?

6.3.3 Reaction Rates in Solution

Lastly, as noted in Chapter 1, solvent reorientation is important in driving chemical

transformation, such as charge transfer reactions. Do the excluded volume effects

responsible for hydroxyl reorientation in alcohols also change the ability of alcohols

to affect chemical reactions? While this is a difficult problem, a particularly simple

system—2-(aminomethyl)phenol (Figure 6.8)—might be used to address this

question. The amino group and hydroxyl group are positioned so that the hydroxyl

hydrogen is directed toward the amino nitrogen. The model would be rigid, with the

exception of the proton of interest. For methanol and n-hexanol, in what direction

and to what extent is the equilibrium shifted (i.e., to what extent is the proton

associated with the nitrogen vs. the oxygen atom)? In each solvent, at what rate

does proton transfer occur? If the equilibrium or dynamics are different between

the two solvents, to what extent can excluded volume effects be used to explain the

effect? Additionally, are solvent dynamics near versus far from the solute the same,

or are solvent dynamics driven near the solute? Linking reorientation, particularly

of alcohols in the context of the extended jump model, to chemical equilibria and

reaction dynamics represents a large goal—one that is at the center of chemistry. It

is hoped that the work contained herein serves as a small step toward achieving

that goal.
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Figure 6.8: 2-(aminomethyl)phenol might be a molecule useful for studying proton
transfer reactions in different alcohols to examine the effect of alcohol reorientation
on chemical equilibrium and reaction dynamics. The hydrogen (silver) of interest
is bonded to the oxygen atom (red) and positioned to interact with the nitrogen
atom (purple).
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Appendix A

Calculation of Excluded Volume

To adapt the excluded volume picture to the reorientation of alcohols and calculate

f directly from the simulation trajectory, one assumes that the hydrophobic alkyl

groups act as hydrophobic “solutes.” In this case, the alkyl groups of the donor,

acceptor, and any other molecule can block incoming hydrogen bond exchange

partners. Additionally, the oxygen atom of the current acceptor can also block

incoming exchange partners. The oxygen atoms of other molecules are not included

in the list of exclusionary molecules, as they are considered incoming acceptors

that comprise the transition state. For similar reasons, the donor oxygen atom is

not considered when the excluded volume.

In practice, a ring of transition states is constructed using R‡ = 3.5 Å, a user-

specified transition state angle, ∆θ ‡, and the number of ring points for the cal-

culation, typically set to nring = 200. The calculation of the transition state ring

(reference ring) occurs once, at the beginning of the calculation. The reference ring

is calculated such that the rOA−OD
vector lies along the +x axis, as in Figure A.1.
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Figure A.1: A hydrogen bond with its rOD−OA
axis coincident with the +x axis is

used for calculation of the reference ring. The transition state distance, R‡
OD−OA

=

3.5 Å and transition state angle, ∆θ
‡
OB−OD−OA

= 68◦, are indicated. From these
parameters, one can calculate the positions of the ring sites.

The coordinates for each ring site i are calculated as

xi = R‡ cos∆θ ‡

yi = (R‡ sin∆θ ‡)sin
(

2π× iring
nring

)
zi = (R‡ sin∆θ ‡)cos

(
2π× iring

nring

) (A.1)

and i runs from 1 to nring.

197



For identified hydrogen bonds, this ring is then copied and rotated into place

along the identified hydrogen bond. The rotation of the vector requires two angles,

θ and φ . Due to the limitations of the intrinisic inverse trigonometric functions

(that is, sin−1 is defined on the interval [−π

2 ,+
π

2 ] and cos−1 is defined on the

interval [0,π]), they cannot be used to determine orientations within the octants

of the Cartesian coordinate system used in this study. Instead, the angles θ and φ

were defined the following way:

Donor and acceptor oxygen displacements are given by

dx = xOA
− xOD

dy = yOA
− yOD

dz = zOA
− zOD

(A.2)

Then to determine φ ,

if dx = 0, then

if dy > 0, φ = π

2

if dy < 0, φ = 3π

2

else φ = 0

else

φ = cos−1
(

dx2√
dx2(dx2+dy2)

)
if dx < 0, φ = π−φ

if dy < 0, φ =−φ

end if

(A.3)
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Similarly, to determine θ ,

if dz = 0, then

θ = 0

else θ = cos−1
(

dz2√
dz2(dx2+dy2+dz2)

)
if dz > 0, θ = θ − π

2

if dz < 0, θ = π

2 −θ

end if

(A.4)

The angles defined in this way can be used with rotations about the y and z

axes that are applied to the copied reference ring along the x axis. Each point on

the reference ring, described by (xre f ,yre f ,zre f ), is subjected to a rotation about the

y axis, R̂y(θ), followed by a rotation about the z axis, R̂z(φ), to generate the ring

encircling the rOD−OA
vector of interest in the bulk solution, as in equation

rsol′n = R̂z(φ) R̂y(θ)rre f

or more explicitly,


xsol′n

ysol′n

zsol′n

=


cosφ −sinφ 0

sinφ cosφ 0

0 0 1




cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ




xre f

yre f

zre f

 (A.5)
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Extensive tests, including visualizations, were performed for each Cartesian

octant, plane, and axis to validate the definitions of angles and rotations explained

above.

When a hydrogen bond donor is identified in the simulation trajectory, a refer-

ence ring of transition states is rotated to align with the rOD−OA
vector as described

above. The distance between each point on the ring and each atom in the simulation

is then calculated. If the distance is less than the Van der Waals radius of the current

atom, the site on the ring is marked as “excluded.” Notably, the Van der Waals

radius is taken as the first non-zero value in the pair distribution function, g(ROX),

where X indicates the site of interest (e.g., O, CH2,α , etc.). The ratio of excluded

points to all points comprising the ring of possible transition states is the excluded

volume fraction, f . To obtain a reliable estimate of f , this is performed over many

configurations for all molecules.
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Appendix B

Modification of OPLS-UA Isopropanol

The optimized potentials for liquid simulations united atom (OPLS-UA) force field

for alcohols parametrizes alkyl carbon groups so that the hydrogen and carbon

atom effects (e.g., size, interaction strength, etc.) are parametrized together. Thus,

fully-substituted carbons, methine, methylene, and methyl groups are considered

single sites in the simulation, each with a distinct set of parameters. This presents

a problem for the case of i-propanol.

In Jorgensen’s 1986 paper, it is stated that “2-propanol also has a trans form

with the hydroxyl hydrogen between the two methyl groups and two mirror-image

gauche forms (Figure 2).” Accordingly, at 180◦, one should observe a local

minimum between two large energy barriers representing hydroxyl hydrogen-

methyl interactions, which is what is depicted in Figure 2 of that work. The

statement and corresponding Figure are in agreement with one another.

However, there are two problems here. Firstly, the parameters for the torsional

parameters for 2-propanol provided in Table III of that work fail to produce the
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curve presented in Figure 2 of that work. Secondly, in the united-atom description,

there is no explicit methine hydrogen to serve as a “handle” for the potential. That

is, even if one had the set of parameters that reproduces the potential in Figure 2,

there is no atom to which one can apply it.

Figure B.1 shows the i-propanol torsional potential (top) using the provided

parameters, which are reproduced in Table B.1. A reconstruction of the Jorgensen

Figure is provided as Figure B.2 (top). In each case, the corresponding Newman

projection has been provided (bottom).

Table B.1: Torsional parameters for OPLS-UA iso-propanol
parameter Table values†

V0 0.429
V1 0.784
V2 0.125
V3 -0.691

† Values are reported in kcal mol−1.

Comparing the potential and Newman projection of Figure B.1, it is clear that

the cis, rather than trans, conformation is represented by the torsional parameter set.

Comparison of Figures B.1 and B.2 suggests that a simple phase shift of 180◦ can

remedy the problem. However, as noted by the asterisk in the Newman projection

of Figure B.2, the atom to which the phase-shifted potential should be applied does

not exist in the OPLS-UA model.

Two approaches can be taken in applying a phase-shifted potential. In the first

approach, the model is modified by introducing a new site between the two methyl

sites. The site is assigned a hydrogen mass (subtracted from the UA α-carbon site)
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Figure B.1: The published OPLS-UA torsional parameters for i-PrOH result in a
torsional potential curve (top, top panel) shifted by 180◦ relative to the published
Figure (Figure B.2, top). The corresponding relative likelihood for dihedral angle
H−O−Cα −H is also provided (top, bottom panel). The Newman projection
(bottom) corresponding to the 180◦ “trans” conformation has been included, as
viewed down the oxygen (red dot) - α-carbon (black circle) axis.
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Figure B.2: The OPLS-UA torsional potential curve (top, top panel) has been
reproduced from the published figure, which is shifted by 180◦ relative to the curve
that results using the published torsional parameter set (Figure B.1, top). The
corresponding relative likelihood for dihedral angle H−O−Cα −H is provided
(top, bottom panel). The Newman projection (bottom) corresponding to the 180◦

“trans” conformation has been included, as viewed down the oxygen (red dot) -
α-carbon (black circle) axis.
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Figure B.3: The “handle” for the torsional potential (asterisk) is chosen as one of
the united atom methyl sites (blue) and requires an approximately 60◦ phase angle.
From the simulation data, the dihedral angles involving the implied α-hydrogen
(in parentheses) can be calculated. The torsional potential applied this way results
in an appropriate distribution of H−O−Cα −Hα dihedral angles.

and is shortened to be an appropriate (C−H) distance from the α-carbon. The

2 methyl groups, α-carbon, and new α-hydrogen can be considered a rigid body.

The torsional parameters are modified by a phase-shift of 180◦ and applied to the

α-hydrogen. Because this approach involves modification of the i-PrOH model, it

has been avoided.

In the second—and preferred—approach, the torsional parameter is applied to

an existing site with no modification of the model. As suggested by the Newman

projection of Figure B.2 and depicted in the center of Figure B.3, a phase shift of

approximately ±60◦ can be applied to one or the other methyl site. For a selected
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methyl site, the sign of the phase is determined by testing. Two simulations are

run, in which the two methyl sites and methine site are treated as a rigid body, and

the torsional potential is placed on the same methyl site in both simulations. The

difference between the two simulations is the sign of the torsional phase angle.

Taking X to be a point midway between the CMe1 and CMe2 sites, the H−O−

Cα−Hα dihedral angle, φ , can be calculated as the angle between the HOCα plane

and the OCαX plane phase shifted by 180◦. The result should be the same as the

dihedral angle made with the implied hydrogen (indicated in parentheses.) From the

distribution of dihedral angles, P(φ ), the correct sign of the phase angle is obvious,

as use of the incorrect sign results in non-qualitative (let alone semi-quantiative)

agreement with the distribution on the Right of Figure B.2.
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