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Abstract 

 

Kyle Wamser 

Department of Geography, December 2012 

University of Kansas 

 

 Hyperspectral imagery and the corresponding ability to conduct analysis 

below the pixel level have tremendous potential to aid in landcover monitoring. 

During large ecosystem restoration projects, being able to monitor specific 

aspects of the recovery over large and often inaccessible areas under constrained 

finances are major challenges. The Civil Air Patrol’s Airborne Real-time Cueing 

Hyperspectral Enhanced Reconnaissance (ARCHER) can provide hyperspectral 

data in most parts of the United States at relatively low cost.  Although designed 

specifically for use in locating downed aircraft, the imagery holds the potential to 

identify specific aspects of landcover at far greater fidelity than traditional 

multispectral means. 

 The goals of this research were to improve the use of ARCHER 

hyperspectral imagery to classify sub-canopy and open-area vegetation in 

coniferous forests located in the Southern Rockies and to determine how much 

fidelity might be lost from a baseline of 1 meter spatial resolution resampled to 2 

and 5 meter pixel size to simulate higher altitude collection. Based on analysis 
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comparing linear spectral unmixing with a traditional supervised classification, 

the linear spectral unmixing proved to be statistically superior.  More importantly, 

however, linear spectral unmixing provided additional sub-pixel information that 

was unavailable using other techniques. The second goal of determining fidelity 

loss based on spatial resolution was more difficult to determine due to how the 

data are represented. Furthermore,the 2 and 5 meter imagery were obtained by 

resampling the 1 meter imagery and therefore may not be representative of the 

quality of actual 2 or 5 meter imagery. Ultimately, the information derived from 

this research may be useful in better utilizing hyperspectral imagery to conduct 

forest monitoring and assessment. 
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Chapter 1 

 

Introduction 

 

Montane forests throughout the Western United States are currently 

severely degraded.  The environmental conditions are so poor that they “virtually 

guarantee an onset of serious forest health problems which may lead to large 

wildfires, reburning, erosion and loss of habitat and property” (Sampson et al., 

1994). From the Rockies to the Sierras, forest ecosystems are being destroyed by 

erosion, diseases, fire and insect invasion. The primary reason that these forests 

are vulnerable to such a diverse range of problems is anthropogenic fire 

suppression during the past century. When comparing historical reports from the 

beginning of non-native exploration and settlement to the present, tree densities 

have increased to at least five times greater in numerous study areas (Covington 

and Moore, 1994). 

One of the principal risks of increased tree densities is greater fire danger 

to both natural ecosystems and property. Although fire is a critical element of 

forest regeneration in the Western United States, over 100 years of fuel 

accumulation in many areas has completely altered the natural burn cycle. 

Research from California’s Klamath Mountains indicates that fire frequencies 
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have decreased by a factor of 10 in some locations (Taylor and Skinner, 2003).  

As a result, the fire dynamics often shift from small, regenerating ground fires to 

massive crown fires with the potential to completely destroy ecosystems that have 

existed for centuries. Since only three percent of fires account for 95% of land 

burned, the increase of area lost to fires in the United States from 1.85 million 

hectares during the 1960s to over 2.5 million hectares from 2000 to 2007 indicates 

that crown fires in the Western forests account for the vast majority of this rise 

(National Interagency Fire Center, 2008).    

Federal and state forest managers currently face a paradox: fires are 

necessary to restore ecosystems, but as a result of the prolonged no-burn policies, 

creating low intensity blazes that stay on the ground is difficult. This problem 

manifested itself in 2000 when the National Park Service lost containment of a 

controlled burn near Los Alamos, New Mexico. This blaze destroyed 

approximately 17,500 hectares and caused one billion dollars in damage but did 

allow for substantial remote sensing and change analysis of the area (Brumby et 

al., 2001; Karter, 2001). Originally implemented as part of a plan to reduce fire 

danger near Bandelier National Monument, the result of the efforts was the 

massive Cerro Grande fire that destroyed over 400 homes. Since this incident, 

forest managers at all levels of government have struggled to develop techniques 

that will reduce tree density without the risk of inadvertently setting 
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uncontrollable wildfires. What is clear is that any restoration program must first 

reduce fuel loads before controlled burns are conducted.  

The Bureau of Land Management (BLM), in conjunction with University 

of Kansas geographers, is in the process of implementing a forest thinning 

program that involves the mechanized removal of small to medium sized trees 

coupled with limited controlled burns during the winter (Whitworth and Reed, 

2007). Superficially, this treatment method seems counterintuitive in that it is 

designed to restore forest ecosystems to a more natural state through the use of 

heavy equipment as well as burning at times of the year fires would never occur 

in nature. A critical factor to consider, however, is that most of the Western 

forests in the U.S. do not exist in a pre-European settlement condition, so damage 

resulting from even nonhuman sources like lightening will be greatly increased by 

up to 100 years of fuel accumulation as a result of forest management policy. 

Currently, this new technique of forest restoration (mechanical removal 

and small controlled burns in winter) is being applied in a trial program in several 

areas in Colorado. Monitoring the forest restoration treatments is a critical aspect 

of ensuring success and avoiding potentially adverse effects. Whenever an 

environment is disturbed, it is put under a certain amount of stress that often alters 

biological processes. The goal of the restoration treatment is to cause a shift from 

closed-canopy forests to more open areas with substantial herbaceous understory 
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cover as was described in the writings of early European settlers and as revealed 

in proxy data such as pollen stored in peat and lake bottom sediments. By 

monitoring these tree-thinned sites, BLM officials will be able to identify and 

address potential invasive species or prescribe additional treatments should they 

be deemed necessary. In order to study the effectiveness of the program, extensive 

field  measurements are being recorded at random locations within the treatment 

zones both before and after the thinning takes place. The ground surveys are 

capable of providing extremely detailed data on numerous ecological 

characteristics ranging from soil conditions to animal presence based on scat. The 

primary drawbacks with these field studies are that they are labor-intensive and 

time consuming. On a good day, a team of five to eight individuals will likely be 

able to survey only three sites.  

Although certainly not a replacement for field work, high spatial 

resolution hyperspectral remotely sensed imagery may be useful as a forest 

monitoring method as the program moves beyond the trial area into a more 

geographically extended area. Since various levels of thinning are needed 

throughout tens of millions of hectares managed by government agencies faced 

with continually tightening budgets, it will be impossible to monitor progress by 

truck and on foot. Also, some areas under Federal or State management may be 

essentially inaccessible due to some of the most rugged terrain in the 
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conterminous United States and the costs and risks of sending teams to these 

areas. 

 Researchers with the United States Geological Survey are currently using 

hyperspectral data obtained from the Civil Air Patrol’s Airborne Real-time 

Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) system to track 

forest health in Colorado with a focus on pine beetle infestation of coniferous 

trees (predominately lodgepole pine) and the creation of fire fuels as a result 

(Cole et al., 2009). They have produced multiple generalized classification maps 

highlighting the added detail of hyperspectral imagery. Also, detection of change 

over time is a proven capability of remotely sensed data and is being implemented 

by the USGS to assist with forest health monitoring and fire hazard management. 

Substantial progress has been made in producing these landcover 

classification maps based on hyperspectral imagery and specifically in 

determining condition of lodgepole pines groves as discussed above (Figure 12). 

It is not clear, however, if the same imagery would be useful in identifying much 

finer vegetation types below the single pixel level.  Furthermore, it is also 

unknown how much useful data may be extracted when the reflectance of the 

vegetation in question is partially blocked by the forest canopy overhead. 

 The goal of this thesis is to determine if a landcover classification map 

derived from a pixel purity index is able to provide any additional detail on 
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undergrowth vegetation when compared to a more traditional supervised 

classification method. As opposed to a supervised classification where every pixel 

must fall into a specific landcover category, pixel purity index mapping followed 

by endmember selection allows for the proportional abundance of each landcover 

class to be calculated for every pixel.  I also will conduct tests to determine the 

optimum pixel size for classification of smaller vegetation life forms, specifically 

surface growth including bushes and grass, from airborne hyperspectral imagery 

and then evaluate the usefulness of supplementing the insitu observations with 

data collected by airborne remote sensing.  

 

Research Background and Relevant Literature  

 

Remote observation of ecosystem dynamics, particularly in deciduous 

forests, is a longstanding application of remote sensing (Ranson et al, 1988). As 

sensors and processing capabilities improved, scientists were able to more 

thoroughly analyze less spectrally distinct features such as coniferous growth. 

Finer features like bushes and grass also became easier to study. The fires that 

devastated much of Yellowstone National Park in 1988 provided an excellent 

opportunity to use these improved capabilities study successional vegetation, 

particularly new-growth needle leaf forests (Knight and Wallace, 1989). 
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Extensive research conducted in the Greater Yellowstone Area (Yellowstone and 

Grand Teton National Parks and surrounding National Forests) developed and 

improved capability to accurately model coniferous forests dominated by a single 

species (in this case, Pinus contortus) using Landsat Thematic Mapper imagery 

(Blodgett et al., 1998; Jakubauskas, 1994, 1996; Jakubauskas and Price, 1993, 

1994, 1997, 1998). Additional studies in the same area in 1999 demonstrated 

added modeling capabilities through the use of geostatistical analysis of the same 

lodgepole pine forests (Blodgett et al., 2000).   

Despite these major improvements in vegetation study based on remotely 

sensed data, difficulties in identifying plant growth at scales larger than the forest-

level persisted into the 2lst century. Specifically, problems differentiating 

spectrally similar, but biologically distinct pine species were encountered (van 

Aardt 2000; Gong and Yu, 1997). Additional development in hyperspectral 

sensors allowed for the production of more detailed vegetation classification 

maps, with studies indicating that similar species of pine trees grown 

commercially in the southern United States may be identified as being distinct 

from one another (van Aardt and Wynne, 2007). Besides using hyperspectral 

imagery to study uniformly distributed trees grown commercially in the 

Southeast, researchers have found it to be useful in identifying specific bare soils, 

which was demonstrated after the Cerro Grande Fire in New Mexico (Kokaly et 

al., 2007).  Although this does not necessarily correlate to the resolution (both 
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spatial and spectral) needed to identify individual herbaceous species, it is clear 

the technology available is much more capable than in the past and is improving 

rapidly. 

Documentation of forest restoration considerations from a field 

perspective is much more extensive.  Some of the most significant work comes 

from Northern Arizona and includes publications from as far back as the mid-

1980s (Covington and Sackett, 1986). The group of scientists from Northern 

Arizona University initially began by noting the changing fire regimes that were a 

result of European settlement of the Southwest (Covington and Moore, 1994; Fule 

et al., 1997) and then later moved on to pioneer restoration theory (Covington et 

al., 2001; Fule et al., 2002).  Researchers from Flagstaff are still pursuing 

research in these areas and are currently analyzing the effectiveness of their 

treatments on a wide array of different ecosystem elements, such as birds 

(Wightman and Germaine, 2006). Although Northern Arizona has clearly been in 

the lead in terms of Western forest restoration research for the past two decades, 

other authors have also added valuable information to the discourse. One group of 

scientists worked with ponderosa pine restoration in the Four Corners area (Allen 

et al., 2002) while a second group out of the University of Colorado at Boulder 

worked with a similar ecosystem in the Front Range west of Denver (Baker et al., 

2007). Other smaller groups of scientists from Montana and the University of 

Arizona considered similar problems, with the consensus being that forest 
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restoration was necessary to prevent catastrophic wildfires. Many of the 

restoration techniques that were proposed do not differ greatly from what is 

currently being applied by various governmental agencies in Colorado. 

 The most relevant research publications related to forest monitoring and 

restoration come from the USGS in Colorado. Researchers are currently in the 

process of developing techniques using high spatial resolution hyperspectral data 

to determine the level and extent of pine beetle damage to coniferous trees (Cole 

et al., 2009).  Due to their focus on determining the condition of coniferous 

groves, they have chosen to classify all other vegetation as “deciduous/grassland.”  

This leaves open the question of the utility of hyperspectral imagery in accurately 

classifying the smaller vegetation both in the open and under a forest canopy at 

finer levels of detail.  
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Chapter 2: Improving Landcover Classification of Non-coniferous 

Vegetation in Grand County, Colorado Through Linear Spectral 

Unmixing 

 

Statement of Hypothesis and Research Goals 

 

 The goal of this research is to explore the value of using linear spectral 

unmixing of Airborne Real-time Cueing Hyperspectral Enhanced Reconnaissance 

(ARCHER) hyperspectral imagery to classify sub-canopy and open area 

vegetation in forests located in the Southern Rockies. In order to address this goal, 

the following null hypothesis was addressed: 

  

Null Hypothesis - There is no significant difference between the 

classifications of non-coniferous vegetation derived from linear spectral unmixing 

and a supervised classification at the pixel level within the study area. 

 

This hypothesis addresses how to improve the use of hyperspectral 

imagery for mapping non-coniferous vegetation in the study environment and 

whether sub-pixel methodologies provide superior results when compared to more 

traditional landcover classification analysis.  This analysis will be done at the full 

1-meter spatial resolution of the ARCHER imagery in order to obtain the most 
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refined results.  The primary goal will be to determine if the linear spectral 

unmixing approach to determine the percent composition of a particular type of 

vegetation in each pixel is superior to a supervised classification performed on 

classes taken from a minimum noise fraction transformation.  If this null 

hypothesis is rejected it means that a more realistic estimate of landcover was 

made at the sub-pixel level using linear spectral unmixing or the more 

conventional supervised classification was statistically superior. If not rejected, no 

significant difference was observed between either method.  

The accuracy assessment will rely primarily on root-mean-square (RMS) 

error computation and ground verification information derived from high 

resolution imagery of the area that was withheld from the model design for this 

specific purpose. The RMS error is found by comparing each individual pixel to 

either endmembers or data from a spectral library. The lower the RMS error, the 

better the spectral match. Besides assessing the model mathematically, visual 

analysis will also be conducted. Although not ground truth points in the literal 

sense, the panchromatically sharpened images at 0.20-meter spatial resolution 

available in both true color and color infrared are considered to be sufficient in 

determining relatively broad landcover classes in the study environment. 

Furthermore, the data from the panchromatic camera and hyperspectral imager are 

acquired simultaneously. In many cases, obtaining ground truth points at the same 

time as the imagery may be cost prohibitive. Collecting ground measurements at a 
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different time could also introduce additional error. The withholding of the high-

resolution imagery for accuracy assessment as was done during this research may 

be a good compromise depending on the specific study goals.  

 

Study Area 

  

The study area is centered on a location approximately 10 miles south of 

Granby, Colorado in the vicinity of 39° 57ˈ N, 105° 58ˈ W. The elevation range is 

2000 feet, with low points in valleys down to 8,500 feet and hilltops at 10,500 

feet. The majority of the area lies within the Arapahoe National Forest and there 

are few permanent man-made structures. Logging roads are the primary 

anthropogenic feature on the landscape and they are present in substantial 

numbers throughout the research site. A single large set of power lines traverses 

the study area running east to west. A few trucks and recreational vehicles are 

visible in the imagery but they do not appear to be permanent features. Several 

rock outcroppings also occur throughout the area. The final prominent non-

vegetation surface features are several anthropogenic clear cuts of varying age. 

After detailed study of the panchromatically sharpened images, the most recent 

appear to be associated with the removal of large numbers of dead trees in stands 

likely suffering from pine beetle infestation. Hydrological features are limited to 

small streams with earthen dams creating small ponds in the valleys. Several low-



13 

 

lying areas also present evidence that indicates seasonal water flow, likely a result 

of both spring snow melt and flash flooding in the summer.  

 Vegetation features may be divided into three broad categories: dense 

forest, anthropogenically thinned forest, and grasslands/low vegetation. The dense 

forest areas appear to be unhealthy based on imagery analysis, as a large portion 

of the trees are dead or under stress. This is supported by multiple US 

Government reports and research studies conducted in the region (Cole et al., 

2009; Collins et al., 2010). Tree damage caused by a pine beetle infestations is 

readily apparent in the forested areas and is easily recognizable on true color 

aerial photography. The thinned forests appear generally in better health than the 

denser groves due to sick or dead trees being intentionally removed.  Analysis, 

particularly in the near infrared, however, shows that even in the thinned areas 

many trees are still under substantial stress when compared with examples from 

spectral response libraries.  Large areas of grassland and low vegetation areas are 

primarily located in valleys along the associated hydrological features.  Some of 

this type of vegetation may also be observed below the forested areas and in the 

clear cuts, but these examples are far less prominent than those seen alongside 

streams. 

 All of the imagery was collected on August 25, 2010 at around 1630 Zulu 

or 1030 Mountain Daylight Time.  According to the United States Naval 

Observatory’s astronomical almanac,  the sun angle was approximately 53.7° with 
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an azimuth of 137.6° east of north.  Historical weather records show that visibility 

at Granby, CO at the time of the flight was 9.3 miles with an average wind speed 

3.45 mph. The high visibility indicated that aerosols or other airborne particulates 

were not likely present in large amounts at the time. Relative humidity was 

between 60 and 65% but this does not necessarily indicate substantial potential 

water vapor interference since the daily high temperature is only 66.2° F and the 

atmosphere is thinner at the elevation of the study area (Figure 1). 

 

Methods 

 

 For this research, Airborne Real-time Cueing Hyperspectral Enhanced 

Reconnaissance (ARCHER) imagery of a lodgepole pine dominated forest in 

Grand County, Colorado was used. The data were provided by the United States 

Geological Survey (USGS), which originally had the imagery flown in order 

study forest health conditions during an ongoing pine beetle infestation.  The 

ARCHER system is flown and maintained by the Civil Air Patrol (CAP).  The 

system is fielded on 16 Gippsland GA8 aircraft throughout the United States. 

Typical missions are flown at 2500 feet above ground level (AGL) and a 

groundspeed of 100 knots. The system incorporates two sensors: a hyperspectral 

imager and a high resolution panchromatic camera. The hyperspectral imager is a 

pushbroom type sensor and incorporates 52 spectral bands ranging from 500 nm 
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to 1100 nm each with a spectral bandwidth of 11.5 nm. In order to better visualize 

these bands, a data cube was used to highlight some features of the imagery 

(Figure 2).  The signal to noise ratio under standard conditions is 100:1 and the 

spatial resolution of the hyperspectral imagery on a typical sortie is one meter.  

The spatial resolution of the panchromatic imager is eight cm at the standard 

mission altitude of 2500 feet AGL (ARCHER Technical Specifications, 2005). 

 Since a primary use of the ARCHER system is for emergency response 

(detecting chemical spills, finding downed aircraft), many preprocessing tasks are 

carried out in real time as the data are recorded. Computer algorithms use a 

combination of global positioning and inertial navigation to automatically geo-

reference the data. The onboard system is also capable of showing waterfall 

displays (real-time moving maps providing imagery of the sensor’s current target) 

that accurately portray what is on the ground. Additionally, the tasks of anomaly 

detection and spectral response comparison with a database may be accomplished 

inflight (ARCHER Operations Manual, 2005). These capabilities imply additional 

corrections that are done by the software (such as for atmospheric conditions) but 

the data are not transformed into absolute spectral radiance units (Eismann et al. 

2009).  Since the software is proprietary it is not clear exactly what processes are 

being completed in order to directly compare spectral libraries to the collected 

data in near real time. 
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  During less time-sensitive applications, more extensive post-flight data 

preparation may be completed on the ground. One tool included with the 

ARCHER ground station is the GeoSharp program. This software allows for users 

to automatically combine hyperspectral data with the high resolution imagery in 

order to create a panchromatically sharpened image. True color and color infrared 

images for more detailed area study are commonly used, although the user may 

assign any three spectral bands for visualization. The data provided to the USGS 

used in this study included the full hyperspectral imagery products, subsets of 

these data for easier processing, the full panchromatic dataset and finally 

GeoSharp imagery in true color and several versions of color infrared.  All data 

were geo-registered and processed using the onboard software.  

The first step of processing was to extract the data to be analyzed.  This 

was accomplished by mosaicking the four flight lines associated with the study 

area.  This resulted in over eight square kilometers of coverage, of which 

approximately half was pine forest. All data processing conducted on the imagery 

relied on the Environment for Visualizing Images (ENVI) software package. This 

was the most logical choice for data analysis because the data are compiled in an 

ENVI-based format and the software package included many of the algorithms 

required to manipulate hyperspectral imagery. Besides hyperspectral analysis 

capabilities, ENVI also includes standard remote sensing tools including 

preprocessing functions as well as several methods that are used with more 
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conventional classification of multispectral data. ArcMap 10 and Google Earth 

were employed for data visualization as well as map production, while SPSS was 

used for statistical analysis. 

 Research presented at the 2010 Association of American Geographers 

annual meeting (Mladinich and Slonecker, 2010) indicated that all previous 

applications using ARCHER imagery had relied on uncalibrated data due to the 

fact that all users of the ARCHER platform to date had relied entirely on the 

system’s ability to detect change within the imagery, but had need to standardize 

data for outside comparison. In other words, all users of the system accepted the 

onboard processing of the data as delivered and did not perform any additional 

radiometric corrections to account for atmospheric conditions or sensor 

calibration. With hyperspectral imagery, the shape of the spectral response curve 

is more important than the magnitude of the responses across the spectrum. The 

ARCHER software used inflight is designed based on this concept and the need 

for additional corrections on the ground has been limited. After testing four 

radiometric correction methods, Mladinich and Slonecker (2010) found, based on 

visual inspection, that the empirical line calibration method appeared to be the 

most accurate, but with the drawback of requiring ground truthing. In general, the 

use of spectral library data requires substantial post-processing of the imagery for 

accurate comparison of response curves. However, this is not necessarily true 
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with the ARCHER system as it is specifically designed to match observations to 

known spectra in flight. 

 Without in situ measurements of the study area, the empirical line 

calibration method recommended by Mladinich and Slonecker (2010) was not a 

viable option. Two other algorithms that have been recently applied by 

researchers to make atmospheric corrections to hyperspectral data are the QUick 

Atmosphic Correction (QUAC) and the Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercube (FLAASH) methods. A change detection study conducted 

by the Air Force Research Laboratory (AFRL) discussed both methods as viable 

options, with FLAASH being somewhat more difficult to implement due to a 

requirement of absolute sensor calibration (Eismann et al., 2008). The Air Force 

team chose to address atmospheric interference by standardizing their 

measurements using the Normalized Difference Vegetation Index (NDVI) and 

then conducting a linear transformation. Further research conducted in India 

(Agrawal and Sarup, 2011) found that QUAC and FLAASH performed similarly 

in terms of accuracy of correction with QUAC being the preferred method for 

addressing unknown areas. As no results in this study were compared directly to 

either ground measurements or spectral response library information, no 

additional specific atmospheric corrections were applied. A certain portion of 

noise was removed, however, due to the nature of the processing algorithms used 

in order to develop the final land cover class reflectance models.  
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 Often, the next step of preprocessing hyperspectral data is to conduct 

geometric corrections. Since the data were already orthorectified using the 

onboard GPS/INS information as well as a 30-meter Digital Elevation Model 

(DEM), no further geometric corrections were conducted. It should be noted, 

however, that with the high spatial resolution of the imagery (around one meter) 

combined with ground measurements conducted using high accuracy GPS units, 

current in-flight geometric rectification techniques to ARCHER data may not be 

adequate for certain applications. This was highlighted in the work conducted by 

the AFRL while studying change detection of small objects in various 

environmental settings (Eismann et al., 2008). High resolution LiDAR elevation 

profiles coupled with refined georeferencing may be required in the future if ever 

smaller levels of change are being studied.  

Once the radiometric condition of the imagery was addressed and the data 

were verified as being properly georegistered by visual comparison to a Grand 

County parcel map, the next step was to reduce the dimensionality of the imagery 

through the use of a minimum noise fraction transformation.  Reducing data 

dimensionality is important because of the high collinearity between bands and 

the large data volume due to extremely high spatial resolution. A minimum noise 

fraction (MNF) transformation uses cascading principal components analyses 

(PCA) in order to uncorrelate the data and remove noise (Boardman and Kruse, 

1994). The results of the MNF transformation are multiple eigenvectors that are 
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essentially uncorrelated single layer raster graphics that may be visualized in the 

same manner as spectral bands.  The advantage of reducing the dimensionality of 

a hyperspectral dataset is that the data are much easier to process because of the 

reduction in data volume and a reduced number of bands (Zare, 2008). A 

disadvantage, however, is that hyperspectral data contain information at the sub-

pixel level. It is possible that eigenimages that appear to be purely noise when 

visualizing them actually contain useful data.  

In selecting which eigenvectors to use, both a visualization technique and 

careful study of eigenvalues were employed. This reduced the possibility of 

discarding data that were relevant to land cover classification. Once completed, 

eigenimages 1-12 were selected for use in further processing (Figure 3). The 

graph of eigenvalues was favored slightly over visualization in order to facilitate 

study at the sub-pixel scale where normal raster image study and map algebra 

techniques are insufficient for thorough analysis. 

Once the appropriate eigenimages had been selected, a supervised 

classification was conducted based on the USGS study classes and feature 

identification using both true color and color infrared variations of the 

hyperspectral imagery. The maximum likelihood classification algorithm was 

chosen because it is one of the most widely used classification methods and is 

probability-based (Lo and Yeung, 2002).  Also, research using hyperspectral 

imagery to map mangroves along the Texas Gulf Coast indicated that after 
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conducting a minimum noise fraction reduction, a maximum likelihood 

classification approach resulted in the best overall accuracy (Yang et al., 2009). 

In order to compare classifications to data that have been ground truthed, 

classes similar to those considered by the USGS were used.  The primary 

differences were that multiple levels of stress on the coniferous trees were not 

considered; only healthy and unhealthy/dying vegetation and additional classes of 

undergrowth were included.  The final thematic map include six land cover 

classes: tan for bare ground, light green for grass, orange for unhealthy trees, dark 

green for healthy trees, blue for water and olive green for brush (Figure 5). 

 After the appropriate MNF layers were selected and the supervised 

classification was completed for later comparison, the next step was to compute a 

pixel purity index (PPI) in order to select endmembers.  Once the pixel purity 

index was calculated, a density slice was used to reclassify the pixels into more 

useful ranges. This detailed study of the PPI image and statistics was used to 

determine the pixels with highest spectral purity.  These pixels were then chosen 

as endmember candidates based on a minimum threshold of three and exported as 

a region of interest. 

  The next step was to select and classify the potential endmembers 

identified using the PPI through n-Dimensional visualization.  The visualization 

allows the user to select endmembers that represent a theoretically discrete 

spectral response which may be indicative of pixels representing a pure sample of 
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a particular landcover type.  Endmembers were identified both through n-

Dimensional visualization as well as the automated process included with the 

ENVI software. N-dimensional visualization is accomplished by displaying 

multiple MNF bands as a data cloud and then selecting clusters of the purest 

pixels located at the corners (Boardman, 1993). The automatic approach first 

identifies the most dissimilar pixels within the image and then through multiple 

iterations determines endmembers based on the number requested by the user or 

when pixels begin to fall into multiple categories, whichever occurs first. In order 

to reduce the variability of manually selecting endmembers, the automatic 

selection method was applied throughout the research. 

 With endmembers computed, a model of pixel concentration based on 

these elements was conducted using linear spectral unmixing. The linear spectral 

unmixing algorithm uses the class mean data that were derived previously in order 

to determine fractional abundance. With no thermal bands present, different 

surface temperatures did not challenge the linearity assumption of the model. The 

output display of a single land cover class provides a monochromatic image 

where light values indicate high concentrations of the material class while dark 

areas indicate a smaller percent composition.  Multiple classes may be displayed 

using the red, green and blue color assignments, but interpretation may be 

difficult due to the complexity of the representation.  The output data are the 

single band for each endmember-defined class as well as a root mean square 
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graphic for error analysis. The selected bands represented the same classes of bare 

ground, grass, unhealthy trees, healthy trees, water, and brush. The non-

coniferous vegetation model was then coupled with the RMS error output and 

reclassified using another maximum likelihood supervised classification into the 

categories of “grass” and “not grass” (these terms were used in place of “non-

coniferous vegetation” due to software title character limitations) for an accuracy 

assessment. 

  

Results and Discussion 

 

As expected based on the classifications presented by the USGS scientists 

(Sloan, 2010), a typical analysis at the pixel level does not appear to identify 

much vegetation below the forest canopy upon visual inspection. In other words, 

there are few light green shaded pixels representing non-coniferous vegetation 

found within large areas classified as forest.  This is true in both the USGS model 

extraction (Figure 12) as well as the one developed for this research using a 

maximum likelihood supervised classification (Figure 5). Since both of these 

models were created using traditional classification methods, all pixels must be 

placed into a single category. Even if a substantial amount of non-coniferous 

vegetation was present below the coniferous vegetation, these models much select 
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one or the other, not a mixture of both.  This initial finding suggests that sub-pixel 

analysis could indeed be of value.   

The only statistic that is useful for analyzing model accuracy below the 

pixel level is the RMS error (and associated image) calculated during the 

unmixing process (Foppa et al., 2002). By analyzing the RMS error in 

conjunction with either ground data or detailed imagery, it is possible to 

determine the specific areas or feature classes that are the most accurate. Based on 

this concept and noting that lighter shading represents less error, the areas of least 

difference between the model and the endmember appear to be bare ground. 

Coniferous tree cover seems to generally have the highest RMS values.  Non-

coniferous vegetation classification appears to perform fairly well based on the 

shading image; however, the magnitude of the RMS errors vary somewhat 

depending on which particular grassy spot is observed (Figure 6).  In all cases the 

RMS error was below 0.01. This value is scale-dependent and is not a direct 

measurement of absolute error but no landcover class appeared drastically 

different than another, either with higher or lower RMS error values. 

Although further partial pixel validation was not possible without in situ 

data, an accuracy assessment of the model in predicting non-coniferous vegetation 

per pixel was accomplished by selecting training sites from the panchromatically-

sharpened imagery that was previously withheld for the specific purpose of model 

validation. First, the classification map originally developed using a maximum 



25 

 

likelihood approach was assessed (Table 1).  The overall accuracy of the model 

was 77% with a Kappa Coefficient of 0.71.  The producer and user accuracies for 

the non-coniferous vegetation classification (or “grass” category) were 97% and 

88%, respectively. 

Next, the ability of the non-coniferous vegetation prediction model 

derived using linear spectral unmixing was assessed.  Compared to the original 

classification map, this prediction model was indeed more accurate with an 

overall score of 97%.  The Kappa Coefficient was 0.94 with producer accuracy of 

100% and 95% user accuracy. As discussed before, these values do not provide 

any direct information on model performance in the sub-pixel realm, but at the 

same time it is possible to assert that the model designed specifically to predict 

non-coniferous vegetation performed successfully. 
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Chapter 3: Determining Optimum Spatial Resolution of  

a Non-coniferous Vegetation Model Developed from 

Hyperspectral Imagery 

 

 

Statement of Hypothesis and Research Goals 

 

 The goal of this research is to explore the optimal spatial resolution of 

hyperspectral imagery from the Airborne Real-time Cueing Hyperspectral 

Enhanced Reconnaissance (ARCHER) sensor for a non-coniferous vegetation 

model based on linear spectral unmixing in the Southern Rockies. In order to 

accomplish the goal, the following null hypothesis was addressed: 

  

Null Hypothesis - There is no significant difference in the classifications 

produced by liner spectral unmixing between 1 meter, 2 meter and 5 meter 

imagery in classifying non-coniferous vegetation in a lodgepole pine dominated 

forest within the study area. 

 

This hypothesis will be useful in determining the best spatial resolution for 

classifying vegetation in the study environment. Being able to use lower spatial 

resolution imagery is important when dealing with hyperspectral data. When 

looking at a single data layer in panchromatic format, 2 meter imagery is 
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approximately 1/4 the size of 1 meter imagery in terms of memory required for 

storage and use.  Five meter imagery is 1/25 the size of 1 meter imagery.  The 

ARCHER sensor provides users with 52 discrete spectral layers and as such, data 

size and processing times are major considerations.  If the null hypothesis is not 

rejected, the conclusion may be drawn that substantial amounts of memory and 

processing time could be saved without a significant reduction in the overall 

accuracy by employing lower resolution imagery.  It also may be possible to 

cover larger areas in a single overflight by allowing the aircraft to fly higher to 

acquire lower resolution imagery, thereby saving time and money. 

 

Study Area 

 

The study area is centered on a location approximately 10 miles south of 

Granby, Colorado in the vicinity of 39° 57ˈ N, 105° 58ˈ W. The elevation range is 

2000 feet, with low points in valleys down to 8,500 feet and hilltops at 10,500 

feet. The majority of the area lies within the Arapahoe National Forest and there 

are few permanent man-made structures. Logging roads are the primary 

anthropogenic feature on the landscape and they are present in substantial 

numbers throughout the research site. A single large set of power lines traverses 

the study area running east to west. A few trucks and recreational vehicles are 

visible in the imagery but they do not appear to be permanent features. Several 
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rock outcroppings also occur throughout the area. The final prominent non-

vegetation surface features are several anthropogenic clear cuts of varying age. 

After detailed study of the panchromatically sharpened images, the most recent 

appear to be associated with the removal of large numbers of dead trees in stands 

likely suffering from pine beetle infestation. Hydrological features are limited to 

small streams with earthen dams creating small ponds in the valleys. Several low-

lying areas also present evidence that indicates seasonal water flow, likely a result 

of both spring snow melt and flash flooding in the summer.  

 Vegetation features may be divided into three broad categories: dense 

forest, anthropogenically thinned forest, and grasslands/low vegetation. The dense 

forest areas appear to be unhealthy based on imagery analysis, as a large portion 

of the trees are dead or under stress. This is supported by multiple US 

Government reports and research studies conducted in the region (Cole et al., 

2009; Collins et al., 2010). Tree damage caused by a pine beetle infestations is 

readily apparent in the forested areas and is easily recognizable on true color 

aerial photography. The thinned forests appear generally in better health than the 

denser groves due to sick or dead trees being intentionally removed.  Analysis, 

particularly in the near infrared, however, shows that even in the thinned areas 

many trees are still under substantial stress when compared with examples from 

spectral response libraries.  Large areas of grassland and low vegetation areas are 

primarily located in valleys along the associated hydrological features.  Some of 
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this type of vegetation may also be observed below the forested areas and in the 

clear cuts, but these examples are far less prominent than those seen alongside 

streams. 

 All of the imagery was collected on August 25, 2010 at around 1630 Zulu 

or 1030 Mountain Daylight Time.  According to the United States Naval 

Observatory’s astronomical almanac,  the sun angle was approximately 53.7° with 

an azimuth of 137.6° east of north.  Historical weather records show that visibility 

at Granby, CO at the time of the flight was 9.3 miles with an average wind speed 

3.45 mph. The high visibility indicated that aerosols or other airborne particulates 

were not likely present in large amounts at the time. Relative humidity was 

between 60 and 65% but this does not necessarily indicate substantial potential 

water vapor interference since the daily high temperature is only 66.2° F and the 

atmosphere is thinner at the elevation of the study area (Figure 1). 

 

Methods 

 

 For this research, Airborne Real-time Cueing Hyperspectral Enhanced 

Reconnaissance (ARCHER) imagery of a lodgepole pine dominated forest in 

Grand County, Colorado was used. The data were provided by the United States 

Geological Survey (USGS), which originally had the imagery flown in order 

study forest health conditions during an ongoing pine beetle infestation.  The 
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ARCHER system is flown and maintained by the Civil Air Patrol (CAP).  The 

system is fielded on 16 Gippsland GA8 aircraft throughout the United States. 

Typical missions are flown at 2500 feet above ground level (AGL) and a 

groundspeed of 100 knots. The system incorporates two sensors: a hyperspectral 

imager and a high resolution panchromatic camera. The hyperspectral imager is a 

pushbroom type sensor and incorporates 52 spectral bands ranging from 500 nm 

to 1100 nm each with a spectral bandwidth of 11.5 nm. In order to better visualize 

these bands, a data cube was used to highlight some features of the imagery 

(Figure 2).  The signal to noise ratio under standard conditions is 100:1 and the 

spatial resolution of the hyperspectral imagery on a typical sortie is one meter.  

The spatial resolution of the panchromatic imager is eight cm at the standard 

mission altitude of 2500 feet AGL (ARCHER Technical Specifications, 2005). 

 Since a primary use of the ARCHER system is for emergency response 

(detecting chemical spills, finding downed aircraft), many preprocessing tasks are 

carried out in real time as the data are recorded. Computer algorithms use a 

combination of global positioning and inertial navigation to automatically geo-

reference the data. The onboard system is also capable of showing waterfall 

displays (real-time moving maps providing imagery of the sensor’s current target) 

that accurately portray what is on the ground. Additionally, the tasks of anomaly 

detection and spectral response comparison with a database may be accomplished 

inflight (ARCHER Operations Manual, 2005). These capabilities imply additional 
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corrections that are done by the software (such as for atmospheric conditions) but 

the data are not transformed into absolute spectral radiance units (Eismann et al. 

2009).  Since the software is proprietary it is not clear exactly what processes are 

being completed in order to directly compare spectral libraries to the collected 

data in near real time. 

  During less time sensitive applications, more extensive post-flight data 

preparation may be completed on the ground. One tool included with the 

ARCHER ground station is the GeoSharp program. This software allows for users 

to automatically combine hyperspectral data with the high resolution 

panchromatic imagery in order to create a panchromatically sharpened image. 

True color and color infrared images for more detailed area study are commonly 

used, although the user may assign any three spectral bands for visualization. The 

data provided to the USGS used in this study included the full hyperspectral 

imagery products, subsets of these data for easier processing, the full 

panchromatic dataset and finally GeoSharp imagery in true color and several 

versions of color infrared.  All data were geo-registered and processed using the 

onboard software.  

The first step of processing was to extract the data to be analyzed.  This 

was accomplished by mosaicking the four flight lines associated with the study 

area.  This resulted in over eight square kilometers of coverage, of which 

approximately half was pine forest. All data processing conducted on the imagery 



32 

 

relied on the Environment for Visualizing Images (ENVI) software package. This 

was the most logical choice for data analysis because the data are compiled in an 

ENVI-based format and the software package includes many of the algorithms 

required to analyze hyperspectral imagery. Besides - hyperspectral analysis 

capabilities, ENVI also includes standard remote sensing tools, includig 

preprocessing functions, as well as several image processing methods that are 

used with more conventional classification of multispectral data. ESRI ArcMap 

10 and Google Earth were employed for data visualization as well as map 

production, while SPSS was used for statistical analysis. 

 Research presented at the 2010 Association of American Geographers 

annual meeting (Mladinich and Slonecker, 2010) indicated that all previous 

applications using ARCHER imagery had relied on uncalibrated data due to the 

fact that all users of the ARCHER platform to date had relied entirely on the 

system’s ability to detect change within the imagery, but had need to standardize 

data for outside comparison. In other words, all users of the system accepted the 

onboard processing of the data as delivered and did not perform any additional 

radiometric corrections to account for atmospheric conditions or sensor 

calibration. With hyperspectral imagery, the shape of the spectral response curve 

is more important than the magnitude of the responses across the spectrum. The 

ARCHER software used inflight is designed based on this concept and the need 

for additional corrections on the ground has been limited. After testing four 
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radiometric correction methods, Mladinich and Slonecker (2010) found, based on 

visual inspection, that the empirical line calibration method appeared to be the 

most accurate, but with the drawback of requiring ground truthing. In general, the 

use of spectral library data requires substantial post-processing of the imagery for 

accurate comparison of response curves. However, this is not necessarily true 

with the ARCHER system as it is specifically designed to match observations to 

known spectra in flight. 

 Without in situ measurements of the study area, the empirical line 

calibration method recommended by Mladinich and Slonecker (2010) was not a 

viable option. Two other algorithms that have been recently applied by 

researchers to make atmospheric corrections to hyperspectral data are the QUick 

Atmosphic Correction (QUAC) and the Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercube (FLAASH) methods. A change detection study conducted 

by the Air Force Research Laboratory (AFRL) discussed both methods as viable 

options, with FLAASH being somewhat more difficult to implement due to a 

requirement of absolute sensor calibration (Eismann et al., 2008). The Air Force 

team chose to address atmospheric interference by standardizing their 

measurements using the Normalized Difference Vegetation Index (NDVI) and 

then conducting a linear transformation. Further research conducted in India 

(Agrawal and Sarup, 2011) found that QUAC and FLAASH performed similarly 

in terms of accuracy of correction with QUAC being the preferred method for 
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addressing unknown areas. As no results in this study were compared directly to 

either ground measurements or spectral response library information, no 

additional specific atmospheric corrections were applied. A certain portion of 

noise was removed, however, due to the nature of the processing algorithms used 

in order to develop the final land cover class reflectance models.  

 Often, the next step of preprocessing hyperspectral data is to conduct 

geometric corrections. Since the data were already orthorectified using the 

onboard GPS/INS information as well as a 30-meter Digital Elevation Model 

(DEM), no further geometric corrections were conducted. It should be noted, 

however, that with the high spatial resolution of the imagery (around one meter) 

combined with ground measurements conducted using high accuracy GPS units, 

current in-flight geometric rectification techniques to ARCHER data may not be 

adequate for certain applications. This was highlighted in the work conducted by 

the AFRL while studying change detection of small objects in various 

environmental settings (Eismann et al., 2008). High-resolution LiDAR elevation 

profiles coupled with refined georeferencing may be required in the future if ever 

smaller levels of change are being studied.  

Once the radiometric condition of the imagery was addressed and the data 

were verified as being properly georegistered by a visual comparison to a Grand 

County parcel map, all 52 spectral bands present in the imagery were resampled 

to two and five meter spatial resolution in order to simulate data collection at a 
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lower spatial resolution. The next step was to reduce the dimensionality of all 

three sets of imagery through the use of a minimum noise fraction transformation.  

Reducing data dimensionality is important because of the high collinearity 

between bands and the large data volume due to extremely high spatial resolution. 

A minimum noise fraction (MNF) transformation uses cascading principal 

components analyses (PCA) in order to uncorrelate the data and remove noise 

(Boardman and Kruse, 1994). The results of the MNF transformation are multiple 

eigenvectors that are essentially uncorrelated single layer raster graphics that may 

be visualized in the same manner as spectral bands.  The advantage of reducing 

the dimensionality of a hyperspectral dataset is that the data are much easier to 

process because of the reduction in data volume and a reduced number of bands 

(Zare, 2008). A disadvantage is that hyperspectral data contain information at the 

sub-pixel level. It is possible that eigenimages that appear to be purely noise when 

visualizing them actually contain useful data.  

In selecting which eigenvectors to use, both a visualization technique and 

careful study of eigenvalues were employed. This reduced the possibility of 

discarding data that were relevant to landcover classification. Once completed, 

eigenimages 1-12 were selected for use in further processing (Figure 3). The 

graph of eigenvalues was favored slightly over visualization in order to facilitate 

study at the sub-pixel scale where normal raster image study and map algebra 

techniques are insufficient for thorough analysis. 
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 After the appropriate MNF layers were selected, the next step was to 

compute pixel purity indices (PPI) in order to select endmembers.  Once 

calculated, a density slice was used to reclassify the pixels into more useful 

ranges. This detailed study of the PPI images and statistics was used to determine 

the pixels with highest spectral purity.  These pixels were then chosen as 

endmember candidates based on a minimum threshold of three and exported as a 

region of interest. This process was repeated for each sample size. 

  The next step was to select and classify the potential endmembers 

identified using the PPI through n-Dimensional visualization.  The visualization 

allows the user to select endmembers that represent a theoretically discrete 

spectral response which may be indicative of pixels representing a pure sample of 

a particular landcover type.  Endmembers were identified both through n-

Dimensional visualization as well as the automated process included with the 

ENVI software. N-dimensional visualization is accomplished by displaying 

multiple MNF bands as a data cloud and then selecting clusters of the purest 

pixels located at the corners (Boardman, 1993). The automatic approach first 

identifies the most dissimilar pixels within the image and then through multiple 

iterations determines endmembers based on the number requested by the user or 

when pixels begin to fall into multiple categories, whichever occurs first. In order 

to reduce the variability of manually selecting endmembers, the automatic 

selection method was applied throughout the research. 
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 With endmembers computed, a model of pixel concentration based on 

these elements was conducted using linear spectral unmixing. The linear spectral 

unmixing algorithm uses the class mean data that were derived previously in order 

to determine fractional abundance. With no thermal bands present, different 

surface temperatures did not challenge the linearity assumption of the model. The 

output display of a single land cover class provides a monochromatic image 

where light values indicate high concentrations of the material class while dark 

areas indicate a smaller percent composition.  Multiple classes may be displayed 

using the red, green and blue color assignments, but interpretation may be 

difficult due to the complexity of the representation.  The data output are the 

single band for each endmember-defined class as well as a root mean square 

graphic for error analysis. The selected bands represented the same classes of bare 

ground, grass, unhealthy trees, healthy trees, water and brush. 

Once the data were processed and representative models were derived 

from linear spectral unmixing, the imagery was loaded into GIS software for 

additional study and visualization.  Finally, the reflectance values were converted 

to scaled integer values and some basic statistical analysis using the Pearson 

correlation coefficient to compare the classification of non-coniferous vegetation 

at the three pixel sizes was conducted. 
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Results and Discussion 

 

The results of the two and five meter pixel resampling of the linear 

spectral unmixing-derived non-coniferous model were analyzed both visually and 

statistically. A visual comparison between the images of the original selected 

study area demonstrated that although detail is lost, no major changes in the 

classification of non-coniferous vegetation occurred (Figure 9, Figure 10, Figure 

11).  These results are also supported statistically by both mathematical change 

detection analysis and data similarity found by computing the Pearson Correlation 

Coefficient. Change detection was used to determine how closely the lower 

spatial resolution imagery compared to the 1 meter standard. For example, a 2 

meter pixel could be broken down into four different 1 meter pixels. Using a 

traditional classification method, all of the four sub-pixels will be a single 

category (either 0% or 100% proportional abundance). By using linear spectral 

unmixing, a range of proportional abundance is now available. All four sub-pixels 

will still have identical values, but will be a value on a scale as opposed to purely 

binary. 

A breakdown of the scaled integers into 11 bands with band six in the 

center representing no change and the five additional bands on either side 

representing increases or decreases in 20% increments indicated that (with zero-

line no-data removed) 98% of the image changed less than 20% in reflectance 
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(Table 1).  Similar results were also observed with the other comparisons.  From 

one-meter spatial resolution to five-meter resolution, 97% of pixels changed less 

than 20% while the number was 98% from two-meter to five–meter resolution 

(Table 2, Table 3). Further indicating that the images did not change significantly 

with increasing pixel size were Pearson Coefficients all in excess of 0.96 but more 

importantly, correlation was significant at the two-tailed 0.01 level in every case.   

Although the data were found to be highly related both visually and 

statistically at all the pixel sizes, some other considerations should be taken into 

account before concluding that data with a lower spatial resolution should be 

used.  The first potential drawback is that the data were resampled to larger pixel 

sizes as opposed to actually being recorded in this manner.   A second is 

associated with the fact that a larger area may be recorded by flying at a higher 

altitude, resulting in larger pixel sizes. However, this may induce errors associated 

with more atmosphere between the sensor and the target. This could be more 

problematic in areas at lower elevations with higher humidity that would produce 

greater atmospheric scattering, especially in shorter wavelengths.  A final 

consideration is that the ARCHER platform is designed for specific flight 

parameters.  Even if higher altitudes are allowed by aircraft performance, 

substantial sensor recalibration may be necessary along with additional 

preprocessing. 
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Chapter 4 

 

Conclusions 

 

 After studying the results produced using linear spectral unmixing, it is 

evident that substantially more information may be derived using sub-pixel 

analysis methods when compared to more traditional maximum likelihood data 

classification techniques. Not only were the overall user and producer errors 

lower with linear spectral unmixing, but also information about specific landcover 

classes is available for each pixel. Although the time required to process the 

imagery is greatly increased, sub-pixel analysis appears to provide a much better 

representation of the actual non-coniferous vegetation presence within the study 

area. These results suggest that in order to best utilize ARCHER hyperspectral 

imagery for landcover mapping, a sub-pixel technique should be applied in most 

cases. 

 The optimization of pixel size is a more challenging subject and will likely 

depend on application. The results of this study indicated that a change from one-

meter to five-meter pixel size saw 97% of the sample change less than 20%. 

Although this information, coupled with the highly significant correlation 

coefficients, indicates that much information may be retained at lower spatial 
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resolutions, these results may be artificial due to resampling. If the five-meter data 

were obtained directly from the aircraft as opposed to resampling from one meter 

data, it is not clear that the results would be duplicated. Furthermore, the type of 

landcover being analyzed as well as remote sensing platforms available will play 

a major role in determining the appropriate (or available) pixel size. For the 

purposes of this project, the one-meter spatial resolution imagery performed 

extremely well but the research did suggest that lower spatial resolution would 

most likely have been acceptable for this specific study.  

 Ultimately, this research may be useful in helping various organizations 

concerned with forest management employ limited financial resources more 

effectively. In many cases, hyperspectral data and the associated sub-pixel 

analysis have the ability to provide much more detailed landcover information 

than was previously available with multispectral imagery. By improving the use 

of remotely sensed data, concerned parties (both private and public) may be able 

to adequately monitor ground conditions over a large area.  Although not a 

replacement for direct field measurements, these data when fully utilized may be 

an acceptable compromise between accuracy and cost for certain applications. 
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Figure 2:  Hyperspectral Data Cube in True Color 
 

The reflectances for each of the 52 bands are indicated by the color 
ramp below the image on two sides. Although not individually visible, 
each band is represented by edge shading from violet to red.  The 
edge shading corresponds to the reflectance of the edge pixels. Low 
reflectance values are displayed as violet with the color ramp 
increasing to red to display high reflectance.  Besides representing the 
large amount of data, the gradual change from violet to red indicates 
correlation of nearby bands. 
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Figure 3:  Graph of Eigenvalues by Minimum Noise Fraction Bands  

 

This figure depicts eigenvalues on the y-axis versus the eigenvalue Number (or 

minimum noise fraction band number) on the x-axis. The eigenvalue is representative 

of the amount of variance explained by each band. By analyzing this graph along with 

visualization of the output bands, the 1-12 minimum noise fraction eigenimages were 

selected and used to create a pixel purity index. Band twelve was the final band 

selected because it appeared to still explain a small amount of meaningful variance 

as opposed to pure noise. The number of bands selected is particularly important 

when conducting pixel purity index mapping as they directly correspond to the 

number of endmembers available. 
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Figure 4: Panchromatically Sharpened Image of Grand County, CO 

Study Area (650m X 450m) 
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Figure 5: Supervised Classification Map of Extracted Area  
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Figure 6: Linear Spectral Unmixing RMS Error Image of Extracted 

Area  
 

The RMS error image represents the only statistical tool that is useful for analyzing 
model accuracy below the pixel level (Foppa et al., 2002).  Lower RMS error is 
represented by the lighter areas and increases as the shade becomes darker.  In all 
case, the RMS error was less than 0.01. 
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Figure 7: Unmixed Representation of Non-Coniferous Vegetation in 

Extracted Area  
 

This graphic displays relative abundance of non-coniferous vegetation in the 
extracted area.  Lighter shades indicate high concentrations (by individual pixel) 
while darker areas represent lower concentrations.  The darkest areas in the center 
are bodies of water with almost no vegetation present. 
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 Figure 8: Color Ramp Display of Grass Extraction from Linear 

Spectral Unmixing at the Full 1 Meter Resolution 
 

The color ramp from green to orange indicates the relative amount of vegetation 
derived from the grass endmember. High concentrations are represented by 
green while red indicates low values. The blue rectangle represents the extracted 
region used in figures 4-7 and 9-11. 
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Figure 9: Color Ramp Display of Grass Extraction from Linear 

Spectral Unmixing, 1 Meter, Extracted Area 

Figure 10: Color Ramp Display of Grass Extraction from Linear 

Spectral Unmixing, 2 Meter, Extracted Area 
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Figure 11: Color Ramp Display of Grass Extraction from Linear 

Spectral Unmixing, 5 Meter, Extracted Area 
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Tables 

 

 

 

 

 

 

 

 

Table 1: Error Matrix of Original Maximum Likelihood 

Supervised Classification 

Table 2: Error Matrix of Maximum Likelihood Supervised 

Classification on Linear Spectral Unmixing Non-coniferous 

Vegetation Model 
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Table 4: Change Statistics from 1 Meter Resolution to 5 Meter 

Resolution, Grass Extraction 

In order to better compare the change between resolutions, the pixel reflectance 

values were converted into scaled integers and compared against each other. 

The zero line represents no data while row six shows no change. Each non-zero 

row above and below row six represents an additional 20 percent of change. In 

this case, rows five and seven indicate a 20% or less decrease or increase 

respectively and include 97% of the total points. 

 

Table 3: Change Statistics from 1 Meter Resolution to 2 Meter 

Resolution, Grass ExtractionIn order to better compare the change between 

resolutions, the pixel reflectance values were converted into scaled integers and 

compared against each other. The zero line represents no data while row six shows 

no change. Each non-zero row above and below row six represents an additional 20 

percent of change. In this case, rows five and seven indicate a 20% or less decrease 

or increase respectively and include 98% of the total points. Due to the no data on the 

zero line, all columns other than “number of points” do not provide meaningful 

information and all values were recalculated with these points excluded. This is also 

true in Tables 4 and 5. 
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Table 5: Change Statistics from 2 Meter Resolution to 5 Meter 

Resolution, Grass Extraction 

In order to better compare the change between resolutions, the pixel reflectance 

values were converted into scaled integers and compared against each other. 

The zero line represents no data while row six shows no change. Each non-zero 

row above and below row six represents an additional 20 percent of change. In 

this case, rows five and seven indicate a 20% or less decrease or increase 

respectively and include 98% of the total points. 
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Correlations 

 count_1m count_2m 

count_1m 

Pearson Correlation 1 .982
**
 

Sig. (2-tailed) 
 

.000 

N 255 255 

count_2m 

Pearson Correlation .982
**
 1 

Sig. (2-tailed) .000 
 

N 255 255 

**. Correlation is significant at the 0.01 level (2-tailed). 

Correlations 

 count_1m count_5m 

count_1m 

Pearson Correlation 1 .964
**
 

Sig. (2-tailed) 
 

.000 

N 255 255 

count_5m 

Pearson Correlation .964
**
 1 

Sig. (2-tailed) .000 
 

N 255 255 

**. Correlation is significant at the 0.01 level (2-tailed). 

Correlations 

 count_2m count_5m 

count_2m 

Pearson Correlation 1 .988
**
 

Sig. (2-tailed) 
 

.000 

N 255 255 

count_5m 

Pearson Correlation .988
**
 1 

Sig. (2-tailed) .000 
 

N 255 255 

**. Correlation is significant at the 0.01 level (2-tailed). 

Tables 6 - 8:  Pearson Correlation Coefficients between Original and 

Resampled Pixel Sizes 

The Pearson Correlation Coefficient ranges in value from -1 to 1 with positive one 

describing a relationship perfectly. In all cases, the value of the coefficient is greater 

than 0.95 and, more importantly, all comparisons are statistically significant at the 

0.01 level based on a two-tailed t-test. 
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